1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Thunderbolt driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/module.h>
12 #include <linux/nvmem-provider.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sizes.h>
16 #include <linux/slab.h>
17 #include <linux/string_helpers.h>
18
19 #include "tb.h"
20
21 /* Switch NVM support */
22
23 struct nvm_auth_status {
24 struct list_head list;
25 uuid_t uuid;
26 u32 status;
27 };
28
29 /*
30 * Hold NVM authentication failure status per switch This information
31 * needs to stay around even when the switch gets power cycled so we
32 * keep it separately.
33 */
34 static LIST_HEAD(nvm_auth_status_cache);
35 static DEFINE_MUTEX(nvm_auth_status_lock);
36
__nvm_get_auth_status(const struct tb_switch * sw)37 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
38 {
39 struct nvm_auth_status *st;
40
41 list_for_each_entry(st, &nvm_auth_status_cache, list) {
42 if (uuid_equal(&st->uuid, sw->uuid))
43 return st;
44 }
45
46 return NULL;
47 }
48
nvm_get_auth_status(const struct tb_switch * sw,u32 * status)49 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
50 {
51 struct nvm_auth_status *st;
52
53 mutex_lock(&nvm_auth_status_lock);
54 st = __nvm_get_auth_status(sw);
55 mutex_unlock(&nvm_auth_status_lock);
56
57 *status = st ? st->status : 0;
58 }
59
nvm_set_auth_status(const struct tb_switch * sw,u32 status)60 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
61 {
62 struct nvm_auth_status *st;
63
64 if (WARN_ON(!sw->uuid))
65 return;
66
67 mutex_lock(&nvm_auth_status_lock);
68 st = __nvm_get_auth_status(sw);
69
70 if (!st) {
71 st = kzalloc(sizeof(*st), GFP_KERNEL);
72 if (!st)
73 goto unlock;
74
75 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
76 INIT_LIST_HEAD(&st->list);
77 list_add_tail(&st->list, &nvm_auth_status_cache);
78 }
79
80 st->status = status;
81 unlock:
82 mutex_unlock(&nvm_auth_status_lock);
83 }
84
nvm_clear_auth_status(const struct tb_switch * sw)85 static void nvm_clear_auth_status(const struct tb_switch *sw)
86 {
87 struct nvm_auth_status *st;
88
89 mutex_lock(&nvm_auth_status_lock);
90 st = __nvm_get_auth_status(sw);
91 if (st) {
92 list_del(&st->list);
93 kfree(st);
94 }
95 mutex_unlock(&nvm_auth_status_lock);
96 }
97
nvm_validate_and_write(struct tb_switch * sw)98 static int nvm_validate_and_write(struct tb_switch *sw)
99 {
100 unsigned int image_size;
101 const u8 *buf;
102 int ret;
103
104 ret = tb_nvm_validate(sw->nvm);
105 if (ret)
106 return ret;
107
108 ret = tb_nvm_write_headers(sw->nvm);
109 if (ret)
110 return ret;
111
112 buf = sw->nvm->buf_data_start;
113 image_size = sw->nvm->buf_data_size;
114
115 if (tb_switch_is_usb4(sw))
116 ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
117 else
118 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
119 if (ret)
120 return ret;
121
122 sw->nvm->flushed = true;
123 return 0;
124 }
125
nvm_authenticate_host_dma_port(struct tb_switch * sw)126 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
127 {
128 int ret = 0;
129
130 /*
131 * Root switch NVM upgrade requires that we disconnect the
132 * existing paths first (in case it is not in safe mode
133 * already).
134 */
135 if (!sw->safe_mode) {
136 u32 status;
137
138 ret = tb_domain_disconnect_all_paths(sw->tb);
139 if (ret)
140 return ret;
141 /*
142 * The host controller goes away pretty soon after this if
143 * everything goes well so getting timeout is expected.
144 */
145 ret = dma_port_flash_update_auth(sw->dma_port);
146 if (!ret || ret == -ETIMEDOUT)
147 return 0;
148
149 /*
150 * Any error from update auth operation requires power
151 * cycling of the host router.
152 */
153 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
154 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
155 nvm_set_auth_status(sw, status);
156 }
157
158 /*
159 * From safe mode we can get out by just power cycling the
160 * switch.
161 */
162 dma_port_power_cycle(sw->dma_port);
163 return ret;
164 }
165
nvm_authenticate_device_dma_port(struct tb_switch * sw)166 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
167 {
168 int ret, retries = 10;
169
170 ret = dma_port_flash_update_auth(sw->dma_port);
171 switch (ret) {
172 case 0:
173 case -ETIMEDOUT:
174 case -EACCES:
175 case -EINVAL:
176 /* Power cycle is required */
177 break;
178 default:
179 return ret;
180 }
181
182 /*
183 * Poll here for the authentication status. It takes some time
184 * for the device to respond (we get timeout for a while). Once
185 * we get response the device needs to be power cycled in order
186 * to the new NVM to be taken into use.
187 */
188 do {
189 u32 status;
190
191 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
192 if (ret < 0 && ret != -ETIMEDOUT)
193 return ret;
194 if (ret > 0) {
195 if (status) {
196 tb_sw_warn(sw, "failed to authenticate NVM\n");
197 nvm_set_auth_status(sw, status);
198 }
199
200 tb_sw_info(sw, "power cycling the switch now\n");
201 dma_port_power_cycle(sw->dma_port);
202 return 0;
203 }
204
205 msleep(500);
206 } while (--retries);
207
208 return -ETIMEDOUT;
209 }
210
nvm_authenticate_start_dma_port(struct tb_switch * sw)211 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
212 {
213 struct pci_dev *root_port;
214
215 /*
216 * During host router NVM upgrade we should not allow root port to
217 * go into D3cold because some root ports cannot trigger PME
218 * itself. To be on the safe side keep the root port in D0 during
219 * the whole upgrade process.
220 */
221 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
222 if (root_port)
223 pm_runtime_get_noresume(&root_port->dev);
224 }
225
nvm_authenticate_complete_dma_port(struct tb_switch * sw)226 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
227 {
228 struct pci_dev *root_port;
229
230 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
231 if (root_port)
232 pm_runtime_put(&root_port->dev);
233 }
234
nvm_readable(struct tb_switch * sw)235 static inline bool nvm_readable(struct tb_switch *sw)
236 {
237 if (tb_switch_is_usb4(sw)) {
238 /*
239 * USB4 devices must support NVM operations but it is
240 * optional for hosts. Therefore we query the NVM sector
241 * size here and if it is supported assume NVM
242 * operations are implemented.
243 */
244 return usb4_switch_nvm_sector_size(sw) > 0;
245 }
246
247 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
248 return !!sw->dma_port;
249 }
250
nvm_upgradeable(struct tb_switch * sw)251 static inline bool nvm_upgradeable(struct tb_switch *sw)
252 {
253 if (sw->no_nvm_upgrade)
254 return false;
255 return nvm_readable(sw);
256 }
257
nvm_authenticate(struct tb_switch * sw,bool auth_only)258 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
259 {
260 int ret;
261
262 if (tb_switch_is_usb4(sw)) {
263 if (auth_only) {
264 ret = usb4_switch_nvm_set_offset(sw, 0);
265 if (ret)
266 return ret;
267 }
268 sw->nvm->authenticating = true;
269 return usb4_switch_nvm_authenticate(sw);
270 }
271 if (auth_only)
272 return -EOPNOTSUPP;
273
274 sw->nvm->authenticating = true;
275 if (!tb_route(sw)) {
276 nvm_authenticate_start_dma_port(sw);
277 ret = nvm_authenticate_host_dma_port(sw);
278 } else {
279 ret = nvm_authenticate_device_dma_port(sw);
280 }
281
282 return ret;
283 }
284
285 /**
286 * tb_switch_nvm_read() - Read router NVM
287 * @sw: Router whose NVM to read
288 * @address: Start address on the NVM
289 * @buf: Buffer where the read data is copied
290 * @size: Size of the buffer in bytes
291 *
292 * Reads from router NVM and returns the requested data in @buf. Locking
293 * is up to the caller.
294 *
295 * Return: %0 on success, negative errno otherwise.
296 */
tb_switch_nvm_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)297 int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
298 size_t size)
299 {
300 if (tb_switch_is_usb4(sw))
301 return usb4_switch_nvm_read(sw, address, buf, size);
302 return dma_port_flash_read(sw->dma_port, address, buf, size);
303 }
304
nvm_read(void * priv,unsigned int offset,void * val,size_t bytes)305 static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes)
306 {
307 struct tb_nvm *nvm = priv;
308 struct tb_switch *sw = tb_to_switch(nvm->dev);
309 int ret;
310
311 pm_runtime_get_sync(&sw->dev);
312
313 if (!mutex_trylock(&sw->tb->lock)) {
314 ret = restart_syscall();
315 goto out;
316 }
317
318 ret = tb_switch_nvm_read(sw, offset, val, bytes);
319 mutex_unlock(&sw->tb->lock);
320
321 out:
322 pm_runtime_mark_last_busy(&sw->dev);
323 pm_runtime_put_autosuspend(&sw->dev);
324
325 return ret;
326 }
327
nvm_write(void * priv,unsigned int offset,void * val,size_t bytes)328 static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes)
329 {
330 struct tb_nvm *nvm = priv;
331 struct tb_switch *sw = tb_to_switch(nvm->dev);
332 int ret;
333
334 if (!mutex_trylock(&sw->tb->lock))
335 return restart_syscall();
336
337 /*
338 * Since writing the NVM image might require some special steps,
339 * for example when CSS headers are written, we cache the image
340 * locally here and handle the special cases when the user asks
341 * us to authenticate the image.
342 */
343 ret = tb_nvm_write_buf(nvm, offset, val, bytes);
344 mutex_unlock(&sw->tb->lock);
345
346 return ret;
347 }
348
tb_switch_nvm_add(struct tb_switch * sw)349 static int tb_switch_nvm_add(struct tb_switch *sw)
350 {
351 struct tb_nvm *nvm;
352 int ret;
353
354 if (!nvm_readable(sw))
355 return 0;
356
357 nvm = tb_nvm_alloc(&sw->dev);
358 if (IS_ERR(nvm)) {
359 ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm);
360 goto err_nvm;
361 }
362
363 ret = tb_nvm_read_version(nvm);
364 if (ret)
365 goto err_nvm;
366
367 /*
368 * If the switch is in safe-mode the only accessible portion of
369 * the NVM is the non-active one where userspace is expected to
370 * write new functional NVM.
371 */
372 if (!sw->safe_mode) {
373 ret = tb_nvm_add_active(nvm, nvm_read);
374 if (ret)
375 goto err_nvm;
376 tb_sw_dbg(sw, "NVM version %x.%x\n", nvm->major, nvm->minor);
377 }
378
379 if (!sw->no_nvm_upgrade) {
380 ret = tb_nvm_add_non_active(nvm, nvm_write);
381 if (ret)
382 goto err_nvm;
383 }
384
385 sw->nvm = nvm;
386 return 0;
387
388 err_nvm:
389 tb_sw_dbg(sw, "NVM upgrade disabled\n");
390 sw->no_nvm_upgrade = true;
391 if (!IS_ERR(nvm))
392 tb_nvm_free(nvm);
393
394 return ret;
395 }
396
tb_switch_nvm_remove(struct tb_switch * sw)397 static void tb_switch_nvm_remove(struct tb_switch *sw)
398 {
399 struct tb_nvm *nvm;
400
401 nvm = sw->nvm;
402 sw->nvm = NULL;
403
404 if (!nvm)
405 return;
406
407 /* Remove authentication status in case the switch is unplugged */
408 if (!nvm->authenticating)
409 nvm_clear_auth_status(sw);
410
411 tb_nvm_free(nvm);
412 }
413
414 /* port utility functions */
415
tb_port_type(const struct tb_regs_port_header * port)416 static const char *tb_port_type(const struct tb_regs_port_header *port)
417 {
418 switch (port->type >> 16) {
419 case 0:
420 switch ((u8) port->type) {
421 case 0:
422 return "Inactive";
423 case 1:
424 return "Port";
425 case 2:
426 return "NHI";
427 default:
428 return "unknown";
429 }
430 case 0x2:
431 return "Ethernet";
432 case 0x8:
433 return "SATA";
434 case 0xe:
435 return "DP/HDMI";
436 case 0x10:
437 return "PCIe";
438 case 0x20:
439 return "USB";
440 default:
441 return "unknown";
442 }
443 }
444
tb_dump_port(struct tb * tb,const struct tb_port * port)445 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
446 {
447 const struct tb_regs_port_header *regs = &port->config;
448
449 tb_dbg(tb,
450 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
451 regs->port_number, regs->vendor_id, regs->device_id,
452 regs->revision, regs->thunderbolt_version, tb_port_type(regs),
453 regs->type);
454 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
455 regs->max_in_hop_id, regs->max_out_hop_id);
456 tb_dbg(tb, " Max counters: %d\n", regs->max_counters);
457 tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits);
458 tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits,
459 port->ctl_credits);
460 }
461
462 /**
463 * tb_port_state() - get connectedness state of a port
464 * @port: the port to check
465 *
466 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
467 *
468 * Return: &enum tb_port_state or negative error code on failure.
469 */
tb_port_state(struct tb_port * port)470 int tb_port_state(struct tb_port *port)
471 {
472 struct tb_cap_phy phy;
473 int res;
474 if (port->cap_phy == 0) {
475 tb_port_WARN(port, "does not have a PHY\n");
476 return -EINVAL;
477 }
478 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
479 if (res)
480 return res;
481 return phy.state;
482 }
483
484 /**
485 * tb_wait_for_port() - wait for a port to become ready
486 * @port: Port to wait
487 * @wait_if_unplugged: Wait also when port is unplugged
488 *
489 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
490 * wait_if_unplugged is set then we also wait if the port is in state
491 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
492 * switch resume). Otherwise we only wait if a device is registered but the link
493 * has not yet been established.
494 *
495 * Return:
496 * * %0 - If the port is not connected or failed to reach
497 * state %TB_PORT_UP within one second.
498 * * %1 - If the port is connected and in state %TB_PORT_UP.
499 * * Negative errno - An error occurred.
500 */
tb_wait_for_port(struct tb_port * port,bool wait_if_unplugged)501 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
502 {
503 int retries = 10;
504 int state;
505 if (!port->cap_phy) {
506 tb_port_WARN(port, "does not have PHY\n");
507 return -EINVAL;
508 }
509 if (tb_is_upstream_port(port)) {
510 tb_port_WARN(port, "is the upstream port\n");
511 return -EINVAL;
512 }
513
514 while (retries--) {
515 state = tb_port_state(port);
516 switch (state) {
517 case TB_PORT_DISABLED:
518 tb_port_dbg(port, "is disabled (state: 0)\n");
519 return 0;
520
521 case TB_PORT_UNPLUGGED:
522 if (wait_if_unplugged) {
523 /* used during resume */
524 tb_port_dbg(port,
525 "is unplugged (state: 7), retrying...\n");
526 msleep(100);
527 break;
528 }
529 tb_port_dbg(port, "is unplugged (state: 7)\n");
530 return 0;
531
532 case TB_PORT_UP:
533 case TB_PORT_TX_CL0S:
534 case TB_PORT_RX_CL0S:
535 case TB_PORT_CL1:
536 case TB_PORT_CL2:
537 tb_port_dbg(port, "is connected, link is up (state: %d)\n", state);
538 return 1;
539
540 default:
541 if (state < 0)
542 return state;
543
544 /*
545 * After plug-in the state is TB_PORT_CONNECTING. Give it some
546 * time.
