xref: /linux/drivers/remoteproc/xlnx_r5_remoteproc.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ZynqMP R5 Remote Processor driver
4  *
5  */
6 
7 #include <dt-bindings/power/xlnx-zynqmp-power.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/firmware/xlnx-zynqmp.h>
10 #include <linux/kernel.h>
11 #include <linux/mailbox_client.h>
12 #include <linux/mailbox/zynqmp-ipi-message.h>
13 #include <linux/module.h>
14 #include <linux/of_address.h>
15 #include <linux/of_platform.h>
16 #include <linux/of_reserved_mem.h>
17 #include <linux/platform_device.h>
18 #include <linux/remoteproc.h>
19 
20 #include "remoteproc_internal.h"
21 
22 /* IPI buffer MAX length */
23 #define IPI_BUF_LEN_MAX	32U
24 
25 /* RX mailbox client buffer max length */
26 #define MBOX_CLIENT_BUF_MAX	(IPI_BUF_LEN_MAX + \
27 				 sizeof(struct zynqmp_ipi_message))
28 
29 #define RSC_TBL_XLNX_MAGIC	((uint32_t)'x' << 24 | (uint32_t)'a' << 16 | \
30 				 (uint32_t)'m' << 8 | (uint32_t)'p')
31 
32 /*
33  * settings for RPU cluster mode which
34  * reflects possible values of xlnx,cluster-mode dt-property
35  */
36 enum zynqmp_r5_cluster_mode {
37 	SPLIT_MODE = 0, /* When cores run as separate processor */
38 	LOCKSTEP_MODE = 1, /* cores execute same code in lockstep,clk-for-clk */
39 	SINGLE_CPU_MODE = 2, /* core0 is held in reset and only core1 runs */
40 };
41 
42 /**
43  * struct mem_bank_data - Memory Bank description
44  *
45  * @addr: Start address of memory bank
46  * @da: device address
47  * @size: Size of Memory bank
48  * @pm_domain_id: Power-domains id of memory bank for firmware to turn on/off
49  * @bank_name: name of the bank for remoteproc framework
50  */
51 struct mem_bank_data {
52 	phys_addr_t addr;
53 	u32 da;
54 	size_t size;
55 	u32 pm_domain_id;
56 	char *bank_name;
57 };
58 
59 /**
60  * struct zynqmp_sram_bank - sram bank description
61  *
62  * @sram_res: sram address region information
63  * @da: device address of sram
64  */
65 struct zynqmp_sram_bank {
66 	struct resource sram_res;
67 	u32 da;
68 };
69 
70 /**
71  * struct mbox_info
72  *
73  * @rx_mc_buf: to copy data from mailbox rx channel
74  * @tx_mc_buf: to copy data to mailbox tx channel
75  * @r5_core: this mailbox's corresponding r5_core pointer
76  * @mbox_work: schedule work after receiving data from mailbox
77  * @mbox_cl: mailbox client
78  * @tx_chan: mailbox tx channel
79  * @rx_chan: mailbox rx channel
80  */
81 struct mbox_info {
82 	unsigned char rx_mc_buf[MBOX_CLIENT_BUF_MAX];
83 	unsigned char tx_mc_buf[MBOX_CLIENT_BUF_MAX];
84 	struct zynqmp_r5_core *r5_core;
85 	struct work_struct mbox_work;
86 	struct mbox_client mbox_cl;
87 	struct mbox_chan *tx_chan;
88 	struct mbox_chan *rx_chan;
89 };
90 
91 /**
92  * struct rsc_tbl_data
93  *
94  * Platform specific data structure used to sync resource table address.
95  * It's important to maintain order and size of each field on remote side.
96  *
97  * @version: version of data structure
98  * @magic_num: 32-bit magic number.
99  * @comp_magic_num: complement of above magic number
100  * @rsc_tbl_size: resource table size
101  * @rsc_tbl: resource table address
102  */
103 struct rsc_tbl_data {
104 	const int version;
105 	const u32 magic_num;
106 	const u32 comp_magic_num;
107 	const u32 rsc_tbl_size;
108 	const uintptr_t rsc_tbl;
109 } __packed;
110 
111 /*
112  * Hardcoded TCM bank values. This will stay in driver to maintain backward
113  * compatibility with device-tree that does not have TCM information.
114  */
115 static const struct mem_bank_data zynqmp_tcm_banks_split[] = {
116 	{0xffe00000UL, 0x0, 0x10000UL, PD_R5_0_ATCM, "atcm0"}, /* TCM 64KB each */
117 	{0xffe20000UL, 0x20000, 0x10000UL, PD_R5_0_BTCM, "btcm0"},
118 	{0xffe90000UL, 0x0, 0x10000UL, PD_R5_1_ATCM, "atcm1"},
119 	{0xffeb0000UL, 0x20000, 0x10000UL, PD_R5_1_BTCM, "btcm1"},
120 };
121 
122 /* In lockstep mode cluster uses each 64KB TCM from second core as well */
123 static const struct mem_bank_data zynqmp_tcm_banks_lockstep[] = {
124 	{0xffe00000UL, 0x0, 0x10000UL, PD_R5_0_ATCM, "atcm0"}, /* TCM 64KB each */
125 	{0xffe20000UL, 0x20000, 0x10000UL, PD_R5_0_BTCM, "btcm0"},
126 	{0xffe10000UL, 0x10000, 0x10000UL, PD_R5_1_ATCM, "atcm1"},
127 	{0xffe30000UL, 0x30000, 0x10000UL, PD_R5_1_BTCM, "btcm1"},
128 };
129 
130 /**
131  * struct zynqmp_r5_core
132  *
133  * @rsc_tbl_va: resource table virtual address
134  * @sram: Array of sram memories assigned to this core
135  * @num_sram: number of sram for this core
136  * @dev: device of RPU instance
137  * @np: device node of RPU instance
138  * @tcm_bank_count: number TCM banks accessible to this RPU
139  * @tcm_banks: array of each TCM bank data
140  * @rproc: rproc handle
141  * @rsc_tbl_size: resource table size retrieved from remote
142  * @pm_domain_id: RPU CPU power domain id
143  * @ipi: pointer to mailbox information
144  */
145 struct zynqmp_r5_core {
146 	void __iomem *rsc_tbl_va;
147 	struct zynqmp_sram_bank *sram;
148 	int num_sram;
149 	struct device *dev;
150 	struct device_node *np;
151 	int tcm_bank_count;
152 	struct mem_bank_data **tcm_banks;
153 	struct rproc *rproc;
154 	u32 rsc_tbl_size;
155 	u32 pm_domain_id;
156 	struct mbox_info *ipi;
157 };
158 
159 /**
160  * struct zynqmp_r5_cluster
161  *
162  * @dev: r5f subsystem cluster device node
163  * @mode: cluster mode of type zynqmp_r5_cluster_mode
164  * @core_count: number of r5 cores used for this cluster mode
165  * @r5_cores: Array of pointers pointing to r5 core
166  */
167 struct zynqmp_r5_cluster {
168 	struct device *dev;
169 	enum  zynqmp_r5_cluster_mode mode;
170 	int core_count;
171 	struct zynqmp_r5_core **r5_cores;
172 };
173 
174 /**
175  * event_notified_idr_cb() - callback for vq_interrupt per notifyid
176  * @id: rproc->notify id
177  * @ptr: pointer to idr private data
178  * @data: data passed to idr_for_each callback
179  *
180  * Pass notification to remoteproc virtio
181  *
182  * Return: 0. having return is to satisfy the idr_for_each() function
183  *          pointer input argument requirement.
