1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/sched/ext.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/kstack_erase.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 #include <linux/tick.h>
108 #include <linux/unwind_deferred.h>
109 #include <linux/pgalloc.h>
110 #include <linux/uaccess.h>
111
112 #include <asm/mmu_context.h>
113 #include <asm/cacheflush.h>
114 #include <asm/tlbflush.h>
115
116 /* For dup_mmap(). */
117 #include "../mm/internal.h"
118
119 #include <trace/events/sched.h>
120
121 #define CREATE_TRACE_POINTS
122 #include <trace/events/task.h>
123
124 #include <kunit/visibility.h>
125
126 /*
127 * Minimum number of threads to boot the kernel
128 */
129 #define MIN_THREADS 20
130
131 /*
132 * Maximum number of threads
133 */
134 #define MAX_THREADS FUTEX_TID_MASK
135
136 /*
137 * Protected counters by write_lock_irq(&tasklist_lock)
138 */
139 unsigned long total_forks; /* Handle normal Linux uptimes. */
140 int nr_threads; /* The idle threads do not count.. */
141
142 static int max_threads; /* tunable limit on nr_threads */
143
144 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
145
146 static const char * const resident_page_types[] = {
147 NAMED_ARRAY_INDEX(MM_FILEPAGES),
148 NAMED_ARRAY_INDEX(MM_ANONPAGES),
149 NAMED_ARRAY_INDEX(MM_SWAPENTS),
150 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
151 };
152
153 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
154
155 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
156
157 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)158 int lockdep_tasklist_lock_is_held(void)
159 {
160 return lockdep_is_held(&tasklist_lock);
161 }
162 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
163 #endif /* #ifdef CONFIG_PROVE_RCU */
164
nr_processes(void)165 int nr_processes(void)
166 {
167 int cpu;
168 int total = 0;
169
170 for_each_possible_cpu(cpu)
171 total += per_cpu(process_counts, cpu);
172
173 return total;
174 }
175
arch_release_task_struct(struct task_struct * tsk)176 void __weak arch_release_task_struct(struct task_struct *tsk)
177 {
178 }
179
180 static struct kmem_cache *task_struct_cachep;
181
alloc_task_struct_node(int node)182 static inline struct task_struct *alloc_task_struct_node(int node)
183 {
184 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
185 }
186
free_task_struct(struct task_struct * tsk)187 static inline void free_task_struct(struct task_struct *tsk)
188 {
189 kmem_cache_free(task_struct_cachep, tsk);
190 }
191
192 #ifdef CONFIG_VMAP_STACK
193 /*
194 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
195 * flush. Try to minimize the number of calls by caching stacks.
196 */
197 #define NR_CACHED_STACKS 2
198 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
199 /*
200 * Allocated stacks are cached and later reused by new threads, so memcg
201 * accounting is performed by the code assigning/releasing stacks to tasks.
202 * We need a zeroed memory without __GFP_ACCOUNT.
203 */
204 #define GFP_VMAP_STACK (GFP_KERNEL | __GFP_ZERO)
205
206 struct vm_stack {
207 struct rcu_head rcu;
208 struct vm_struct *stack_vm_area;
209 };
210
alloc_thread_stack_node_from_cache(struct task_struct * tsk,int node)211 static struct vm_struct *alloc_thread_stack_node_from_cache(struct task_struct *tsk, int node)
212 {
213 struct vm_struct *vm_area;
214 unsigned int i;
215
216 /*
217 * If the node has memory, we are guaranteed the stacks are backed by local pages.
218 * Otherwise the pages are arbitrary.
219 *
220 * Note that depending on cpuset it is possible we will get migrated to a different
221 * node immediately after allocating here, so this does *not* guarantee locality for
222 * arbitrary callers.
223 */
224 scoped_guard(preempt) {
225 if (node != NUMA_NO_NODE && numa_node_id() != node)
226 return NULL;
227
228 for (i = 0; i < NR_CACHED_STACKS; i++) {
229 vm_area = this_cpu_xchg(cached_stacks[i], NULL);
230 if (vm_area)
231 return vm_area;
232 }
233 }
234
235 return NULL;
236 }
237
try_release_thread_stack_to_cache(struct vm_struct * vm_area)238 static bool try_release_thread_stack_to_cache(struct vm_struct *vm_area)
239 {
240 unsigned int i;
241 int nid;
242
243 /*
244 * Don't cache stacks if any of the pages don't match the local domain, unless
245 * there is no local memory to begin with.
246 *
247 * Note that lack of local memory does not automatically mean it makes no difference
248 * performance-wise which other domain backs the stack. In this case we are merely
249 * trying to avoid constantly going to vmalloc.
250 */
251 scoped_guard(preempt) {
252 nid = numa_node_id();
253 if (node_state(nid, N_MEMORY)) {
254 for (i = 0; i < vm_area->nr_pages; i++) {
255 struct page *page = vm_area->pages[i];
256 if (page_to_nid(page) != nid)
257 return false;
258 }
259 }
260
261 for (i = 0; i < NR_CACHED_STACKS; i++) {
262 struct vm_struct *tmp = NULL;
263
264 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm_area))
265 return true;
266 }
267 }
268 return false;
269 }
270
thread_stack_free_rcu(struct rcu_head * rh)271 static void thread_stack_free_rcu(struct rcu_head *rh)
272 {
273 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
274 struct vm_struct *vm_area = vm_stack->stack_vm_area;
275
276 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
277 return;
278
279 vfree(vm_area->addr);
280 }
281
thread_stack_delayed_free(struct task_struct * tsk)282 static void thread_stack_delayed_free(struct task_struct *tsk)
283 {
284 struct vm_stack *vm_stack = tsk->stack;
285
286 vm_stack->stack_vm_area = tsk->stack_vm_area;
287 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
288 }
289
free_vm_stack_cache(unsigned int cpu)290 static int free_vm_stack_cache(unsigned int cpu)
291 {
292 struct vm_struct **cached_vm_stack_areas = per_cpu_ptr(cached_stacks, cpu);
293 int i;
294
295 for (i = 0; i < NR_CACHED_STACKS; i++) {
296 struct vm_struct *vm_area = cached_vm_stack_areas[i];
297
298 if (!vm_area)
299 continue;
300
301 vfree(vm_area->addr);
302 cached_vm_stack_areas[i] = NULL;
303 }
304
305 return 0;
306 }
307
memcg_charge_kernel_stack(struct vm_struct * vm_area)308 static int memcg_charge_kernel_stack(struct vm_struct *vm_area)
309 {
310 int i;
311 int ret;
312 int nr_charged = 0;
313
314 BUG_ON(vm_area->nr_pages != THREAD_SIZE / PAGE_SIZE);
315
316 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
317 ret = memcg_kmem_charge_page(vm_area->pages[i], GFP_KERNEL, 0);
318 if (ret)
319 goto err;
320 nr_charged++;
321 }
322 return 0;
323 err:
324 for (i = 0; i < nr_charged; i++)
325 memcg_kmem_uncharge_page(vm_area->pages[i], 0);
326 return ret;
327 }
328
alloc_thread_stack_node(struct task_struct * tsk,int node)329 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
330 {
331 struct vm_struct *vm_area;
332 void *stack;
333
334 vm_area = alloc_thread_stack_node_from_cache(tsk, node);
335 if (vm_area) {
336 if (memcg_charge_kernel_stack(vm_area)) {
337 vfree(vm_area->addr);
338 return -ENOMEM;
339 }
340
341 /* Reset stack metadata. */
342 kasan_unpoison_range(vm_area->addr, THREAD_SIZE);
343
344 stack = kasan_reset_tag(vm_area->addr);
345
346 /* Clear stale pointers from reused stack. */
347 memset(stack, 0, THREAD_SIZE);
348
349 tsk->stack_vm_area = vm_area;
350 tsk->stack = stack;
351 return 0;
352 }
353
354 stack = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN,
355 GFP_VMAP_STACK,
356 node, __builtin_return_address(0));
357 if (!stack)
358 return -ENOMEM;
359
360 vm_area = find_vm_area(stack);
361 if (memcg_charge_kernel_stack(vm_area)) {
362 vfree(stack);
363 return -ENOMEM;
364 }
365 /*
366 * We can't call find_vm_area() in interrupt context, and
367 * free_thread_stack() can be called in interrupt context,
368 * so cache the vm_struct.
369 */
370 tsk->stack_vm_area = vm_area;
371 stack = kasan_reset_tag(stack);
372 tsk->stack = stack;
373 return 0;
374 }
375
free_thread_stack(struct task_struct * tsk)376 static void free_thread_stack(struct task_struct *tsk)
377 {
378 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
379 thread_stack_delayed_free(tsk);
380
381 tsk->stack = NULL;
382 tsk->stack_vm_area = NULL;
383 }
384
385 #else /* !CONFIG_VMAP_STACK */
386
387 /*
388 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
389 * kmemcache based allocator.
390 */
391 #if THREAD_SIZE >= PAGE_SIZE
392
thread_stack_free_rcu(struct rcu_head * rh)393 static void thread_stack_free_rcu(struct rcu_head *rh)
394 {
395 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
396 }
397
thread_stack_delayed_free(struct task_struct * tsk)398 static void thread_stack_delayed_free(struct task_struct *tsk)
399 {
400 struct rcu_head *rh = tsk->stack;
401
402 call_rcu(rh, thread_stack_free_rcu);
403 }
404
alloc_thread_stack_node(struct task_struct * tsk,int node)405 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
406 {
407 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
408 THREAD_SIZE_ORDER);
409
410 if (likely(page)) {
411 tsk->stack = kasan_reset_tag(page_address(page));
412 return 0;
413 }
414 return -ENOMEM;
415 }
416
free_thread_stack(struct task_struct * tsk)417 static void free_thread_stack(struct task_struct *tsk)
418 {
419 thread_stack_delayed_free(tsk);
420 tsk->stack = NULL;
421 }
422
423 #else /* !(THREAD_SIZE >= PAGE_SIZE) */
424
425 static struct kmem_cache *thread_stack_cache;
426
thread_stack_free_rcu(struct rcu_head * rh)427 static void thread_stack_free_rcu(struct rcu_head *rh)
428 {
429 kmem_cache_free(thread_stack_cache, rh);
430 }
431
thread_stack_delayed_free(struct task_struct * tsk)432 static void thread_stack_delayed_free(struct task_struct *tsk)
433 {
434 struct rcu_head *rh = tsk->stack;
435
436 call_rcu(rh, thread_stack_free_rcu);
437 }
438
alloc_thread_stack_node(struct task_struct * tsk,int node)439 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
440 {
441 unsigned long *stack;
442 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
443 stack = kasan_reset_tag(stack);
444 tsk->stack = stack;
445 return stack ? 0 : -ENOMEM;
446 }
447
free_thread_stack(struct task_struct * tsk)448 static void free_thread_stack(struct task_struct *tsk)
449 {
450 thread_stack_delayed_free(tsk);
451 tsk->stack = NULL;
452 }
453
thread_stack_cache_init(void)454 void thread_stack_cache_init(void)
455 {
456 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
457 THREAD_SIZE, THREAD_SIZE, 0, 0,
458 THREAD_SIZE, NULL);
459 BUG_ON(thread_stack_cache == NULL);
460 }
461
462 #endif /* THREAD_SIZE >= PAGE_SIZE */
463 #endif /* CONFIG_VMAP_STACK */
464
465 /* SLAB cache for signal_struct structures (tsk->signal) */
466 static struct kmem_cache *signal_cachep;
467
468 /* SLAB cache for sighand_struct structures (tsk->sighand) */
469 struct kmem_cache *sighand_cachep;
470
471 /* SLAB cache for files_struct structures (tsk->files) */
472 struct kmem_cache *files_cachep;
473
474 /* SLAB cache for fs_struct structures (tsk->fs) */
475 struct kmem_cache *fs_cachep;
476
477 /* SLAB cache for mm_struct structures (tsk->mm) */
478 static struct kmem_cache *mm_cachep;
479
account_kernel_stack(struct task_struct * tsk,int account)480 static void account_kernel_stack(struct task_struct *tsk, int account)
481 {
482 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
483 struct vm_struct *vm_area = task_stack_vm_area(tsk);
484 int i;
485
486 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
487 mod_lruvec_page_state(vm_area->pages[i], NR_KERNEL_STACK_KB,
488 account * (PAGE_SIZE / 1024));
489 } else {
490 void *stack = task_stack_page(tsk);
491
492 /* All stack pages are in the same node. */
493 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
494 account * (THREAD_SIZE / 1024));
495 }
496 }
497
exit_task_stack_account(struct task_struct * tsk)498 void exit_task_stack_account(struct task_struct *tsk)
499 {
500 account_kernel_stack(tsk, -1);
501
502 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
503 struct vm_struct *vm_area;
504 int i;
505
506 vm_area = task_stack_vm_area(tsk);
507 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
508 memcg_kmem_uncharge_page(vm_area->pages[i], 0);
509 }
510 }
511
release_task_stack(struct task_struct * tsk)512 static void release_task_stack(struct task_struct *tsk)
513 {
514 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
515 return; /* Better to leak the stack than to free prematurely */
516
517 free_thread_stack(tsk);
518 }
519
520 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)521 void put_task_stack(struct task_struct *tsk)
522 {
523 if (refcount_dec_and_test(&tsk->stack_refcount))
524 release_task_stack(tsk);
525 }
526 #endif
527
free_task(struct task_struct * tsk)528 void free_task(struct task_struct *tsk)
529 {
530 #ifdef CONFIG_SECCOMP
531 WARN_ON_ONCE(tsk->seccomp.filter);
532 #endif
533 release_user_cpus_ptr(tsk);
534 scs_release(tsk);
535
536 #ifndef CONFIG_THREAD_INFO_IN_TASK
537 /*
538 * The task is finally done with both the stack and thread_info,
539 * so free both.
