xref: /linux/kernel/fork.c (revision 509d3f45847627f4c5cdce004c3ec79262b5239c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/sched/ext.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/kstack_erase.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 #include <linux/tick.h>
108 #include <linux/unwind_deferred.h>
109 #include <linux/pgalloc.h>
110 #include <linux/uaccess.h>
111 
112 #include <asm/mmu_context.h>
113 #include <asm/cacheflush.h>
114 #include <asm/tlbflush.h>
115 
116 /* For dup_mmap(). */
117 #include "../mm/internal.h"
118 
119 #include <trace/events/sched.h>
120 
121 #define CREATE_TRACE_POINTS
122 #include <trace/events/task.h>
123 
124 #include <kunit/visibility.h>
125 
126 /*
127  * Minimum number of threads to boot the kernel
128  */
129 #define MIN_THREADS 20
130 
131 /*
132  * Maximum number of threads
133  */
134 #define MAX_THREADS FUTEX_TID_MASK
135 
136 /*
137  * Protected counters by write_lock_irq(&tasklist_lock)
138  */
139 unsigned long total_forks;	/* Handle normal Linux uptimes. */
140 int nr_threads;			/* The idle threads do not count.. */
141 
142 static int max_threads;		/* tunable limit on nr_threads */
143 
144 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
145 
146 static const char * const resident_page_types[] = {
147 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
148 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
149 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
150 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
151 };
152 
153 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
154 
155 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
156 
157 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)158 int lockdep_tasklist_lock_is_held(void)
159 {
160 	return lockdep_is_held(&tasklist_lock);
161 }
162 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
163 #endif /* #ifdef CONFIG_PROVE_RCU */
164 
nr_processes(void)165 int nr_processes(void)
166 {
167 	int cpu;
168 	int total = 0;
169 
170 	for_each_possible_cpu(cpu)
171 		total += per_cpu(process_counts, cpu);
172 
173 	return total;
174 }
175 
arch_release_task_struct(struct task_struct * tsk)176 void __weak arch_release_task_struct(struct task_struct *tsk)
177 {
178 }
179 
180 static struct kmem_cache *task_struct_cachep;
181 
alloc_task_struct_node(int node)182 static inline struct task_struct *alloc_task_struct_node(int node)
183 {
184 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
185 }
186 
free_task_struct(struct task_struct * tsk)187 static inline void free_task_struct(struct task_struct *tsk)
188 {
189 	kmem_cache_free(task_struct_cachep, tsk);
190 }
191 
192 #ifdef CONFIG_VMAP_STACK
193 /*
194  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
195  * flush.  Try to minimize the number of calls by caching stacks.
196  */
197 #define NR_CACHED_STACKS 2
198 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
199 /*
200  * Allocated stacks are cached and later reused by new threads, so memcg
201  * accounting is performed by the code assigning/releasing stacks to tasks.
202  * We need a zeroed memory without __GFP_ACCOUNT.
203  */
204 #define GFP_VMAP_STACK (GFP_KERNEL | __GFP_ZERO)
205 
206 struct vm_stack {
207 	struct rcu_head rcu;
208 	struct vm_struct *stack_vm_area;
209 };
210 
alloc_thread_stack_node_from_cache(struct task_struct * tsk,int node)211 static struct vm_struct *alloc_thread_stack_node_from_cache(struct task_struct *tsk, int node)
212 {
213 	struct vm_struct *vm_area;
214 	unsigned int i;
215 
216 	/*
217 	 * If the node has memory, we are guaranteed the stacks are backed by local pages.
218 	 * Otherwise the pages are arbitrary.
219 	 *
220 	 * Note that depending on cpuset it is possible we will get migrated to a different
221 	 * node immediately after allocating here, so this does *not* guarantee locality for
222 	 * arbitrary callers.
223 	 */
224 	scoped_guard(preempt) {
225 		if (node != NUMA_NO_NODE && numa_node_id() != node)
226 			return NULL;
227 
228 		for (i = 0; i < NR_CACHED_STACKS; i++) {
229 			vm_area = this_cpu_xchg(cached_stacks[i], NULL);
230 			if (vm_area)
231 				return vm_area;
232 		}
233 	}
234 
235 	return NULL;
236 }
237 
try_release_thread_stack_to_cache(struct vm_struct * vm_area)238 static bool try_release_thread_stack_to_cache(struct vm_struct *vm_area)
239 {
240 	unsigned int i;
241 	int nid;
242 
243 	/*
244 	 * Don't cache stacks if any of the pages don't match the local domain, unless
245 	 * there is no local memory to begin with.
246 	 *
247 	 * Note that lack of local memory does not automatically mean it makes no difference
248 	 * performance-wise which other domain backs the stack. In this case we are merely
249 	 * trying to avoid constantly going to vmalloc.