184  **/
event_notified_idr_cb(int id,void * ptr,void * data)185 static int event_notified_idr_cb(int id, void *ptr, void *data)
186 {
187 	struct rproc *rproc = data;
188 
189 	if (rproc_vq_interrupt(rproc, id) == IRQ_NONE)
190 		dev_dbg(&rproc->dev, "data not found for vqid=%d\n", id);
191 
192 	return 0;
193 }
194 
195 /**
196  * handle_event_notified() - remoteproc notification work function
197  * @work: pointer to the work structure
198  *
199  * It checks each registered remoteproc notify IDs.
200  */
handle_event_notified(struct work_struct * work)201 static void handle_event_notified(struct work_struct *work)
202 {
203 	struct mbox_info *ipi;
204 	struct rproc *rproc;
205 
206 	ipi = container_of(work, struct mbox_info, mbox_work);
207 	rproc = ipi->r5_core->rproc;
208 
209 	/*
210 	 * We only use IPI for interrupt. The RPU firmware side may or may
211 	 * not write the notifyid when it trigger IPI.
212 	 * And thus, we scan through all the registered notifyids and
213 	 * find which one is valid to get the message.
214 	 * Even if message from firmware is NULL, we attempt to get vqid
215 	 */
216 	idr_for_each(&rproc->notifyids, event_notified_idr_cb, rproc);
217 }
218 
219 /**
220  * zynqmp_r5_mb_rx_cb() - receive channel mailbox callback
221  * @cl: mailbox client
222  * @msg: message pointer
223  *
224  * Receive data from ipi buffer, ack interrupt and then
225  * it will schedule the R5 notification work.
226  */
zynqmp_r5_mb_rx_cb(struct mbox_client * cl,void * msg)227 static void zynqmp_r5_mb_rx_cb(struct mbox_client *cl, void *msg)
228 {
229 	struct zynqmp_ipi_message *ipi_msg, *buf_msg;
230 	struct mbox_info *ipi;
231 	size_t len;
232 
233 	ipi = container_of(cl, struct mbox_info, mbox_cl);
234 
235 	/* copy data from ipi buffer to r5_core */
236 	ipi_msg = (struct zynqmp_ipi_message *)msg;
237 	buf_msg = (struct zynqmp_ipi_message *)ipi->rx_mc_buf;
238 	len = ipi_msg->len;
239 	if (len > IPI_BUF_LEN_MAX) {
240 		dev_warn(cl->dev, "msg size exceeded than %d\n",
241 			 IPI_BUF_LEN_MAX);
242 		len = IPI_BUF_LEN_MAX;
243 	}
244 	buf_msg->len = len;
245 	memcpy(buf_msg->data, ipi_msg->data, len);
246 
247 	/* received and processed interrupt ack */
248 	if (mbox_send_message(ipi->rx_chan, NULL) < 0)
249 		dev_err(cl->dev, "ack failed to mbox rx_chan\n");
250 
251 	schedule_work(&ipi->mbox_work);
252 }
253 
254 /**
255  * zynqmp_r5_setup_mbox() - Setup mailboxes related properties
256  *			    this is used for each individual R5 core
257  *
258  * @cdev: child node device
259  *
260  * Function to setup mailboxes related properties
261  * return : NULL if failed else pointer to mbox_info
262  */
zynqmp_r5_setup_mbox(struct device * cdev)263 static struct mbox_info *zynqmp_r5_setup_mbox(struct device *cdev)
264 {
265 	struct mbox_client *mbox_cl;
266 	struct mbox_info *ipi;
267 
268 	ipi = kzalloc(sizeof(*ipi), GFP_KERNEL);
269 	if (!ipi)
270 		return NULL;
271 
272 	mbox_cl = &ipi->mbox_cl;
273 	mbox_cl->rx_callback = zynqmp_r5_mb_rx_cb;
274 	mbox_cl->tx_block = false;
275 	mbox_cl->knows_txdone = false;
276 	mbox_cl->tx_done = NULL;
277 	mbox_cl->dev = cdev;
278 
279 	/* Request TX and RX channels */
280 	ipi->tx_chan = mbox_request_channel_byname(mbox_cl, "tx");
281 	if (IS_ERR(ipi->tx_chan)) {
282 		ipi->tx_chan = NULL;
283 		kfree(ipi);
284 		dev_warn(cdev, "mbox tx channel request failed\n");
285 		return NULL;
286 	}
287 
288 	ipi->rx_chan = mbox_request_channel_byname(mbox_cl, "rx");
289 	if (IS_ERR(ipi->rx_chan)) {
290 		mbox_free_channel(ipi->tx_chan);
291 		ipi->rx_chan = NULL;
292 		ipi->tx_chan = NULL;
293 		kfree(ipi);
294 		dev_warn(cdev, "mbox rx channel request failed\n");
295 		return NULL;
296 	}
297 
298 	INIT_WORK(&ipi->mbox_work, handle_event_notified);
299 
300 	return ipi;
301 }
302 
zynqmp_r5_free_mbox(struct mbox_info * ipi)303 static void zynqmp_r5_free_mbox(struct mbox_info *ipi)
304 {
305 	if (!ipi)
306 		return;
307 
308 	if (ipi->tx_chan) {
309 		mbox_free_channel(ipi->tx_chan);
310 		ipi->tx_chan = NULL;
311 	}
312 
313 	if (ipi->rx_chan) {
314 		mbox_free_channel(ipi->rx_chan);
315 		ipi->rx_chan = NULL;
316 	}
317 
318 	kfree(ipi);
319 }
320 
321 /*
322  * zynqmp_r5_core_kick() - kick a firmware if mbox is provided
323  * @rproc: r5 core's corresponding rproc structure
324  * @vqid: virtqueue ID
325  */
zynqmp_r5_rproc_kick(struct rproc * rproc,int vqid)326 static void zynqmp_r5_rproc_kick(struct rproc *rproc, int vqid)
327 {
328 	struct zynqmp_r5_core *r5_core = rproc->priv;
329 	struct device *dev = r5_core->dev;
330 	struct zynqmp_ipi_message *mb_msg;
331 	struct mbox_info *ipi;
332 	int ret;
333 
334 	ipi = r5_core->ipi;
335 	if (!ipi)
336 		return;
337 
338 	mb_msg = (struct zynqmp_ipi_message *)ipi->tx_mc_buf;
339 	memcpy(mb_msg->data, &vqid, sizeof(vqid));
340 	mb_msg->len = sizeof(vqid);
341 	ret = mbox_send_message(ipi->tx_chan, mb_msg);
342 	if (ret < 0)
343 		dev_warn(dev, "failed to send message\n");
344 }
345 
346 /*
347  * zynqmp_r5_rproc_start()
348  * @rproc: single R5 core's corresponding rproc instance
349  *
350  * Start R5 Core from designated boot address.
351  *
352  * return 0 on success, otherwise non-zero value on failure
353  */
zynqmp_r5_rproc_start(struct rproc * rproc)354 static int zynqmp_r5_rproc_start(struct rproc *rproc)
355 {
356 	struct zynqmp_r5_core *r5_core = rproc->priv;
357 	enum rpu_boot_mem bootmem;
358 	int ret;
359 
360 	/*
361 	 * The exception vector pointers (EVP) refer to the base-address of
362 	 * exception vectors (for reset, IRQ, FIQ, etc). The reset-vector
363 	 * starts at the base-address and subsequent vectors are on 4-byte
364 	 * boundaries.
365 	 *
366 	 * Exception vectors can start either from 0x0000_0000 (LOVEC) or
367 	 * from 0xFFFF_0000 (HIVEC) which is mapped in the OCM (On-Chip Memory)
368 	 *
369 	 * Usually firmware will put Exception vectors at LOVEC.
370 	 *
371 	 * It is not recommend that you change the exception vector.