540 */
541 release_task_stack(tsk);
542 #else
543 /*
544 * If the task had a separate stack allocation, it should be gone
545 * by now.
546 */
547 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
548 #endif
549 rt_mutex_debug_task_free(tsk);
550 ftrace_graph_exit_task(tsk);
551 arch_release_task_struct(tsk);
552 if (tsk->flags & PF_KTHREAD)
553 free_kthread_struct(tsk);
554 bpf_task_storage_free(tsk);
555 free_task_struct(tsk);
556 }
557 EXPORT_SYMBOL(free_task);
558
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)559 void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
560 {
561 struct file *exe_file;
562
563 exe_file = get_mm_exe_file(oldmm);
564 RCU_INIT_POINTER(mm->exe_file, exe_file);
565 /*
566 * We depend on the oldmm having properly denied write access to the
567 * exe_file already.
568 */
569 if (exe_file && exe_file_deny_write_access(exe_file))
570 pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__);
571 }
572
573 #ifdef CONFIG_MMU
mm_alloc_pgd(struct mm_struct * mm)574 static inline int mm_alloc_pgd(struct mm_struct *mm)
575 {
576 mm->pgd = pgd_alloc(mm);
577 if (unlikely(!mm->pgd))
578 return -ENOMEM;
579 return 0;
580 }
581
mm_free_pgd(struct mm_struct * mm)582 static inline void mm_free_pgd(struct mm_struct *mm)
583 {
584 pgd_free(mm, mm->pgd);
585 }
586 #else
587 #define mm_alloc_pgd(mm) (0)
588 #define mm_free_pgd(mm)
589 #endif /* CONFIG_MMU */
590
591 #ifdef CONFIG_MM_ID
592 static DEFINE_IDA(mm_ida);
593
mm_alloc_id(struct mm_struct * mm)594 static inline int mm_alloc_id(struct mm_struct *mm)
595 {
596 int ret;
597
598 ret = ida_alloc_range(&mm_ida, MM_ID_MIN, MM_ID_MAX, GFP_KERNEL);
599 if (ret < 0)
600 return ret;
601 mm->mm_id = ret;
602 return 0;
603 }
604
mm_free_id(struct mm_struct * mm)605 static inline void mm_free_id(struct mm_struct *mm)
606 {
607 const mm_id_t id = mm->mm_id;
608
609 mm->mm_id = MM_ID_DUMMY;
610 if (id == MM_ID_DUMMY)
611 return;
612 if (WARN_ON_ONCE(id < MM_ID_MIN || id > MM_ID_MAX))
613 return;
614 ida_free(&mm_ida, id);
615 }
616 #else /* !CONFIG_MM_ID */
mm_alloc_id(struct mm_struct * mm)617 static inline int mm_alloc_id(struct mm_struct *mm) { return 0; }
mm_free_id(struct mm_struct * mm)618 static inline void mm_free_id(struct mm_struct *mm) {}
619 #endif /* CONFIG_MM_ID */
620
check_mm(struct mm_struct * mm)621 static void check_mm(struct mm_struct *mm)
622 {
623 int i;
624
625 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
626 "Please make sure 'struct resident_page_types[]' is updated as well");
627
628 for (i = 0; i < NR_MM_COUNTERS; i++) {
629 long x = percpu_counter_sum(&mm->rss_stat[i]);
630
631 if (unlikely(x)) {
632 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld Comm:%s Pid:%d\n",
633 mm, resident_page_types[i], x,
634 current->comm,
635 task_pid_nr(current));
636 }
637 }
638
639 if (mm_pgtables_bytes(mm))
640 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
641 mm_pgtables_bytes(mm));
642
643 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
644 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
645 #endif
646 }
647
648 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
649 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
650
do_check_lazy_tlb(void * arg)651 static void do_check_lazy_tlb(void *arg)
652 {
653 struct mm_struct *mm = arg;
654
655 WARN_ON_ONCE(current->active_mm == mm);
656 }
657
do_shoot_lazy_tlb(void * arg)658 static void do_shoot_lazy_tlb(void *arg)
659 {
660 struct mm_struct *mm = arg;
661
662 if (current->active_mm == mm) {
663 WARN_ON_ONCE(current->mm);
664 current->active_mm = &init_mm;
665 switch_mm(mm, &init_mm, current);
666 }
667 }
668
cleanup_lazy_tlbs(struct mm_struct * mm)669 static void cleanup_lazy_tlbs(struct mm_struct *mm)
670 {
671 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
672 /*
673 * In this case, lazy tlb mms are refounted and would not reach
674 * __mmdrop until all CPUs have switched away and mmdrop()ed.
675 */
676 return;
677 }
678
679 /*
680 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
681 * requires lazy mm users to switch to another mm when the refcount
682 * drops to zero, before the mm is freed. This requires IPIs here to
683 * switch kernel threads to init_mm.
684 *
685 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
686 * switch with the final userspace teardown TLB flush which leaves the
687 * mm lazy on this CPU but no others, reducing the need for additional
688 * IPIs here. There are cases where a final IPI is still required here,
689 * such as the final mmdrop being performed on a different CPU than the
690 * one exiting, or kernel threads using the mm when userspace exits.
691 *
692 * IPI overheads have not found to be expensive, but they could be
693 * reduced in a number of possible ways, for example (roughly
694 * increasing order of complexity):
695 * - The last lazy reference created by exit_mm() could instead switch
696 * to init_mm, however it's probable this will run on the same CPU
697 * immediately afterwards, so this may not reduce IPIs much.
698 * - A batch of mms requiring IPIs could be gathered and freed at once.
699 * - CPUs store active_mm where it can be remotely checked without a
700 * lock, to filter out false-positives in the cpumask.
701 * - After mm_users or mm_count reaches zero, switching away from the
702 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
703 * with some batching or delaying of the final IPIs.
704 * - A delayed freeing and RCU-like quiescing sequence based on mm
705 * switching to avoid IPIs completely.
706 */
707 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
708 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
709 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
710 }
711
712 /*
713 * Called when the last reference to the mm
714 * is dropped: either by a lazy thread or by
715 * mmput. Free the page directory and the mm.
716 */
__mmdrop(struct mm_struct * mm)717 void __mmdrop(struct mm_struct *mm)
718 {
719 BUG_ON(mm == &init_mm);
720 WARN_ON_ONCE(mm == current->mm);
721
722 /* Ensure no CPUs are using this as their lazy tlb mm */
723 cleanup_lazy_tlbs(mm);
724
725 WARN_ON_ONCE(mm == current->active_mm);
726 mm_free_pgd(mm);
727 mm_free_id(mm);
728 destroy_context(mm);
729 mmu_notifier_subscriptions_destroy(mm);
730 check_mm(mm);
731 put_user_ns(mm->user_ns);
732 mm_pasid_drop(mm);
733 mm_destroy_cid(mm);
734 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
735
736 free_mm(mm);
737 }
738 EXPORT_SYMBOL_GPL(__mmdrop);
739
mmdrop_async_fn(struct work_struct * work)740 static void mmdrop_async_fn(struct work_struct *work)
741 {
742 struct mm_struct *mm;
743
744 mm = container_of(work, struct mm_struct, async_put_work);
745 __mmdrop(mm);
746 }
747
mmdrop_async(struct mm_struct * mm)748 static void mmdrop_async(struct mm_struct *mm)
749 {
750 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
751 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
752 schedule_work(&mm->async_put_work);
753 }
754 }
755
free_signal_struct(struct signal_struct * sig)756 static inline void free_signal_struct(struct signal_struct *sig)
757 {
758 taskstats_tgid_free(sig);
759 sched_autogroup_exit(sig);
760 /*
761 * __mmdrop is not safe to call from softirq context on x86 due to
762 * pgd_dtor so postpone it to the async context
763 */
764 if (sig->oom_mm)
765 mmdrop_async(sig->oom_mm);
766 kmem_cache_free(signal_cachep, sig);
767 }
768
put_signal_struct(struct signal_struct * sig)769 static inline void put_signal_struct(struct signal_struct *sig)
770 {
771 if (refcount_dec_and_test(&sig->sigcnt))
772 free_signal_struct(sig);
773 }
774
__put_task_struct(struct task_struct * tsk)775 void __put_task_struct(struct task_struct *tsk)
776 {
777 WARN_ON(!tsk->exit_state);
778 WARN_ON(refcount_read(&tsk->usage));
779 WARN_ON(tsk == current);
780
781 unwind_task_free(tsk);
782 io_uring_free(tsk);
783 cgroup_task_free(tsk);
784 task_numa_free(tsk, true);
785 security_task_free(tsk);
786 exit_creds(tsk);
787 delayacct_tsk_free(tsk);
788 put_signal_struct(tsk->signal);
789 sched_core_free(tsk);
790 free_task(tsk);
791 }
792 EXPORT_SYMBOL_GPL(__put_task_struct);
793
__put_task_struct_rcu_cb(struct rcu_head * rhp)794 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
795 {
796 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
797
798 __put_task_struct(task);
799 }
800 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
801
arch_task_cache_init(void)802 void __init __weak arch_task_cache_init(void) { }
803
804 /*
805 * set_max_threads
806 */
set_max_threads(unsigned int max_threads_suggested)807 static void __init set_max_threads(unsigned int max_threads_suggested)
808 {
809 u64 threads;
810 unsigned long nr_pages = memblock_estimated_nr_free_pages();
811
812 /*
813 * The number of threads shall be limited such that the thread
814 * structures may only consume a small part of the available memory.
815 */
816 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
817 threads = MAX_THREADS;
818 else
819 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
820 (u64) THREAD_SIZE * 8UL);
821
822 if (threads > max_threads_suggested)
823 threads = max_threads_suggested;
824
825 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
826 }
827
828 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
829 /* Initialized by the architecture: */
830 int arch_task_struct_size __read_mostly;
831 #endif
832
task_struct_whitelist(unsigned long * offset,unsigned long * size)833 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
834 {
835 /* Fetch thread_struct whitelist for the architecture. */
836 arch_thread_struct_whitelist(offset, size);
837
838 /*
839 * Handle zero-sized whitelist or empty thread_struct, otherwise
840 * adjust offset to position of thread_struct in task_struct.
841 */
842 if (unlikely(*size == 0))
843 *offset = 0;
844 else
845 *offset += offsetof(struct task_struct, thread);
846 }
847
fork_init(void)848 void __init fork_init(void)
849 {
850 int i;
851 #ifndef ARCH_MIN_TASKALIGN
852 #define ARCH_MIN_TASKALIGN 0
853 #endif
854 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
855 unsigned long useroffset, usersize;
856
857 /* create a slab on which task_structs can be allocated */
858 task_struct_whitelist(&useroffset, &usersize);
859 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
860 arch_task_struct_size, align,
861 SLAB_PANIC|SLAB_ACCOUNT,
862 useroffset, usersize, NULL);
863
864 /* do the arch specific task caches init */
865 arch_task_cache_init();
866
867 set_max_threads(MAX_THREADS);
868
869 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
870 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
871 init_task.signal->rlim[RLIMIT_SIGPENDING] =
872 init_task.signal->rlim[RLIMIT_NPROC];
873
874 for (i = 0; i < UCOUNT_COUNTS; i++)
875 init_user_ns.ucount_max[i] = max_threads/2;
876
877 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
878 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
879 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
880 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
881
882 #ifdef CONFIG_VMAP_STACK
883 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
884 NULL, free_vm_stack_cache);
885 #endif
886
887 scs_init();
888
889 lockdep_init_task(&init_task);
890 uprobes_init();
891 }
892
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)893 int __weak arch_dup_task_struct(struct task_struct *dst,
894 struct task_struct *src)
895 {
896 *dst = *src;
897 return 0;
898 }
899
set_task_stack_end_magic(struct task_struct * tsk)900 void set_task_stack_end_magic(struct task_struct *tsk)
901 {
902 unsigned long *stackend;
903
904 stackend = end_of_stack(tsk);
905 *stackend = STACK_END_MAGIC; /* for overflow detection */
906 }
907
dup_task_struct(struct task_struct * orig,int node)908 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
909 {
910 struct task_struct *tsk;
911 int err;
912
913 if (node == NUMA_NO_NODE)
914 node = tsk_fork_get_node(orig);
915 tsk = alloc_task_struct_node(node);
916 if (!tsk)
917 return NULL;
918
919 err = arch_dup_task_struct(tsk, orig);
920 if (err)
921 goto free_tsk;
922
923 err = alloc_thread_stack_node(tsk, node);
924 if (err)
925 goto free_tsk;
926
927 #ifdef CONFIG_THREAD_INFO_IN_TASK
928 refcount_set(&tsk->stack_refcount, 1);
929 #endif
930 account_kernel_stack(tsk, 1);
931
932 err = scs_prepare(tsk, node);
933 if (err)
934 goto free_stack;
935
936 #ifdef CONFIG_SECCOMP
937 /*
938 * We must handle setting up seccomp filters once we're under
939 * the sighand lock in case orig has changed between now and
940 * then. Until then, filter must be NULL to avoid messing up
941 * the usage counts on the error path calling free_task.