250 	 */
251 	scoped_guard(preempt) {
252 		nid = numa_node_id();
253 		if (node_state(nid, N_MEMORY)) {
254 			for (i = 0; i < vm_area->nr_pages; i++) {
255 				struct page *page = vm_area->pages[i];
256 				if (page_to_nid(page) != nid)
257 					return false;
258 			}
259 		}
260 
261 		for (i = 0; i < NR_CACHED_STACKS; i++) {
262 			struct vm_struct *tmp = NULL;
263 
264 			if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm_area))
265 				return true;
266 		}
267 	}
268 	return false;
269 }
270 
thread_stack_free_rcu(struct rcu_head * rh)271 static void thread_stack_free_rcu(struct rcu_head *rh)
272 {
273 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
274 	struct vm_struct *vm_area = vm_stack->stack_vm_area;
275 
276 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
277 		return;
278 
279 	vfree(vm_area->addr);
280 }
281 
thread_stack_delayed_free(struct task_struct * tsk)282 static void thread_stack_delayed_free(struct task_struct *tsk)
283 {
284 	struct vm_stack *vm_stack = tsk->stack;
285 
286 	vm_stack->stack_vm_area = tsk->stack_vm_area;
287 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
288 }
289 
free_vm_stack_cache(unsigned int cpu)290 static int free_vm_stack_cache(unsigned int cpu)
291 {
292 	struct vm_struct **cached_vm_stack_areas = per_cpu_ptr(cached_stacks, cpu);
293 	int i;
294 
295 	for (i = 0; i < NR_CACHED_STACKS; i++) {
296 		struct vm_struct *vm_area = cached_vm_stack_areas[i];
297 
298 		if (!vm_area)
299 			continue;
300 
301 		vfree(vm_area->addr);
302 		cached_vm_stack_areas[i] = NULL;
303 	}
304 
305 	return 0;
306 }
307 
memcg_charge_kernel_stack(struct vm_struct * vm_area)308 static int memcg_charge_kernel_stack(struct vm_struct *vm_area)
309 {
310 	int i;
311 	int ret;
312 	int nr_charged = 0;
313 
314 	BUG_ON(vm_area->nr_pages != THREAD_SIZE / PAGE_SIZE);
315 
316 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
317 		ret = memcg_kmem_charge_page(vm_area->pages[i], GFP_KERNEL, 0);
318 		if (ret)
319 			goto err;
320 		nr_charged++;
321 	}
322 	return 0;
323 err:
324 	for (i = 0; i < nr_charged; i++)
325 		memcg_kmem_uncharge_page(vm_area->pages[i], 0);
326 	return ret;
327 }
328 
alloc_thread_stack_node(struct task_struct * tsk,int node)329 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
330 {
331 	struct vm_struct *vm_area;
332 	void *stack;
333 
334 	vm_area = alloc_thread_stack_node_from_cache(tsk, node);
335 	if (vm_area) {
336 		if (memcg_charge_kernel_stack(vm_area)) {
337 			vfree(vm_area->addr);
338 			return -ENOMEM;
339 		}
340 
341 		/* Reset stack metadata. */
342 		kasan_unpoison_range(vm_area->addr, THREAD_SIZE);
343 
344 		stack = kasan_reset_tag(vm_area->addr);
345 
346 		/* Clear stale pointers from reused stack. */
347 		memset(stack, 0, THREAD_SIZE);
348 
349 		tsk->stack_vm_area = vm_area;
350 		tsk->stack = stack;
351 		return 0;
352 	}
353 
354 	stack = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN,
355 				     GFP_VMAP_STACK,
356 				     node, __builtin_return_address(0));
357 	if (!stack)
358 		return -ENOMEM;
359 
360 	vm_area = find_vm_area(stack);
361 	if (memcg_charge_kernel_stack(vm_area)) {
362 		vfree(stack);
363 		return -ENOMEM;
364 	}
365 	/*
366 	 * We can't call find_vm_area() in interrupt context, and
367 	 * free_thread_stack() can be called in interrupt context,
368 	 * so cache the vm_struct.
369 	 */
370 	tsk->stack_vm_area = vm_area;
371 	stack = kasan_reset_tag(stack);
372 	tsk->stack = stack;
373 	return 0;
374 }
375 
free_thread_stack(struct task_struct * tsk)376 static void free_thread_stack(struct task_struct *tsk)
377 {
378 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
379 		thread_stack_delayed_free(tsk);
380 
381 	tsk->stack = NULL;
382 	tsk->stack_vm_area = NULL;
383 }
384 
385 #else /* !CONFIG_VMAP_STACK */
386 
387 /*
388  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
389  * kmemcache based allocator.