372 	 * Changing the EVP to HIVEC will result in increased interrupt latency
373 	 * and jitter. Also, if the OCM is secured and the Cortex-R5F processor
374 	 * is non-secured, then the Cortex-R5F processor cannot access the
375 	 * HIVEC exception vectors in the OCM.
376 	 */
377 	bootmem = (rproc->bootaddr >= 0xFFFC0000) ?
378 		   PM_RPU_BOOTMEM_HIVEC : PM_RPU_BOOTMEM_LOVEC;
379 
380 	dev_dbg(r5_core->dev, "RPU boot addr 0x%llx from %s.", rproc->bootaddr,
381 		bootmem == PM_RPU_BOOTMEM_HIVEC ? "OCM" : "TCM");
382 
383 	ret = zynqmp_pm_request_wake(r5_core->pm_domain_id, 1,
384 				     bootmem, ZYNQMP_PM_REQUEST_ACK_NO);
385 	if (ret)
386 		dev_err(r5_core->dev,
387 			"failed to start RPU = 0x%x\n", r5_core->pm_domain_id);
388 	return ret;
389 }
390 
391 /*
392  * zynqmp_r5_rproc_stop()
393  * @rproc: single R5 core's corresponding rproc instance
394  *
395  * Power down  R5 Core.
396  *
397  * return 0 on success, otherwise non-zero value on failure
398  */
zynqmp_r5_rproc_stop(struct rproc * rproc)399 static int zynqmp_r5_rproc_stop(struct rproc *rproc)
400 {
401 	struct zynqmp_r5_core *r5_core = rproc->priv;
402 	int ret;
403 
404 	ret = zynqmp_pm_force_pwrdwn(r5_core->pm_domain_id,
405 				     ZYNQMP_PM_REQUEST_ACK_BLOCKING);
406 	if (ret)
407 		dev_err(r5_core->dev, "failed to stop remoteproc RPU %d\n", ret);
408 
409 	return ret;
410 }
411 
412 /*
413  * zynqmp_r5_mem_region_map()
414  * @rproc: single R5 core's corresponding rproc instance
415  * @mem: mem descriptor to map reserved memory-regions
416  *
417  * Callback to map va for memory-region's carveout.
418  *
419  * return 0 on success, otherwise non-zero value on failure
420  */
zynqmp_r5_mem_region_map(struct rproc * rproc,struct rproc_mem_entry * mem)421 static int zynqmp_r5_mem_region_map(struct rproc *rproc,
422 				    struct rproc_mem_entry *mem)
423 {
424 	void __iomem *va;
425 
426 	va = ioremap_wc(mem->dma, mem->len);
427 	if (IS_ERR_OR_NULL(va))
428 		return -ENOMEM;
429 
430 	mem->va = (void *)va;
431 
432 	return 0;
433 }
434 
435 /*
436  * zynqmp_r5_rproc_mem_unmap
437  * @rproc: single R5 core's corresponding rproc instance
438  * @mem: mem entry to unmap
439  *
440  * Unmap memory-region carveout
441  *
442  * return: always returns 0
443  */
zynqmp_r5_mem_region_unmap(struct rproc * rproc,struct rproc_mem_entry * mem)444 static int zynqmp_r5_mem_region_unmap(struct rproc *rproc,
445 				      struct rproc_mem_entry *mem)
446 {
447 	iounmap((void __iomem *)mem->va);
448 	return 0;
449 }
450 
451 /*
452  * add_mem_regions_carveout()
453  * @rproc: single R5 core's corresponding rproc instance
454  *
455  * Construct rproc mem carveouts from memory-region property nodes
456  *
457  * return 0 on success, otherwise non-zero value on failure
458  */
add_mem_regions_carveout(struct rproc * rproc)459 static int add_mem_regions_carveout(struct rproc *rproc)
460 {
461 	struct rproc_mem_entry *rproc_mem;
462 	struct zynqmp_r5_core *r5_core;
463 	struct of_phandle_iterator it;
464 	struct reserved_mem *rmem;
465 	int i = 0;
466 
467 	r5_core = rproc->priv;
468 
469 	/* Register associated reserved memory regions */
470 	of_phandle_iterator_init(&it, r5_core->np, "memory-region", NULL, 0);
471 
472 	while (of_phandle_iterator_next(&it) == 0) {
473 		rmem = of_reserved_mem_lookup(it.node);
474 		if (!rmem) {
475 			of_node_put(it.node);
476 			dev_err(&rproc->dev, "unable to acquire memory-region\n");
477 			return -EINVAL;
478 		}
479 
480 		if (!strcmp(it.node->name, "vdev0buffer")) {
481 			/* Init reserved memory for vdev buffer */
482 			rproc_mem = rproc_of_resm_mem_entry_init(&rproc->dev, i,
483 								 rmem->size,
484 								 rmem->base,
485 								 it.node->name);
486 		} else {
487 			/* Register associated reserved memory regions */
488 			rproc_mem = rproc_mem_entry_init(&rproc->dev, NULL,
489 							 (dma_addr_t)rmem->base,
490 							 rmem->size, rmem->base,
491 							 zynqmp_r5_mem_region_map,
492 							 zynqmp_r5_mem_region_unmap,
493 							 it.node->name);
494 		}
495 
496 		if (!rproc_mem) {
497 			of_node_put(it.node);
498 			return -ENOMEM;
499 		}
500 
501 		rproc_add_carveout(rproc, rproc_mem);
502 		rproc_coredump_add_segment(rproc, rmem->base, rmem->size);
503 
504 		dev_dbg(&rproc->dev, "reserved mem carveout %s addr=%llx, size=0x%llx",
505 			it.node->name, rmem->base, rmem->size);
506 		i++;
507 	}
508 
509 	return 0;
510 }
511 
add_sram_carveouts(struct rproc * rproc)512 static int add_sram_carveouts(struct rproc *rproc)
513 {
514 	struct zynqmp_r5_core *r5_core = rproc->priv;
515 	struct rproc_mem_entry *rproc_mem;
516 	struct zynqmp_sram_bank *sram;
517 	dma_addr_t dma_addr;
518 	size_t len;
519 	int da, i;
520 
521 	for (i = 0; i < r5_core->num_sram; i++) {
522 		sram = &r5_core->sram[i];
523 
524 		dma_addr = (dma_addr_t)sram->sram_res.start;
525 
526 		len = resource_size(&sram->sram_res);
527 		da = sram->da;
528 
529 		rproc_mem = rproc_mem_entry_init(&rproc->dev, NULL,
530 						 dma_addr,
531 						 len, da,
532 						 zynqmp_r5_mem_region_map,
533 						 zynqmp_r5_mem_region_unmap,
534 						 sram->sram_res.name);
535 		if (!rproc_mem) {
536 			dev_err(&rproc->dev, "failed to add sram %s da=0x%x, size=0x%lx",
537 				sram->sram_res.name, da, len);
538 			return -ENOMEM;
539 		}
540 
541 		rproc_add_carveout(rproc, rproc_mem);
542 		rproc_coredump_add_segment(rproc, da, len);
543 
544 		dev_dbg(&rproc->dev, "sram carveout %s addr=%llx, da=0x%x, size=0x%lx",
545 			sram->sram_res.name, dma_addr, da, len);
546 	}
547 
548 	return 0;
549 }
550 
551 /*
552  * tcm_mem_unmap()
553  * @rproc: single R5 core's corresponding rproc instance
554  * @mem: tcm mem entry to unmap
555  *
556  * Unmap TCM banks when powering down R5 core.