942 */
943 tsk->seccomp.filter = NULL;
944 #endif
945
946 setup_thread_stack(tsk, orig);
947 clear_user_return_notifier(tsk);
948 clear_tsk_need_resched(tsk);
949 set_task_stack_end_magic(tsk);
950 clear_syscall_work_syscall_user_dispatch(tsk);
951
952 #ifdef CONFIG_STACKPROTECTOR
953 tsk->stack_canary = get_random_canary();
954 #endif
955 if (orig->cpus_ptr == &orig->cpus_mask)
956 tsk->cpus_ptr = &tsk->cpus_mask;
957 dup_user_cpus_ptr(tsk, orig, node);
958
959 /*
960 * One for the user space visible state that goes away when reaped.
961 * One for the scheduler.
962 */
963 refcount_set(&tsk->rcu_users, 2);
964 /* One for the rcu users */
965 refcount_set(&tsk->usage, 1);
966 #ifdef CONFIG_BLK_DEV_IO_TRACE
967 tsk->btrace_seq = 0;
968 #endif
969 tsk->splice_pipe = NULL;
970 tsk->task_frag.page = NULL;
971 tsk->wake_q.next = NULL;
972 tsk->worker_private = NULL;
973
974 kcov_task_init(tsk);
975 kmsan_task_create(tsk);
976 kmap_local_fork(tsk);
977
978 #ifdef CONFIG_FAULT_INJECTION
979 tsk->fail_nth = 0;
980 #endif
981
982 #ifdef CONFIG_BLK_CGROUP
983 tsk->throttle_disk = NULL;
984 tsk->use_memdelay = 0;
985 #endif
986
987 #ifdef CONFIG_ARCH_HAS_CPU_PASID
988 tsk->pasid_activated = 0;
989 #endif
990
991 #ifdef CONFIG_MEMCG
992 tsk->active_memcg = NULL;
993 #endif
994
995 #ifdef CONFIG_X86_BUS_LOCK_DETECT
996 tsk->reported_split_lock = 0;
997 #endif
998
999 #ifdef CONFIG_SCHED_MM_CID
1000 tsk->mm_cid.cid = MM_CID_UNSET;
1001 tsk->mm_cid.active = 0;
1002 #endif
1003 return tsk;
1004
1005 free_stack:
1006 exit_task_stack_account(tsk);
1007 free_thread_stack(tsk);
1008 free_tsk:
1009 free_task_struct(tsk);
1010 return NULL;
1011 }
1012
1013 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1014
1015 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1016
coredump_filter_setup(char * s)1017 static int __init coredump_filter_setup(char *s)
1018 {
1019 default_dump_filter =
1020 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1021 MMF_DUMP_FILTER_MASK;
1022 return 1;
1023 }
1024
1025 __setup("coredump_filter=", coredump_filter_setup);
1026
1027 #include <linux/init_task.h>
1028
mm_init_aio(struct mm_struct * mm)1029 static void mm_init_aio(struct mm_struct *mm)
1030 {
1031 #ifdef CONFIG_AIO
1032 spin_lock_init(&mm->ioctx_lock);
1033 mm->ioctx_table = NULL;
1034 #endif
1035 }
1036
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1037 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1038 struct task_struct *p)
1039 {
1040 #ifdef CONFIG_MEMCG
1041 if (mm->owner == p)
1042 WRITE_ONCE(mm->owner, NULL);
1043 #endif
1044 }
1045
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1046 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1047 {
1048 #ifdef CONFIG_MEMCG
1049 mm->owner = p;
1050 #endif
1051 }
1052
mm_init_uprobes_state(struct mm_struct * mm)1053 static void mm_init_uprobes_state(struct mm_struct *mm)
1054 {
1055 #ifdef CONFIG_UPROBES
1056 mm->uprobes_state.xol_area = NULL;
1057 arch_uprobe_init_state(mm);
1058 #endif
1059 }
1060
mmap_init_lock(struct mm_struct * mm)1061 static void mmap_init_lock(struct mm_struct *mm)
1062 {
1063 init_rwsem(&mm->mmap_lock);
1064 mm_lock_seqcount_init(mm);
1065 #ifdef CONFIG_PER_VMA_LOCK
1066 rcuwait_init(&mm->vma_writer_wait);
1067 #endif
1068 }
1069
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1070 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1071 struct user_namespace *user_ns)
1072 {
1073 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1074 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1075 atomic_set(&mm->mm_users, 1);
1076 atomic_set(&mm->mm_count, 1);
1077 seqcount_init(&mm->write_protect_seq);
1078 mmap_init_lock(mm);
1079 INIT_LIST_HEAD(&mm->mmlist);
1080 mm_pgtables_bytes_init(mm);
1081 mm->map_count = 0;
1082 mm->locked_vm = 0;
1083 atomic64_set(&mm->pinned_vm, 0);
1084 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1085 spin_lock_init(&mm->page_table_lock);
1086 spin_lock_init(&mm->arg_lock);
1087 mm_init_cpumask(mm);
1088 mm_init_aio(mm);
1089 mm_init_owner(mm, p);
1090 mm_pasid_init(mm);
1091 RCU_INIT_POINTER(mm->exe_file, NULL);
1092 mmu_notifier_subscriptions_init(mm);
1093 init_tlb_flush_pending(mm);
1094 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1095 mm->pmd_huge_pte = NULL;
1096 #endif
1097 mm_init_uprobes_state(mm);
1098 hugetlb_count_init(mm);
1099
1100 mm_flags_clear_all(mm);
1101 if (current->mm) {
1102 unsigned long flags = __mm_flags_get_word(current->mm);
1103
1104 __mm_flags_overwrite_word(mm, mmf_init_legacy_flags(flags));
1105 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1106 } else {
1107 __mm_flags_overwrite_word(mm, default_dump_filter);
1108 mm->def_flags = 0;
1109 }
1110
1111 if (futex_mm_init(mm))
1112 goto fail_mm_init;
1113
1114 if (mm_alloc_pgd(mm))
1115 goto fail_nopgd;
1116
1117 if (mm_alloc_id(mm))
1118 goto fail_noid;
1119
1120 if (init_new_context(p, mm))
1121 goto fail_nocontext;
1122
1123 if (mm_alloc_cid(mm, p))
1124 goto fail_cid;
1125
1126 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1127 NR_MM_COUNTERS))
1128 goto fail_pcpu;
1129
1130 mm->user_ns = get_user_ns(user_ns);
1131 lru_gen_init_mm(mm);
1132 return mm;
1133
1134 fail_pcpu:
1135 mm_destroy_cid(mm);
1136 fail_cid:
1137 destroy_context(mm);
1138 fail_nocontext:
1139 mm_free_id(mm);
1140 fail_noid:
1141 mm_free_pgd(mm);
1142 fail_nopgd:
1143 futex_hash_free(mm);
1144 fail_mm_init:
1145 free_mm(mm);
1146 return NULL;
1147 }
1148
1149 /*
1150 * Allocate and initialize an mm_struct.
1151 */
mm_alloc(void)1152 struct mm_struct *mm_alloc(void)
1153 {
1154 struct mm_struct *mm;
1155
1156 mm = allocate_mm();
1157 if (!mm)
1158 return NULL;
1159
1160 memset(mm, 0, sizeof(*mm));
1161 return mm_init(mm, current, current_user_ns());
1162 }
1163 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1164
__mmput(struct mm_struct * mm)1165 static inline void __mmput(struct mm_struct *mm)
1166 {
1167 VM_BUG_ON(atomic_read(&mm->mm_users));
1168
1169 uprobe_clear_state(mm);
1170 exit_aio(mm);
1171 ksm_exit(mm);
1172 khugepaged_exit(mm); /* must run before exit_mmap */
1173 exit_mmap(mm);
1174 mm_put_huge_zero_folio(mm);
1175 set_mm_exe_file(mm, NULL);
1176 if (!list_empty(&mm->mmlist)) {
1177 spin_lock(&mmlist_lock);
1178 list_del(&mm->mmlist);
1179 spin_unlock(&mmlist_lock);
1180 }
1181 if (mm->binfmt)
1182 module_put(mm->binfmt->module);
1183 lru_gen_del_mm(mm);
1184 futex_hash_free(mm);
1185 mmdrop(mm);
1186 }
1187
1188 /*
1189 * Decrement the use count and release all resources for an mm.
1190 */
mmput(struct mm_struct * mm)1191 void mmput(struct mm_struct *mm)
1192 {
1193 might_sleep();
1194
1195 if (atomic_dec_and_test(&mm->mm_users))
1196 __mmput(mm);
1197 }
1198 EXPORT_SYMBOL_GPL(mmput);
1199
1200 #if defined(CONFIG_MMU) || defined(CONFIG_FUTEX_PRIVATE_HASH)
mmput_async_fn(struct work_struct * work)1201 static void mmput_async_fn(struct work_struct *work)
1202 {
1203 struct mm_struct *mm = container_of(work, struct mm_struct,
1204 async_put_work);
1205
1206 __mmput(mm);
1207 }
1208
mmput_async(struct mm_struct * mm)1209 void mmput_async(struct mm_struct *mm)
1210 {
1211 if (atomic_dec_and_test(&mm->mm_users)) {
1212 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1213 schedule_work(&mm->async_put_work);
1214 }
1215 }
1216 EXPORT_SYMBOL_GPL(mmput_async);
1217 #endif
1218
1219 /**
1220 * set_mm_exe_file - change a reference to the mm's executable file
1221 * @mm: The mm to change.
1222 * @new_exe_file: The new file to use.
1223 *
1224 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1225 *
1226 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1227 * invocations: in mmput() nobody alive left, in execve it happens before
1228 * the new mm is made visible to anyone.
1229 *
1230 * Can only fail if new_exe_file != NULL.
1231 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1232 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1233 {
1234 struct file *old_exe_file;
1235
1236 /*
1237 * It is safe to dereference the exe_file without RCU as
1238 * this function is only called if nobody else can access
1239 * this mm -- see comment above for justification.
1240 */
1241 old_exe_file = rcu_dereference_raw(mm->exe_file);
1242
1243 if (new_exe_file) {
1244 /*
1245 * We expect the caller (i.e., sys_execve) to already denied
1246 * write access, so this is unlikely to fail.
1247 */
1248 if (unlikely(exe_file_deny_write_access(new_exe_file)))
1249 return -EACCES;
1250 get_file(new_exe_file);
1251 }
1252 rcu_assign_pointer(mm->exe_file, new_exe_file);
1253 if (old_exe_file) {
1254 exe_file_allow_write_access(old_exe_file);
1255 fput(old_exe_file);
1256 }
1257 return 0;
1258 }
1259
1260 /**
1261 * replace_mm_exe_file - replace a reference to the mm's executable file
1262 * @mm: The mm to change.
1263 * @new_exe_file: The new file to use.
1264 *
1265 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1266 *
1267 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1268 */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1269 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1270 {
1271 struct vm_area_struct *vma;
1272 struct file *old_exe_file;
1273 int ret = 0;
1274
1275 /* Forbid mm->exe_file change if old file still mapped. */
1276 old_exe_file = get_mm_exe_file(mm);
1277 if (old_exe_file) {
1278 VMA_ITERATOR(vmi, mm, 0);
1279 mmap_read_lock(mm);
1280 for_each_vma(vmi, vma) {
1281 if (!vma->vm_file)
1282 continue;
1283 if (path_equal(&vma->vm_file->f_path,
1284 &old_exe_file->f_path)) {
1285 ret = -EBUSY;
1286 break;
1287 }
1288 }
1289 mmap_read_unlock(mm);
1290 fput(old_exe_file);
1291 if (ret)
1292 return ret;
1293 }
1294
1295 ret = exe_file_deny_write_access(new_exe_file);
1296 if (ret)
1297 return -EACCES;
1298 get_file(new_exe_file);
1299
1300 /* set the new file */
1301 mmap_write_lock(mm);
1302 old_exe_file = rcu_dereference_raw(mm->exe_file);
1303 rcu_assign_pointer(mm->exe_file, new_exe_file);
1304 mmap_write_unlock(mm);
1305
1306 if (old_exe_file) {
1307 exe_file_allow_write_access(old_exe_file);
1308 fput(old_exe_file);
1309 }
1310 return 0;
1311 }
1312
1313 /**
1314 * get_mm_exe_file - acquire a reference to the mm's executable file
1315 * @mm: The mm of interest.