390  */
391 #if THREAD_SIZE >= PAGE_SIZE
392 
thread_stack_free_rcu(struct rcu_head * rh)393 static void thread_stack_free_rcu(struct rcu_head *rh)
394 {
395 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
396 }
397 
thread_stack_delayed_free(struct task_struct * tsk)398 static void thread_stack_delayed_free(struct task_struct *tsk)
399 {
400 	struct rcu_head *rh = tsk->stack;
401 
402 	call_rcu(rh, thread_stack_free_rcu);
403 }
404 
alloc_thread_stack_node(struct task_struct * tsk,int node)405 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
406 {
407 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
408 					     THREAD_SIZE_ORDER);
409 
410 	if (likely(page)) {
411 		tsk->stack = kasan_reset_tag(page_address(page));
412 		return 0;
413 	}
414 	return -ENOMEM;
415 }
416 
free_thread_stack(struct task_struct * tsk)417 static void free_thread_stack(struct task_struct *tsk)
418 {
419 	thread_stack_delayed_free(tsk);
420 	tsk->stack = NULL;
421 }
422 
423 #else /* !(THREAD_SIZE >= PAGE_SIZE) */
424 
425 static struct kmem_cache *thread_stack_cache;
426 
thread_stack_free_rcu(struct rcu_head * rh)427 static void thread_stack_free_rcu(struct rcu_head *rh)
428 {
429 	kmem_cache_free(thread_stack_cache, rh);
430 }
431 
thread_stack_delayed_free(struct task_struct * tsk)432 static void thread_stack_delayed_free(struct task_struct *tsk)
433 {
434 	struct rcu_head *rh = tsk->stack;
435 
436 	call_rcu(rh, thread_stack_free_rcu);
437 }
438 
alloc_thread_stack_node(struct task_struct * tsk,int node)439 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
440 {
441 	unsigned long *stack;
442 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
443 	stack = kasan_reset_tag(stack);
444 	tsk->stack = stack;
445 	return stack ? 0 : -ENOMEM;
446 }
447 
free_thread_stack(struct task_struct * tsk)448 static void free_thread_stack(struct task_struct *tsk)
449 {
450 	thread_stack_delayed_free(tsk);
451 	tsk->stack = NULL;
452 }
453 
thread_stack_cache_init(void)454 void thread_stack_cache_init(void)
455 {
456 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
457 					THREAD_SIZE, THREAD_SIZE, 0, 0,
458 					THREAD_SIZE, NULL);
459 	BUG_ON(thread_stack_cache == NULL);
460 }
461 
462 #endif /* THREAD_SIZE >= PAGE_SIZE */
463 #endif /* CONFIG_VMAP_STACK */
464 
465 /* SLAB cache for signal_struct structures (tsk->signal) */
466 static struct kmem_cache *signal_cachep;
467 
468 /* SLAB cache for sighand_struct structures (tsk->sighand) */
469 struct kmem_cache *sighand_cachep;
470 
471 /* SLAB cache for files_struct structures (tsk->files) */
472 struct kmem_cache *files_cachep;
473 
474 /* SLAB cache for fs_struct structures (tsk->fs) */
475 struct kmem_cache *fs_cachep;
476 
477 /* SLAB cache for mm_struct structures (tsk->mm) */
478 static struct kmem_cache *mm_cachep;
479 
account_kernel_stack(struct task_struct * tsk,int account)480 static void account_kernel_stack(struct task_struct *tsk, int account)
481 {
482 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
483 		struct vm_struct *vm_area = task_stack_vm_area(tsk);
484 		int i;
485 
486 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
487 			mod_lruvec_page_state(vm_area->pages[i], NR_KERNEL_STACK_KB,
488 					      account * (PAGE_SIZE / 1024));
489 	} else {
490 		void *stack = task_stack_page(tsk);
491 
492 		/* All stack pages are in the same node. */
493 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
494 				      account * (THREAD_SIZE / 1024));
495 	}
496 }
497 
exit_task_stack_account(struct task_struct * tsk)498 void exit_task_stack_account(struct task_struct *tsk)
499 {
500 	account_kernel_stack(tsk, -1);
501 
502 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
503 		struct vm_struct *vm_area;
504 		int i;
505 
506 		vm_area = task_stack_vm_area(tsk);
507 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
508 			memcg_kmem_uncharge_page(vm_area->pages[i], 0);
509 	}
510 }
511 
release_task_stack(struct task_struct * tsk)512 static void release_task_stack(struct task_struct *tsk)
513 {
514 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
515 		return;  /* Better to leak the stack than to free prematurely */
516 
517 	free_thread_stack(tsk);
518 }
519 
520 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)521 void put_task_stack(struct task_struct *tsk)
522 {
523 	if (refcount_dec_and_test(&tsk->stack_refcount))
524 		release_task_stack(tsk);
525 }
526 #endif
527 
free_task(struct task_struct * tsk)528 void free_task(struct task_struct *tsk)
529 {
530 #ifdef CONFIG_SECCOMP
531 	WARN_ON_ONCE(tsk->seccomp.filter);
532 #endif
533 	release_user_cpus_ptr(tsk);
534 	scs_release(tsk);
535 
536 #ifndef CONFIG_THREAD_INFO_IN_TASK
537 	/*
538 	 * The task is finally done with both the stack and thread_info,
539 	 * so free both.
540 	 */
541 	release_task_stack(tsk);
542 #else
543 	/*
544 	 * If the task had a separate stack allocation, it should be gone
545 	 * by now.
546 	 */
547 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
548 #endif
549 	rt_mutex_debug_task_free(tsk);
550 	ftrace_graph_exit_task(tsk);
551 	arch_release_task_struct(tsk);
552 	if (tsk->flags & PF_KTHREAD)
553 		free_kthread_struct(tsk);
554 	bpf_task_storage_free(tsk);
555 	free_task_struct(tsk);
556 }
557 EXPORT_SYMBOL(free_task);
558 
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)559 void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
560 {
561 	struct file *exe_file;
562 
563 	exe_file = get_mm_exe_file(oldmm);
564 	RCU_INIT_POINTER(mm->exe_file, exe_file);
565 	/*
566 	 * We depend on the oldmm having properly denied write access to the
567 	 * exe_file already.