557  *
558  * return always 0
559  */
tcm_mem_unmap(struct rproc * rproc,struct rproc_mem_entry * mem)560 static int tcm_mem_unmap(struct rproc *rproc, struct rproc_mem_entry *mem)
561 {
562 	iounmap((void __iomem *)mem->va);
563 
564 	return 0;
565 }
566 
567 /*
568  * tcm_mem_map()
569  * @rproc: single R5 core's corresponding rproc instance
570  * @mem: tcm memory entry descriptor
571  *
572  * Given TCM bank entry, this func setup virtual address for TCM bank
573  * remoteproc carveout. It also takes care of va to da address translation
574  *
575  * return 0 on success, otherwise non-zero value on failure
576  */
tcm_mem_map(struct rproc * rproc,struct rproc_mem_entry * mem)577 static int tcm_mem_map(struct rproc *rproc,
578 		       struct rproc_mem_entry *mem)
579 {
580 	void __iomem *va;
581 
582 	va = ioremap_wc(mem->dma, mem->len);
583 	if (IS_ERR_OR_NULL(va))
584 		return -ENOMEM;
585 
586 	/* Update memory entry va */
587 	mem->va = (void *)va;
588 
589 	/* clear TCMs */
590 	memset_io(va, 0, mem->len);
591 
592 	return 0;
593 }
594 
595 /*
596  * add_tcm_banks()
597  * @rproc: single R5 core's corresponding rproc instance
598  *
599  * allocate and add remoteproc carveout for TCM memory
600  *
601  * return 0 on success, otherwise non-zero value on failure
602  */
add_tcm_banks(struct rproc * rproc)603 static int add_tcm_banks(struct rproc *rproc)
604 {
605 	struct rproc_mem_entry *rproc_mem;
606 	struct zynqmp_r5_core *r5_core;
607 	int i, num_banks, ret;
608 	phys_addr_t bank_addr;
609 	struct device *dev;
610 	u32 pm_domain_id;
611 	size_t bank_size;
612 	char *bank_name;
613 	u32 da;
614 
615 	r5_core = rproc->priv;
616 	dev = r5_core->dev;
617 	num_banks = r5_core->tcm_bank_count;
618 
619 	/*
620 	 * Power-on Each 64KB TCM,
621 	 * register its address space, map and unmap functions
622 	 * and add carveouts accordingly
623 	 */
624 	for (i = 0; i < num_banks; i++) {
625 		bank_addr = r5_core->tcm_banks[i]->addr;
626 		da = r5_core->tcm_banks[i]->da;
627 		bank_name = r5_core->tcm_banks[i]->bank_name;
628 		bank_size = r5_core->tcm_banks[i]->size;
629 		pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id;
630 
631 		ret = zynqmp_pm_request_node(pm_domain_id,
632 					     ZYNQMP_PM_CAPABILITY_ACCESS, 0,
633 					     ZYNQMP_PM_REQUEST_ACK_BLOCKING);
634 		if (ret < 0) {
635 			dev_err(dev, "failed to turn on TCM 0x%x", pm_domain_id);
636 			goto release_tcm;
637 		}
638 
639 		dev_dbg(dev, "TCM carveout %s addr=%llx, da=0x%x, size=0x%lx",
640 			bank_name, bank_addr, da, bank_size);
641 
642 		/*
643 		 * In DETACHED state firmware is already running so no need to
644 		 * request add TCM registers. However, request TCM PD node to let
645 		 * platform management firmware know that TCM is in use.
646 		 */
647 		if (rproc->state == RPROC_DETACHED)
648 			continue;
649 
650 		rproc_mem = rproc_mem_entry_init(dev, NULL, bank_addr,
651 						 bank_size, da,
652 						 tcm_mem_map, tcm_mem_unmap,
653 						 bank_name);
654 		if (!rproc_mem) {
655 			ret = -ENOMEM;
656 			zynqmp_pm_release_node(pm_domain_id);
657 			goto release_tcm;
658 		}
659 
660 		rproc_add_carveout(rproc, rproc_mem);
661 		rproc_coredump_add_segment(rproc, da, bank_size);
662 	}
663 
664 	return 0;
665 
666 release_tcm:
667 	/* If failed, Turn off all TCM banks turned on before */
668 	for (i--; i >= 0; i--) {
669 		pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id;
670 		zynqmp_pm_release_node(pm_domain_id);
671 	}
672 	return ret;
673 }
674 
675 /*
676  * zynqmp_r5_parse_fw()
677  * @rproc: single R5 core's corresponding rproc instance
678  * @fw: ptr to firmware to be loaded onto r5 core
679  *
680  * get resource table if available
681  *
682  * return 0 on success, otherwise non-zero value on failure
683  */
zynqmp_r5_parse_fw(struct rproc * rproc,const struct firmware * fw)684 static int zynqmp_r5_parse_fw(struct rproc *rproc, const struct firmware *fw)
685 {
686 	int ret;
687 
688 	ret = rproc_elf_load_rsc_table(rproc, fw);
689 	if (ret == -EINVAL) {
690 		/*
691 		 * resource table only required for IPC.
692 		 * if not present, this is not necessarily an error;
693 		 * for example, loading r5 hello world application
694 		 * so simply inform user and keep going.
695 		 */
696 		dev_info(&rproc->dev, "no resource table found.\n");
697 		ret = 0;
698 	}
699 	return ret;
700 }
701 
702 /**
703  * zynqmp_r5_rproc_prepare()
704  * adds carveouts for TCM bank and reserved memory regions
705  *
706  * @rproc: Device node of each rproc
707  *
708  * Return: 0 for success else < 0 error code
709  */
zynqmp_r5_rproc_prepare(struct rproc * rproc)710 static int zynqmp_r5_rproc_prepare(struct rproc *rproc)
711 {
712 	int ret;
713 
714 	ret = add_tcm_banks(rproc);
715 	if (ret) {
716 		dev_err(&rproc->dev, "failed to get TCM banks, err %d\n", ret);
717 		return ret;
718 	}
719 
720 	ret = add_mem_regions_carveout(rproc);
721 	if (ret) {
722 		dev_err(&rproc->dev, "failed to get reserve mem regions %d\n", ret);
723 		return ret;
724 	}
725 
726 	ret = add_sram_carveouts(rproc);
727 	if (ret) {
728 		dev_err(&rproc->dev, "failed to get sram carveout %d\n", ret);
729 		return ret;
730 	}
731 
732 	return 0;
733 }
734 
735 /**
736  * zynqmp_r5_rproc_unprepare()
737  * Turns off TCM banks using power-domain id
738  *
739  * @rproc: Device node of each rproc
740  *
741  * Return: always 0
742  */
zynqmp_r5_rproc_unprepare(struct rproc * rproc)743 static int zynqmp_r5_rproc_unprepare(struct rproc *rproc)
744 {
745 	struct zynqmp_r5_core *r5_core;
746 	u32 pm_domain_id;
747 	int i;
748 
749 	r5_core = rproc->priv;
750 
751 	for (i = 0; i < r5_core->tcm_bank_count; i++) {
752 		pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id;
753 		if (zynqmp_pm_release_node(pm_domain_id))
754 			dev_warn(r5_core->dev,
755 				 "can't turn off TCM bank 0x%x", pm_domain_id);
756 	}
757 
758 	return 0;
759 }
760 
zynqmp_r5_get_loaded_rsc_table(struct rproc * rproc,size_t * size)761 static struct resource_table *zynqmp_r5_get_loaded_rsc_table(struct rproc *rproc,
762 							     size_t *size)
763 {
764 	struct zynqmp_r5_core *r5_core;
765 
766 	r5_core = rproc->priv;
767 
768 	*size = r5_core->rsc_tbl_size;
769 
770 	return (struct resource_table *)r5_core->rsc_tbl_va;
771 }
772 
zynqmp_r5_get_rsc_table_va(struct zynqmp_r5_core * r5_core)773 static int zynqmp_r5_get_rsc_table_va(struct zynqmp_r5_core *r5_core)
774 {
775 	struct resource_table *rsc_tbl_addr;
776 	struct device *dev = r5_core->dev;
777 	struct rsc_tbl_data *rsc_data_va;
778 	struct resource res_mem;
779 	struct device_node *np;
780 	int ret;
781 
782 	/*
783 	 * It is expected from remote processor firmware to provide resource
784 	 * table address via struct rsc_tbl_data data structure.