1316 *
1317 * Returns %NULL if mm has no associated executable file.
1318 * User must release file via fput().
1319 */
get_mm_exe_file(struct mm_struct * mm)1320 struct file *get_mm_exe_file(struct mm_struct *mm)
1321 {
1322 struct file *exe_file;
1323
1324 rcu_read_lock();
1325 exe_file = get_file_rcu(&mm->exe_file);
1326 rcu_read_unlock();
1327 return exe_file;
1328 }
1329
1330 /**
1331 * get_task_exe_file - acquire a reference to the task's executable file
1332 * @task: The task.
1333 *
1334 * Returns %NULL if task's mm (if any) has no associated executable file or
1335 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1336 * User must release file via fput().
1337 */
get_task_exe_file(struct task_struct * task)1338 struct file *get_task_exe_file(struct task_struct *task)
1339 {
1340 struct file *exe_file = NULL;
1341 struct mm_struct *mm;
1342
1343 if (task->flags & PF_KTHREAD)
1344 return NULL;
1345
1346 task_lock(task);
1347 mm = task->mm;
1348 if (mm)
1349 exe_file = get_mm_exe_file(mm);
1350 task_unlock(task);
1351 return exe_file;
1352 }
1353
1354 /**
1355 * get_task_mm - acquire a reference to the task's mm
1356 * @task: The task.
1357 *
1358 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1359 * this kernel workthread has transiently adopted a user mm with use_mm,
1360 * to do its AIO) is not set and if so returns a reference to it, after
1361 * bumping up the use count. User must release the mm via mmput()
1362 * after use. Typically used by /proc and ptrace.
1363 */
get_task_mm(struct task_struct * task)1364 struct mm_struct *get_task_mm(struct task_struct *task)
1365 {
1366 struct mm_struct *mm;
1367
1368 if (task->flags & PF_KTHREAD)
1369 return NULL;
1370
1371 task_lock(task);
1372 mm = task->mm;
1373 if (mm)
1374 mmget(mm);
1375 task_unlock(task);
1376 return mm;
1377 }
1378 EXPORT_SYMBOL_GPL(get_task_mm);
1379
may_access_mm(struct mm_struct * mm,struct task_struct * task,unsigned int mode)1380 static bool may_access_mm(struct mm_struct *mm, struct task_struct *task, unsigned int mode)
1381 {
1382 if (mm == current->mm)
1383 return true;
1384 if (ptrace_may_access(task, mode))
1385 return true;
1386 if ((mode & PTRACE_MODE_READ) && perfmon_capable())
1387 return true;
1388 return false;
1389 }
1390
mm_access(struct task_struct * task,unsigned int mode)1391 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1392 {
1393 struct mm_struct *mm;
1394 int err;
1395
1396 err = down_read_killable(&task->signal->exec_update_lock);
1397 if (err)
1398 return ERR_PTR(err);
1399
1400 mm = get_task_mm(task);
1401 if (!mm) {
1402 mm = ERR_PTR(-ESRCH);
1403 } else if (!may_access_mm(mm, task, mode)) {
1404 mmput(mm);
1405 mm = ERR_PTR(-EACCES);
1406 }
1407 up_read(&task->signal->exec_update_lock);
1408
1409 return mm;
1410 }
1411
complete_vfork_done(struct task_struct * tsk)1412 static void complete_vfork_done(struct task_struct *tsk)
1413 {
1414 struct completion *vfork;
1415
1416 task_lock(tsk);
1417 vfork = tsk->vfork_done;
1418 if (likely(vfork)) {
1419 tsk->vfork_done = NULL;
1420 complete(vfork);
1421 }
1422 task_unlock(tsk);
1423 }
1424
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1425 static int wait_for_vfork_done(struct task_struct *child,
1426 struct completion *vfork)
1427 {
1428 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1429 int killed;
1430
1431 cgroup_enter_frozen();
1432 killed = wait_for_completion_state(vfork, state);
1433 cgroup_leave_frozen(false);
1434
1435 if (killed) {
1436 task_lock(child);
1437 child->vfork_done = NULL;
1438 task_unlock(child);
1439 }
1440
1441 put_task_struct(child);
1442 return killed;
1443 }
1444
1445 /* Please note the differences between mmput and mm_release.
1446 * mmput is called whenever we stop holding onto a mm_struct,
1447 * error success whatever.
1448 *
1449 * mm_release is called after a mm_struct has been removed
1450 * from the current process.
1451 *
1452 * This difference is important for error handling, when we
1453 * only half set up a mm_struct for a new process and need to restore
1454 * the old one. Because we mmput the new mm_struct before
1455 * restoring the old one. . .
1456 * Eric Biederman 10 January 1998
1457 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1458 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1459 {
1460 uprobe_free_utask(tsk);
1461
1462 /* Get rid of any cached register state */
1463 deactivate_mm(tsk, mm);
1464
1465 /*
1466 * Signal userspace if we're not exiting with a core dump
1467 * because we want to leave the value intact for debugging
1468 * purposes.
1469 */
1470 if (tsk->clear_child_tid) {
1471 if (atomic_read(&mm->mm_users) > 1) {
1472 /*
1473 * We don't check the error code - if userspace has
1474 * not set up a proper pointer then tough luck.
1475 */
1476 put_user(0, tsk->clear_child_tid);
1477 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1478 1, NULL, NULL, 0, 0);
1479 }
1480 tsk->clear_child_tid = NULL;
1481 }
1482
1483 /*
1484 * All done, finally we can wake up parent and return this mm to him.
1485 * Also kthread_stop() uses this completion for synchronization.
1486 */
1487 if (tsk->vfork_done)
1488 complete_vfork_done(tsk);
1489 }
1490
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1491 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1492 {
1493 futex_exit_release(tsk);
1494 mm_release(tsk, mm);
1495 }
1496
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1497 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1498 {
1499 futex_exec_release(tsk);
1500 mm_release(tsk, mm);
1501 }
1502
1503 /**
1504 * dup_mm() - duplicates an existing mm structure
1505 * @tsk: the task_struct with which the new mm will be associated.
1506 * @oldmm: the mm to duplicate.
1507 *
1508 * Allocates a new mm structure and duplicates the provided @oldmm structure
1509 * content into it.
1510 *
1511 * Return: the duplicated mm or NULL on failure.
1512 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1513 static struct mm_struct *dup_mm(struct task_struct *tsk,
1514 struct mm_struct *oldmm)
1515 {
1516 struct mm_struct *mm;
1517 int err;
1518
1519 mm = allocate_mm();
1520 if (!mm)
1521 goto fail_nomem;
1522
1523 memcpy(mm, oldmm, sizeof(*mm));
1524
1525 if (!mm_init(mm, tsk, mm->user_ns))
1526 goto fail_nomem;
1527
1528 uprobe_start_dup_mmap();
1529 err = dup_mmap(mm, oldmm);
1530 if (err)
1531 goto free_pt;
1532 uprobe_end_dup_mmap();
1533
1534 mm->hiwater_rss = get_mm_rss(mm);
1535 mm->hiwater_vm = mm->total_vm;
1536
1537 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1538 goto free_pt;
1539
1540 return mm;
1541
1542 free_pt:
1543 /* don't put binfmt in mmput, we haven't got module yet */
1544 mm->binfmt = NULL;
1545 mm_init_owner(mm, NULL);
1546 mmput(mm);
1547 if (err)
1548 uprobe_end_dup_mmap();
1549
1550 fail_nomem:
1551 return NULL;
1552 }
1553
copy_mm(u64 clone_flags,struct task_struct * tsk)1554 static int copy_mm(u64 clone_flags, struct task_struct *tsk)
1555 {
1556 struct mm_struct *mm, *oldmm;
1557
1558 tsk->min_flt = tsk->maj_flt = 0;
1559 tsk->nvcsw = tsk->nivcsw = 0;
1560 #ifdef CONFIG_DETECT_HUNG_TASK
1561 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1562 tsk->last_switch_time = 0;
1563 #endif
1564
1565 tsk->mm = NULL;
1566 tsk->active_mm = NULL;
1567
1568 /*
1569 * Are we cloning a kernel thread?
1570 *
1571 * We need to steal a active VM for that..
1572 */
1573 oldmm = current->mm;
1574 if (!oldmm)
1575 return 0;
1576
1577 if (clone_flags & CLONE_VM) {
1578 mmget(oldmm);
1579 mm = oldmm;
1580 } else {
1581 mm = dup_mm(tsk, current->mm);
1582 if (!mm)
1583 return -ENOMEM;
1584 }
1585
1586 tsk->mm = mm;
1587 tsk->active_mm = mm;
1588 sched_mm_cid_fork(tsk);
1589 return 0;
1590 }
1591
copy_fs(u64 clone_flags,struct task_struct * tsk)1592 static int copy_fs(u64 clone_flags, struct task_struct *tsk)
1593 {
1594 struct fs_struct *fs = current->fs;
1595 if (clone_flags & CLONE_FS) {
1596 /* tsk->fs is already what we want */
1597 read_seqlock_excl(&fs->seq);
1598 /* "users" and "in_exec" locked for check_unsafe_exec() */
1599 if (fs->in_exec) {
1600 read_sequnlock_excl(&fs->seq);
1601 return -EAGAIN;
1602 }
1603 fs->users++;
1604 read_sequnlock_excl(&fs->seq);
1605 return 0;
1606 }
1607 tsk->fs = copy_fs_struct(fs);
1608 if (!tsk->fs)
1609 return -ENOMEM;
1610 return 0;
1611 }
1612
copy_files(u64 clone_flags,struct task_struct * tsk,int no_files)1613 static int copy_files(u64 clone_flags, struct task_struct *tsk,
1614 int no_files)
1615 {
1616 struct files_struct *oldf, *newf;
1617
1618 /*
1619 * A background process may not have any files ...
1620 */
1621 oldf = current->files;
1622 if (!oldf)
1623 return 0;
1624
1625 if (no_files) {
1626 tsk->files = NULL;
1627 return 0;
1628 }
1629
1630 if (clone_flags & CLONE_FILES) {
1631 atomic_inc(&oldf->count);
1632 return 0;
1633 }
1634
1635 newf = dup_fd(oldf, NULL);
1636 if (IS_ERR(newf))
1637 return PTR_ERR(newf);
1638
1639 tsk->files = newf;
1640 return 0;
1641 }
1642
copy_sighand(u64 clone_flags,struct task_struct * tsk)1643 static int copy_sighand(u64 clone_flags, struct task_struct *tsk)
1644 {
1645 struct sighand_struct *sig;
1646
1647 if (clone_flags & CLONE_SIGHAND) {
1648 refcount_inc(¤t->sighand->count);
1649 return 0;
1650 }
1651 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1652 RCU_INIT_POINTER(tsk->sighand, sig);
1653 if (!sig)
1654 return -ENOMEM;
1655
1656 refcount_set(&sig->count, 1);
1657 spin_lock_irq(¤t->sighand->siglock);
1658 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1659 spin_unlock_irq(¤t->sighand->siglock);
1660
1661 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1662 if (clone_flags & CLONE_CLEAR_SIGHAND)
1663 flush_signal_handlers(tsk, 0);
1664
1665 return 0;
1666 }
1667
__cleanup_sighand(struct sighand_struct * sighand)1668 void __cleanup_sighand(struct sighand_struct *sighand)
1669 {
1670 if (refcount_dec_and_test(&sighand->count)) {
1671 signalfd_cleanup(sighand);
1672 /*
1673 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1674 * without an RCU grace period, see __lock_task_sighand().
1675 */
1676 kmem_cache_free(sighand_cachep, sighand);
1677 }
1678 }
1679
1680 /*
1681 * Initialize POSIX timer handling for a thread group.