568 	 */
569 	if (exe_file && exe_file_deny_write_access(exe_file))
570 		pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__);
571 }
572 
573 #ifdef CONFIG_MMU
mm_alloc_pgd(struct mm_struct * mm)574 static inline int mm_alloc_pgd(struct mm_struct *mm)
575 {
576 	mm->pgd = pgd_alloc(mm);
577 	if (unlikely(!mm->pgd))
578 		return -ENOMEM;
579 	return 0;
580 }
581 
mm_free_pgd(struct mm_struct * mm)582 static inline void mm_free_pgd(struct mm_struct *mm)
583 {
584 	pgd_free(mm, mm->pgd);
585 }
586 #else
587 #define mm_alloc_pgd(mm)	(0)
588 #define mm_free_pgd(mm)
589 #endif /* CONFIG_MMU */
590 
591 #ifdef CONFIG_MM_ID
592 static DEFINE_IDA(mm_ida);
593 
mm_alloc_id(struct mm_struct * mm)594 static inline int mm_alloc_id(struct mm_struct *mm)
595 {
596 	int ret;
597 
598 	ret = ida_alloc_range(&mm_ida, MM_ID_MIN, MM_ID_MAX, GFP_KERNEL);
599 	if (ret < 0)
600 		return ret;
601 	mm->mm_id = ret;
602 	return 0;
603 }
604 
mm_free_id(struct mm_struct * mm)605 static inline void mm_free_id(struct mm_struct *mm)
606 {
607 	const mm_id_t id = mm->mm_id;
608 
609 	mm->mm_id = MM_ID_DUMMY;
610 	if (id == MM_ID_DUMMY)
611 		return;
612 	if (WARN_ON_ONCE(id < MM_ID_MIN || id > MM_ID_MAX))
613 		return;
614 	ida_free(&mm_ida, id);
615 }
616 #else /* !CONFIG_MM_ID */
mm_alloc_id(struct mm_struct * mm)617 static inline int mm_alloc_id(struct mm_struct *mm) { return 0; }
mm_free_id(struct mm_struct * mm)618 static inline void mm_free_id(struct mm_struct *mm) {}
619 #endif /* CONFIG_MM_ID */
620 
check_mm(struct mm_struct * mm)621 static void check_mm(struct mm_struct *mm)
622 {
623 	int i;
624 
625 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
626 			 "Please make sure 'struct resident_page_types[]' is updated as well");
627 
628 	for (i = 0; i < NR_MM_COUNTERS; i++) {
629 		long x = percpu_counter_sum(&mm->rss_stat[i]);
630 
631 		if (unlikely(x)) {
632 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld Comm:%s Pid:%d\n",
633 				 mm, resident_page_types[i], x,
634 				 current->comm,
635 				 task_pid_nr(current));
636 		}
637 	}
638 
639 	if (mm_pgtables_bytes(mm))
640 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
641 				mm_pgtables_bytes(mm));
642 
643 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
644 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
645 #endif
646 }
647 
648 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
649 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
650 
do_check_lazy_tlb(void * arg)651 static void do_check_lazy_tlb(void *arg)
652 {
653 	struct mm_struct *mm = arg;
654 
655 	WARN_ON_ONCE(current->active_mm == mm);
656 }
657 
do_shoot_lazy_tlb(void * arg)658 static void do_shoot_lazy_tlb(void *arg)
659 {
660 	struct mm_struct *mm = arg;
661 
662 	if (current->active_mm == mm) {
663 		WARN_ON_ONCE(current->mm);
664 		current->active_mm = &init_mm;
665 		switch_mm(mm, &init_mm, current);
666 	}
667 }
668 
cleanup_lazy_tlbs(struct mm_struct * mm)669 static void cleanup_lazy_tlbs(struct mm_struct *mm)
670 {
671 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
672 		/*
673 		 * In this case, lazy tlb mms are refounted and would not reach
674 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
675 		 */
676 		return;
677 	}
678 
679 	/*
680 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
681 	 * requires lazy mm users to switch to another mm when the refcount
682 	 * drops to zero, before the mm is freed. This requires IPIs here to
683 	 * switch kernel threads to init_mm.
684 	 *
685 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
686 	 * switch with the final userspace teardown TLB flush which leaves the
687 	 * mm lazy on this CPU but no others, reducing the need for additional
688 	 * IPIs here. There are cases where a final IPI is still required here,
689 	 * such as the final mmdrop being performed on a different CPU than the
690 	 * one exiting, or kernel threads using the mm when userspace exits.
691 	 *
692 	 * IPI overheads have not found to be expensive, but they could be
693 	 * reduced in a number of possible ways, for example (roughly
694 	 * increasing order of complexity):
695 	 * - The last lazy reference created by exit_mm() could instead switch
696 	 *   to init_mm, however it's probable this will run on the same CPU
697 	 *   immediately afterwards, so this may not reduce IPIs much.
698 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
699 	 * - CPUs store active_mm where it can be remotely checked without a
700 	 *   lock, to filter out false-positives in the cpumask.
701 	 * - After mm_users or mm_count reaches zero, switching away from the
702 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
703 	 *   with some batching or delaying of the final IPIs.
704 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
705 	 *   switching to avoid IPIs completely.
706 	 */
707 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
708 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
709 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
710 }
711 
712 /*
713  * Called when the last reference to the mm
714  * is dropped: either by a lazy thread or by
715  * mmput. Free the page directory and the mm.