785 	 * Start address of first entry under "memory-region" property list
786 	 * contains that data structure which holds resource table address, size
787 	 * and some magic number to validate correct resource table entry.
788 	 */
789 	np = of_parse_phandle(r5_core->np, "memory-region", 0);
790 	if (!np) {
791 		dev_err(dev, "failed to get memory region dev node\n");
792 		return -EINVAL;
793 	}
794 
795 	ret = of_address_to_resource(np, 0, &res_mem);
796 	of_node_put(np);
797 	if (ret) {
798 		dev_err(dev, "failed to get memory-region resource addr\n");
799 		return -EINVAL;
800 	}
801 
802 	rsc_data_va = (struct rsc_tbl_data *)ioremap_wc(res_mem.start,
803 							sizeof(struct rsc_tbl_data));
804 	if (!rsc_data_va) {
805 		dev_err(dev, "failed to map resource table data address\n");
806 		return -EIO;
807 	}
808 
809 	/*
810 	 * If RSC_TBL_XLNX_MAGIC number and its complement isn't found then
811 	 * do not consider resource table address valid and don't attach
812 	 */
813 	if (rsc_data_va->magic_num != RSC_TBL_XLNX_MAGIC ||
814 	    rsc_data_va->comp_magic_num != ~RSC_TBL_XLNX_MAGIC) {
815 		dev_dbg(dev, "invalid magic number, won't attach\n");
816 		return -EINVAL;
817 	}
818 
819 	r5_core->rsc_tbl_va = ioremap_wc(rsc_data_va->rsc_tbl,
820 					 rsc_data_va->rsc_tbl_size);
821 	if (!r5_core->rsc_tbl_va) {
822 		dev_err(dev, "failed to get resource table va\n");
823 		return -EINVAL;
824 	}
825 
826 	rsc_tbl_addr = (struct resource_table *)r5_core->rsc_tbl_va;
827 
828 	/*
829 	 * As of now resource table version 1 is expected. Don't fail to attach
830 	 * but warn users about it.
831 	 */
832 	if (rsc_tbl_addr->ver != 1)
833 		dev_warn(dev, "unexpected resource table version %d\n",
834 			 rsc_tbl_addr->ver);
835 
836 	r5_core->rsc_tbl_size = rsc_data_va->rsc_tbl_size;
837 
838 	iounmap((void __iomem *)rsc_data_va);
839 
840 	return 0;
841 }
842 
zynqmp_r5_attach(struct rproc * rproc)843 static int zynqmp_r5_attach(struct rproc *rproc)
844 {
845 	dev_dbg(&rproc->dev, "rproc %d attached\n", rproc->index);
846 
847 	return 0;
848 }
849 
zynqmp_r5_detach(struct rproc * rproc)850 static int zynqmp_r5_detach(struct rproc *rproc)
851 {
852 	/*
853 	 * Generate last notification to remote after clearing virtio flag.
854 	 * Remote can avoid polling on virtio reset flag if kick is generated
855 	 * during detach by host and check virtio reset flag on kick interrupt.
856 	 */
857 	zynqmp_r5_rproc_kick(rproc, 0);
858 
859 	return 0;
860 }
861 
862 static const struct rproc_ops zynqmp_r5_rproc_ops = {
863 	.prepare	= zynqmp_r5_rproc_prepare,
864 	.unprepare	= zynqmp_r5_rproc_unprepare,
865 	.start		= zynqmp_r5_rproc_start,
866 	.stop		= zynqmp_r5_rproc_stop,
867 	.load		= rproc_elf_load_segments,
868 	.parse_fw	= zynqmp_r5_parse_fw,
869 	.find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table,
870 	.sanity_check	= rproc_elf_sanity_check,
871 	.get_boot_addr	= rproc_elf_get_boot_addr,
872 	.kick		= zynqmp_r5_rproc_kick,
873 	.get_loaded_rsc_table = zynqmp_r5_get_loaded_rsc_table,
874 	.attach		= zynqmp_r5_attach,
875 	.detach		= zynqmp_r5_detach,
876 };
877 
878 /**
879  * zynqmp_r5_add_rproc_core()
880  * Allocate and add struct rproc object for each r5f core
881  * This is called for each individual r5f core
882  *
883  * @cdev: Device node of each r5 core
884  *
885  * Return: zynqmp_r5_core object for success else error code pointer
886  */
zynqmp_r5_add_rproc_core(struct device * cdev)887 static struct zynqmp_r5_core *zynqmp_r5_add_rproc_core(struct device *cdev)
888 {
889 	struct zynqmp_r5_core *r5_core;
890 	struct rproc *r5_rproc;
891 	int ret;
892 
893 	/* Set up DMA mask */
894 	ret = dma_set_coherent_mask(cdev, DMA_BIT_MASK(32));
895 	if (ret)
896 		return ERR_PTR(ret);
897 
898 	/* Allocate remoteproc instance */
899 	r5_rproc = rproc_alloc(cdev, dev_name(cdev),
900 			       &zynqmp_r5_rproc_ops,
901 			       NULL, sizeof(struct zynqmp_r5_core));
902 	if (!r5_rproc) {
903 		dev_err(cdev, "failed to allocate memory for rproc instance\n");
904 		return ERR_PTR(-ENOMEM);
905 	}
906 
907 	rproc_coredump_set_elf_info(r5_rproc, ELFCLASS32, EM_ARM);
908 
909 	r5_rproc->auto_boot = false;
910 	r5_core = r5_rproc->priv;
911 	r5_core->dev = cdev;
912 	r5_core->np = dev_of_node(cdev);
913 	if (!r5_core->np) {
914 		dev_err(cdev, "can't get device node for r5 core\n");
915 		ret = -EINVAL;
916 		goto free_rproc;
917 	}
918 
919 	/* Add R5 remoteproc core */
920 	ret = rproc_add(r5_rproc);
921 	if (ret) {
922 		dev_err(cdev, "failed to add r5 remoteproc\n");
923 		goto free_rproc;
924 	}
925 
926 	/*
927 	 * If firmware is already available in the memory then move rproc state
928 	 * to DETACHED. Firmware can be preloaded via debugger or by any other
929 	 * agent (processors) in the system.
930 	 * If firmware isn't available in the memory and resource table isn't
931 	 * found, then rproc state remains OFFLINE.