1682 */
posix_cpu_timers_init_group(struct signal_struct * sig)1683 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1684 {
1685 struct posix_cputimers *pct = &sig->posix_cputimers;
1686 unsigned long cpu_limit;
1687
1688 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1689 posix_cputimers_group_init(pct, cpu_limit);
1690 }
1691
copy_signal(u64 clone_flags,struct task_struct * tsk)1692 static int copy_signal(u64 clone_flags, struct task_struct *tsk)
1693 {
1694 struct signal_struct *sig;
1695
1696 if (clone_flags & CLONE_THREAD)
1697 return 0;
1698
1699 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1700 tsk->signal = sig;
1701 if (!sig)
1702 return -ENOMEM;
1703
1704 sig->nr_threads = 1;
1705 sig->quick_threads = 1;
1706 atomic_set(&sig->live, 1);
1707 refcount_set(&sig->sigcnt, 1);
1708
1709 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1710 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1711 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1712
1713 init_waitqueue_head(&sig->wait_chldexit);
1714 sig->curr_target = tsk;
1715 init_sigpending(&sig->shared_pending);
1716 INIT_HLIST_HEAD(&sig->multiprocess);
1717 seqlock_init(&sig->stats_lock);
1718 prev_cputime_init(&sig->prev_cputime);
1719
1720 #ifdef CONFIG_POSIX_TIMERS
1721 INIT_HLIST_HEAD(&sig->posix_timers);
1722 INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1723 hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1724 #endif
1725
1726 task_lock(current->group_leader);
1727 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1728 task_unlock(current->group_leader);
1729
1730 posix_cpu_timers_init_group(sig);
1731
1732 tty_audit_fork(sig);
1733 sched_autogroup_fork(sig);
1734
1735 #ifdef CONFIG_CGROUPS
1736 init_rwsem(&sig->cgroup_threadgroup_rwsem);
1737 #endif
1738
1739 sig->oom_score_adj = current->signal->oom_score_adj;
1740 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1741
1742 mutex_init(&sig->cred_guard_mutex);
1743 init_rwsem(&sig->exec_update_lock);
1744
1745 return 0;
1746 }
1747
copy_seccomp(struct task_struct * p)1748 static void copy_seccomp(struct task_struct *p)
1749 {
1750 #ifdef CONFIG_SECCOMP
1751 /*
1752 * Must be called with sighand->lock held, which is common to
1753 * all threads in the group. Holding cred_guard_mutex is not
1754 * needed because this new task is not yet running and cannot
1755 * be racing exec.
1756 */
1757 assert_spin_locked(¤t->sighand->siglock);
1758
1759 /* Ref-count the new filter user, and assign it. */
1760 get_seccomp_filter(current);
1761 p->seccomp = current->seccomp;
1762
1763 /*
1764 * Explicitly enable no_new_privs here in case it got set
1765 * between the task_struct being duplicated and holding the
1766 * sighand lock. The seccomp state and nnp must be in sync.
1767 */
1768 if (task_no_new_privs(current))
1769 task_set_no_new_privs(p);
1770
1771 /*
1772 * If the parent gained a seccomp mode after copying thread
1773 * flags and between before we held the sighand lock, we have
1774 * to manually enable the seccomp thread flag here.
1775 */
1776 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1777 set_task_syscall_work(p, SECCOMP);
1778 #endif
1779 }
1780
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1781 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1782 {
1783 current->clear_child_tid = tidptr;
1784
1785 return task_pid_vnr(current);
1786 }
1787
rt_mutex_init_task(struct task_struct * p)1788 static void rt_mutex_init_task(struct task_struct *p)
1789 {
1790 raw_spin_lock_init(&p->pi_lock);
1791 #ifdef CONFIG_RT_MUTEXES
1792 p->pi_waiters = RB_ROOT_CACHED;
1793 p->pi_top_task = NULL;
1794 p->pi_blocked_on = NULL;
1795 #endif
1796 }
1797
init_task_pid_links(struct task_struct * task)1798 static inline void init_task_pid_links(struct task_struct *task)
1799 {
1800 enum pid_type type;
1801
1802 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1803 INIT_HLIST_NODE(&task->pid_links[type]);
1804 }
1805
1806 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1807 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1808 {
1809 if (type == PIDTYPE_PID)
1810 task->thread_pid = pid;
1811 else
1812 task->signal->pids[type] = pid;
1813 }
1814
rcu_copy_process(struct task_struct * p)1815 static inline void rcu_copy_process(struct task_struct *p)
1816 {
1817 #ifdef CONFIG_PREEMPT_RCU
1818 p->rcu_read_lock_nesting = 0;
1819 p->rcu_read_unlock_special.s = 0;
1820 p->rcu_blocked_node = NULL;
1821 INIT_LIST_HEAD(&p->rcu_node_entry);
1822 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1823 #ifdef CONFIG_TASKS_RCU
1824 p->rcu_tasks_holdout = false;
1825 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1826 p->rcu_tasks_idle_cpu = -1;
1827 INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1828 #endif /* #ifdef CONFIG_TASKS_RCU */
1829 #ifdef CONFIG_TASKS_TRACE_RCU
1830 p->trc_reader_nesting = 0;
1831 p->trc_reader_special.s = 0;
1832 INIT_LIST_HEAD(&p->trc_holdout_list);
1833 INIT_LIST_HEAD(&p->trc_blkd_node);
1834 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1835 }
1836
1837 /**
1838 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1839 * @pid: the struct pid for which to create a pidfd
1840 * @flags: flags of the new @pidfd
1841 * @ret_file: return the new pidfs file
1842 *
1843 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1844 * caller's file descriptor table. The pidfd is reserved but not installed yet.
1845 *
1846 * The helper verifies that @pid is still in use, without PIDFD_THREAD the
1847 * task identified by @pid must be a thread-group leader.
1848 *
1849 * If this function returns successfully the caller is responsible to either
1850 * call fd_install() passing the returned pidfd and pidfd file as arguments in
1851 * order to install the pidfd into its file descriptor table or they must use
1852 * put_unused_fd() and fput() on the returned pidfd and pidfd file
1853 * respectively.
1854 *
1855 * This function is useful when a pidfd must already be reserved but there
1856 * might still be points of failure afterwards and the caller wants to ensure
1857 * that no pidfd is leaked into its file descriptor table.
1858 *
1859 * Return: On success, a reserved pidfd is returned from the function and a new
1860 * pidfd file is returned in the last argument to the function. On
1861 * error, a negative error code is returned from the function and the
1862 * last argument remains unchanged.
1863 */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret_file)1864 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret_file)
1865 {
1866 struct file *pidfs_file;
1867
1868 /*
1869 * PIDFD_STALE is only allowed to be passed if the caller knows
1870 * that @pid is already registered in pidfs and thus
1871 * PIDFD_INFO_EXIT information is guaranteed to be available.
1872 */
1873 if (!(flags & PIDFD_STALE)) {
1874 /*
1875 * While holding the pidfd waitqueue lock removing the
1876 * task linkage for the thread-group leader pid
1877 * (PIDTYPE_TGID) isn't possible. Thus, if there's still
1878 * task linkage for PIDTYPE_PID not having thread-group
1879 * leader linkage for the pid means it wasn't a
1880 * thread-group leader in the first place.
1881 */
1882 guard(spinlock_irq)(&pid->wait_pidfd.lock);
1883
1884 /* Task has already been reaped. */
1885 if (!pid_has_task(pid, PIDTYPE_PID))
1886 return -ESRCH;
1887 /*
1888 * If this struct pid isn't used as a thread-group
1889 * leader but the caller requested to create a
1890 * thread-group leader pidfd then report ENOENT.
1891 */
1892 if (!(flags & PIDFD_THREAD) && !pid_has_task(pid, PIDTYPE_TGID))
1893 return -ENOENT;
1894 }
1895
1896 CLASS(get_unused_fd, pidfd)(O_CLOEXEC);
1897 if (pidfd < 0)
1898 return pidfd;
1899
1900 pidfs_file = pidfs_alloc_file(pid, flags | O_RDWR);
1901 if (IS_ERR(pidfs_file))
1902 return PTR_ERR(pidfs_file);
1903
1904 *ret_file = pidfs_file;
1905 return take_fd(pidfd);
1906 }
1907
__delayed_free_task(struct rcu_head * rhp)1908 static void __delayed_free_task(struct rcu_head *rhp)
1909 {
1910 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1911
1912 free_task(tsk);
1913 }
1914
delayed_free_task(struct task_struct * tsk)1915 static __always_inline void delayed_free_task(struct task_struct *tsk)
1916 {
1917 if (IS_ENABLED(CONFIG_MEMCG))
1918 call_rcu(&tsk->rcu, __delayed_free_task);
1919 else
1920 free_task(tsk);
1921 }
1922
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1923 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1924 {
1925 /* Skip if kernel thread */
1926 if (!tsk->mm)
1927 return;
1928
1929 /* Skip if spawning a thread or using vfork */
1930 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1931 return;
1932
1933 /* We need to synchronize with __set_oom_adj */
1934 mutex_lock(&oom_adj_mutex);
1935 mm_flags_set(MMF_MULTIPROCESS, tsk->mm);
1936 /* Update the values in case they were changed after copy_signal */
1937 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1938 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1939 mutex_unlock(&oom_adj_mutex);
1940 }
1941
1942 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)1943 static void rv_task_fork(struct task_struct *p)
1944 {
1945 memset(&p->rv, 0, sizeof(p->rv));
1946 }
1947 #else
1948 #define rv_task_fork(p) do {} while (0)
1949 #endif
1950
need_futex_hash_allocate_default(u64 clone_flags)1951 static bool need_futex_hash_allocate_default(u64 clone_flags)
1952 {
1953 if ((clone_flags & (CLONE_THREAD | CLONE_VM)) != (CLONE_THREAD | CLONE_VM))
1954 return false;
1955 return true;
1956 }
1957
1958 /*
1959 * This creates a new process as a copy of the old one,
1960 * but does not actually start it yet.
1961 *
1962 * It copies the registers, and all the appropriate
1963 * parts of the process environment (as per the clone
1964 * flags). The actual kick-off is left to the caller.
1965 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1966 __latent_entropy struct task_struct *copy_process(
1967 struct pid *pid,
1968 int trace,
1969 int node,
1970 struct kernel_clone_args *args)
1971 {
1972 int pidfd = -1, retval;
1973 struct task_struct *p;
1974 struct multiprocess_signals delayed;
1975 struct file *pidfile = NULL;
1976 const u64 clone_flags = args->flags;
1977 struct nsproxy *nsp = current->nsproxy;
1978
1979 /*
1980 * Don't allow sharing the root directory with processes in a different
1981 * namespace
1982 */
1983 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1984 return ERR_PTR(-EINVAL);
1985
1986 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1987 return ERR_PTR(-EINVAL);
1988
1989 /*
1990 * Thread groups must share signals as well, and detached threads
1991 * can only be started up within the thread group.
1992 */
1993 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1994 return ERR_PTR(-EINVAL);
1995
1996 /*
1997 * Shared signal handlers imply shared VM. By way of the above,
1998 * thread groups also imply shared VM. Blocking this case allows
1999 * for various simplifications in other code.
2000 */
2001 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2002 return ERR_PTR(-EINVAL);
2003
2004 /*
2005 * Siblings of global init remain as zombies on exit since they are
2006 * not reaped by their parent (swapper). To solve this and to avoid
2007 * multi-rooted process trees, prevent global and container-inits
2008 * from creating siblings.
2009 */
2010 if ((clone_flags & CLONE_PARENT) &&
2011 current->signal->flags & SIGNAL_UNKILLABLE)
2012 return ERR_PTR(-EINVAL);
2013
2014 /*
2015 * If the new process will be in a different pid or user namespace
2016 * do not allow it to share a thread group with the forking task.
2017 */
2018 if (clone_flags & CLONE_THREAD) {
2019 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2020 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2021 return ERR_PTR(-EINVAL);
2022 }
2023
2024 if (clone_flags & CLONE_PIDFD) {
2025 /*
2026 * - CLONE_DETACHED is blocked so that we can potentially
2027 * reuse it later for CLONE_PIDFD.
2028 */
2029 if (clone_flags & CLONE_DETACHED)
2030 return ERR_PTR(-EINVAL);
2031 }
2032
2033 /*
2034 * Force any signals received before this point to be delivered
2035 * before the fork happens. Collect up signals sent to multiple
2036 * processes that happen during the fork and delay them so that
2037 * they appear to happen after the fork.
2038 */
2039 sigemptyset(&delayed.signal);
2040 INIT_HLIST_NODE(&delayed.node);
2041
2042 spin_lock_irq(¤t->sighand->siglock);
2043 if (!(clone_flags & CLONE_THREAD))
2044 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
2045 recalc_sigpending();
2046 spin_unlock_irq(¤t->sighand->siglock);
2047 retval = -ERESTARTNOINTR;
2048 if (task_sigpending(current))
2049 goto fork_out;
2050
2051 retval = -ENOMEM;
2052 p = dup_task_struct(current, node);
2053 if (!p)
2054 goto fork_out;
2055 p->flags &= ~PF_KTHREAD;
2056 if (args->kthread)
2057 p->flags |= PF_KTHREAD;
2058 if (args->user_worker) {
2059 /*
2060 * Mark us a user worker, and block any signal that isn't
2061 * fatal or STOP
2062 */
2063 p->flags |= PF_USER_WORKER;
2064 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2065 }
2066 if (args->io_thread)
2067 p->flags |= PF_IO_WORKER;
2068
2069 if (args->name)
2070 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2071
2072 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2073 /*
2074 * Clear TID on mm_release()?