716  */
__mmdrop(struct mm_struct * mm)717 void __mmdrop(struct mm_struct *mm)
718 {
719 	BUG_ON(mm == &init_mm);
720 	WARN_ON_ONCE(mm == current->mm);
721 
722 	/* Ensure no CPUs are using this as their lazy tlb mm */
723 	cleanup_lazy_tlbs(mm);
724 
725 	WARN_ON_ONCE(mm == current->active_mm);
726 	mm_free_pgd(mm);
727 	mm_free_id(mm);
728 	destroy_context(mm);
729 	mmu_notifier_subscriptions_destroy(mm);
730 	check_mm(mm);
731 	put_user_ns(mm->user_ns);
732 	mm_pasid_drop(mm);
733 	mm_destroy_cid(mm);
734 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
735 
736 	free_mm(mm);
737 }
738 EXPORT_SYMBOL_GPL(__mmdrop);
739 
mmdrop_async_fn(struct work_struct * work)740 static void mmdrop_async_fn(struct work_struct *work)
741 {
742 	struct mm_struct *mm;
743 
744 	mm = container_of(work, struct mm_struct, async_put_work);
745 	__mmdrop(mm);
746 }
747 
mmdrop_async(struct mm_struct * mm)748 static void mmdrop_async(struct mm_struct *mm)
749 {
750 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
751 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
752 		schedule_work(&mm->async_put_work);
753 	}
754 }
755 
free_signal_struct(struct signal_struct * sig)756 static inline void free_signal_struct(struct signal_struct *sig)
757 {
758 	taskstats_tgid_free(sig);
759 	sched_autogroup_exit(sig);
760 	/*
761 	 * __mmdrop is not safe to call from softirq context on x86 due to
762 	 * pgd_dtor so postpone it to the async context
763 	 */
764 	if (sig->oom_mm)
765 		mmdrop_async(sig->oom_mm);
766 	kmem_cache_free(signal_cachep, sig);
767 }
768 
put_signal_struct(struct signal_struct * sig)769 static inline void put_signal_struct(struct signal_struct *sig)
770 {
771 	if (refcount_dec_and_test(&sig->sigcnt))
772 		free_signal_struct(sig);
773 }
774 
__put_task_struct(struct task_struct * tsk)775 void __put_task_struct(struct task_struct *tsk)
776 {
777 	WARN_ON(!tsk->exit_state);
778 	WARN_ON(refcount_read(&tsk->usage));
779 	WARN_ON(tsk == current);
780 
781 	unwind_task_free(tsk);
782 	io_uring_free(tsk);
783 	cgroup_task_free(tsk);
784 	task_numa_free(tsk, true);
785 	security_task_free(tsk);
786 	exit_creds(tsk);
787 	delayacct_tsk_free(tsk);
788 	put_signal_struct(tsk->signal);
789 	sched_core_free(tsk);
790 	free_task(tsk);
791 }
792 EXPORT_SYMBOL_GPL(__put_task_struct);
793 
__put_task_struct_rcu_cb(struct rcu_head * rhp)794 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
795 {
796 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
797 
798 	__put_task_struct(task);
799 }
800 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
801 
arch_task_cache_init(void)802 void __init __weak arch_task_cache_init(void) { }
803 
804 /*
805  * set_max_threads
806  */
set_max_threads(unsigned int max_threads_suggested)807 static void __init set_max_threads(unsigned int max_threads_suggested)
808 {
809 	u64 threads;
810 	unsigned long nr_pages = memblock_estimated_nr_free_pages();
811 
812 	/*
813 	 * The number of threads shall be limited such that the thread
814 	 * structures may only consume a small part of the available memory.
815 	 */
816 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
817 		threads = MAX_THREADS;
818 	else
819 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
820 				    (u64) THREAD_SIZE * 8UL);
821 
822 	if (threads > max_threads_suggested)
823 		threads = max_threads_suggested;
824 
825 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
826 }
827 
828 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
829 /* Initialized by the architecture: */
830 int arch_task_struct_size __read_mostly;
831 #endif
832 
task_struct_whitelist(unsigned long * offset,unsigned long * size)833 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
834 {
835 	/* Fetch thread_struct whitelist for the architecture. */
836 	arch_thread_struct_whitelist(offset, size);
837 
838 	/*
839 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
840 	 * adjust offset to position of thread_struct in task_struct.
841 	 */
842 	if (unlikely(*size == 0))
843 		*offset = 0;
844 	else
845 		*offset += offsetof(struct task_struct, thread);
846 }
847 
fork_init(void)848 void __init fork_init(void)
849 {
850 	int i;
851 #ifndef ARCH_MIN_TASKALIGN
852 #define ARCH_MIN_TASKALIGN	0
853 #endif
854 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
855 	unsigned long useroffset, usersize;
856 
857 	/* create a slab on which task_structs can be allocated */
858 	task_struct_whitelist(&useroffset, &usersize);
859 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
860 			arch_task_struct_size, align,
861 			SLAB_PANIC|SLAB_ACCOUNT,
862 			useroffset, usersize, NULL);
863 
864 	/* do the arch specific task caches init */
865 	arch_task_cache_init();
866 
867 	set_max_threads(MAX_THREADS);
868 
869 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
870 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
871 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
872 		init_task.signal->rlim[RLIMIT_NPROC];
873 
874 	for (i = 0; i < UCOUNT_COUNTS; i++)
875 		init_user_ns.ucount_max[i] = max_threads/2;
876 
877 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
878 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
879 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
880 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
881 
882 #ifdef CONFIG_VMAP_STACK
883 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
884 			  NULL, free_vm_stack_cache);
885 #endif
886 
887 	scs_init();
888 
889 	lockdep_init_task(&init_task);
890 	uprobes_init();
891 }
892 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)893 int __weak arch_dup_task_struct(struct task_struct *dst,
894 					       struct task_struct *src)
895 {
896 	*dst = *src;
897 	return 0;
898 }
899 
set_task_stack_end_magic(struct task_struct * tsk)900 void set_task_stack_end_magic(struct task_struct *tsk)
901 {
902 	unsigned long *stackend;
903 
904 	stackend = end_of_stack(tsk);
905 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
906 }
907 
dup_task_struct(struct task_struct * orig,int node)908 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
909 {
910 	struct task_struct *tsk;
911 	int err;
912 
913 	if (node == NUMA_NO_NODE)
914 		node = tsk_fork_get_node(orig);
915 	tsk = alloc_task_struct_node(node);
916 	if (!tsk)
917 		return NULL;
918 
919 	err = arch_dup_task_struct(tsk, orig);
920 	if (err)
921 		goto free_tsk;
922 
923 	err = alloc_thread_stack_node(tsk, node);
924 	if (err)
925 		goto free_tsk;
926 
927 #ifdef CONFIG_THREAD_INFO_IN_TASK
928 	refcount_set(&tsk->stack_refcount, 1);
929 #endif
930 	account_kernel_stack(tsk, 1);
931 
932 	err = scs_prepare(tsk, node);
933 	if (err)
934 		goto free_stack;
935 
936 #ifdef CONFIG_SECCOMP
937 	/*
938 	 * We must handle setting up seccomp filters once we're under
939 	 * the sighand lock in case orig has changed between now and
940 	 * then. Until then, filter must be NULL to avoid messing up
941 	 * the usage counts on the error path calling free_task.