932 	 */
933 	if (!zynqmp_r5_get_rsc_table_va(r5_core))
934 		r5_rproc->state = RPROC_DETACHED;
935 
936 	r5_core->rproc = r5_rproc;
937 	return r5_core;
938 
939 free_rproc:
940 	rproc_free(r5_rproc);
941 	return ERR_PTR(ret);
942 }
943 
zynqmp_r5_get_sram_banks(struct zynqmp_r5_core * r5_core)944 static int zynqmp_r5_get_sram_banks(struct zynqmp_r5_core *r5_core)
945 {
946 	struct device_node *np = r5_core->np;
947 	struct device *dev = r5_core->dev;
948 	struct zynqmp_sram_bank *sram;
949 	struct device_node *sram_np;
950 	int num_sram, i, ret;
951 	u64 abs_addr, size;
952 
953 	/* "sram" is optional property. Do not fail, if unavailable. */
954 	if (!of_property_present(r5_core->np, "sram"))
955 		return 0;
956 
957 	num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
958 	if (num_sram <= 0) {
959 		dev_err(dev, "Invalid sram property, ret = %d\n",
960 			num_sram);
961 		return -EINVAL;
962 	}
963 
964 	sram = devm_kcalloc(dev, num_sram,
965 			    sizeof(struct zynqmp_sram_bank), GFP_KERNEL);
966 	if (!sram)
967 		return -ENOMEM;
968 
969 	for (i = 0; i < num_sram; i++) {
970 		sram_np = of_parse_phandle(np, "sram", i);
971 		if (!sram_np) {
972 			dev_err(dev, "failed to get sram %d phandle\n", i);
973 			return -EINVAL;
974 		}
975 
976 		if (!of_device_is_available(sram_np)) {
977 			dev_err(dev, "sram device not available\n");
978 			ret = -EINVAL;
979 			goto fail_sram_get;
980 		}
981 
982 		ret = of_address_to_resource(sram_np, 0, &sram[i].sram_res);
983 		if (ret) {
984 			dev_err(dev, "addr to res failed\n");
985 			goto fail_sram_get;
986 		}
987 
988 		/* Get SRAM device address */
989 		ret = of_property_read_reg(sram_np, i, &abs_addr, &size);
990 		if (ret) {
991 			dev_err(dev, "failed to get reg property\n");
992 			goto fail_sram_get;
993 		}
994 
995 		sram[i].da = (u32)abs_addr;
996 
997 		of_node_put(sram_np);
998 
999 		dev_dbg(dev, "sram %d: name=%s, addr=0x%llx, da=0x%x, size=0x%llx\n",
1000 			i, sram[i].sram_res.name, sram[i].sram_res.start,
1001 			sram[i].da, resource_size(&sram[i].sram_res));
1002 	}
1003 
1004 	r5_core->sram = sram;
1005 	r5_core->num_sram = num_sram;
1006 
1007 	return 0;
1008 
1009 fail_sram_get:
1010 	of_node_put(sram_np);
1011 
1012 	return ret;
1013 }
1014 
zynqmp_r5_get_tcm_node_from_dt(struct zynqmp_r5_cluster * cluster)1015 static int zynqmp_r5_get_tcm_node_from_dt(struct zynqmp_r5_cluster *cluster)
1016 {
1017 	int i, j, tcm_bank_count, ret, tcm_pd_idx, pd_count;
1018 	struct of_phandle_args out_args;
1019 	struct zynqmp_r5_core *r5_core;
1020 	struct platform_device *cpdev;
1021 	struct mem_bank_data *tcm;
1022 	struct device_node *np;
1023 	struct resource *res;
1024 	u64 abs_addr, size;
1025 	struct device *dev;
1026 
1027 	for (i = 0; i < cluster->core_count; i++) {
1028 		r5_core = cluster->r5_cores[i];
1029 		dev = r5_core->dev;
1030 		np = r5_core->np;
1031 
1032 		pd_count = of_count_phandle_with_args(np, "power-domains",
1033 						      "#power-domain-cells");
1034 
1035 		if (pd_count <= 0) {
1036 			dev_err(dev, "invalid power-domains property, %d\n", pd_count);
1037 			return -EINVAL;
1038 		}
1039 
1040 		/* First entry in power-domains list is for r5 core, rest for TCM. */
1041 		tcm_bank_count = pd_count - 1;
1042 
1043 		if (tcm_bank_count <= 0) {
1044 			dev_err(dev, "invalid TCM count %d\n", tcm_bank_count);
1045 			return -EINVAL;
1046 		}
1047 
1048 		r5_core->tcm_banks = devm_kcalloc(dev, tcm_bank_count,
1049 						  sizeof(struct mem_bank_data *),
1050 						  GFP_KERNEL);
1051 		if (!r5_core->tcm_banks)
1052 			return -ENOMEM;
1053 
1054 		r5_core->tcm_bank_count = tcm_bank_count;
1055 		for (j = 0, tcm_pd_idx = 1; j < tcm_bank_count; j++, tcm_pd_idx++) {
1056 			tcm = devm_kzalloc(dev, sizeof(struct mem_bank_data),
1057 					   GFP_KERNEL);
1058 			if (!tcm)
1059 				return -ENOMEM;
1060 
1061 			r5_core->tcm_banks[j] = tcm;
1062 
1063 			/* Get power-domains id of TCM. */
1064 			ret = of_parse_phandle_with_args(np, "power-domains",
1065 							 "#power-domain-cells",
1066 							 tcm_pd_idx, &out_args);
1067 			if (ret) {
1068 				dev_err(r5_core->dev,
1069 					"failed to get tcm %d pm domain, ret %d\n",
1070 					tcm_pd_idx, ret);
1071 				return ret;
1072 			}
1073 			tcm->pm_domain_id = out_args.args[0];
1074 			of_node_put(out_args.np);
1075 
1076 			/* Get TCM address without translation. */
1077 			ret = of_property_read_reg(np, j, &abs_addr, &size);
1078 			if (ret) {
1079 				dev_err(dev, "failed to get reg property\n");
1080 				return ret;
1081 			}
1082 
1083 			/*
1084 			 * Remote processor can address only 32 bits
1085 			 * so convert 64-bits into 32-bits. This will discard
1086 			 * any unwanted upper 32-bits.
1087 			 */
1088 			tcm->da = (u32)abs_addr;
1089 			tcm->size = (u32)size;
1090 
1091 			cpdev = to_platform_device(dev);
1092 			res = platform_get_resource(cpdev, IORESOURCE_MEM, j);
1093 			if (!res) {
1094 				dev_err(dev, "failed to get tcm resource\n");
1095 				return -EINVAL;
1096 			}
1097 
1098 			tcm->addr = (u32)res->start;
1099 			tcm->bank_name = (char *)res->name;
1100 			res = devm_request_mem_region(dev, tcm->addr, tcm->size,
1101 						      tcm->bank_name);
1102 			if (!res) {
1103 				dev_err(dev, "failed to request tcm resource\n");
1104 				return -EINVAL;
1105 			}
1106 		}
1107 	}
1108 
1109 	return 0;
1110 }
1111 
1112 /**
1113  * zynqmp_r5_get_tcm_node()
1114  * Ideally this function should parse tcm node and store information
1115  * in r5_core instance. For now, Hardcoded TCM information is used.
1116  * This approach is used as TCM bindings for system-dt is being developed
1117  *
1118  * @cluster: pointer to zynqmp_r5_cluster type object
1119  *
1120  * Return: 0 for success and < 0 error code for failure.
1121  */
zynqmp_r5_get_tcm_node(struct zynqmp_r5_cluster * cluster)1122 static int zynqmp_r5_get_tcm_node(struct zynqmp_r5_cluster *cluster)
1123 {
1124 	const struct mem_bank_data *zynqmp_tcm_banks;
1125 	struct device *dev = cluster->dev;
1126 	struct zynqmp_r5_core *r5_core;
1127 	int tcm_bank_count, tcm_node;
1128 	int i, j;
1129 
1130 	if (cluster->mode == SPLIT_MODE) {
1131 		zynqmp_tcm_banks = zynqmp_tcm_banks_split;
1132 		tcm_bank_count = ARRAY_SIZE(zynqmp_tcm_banks_split);
1133 	} else {
1134 		zynqmp_tcm_banks = zynqmp_tcm_banks_lockstep;
1135 		tcm_bank_count = ARRAY_SIZE(zynqmp_tcm_banks_lockstep);
1136 	}
1137 
1138 	/* count per core tcm banks */
1139 	tcm_bank_count = tcm_bank_count / cluster->core_count;
1140 
1141 	/*
1142 	 * r5 core 0 will use all of TCM banks in lockstep mode.