547 */
548 tb_port_dbg(port,
549 "is connected, link is not up (state: %d), retrying...\n",
550 state);
551 msleep(100);
552 }
553
554 }
555 tb_port_warn(port,
556 "failed to reach state TB_PORT_UP. Ignoring port...\n");
557 return 0;
558 }
559
560 /**
561 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
562 * @port: Port to add/remove NFC credits
563 * @credits: Credits to add/remove
564 *
565 * Change the number of NFC credits allocated to @port by @credits. To remove
566 * NFC credits pass a negative amount of credits.
567 *
568 * Return: %0 on success, negative errno otherwise.
569 */
tb_port_add_nfc_credits(struct tb_port * port,int credits)570 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
571 {
572 u32 nfc_credits;
573
574 if (credits == 0 || port->sw->is_unplugged)
575 return 0;
576
577 /*
578 * USB4 restricts programming NFC buffers to lane adapters only
579 * so skip other ports.
580 */
581 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
582 return 0;
583
584 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
585 if (credits < 0)
586 credits = max_t(int, -nfc_credits, credits);
587
588 nfc_credits += credits;
589
590 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
591 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
592
593 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
594 port->config.nfc_credits |= nfc_credits;
595
596 return tb_port_write(port, &port->config.nfc_credits,
597 TB_CFG_PORT, ADP_CS_4, 1);
598 }
599
600 /**
601 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
602 * @port: Port whose counters to clear
603 * @counter: Counter index to clear
604 *
605 * Return: %0 on success, negative errno otherwise.
606 */
tb_port_clear_counter(struct tb_port * port,int counter)607 int tb_port_clear_counter(struct tb_port *port, int counter)
608 {
609 u32 zero[3] = { 0, 0, 0 };
610 tb_port_dbg(port, "clearing counter %d\n", counter);
611 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
612 }
613
614 /**
615 * tb_port_unlock() - Unlock downstream port
616 * @port: Port to unlock
617 *
618 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
619 * downstream router accessible for CM.
620 *
621 * Return: %0 on success, negative errno otherwise.
622 */
tb_port_unlock(struct tb_port * port)623 int tb_port_unlock(struct tb_port *port)
624 {
625 if (tb_switch_is_icm(port->sw))
626 return 0;
627 if (!tb_port_is_null(port))
628 return -EINVAL;
629 if (tb_switch_is_usb4(port->sw))
630 return usb4_port_unlock(port);
631 return 0;
632 }
633
__tb_port_enable(struct tb_port * port,bool enable)634 static int __tb_port_enable(struct tb_port *port, bool enable)
635 {
636 int ret;
637 u32 phy;
638
639 if (!tb_port_is_null(port))
640 return -EINVAL;
641
642 ret = tb_port_read(port, &phy, TB_CFG_PORT,
643 port->cap_phy + LANE_ADP_CS_1, 1);
644 if (ret)
645 return ret;
646
647 if (enable)
648 phy &= ~LANE_ADP_CS_1_LD;
649 else
650 phy |= LANE_ADP_CS_1_LD;
651
652
653 ret = tb_port_write(port, &phy, TB_CFG_PORT,
654 port->cap_phy + LANE_ADP_CS_1, 1);
655 if (ret)
656 return ret;
657
658 tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable));
659 return 0;
660 }
661
662 /**
663 * tb_port_enable() - Enable lane adapter
664 * @port: Port to enable (can be %NULL)
665 *
666 * This is used for lane 0 and 1 adapters to enable it.
667 *
668 * Return: %0 on success, negative errno otherwise.
669 */
tb_port_enable(struct tb_port * port)670 int tb_port_enable(struct tb_port *port)
671 {
672 return __tb_port_enable(port, true);
673 }
674
675 /**
676 * tb_port_disable() - Disable lane adapter
677 * @port: Port to disable (can be %NULL)
678 *
679 * This is used for lane 0 and 1 adapters to disable it.
680 *
681 * Return: %0 on success, negative errno otherwise.
682 */
tb_port_disable(struct tb_port * port)683 int tb_port_disable(struct tb_port *port)
684 {
685 return __tb_port_enable(port, false);
686 }
687
tb_port_reset(struct tb_port * port)688 static int tb_port_reset(struct tb_port *port)
689 {
690 if (tb_switch_is_usb4(port->sw))
691 return port->cap_usb4 ? usb4_port_reset(port) : 0;
692 return tb_lc_reset_port(port);
693 }
694
695 /*
696 * tb_init_port() - initialize a port
697 *
698 * This is a helper method for tb_switch_alloc. Does not check or initialize
699 * any downstream switches.
700 *
701 * Return: %0 on success, negative errno otherwise.
702 */
tb_init_port(struct tb_port * port)703 static int tb_init_port(struct tb_port *port)
704 {
705 int res;
706 int cap;
707
708 INIT_LIST_HEAD(&port->list);
709
710 /* Control adapter does not have configuration space */
711 if (!port->port)
712 return 0;
713
714 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
715 if (res) {
716 if (res == -ENODEV) {
717 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
718 port->port);
719 port->disabled = true;
720 return 0;
721 }
722 return res;
723 }
724
725 /* Port 0 is the switch itself and has no PHY. */
726 if (port->config.type == TB_TYPE_PORT) {
727 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
728
729 if (cap > 0)
730 port->cap_phy = cap;
731 else
732 tb_port_WARN(port, "non switch port without a PHY\n");
733
734 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
735 if (cap > 0)
736 port->cap_usb4 = cap;
737
738 /*
739 * USB4 port buffers allocated for the control path
740 * can be read from the path config space. Legacy
741 * devices use hard-coded value.
742 */
743 if (port->cap_usb4) {
744 struct tb_regs_hop hop;
745
746 if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
747 port->ctl_credits = hop.initial_credits;
748 }
749 if (!port->ctl_credits)
750 port->ctl_credits = 2;
751
752 } else {
753 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
754 if (cap > 0)
755 port->cap_adap = cap;
756 }
757
758 port->total_credits =
759 (port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
760 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
761
762 tb_dump_port(port->sw->tb, port);
763 return 0;
764 }
765
tb_port_alloc_hopid(struct tb_port * port,bool in,int min_hopid,int max_hopid)766 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
767 int max_hopid)
768 {
769 int port_max_hopid;
770 struct ida *ida;
771
772 if (in) {
773 port_max_hopid = port->config.max_in_hop_id;
774 ida = &port->in_hopids;
775 } else {
776 port_max_hopid = port->config.max_out_hop_id;
777 ida = &port->out_hopids;
778 }
779
780 /*
781 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
782 * reserved.
783 */
784 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
785 min_hopid = TB_PATH_MIN_HOPID;
786
787 if (max_hopid < 0 || max_hopid > port_max_hopid)
788 max_hopid = port_max_hopid;
789
790 return ida_alloc_range(ida, min_hopid, max_hopid, GFP_KERNEL);
791 }
792
793 /**
794 * tb_port_alloc_in_hopid() - Allocate input HopID from port
795 * @port: Port to allocate HopID for
796 * @min_hopid: Minimum acceptable input HopID
797 * @max_hopid: Maximum acceptable input HopID
798 *
799 * Return: HopID between @min_hopid and @max_hopid or negative errno in
800 * case of error.
801 */
tb_port_alloc_in_hopid(struct tb_port * port,int min_hopid,int max_hopid)802 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
803 {
804 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
805 }
806
807 /**
808 * tb_port_alloc_out_hopid() - Allocate output HopID from port
809 * @port: Port to allocate HopID for
810 * @min_hopid: Minimum acceptable output HopID
811 * @max_hopid: Maximum acceptable output HopID
812 *
813 * Return: HopID between @min_hopid and @max_hopid or negative errno in
814 * case of error.
815 */
tb_port_alloc_out_hopid(struct tb_port * port,int min_hopid,int max_hopid)816 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
817 {
818 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
819 }
820
821 /**
822 * tb_port_release_in_hopid() - Release allocated input HopID from port
823 * @port: Port whose HopID to release
824 * @hopid: HopID to release
825 */
tb_port_release_in_hopid(struct tb_port * port,int hopid)826 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
827 {
828 ida_free(&port->in_hopids, hopid);
829 }
830
831 /**
832 * tb_port_release_out_hopid() - Release allocated output HopID from port
833 * @port: Port whose HopID to release
834 * @hopid: HopID to release
835 */
tb_port_release_out_hopid(struct tb_port * port,int hopid)836 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
837 {
838 ida_free(&port->out_hopids, hopid);
839 }
840
tb_switch_is_reachable(const struct tb_switch * parent,const struct tb_switch * sw)841 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
842 const struct tb_switch *sw)
843 {
844 u64 mask = (1ULL << parent->config.depth * 8) - 1;
845 return (tb_route(parent) & mask) == (tb_route(sw) & mask);
846 }
847
848 /**
849 * tb_next_port_on_path() - Return next port for given port on a path
850 * @start: Start port of the walk
851 * @end: End port of the walk
852 * @prev: Previous port (%NULL if this is the first)
853 *
854 * This function can be used to walk from one port to another if they
855 * are connected through zero or more switches. If the @prev is dual
856 * link port, the function follows that link and returns another end on
857 * that same link.
858 *
859 * Domain tb->lock must be held when this function is called.
860 *
861 * Return: Pointer to &struct tb_port, %NULL if the @end port has been reached.
862 */
tb_next_port_on_path(struct tb_port * start,struct tb_port * end,struct tb_port * prev)863 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
864 struct tb_port *prev)
865 {
866 struct tb_port *next;
867
868 if (!prev)
869 return start;
870
871 if (prev->sw == end->sw) {
872 if (prev == end)
873 return NULL;
874 return end;
875 }
876
877 if (tb_switch_is_reachable(prev->sw, end->sw)) {
878 next = tb_port_at(tb_route(end->sw), prev->sw);
879 /* Walk down the topology if next == prev */
880 if (prev->remote &&
881 (next == prev || next->dual_link_port == prev))
882 next = prev->remote;
883 } else {
884 if (tb_is_upstream_port(prev)) {
885 next = prev->remote;
886 } else {
887 next = tb_upstream_port(prev->sw);
888 /*
889 * Keep the same link if prev and next are both
890 * dual link ports.
891 */
892 if (next->dual_link_port &&
893 next->link_nr != prev->link_nr) {
894 next = next->dual_link_port;
895 }
896 }
897 }
898
899 return next != prev ? next : NULL;
900 }
901
902 /**
903 * tb_port_get_link_speed() - Get current link speed
904 * @port: Port to check (USB4 or CIO)
905 *
906 * Return: Link speed in Gb/s or negative errno in case of failure.
907 */
tb_port_get_link_speed(struct tb_port * port)908 int tb_port_get_link_speed(struct tb_port *port)
909 {
910 u32 val, speed;
911 int ret;
912
913 if (!port->cap_phy)
914 return -EINVAL;
915
916 ret = tb_port_read(port, &val, TB_CFG_PORT,
917 port->cap_phy + LANE_ADP_CS_1, 1);
918 if (ret)
919 return ret;
920
921 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
922 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
923
924 switch (speed) {
925 case LANE_ADP_CS_1_CURRENT_SPEED_GEN4:
926 return 40;
927 case LANE_ADP_CS_1_CURRENT_SPEED_GEN3:
928 return 20;
929 default:
930 return 10;
931 }
932 }
933
934 /**
935 * tb_port_get_link_generation() - Returns link generation
936 * @port: Lane adapter
937 *
938 * Return: Link generation as a number or negative errno in case of
939 * failure.
940 *
941 * Does not distinguish between Thunderbolt 1 and Thunderbolt 2
942 * links so for those always returns %2.
943 */
tb_port_get_link_generation(struct tb_port * port)944 int tb_port_get_link_generation(struct tb_port *port)
945 {
946 int ret;
947
948 ret = tb_port_get_link_speed(port);
949 if (ret < 0)
950 return ret;
951
952 switch (ret) {
953 case 40:
954 return 4;
955 case 20:
956 return 3;
957 default:
958 return 2;
959 }
960 }
961
962 /**
963 * tb_port_get_link_width() - Get current link width
964 * @port: Port to check (USB4 or CIO)
965 *
966 * Return: Link width encoded in &enum tb_link_width or
967 * negative errno in case of failure.
968 */
tb_port_get_link_width(struct tb_port * port)969 int tb_port_get_link_width(struct tb_port *port)
970 {
971 u32 val;
972 int ret;
973
974 if (!port->cap_phy)
975 return -EINVAL;
976
977 ret = tb_port_read(port, &val, TB_CFG_PORT,
978 port->cap_phy + LANE_ADP_CS_1, 1);
979 if (ret)
980 return ret;
981
982 /* Matches the values in enum tb_link_width */
983 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
984 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
985 }
986
987 /**
988 * tb_port_width_supported() - Is the given link width supported
989 * @port: Port to check
990 * @width: Widths to check (bitmask)
991 *
992 * Can be called to any lane adapter. Checks if given @width is
993 * supported by the hardware.
994 *
995 * Return: %true if link width is supported, %false otherwise.
996 */
tb_port_width_supported(struct tb_port * port,unsigned int width)997 bool tb_port_width_supported(struct tb_port *port, unsigned int width)
998 {
999 u32 phy, widths;
1000 int ret;
1001
1002 if (!port->cap_phy)
1003 return false;
1004
1005 if (width & (TB_LINK_WIDTH_ASYM_TX | TB_LINK_WIDTH_ASYM_RX)) {
1006 if (tb_port_get_link_generation(port) < 4 ||
1007 !usb4_port_asym_supported(port))
1008 return false;
1009 }
1010
1011 ret = tb_port_read(port, &phy, TB_CFG_PORT,
1012 port->cap_phy + LANE_ADP_CS_0, 1);
1013 if (ret)
1014 return false;
1015
1016 /*
1017 * The field encoding is the same as &enum tb_link_width (which is
1018 * passed to @width).
1019 */
1020 widths = FIELD_GET(LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK, phy);
1021 return widths & width;
1022 }
1023
1024 /**
1025 * tb_port_set_link_width() - Set target link width of the lane adapter
1026 * @port: Lane adapter
1027 * @width: Target link width
1028 *
1029 * Sets the target link width of the lane adapter to @width. Does not
1030 * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
1031 *
1032 * Return: %0 on success, negative errno otherwise.
1033 */
tb_port_set_link_width(struct tb_port * port,enum tb_link_width width)1034 int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width)
1035 {
1036 u32 val;
1037 int ret;
1038
1039 if (!port->cap_phy)
1040 return -EINVAL;
1041
1042 ret = tb_port_read(port, &val, TB_CFG_PORT,
1043 port->cap_phy + LANE_ADP_CS_1, 1);
1044 if (ret)
1045 return ret;
1046
1047 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
1048 switch (width) {
1049 case TB_LINK_WIDTH_SINGLE:
1050 /* Gen 4 link cannot be single */
1051 if (tb_port_get_link_generation(port) >= 4)
1052 return -EOPNOTSUPP;
1053 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1054 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1055 break;
1056
1057 case TB_LINK_WIDTH_DUAL:
1058 if (tb_port_get_link_generation(port) >= 4)
1059 return usb4_port_asym_set_link_width(port, width);
1060 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1061 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1062 break;
1063
1064 case TB_LINK_WIDTH_ASYM_TX:
1065 case TB_LINK_WIDTH_ASYM_RX:
1066 return usb4_port_asym_set_link_width(port, width);
1067
1068 default:
1069 return -EINVAL;
1070 }
1071
1072 return tb_port_write(port, &val, TB_CFG_PORT,
1073 port->cap_phy + LANE_ADP_CS_1, 1);
1074 }
1075
1076 /**
1077 * tb_port_set_lane_bonding() - Enable/disable lane bonding
1078 * @port: Lane adapter
1079 * @bonding: enable/disable bonding
1080 *
1081 * Enables or disables lane bonding. This should be called after target
1082 * link width has been set (tb_port_set_link_width()). Note in most
1083 * cases one should use tb_port_lane_bonding_enable() instead to enable
1084 * lane bonding.