2075 */
2076 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2077
2078 ftrace_graph_init_task(p);
2079
2080 rt_mutex_init_task(p);
2081
2082 lockdep_assert_irqs_enabled();
2083 #ifdef CONFIG_PROVE_LOCKING
2084 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2085 #endif
2086 retval = copy_creds(p, clone_flags);
2087 if (retval < 0)
2088 goto bad_fork_free;
2089
2090 retval = -EAGAIN;
2091 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2092 if (p->real_cred->user != INIT_USER &&
2093 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2094 goto bad_fork_cleanup_count;
2095 }
2096 current->flags &= ~PF_NPROC_EXCEEDED;
2097
2098 /*
2099 * If multiple threads are within copy_process(), then this check
2100 * triggers too late. This doesn't hurt, the check is only there
2101 * to stop root fork bombs.
2102 */
2103 retval = -EAGAIN;
2104 if (data_race(nr_threads >= max_threads))
2105 goto bad_fork_cleanup_count;
2106
2107 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2108 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2109 p->flags |= PF_FORKNOEXEC;
2110 INIT_LIST_HEAD(&p->children);
2111 INIT_LIST_HEAD(&p->sibling);
2112 rcu_copy_process(p);
2113 p->vfork_done = NULL;
2114 spin_lock_init(&p->alloc_lock);
2115
2116 init_sigpending(&p->pending);
2117
2118 p->utime = p->stime = p->gtime = 0;
2119 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2120 p->utimescaled = p->stimescaled = 0;
2121 #endif
2122 prev_cputime_init(&p->prev_cputime);
2123
2124 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2125 seqcount_init(&p->vtime.seqcount);
2126 p->vtime.starttime = 0;
2127 p->vtime.state = VTIME_INACTIVE;
2128 #endif
2129
2130 #ifdef CONFIG_IO_URING
2131 p->io_uring = NULL;
2132 #endif
2133
2134 p->default_timer_slack_ns = current->timer_slack_ns;
2135
2136 #ifdef CONFIG_PSI
2137 p->psi_flags = 0;
2138 #endif
2139
2140 task_io_accounting_init(&p->ioac);
2141 acct_clear_integrals(p);
2142
2143 posix_cputimers_init(&p->posix_cputimers);
2144 tick_dep_init_task(p);
2145
2146 p->io_context = NULL;
2147 audit_set_context(p, NULL);
2148 cgroup_fork(p);
2149 if (args->kthread) {
2150 if (!set_kthread_struct(p))
2151 goto bad_fork_cleanup_delayacct;
2152 }
2153 #ifdef CONFIG_NUMA
2154 p->mempolicy = mpol_dup(p->mempolicy);
2155 if (IS_ERR(p->mempolicy)) {
2156 retval = PTR_ERR(p->mempolicy);
2157 p->mempolicy = NULL;
2158 goto bad_fork_cleanup_delayacct;
2159 }
2160 #endif
2161 #ifdef CONFIG_CPUSETS
2162 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2163 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2164 #endif
2165 #ifdef CONFIG_TRACE_IRQFLAGS
2166 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2167 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2168 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2169 p->softirqs_enabled = 1;
2170 p->softirq_context = 0;
2171 #endif
2172
2173 p->pagefault_disabled = 0;
2174
2175 lockdep_init_task(p);
2176
2177 p->blocked_on = NULL; /* not blocked yet */
2178
2179 #ifdef CONFIG_BCACHE
2180 p->sequential_io = 0;
2181 p->sequential_io_avg = 0;
2182 #endif
2183 #ifdef CONFIG_BPF_SYSCALL
2184 RCU_INIT_POINTER(p->bpf_storage, NULL);
2185 p->bpf_ctx = NULL;
2186 #endif
2187
2188 unwind_task_init(p);
2189
2190 /* Perform scheduler related setup. Assign this task to a CPU. */
2191 retval = sched_fork(clone_flags, p);
2192 if (retval)
2193 goto bad_fork_cleanup_policy;
2194
2195 retval = perf_event_init_task(p, clone_flags);
2196 if (retval)
2197 goto bad_fork_sched_cancel_fork;
2198 retval = audit_alloc(p);
2199 if (retval)
2200 goto bad_fork_cleanup_perf;
2201 /* copy all the process information */
2202 shm_init_task(p);
2203 retval = security_task_alloc(p, clone_flags);
2204 if (retval)
2205 goto bad_fork_cleanup_audit;
2206 retval = copy_semundo(clone_flags, p);
2207 if (retval)
2208 goto bad_fork_cleanup_security;
2209 retval = copy_files(clone_flags, p, args->no_files);
2210 if (retval)
2211 goto bad_fork_cleanup_semundo;
2212 retval = copy_fs(clone_flags, p);
2213 if (retval)
2214 goto bad_fork_cleanup_files;
2215 retval = copy_sighand(clone_flags, p);
2216 if (retval)
2217 goto bad_fork_cleanup_fs;
2218 retval = copy_signal(clone_flags, p);
2219 if (retval)
2220 goto bad_fork_cleanup_sighand;
2221 retval = copy_mm(clone_flags, p);
2222 if (retval)
2223 goto bad_fork_cleanup_signal;
2224 retval = copy_namespaces(clone_flags, p);
2225 if (retval)
2226 goto bad_fork_cleanup_mm;
2227 retval = copy_io(clone_flags, p);
2228 if (retval)
2229 goto bad_fork_cleanup_namespaces;
2230 retval = copy_thread(p, args);
2231 if (retval)
2232 goto bad_fork_cleanup_io;
2233
2234 stackleak_task_init(p);
2235
2236 if (pid != &init_struct_pid) {
2237 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2238 args->set_tid_size);
2239 if (IS_ERR(pid)) {
2240 retval = PTR_ERR(pid);
2241 goto bad_fork_cleanup_thread;
2242 }
2243 }
2244
2245 /*
2246 * This has to happen after we've potentially unshared the file
2247 * descriptor table (so that the pidfd doesn't leak into the child
2248 * if the fd table isn't shared).
2249 */
2250 if (clone_flags & CLONE_PIDFD) {
2251 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2252
2253 /*
2254 * Note that no task has been attached to @pid yet indicate
2255 * that via CLONE_PIDFD.
2256 */
2257 retval = pidfd_prepare(pid, flags | PIDFD_STALE, &pidfile);
2258 if (retval < 0)
2259 goto bad_fork_free_pid;
2260 pidfd = retval;
2261
2262 retval = put_user(pidfd, args->pidfd);
2263 if (retval)
2264 goto bad_fork_put_pidfd;
2265 }
2266
2267 #ifdef CONFIG_BLOCK
2268 p->plug = NULL;
2269 #endif
2270 futex_init_task(p);
2271
2272 /*
2273 * sigaltstack should be cleared when sharing the same VM
2274 */
2275 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2276 sas_ss_reset(p);
2277
2278 /*
2279 * Syscall tracing and stepping should be turned off in the
2280 * child regardless of CLONE_PTRACE.
2281 */
2282 user_disable_single_step(p);
2283 clear_task_syscall_work(p, SYSCALL_TRACE);
2284 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2285 clear_task_syscall_work(p, SYSCALL_EMU);
2286 #endif
2287 clear_tsk_latency_tracing(p);
2288
2289 /* ok, now we should be set up.. */
2290 p->pid = pid_nr(pid);
2291 if (clone_flags & CLONE_THREAD) {
2292 p->group_leader = current->group_leader;
2293 p->tgid = current->tgid;
2294 } else {
2295 p->group_leader = p;
2296 p->tgid = p->pid;
2297 }
2298
2299 p->nr_dirtied = 0;
2300 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2301 p->dirty_paused_when = 0;
2302
2303 p->pdeath_signal = 0;
2304 p->task_works = NULL;
2305 clear_posix_cputimers_work(p);
2306
2307 #ifdef CONFIG_KRETPROBES
2308 p->kretprobe_instances.first = NULL;
2309 #endif
2310 #ifdef CONFIG_RETHOOK
2311 p->rethooks.first = NULL;
2312 #endif
2313
2314 /*
2315 * Ensure that the cgroup subsystem policies allow the new process to be
2316 * forked. It should be noted that the new process's css_set can be changed
2317 * between here and cgroup_post_fork() if an organisation operation is in
2318 * progress.
2319 */
2320 retval = cgroup_can_fork(p, args);
2321 if (retval)
2322 goto bad_fork_put_pidfd;
2323
2324 /*
2325 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2326 * the new task on the correct runqueue. All this *before* the task
2327 * becomes visible.
2328 *
2329 * This isn't part of ->can_fork() because while the re-cloning is
2330 * cgroup specific, it unconditionally needs to place the task on a
2331 * runqueue.
2332 */
2333 retval = sched_cgroup_fork(p, args);
2334 if (retval)
2335 goto bad_fork_cancel_cgroup;
2336
2337 /*
2338 * Allocate a default futex hash for the user process once the first
2339 * thread spawns.
2340 */
2341 if (need_futex_hash_allocate_default(clone_flags)) {
2342 retval = futex_hash_allocate_default();
2343 if (retval)
2344 goto bad_fork_cancel_cgroup;
2345 /*
2346 * If we fail beyond this point we don't free the allocated
2347 * futex hash map. We assume that another thread will be created
2348 * and makes use of it. The hash map will be freed once the main
2349 * thread terminates.
2350 */
2351 }
2352 /*
2353 * From this point on we must avoid any synchronous user-space
2354 * communication until we take the tasklist-lock. In particular, we do
2355 * not want user-space to be able to predict the process start-time by
2356 * stalling fork(2) after we recorded the start_time but before it is
2357 * visible to the system.
2358 */
2359
2360 p->start_time = ktime_get_ns();
2361 p->start_boottime = ktime_get_boottime_ns();
2362
2363 /*
2364 * Make it visible to the rest of the system, but dont wake it up yet.
2365 * Need tasklist lock for parent etc handling!
2366 */
2367 write_lock_irq(&tasklist_lock);
2368
2369 /* CLONE_PARENT re-uses the old parent */
2370 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2371 p->real_parent = current->real_parent;
2372 p->parent_exec_id = current->parent_exec_id;
2373 if (clone_flags & CLONE_THREAD)
2374 p->exit_signal = -1;
2375 else
2376 p->exit_signal = current->group_leader->exit_signal;
2377 } else {
2378 p->real_parent = current;
2379 p->parent_exec_id = current->self_exec_id;
2380 p->exit_signal = args->exit_signal;
2381 }
2382
2383 klp_copy_process(p);
2384
2385 sched_core_fork(p);
2386
2387 spin_lock(¤t->sighand->siglock);
2388
2389 rv_task_fork(p);
2390
2391 rseq_fork(p, clone_flags);
2392
2393 /* Don't start children in a dying pid namespace */
2394 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2395 retval = -ENOMEM;
2396 goto bad_fork_core_free;
2397 }
2398
2399 /* Let kill terminate clone/fork in the middle */
2400 if (fatal_signal_pending(current)) {
2401 retval = -EINTR;
2402 goto bad_fork_core_free;
2403 }
2404
2405 /* No more failure paths after this point. */
2406
2407 /*
2408 * Copy seccomp details explicitly here, in case they were changed
2409 * before holding sighand lock.
2410 */
2411 copy_seccomp(p);
2412
2413 init_task_pid_links(p);
2414 if (likely(p->pid)) {
2415 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2416
2417 init_task_pid(p, PIDTYPE_PID, pid);
2418 if (thread_group_leader(p)) {
2419 init_task_pid(p, PIDTYPE_TGID, pid);
2420 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2421 init_task_pid(p, PIDTYPE_SID, task_session(current));
2422
2423 if (is_child_reaper(pid)) {
2424 ns_of_pid(pid)->child_reaper = p;
2425 p->signal->flags |= SIGNAL_UNKILLABLE;
2426 }
2427 p->signal->shared_pending.signal = delayed.signal;
2428 p->signal->tty = tty_kref_get(current->signal->tty);
2429 /*
2430 * Inherit has_child_subreaper flag under the same
2431 * tasklist_lock with adding child to the process tree
2432 * for propagate_has_child_subreaper optimization.