942 	 */
943 	tsk->seccomp.filter = NULL;
944 #endif
945 
946 	setup_thread_stack(tsk, orig);
947 	clear_user_return_notifier(tsk);
948 	clear_tsk_need_resched(tsk);
949 	set_task_stack_end_magic(tsk);
950 	clear_syscall_work_syscall_user_dispatch(tsk);
951 
952 #ifdef CONFIG_STACKPROTECTOR
953 	tsk->stack_canary = get_random_canary();
954 #endif
955 	if (orig->cpus_ptr == &orig->cpus_mask)
956 		tsk->cpus_ptr = &tsk->cpus_mask;
957 	dup_user_cpus_ptr(tsk, orig, node);
958 
959 	/*
960 	 * One for the user space visible state that goes away when reaped.
961 	 * One for the scheduler.
962 	 */
963 	refcount_set(&tsk->rcu_users, 2);
964 	/* One for the rcu users */
965 	refcount_set(&tsk->usage, 1);
966 #ifdef CONFIG_BLK_DEV_IO_TRACE
967 	tsk->btrace_seq = 0;
968 #endif
969 	tsk->splice_pipe = NULL;
970 	tsk->task_frag.page = NULL;
971 	tsk->wake_q.next = NULL;
972 	tsk->worker_private = NULL;
973 
974 	kcov_task_init(tsk);
975 	kmsan_task_create(tsk);
976 	kmap_local_fork(tsk);
977 
978 #ifdef CONFIG_FAULT_INJECTION
979 	tsk->fail_nth = 0;
980 #endif
981 
982 #ifdef CONFIG_BLK_CGROUP
983 	tsk->throttle_disk = NULL;
984 	tsk->use_memdelay = 0;
985 #endif
986 
987 #ifdef CONFIG_ARCH_HAS_CPU_PASID
988 	tsk->pasid_activated = 0;
989 #endif
990 
991 #ifdef CONFIG_MEMCG
992 	tsk->active_memcg = NULL;
993 #endif
994 
995 #ifdef CONFIG_X86_BUS_LOCK_DETECT
996 	tsk->reported_split_lock = 0;
997 #endif
998 
999 #ifdef CONFIG_SCHED_MM_CID
1000 	tsk->mm_cid.cid = MM_CID_UNSET;
1001 	tsk->mm_cid.active = 0;
1002 #endif
1003 	return tsk;
1004 
1005 free_stack:
1006 	exit_task_stack_account(tsk);
1007 	free_thread_stack(tsk);
1008 free_tsk:
1009 	free_task_struct(tsk);
1010 	return NULL;
1011 }
1012 
1013 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1014 
1015 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1016 
coredump_filter_setup(char * s)1017 static int __init coredump_filter_setup(char *s)
1018 {
1019 	default_dump_filter =
1020 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1021 		MMF_DUMP_FILTER_MASK;
1022 	return 1;
1023 }
1024 
1025 __setup("coredump_filter=", coredump_filter_setup);
1026 
1027 #include <linux/init_task.h>
1028 
mm_init_aio(struct mm_struct * mm)1029 static void mm_init_aio(struct mm_struct *mm)
1030 {
1031 #ifdef CONFIG_AIO
1032 	spin_lock_init(&mm->ioctx_lock);
1033 	mm->ioctx_table = NULL;
1034 #endif
1035 }
1036 
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1037 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1038 					   struct task_struct *p)
1039 {
1040 #ifdef CONFIG_MEMCG
1041 	if (mm->owner == p)
1042 		WRITE_ONCE(mm->owner, NULL);
1043 #endif
1044 }
1045 
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1046 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1047 {
1048 #ifdef CONFIG_MEMCG
1049 	mm->owner = p;
1050 #endif
1051 }
1052 
mm_init_uprobes_state(struct mm_struct * mm)1053 static void mm_init_uprobes_state(struct mm_struct *mm)
1054 {
1055 #ifdef CONFIG_UPROBES
1056 	mm->uprobes_state.xol_area = NULL;
1057 	arch_uprobe_init_state(mm);
1058 #endif
1059 }
1060 
mmap_init_lock(struct mm_struct * mm)1061 static void mmap_init_lock(struct mm_struct *mm)
1062 {
1063 	init_rwsem(&mm->mmap_lock);
1064 	mm_lock_seqcount_init(mm);
1065 #ifdef CONFIG_PER_VMA_LOCK
1066 	rcuwait_init(&mm->vma_writer_wait);
1067 #endif
1068 }
1069 
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1070 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1071 	struct user_namespace *user_ns)
1072 {
1073 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1074 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1075 	atomic_set(&mm->mm_users, 1);
1076 	atomic_set(&mm->mm_count, 1);
1077 	seqcount_init(&mm->write_protect_seq);
1078 	mmap_init_lock(mm);
1079 	INIT_LIST_HEAD(&mm->mmlist);
1080 	mm_pgtables_bytes_init(mm);