1143 	 * In split mode, r5 core0 will use 128k and r5 core1 will use another
1144 	 * 128k. Assign TCM banks to each core accordingly
1145 	 */
1146 	tcm_node = 0;
1147 	for (i = 0; i < cluster->core_count; i++) {
1148 		r5_core = cluster->r5_cores[i];
1149 		r5_core->tcm_banks = devm_kcalloc(dev, tcm_bank_count,
1150 						  sizeof(struct mem_bank_data *),
1151 						  GFP_KERNEL);
1152 		if (!r5_core->tcm_banks)
1153 			return -ENOMEM;
1154 
1155 		for (j = 0; j < tcm_bank_count; j++) {
1156 			/*
1157 			 * Use pre-defined TCM reg values.
1158 			 * Eventually this should be replaced by values
1159 			 * parsed from dts.
1160 			 */
1161 			r5_core->tcm_banks[j] =
1162 				(struct mem_bank_data *)&zynqmp_tcm_banks[tcm_node];
1163 			tcm_node++;
1164 		}
1165 
1166 		r5_core->tcm_bank_count = tcm_bank_count;
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 /*
1173  * zynqmp_r5_core_init()
1174  * Create and initialize zynqmp_r5_core type object
1175  *
1176  * @cluster: pointer to zynqmp_r5_cluster type object
1177  * @fw_reg_val: value expected by firmware to configure RPU cluster mode
1178  * @tcm_mode: value expected by fw to configure TCM mode (lockstep or split)
1179  *
1180  * Return: 0 for success and error code for failure.
1181  */
zynqmp_r5_core_init(struct zynqmp_r5_cluster * cluster,enum rpu_oper_mode fw_reg_val,enum rpu_tcm_comb tcm_mode)1182 static int zynqmp_r5_core_init(struct zynqmp_r5_cluster *cluster,
1183 			       enum rpu_oper_mode fw_reg_val,
1184 			       enum rpu_tcm_comb tcm_mode)
1185 {
1186 	struct device *dev = cluster->dev;
1187 	struct zynqmp_r5_core *r5_core;
1188 	int ret = -EINVAL, i;
1189 
1190 	r5_core = cluster->r5_cores[0];
1191 
1192 	/* Maintain backward compatibility for zynqmp by using hardcode TCM address. */
1193 	if (of_property_present(r5_core->np, "reg"))
1194 		ret = zynqmp_r5_get_tcm_node_from_dt(cluster);
1195 	else if (device_is_compatible(dev, "xlnx,zynqmp-r5fss"))
1196 		ret = zynqmp_r5_get_tcm_node(cluster);
1197 
1198 	if (ret) {
1199 		dev_err(dev, "can't get tcm, err %d\n", ret);
1200 		return ret;
1201 	}
1202 
1203 	for (i = 0; i < cluster->core_count; i++) {
1204 		r5_core = cluster->r5_cores[i];
1205 
1206 		/* Initialize r5 cores with power-domains parsed from dts */
1207 		ret = of_property_read_u32_index(r5_core->np, "power-domains",
1208 						 1, &r5_core->pm_domain_id);
1209 		if (ret) {
1210 			dev_err(dev, "failed to get power-domains property\n");
1211 			return ret;
1212 		}
1213 
1214 		ret = zynqmp_pm_set_rpu_mode(r5_core->pm_domain_id, fw_reg_val);
1215 		if (ret < 0) {
1216 			dev_err(r5_core->dev, "failed to set RPU mode\n");
1217 			return ret;
1218 		}
1219 
1220 		if (of_property_present(dev_of_node(dev), "xlnx,tcm-mode") ||
1221 		    device_is_compatible(dev, "xlnx,zynqmp-r5fss")) {
1222 			ret = zynqmp_pm_set_tcm_config(r5_core->pm_domain_id,
1223 						       tcm_mode);
1224 			if (ret < 0) {
1225 				dev_err(r5_core->dev, "failed to configure TCM\n");
1226 				return ret;
1227 			}
1228 		}
1229 
1230 		ret = zynqmp_r5_get_sram_banks(r5_core);
1231 		if (ret)
1232 			return ret;
1233 	}
1234 
1235 	return 0;
1236 }
1237 
1238 /*
1239  * zynqmp_r5_cluster_init()
1240  * Create and initialize zynqmp_r5_cluster type object
1241  *
1242  * @cluster: pointer to zynqmp_r5_cluster type object
1243  *
1244  * Return: 0 for success and error code for failure.
1245  */
zynqmp_r5_cluster_init(struct zynqmp_r5_cluster * cluster)1246 static int zynqmp_r5_cluster_init(struct zynqmp_r5_cluster *cluster)
1247 {
1248 	enum zynqmp_r5_cluster_mode cluster_mode = LOCKSTEP_MODE;
1249 	struct device *dev = cluster->dev;
1250 	struct device_node *dev_node = dev_of_node(dev);
1251 	struct platform_device *child_pdev;
1252 	struct zynqmp_r5_core **r5_cores;
1253 	enum rpu_oper_mode fw_reg_val;
1254 	struct device **child_devs;
1255 	struct device_node *child;
1256 	enum rpu_tcm_comb tcm_mode;
1257 	int core_count, ret, i;
1258 	struct mbox_info *ipi;
1259 
1260 	ret = of_property_read_u32(dev_node, "xlnx,cluster-mode", &cluster_mode);
1261 
1262 	/*
1263 	 * on success returns 0, if not defined then returns -EINVAL,
1264 	 * In that case, default is LOCKSTEP mode. Other than that
1265 	 * returns relative error code < 0.
1266 	 */
1267 	if (ret != -EINVAL && ret != 0) {
1268 		dev_err(dev, "Invalid xlnx,cluster-mode property\n");
1269 		return ret;
1270 	}
1271 
1272 	/*
1273 	 * For now driver only supports split mode and lockstep mode.
1274 	 * fail driver probe if either of that is not set in dts.
1275 	 */
1276 	if (cluster_mode == LOCKSTEP_MODE) {
1277 		fw_reg_val = PM_RPU_MODE_LOCKSTEP;
1278 	} else if (cluster_mode == SPLIT_MODE) {
1279 		fw_reg_val = PM_RPU_MODE_SPLIT;
1280 	} else {
1281 		dev_err(dev, "driver does not support cluster mode %d\n", cluster_mode);
1282 		return -EINVAL;
1283 	}
1284 
1285 	if (of_property_present(dev_node, "xlnx,tcm-mode")) {
1286 		ret = of_property_read_u32(dev_node, "xlnx,tcm-mode", (u32 *)&tcm_mode);
1287 		if (ret)
1288 			return ret;
1289 	} else if (device_is_compatible(dev, "xlnx,zynqmp-r5fss")) {
1290 		if (cluster_mode == LOCKSTEP_MODE)
1291 			tcm_mode = PM_RPU_TCM_COMB;
1292 		else
1293 			tcm_mode = PM_RPU_TCM_SPLIT;
1294 	} else {
1295 		tcm_mode = PM_RPU_TCM_COMB;
1296 	}
1297 
1298 	/*
1299 	 * Number of cores is decided by number of child nodes of
1300 	 * r5f subsystem node in dts. If Split mode is used in dts
1301 	 * 2 child nodes are expected.
1302 	 * In lockstep mode if two child nodes are available,
1303 	 * only use first child node and consider it as core0
1304 	 * and ignore core1 dt node.