1085 *
1086 * Return: %0 on success, negative errno otherwise.
1087 */
tb_port_set_lane_bonding(struct tb_port * port,bool bonding)1088 static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1089 {
1090 u32 val;
1091 int ret;
1092
1093 if (!port->cap_phy)
1094 return -EINVAL;
1095
1096 ret = tb_port_read(port, &val, TB_CFG_PORT,
1097 port->cap_phy + LANE_ADP_CS_1, 1);
1098 if (ret)
1099 return ret;
1100
1101 if (bonding)
1102 val |= LANE_ADP_CS_1_LB;
1103 else
1104 val &= ~LANE_ADP_CS_1_LB;
1105
1106 return tb_port_write(port, &val, TB_CFG_PORT,
1107 port->cap_phy + LANE_ADP_CS_1, 1);
1108 }
1109
1110 /**
1111 * tb_port_lane_bonding_enable() - Enable bonding on port
1112 * @port: port to enable
1113 *
1114 * Enable bonding by setting the link width of the port and the other
1115 * port in case of dual link port. Does not wait for the link to
1116 * actually reach the bonded state so caller needs to call
1117 * tb_port_wait_for_link_width() before enabling any paths through the
1118 * link to make sure the link is in expected state.
1119 *
1120 * Return: %0 on success, negative errno otherwise.
1121 */
tb_port_lane_bonding_enable(struct tb_port * port)1122 int tb_port_lane_bonding_enable(struct tb_port *port)
1123 {
1124 enum tb_link_width width;
1125 int ret;
1126
1127 /*
1128 * Enable lane bonding for both links if not already enabled by
1129 * for example the boot firmware.
1130 */
1131 width = tb_port_get_link_width(port);
1132 if (width == TB_LINK_WIDTH_SINGLE) {
1133 ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL);
1134 if (ret)
1135 goto err_lane0;
1136 }
1137
1138 width = tb_port_get_link_width(port->dual_link_port);
1139 if (width == TB_LINK_WIDTH_SINGLE) {
1140 ret = tb_port_set_link_width(port->dual_link_port,
1141 TB_LINK_WIDTH_DUAL);
1142 if (ret)
1143 goto err_lane1;
1144 }
1145
1146 /*
1147 * Only set bonding if the link was not already bonded. This
1148 * avoids the lane adapter to re-enter bonding state.
1149 */
1150 if (width == TB_LINK_WIDTH_SINGLE && !tb_is_upstream_port(port)) {
1151 ret = tb_port_set_lane_bonding(port, true);
1152 if (ret)
1153 goto err_lane1;
1154 }
1155
1156 /*
1157 * When lane 0 bonding is set it will affect lane 1 too so
1158 * update both.
1159 */
1160 port->bonded = true;
1161 port->dual_link_port->bonded = true;
1162
1163 return 0;
1164
1165 err_lane1:
1166 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1167 err_lane0:
1168 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1169
1170 return ret;
1171 }
1172
1173 /**
1174 * tb_port_lane_bonding_disable() - Disable bonding on port
1175 * @port: port to disable
1176 *
1177 * Disable bonding by setting the link width of the port and the
1178 * other port in case of dual link port.
1179 */
tb_port_lane_bonding_disable(struct tb_port * port)1180 void tb_port_lane_bonding_disable(struct tb_port *port)
1181 {
1182 tb_port_set_lane_bonding(port, false);
1183 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1184 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1185 port->dual_link_port->bonded = false;
1186 port->bonded = false;
1187 }
1188
1189 /**
1190 * tb_port_wait_for_link_width() - Wait until link reaches specific width
1191 * @port: Port to wait for
1192 * @width: Expected link width (bitmask)
1193 * @timeout_msec: Timeout in ms how long to wait
1194 *
1195 * Should be used after both ends of the link have been bonded (or
1196 * bonding has been disabled) to wait until the link actually reaches
1197 * the expected state.
1198 *
1199 * Can be passed a mask of expected widths.
1200 *
1201 * Return:
1202 * * %0 - If link reaches any of the specified widths.
1203 * * %-ETIMEDOUT - If link does not reach specified width.
1204 * * Negative errno - Another error occurred.
1205 */
tb_port_wait_for_link_width(struct tb_port * port,unsigned int width,int timeout_msec)1206 int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width,
1207 int timeout_msec)
1208 {
1209 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1210 int ret;
1211
1212 /* Gen 4 link does not support single lane */
1213 if ((width & TB_LINK_WIDTH_SINGLE) &&
1214 tb_port_get_link_generation(port) >= 4)
1215 return -EOPNOTSUPP;
1216
1217 do {
1218 ret = tb_port_get_link_width(port);
1219 if (ret < 0) {
1220 /*
1221 * Sometimes we get port locked error when
1222 * polling the lanes so we can ignore it and
1223 * retry.
1224 */
1225 if (ret != -EACCES)
1226 return ret;
1227 } else if (ret & width) {
1228 return 0;
1229 }
1230
1231 usleep_range(1000, 2000);
1232 } while (ktime_before(ktime_get(), timeout));
1233
1234 return -ETIMEDOUT;
1235 }
1236
tb_port_do_update_credits(struct tb_port * port)1237 static int tb_port_do_update_credits(struct tb_port *port)
1238 {
1239 u32 nfc_credits;
1240 int ret;
1241
1242 ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1243 if (ret)
1244 return ret;
1245
1246 if (nfc_credits != port->config.nfc_credits) {
1247 u32 total;
1248
1249 total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1250 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1251
1252 tb_port_dbg(port, "total credits changed %u -> %u\n",
1253 port->total_credits, total);
1254
1255 port->config.nfc_credits = nfc_credits;
1256 port->total_credits = total;
1257 }
1258
1259 return 0;
1260 }
1261
1262 /**
1263 * tb_port_update_credits() - Re-read port total credits
1264 * @port: Port to update
1265 *
1266 * After the link is bonded (or bonding was disabled) the port total
1267 * credits may change, so this function needs to be called to re-read
1268 * the credits. Updates also the second lane adapter.
1269 *
1270 * Return: %0 on success, negative errno otherwise.
1271 */
tb_port_update_credits(struct tb_port * port)1272 int tb_port_update_credits(struct tb_port *port)
1273 {
1274 int ret;
1275
1276 ret = tb_port_do_update_credits(port);
1277 if (ret)
1278 return ret;
1279
1280 if (!port->dual_link_port)
1281 return 0;
1282 return tb_port_do_update_credits(port->dual_link_port);
1283 }
1284
tb_port_start_lane_initialization(struct tb_port * port)1285 static int tb_port_start_lane_initialization(struct tb_port *port)
1286 {
1287 int ret;
1288
1289 if (tb_switch_is_usb4(port->sw))
1290 return 0;
1291
1292 ret = tb_lc_start_lane_initialization(port);
1293 return ret == -EINVAL ? 0 : ret;
1294 }
1295
1296 /*
1297 * Returns true if the port had something (router, XDomain) connected
1298 * before suspend.
1299 */
tb_port_resume(struct tb_port * port)1300 static bool tb_port_resume(struct tb_port *port)
1301 {
1302 bool has_remote = tb_port_has_remote(port);
1303
1304 if (port->usb4) {
1305 usb4_port_device_resume(port->usb4);
1306 } else if (!has_remote) {
1307 /*
1308 * For disconnected downstream lane adapters start lane
1309 * initialization now so we detect future connects.
1310 *
1311 * For XDomain start the lane initialzation now so the
1312 * link gets re-established.
1313 *
1314 * This is only needed for non-USB4 ports.
1315 */
1316 if (!tb_is_upstream_port(port) || port->xdomain)
1317 tb_port_start_lane_initialization(port);
1318 }
1319
1320 return has_remote || port->xdomain;
1321 }
1322
1323 /**
1324 * tb_port_is_enabled() - Is the adapter port enabled
1325 * @port: Port to check
1326 *
1327 * Return: %true if port is enabled, %false otherwise.
1328 */
tb_port_is_enabled(struct tb_port * port)1329 bool tb_port_is_enabled(struct tb_port *port)
1330 {
1331 switch (port->config.type) {
1332 case TB_TYPE_PCIE_UP:
1333 case TB_TYPE_PCIE_DOWN:
1334 return tb_pci_port_is_enabled(port);
1335
1336 case TB_TYPE_DP_HDMI_IN:
1337 case TB_TYPE_DP_HDMI_OUT:
1338 return tb_dp_port_is_enabled(port);
1339
1340 case TB_TYPE_USB3_UP:
1341 case TB_TYPE_USB3_DOWN:
1342 return tb_usb3_port_is_enabled(port);
1343
1344 default:
1345 return false;
1346 }
1347 }
1348
1349 /**
1350 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1351 * @port: USB3 adapter port to check
1352 *
1353 * Return: %true if port is enabled, %false otherwise.
1354 */
tb_usb3_port_is_enabled(struct tb_port * port)1355 bool tb_usb3_port_is_enabled(struct tb_port *port)
1356 {
1357 u32 data;
1358
1359 if (tb_port_read(port, &data, TB_CFG_PORT,
1360 port->cap_adap + ADP_USB3_CS_0, 1))
1361 return false;
1362
1363 return !!(data & ADP_USB3_CS_0_PE);
1364 }
1365
1366 /**
1367 * tb_usb3_port_enable() - Enable USB3 adapter port
1368 * @port: USB3 adapter port to enable
1369 * @enable: Enable/disable the USB3 adapter
1370 *
1371 * Return: %0 on success, negative errno otherwise.
1372 */
tb_usb3_port_enable(struct tb_port * port,bool enable)1373 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1374 {
1375 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1376 : ADP_USB3_CS_0_V;
1377
1378 if (!port->cap_adap)
1379 return -ENXIO;
1380 return tb_port_write(port, &word, TB_CFG_PORT,
1381 port->cap_adap + ADP_USB3_CS_0, 1);
1382 }
1383
1384 /**
1385 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1386 * @port: PCIe port to check
1387 *
1388 * Return: %true if port is enabled, %false otherwise.
1389 */
tb_pci_port_is_enabled(struct tb_port * port)1390 bool tb_pci_port_is_enabled(struct tb_port *port)
1391 {
1392 u32 data;
1393
1394 if (tb_port_read(port, &data, TB_CFG_PORT,
1395 port->cap_adap + ADP_PCIE_CS_0, 1))
1396 return false;
1397
1398 return !!(data & ADP_PCIE_CS_0_PE);
1399 }
1400
1401 /**
1402 * tb_pci_port_enable() - Enable PCIe adapter port
1403 * @port: PCIe port to enable
1404 * @enable: Enable/disable the PCIe adapter
1405 *
1406 * Return: %0 on success, negative errno otherwise.
1407 */
tb_pci_port_enable(struct tb_port * port,bool enable)1408 int tb_pci_port_enable(struct tb_port *port, bool enable)
1409 {
1410 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1411 if (!port->cap_adap)
1412 return -ENXIO;
1413 return tb_port_write(port, &word, TB_CFG_PORT,
1414 port->cap_adap + ADP_PCIE_CS_0, 1);
1415 }
1416
1417 /**
1418 * tb_dp_port_hpd_is_active() - Is HPD already active
1419 * @port: DP out port to check
1420 *
1421 * Checks if the DP OUT adapter port has HPD bit already set.
1422 *
1423 * Return: %1 if HPD is active, %0 otherwise.
1424 */
tb_dp_port_hpd_is_active(struct tb_port * port)1425 int tb_dp_port_hpd_is_active(struct tb_port *port)
1426 {
1427 u32 data;
1428 int ret;
1429
1430 ret = tb_port_read(port, &data, TB_CFG_PORT,
1431 port->cap_adap + ADP_DP_CS_2, 1);
1432 if (ret)
1433 return ret;
1434
1435 return !!(data & ADP_DP_CS_2_HPD);
1436 }
1437
1438 /**
1439 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1440 * @port: Port to clear HPD
1441 *
1442 * If the DP IN port has HPD set, this function can be used to clear it.
1443 *
1444 * Return: %0 on success, negative errno otherwise.
1445 */
tb_dp_port_hpd_clear(struct tb_port * port)1446 int tb_dp_port_hpd_clear(struct tb_port *port)
1447 {
1448 u32 data;
1449 int ret;
1450
1451 ret = tb_port_read(port, &data, TB_CFG_PORT,
1452 port->cap_adap + ADP_DP_CS_3, 1);
1453 if (ret)
1454 return ret;
1455
1456 data |= ADP_DP_CS_3_HPDC;
1457 return tb_port_write(port, &data, TB_CFG_PORT,
1458 port->cap_adap + ADP_DP_CS_3, 1);
1459 }
1460
1461 /**
1462 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1463 * @port: DP IN/OUT port to set hops
1464 * @video: Video Hop ID
1465 * @aux_tx: AUX TX Hop ID
1466 * @aux_rx: AUX RX Hop ID
1467 *
1468 * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1469 * router DP adapters too but does not program the values as the fields
1470 * are read-only.
1471 *
1472 * Return: %0 on success, negative errno otherwise.
1473 */
tb_dp_port_set_hops(struct tb_port * port,unsigned int video,unsigned int aux_tx,unsigned int aux_rx)1474 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1475 unsigned int aux_tx, unsigned int aux_rx)
1476 {
1477 u32 data[2];
1478 int ret;
1479
1480 if (tb_switch_is_usb4(port->sw))
1481 return 0;
1482
1483 ret = tb_port_read(port, data, TB_CFG_PORT,
1484 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1485 if (ret)
1486 return ret;
1487
1488 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1489 data[1] &= ~ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1490 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1491
1492 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1493 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1494 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1495 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1496 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1497
1498 return tb_port_write(port, data, TB_CFG_PORT,
1499 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1500 }
1501
1502 /**
1503 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1504 * @port: DP adapter port to check
1505 *
1506 * Return: %true if DP port is enabled, %false otherwise.
1507 */
tb_dp_port_is_enabled(struct tb_port * port)1508 bool tb_dp_port_is_enabled(struct tb_port *port)
1509 {
1510 u32 data[2];
1511
1512 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1513 ARRAY_SIZE(data)))
1514 return false;
1515
1516 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1517 }
1518
1519 /**
1520 * tb_dp_port_enable() - Enables/disables DP paths of a port
1521 * @port: DP IN/OUT port
1522 * @enable: Enable/disable DP path
1523 *
1524 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1525 * calling this function.
1526 *
1527 * Return: %0 on success, negative errno otherwise.
1528 */
tb_dp_port_enable(struct tb_port * port,bool enable)1529 int tb_dp_port_enable(struct tb_port *port, bool enable)
1530 {
1531 u32 data[2];
1532 int ret;
1533
1534 ret = tb_port_read(port, data, TB_CFG_PORT,
1535 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1536 if (ret)
1537 return ret;
1538
1539 if (enable)
1540 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1541 else
1542 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1543
1544 return tb_port_write(port, data, TB_CFG_PORT,
1545 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1546 }
1547
1548 /* switch utility functions */
1549
tb_switch_generation_name(const struct tb_switch * sw)1550 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1551 {
1552 switch (sw->generation) {
1553 case 1:
1554 return "Thunderbolt 1";
1555 case 2:
1556 return "Thunderbolt 2";
1557 case 3:
1558 return "Thunderbolt 3";
1559 case 4:
1560 return "USB4";
1561 default:
1562 return "Unknown";
1563 }
1564 }
1565
tb_dump_switch(const struct tb * tb,const struct tb_switch * sw)1566 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1567 {
1568 const struct tb_regs_switch_header *regs = &sw->config;
1569
1570 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1571 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1572 regs->revision, regs->thunderbolt_version);
1573 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
1574 tb_dbg(tb, " Config:\n");
1575 tb_dbg(tb,
1576 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1577 regs->upstream_port_number, regs->depth,
1578 (((u64) regs->route_hi) << 32) | regs->route_lo,
1579 regs->enabled, regs->plug_events_delay);
1580 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
1581 regs->__unknown1, regs->__unknown4);
1582 }
1583
tb_switch_reset_host(struct tb_switch * sw)1584 static int tb_switch_reset_host(struct tb_switch *sw)
1585 {
1586 if (sw->generation > 1) {
1587 struct tb_port *port;
1588
1589 tb_switch_for_each_port(sw, port) {
1590 int i, ret;
1591
1592 /*
1593 * For lane adapters we issue downstream port
1594 * reset and clear up path config spaces.