1081 	mm->map_count = 0;
1082 	mm->locked_vm = 0;
1083 	atomic64_set(&mm->pinned_vm, 0);
1084 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1085 	spin_lock_init(&mm->page_table_lock);
1086 	spin_lock_init(&mm->arg_lock);
1087 	mm_init_cpumask(mm);
1088 	mm_init_aio(mm);
1089 	mm_init_owner(mm, p);
1090 	mm_pasid_init(mm);
1091 	RCU_INIT_POINTER(mm->exe_file, NULL);
1092 	mmu_notifier_subscriptions_init(mm);
1093 	init_tlb_flush_pending(mm);
1094 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1095 	mm->pmd_huge_pte = NULL;
1096 #endif
1097 	mm_init_uprobes_state(mm);
1098 	hugetlb_count_init(mm);
1099 
1100 	mm_flags_clear_all(mm);
1101 	if (current->mm) {
1102 		unsigned long flags = __mm_flags_get_word(current->mm);
1103 
1104 		__mm_flags_overwrite_word(mm, mmf_init_legacy_flags(flags));
1105 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1106 	} else {
1107 		__mm_flags_overwrite_word(mm, default_dump_filter);
1108 		mm->def_flags = 0;
1109 	}
1110 
1111 	if (futex_mm_init(mm))
1112 		goto fail_mm_init;
1113 
1114 	if (mm_alloc_pgd(mm))
1115 		goto fail_nopgd;
1116 
1117 	if (mm_alloc_id(mm))
1118 		goto fail_noid;
1119 
1120 	if (init_new_context(p, mm))
1121 		goto fail_nocontext;
1122 
1123 	if (mm_alloc_cid(mm, p))
1124 		goto fail_cid;
1125 
1126 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1127 				     NR_MM_COUNTERS))
1128 		goto fail_pcpu;
1129 
1130 	mm->user_ns = get_user_ns(user_ns);
1131 	lru_gen_init_mm(mm);
1132 	return mm;
1133 
1134 fail_pcpu:
1135 	mm_destroy_cid(mm);
1136 fail_cid:
1137 	destroy_context(mm);
1138 fail_nocontext:
1139 	mm_free_id(mm);
1140 fail_noid:
1141 	mm_free_pgd(mm);
1142 fail_nopgd:
1143 	futex_hash_free(mm);
1144 fail_mm_init:
1145 	free_mm(mm);
1146 	return NULL;
1147 }
1148 
1149 /*
1150  * Allocate and initialize an mm_struct.
1151  */
mm_alloc(void)1152 struct mm_struct *mm_alloc(void)
1153 {
1154 	struct mm_struct *mm;
1155 
1156 	mm = allocate_mm();
1157 	if (!mm)
1158 		return NULL;
1159 
1160 	memset(mm, 0, sizeof(*mm));
1161 	return mm_init(mm, current, current_user_ns());
1162 }
1163 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1164 
__mmput(struct mm_struct * mm)1165 static inline void __mmput(struct mm_struct *mm)
1166 {
1167 	VM_BUG_ON(atomic_read(&mm->mm_users));
1168 
1169 	uprobe_clear_state(mm);
1170 	exit_aio(mm);
1171 	ksm_exit(mm);
1172 	khugepaged_exit(mm); /* must run before exit_mmap */
1173 	exit_mmap(mm);
1174 	mm_put_huge_zero_folio(mm);
1175 	set_mm_exe_file(mm, NULL);
1176 	if (!list_empty(&mm->mmlist)) {
1177 		spin_lock(&mmlist_lock);
1178 		list_del(&mm->mmlist);
1179 		spin_unlock(&mmlist_lock);
1180 	}
1181 	if (mm->binfmt)
1182 		module_put(mm->binfmt->module);
1183 	lru_gen_del_mm(mm);
1184 	futex_hash_free(mm);
1185 	mmdrop(mm);
1186 }
1187 
1188 /*
1189  * Decrement the use count and release all resources for an mm.
1190  */
mmput(struct mm_struct * mm)1191 void mmput(struct mm_struct *mm)
1192 {
1193 	might_sleep();
1194 
1195 	if (atomic_dec_and_test(&mm->mm_users))
1196 		__mmput(mm);
1197 }
1198 EXPORT_SYMBOL_GPL(mmput);
1199 
1200 #if defined(CONFIG_MMU) || defined(CONFIG_FUTEX_PRIVATE_HASH)
mmput_async_fn(struct work_struct * work)1201 static void mmput_async_fn(struct work_struct *work)
1202 {
1203 	struct mm_struct *mm = container_of(work, struct mm_struct,
1204 					    async_put_work);
1205 
1206 	__mmput(mm);
1207 }
1208 
mmput_async(struct mm_struct * mm)1209 void mmput_async(struct mm_struct *mm)
1210 {
1211 	if (atomic_dec_and_test(&mm->mm_users)) {
1212 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1213 		schedule_work(&mm->async_put_work);
1214 	}
1215 }
1216 EXPORT_SYMBOL_GPL(mmput_async);
1217 #endif
1218 
1219 /**
1220  * set_mm_exe_file - change a reference to the mm's executable file
1221  * @mm: The mm to change.