1305 	 */
1306 	core_count = of_get_available_child_count(dev_node);
1307 	if (core_count == 0) {
1308 		dev_err(dev, "Invalid number of r5 cores %d", core_count);
1309 		return -EINVAL;
1310 	} else if (cluster_mode == SPLIT_MODE && core_count != 2) {
1311 		dev_err(dev, "Invalid number of r5 cores for split mode\n");
1312 		return -EINVAL;
1313 	} else if (cluster_mode == LOCKSTEP_MODE && core_count == 2) {
1314 		dev_warn(dev, "Only r5 core0 will be used\n");
1315 		core_count = 1;
1316 	}
1317 
1318 	child_devs = kcalloc(core_count, sizeof(struct device *), GFP_KERNEL);
1319 	if (!child_devs)
1320 		return -ENOMEM;
1321 
1322 	r5_cores = kcalloc(core_count,
1323 			   sizeof(struct zynqmp_r5_core *), GFP_KERNEL);
1324 	if (!r5_cores) {
1325 		kfree(child_devs);
1326 		return -ENOMEM;
1327 	}
1328 
1329 	i = 0;
1330 	for_each_available_child_of_node(dev_node, child) {
1331 		child_pdev = of_find_device_by_node(child);
1332 		if (!child_pdev) {
1333 			of_node_put(child);
1334 			ret = -ENODEV;
1335 			goto release_r5_cores;
1336 		}
1337 
1338 		child_devs[i] = &child_pdev->dev;
1339 
1340 		/* create and add remoteproc instance of type struct rproc */
1341 		r5_cores[i] = zynqmp_r5_add_rproc_core(&child_pdev->dev);
1342 		if (IS_ERR(r5_cores[i])) {
1343 			of_node_put(child);
1344 			ret = PTR_ERR(r5_cores[i]);
1345 			r5_cores[i] = NULL;
1346 			goto release_r5_cores;
1347 		}
1348 
1349 		/*
1350 		 * If mailbox nodes are disabled using "status" property then
1351 		 * setting up mailbox channels will fail.
1352 		 */
1353 		ipi = zynqmp_r5_setup_mbox(&child_pdev->dev);
1354 		if (ipi) {
1355 			r5_cores[i]->ipi = ipi;
1356 			ipi->r5_core = r5_cores[i];
1357 		}
1358 
1359 		/*
1360 		 * If two child nodes are available in dts in lockstep mode,
1361 		 * then ignore second child node.
1362 		 */
1363 		if (cluster_mode == LOCKSTEP_MODE) {
1364 			of_node_put(child);
1365 			break;
1366 		}
1367 
1368 		i++;
1369 	}
1370 
1371 	cluster->mode = cluster_mode;
1372 	cluster->core_count = core_count;
1373 	cluster->r5_cores = r5_cores;
1374 
1375 	ret = zynqmp_r5_core_init(cluster, fw_reg_val, tcm_mode);
1376 	if (ret < 0) {
1377 		dev_err(dev, "failed to init r5 core err %d\n", ret);
1378 		cluster->core_count = 0;
1379 		cluster->r5_cores = NULL;
1380 
1381 		/*
1382 		 * at this point rproc resources for each core are allocated.
1383 		 * adjust index to free resources in reverse order
1384 		 */
1385 		i = core_count - 1;
1386 		goto release_r5_cores;
1387 	}
1388 
1389 	kfree(child_devs);
1390 	return 0;
1391 
1392 release_r5_cores:
1393 	while (i >= 0) {
1394 		put_device(child_devs[i]);
1395 		if (r5_cores[i]) {
1396 			zynqmp_r5_free_mbox(r5_cores[i]->ipi);
1397 			of_reserved_mem_device_release(r5_cores[i]->dev);
1398 			rproc_del(r5_cores[i]->rproc);
1399 			rproc_free(r5_cores[i]->rproc);
1400 		}
1401 		i--;
1402 	}
1403 	kfree(r5_cores);
1404 	kfree(child_devs);
1405 	return ret;
1406 }
1407 
zynqmp_r5_cluster_exit(void * data)1408 static void zynqmp_r5_cluster_exit(void *data)
1409 {
1410 	struct platform_device *pdev = data;
1411 	struct zynqmp_r5_cluster *cluster;
1412 	struct zynqmp_r5_core *r5_core;
1413 	int i;
1414 
1415 	cluster = platform_get_drvdata(pdev);
1416 	if (!cluster)
1417 		return;
1418 
1419 	for (i = 0; i < cluster->core_count; i++) {
1420 		r5_core = cluster->r5_cores[i];
1421 		zynqmp_r5_free_mbox(r5_core->ipi);
1422 		iounmap(r5_core->rsc_tbl_va);
1423 		of_reserved_mem_device_release(r5_core->dev);
1424 		put_device(r5_core->dev);
1425 		rproc_del(r5_core->rproc);
1426 		rproc_free(r5_core->rproc);
1427 	}
1428 
1429 	kfree(cluster->r5_cores);
1430 	kfree(cluster);
1431 	platform_set_drvdata(pdev, NULL);
1432 }
1433 
1434 /*
1435  * zynqmp_r5_remoteproc_probe()
1436  * parse device-tree, initialize hardware and allocate required resources
1437  * and remoteproc ops
1438  *
1439  * @pdev: domain platform device for R5 cluster
1440  *
1441  * Return: 0 for success and < 0 for failure.
1442  */
zynqmp_r5_remoteproc_probe(struct platform_device * pdev)1443 static int zynqmp_r5_remoteproc_probe(struct platform_device *pdev)
1444 {
1445 	struct zynqmp_r5_cluster *cluster;
1446 	struct device *dev = &pdev->dev;
1447 	int ret;
1448 
1449 	cluster = kzalloc(sizeof(*cluster), GFP_KERNEL);
1450 	if (!cluster)
1451 		return -ENOMEM;
1452 
1453 	cluster->dev = dev;
1454 
1455 	ret = devm_of_platform_populate(dev);
1456 	if (ret) {
1457 		dev_err_probe(dev, ret, "failed to populate platform dev\n");
1458 		kfree(cluster);
1459 		return ret;
1460 	}
1461 
1462 	/* wire in so each core can be cleaned up at driver remove */
1463 	platform_set_drvdata(pdev, cluster);
1464 
1465 	ret = zynqmp_r5_cluster_init(cluster);
1466 	if (ret) {
1467 		kfree(cluster);
1468 		platform_set_drvdata(pdev, NULL);
1469 		dev_err_probe(dev, ret, "Invalid r5f subsystem device tree\n");
1470 		return ret;
1471 	}
1472 
1473 	ret = devm_add_action_or_reset(dev, zynqmp_r5_cluster_exit, pdev);
1474 	if (ret)
1475 		return ret;
1476 
1477 	return 0;
1478 }
1479 
1480 /* Match table for OF platform binding */
1481 static const struct of_device_id zynqmp_r5_remoteproc_match[] = {
1482 	{ .compatible = "xlnx,versal-net-r52fss", },
1483 	{ .compatible = "xlnx,versal-r5fss", },
1484 	{ .compatible = "xlnx,zynqmp-r5fss", },
1485 	{ /* end of list */ },
1486 };
1487 MODULE_DEVICE_TABLE(of, zynqmp_r5_remoteproc_match);
1488 
1489 static struct platform_driver zynqmp_r5_remoteproc_driver = {
1490 	.probe = zynqmp_r5_remoteproc_probe,
1491 	.driver = {
1492 		.name = "zynqmp_r5_remoteproc",
1493 		.of_match_table = zynqmp_r5_remoteproc_match,
1494 	},
1495 };
1496 module_platform_driver(zynqmp_r5_remoteproc_driver);
1497 
1498 MODULE_DESCRIPTION("Xilinx R5F remote processor driver");
1499 MODULE_AUTHOR("Xilinx Inc.");
1500 MODULE_LICENSE("GPL");
1501