1595 *
1596 * For protocol adapters we disable the path and
1597 * clear path config space one by one (from 8 to
1598 * Max Input HopID of the adapter).
1599 */
1600 if (tb_port_is_null(port) && !tb_is_upstream_port(port)) {
1601 ret = tb_port_reset(port);
1602 if (ret)
1603 return ret;
1604 } else if (tb_port_is_usb3_down(port) ||
1605 tb_port_is_usb3_up(port)) {
1606 tb_usb3_port_enable(port, false);
1607 } else if (tb_port_is_dpin(port) ||
1608 tb_port_is_dpout(port)) {
1609 tb_dp_port_enable(port, false);
1610 } else if (tb_port_is_pcie_down(port) ||
1611 tb_port_is_pcie_up(port)) {
1612 tb_pci_port_enable(port, false);
1613 } else {
1614 continue;
1615 }
1616
1617 /* Cleanup path config space of protocol adapter */
1618 for (i = TB_PATH_MIN_HOPID;
1619 i <= port->config.max_in_hop_id; i++) {
1620 ret = tb_path_deactivate_hop(port, i);
1621 if (ret)
1622 return ret;
1623 }
1624 }
1625 } else {
1626 struct tb_cfg_result res;
1627
1628 /* Thunderbolt 1 uses the "reset" config space packet */
1629 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1630 TB_CFG_SWITCH, 2, 2);
1631 if (res.err)
1632 return res.err;
1633 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1634 if (res.err > 0)
1635 return -EIO;
1636 else if (res.err < 0)
1637 return res.err;
1638 }
1639
1640 return 0;
1641 }
1642
tb_switch_reset_device(struct tb_switch * sw)1643 static int tb_switch_reset_device(struct tb_switch *sw)
1644 {
1645 return tb_port_reset(tb_switch_downstream_port(sw));
1646 }
1647
tb_switch_enumerated(struct tb_switch * sw)1648 static bool tb_switch_enumerated(struct tb_switch *sw)
1649 {
1650 u32 val;
1651 int ret;
1652
1653 /*
1654 * Read directly from the hardware because we use this also
1655 * during system sleep where sw->config.enabled is already set
1656 * by us.
1657 */
1658 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_3, 1);
1659 if (ret)
1660 return false;
1661
1662 return !!(val & ROUTER_CS_3_V);
1663 }
1664
1665 /**
1666 * tb_switch_reset() - Perform reset to the router
1667 * @sw: Router to reset
1668 *
1669 * Issues reset to the router @sw. Can be used for any router. For host
1670 * routers, resets all the downstream ports and cleans up path config
1671 * spaces accordingly. For device routers issues downstream port reset
1672 * through the parent router, so as side effect there will be unplug
1673 * soon after this is finished.
1674 *
1675 * If the router is not enumerated does nothing.
1676 *
1677 * Return: %0 on success, negative errno otherwise.
1678 */
tb_switch_reset(struct tb_switch * sw)1679 int tb_switch_reset(struct tb_switch *sw)
1680 {
1681 int ret;
1682
1683 /*
1684 * We cannot access the port config spaces unless the router is
1685 * already enumerated. If the router is not enumerated it is
1686 * equal to being reset so we can skip that here.
1687 */
1688 if (!tb_switch_enumerated(sw))
1689 return 0;
1690
1691 tb_sw_dbg(sw, "resetting\n");
1692
1693 if (tb_route(sw))
1694 ret = tb_switch_reset_device(sw);
1695 else
1696 ret = tb_switch_reset_host(sw);
1697
1698 if (ret)
1699 tb_sw_warn(sw, "failed to reset\n");
1700
1701 return ret;
1702 }
1703
1704 /**
1705 * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1706 * @sw: Router to read the offset value from
1707 * @offset: Offset in the router config space to read from
1708 * @bit: Bit mask in the offset to wait for
1709 * @value: Value of the bits to wait for
1710 * @timeout_msec: Timeout in ms how long to wait
1711 *
1712 * Wait till the specified bits in specified offset reach specified value.
1713 *
1714 * Return:
1715 * * %0 - On success.
1716 * * %-ETIMEDOUT - If the @value was not reached within
1717 * the given timeout.
1718 * * Negative errno - In case of failure.
1719 */
tb_switch_wait_for_bit(struct tb_switch * sw,u32 offset,u32 bit,u32 value,int timeout_msec)1720 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1721 u32 value, int timeout_msec)
1722 {
1723 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1724
1725 do {
1726 u32 val;
1727 int ret;
1728
1729 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1730 if (ret)
1731 return ret;
1732
1733 if ((val & bit) == value)
1734 return 0;
1735
1736 usleep_range(50, 100);
1737 } while (ktime_before(ktime_get(), timeout));
1738
1739 return -ETIMEDOUT;
1740 }
1741
1742 /*
1743 * tb_plug_events_active() - enable/disable plug events on a switch
1744 *
1745 * Also configures a sane plug_events_delay of 255ms.
1746 *
1747 * Return: %0 on success, negative errno otherwise.
1748 */
tb_plug_events_active(struct tb_switch * sw,bool active)1749 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1750 {
1751 u32 data;
1752 int res;
1753
1754 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1755 return 0;
1756
1757 sw->config.plug_events_delay = 0xff;
1758 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1759 if (res)
1760 return res;
1761
1762 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1763 if (res)
1764 return res;
1765
1766 if (active) {
1767 data = data & 0xFFFFFF83;
1768 switch (sw->config.device_id) {
1769 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1770 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1771 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1772 break;
1773 default:
1774 /*
1775 * Skip Alpine Ridge, it needs to have vendor
1776 * specific USB hotplug event enabled for the
1777 * internal xHCI to work.
1778 */
1779 if (!tb_switch_is_alpine_ridge(sw))
1780 data |= TB_PLUG_EVENTS_USB_DISABLE;
1781 }
1782 } else {
1783 data = data | 0x7c;
1784 }
1785 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1786 sw->cap_plug_events + 1, 1);
1787 }
1788
authorized_show(struct device * dev,struct device_attribute * attr,char * buf)1789 static ssize_t authorized_show(struct device *dev,
1790 struct device_attribute *attr,
1791 char *buf)
1792 {
1793 struct tb_switch *sw = tb_to_switch(dev);
1794
1795 return sysfs_emit(buf, "%u\n", sw->authorized);
1796 }
1797
disapprove_switch(struct device * dev,void * not_used)1798 static int disapprove_switch(struct device *dev, void *not_used)
1799 {
1800 char *envp[] = { "AUTHORIZED=0", NULL };
1801 struct tb_switch *sw;
1802
1803 sw = tb_to_switch(dev);
1804 if (sw && sw->authorized) {
1805 int ret;
1806
1807 /* First children */
1808 ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1809 if (ret)
1810 return ret;
1811
1812 ret = tb_domain_disapprove_switch(sw->tb, sw);
1813 if (ret)
1814 return ret;
1815
1816 sw->authorized = 0;
1817 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1818 }
1819
1820 return 0;
1821 }
1822
tb_switch_set_authorized(struct tb_switch * sw,unsigned int val)1823 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1824 {
1825 char envp_string[13];
1826 int ret = -EINVAL;
1827 char *envp[] = { envp_string, NULL };
1828
1829 if (!mutex_trylock(&sw->tb->lock))
1830 return restart_syscall();
1831
1832 if (!!sw->authorized == !!val)
1833 goto unlock;
1834
1835 switch (val) {
1836 /* Disapprove switch */
1837 case 0:
1838 if (tb_route(sw)) {
1839 ret = disapprove_switch(&sw->dev, NULL);
1840 goto unlock;
1841 }
1842 break;
1843
1844 /* Approve switch */
1845 case 1:
1846 if (sw->key)
1847 ret = tb_domain_approve_switch_key(sw->tb, sw);
1848 else
1849 ret = tb_domain_approve_switch(sw->tb, sw);
1850 break;
1851
1852 /* Challenge switch */
1853 case 2:
1854 if (sw->key)
1855 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1856 break;
1857
1858 default:
1859 break;
1860 }
1861
1862 if (!ret) {
1863 sw->authorized = val;
1864 /*
1865 * Notify status change to the userspace, informing the new
1866 * value of /sys/bus/thunderbolt/devices/.../authorized.
1867 */
1868 sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1869 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1870 }
1871
1872 unlock:
1873 mutex_unlock(&sw->tb->lock);
1874 return ret;
1875 }
1876
authorized_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1877 static ssize_t authorized_store(struct device *dev,
1878 struct device_attribute *attr,
1879 const char *buf, size_t count)
1880 {
1881 struct tb_switch *sw = tb_to_switch(dev);
1882 unsigned int val;
1883 ssize_t ret;
1884
1885 ret = kstrtouint(buf, 0, &val);
1886 if (ret)
1887 return ret;
1888 if (val > 2)
1889 return -EINVAL;
1890
1891 pm_runtime_get_sync(&sw->dev);
1892 ret = tb_switch_set_authorized(sw, val);
1893 pm_runtime_mark_last_busy(&sw->dev);
1894 pm_runtime_put_autosuspend(&sw->dev);
1895
1896 return ret ? ret : count;
1897 }
1898 static DEVICE_ATTR_RW(authorized);
1899
boot_show(struct device * dev,struct device_attribute * attr,char * buf)1900 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1901 char *buf)
1902 {
1903 struct tb_switch *sw = tb_to_switch(dev);
1904
1905 return sysfs_emit(buf, "%u\n", sw->boot);
1906 }
1907 static DEVICE_ATTR_RO(boot);
1908
device_show(struct device * dev,struct device_attribute * attr,char * buf)1909 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1910 char *buf)
1911 {
1912 struct tb_switch *sw = tb_to_switch(dev);
1913
1914 return sysfs_emit(buf, "%#x\n", sw->device);
1915 }
1916 static DEVICE_ATTR_RO(device);
1917
1918 static ssize_t
device_name_show(struct device * dev,struct device_attribute * attr,char * buf)1919 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1920 {
1921 struct tb_switch *sw = tb_to_switch(dev);
1922
1923 return sysfs_emit(buf, "%s\n", sw->device_name ?: "");
1924 }
1925 static DEVICE_ATTR_RO(device_name);
1926
1927 static ssize_t
generation_show(struct device * dev,struct device_attribute * attr,char * buf)1928 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1929 {
1930 struct tb_switch *sw = tb_to_switch(dev);
1931
1932 return sysfs_emit(buf, "%u\n", sw->generation);
1933 }
1934 static DEVICE_ATTR_RO(generation);
1935
key_show(struct device * dev,struct device_attribute * attr,char * buf)1936 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1937 char *buf)
1938 {
1939 struct tb_switch *sw = tb_to_switch(dev);
1940 ssize_t ret;
1941
1942 if (!mutex_trylock(&sw->tb->lock))
1943 return restart_syscall();
1944
1945 if (sw->key)
1946 ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1947 else
1948 ret = sysfs_emit(buf, "\n");
1949
1950 mutex_unlock(&sw->tb->lock);
1951 return ret;
1952 }
1953
key_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1954 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1955 const char *buf, size_t count)
1956 {
1957 struct tb_switch *sw = tb_to_switch(dev);
1958 u8 key[TB_SWITCH_KEY_SIZE];
1959 ssize_t ret = count;
1960 bool clear = false;
1961
1962 if (!strcmp(buf, "\n"))
1963 clear = true;
1964 else if (hex2bin(key, buf, sizeof(key)))
1965 return -EINVAL;
1966
1967 if (!mutex_trylock(&sw->tb->lock))
1968 return restart_syscall();
1969
1970 if (sw->authorized) {
1971 ret = -EBUSY;
1972 } else {
1973 kfree(sw->key);
1974 if (clear) {
1975 sw->key = NULL;
1976 } else {
1977 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1978 if (!sw->key)
1979 ret = -ENOMEM;
1980 }
1981 }
1982
1983 mutex_unlock(&sw->tb->lock);
1984 return ret;
1985 }
1986 static DEVICE_ATTR(key, 0600, key_show, key_store);
1987
speed_show(struct device * dev,struct device_attribute * attr,char * buf)1988 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1989 char *buf)
1990 {
1991 struct tb_switch *sw = tb_to_switch(dev);
1992
1993 return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed);
1994 }
1995
1996 /*
1997 * Currently all lanes must run at the same speed but we expose here
1998 * both directions to allow possible asymmetric links in the future.