2433 */
2434 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2435 p->real_parent->signal->is_child_subreaper;
2436 list_add_tail(&p->sibling, &p->real_parent->children);
2437 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2438 attach_pid(p, PIDTYPE_TGID);
2439 attach_pid(p, PIDTYPE_PGID);
2440 attach_pid(p, PIDTYPE_SID);
2441 __this_cpu_inc(process_counts);
2442 } else {
2443 current->signal->nr_threads++;
2444 current->signal->quick_threads++;
2445 atomic_inc(¤t->signal->live);
2446 refcount_inc(¤t->signal->sigcnt);
2447 task_join_group_stop(p);
2448 list_add_tail_rcu(&p->thread_node,
2449 &p->signal->thread_head);
2450 }
2451 attach_pid(p, PIDTYPE_PID);
2452 nr_threads++;
2453 }
2454 total_forks++;
2455 hlist_del_init(&delayed.node);
2456 spin_unlock(¤t->sighand->siglock);
2457 syscall_tracepoint_update(p);
2458 write_unlock_irq(&tasklist_lock);
2459
2460 if (pidfile)
2461 fd_install(pidfd, pidfile);
2462
2463 proc_fork_connector(p);
2464 sched_post_fork(p);
2465 cgroup_post_fork(p, args);
2466 perf_event_fork(p);
2467
2468 trace_task_newtask(p, clone_flags);
2469 uprobe_copy_process(p, clone_flags);
2470 user_events_fork(p, clone_flags);
2471
2472 copy_oom_score_adj(clone_flags, p);
2473
2474 return p;
2475
2476 bad_fork_core_free:
2477 sched_core_free(p);
2478 spin_unlock(¤t->sighand->siglock);
2479 write_unlock_irq(&tasklist_lock);
2480 bad_fork_cancel_cgroup:
2481 cgroup_cancel_fork(p, args);
2482 bad_fork_put_pidfd:
2483 if (clone_flags & CLONE_PIDFD) {
2484 fput(pidfile);
2485 put_unused_fd(pidfd);
2486 }
2487 bad_fork_free_pid:
2488 if (pid != &init_struct_pid)
2489 free_pid(pid);
2490 bad_fork_cleanup_thread:
2491 exit_thread(p);
2492 bad_fork_cleanup_io:
2493 if (p->io_context)
2494 exit_io_context(p);
2495 bad_fork_cleanup_namespaces:
2496 exit_nsproxy_namespaces(p);
2497 bad_fork_cleanup_mm:
2498 if (p->mm) {
2499 sched_mm_cid_exit(p);
2500 mm_clear_owner(p->mm, p);
2501 mmput(p->mm);
2502 }
2503 bad_fork_cleanup_signal:
2504 if (!(clone_flags & CLONE_THREAD))
2505 free_signal_struct(p->signal);
2506 bad_fork_cleanup_sighand:
2507 __cleanup_sighand(p->sighand);
2508 bad_fork_cleanup_fs:
2509 exit_fs(p); /* blocking */
2510 bad_fork_cleanup_files:
2511 exit_files(p); /* blocking */
2512 bad_fork_cleanup_semundo:
2513 exit_sem(p);
2514 bad_fork_cleanup_security:
2515 security_task_free(p);
2516 bad_fork_cleanup_audit:
2517 audit_free(p);
2518 bad_fork_cleanup_perf:
2519 perf_event_free_task(p);
2520 bad_fork_sched_cancel_fork:
2521 sched_cancel_fork(p);
2522 bad_fork_cleanup_policy:
2523 lockdep_free_task(p);
2524 #ifdef CONFIG_NUMA
2525 mpol_put(p->mempolicy);
2526 #endif
2527 bad_fork_cleanup_delayacct:
2528 delayacct_tsk_free(p);
2529 bad_fork_cleanup_count:
2530 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2531 exit_cred_namespaces(p);
2532 exit_creds(p);
2533 bad_fork_free:
2534 WRITE_ONCE(p->__state, TASK_DEAD);
2535 exit_task_stack_account(p);
2536 put_task_stack(p);
2537 delayed_free_task(p);
2538 fork_out:
2539 spin_lock_irq(¤t->sighand->siglock);
2540 hlist_del_init(&delayed.node);
2541 spin_unlock_irq(¤t->sighand->siglock);
2542 return ERR_PTR(retval);
2543 }
2544
init_idle_pids(struct task_struct * idle)2545 static inline void init_idle_pids(struct task_struct *idle)
2546 {
2547 enum pid_type type;
2548
2549 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2550 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2551 init_task_pid(idle, type, &init_struct_pid);
2552 }
2553 }
2554
idle_dummy(void * dummy)2555 static int idle_dummy(void *dummy)
2556 {
2557 /* This function is never called */
2558 return 0;
2559 }
2560
fork_idle(int cpu)2561 struct task_struct * __init fork_idle(int cpu)
2562 {
2563 struct task_struct *task;
2564 struct kernel_clone_args args = {
2565 .flags = CLONE_VM,
2566 .fn = &idle_dummy,
2567 .fn_arg = NULL,
2568 .kthread = 1,
2569 .idle = 1,
2570 };
2571
2572 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2573 if (!IS_ERR(task)) {
2574 init_idle_pids(task);
2575 init_idle(task, cpu);
2576 }
2577
2578 return task;
2579 }
2580
2581 /*
2582 * This is like kernel_clone(), but shaved down and tailored to just
2583 * creating io_uring workers. It returns a created task, or an error pointer.
2584 * The returned task is inactive, and the caller must fire it up through
2585 * wake_up_new_task(p). All signals are blocked in the created task.
2586 */
create_io_thread(int (* fn)(void *),void * arg,int node)2587 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2588 {
2589 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2590 CLONE_IO|CLONE_VM|CLONE_UNTRACED;
2591 struct kernel_clone_args args = {
2592 .flags = flags,
2593 .fn = fn,
2594 .fn_arg = arg,
2595 .io_thread = 1,
2596 .user_worker = 1,
2597 };
2598
2599 return copy_process(NULL, 0, node, &args);
2600 }
2601
2602 /*
2603 * Ok, this is the main fork-routine.
2604 *
2605 * It copies the process, and if successful kick-starts
2606 * it and waits for it to finish using the VM if required.
2607 *
2608 * args->exit_signal is expected to be checked for sanity by the caller.
2609 */
kernel_clone(struct kernel_clone_args * args)2610 pid_t kernel_clone(struct kernel_clone_args *args)
2611 {
2612 u64 clone_flags = args->flags;
2613 struct completion vfork;
2614 struct pid *pid;
2615 struct task_struct *p;
2616 int trace = 0;
2617 pid_t nr;
2618
2619 /*
2620 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2621 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2622 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2623 * field in struct clone_args and it still doesn't make sense to have
2624 * them both point at the same memory location. Performing this check
2625 * here has the advantage that we don't need to have a separate helper
2626 * to check for legacy clone().
2627 */
2628 if ((clone_flags & CLONE_PIDFD) &&
2629 (clone_flags & CLONE_PARENT_SETTID) &&
2630 (args->pidfd == args->parent_tid))
2631 return -EINVAL;
2632
2633 /*
2634 * Determine whether and which event to report to ptracer. When
2635 * called from kernel_thread or CLONE_UNTRACED is explicitly
2636 * requested, no event is reported; otherwise, report if the event
2637 * for the type of forking is enabled.
2638 */
2639 if (!(clone_flags & CLONE_UNTRACED)) {
2640 if (clone_flags & CLONE_VFORK)
2641 trace = PTRACE_EVENT_VFORK;
2642 else if (args->exit_signal != SIGCHLD)
2643 trace = PTRACE_EVENT_CLONE;
2644 else
2645 trace = PTRACE_EVENT_FORK;
2646
2647 if (likely(!ptrace_event_enabled(current, trace)))
2648 trace = 0;
2649 }
2650
2651 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2652 add_latent_entropy();
2653
2654 if (IS_ERR(p))
2655 return PTR_ERR(p);
2656
2657 /*
2658 * Do this prior waking up the new thread - the thread pointer
2659 * might get invalid after that point, if the thread exits quickly.
2660 */
2661 trace_sched_process_fork(current, p);
2662
2663 pid = get_task_pid(p, PIDTYPE_PID);
2664 nr = pid_vnr(pid);
2665
2666 if (clone_flags & CLONE_PARENT_SETTID)
2667 put_user(nr, args->parent_tid);
2668
2669 if (clone_flags & CLONE_VFORK) {
2670 p->vfork_done = &vfork;
2671 init_completion(&vfork);
2672 get_task_struct(p);
2673 }
2674
2675 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2676 /* lock the task to synchronize with memcg migration */
2677 task_lock(p);
2678 lru_gen_add_mm(p->mm);
2679 task_unlock(p);
2680 }
2681
2682 wake_up_new_task(p);
2683
2684 /* forking complete and child started to run, tell ptracer */
2685 if (unlikely(trace))
2686 ptrace_event_pid(trace, pid);
2687
2688 if (clone_flags & CLONE_VFORK) {
2689 if (!wait_for_vfork_done(p, &vfork))
2690 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2691 }
2692
2693 put_pid(pid);
2694 return nr;
2695 }
2696
2697 /*
2698 * Create a kernel thread.
2699 */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2700 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2701 unsigned long flags)
2702 {
2703 struct kernel_clone_args args = {
2704 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2705 .exit_signal = (flags & CSIGNAL),
2706 .fn = fn,
2707 .fn_arg = arg,
2708 .name = name,
2709 .kthread = 1,
2710 };
2711
2712 return kernel_clone(&args);
2713 }
2714
2715 /*
2716 * Create a user mode thread.
2717 */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2718 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2719 {
2720 struct kernel_clone_args args = {
2721 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2722 .exit_signal = (flags & CSIGNAL),
2723 .fn = fn,
2724 .fn_arg = arg,
2725 };
2726
2727 return kernel_clone(&args);
2728 }
2729
2730 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2731 SYSCALL_DEFINE0(fork)
2732 {
2733 #ifdef CONFIG_MMU
2734 struct kernel_clone_args args = {
2735 .exit_signal = SIGCHLD,
2736 };
2737
2738 return kernel_clone(&args);
2739 #else
2740 /* can not support in nommu mode */
2741 return -EINVAL;
2742 #endif
2743 }
2744 #endif
2745
2746 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2747 SYSCALL_DEFINE0(vfork)
2748 {
2749 struct kernel_clone_args args = {
2750 .flags = CLONE_VFORK | CLONE_VM,
2751 .exit_signal = SIGCHLD,
2752 };
2753
2754 return kernel_clone(&args);
2755 }
2756 #endif
2757
2758 #ifdef __ARCH_WANT_SYS_CLONE
2759 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2760 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2761 int __user *, parent_tidptr,
2762 unsigned long, tls,
2763 int __user *, child_tidptr)
2764 #elif defined(CONFIG_CLONE_BACKWARDS2)
2765 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2766 int __user *, parent_tidptr,
2767 int __user *, child_tidptr,
2768 unsigned long, tls)
2769 #elif defined(CONFIG_CLONE_BACKWARDS3)
2770 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2771 int, stack_size,
2772 int __user *, parent_tidptr,
2773 int __user *, child_tidptr,
2774 unsigned long, tls)
2775 #else
2776 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2777 int __user *, parent_tidptr,
2778 int __user *, child_tidptr,
2779 unsigned long, tls)
2780 #endif
2781 {
2782 struct kernel_clone_args args = {
2783 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2784 .pidfd = parent_tidptr,
2785 .child_tid = child_tidptr,
2786 .parent_tid = parent_tidptr,
2787 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2788 .stack = newsp,
2789 .tls = tls,
2790 };
2791
2792 return kernel_clone(&args);
2793 }
2794 #endif
2795
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2796 static noinline int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2797 struct clone_args __user *uargs,
2798 size_t usize)
2799 {
2800 int err;
2801 struct clone_args args;
2802 pid_t *kset_tid = kargs->set_tid;
2803
2804 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2805 CLONE_ARGS_SIZE_VER0);
2806 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2807 CLONE_ARGS_SIZE_VER1);
2808 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2809 CLONE_ARGS_SIZE_VER2);
2810 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2811
2812 if (unlikely(usize > PAGE_SIZE))
2813 return -E2BIG;
2814 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2815 return -EINVAL;
2816
2817 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2818 if (err)
2819 return err;
2820
2821 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2822 return -EINVAL;
2823
2824 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2825 return -EINVAL;
2826
2827 if (unlikely(args.set_tid && args.set_tid_size == 0))
2828 return -EINVAL;
2829
2830 /*
2831 * Verify that higher 32bits of exit_signal are unset and that
2832 * it is a valid signal
2833 */
2834 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2835 !valid_signal(args.exit_signal)))
2836 return -EINVAL;
2837
2838 if ((args.flags & CLONE_INTO_CGROUP) &&
2839 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2840 return -EINVAL;
2841
2842 *kargs = (struct kernel_clone_args){
2843 .flags = args.flags,
2844 .pidfd = u64_to_user_ptr(args.pidfd),
2845 .child_tid = u64_to_user_ptr(args.child_tid),
2846 .parent_tid = u64_to_user_ptr(args.parent_tid),
2847 .exit_signal = args.exit_signal,
2848 .stack = args.stack,
2849 .stack_size = args.stack_size,
2850 .tls = args.tls,
2851 .set_tid_size = args.set_tid_size,
2852 .cgroup = args.cgroup,
2853 };
2854
2855 if (args.set_tid &&
2856 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2857 (kargs->set_tid_size * sizeof(pid_t))))
2858 return -EFAULT;
2859
2860 kargs->set_tid = kset_tid;
2861
2862 return 0;
2863 }
2864
2865 /**
2866 * clone3_stack_valid - check and prepare stack
2867 * @kargs: kernel clone args
2868 *
2869 * Verify that the stack arguments userspace gave us are sane.