1999 */
2000 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
2001 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
2002
rx_lanes_show(struct device * dev,struct device_attribute * attr,char * buf)2003 static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr,
2004 char *buf)
2005 {
2006 struct tb_switch *sw = tb_to_switch(dev);
2007 unsigned int width;
2008
2009 switch (sw->link_width) {
2010 case TB_LINK_WIDTH_SINGLE:
2011 case TB_LINK_WIDTH_ASYM_TX:
2012 width = 1;
2013 break;
2014 case TB_LINK_WIDTH_DUAL:
2015 width = 2;
2016 break;
2017 case TB_LINK_WIDTH_ASYM_RX:
2018 width = 3;
2019 break;
2020 default:
2021 WARN_ON_ONCE(1);
2022 return -EINVAL;
2023 }
2024
2025 return sysfs_emit(buf, "%u\n", width);
2026 }
2027 static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL);
2028
tx_lanes_show(struct device * dev,struct device_attribute * attr,char * buf)2029 static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr,
2030 char *buf)
2031 {
2032 struct tb_switch *sw = tb_to_switch(dev);
2033 unsigned int width;
2034
2035 switch (sw->link_width) {
2036 case TB_LINK_WIDTH_SINGLE:
2037 case TB_LINK_WIDTH_ASYM_RX:
2038 width = 1;
2039 break;
2040 case TB_LINK_WIDTH_DUAL:
2041 width = 2;
2042 break;
2043 case TB_LINK_WIDTH_ASYM_TX:
2044 width = 3;
2045 break;
2046 default:
2047 WARN_ON_ONCE(1);
2048 return -EINVAL;
2049 }
2050
2051 return sysfs_emit(buf, "%u\n", width);
2052 }
2053 static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL);
2054
nvm_authenticate_show(struct device * dev,struct device_attribute * attr,char * buf)2055 static ssize_t nvm_authenticate_show(struct device *dev,
2056 struct device_attribute *attr, char *buf)
2057 {
2058 struct tb_switch *sw = tb_to_switch(dev);
2059 u32 status;
2060
2061 nvm_get_auth_status(sw, &status);
2062 return sysfs_emit(buf, "%#x\n", status);
2063 }
2064
nvm_authenticate_sysfs(struct device * dev,const char * buf,bool disconnect)2065 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
2066 bool disconnect)
2067 {
2068 struct tb_switch *sw = tb_to_switch(dev);
2069 int val, ret;
2070
2071 pm_runtime_get_sync(&sw->dev);
2072
2073 if (!mutex_trylock(&sw->tb->lock)) {
2074 ret = restart_syscall();
2075 goto exit_rpm;
2076 }
2077
2078 if (sw->no_nvm_upgrade) {
2079 ret = -EOPNOTSUPP;
2080 goto exit_unlock;
2081 }
2082
2083 /* If NVMem devices are not yet added */
2084 if (!sw->nvm) {
2085 ret = -EAGAIN;
2086 goto exit_unlock;
2087 }
2088
2089 ret = kstrtoint(buf, 10, &val);
2090 if (ret)
2091 goto exit_unlock;
2092
2093 /* Always clear the authentication status */
2094 nvm_clear_auth_status(sw);
2095
2096 if (val > 0) {
2097 if (val == AUTHENTICATE_ONLY) {
2098 if (disconnect)
2099 ret = -EINVAL;
2100 else
2101 ret = nvm_authenticate(sw, true);
2102 } else {
2103 if (!sw->nvm->flushed) {
2104 if (!sw->nvm->buf) {
2105 ret = -EINVAL;
2106 goto exit_unlock;
2107 }
2108
2109 ret = nvm_validate_and_write(sw);
2110 if (ret || val == WRITE_ONLY)
2111 goto exit_unlock;
2112 }
2113 if (val == WRITE_AND_AUTHENTICATE) {
2114 if (disconnect)
2115 ret = tb_lc_force_power(sw);
2116 else
2117 ret = nvm_authenticate(sw, false);
2118 }
2119 }
2120 }
2121
2122 exit_unlock:
2123 mutex_unlock(&sw->tb->lock);
2124 exit_rpm:
2125 pm_runtime_mark_last_busy(&sw->dev);
2126 pm_runtime_put_autosuspend(&sw->dev);
2127
2128 return ret;
2129 }
2130
nvm_authenticate_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2131 static ssize_t nvm_authenticate_store(struct device *dev,
2132 struct device_attribute *attr, const char *buf, size_t count)
2133 {
2134 int ret = nvm_authenticate_sysfs(dev, buf, false);
2135 if (ret)
2136 return ret;
2137 return count;
2138 }
2139 static DEVICE_ATTR_RW(nvm_authenticate);
2140
nvm_authenticate_on_disconnect_show(struct device * dev,struct device_attribute * attr,char * buf)2141 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
2142 struct device_attribute *attr, char *buf)
2143 {
2144 return nvm_authenticate_show(dev, attr, buf);
2145 }
2146
nvm_authenticate_on_disconnect_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2147 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
2148 struct device_attribute *attr, const char *buf, size_t count)
2149 {
2150 int ret;
2151
2152 ret = nvm_authenticate_sysfs(dev, buf, true);
2153 return ret ? ret : count;
2154 }
2155 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
2156
nvm_version_show(struct device * dev,struct device_attribute * attr,char * buf)2157 static ssize_t nvm_version_show(struct device *dev,
2158 struct device_attribute *attr, char *buf)
2159 {
2160 struct tb_switch *sw = tb_to_switch(dev);
2161 int ret;
2162
2163 if (!mutex_trylock(&sw->tb->lock))
2164 return restart_syscall();
2165
2166 if (sw->safe_mode)
2167 ret = -ENODATA;
2168 else if (!sw->nvm)
2169 ret = -EAGAIN;
2170 else
2171 ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
2172
2173 mutex_unlock(&sw->tb->lock);
2174
2175 return ret;
2176 }
2177 static DEVICE_ATTR_RO(nvm_version);
2178
vendor_show(struct device * dev,struct device_attribute * attr,char * buf)2179 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
2180 char *buf)
2181 {
2182 struct tb_switch *sw = tb_to_switch(dev);
2183
2184 return sysfs_emit(buf, "%#x\n", sw->vendor);
2185 }
2186 static DEVICE_ATTR_RO(vendor);
2187
2188 static ssize_t
vendor_name_show(struct device * dev,struct device_attribute * attr,char * buf)2189 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
2190 {
2191 struct tb_switch *sw = tb_to_switch(dev);
2192
2193 return sysfs_emit(buf, "%s\n", sw->vendor_name ?: "");
2194 }
2195 static DEVICE_ATTR_RO(vendor_name);
2196
unique_id_show(struct device * dev,struct device_attribute * attr,char * buf)2197 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
2198 char *buf)
2199 {
2200 struct tb_switch *sw = tb_to_switch(dev);
2201
2202 return sysfs_emit(buf, "%pUb\n", sw->uuid);
2203 }
2204 static DEVICE_ATTR_RO(unique_id);
2205
2206 static struct attribute *switch_attrs[] = {
2207 &dev_attr_authorized.attr,
2208 &dev_attr_boot.attr,
2209 &dev_attr_device.attr,
2210 &dev_attr_device_name.attr,
2211 &dev_attr_generation.attr,
2212 &dev_attr_key.attr,
2213 &dev_attr_nvm_authenticate.attr,
2214 &dev_attr_nvm_authenticate_on_disconnect.attr,
2215 &dev_attr_nvm_version.attr,
2216 &dev_attr_rx_speed.attr,
2217 &dev_attr_rx_lanes.attr,
2218 &dev_attr_tx_speed.attr,
2219 &dev_attr_tx_lanes.attr,
2220 &dev_attr_vendor.attr,
2221 &dev_attr_vendor_name.attr,
2222 &dev_attr_unique_id.attr,
2223 NULL,
2224 };
2225
switch_attr_is_visible(struct kobject * kobj,struct attribute * attr,int n)2226 static umode_t switch_attr_is_visible(struct kobject *kobj,
2227 struct attribute *attr, int n)
2228 {
2229 struct device *dev = kobj_to_dev(kobj);
2230 struct tb_switch *sw = tb_to_switch(dev);
2231
2232 if (attr == &dev_attr_authorized.attr) {
2233 if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2234 sw->tb->security_level == TB_SECURITY_DPONLY)
2235 return 0;
2236 } else if (attr == &dev_attr_device.attr) {
2237 if (!sw->device)
2238 return 0;
2239 } else if (attr == &dev_attr_device_name.attr) {
2240 if (!sw->device_name)
2241 return 0;
2242 } else if (attr == &dev_attr_vendor.attr) {
2243 if (!sw->vendor)
2244 return 0;
2245 } else if (attr == &dev_attr_vendor_name.attr) {
2246 if (!sw->vendor_name)
2247 return 0;
2248 } else if (attr == &dev_attr_key.attr) {
2249 if (tb_route(sw) &&
2250 sw->tb->security_level == TB_SECURITY_SECURE &&
2251 sw->security_level == TB_SECURITY_SECURE)
2252 return attr->mode;
2253 return 0;
2254 } else if (attr == &dev_attr_rx_speed.attr ||
2255 attr == &dev_attr_rx_lanes.attr ||
2256 attr == &dev_attr_tx_speed.attr ||
2257 attr == &dev_attr_tx_lanes.attr) {
2258 if (tb_route(sw))
2259 return attr->mode;
2260 return 0;
2261 } else if (attr == &dev_attr_nvm_authenticate.attr) {
2262 if (nvm_upgradeable(sw))
2263 return attr->mode;
2264 return 0;
2265 } else if (attr == &dev_attr_nvm_version.attr) {
2266 if (nvm_readable(sw))
2267 return attr->mode;
2268 return 0;
2269 } else if (attr == &dev_attr_boot.attr) {
2270 if (tb_route(sw))
2271 return attr->mode;
2272 return 0;
2273 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2274 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2275 return attr->mode;
2276 return 0;
2277 }
2278
2279 return sw->safe_mode ? 0 : attr->mode;
2280 }
2281
2282 static const struct attribute_group switch_group = {
2283 .is_visible = switch_attr_is_visible,
2284 .attrs = switch_attrs,
2285 };
2286
2287 static const struct attribute_group *switch_groups[] = {
2288 &switch_group,
2289 NULL,
2290 };
2291
tb_switch_release(struct device * dev)2292 static void tb_switch_release(struct device *dev)
2293 {
2294 struct tb_switch *sw = tb_to_switch(dev);
2295 struct tb_port *port;
2296
2297 dma_port_free(sw->dma_port);
2298
2299 tb_switch_for_each_port(sw, port) {
2300 ida_destroy(&port->in_hopids);
2301 ida_destroy(&port->out_hopids);
2302 }
2303
2304 kfree(sw->uuid);
2305 kfree(sw->device_name);
2306 kfree(sw->vendor_name);
2307 kfree(sw->ports);
2308 kfree(sw->drom);
2309 kfree(sw->key);
2310 kfree(sw);
2311 }
2312
tb_switch_uevent(const struct device * dev,struct kobj_uevent_env * env)2313 static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env)
2314 {
2315 const struct tb_switch *sw = tb_to_switch(dev);
2316 const char *type;
2317
2318 if (tb_switch_is_usb4(sw)) {
2319 if (add_uevent_var(env, "USB4_VERSION=%u.0",
2320 usb4_switch_version(sw)))
2321 return -ENOMEM;
2322 }
2323
2324 if (!tb_route(sw)) {
2325 type = "host";
2326 } else {
2327 const struct tb_port *port;
2328 bool hub = false;
2329
2330 /* Device is hub if it has any downstream ports */
2331 tb_switch_for_each_port(sw, port) {
2332 if (!port->disabled && !tb_is_upstream_port(port) &&
2333 tb_port_is_null(port)) {
2334 hub = true;
2335 break;
2336 }
2337 }
2338
2339 type = hub ? "hub" : "device";
2340 }
2341
2342 if (add_uevent_var(env, "USB4_TYPE=%s", type))
2343 return -ENOMEM;
2344 return 0;
2345 }
2346
2347 /*
2348 * Currently only need to provide the callbacks. Everything else is handled
2349 * in the connection manager.
2350 */
tb_switch_runtime_suspend(struct device * dev)2351 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2352 {
2353 struct tb_switch *sw = tb_to_switch(dev);
2354 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2355
2356 if (cm_ops->runtime_suspend_switch)
2357 return cm_ops->runtime_suspend_switch(sw);
2358
2359 return 0;
2360 }
2361
tb_switch_runtime_resume(struct device * dev)2362 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2363 {
2364 struct tb_switch *sw = tb_to_switch(dev);
2365 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2366
2367 if (cm_ops->runtime_resume_switch)
2368 return cm_ops->runtime_resume_switch(sw);
2369 return 0;
2370 }
2371
2372 static const struct dev_pm_ops tb_switch_pm_ops = {
2373 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2374 NULL)
2375 };
2376
2377 const struct device_type tb_switch_type = {
2378 .name = "thunderbolt_device",
2379 .release = tb_switch_release,
2380 .uevent = tb_switch_uevent,
2381 .pm = &tb_switch_pm_ops,
2382 };
2383
tb_switch_get_generation(struct tb_switch * sw)2384 static int tb_switch_get_generation(struct tb_switch *sw)
2385 {
2386 if (tb_switch_is_usb4(sw))
2387 return 4;
2388
2389 if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
2390 switch (sw->config.device_id) {
2391 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2392 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2393 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2394 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2395 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2396 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2397 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2398 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2399 return 1;
2400
2401 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2402 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2403 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2404 return 2;
2405
2406 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2407 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2408 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2409 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2410 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2411 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2412 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2413 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2414 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2415 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2416 return 3;
2417 }
2418 }
2419
2420 /*
2421 * For unknown switches assume generation to be 1 to be on the
2422 * safe side.
2423 */
2424 tb_sw_warn(sw, "unsupported switch device id %#x\n",
2425 sw->config.device_id);
2426 return 1;
2427 }
2428
tb_switch_exceeds_max_depth(const struct tb_switch * sw,int depth)2429 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2430 {
2431 int max_depth;
2432
2433 if (tb_switch_is_usb4(sw) ||
2434 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2435 max_depth = USB4_SWITCH_MAX_DEPTH;
2436 else
2437 max_depth = TB_SWITCH_MAX_DEPTH;
2438
2439 return depth > max_depth;
2440 }
2441
2442 /**
2443 * tb_switch_alloc() - allocate a switch
2444 * @tb: Pointer to the owning domain
2445 * @parent: Parent device for this switch
2446 * @route: Route string for this switch
2447 *
2448 * Allocates and initializes a switch. Will not upload configuration to
2449 * the switch. For that you need to call tb_switch_configure()
2450 * separately. The returned switch should be released by calling
2451 * tb_switch_put().
2452 *
2453 * Return: Pointer to &struct tb_switch or ERR_PTR() in case of failure.
2454 */
tb_switch_alloc(struct tb * tb,struct device * parent,u64 route)2455 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2456 u64 route)
2457 {
2458 struct tb_switch *sw;
2459 int upstream_port;
2460 int i, ret, depth;
2461
2462 /* Unlock the downstream port so we can access the switch below */
2463 if (route) {
2464 struct tb_switch *parent_sw = tb_to_switch(parent);
2465 struct tb_port *down;
2466
2467 down = tb_port_at(route, parent_sw);
2468 tb_port_unlock(down);
2469 }
2470
2471 depth = tb_route_length(route);
2472
2473 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2474 if (upstream_port < 0)
2475 return ERR_PTR(upstream_port);
2476
2477 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2478 if (!sw)
2479 return ERR_PTR(-ENOMEM);
2480
2481 sw->tb = tb;
2482 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2483 if (ret)
2484 goto err_free_sw_ports;
2485
2486 sw->generation = tb_switch_get_generation(sw);
2487
2488 tb_dbg(tb, "current switch config:\n");
2489 tb_dump_switch(tb, sw);
2490
2491 /* configure switch */
2492 sw->config.upstream_port_number = upstream_port;
2493 sw->config.depth = depth;
2494 sw->config.route_hi = upper_32_bits(route);
2495 sw->config.route_lo = lower_32_bits(route);
2496 sw->config.enabled = 0;
2497
2498 /* Make sure we do not exceed maximum topology limit */
2499 if (tb_switch_exceeds_max_depth(sw, depth)) {
2500 ret = -EADDRNOTAVAIL;
2501 goto err_free_sw_ports;
2502 }
2503
2504 /* initialize ports */
2505 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2506 GFP_KERNEL);
2507 if (!sw->ports) {
2508 ret = -ENOMEM;
2509 goto err_free_sw_ports;
2510 }
2511
2512 for (i = 0; i <= sw->config.max_port_number; i++) {
2513 /* minimum setup for tb_find_cap and tb_drom_read to work */
2514 sw->ports[i].sw = sw;
2515 sw->ports[i].port = i;
2516
2517 /* Control port does not need HopID allocation */
2518 if (i) {
2519 ida_init(&sw->ports[i].in_hopids);
2520 ida_init(&sw->ports[i].out_hopids);
2521 }
2522 }
2523
2524 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2525 if (ret > 0)
2526 sw->cap_plug_events = ret;
2527
2528 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2529 if (ret > 0)
2530 sw->cap_vsec_tmu = ret;
2531
2532 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2533 if (ret > 0)
2534 sw->cap_lc = ret;
2535
2536 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2537 if (ret > 0)
2538 sw->cap_lp = ret;
2539
2540 /* Root switch is always authorized */
2541 if (!route)
2542 sw->authorized = true;
2543
2544 device_initialize(&sw->dev);
2545 sw->dev.parent = parent;
2546 sw->dev.bus = &tb_bus_type;
2547 sw->dev.type = &tb_switch_type;
2548 sw->dev.groups = switch_groups;
2549 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2550
2551 return sw;
2552
2553 err_free_sw_ports:
2554 kfree(sw->ports);
2555 kfree(sw);
2556
2557 return ERR_PTR(ret);
2558 }
2559
2560 /**
2561 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2562 * @tb: Pointer to the owning domain
2563 * @parent: Parent device for this switch
2564 * @route: Route string for this switch
2565 *
2566 * This creates a switch in safe mode. This means the switch pretty much
2567 * lacks all capabilities except DMA configuration port before it is
2568 * flashed with a valid NVM firmware.