2870 * In addition, set the stack direction for userspace since it's easy for us to
2871 * determine.
2872 */
clone3_stack_valid(struct kernel_clone_args * kargs)2873 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2874 {
2875 if (kargs->stack == 0) {
2876 if (kargs->stack_size > 0)
2877 return false;
2878 } else {
2879 if (kargs->stack_size == 0)
2880 return false;
2881
2882 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2883 return false;
2884
2885 #if !defined(CONFIG_STACK_GROWSUP)
2886 kargs->stack += kargs->stack_size;
2887 #endif
2888 }
2889
2890 return true;
2891 }
2892
clone3_args_valid(struct kernel_clone_args * kargs)2893 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2894 {
2895 /* Verify that no unknown flags are passed along. */
2896 if (kargs->flags &
2897 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2898 return false;
2899
2900 /*
2901 * - make the CLONE_DETACHED bit reusable for clone3
2902 * - make the CSIGNAL bits reusable for clone3
2903 */
2904 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
2905 return false;
2906
2907 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2908 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2909 return false;
2910
2911 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2912 kargs->exit_signal)
2913 return false;
2914
2915 if (!clone3_stack_valid(kargs))
2916 return false;
2917
2918 return true;
2919 }
2920
2921 /**
2922 * sys_clone3 - create a new process with specific properties
2923 * @uargs: argument structure
2924 * @size: size of @uargs
2925 *
2926 * clone3() is the extensible successor to clone()/clone2().
2927 * It takes a struct as argument that is versioned by its size.
2928 *
2929 * Return: On success, a positive PID for the child process.
2930 * On error, a negative errno number.
2931 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2932 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2933 {
2934 int err;
2935
2936 struct kernel_clone_args kargs;
2937 pid_t set_tid[MAX_PID_NS_LEVEL];
2938
2939 #ifdef __ARCH_BROKEN_SYS_CLONE3
2940 #warning clone3() entry point is missing, please fix
2941 return -ENOSYS;
2942 #endif
2943
2944 kargs.set_tid = set_tid;
2945
2946 err = copy_clone_args_from_user(&kargs, uargs, size);
2947 if (err)
2948 return err;
2949
2950 if (!clone3_args_valid(&kargs))
2951 return -EINVAL;
2952
2953 return kernel_clone(&kargs);
2954 }
2955
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2956 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2957 {
2958 struct task_struct *leader, *parent, *child;
2959 int res;
2960
2961 read_lock(&tasklist_lock);
2962 leader = top = top->group_leader;
2963 down:
2964 for_each_thread(leader, parent) {
2965 list_for_each_entry(child, &parent->children, sibling) {
2966 res = visitor(child, data);
2967 if (res) {
2968 if (res < 0)
2969 goto out;
2970 leader = child;
2971 goto down;
2972 }
2973 up:
2974 ;
2975 }
2976 }
2977
2978 if (leader != top) {
2979 child = leader;
2980 parent = child->real_parent;
2981 leader = parent->group_leader;
2982 goto up;
2983 }
2984 out:
2985 read_unlock(&tasklist_lock);
2986 }
2987
2988 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2989 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2990 #endif
2991
sighand_ctor(void * data)2992 static void sighand_ctor(void *data)
2993 {
2994 struct sighand_struct *sighand = data;
2995
2996 spin_lock_init(&sighand->siglock);
2997 init_waitqueue_head(&sighand->signalfd_wqh);
2998 }
2999
mm_cache_init(void)3000 void __init mm_cache_init(void)
3001 {
3002 unsigned int mm_size;
3003
3004 /*
3005 * The mm_cpumask is located at the end of mm_struct, and is
3006 * dynamically sized based on the maximum CPU number this system
3007 * can have, taking hotplug into account (nr_cpu_ids).
3008 */
3009 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3010
3011 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3012 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3013 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3014 offsetof(struct mm_struct, saved_auxv),
3015 sizeof_field(struct mm_struct, saved_auxv),
3016 NULL);
3017 }
3018
proc_caches_init(void)3019 void __init proc_caches_init(void)
3020 {
3021 sighand_cachep = kmem_cache_create("sighand_cache",
3022 sizeof(struct sighand_struct), 0,
3023 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3024 SLAB_ACCOUNT, sighand_ctor);
3025 signal_cachep = kmem_cache_create("signal_cache",
3026 sizeof(struct signal_struct), 0,
3027 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3028 NULL);
3029 files_cachep = kmem_cache_create("files_cache",
3030 sizeof(struct files_struct), 0,
3031 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3032 NULL);
3033 fs_cachep = kmem_cache_create("fs_cache",
3034 sizeof(struct fs_struct), 0,
3035 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3036 NULL);
3037 mmap_init();
3038 nsproxy_cache_init();
3039 }
3040
3041 /*
3042 * Check constraints on flags passed to the unshare system call.
3043 */
check_unshare_flags(unsigned long unshare_flags)3044 static int check_unshare_flags(unsigned long unshare_flags)
3045 {
3046 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3047 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3048 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3049 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3050 CLONE_NEWTIME))
3051 return -EINVAL;
3052 /*
3053 * Not implemented, but pretend it works if there is nothing
3054 * to unshare. Note that unsharing the address space or the
3055 * signal handlers also need to unshare the signal queues (aka
3056 * CLONE_THREAD).
3057 */
3058 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3059 if (!thread_group_empty(current))
3060 return -EINVAL;
3061 }
3062 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3063 if (refcount_read(¤t->sighand->count) > 1)
3064 return -EINVAL;
3065 }
3066 if (unshare_flags & CLONE_VM) {
3067 if (!current_is_single_threaded())
3068 return -EINVAL;
3069 }
3070
3071 return 0;
3072 }
3073
3074 /*
3075 * Unshare the filesystem structure if it is being shared
3076 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3077 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3078 {
3079 struct fs_struct *fs = current->fs;
3080
3081 if (!(unshare_flags & CLONE_FS) || !fs)
3082 return 0;
3083
3084 /* don't need lock here; in the worst case we'll do useless copy */
3085 if (fs->users == 1)
3086 return 0;
3087
3088 *new_fsp = copy_fs_struct(fs);
3089 if (!*new_fsp)
3090 return -ENOMEM;
3091
3092 return 0;
3093 }
3094
3095 /*
3096 * Unshare file descriptor table if it is being shared
3097 */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3098 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3099 {
3100 struct files_struct *fd = current->files;
3101
3102 if ((unshare_flags & CLONE_FILES) &&
3103 (fd && atomic_read(&fd->count) > 1)) {
3104 fd = dup_fd(fd, NULL);
3105 if (IS_ERR(fd))
3106 return PTR_ERR(fd);
3107 *new_fdp = fd;
3108 }
3109
3110 return 0;
3111 }
3112
3113 /*
3114 * unshare allows a process to 'unshare' part of the process
3115 * context which was originally shared using clone. copy_*
3116 * functions used by kernel_clone() cannot be used here directly
3117 * because they modify an inactive task_struct that is being
3118 * constructed. Here we are modifying the current, active,
3119 * task_struct.
3120 */
ksys_unshare(unsigned long unshare_flags)3121 int ksys_unshare(unsigned long unshare_flags)
3122 {
3123 struct fs_struct *fs, *new_fs = NULL;
3124 struct files_struct *new_fd = NULL;
3125 struct cred *new_cred = NULL;
3126 struct nsproxy *new_nsproxy = NULL;
3127 int do_sysvsem = 0;
3128 int err;
3129
3130 /*
3131 * If unsharing a user namespace must also unshare the thread group
3132 * and unshare the filesystem root and working directories.
3133 */
3134 if (unshare_flags & CLONE_NEWUSER)
3135 unshare_flags |= CLONE_THREAD | CLONE_FS;
3136 /*
3137 * If unsharing vm, must also unshare signal handlers.
3138 */
3139 if (unshare_flags & CLONE_VM)
3140 unshare_flags |= CLONE_SIGHAND;
3141 /*
3142 * If unsharing a signal handlers, must also unshare the signal queues.
3143 */
3144 if (unshare_flags & CLONE_SIGHAND)
3145 unshare_flags |= CLONE_THREAD;
3146 /*
3147 * If unsharing namespace, must also unshare filesystem information.
3148 */
3149 if (unshare_flags & CLONE_NEWNS)
3150 unshare_flags |= CLONE_FS;
3151
3152 err = check_unshare_flags(unshare_flags);
3153 if (err)
3154 goto bad_unshare_out;
3155 /*
3156 * CLONE_NEWIPC must also detach from the undolist: after switching
3157 * to a new ipc namespace, the semaphore arrays from the old
3158 * namespace are unreachable.
3159 */
3160 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3161 do_sysvsem = 1;
3162 err = unshare_fs(unshare_flags, &new_fs);
3163 if (err)
3164 goto bad_unshare_out;
3165 err = unshare_fd(unshare_flags, &new_fd);
3166 if (err)
3167 goto bad_unshare_cleanup_fs;
3168 err = unshare_userns(unshare_flags, &new_cred);
3169 if (err)
3170 goto bad_unshare_cleanup_fd;
3171 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3172 new_cred, new_fs);
3173 if (err)
3174 goto bad_unshare_cleanup_cred;
3175
3176 if (new_cred) {
3177 err = set_cred_ucounts(new_cred);
3178 if (err)
3179 goto bad_unshare_cleanup_cred;
3180 }
3181
3182 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3183 if (do_sysvsem) {
3184 /*
3185 * CLONE_SYSVSEM is equivalent to sys_exit().
3186 */
3187 exit_sem(current);
3188 }
3189 if (unshare_flags & CLONE_NEWIPC) {
3190 /* Orphan segments in old ns (see sem above). */
3191 exit_shm(current);
3192 shm_init_task(current);
3193 }
3194
3195 if (new_nsproxy)
3196 switch_task_namespaces(current, new_nsproxy);
3197
3198 task_lock(current);
3199
3200 if (new_fs) {
3201 fs = current->fs;
3202 read_seqlock_excl(&fs->seq);
3203 current->fs = new_fs;
3204 if (--fs->users)
3205 new_fs = NULL;
3206 else
3207 new_fs = fs;
3208 read_sequnlock_excl(&fs->seq);
3209 }
3210
3211 if (new_fd)
3212 swap(current->files, new_fd);
3213
3214 task_unlock(current);
3215
3216 if (new_cred) {
3217 /* Install the new user namespace */
3218 commit_creds(new_cred);
3219 new_cred = NULL;
3220 }
3221 }
3222
3223 perf_event_namespaces(current);
3224
3225 bad_unshare_cleanup_cred:
3226 if (new_cred)
3227 put_cred(new_cred);
3228 bad_unshare_cleanup_fd:
3229 if (new_fd)
3230 put_files_struct(new_fd);
3231
3232 bad_unshare_cleanup_fs:
3233 if (new_fs)
3234 free_fs_struct(new_fs);
3235
3236 bad_unshare_out:
3237 return err;
3238 }
3239
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3240 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3241 {
3242 return ksys_unshare(unshare_flags);
3243 }
3244
3245 /*
3246 * Helper to unshare the files of the current task.
3247 * We don't want to expose copy_files internals to
3248 * the exec layer of the kernel.
3249 */
3250
unshare_files(void)3251 int unshare_files(void)
3252 {
3253 struct task_struct *task = current;
3254 struct files_struct *old, *copy = NULL;
3255 int error;
3256
3257 error = unshare_fd(CLONE_FILES, ©);
3258 if (error || !copy)
3259 return error;
3260
3261 old = task->files;
3262 task_lock(task);
3263 task->files = copy;
3264 task_unlock(task);
3265 put_files_struct(old);
3266 return 0;
3267 }
3268
sysctl_max_threads(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3269 static int sysctl_max_threads(const struct ctl_table *table, int write,
3270 void *buffer, size_t *lenp, loff_t *ppos)
3271 {
3272 struct ctl_table t;
3273 int ret;
3274 int threads = max_threads;
3275 int min = 1;
3276 int max = MAX_THREADS;
3277
3278 t = *table;
3279 t.data = &threads;
3280 t.extra1 = &min;
3281 t.extra2 = &max;
3282
3283 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3284 if (ret || !write)
3285 return ret;
3286
3287 max_threads = threads;
3288
3289 return 0;
3290 }
3291
3292 static const struct ctl_table fork_sysctl_table[] = {
3293 {
3294 .procname = "threads-max",
3295 .data = NULL,
3296 .maxlen = sizeof(int),
3297 .mode = 0644,
3298 .proc_handler = sysctl_max_threads,
3299 },
3300 };
3301
init_fork_sysctl(void)3302 static int __init init_fork_sysctl(void)
3303 {
3304 register_sysctl_init("kernel", fork_sysctl_table);
3305 return 0;
3306 }
3307
3308 subsys_initcall(init_fork_sysctl);
3309