2569 *
2570 * The returned switch must be released by calling tb_switch_put().
2571 *
2572 * Return: Pointer to &struct tb_switch or ERR_PTR() in case of failure.
2573 */
2574 struct tb_switch *
tb_switch_alloc_safe_mode(struct tb * tb,struct device * parent,u64 route)2575 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2576 {
2577 struct tb_switch *sw;
2578
2579 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2580 if (!sw)
2581 return ERR_PTR(-ENOMEM);
2582
2583 sw->tb = tb;
2584 sw->config.depth = tb_route_length(route);
2585 sw->config.route_hi = upper_32_bits(route);
2586 sw->config.route_lo = lower_32_bits(route);
2587 sw->safe_mode = true;
2588
2589 device_initialize(&sw->dev);
2590 sw->dev.parent = parent;
2591 sw->dev.bus = &tb_bus_type;
2592 sw->dev.type = &tb_switch_type;
2593 sw->dev.groups = switch_groups;
2594 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2595
2596 return sw;
2597 }
2598
2599 /**
2600 * tb_switch_configure() - Uploads configuration to the switch
2601 * @sw: Switch to configure
2602 *
2603 * Call this function before the switch is added to the system. It will
2604 * upload configuration to the switch and makes it available for the
2605 * connection manager to use. Can be called to the switch again after
2606 * resume from low power states to re-initialize it.
2607 *
2608 * Return: %0 on success, negative errno otherwise.
2609 */
tb_switch_configure(struct tb_switch * sw)2610 int tb_switch_configure(struct tb_switch *sw)
2611 {
2612 struct tb *tb = sw->tb;
2613 u64 route;
2614 int ret;
2615
2616 route = tb_route(sw);
2617
2618 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2619 sw->config.enabled ? "restoring" : "initializing", route,
2620 tb_route_length(route), sw->config.upstream_port_number);
2621
2622 sw->config.enabled = 1;
2623
2624 if (tb_switch_is_usb4(sw)) {
2625 /*
2626 * For USB4 devices, we need to program the CM version
2627 * accordingly so that it knows to expose all the
2628 * additional capabilities. Program it according to USB4
2629 * version to avoid changing existing (v1) routers behaviour.
2630 */
2631 if (usb4_switch_version(sw) < 2)
2632 sw->config.cmuv = ROUTER_CS_4_CMUV_V1;
2633 else
2634 sw->config.cmuv = ROUTER_CS_4_CMUV_V2;
2635 sw->config.plug_events_delay = 0xa;
2636
2637 /* Enumerate the switch */
2638 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2639 ROUTER_CS_1, 4);
2640 if (ret)
2641 return ret;
2642
2643 ret = usb4_switch_setup(sw);
2644 } else {
2645 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2646 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2647 sw->config.vendor_id);
2648
2649 if (!sw->cap_plug_events) {
2650 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2651 return -ENODEV;
2652 }
2653
2654 /* Enumerate the switch */
2655 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2656 ROUTER_CS_1, 3);
2657 }
2658 if (ret)
2659 return ret;
2660
2661 return tb_plug_events_active(sw, true);
2662 }
2663
2664 /**
2665 * tb_switch_configuration_valid() - Set the tunneling configuration to be valid
2666 * @sw: Router to configure
2667 *
2668 * Needs to be called before any tunnels can be setup through the
2669 * router. Can be called to any router.
2670 *
2671 * Return: %0 on success, negative errno otherwise.
2672 */
tb_switch_configuration_valid(struct tb_switch * sw)2673 int tb_switch_configuration_valid(struct tb_switch *sw)
2674 {
2675 if (tb_switch_is_usb4(sw))
2676 return usb4_switch_configuration_valid(sw);
2677 return 0;
2678 }
2679
tb_switch_set_uuid(struct tb_switch * sw)2680 static int tb_switch_set_uuid(struct tb_switch *sw)
2681 {
2682 bool uid = false;
2683 u32 uuid[4];
2684 int ret;
2685
2686 if (sw->uuid)
2687 return 0;
2688
2689 if (tb_switch_is_usb4(sw)) {
2690 ret = usb4_switch_read_uid(sw, &sw->uid);
2691 if (ret)
2692 return ret;
2693 uid = true;
2694 } else {
2695 /*
2696 * The newer controllers include fused UUID as part of
2697 * link controller specific registers
2698 */
2699 ret = tb_lc_read_uuid(sw, uuid);
2700 if (ret) {
2701 if (ret != -EINVAL)
2702 return ret;
2703 uid = true;
2704 }
2705 }
2706
2707 if (uid) {
2708 /*
2709 * ICM generates UUID based on UID and fills the upper
2710 * two words with ones. This is not strictly following
2711 * UUID format but we want to be compatible with it so
2712 * we do the same here.
2713 */
2714 uuid[0] = sw->uid & 0xffffffff;
2715 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2716 uuid[2] = 0xffffffff;
2717 uuid[3] = 0xffffffff;
2718 }
2719
2720 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2721 if (!sw->uuid)
2722 return -ENOMEM;
2723 return 0;
2724 }
2725
tb_switch_add_dma_port(struct tb_switch * sw)2726 static int tb_switch_add_dma_port(struct tb_switch *sw)
2727 {
2728 u32 status;
2729 int ret;
2730
2731 switch (sw->generation) {
2732 case 2:
2733 /* Only root switch can be upgraded */
2734 if (tb_route(sw))
2735 return 0;
2736
2737 fallthrough;
2738 case 3:
2739 case 4:
2740 ret = tb_switch_set_uuid(sw);
2741 if (ret)
2742 return ret;
2743 break;
2744
2745 default:
2746 /*
2747 * DMA port is the only thing available when the switch
2748 * is in safe mode.
2749 */
2750 if (!sw->safe_mode)
2751 return 0;
2752 break;
2753 }
2754
2755 if (sw->no_nvm_upgrade)
2756 return 0;
2757
2758 if (tb_switch_is_usb4(sw)) {
2759 ret = usb4_switch_nvm_authenticate_status(sw, &status);
2760 if (ret)
2761 return ret;
2762
2763 if (status) {
2764 tb_sw_info(sw, "switch flash authentication failed\n");
2765 nvm_set_auth_status(sw, status);
2766 }
2767
2768 return 0;
2769 }
2770
2771 /* Root switch DMA port requires running firmware */
2772 if (!tb_route(sw) && !tb_switch_is_icm(sw))
2773 return 0;
2774
2775 sw->dma_port = dma_port_alloc(sw);
2776 if (!sw->dma_port)
2777 return 0;
2778
2779 /*
2780 * If there is status already set then authentication failed
2781 * when the dma_port_flash_update_auth() returned. Power cycling
2782 * is not needed (it was done already) so only thing we do here
2783 * is to unblock runtime PM of the root port.
2784 */
2785 nvm_get_auth_status(sw, &status);
2786 if (status) {
2787 if (!tb_route(sw))
2788 nvm_authenticate_complete_dma_port(sw);
2789 return 0;
2790 }
2791
2792 /*
2793 * Check status of the previous flash authentication. If there
2794 * is one we need to power cycle the switch in any case to make
2795 * it functional again.
2796 */
2797 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2798 if (ret <= 0)
2799 return ret;
2800
2801 /* Now we can allow root port to suspend again */
2802 if (!tb_route(sw))
2803 nvm_authenticate_complete_dma_port(sw);
2804
2805 if (status) {
2806 tb_sw_info(sw, "switch flash authentication failed\n");
2807 nvm_set_auth_status(sw, status);
2808 }
2809
2810 tb_sw_info(sw, "power cycling the switch now\n");
2811 dma_port_power_cycle(sw->dma_port);
2812
2813 /*
2814 * We return error here which causes the switch adding failure.
2815 * It should appear back after power cycle is complete.
2816 */
2817 return -ESHUTDOWN;
2818 }
2819
tb_switch_default_link_ports(struct tb_switch * sw)2820 static void tb_switch_default_link_ports(struct tb_switch *sw)
2821 {
2822 int i;
2823
2824 for (i = 1; i <= sw->config.max_port_number; i++) {
2825 struct tb_port *port = &sw->ports[i];
2826 struct tb_port *subordinate;
2827
2828 if (!tb_port_is_null(port))
2829 continue;
2830
2831 /* Check for the subordinate port */
2832 if (i == sw->config.max_port_number ||
2833 !tb_port_is_null(&sw->ports[i + 1]))
2834 continue;
2835
2836 /* Link them if not already done so (by DROM) */
2837 subordinate = &sw->ports[i + 1];
2838 if (!port->dual_link_port && !subordinate->dual_link_port) {
2839 port->link_nr = 0;
2840 port->dual_link_port = subordinate;
2841 subordinate->link_nr = 1;
2842 subordinate->dual_link_port = port;
2843
2844 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2845 port->port, subordinate->port);
2846 }
2847 }
2848 }
2849
tb_switch_lane_bonding_possible(struct tb_switch * sw)2850 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2851 {
2852 const struct tb_port *up = tb_upstream_port(sw);
2853
2854 if (!up->dual_link_port || !up->dual_link_port->remote)
2855 return false;
2856
2857 if (tb_switch_is_usb4(sw))
2858 return usb4_switch_lane_bonding_possible(sw);
2859 return tb_lc_lane_bonding_possible(sw);
2860 }
2861
tb_switch_update_link_attributes(struct tb_switch * sw)2862 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2863 {
2864 struct tb_port *up;
2865 bool change = false;
2866 int ret;
2867
2868 if (!tb_route(sw) || tb_switch_is_icm(sw))
2869 return 0;
2870
2871 up = tb_upstream_port(sw);
2872
2873 ret = tb_port_get_link_speed(up);
2874 if (ret < 0)
2875 return ret;
2876 if (sw->link_speed != ret)
2877 change = true;
2878 sw->link_speed = ret;
2879
2880 ret = tb_port_get_link_width(up);
2881 if (ret < 0)
2882 return ret;
2883 if (sw->link_width != ret)
2884 change = true;
2885 sw->link_width = ret;
2886
2887 /* Notify userspace that there is possible link attribute change */
2888 if (device_is_registered(&sw->dev) && change)
2889 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2890
2891 return 0;
2892 }
2893
2894 /* Must be called after tb_switch_update_link_attributes() */
tb_switch_link_init(struct tb_switch * sw)2895 static void tb_switch_link_init(struct tb_switch *sw)
2896 {
2897 struct tb_port *up, *down;
2898 bool bonded;
2899
2900 if (!tb_route(sw) || tb_switch_is_icm(sw))
2901 return;
2902
2903 tb_sw_dbg(sw, "current link speed %u.0 Gb/s\n", sw->link_speed);
2904 tb_sw_dbg(sw, "current link width %s\n", tb_width_name(sw->link_width));
2905
2906 bonded = sw->link_width >= TB_LINK_WIDTH_DUAL;
2907
2908 /*
2909 * Gen 4 links come up as bonded so update the port structures
2910 * accordingly.
2911 */
2912 up = tb_upstream_port(sw);
2913 down = tb_switch_downstream_port(sw);
2914
2915 up->bonded = bonded;
2916 if (up->dual_link_port)
2917 up->dual_link_port->bonded = bonded;
2918 tb_port_update_credits(up);
2919
2920 down->bonded = bonded;
2921 if (down->dual_link_port)
2922 down->dual_link_port->bonded = bonded;
2923 tb_port_update_credits(down);
2924
2925 if (tb_port_get_link_generation(up) < 4)
2926 return;
2927
2928 /*
2929 * Set the Gen 4 preferred link width. This is what the router
2930 * prefers when the link is brought up. If the router does not
2931 * support asymmetric link configuration, this also will be set
2932 * to TB_LINK_WIDTH_DUAL.
2933 */
2934 sw->preferred_link_width = sw->link_width;
2935 tb_sw_dbg(sw, "preferred link width %s\n",
2936 tb_width_name(sw->preferred_link_width));
2937 }
2938
2939 /**
2940 * tb_switch_lane_bonding_enable() - Enable lane bonding
2941 * @sw: Switch to enable lane bonding
2942 *
2943 * Connection manager can call this function to enable lane bonding of a
2944 * switch. If conditions are correct and both switches support the feature,
2945 * lanes are bonded. It is safe to call this to any switch.
2946 *
2947 * Return: %0 on success, negative errno otherwise.
2948 */
tb_switch_lane_bonding_enable(struct tb_switch * sw)2949 static int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2950 {
2951 struct tb_port *up, *down;
2952 unsigned int width;
2953 int ret;
2954
2955 if (!tb_switch_lane_bonding_possible(sw))
2956 return 0;
2957
2958 up = tb_upstream_port(sw);
2959 down = tb_switch_downstream_port(sw);
2960
2961 if (!tb_port_width_supported(up, TB_LINK_WIDTH_DUAL) ||
2962 !tb_port_width_supported(down, TB_LINK_WIDTH_DUAL))
2963 return 0;
2964
2965 /*
2966 * Both lanes need to be in CL0. Here we assume lane 0 already be in
2967 * CL0 and check just for lane 1.
2968 */
2969 if (tb_wait_for_port(down->dual_link_port, false) <= 0)
2970 return -ENOTCONN;
2971
2972 ret = tb_port_lane_bonding_enable(up);
2973 if (ret) {
2974 tb_port_warn(up, "failed to enable lane bonding\n");
2975 return ret;
2976 }
2977
2978 ret = tb_port_lane_bonding_enable(down);
2979 if (ret) {
2980 tb_port_warn(down, "failed to enable lane bonding\n");
2981 tb_port_lane_bonding_disable(up);
2982 return ret;
2983 }
2984
2985 /* Any of the widths are all bonded */
2986 width = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX |
2987 TB_LINK_WIDTH_ASYM_RX;
2988
2989 return tb_port_wait_for_link_width(down, width, 100);
2990 }
2991
2992 /**
2993 * tb_switch_lane_bonding_disable() - Disable lane bonding
2994 * @sw: Switch whose lane bonding to disable
2995 *
2996 * Disables lane bonding between @sw and parent. This can be called even
2997 * if lanes were not bonded originally.
2998 *
2999 * Return: %0 on success, negative errno otherwise.
3000 */
tb_switch_lane_bonding_disable(struct tb_switch * sw)3001 static int tb_switch_lane_bonding_disable(struct tb_switch *sw)
3002 {
3003 struct tb_port *up, *down;
3004 int ret;
3005
3006 up = tb_upstream_port(sw);
3007 if (!up->bonded)
3008 return 0;
3009
3010 /*
3011 * If the link is Gen 4 there is no way to switch the link to
3012 * two single lane links so avoid that here. Also don't bother
3013 * if the link is not up anymore (sw is unplugged).
3014 */
3015 ret = tb_port_get_link_generation(up);
3016 if (ret < 0)
3017 return ret;
3018 if (ret >= 4)
3019 return -EOPNOTSUPP;
3020
3021 down = tb_switch_downstream_port(sw);
3022 tb_port_lane_bonding_disable(up);
3023 tb_port_lane_bonding_disable(down);
3024
3025 /*
3026 * It is fine if we get other errors as the router might have
3027 * been unplugged.
3028 */
3029 return tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100);
3030 }
3031
3032 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */
tb_switch_asym_enable(struct tb_switch * sw,enum tb_link_width width)3033 static int tb_switch_asym_enable(struct tb_switch *sw, enum tb_link_width width)
3034 {
3035 struct tb_port *up, *down, *port;
3036 enum tb_link_width down_width;
3037 int ret;
3038
3039 up = tb_upstream_port(sw);
3040 down = tb_switch_downstream_port(sw);
3041
3042 if (width == TB_LINK_WIDTH_ASYM_TX) {
3043 down_width = TB_LINK_WIDTH_ASYM_RX;
3044 port = down;
3045 } else {
3046 down_width = TB_LINK_WIDTH_ASYM_TX;
3047 port = up;
3048 }
3049
3050 ret = tb_port_set_link_width(up, width);
3051 if (ret)
3052 return ret;
3053
3054 ret = tb_port_set_link_width(down, down_width);
3055 if (ret)
3056 return ret;
3057
3058 /*
3059 * Initiate the change in the router that one of its TX lanes is
3060 * changing to RX but do so only if there is an actual change.
3061 */
3062 if (sw->link_width != width) {
3063 ret = usb4_port_asym_start(port);
3064 if (ret)
3065 return ret;
3066
3067 ret = tb_port_wait_for_link_width(up, width, 100);
3068 if (ret)
3069 return ret;
3070 }
3071
3072 return 0;
3073 }
3074
3075 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */
tb_switch_asym_disable(struct tb_switch * sw)3076 static int tb_switch_asym_disable(struct tb_switch *sw)
3077 {
3078 struct tb_port *up, *down;
3079 int ret;
3080
3081 up = tb_upstream_port(sw);
3082 down = tb_switch_downstream_port(sw);
3083
3084 ret = tb_port_set_link_width(up, TB_LINK_WIDTH_DUAL);
3085 if (ret)
3086 return ret;
3087
3088 ret = tb_port_set_link_width(down, TB_LINK_WIDTH_DUAL);
3089 if (ret)
3090 return ret;
3091
3092 /*
3093 * Initiate the change in the router that has three TX lanes and
3094 * is changing one of its TX lanes to RX but only if there is a
3095 * change in the link width.
3096 */
3097 if (sw->link_width > TB_LINK_WIDTH_DUAL) {
3098 if (sw->link_width == TB_LINK_WIDTH_ASYM_TX)
3099 ret = usb4_port_asym_start(up);
3100 else
3101 ret = usb4_port_asym_start(down);
3102 if (ret)
3103 return ret;
3104
3105 ret = tb_port_wait_for_link_width(up, TB_LINK_WIDTH_DUAL, 100);
3106 if (ret)
3107 return ret;
3108 }
3109
3110 return 0;
3111 }
3112
3113 /**
3114 * tb_switch_set_link_width() - Configure router link width
3115 * @sw: Router to configure
3116 * @width: The new link width
3117 *
3118 * Set device router link width to @width from router upstream port
3119 * perspective. Supports also asymmetric links if the routers both side
3120 * of the link supports it.
3121 *
3122 * Does nothing for host router.
3123 *
3124 * Return: %0 on success, negative errno otherwise.
3125 */
tb_switch_set_link_width(struct tb_switch * sw,enum tb_link_width width)3126 int tb_switch_set_link_width(struct tb_switch *sw, enum tb_link_width width)
3127 {
3128 struct tb_port *up, *down;
3129 int ret = 0;
3130
3131 if (!tb_route(sw))
3132 return 0;
3133
3134 up = tb_upstream_port(sw);
3135 down = tb_switch_downstream_port(sw);
3136
3137 switch (width) {
3138 case TB_LINK_WIDTH_SINGLE:
3139 ret = tb_switch_lane_bonding_disable(sw);
3140 break;
3141
3142 case TB_LINK_WIDTH_DUAL:
3143 if (sw->link_width == TB_LINK_WIDTH_ASYM_TX ||
3144 sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
3145 ret = tb_switch_asym_disable(sw);
3146 if (ret)
3147 break;
3148 }
3149 ret = tb_switch_lane_bonding_enable(sw);
3150 break;
3151
3152 case TB_LINK_WIDTH_ASYM_TX:
3153 case TB_LINK_WIDTH_ASYM_RX:
3154 ret = tb_switch_asym_enable(sw, width);
3155 break;
3156 }
3157
3158 switch (ret) {
3159 case 0:
3160 break;
3161
3162 case -ETIMEDOUT:
3163 tb_sw_warn(sw, "timeout changing link width\n");
3164 return ret;
3165
3166 case -ENOTCONN:
3167 case -EOPNOTSUPP:
3168 case -ENODEV:
3169 return ret;
3170
3171 default:
3172 tb_sw_dbg(sw, "failed to change link width: %d\n", ret);
3173 return ret;
3174 }
3175
3176 tb_port_update_credits(down);
3177 tb_port_update_credits(up);
3178
3179 tb_switch_update_link_attributes(sw);
3180
3181 tb_sw_dbg(sw, "link width set to %s\n", tb_width_name(width));
3182 return ret;
3183 }
3184
3185 /**
3186 * tb_switch_configure_link() - Set link configured
3187 * @sw: Switch whose link is configured
3188 *
3189 * Sets the link upstream from @sw configured (from both ends) so that
3190 * it will not be disconnected when the domain exits sleep. Can be
3191 * called for any switch.
3192 *
3193 * It is recommended that this is called after lane bonding is enabled.
3194 *
3195 * Return: %0 on success and negative errno otherwise.
3196 */
tb_switch_configure_link(struct tb_switch * sw)3197 int tb_switch_configure_link(struct tb_switch *sw)
3198 {
3199 struct tb_port *up, *down;
3200 int ret;
3201
3202 if (!tb_route(sw) || tb_switch_is_icm(sw))
3203 return 0;
3204
3205 up = tb_upstream_port(sw);
3206 if (tb_switch_is_usb4(up->sw))
3207 ret = usb4_port_configure(up);
3208 else
3209 ret = tb_lc_configure_port(up);
3210 if (ret)
3211 return ret;
3212
3213 down = up->remote;
3214 if (tb_switch_is_usb4(down->sw))
3215 return usb4_port_configure(down);
3216 return tb_lc_configure_port(down);
3217 }
3218
3219 /**
3220 * tb_switch_unconfigure_link() - Unconfigure link
3221 * @sw: Switch whose link is unconfigured
3222 *
3223 * Sets the link unconfigured so the @sw will be disconnected if the
3224 * domain exits sleep.
3225 */
tb_switch_unconfigure_link(struct tb_switch * sw)3226 void tb_switch_unconfigure_link(struct tb_switch *sw)
3227 {
3228 struct tb_port *up, *down;
3229
3230 if (!tb_route(sw) || tb_switch_is_icm(sw))
3231 return;
3232
3233 /*
3234 * Unconfigure downstream port so that wake-on-connect can be
3235 * configured after router unplug. No need to unconfigure upstream port
3236 * since its router is unplugged.
3237 */
3238 up = tb_upstream_port(sw);
3239 down = up->remote;
3240 if (tb_switch_is_usb4(down->sw))
3241 usb4_port_unconfigure(down);
3242 else
3243 tb_lc_unconfigure_port(down);
3244
3245 if (sw->is_unplugged)
3246 return;
3247
3248 up = tb_upstream_port(sw);
3249 if (tb_switch_is_usb4(up->sw))
3250 usb4_port_unconfigure(up);
3251 else
3252 tb_lc_unconfigure_port(up);
3253 }
3254
tb_switch_credits_init(struct tb_switch * sw)3255 static void tb_switch_credits_init(struct tb_switch *sw)
3256 {
3257 if (tb_switch_is_icm(sw))
3258 return;
3259 if (!tb_switch_is_usb4(sw))
3260 return;
3261 if (usb4_switch_credits_init(sw))
3262 tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
3263 }
3264
tb_switch_port_hotplug_enable(struct tb_switch * sw)3265 static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
3266 {
3267 struct tb_port *port;
3268
3269 if (tb_switch_is_icm(sw))
3270 return 0;
3271
3272 tb_switch_for_each_port(sw, port) {
3273 int res;
3274
3275 if (!port->cap_usb4)
3276 continue;
3277
3278 res = usb4_port_hotplug_enable(port);
3279 if (res)
3280 return res;
3281 }
3282 return 0;
3283 }
3284
3285 /**
3286 * tb_switch_add() - Add a switch to the domain
3287 * @sw: Switch to add
3288 *
3289 * This is the last step in adding switch to the domain. It will read
3290 * identification information from DROM and initializes ports so that
3291 * they can be used to connect other switches. The switch will be
3292 * exposed to the userspace when this function successfully returns. To
3293 * remove and release the switch, call tb_switch_remove().
3294 *
3295 * Return: %0 on success, negative errno otherwise.
3296 */
tb_switch_add(struct tb_switch * sw)3297 int tb_switch_add(struct tb_switch *sw)
3298 {
3299 int i, ret;
3300
3301 /*
3302 * Initialize DMA control port now before we read DROM. Recent
3303 * host controllers have more complete DROM on NVM that includes
3304 * vendor and model identification strings which we then expose
3305 * to the userspace. NVM can be accessed through DMA
3306 * configuration based mailbox.
3307 */
3308 ret = tb_switch_add_dma_port(sw);
3309 if (ret) {
3310 dev_err(&sw->dev, "failed to add DMA port\n");
3311 return ret;
3312 }
3313
3314 if (!sw->safe_mode) {
3315 tb_switch_credits_init(sw);
3316
3317 /* read drom */
3318 ret = tb_drom_read(sw);
3319 if (ret)
3320 dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
3321 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
3322
3323 ret = tb_switch_set_uuid(sw);
3324 if (ret) {
3325 dev_err(&sw->dev, "failed to set UUID\n");
3326 return ret;
3327 }
3328
3329 for (i = 0; i <= sw->config.max_port_number; i++) {
3330 if (sw->ports[i].disabled) {
3331 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
3332 continue;
3333 }
3334 ret = tb_init_port(&sw->ports[i]);
3335 if (ret) {
3336 dev_err(&sw->dev, "failed to initialize port %d\n", i);
3337 return ret;
3338 }
3339 }
3340
3341 tb_check_quirks(sw);
3342
3343 tb_switch_default_link_ports(sw);
3344
3345 ret = tb_switch_update_link_attributes(sw);
3346 if (ret)
3347 return ret;
3348
3349 tb_switch_link_init(sw);
3350
3351 ret = tb_switch_clx_init(sw);
3352 if (ret)
3353 return ret;
3354
3355 ret = tb_switch_tmu_init(sw);
3356 if (ret)
3357 return ret;
3358 }
3359
3360 ret = tb_switch_port_hotplug_enable(sw);
3361 if (ret)
3362 return ret;
3363
3364 ret = device_add(&sw->dev);
3365 if (ret) {
3366 dev_err(&sw->dev, "failed to add device: %d\n", ret);
3367 return ret;
3368 }
3369
3370 if (tb_route(sw)) {
3371 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
3372 sw->vendor, sw->device);
3373 if (sw->vendor_name && sw->device_name)
3374 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
3375 sw->device_name);
3376 }
3377
3378 ret = usb4_switch_add_ports(sw);
3379 if (ret) {
3380 dev_err(&sw->dev, "failed to add USB4 ports\n");
3381 goto err_del;
3382 }
3383
3384 ret = tb_switch_nvm_add(sw);
3385 if (ret) {
3386 dev_err(&sw->dev, "failed to add NVM devices\n");
3387 goto err_ports;
3388 }
3389
3390 /*
3391 * Thunderbolt routers do not generate wakeups themselves but
3392 * they forward wakeups from tunneled protocols, so enable it
3393 * here.
3394 */
3395 device_init_wakeup(&sw->dev, true);
3396
3397 pm_runtime_set_active(&sw->dev);
3398 if (sw->rpm) {
3399 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
3400 pm_runtime_use_autosuspend(&sw->dev);
3401 pm_runtime_mark_last_busy(&sw->dev);
3402 pm_runtime_enable(&sw->dev);
3403 pm_request_autosuspend(&sw->dev);
3404 }
3405
3406 tb_switch_debugfs_init(sw);
3407 return 0;
3408
3409 err_ports:
3410 usb4_switch_remove_ports(sw);
3411 err_del:
3412 device_del(&sw->dev);
3413
3414 return ret;
3415 }
3416
3417 /**
3418 * tb_switch_remove() - Remove and release a switch
3419 * @sw: Switch to remove
3420 *
3421 * This will remove the switch from the domain and release it after last
3422 * reference count drops to zero. If there are switches connected below
3423 * this switch, they will be removed as well.
3424 */
tb_switch_remove(struct tb_switch * sw)3425 void tb_switch_remove(struct tb_switch *sw)
3426 {
3427 struct tb_port *port;
3428
3429 tb_switch_debugfs_remove(sw);
3430
3431 if (sw->rpm) {
3432 pm_runtime_get_sync(&sw->dev);
3433 pm_runtime_disable(&sw->dev);
3434 }
3435
3436 /* port 0 is the switch itself and never has a remote */
3437 tb_switch_for_each_port(sw, port) {
3438 if (tb_port_has_remote(port)) {
3439 tb_switch_remove(port->remote->sw);
3440 port->remote = NULL;
3441 } else if (port->xdomain) {
3442 port->xdomain->is_unplugged = true;
3443 tb_xdomain_remove(port->xdomain);
3444 port->xdomain = NULL;
3445 }
3446
3447 /* Remove any downstream retimers */
3448 tb_retimer_remove_all(port);
3449 }
3450
3451 if (!sw->is_unplugged)
3452 tb_plug_events_active(sw, false);
3453
3454 tb_switch_nvm_remove(sw);
3455 usb4_switch_remove_ports(sw);
3456
3457 if (tb_route(sw))
3458 dev_info(&sw->dev, "device disconnected\n");
3459 device_unregister(&sw->dev);
3460 }
3461
3462 /**
3463 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
3464 * @sw: Router to mark unplugged
3465 */
tb_sw_set_unplugged(struct tb_switch * sw)3466 void tb_sw_set_unplugged(struct tb_switch *sw)
3467 {
3468 struct tb_port *port;
3469
3470 if (sw == sw->tb->root_switch) {
3471 tb_sw_WARN(sw, "cannot unplug root switch\n");
3472 return;
3473 }
3474 if (sw->is_unplugged) {
3475 tb_sw_WARN(sw, "is_unplugged already set\n");
3476 return;
3477 }
3478 sw->is_unplugged = true;
3479 tb_switch_for_each_port(sw, port) {
3480 if (tb_port_has_remote(port))
3481 tb_sw_set_unplugged(port->remote->sw);
3482 else if (port->xdomain)
3483 port->xdomain->is_unplugged = true;
3484 }
3485 }
3486
tb_switch_set_wake(struct tb_switch * sw,unsigned int flags,bool runtime)3487 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags, bool runtime)
3488 {
3489 if (flags)
3490 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3491 else
3492 tb_sw_dbg(sw, "disabling wakeup\n");
3493
3494 if (tb_switch_is_usb4(sw))
3495 return usb4_switch_set_wake(sw, flags, runtime);
3496 return tb_lc_set_wake(sw, flags);
3497 }
3498
tb_switch_check_wakes(struct tb_switch * sw)3499 static void tb_switch_check_wakes(struct tb_switch *sw)
3500 {
3501 if (device_may_wakeup(&sw->dev)) {
3502 if (tb_switch_is_usb4(sw))
3503 usb4_switch_check_wakes(sw);
3504 }
3505 }
3506
3507 /**
3508 * tb_switch_resume() - Resume a switch after sleep
3509 * @sw: Switch to resume
3510 * @runtime: Is this resume from runtime suspend or system sleep
3511 *
3512 * Resumes and re-enumerates router (and all its children), if still plugged
3513 * after suspend. Don't enumerate device router whose UID was changed during
3514 * suspend. If this is resume from system sleep, notifies PM core about the
3515 * wakes occurred during suspend. Disables all wakes, except USB4 wake of
3516 * upstream port for USB4 routers that shall be always enabled.
3517 *
3518 * Return: %0 on success, negative errno otherwise.
3519 */
tb_switch_resume(struct tb_switch * sw,bool runtime)3520 int tb_switch_resume(struct tb_switch *sw, bool runtime)
3521 {
3522 struct tb_port *port;
3523 int err;
3524
3525 tb_sw_dbg(sw, "resuming switch\n");
3526
3527 /*
3528 * Check for UID of the connected switches except for root
3529 * switch which we assume cannot be removed.
3530 */
3531 if (tb_route(sw)) {
3532 u64 uid;
3533
3534 /*
3535 * Check first that we can still read the switch config
3536 * space. It may be that there is now another domain
3537 * connected.
3538 */
3539 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3540 if (err < 0) {
3541 tb_sw_info(sw, "switch not present anymore\n");
3542 return err;
3543 }
3544
3545 /* We don't have any way to confirm this was the same device */
3546 if (!sw->uid)
3547 return -ENODEV;
3548
3549 if (tb_switch_is_usb4(sw))
3550 err = usb4_switch_read_uid(sw, &uid);
3551 else
3552 err = tb_drom_read_uid_only(sw, &uid);
3553 if (err) {
3554 tb_sw_warn(sw, "uid read failed\n");
3555 return err;
3556 }
3557 if (sw->uid != uid) {
3558 tb_sw_info(sw,
3559 "changed while suspended (uid %#llx -> %#llx)\n",
3560 sw->uid, uid);
3561 return -ENODEV;
3562 }
3563 }
3564
3565 err = tb_switch_configure(sw);
3566 if (err)
3567 return err;
3568
3569 if (!runtime)
3570 tb_switch_check_wakes(sw);
3571
3572 /* Disable wakes */
3573 tb_switch_set_wake(sw, 0, true);
3574
3575 err = tb_switch_tmu_init(sw);
3576 if (err)
3577 return err;
3578
3579 /* check for surviving downstream switches */
3580 tb_switch_for_each_port(sw, port) {
3581 if (!tb_port_is_null(port))
3582 continue;
3583
3584 if (!tb_port_resume(port))
3585 continue;
3586
3587 if (tb_wait_for_port(port, true) <= 0) {
3588 tb_port_warn(port,
3589 "lost during suspend, disconnecting\n");
3590 if (tb_port_has_remote(port))
3591 tb_sw_set_unplugged(port->remote->sw);
3592 else if (port->xdomain)
3593 port->xdomain->is_unplugged = true;
3594 } else {
3595 /*
3596 * Always unlock the port so the downstream
3597 * switch/domain is accessible.
3598 */
3599 if (tb_port_unlock(port))
3600 tb_port_warn(port, "failed to unlock port\n");
3601 if (port->remote &&
3602 tb_switch_resume(port->remote->sw, runtime)) {
3603 tb_port_warn(port,
3604 "lost during suspend, disconnecting\n");
3605 tb_sw_set_unplugged(port->remote->sw);
3606 }
3607 }
3608 }
3609 return 0;
3610 }
3611
3612 /**
3613 * tb_switch_suspend() - Put a switch to sleep
3614 * @sw: Switch to suspend
3615 * @runtime: Is this runtime suspend or system sleep
3616 *
3617 * Suspends router and all its children. Enables wakes according to
3618 * value of @runtime and then sets sleep bit for the router. If @sw is
3619 * host router the domain is ready to go to sleep once this function
3620 * returns.
3621 */
tb_switch_suspend(struct tb_switch * sw,bool runtime)3622 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3623 {
3624 unsigned int flags = 0;
3625 struct tb_port *port;
3626 int err;
3627
3628 tb_sw_dbg(sw, "suspending switch\n");
3629
3630 /*
3631 * Actually only needed for Titan Ridge but for simplicity can be
3632 * done for USB4 device too as CLx is re-enabled at resume.
3633 */
3634 tb_switch_clx_disable(sw);
3635
3636 err = tb_plug_events_active(sw, false);
3637 if (err)
3638 return;
3639
3640 tb_switch_for_each_port(sw, port) {
3641 if (tb_port_has_remote(port))
3642 tb_switch_suspend(port->remote->sw, runtime);
3643 }
3644
3645 if (runtime) {
3646 /* Trigger wake when something is plugged in/out */
3647 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3648 flags |= TB_WAKE_ON_USB4;
3649 flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3650 } else if (device_may_wakeup(&sw->dev)) {
3651 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3652 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3653 }
3654
3655 tb_switch_set_wake(sw, flags, runtime);
3656
3657 if (tb_switch_is_usb4(sw))
3658 usb4_switch_set_sleep(sw);
3659 else
3660 tb_lc_set_sleep(sw);
3661 }
3662
3663 /**
3664 * tb_switch_query_dp_resource() - Query availability of DP resource
3665 * @sw: Switch whose DP resource is queried
3666 * @in: DP IN port
3667 *
3668 * Queries availability of DP resource for DP tunneling using switch
3669 * specific means.
3670 *
3671 * Return: %true if resource is available, %false otherwise.
3672 */
tb_switch_query_dp_resource(struct tb_switch * sw,struct tb_port * in)3673 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3674 {
3675 if (tb_switch_is_usb4(sw))
3676 return usb4_switch_query_dp_resource(sw, in);
3677 return tb_lc_dp_sink_query(sw, in);
3678 }
3679
3680 /**
3681 * tb_switch_alloc_dp_resource() - Allocate available DP resource
3682 * @sw: Switch whose DP resource is allocated
3683 * @in: DP IN port
3684 *
3685 * Allocates DP resource for DP tunneling. The resource must be
3686 * available for this to succeed (see tb_switch_query_dp_resource()).
3687 *
3688 * Return: %0 on success, negative errno otherwise.
3689 */
tb_switch_alloc_dp_resource(struct tb_switch * sw,struct tb_port * in)3690 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3691 {
3692 int ret;
3693
3694 if (tb_switch_is_usb4(sw))
3695 ret = usb4_switch_alloc_dp_resource(sw, in);
3696 else
3697 ret = tb_lc_dp_sink_alloc(sw, in);
3698
3699 if (ret)
3700 tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3701 in->port);
3702 else
3703 tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3704
3705 return ret;
3706 }
3707
3708 /**
3709 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3710 * @sw: Switch whose DP resource is de-allocated
3711 * @in: DP IN port
3712 *
3713 * De-allocates DP resource that was previously allocated for DP
3714 * tunneling.
3715 */
tb_switch_dealloc_dp_resource(struct tb_switch * sw,struct tb_port * in)3716 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3717 {
3718 int ret;
3719
3720 if (tb_switch_is_usb4(sw))
3721 ret = usb4_switch_dealloc_dp_resource(sw, in);
3722 else
3723 ret = tb_lc_dp_sink_dealloc(sw, in);
3724
3725 if (ret)
3726 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3727 in->port);
3728 else
3729 tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3730 }
3731
3732 struct tb_sw_lookup {
3733 struct tb *tb;
3734 u8 link;
3735 u8 depth;
3736 const uuid_t *uuid;
3737 u64 route;
3738 };
3739
tb_switch_match(struct device * dev,const void * data)3740 static int tb_switch_match(struct device *dev, const void *data)
3741 {
3742 struct tb_switch *sw = tb_to_switch(dev);
3743 const struct tb_sw_lookup *lookup = data;
3744
3745 if (!sw)
3746 return 0;
3747 if (sw->tb != lookup->tb)
3748 return 0;
3749
3750 if (lookup->uuid)
3751 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3752
3753 if (lookup->route) {
3754 return sw->config.route_lo == lower_32_bits(lookup->route) &&
3755 sw->config.route_hi == upper_32_bits(lookup->route);
3756 }
3757
3758 /* Root switch is matched only by depth */
3759 if (!lookup->depth)
3760 return !sw->depth;
3761
3762 return sw->link == lookup->link && sw->depth == lookup->depth;
3763 }
3764
3765 /**
3766 * tb_switch_find_by_link_depth() - Find switch by link and depth
3767 * @tb: Domain the switch belongs
3768 * @link: Link number the switch is connected
3769 * @depth: Depth of the switch in link
3770 *
3771 * Returned switch has reference count increased so the caller needs to
3772 * call tb_switch_put() when done with the switch.
3773 *
3774 * Return: Pointer to &struct tb_switch, %NULL if not found.
3775 */
tb_switch_find_by_link_depth(struct tb * tb,u8 link,u8 depth)3776 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3777 {
3778 struct tb_sw_lookup lookup;
3779 struct device *dev;
3780
3781 memset(&lookup, 0, sizeof(lookup));
3782 lookup.tb = tb;
3783 lookup.link = link;
3784 lookup.depth = depth;
3785
3786 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3787 if (dev)
3788 return tb_to_switch(dev);
3789
3790 return NULL;
3791 }
3792
3793 /**
3794 * tb_switch_find_by_uuid() - Find switch by UUID
3795 * @tb: Domain the switch belongs
3796 * @uuid: UUID to look for
3797 *
3798 * Returned switch has reference count increased so the caller needs to
3799 * call tb_switch_put() when done with the switch.
3800 *
3801 * Return: Pointer to &struct tb_switch, %NULL if not found.
3802 */
tb_switch_find_by_uuid(struct tb * tb,const uuid_t * uuid)3803 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3804 {
3805 struct tb_sw_lookup lookup;
3806 struct device *dev;
3807
3808 memset(&lookup, 0, sizeof(lookup));
3809 lookup.tb = tb;
3810 lookup.uuid = uuid;
3811
3812 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3813 if (dev)
3814 return tb_to_switch(dev);
3815
3816 return NULL;
3817 }
3818
3819 /**
3820 * tb_switch_find_by_route() - Find switch by route string
3821 * @tb: Domain the switch belongs
3822 * @route: Route string to look for
3823 *
3824 * Returned switch has reference count increased so the caller needs to
3825 * call tb_switch_put() when done with the switch.
3826 *
3827 * Return: Pointer to &struct tb_switch, %NULL if not found.
3828 */
tb_switch_find_by_route(struct tb * tb,u64 route)3829 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3830 {
3831 struct tb_sw_lookup lookup;
3832 struct device *dev;
3833
3834 if (!route)
3835 return tb_switch_get(tb->root_switch);
3836
3837 memset(&lookup, 0, sizeof(lookup));
3838 lookup.tb = tb;
3839 lookup.route = route;
3840
3841 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3842 if (dev)
3843 return tb_to_switch(dev);
3844
3845 return NULL;
3846 }
3847
3848 /**
3849 * tb_switch_find_port() - return the first port of @type on @sw or NULL
3850 * @sw: Switch to find the port from
3851 * @type: Port type to look for
3852 *
3853 * Return: Pointer to &struct tb_port, %NULL if not found.
3854 */
tb_switch_find_port(struct tb_switch * sw,enum tb_port_type type)3855 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3856 enum tb_port_type type)
3857 {
3858 struct tb_port *port;
3859
3860 tb_switch_for_each_port(sw, port) {
3861 if (port->config.type == type)
3862 return port;
3863 }
3864
3865 return NULL;
3866 }
3867
3868 /*
3869 * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3870 * device. For now used only for Titan Ridge.
3871 */
tb_switch_pcie_bridge_write(struct tb_switch * sw,unsigned int bridge,unsigned int pcie_offset,u32 value)3872 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3873 unsigned int pcie_offset, u32 value)
3874 {
3875 u32 offset, command, val;
3876 int ret;
3877
3878 if (sw->generation != 3)
3879 return -EOPNOTSUPP;
3880
3881 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3882 ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3883 if (ret)
3884 return ret;
3885
3886 command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3887 command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3888 command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3889 command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3890 << TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3891 command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3892
3893 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3894
3895 ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3896 if (ret)
3897 return ret;
3898
3899 ret = tb_switch_wait_for_bit(sw, offset,
3900 TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3901 if (ret)
3902 return ret;
3903
3904 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3905 if (ret)
3906 return ret;
3907
3908 if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3909 return -ETIMEDOUT;
3910
3911 return 0;
3912 }
3913
3914 /**
3915 * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3916 * @sw: Router to enable PCIe L1
3917 *
3918 * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3919 * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3920 * was configured. Due to Intel platforms limitation, shall be called only
3921 * for first hop switch.
3922 *
3923 * Return: %0 on success, negative errno otherwise.
3924 */
tb_switch_pcie_l1_enable(struct tb_switch * sw)3925 int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3926 {
3927 struct tb_switch *parent = tb_switch_parent(sw);
3928 int ret;
3929
3930 if (!tb_route(sw))
3931 return 0;
3932
3933 if (!tb_switch_is_titan_ridge(sw))
3934 return 0;
3935
3936 /* Enable PCIe L1 enable only for first hop router (depth = 1) */
3937 if (tb_route(parent))
3938 return 0;
3939
3940 /* Write to downstream PCIe bridge #5 aka Dn4 */
3941 ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3942 if (ret)
3943 return ret;
3944
3945 /* Write to Upstream PCIe bridge #0 aka Up0 */
3946 return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3947 }
3948
3949 /**
3950 * tb_switch_xhci_connect() - Connect internal xHCI
3951 * @sw: Router whose xHCI to connect
3952 *
3953 * Can be called to any router. For Alpine Ridge and Titan Ridge
3954 * performs special flows that bring the xHCI functional for any device
3955 * connected to the type-C port. Call only after PCIe tunnel has been
3956 * established. The function only does the connect if not done already
3957 * so can be called several times for the same router.
3958 *
3959 * Return: %0 on success, negative errno otherwise.
3960 */
tb_switch_xhci_connect(struct tb_switch * sw)3961 int tb_switch_xhci_connect(struct tb_switch *sw)
3962 {
3963 struct tb_port *port1, *port3;
3964 int ret;
3965
3966 if (sw->generation != 3)
3967 return 0;
3968
3969 port1 = &sw->ports[1];
3970 port3 = &sw->ports[3];
3971
3972 if (tb_switch_is_alpine_ridge(sw)) {
3973 bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3974
3975 usb_port1 = tb_lc_is_usb_plugged(port1);
3976 usb_port3 = tb_lc_is_usb_plugged(port3);
3977 xhci_port1 = tb_lc_is_xhci_connected(port1);
3978 xhci_port3 = tb_lc_is_xhci_connected(port3);
3979
3980 /* Figure out correct USB port to connect */
3981 if (usb_port1 && !xhci_port1) {
3982 ret = tb_lc_xhci_connect(port1);
3983 if (ret)
3984 return ret;
3985 }
3986 if (usb_port3 && !xhci_port3)
3987 return tb_lc_xhci_connect(port3);
3988 } else if (tb_switch_is_titan_ridge(sw)) {
3989 ret = tb_lc_xhci_connect(port1);
3990 if (ret)
3991 return ret;
3992 return tb_lc_xhci_connect(port3);
3993 }
3994
3995 return 0;
3996 }
3997
3998 /**
3999 * tb_switch_xhci_disconnect() - Disconnect internal xHCI
4000 * @sw: Router whose xHCI to disconnect
4001 *
4002 * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
4003 * ports.
4004 */
tb_switch_xhci_disconnect(struct tb_switch * sw)4005 void tb_switch_xhci_disconnect(struct tb_switch *sw)
4006 {
4007 if (sw->generation == 3) {
4008 struct tb_port *port1 = &sw->ports[1];
4009 struct tb_port *port3 = &sw->ports[3];
4010
4011 tb_lc_xhci_disconnect(port1);
4012 tb_port_dbg(port1, "disconnected xHCI\n");
4013 tb_lc_xhci_disconnect(port3);
4014 tb_port_dbg(port3, "disconnected xHCI\n");
4015 }
4016 }
4017