1222  * @new_exe_file: The new file to use.
1223  *
1224  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1225  *
1226  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1227  * invocations: in mmput() nobody alive left, in execve it happens before
1228  * the new mm is made visible to anyone.
1229  *
1230  * Can only fail if new_exe_file != NULL.
1231  */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1232 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1233 {
1234 	struct file *old_exe_file;
1235 
1236 	/*
1237 	 * It is safe to dereference the exe_file without RCU as
1238 	 * this function is only called if nobody else can access
1239 	 * this mm -- see comment above for justification.
1240 	 */
1241 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1242 
1243 	if (new_exe_file) {
1244 		/*
1245 		 * We expect the caller (i.e., sys_execve) to already denied
1246 		 * write access, so this is unlikely to fail.
1247 		 */
1248 		if (unlikely(exe_file_deny_write_access(new_exe_file)))
1249 			return -EACCES;
1250 		get_file(new_exe_file);
1251 	}
1252 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1253 	if (old_exe_file) {
1254 		exe_file_allow_write_access(old_exe_file);
1255 		fput(old_exe_file);
1256 	}
1257 	return 0;
1258 }
1259 
1260 /**
1261  * replace_mm_exe_file - replace a reference to the mm's executable file
1262  * @mm: The mm to change.
1263  * @new_exe_file: The new file to use.
1264  *
1265  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1266  *
1267  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1268  */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1269 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1270 {
1271 	struct vm_area_struct *vma;
1272 	struct file *old_exe_file;
1273 	int ret = 0;
1274 
1275 	/* Forbid mm->exe_file change if old file still mapped. */
1276 	old_exe_file = get_mm_exe_file(mm);
1277 	if (old_exe_file) {
1278 		VMA_ITERATOR(vmi, mm, 0);
1279 		mmap_read_lock(mm);
1280 		for_each_vma(vmi, vma) {
1281 			if (!vma->vm_file)
1282 				continue;
1283 			if (path_equal(&vma->vm_file->f_path,
1284 				       &old_exe_file->f_path)) {
1285 				ret = -EBUSY;
1286 				break;
1287 			}
1288 		}
1289 		mmap_read_unlock(mm);
1290 		fput(old_exe_file);
1291 		if (ret)
1292 			return ret;
1293 	}
1294 
1295 	ret = exe_file_deny_write_access(new_exe_file);
1296 	if (ret)
1297 		return -EACCES;
1298 	get_file(new_exe_file);
1299 
1300 	/* set the new file */
1301 	mmap_write_lock(mm);
1302 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1303 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1304 	mmap_write_unlock(mm);
1305 
1306 	if (old_exe_file) {
1307 		exe_file_allow_write_access(old_exe_file);
1308 		fput(old_exe_file);
1309 	}
1310 	return 0;
1311 }
1312 
1313 /**
1314  * get_mm_exe_file - acquire a reference to the mm's executable file
1315  * @mm: The mm of interest.
1316  *
1317  * Returns %NULL if mm has no associated executable file.
1318  * User must release file via fput().
1319  */
get_mm_exe_file(struct mm_struct * mm)1320 struct file *get_mm_exe_file(struct mm_struct *mm)
1321 {
1322 	struct file *exe_file;
1323 
1324 	rcu_read_lock();
1325 	exe_file = get_file_rcu(&mm->exe_file);
1326 	rcu_read_unlock();
1327 	return exe_file;
1328 }
1329 
1330 /**
1331  * get_task_exe_file - acquire a reference to the task's executable file
1332  * @task: The task.
1333  *
1334  * Returns %NULL if task's mm (if any) has no associated executable file or
1335  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1336  * User must release file via fput().
1337  */
get_task_exe_file(struct task_struct * task)1338 struct file *get_task_exe_file(struct task_struct *task)
1339 {
1340 	struct file *exe_file = NULL;
1341 	struct mm_struct *mm;
1342 
1343 	if (task->flags & PF_KTHREAD)
1344 		return NULL;
1345 
1346 	task_lock(task);
1347 	mm = task->mm;
1348 	if (mm)
1349 		exe_file = get_mm_exe_file(mm);
1350 	task_unlock(task);
1351 	return exe_file;
1352 }
1353 
1354 /**
1355  * get_task_mm - acquire a reference to the task's mm
1356  * @task: The task.
1357  *
1358  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1359  * this kernel workthread has transiently adopted a user mm with use_mm,
1360  * to do its AIO) is not set and if so returns a reference to it, after
1361  * bumping up the use count.  User must release the mm via mmput()
1362  * after use.  Typically used by /proc and ptrace.
1363  */
get_task_mm(struct task_struct * task)1364 struct mm_struct *get_task_mm(struct task_struct *task)
1365 {
1366 	struct mm_struct *mm;
1367 
1368 	if (task->flags & PF_KTHREAD)
1369 		return NULL;
1370 
1371 	task_lock(task);
1372 	mm = task->mm;
1373 	if (mm)
1374 		mmget(mm);
1375 	task_unlock(task);
1376 	return mm;
1377 }
1378 EXPORT_SYMBOL_GPL(get_task_mm);
1379 
may_access_mm(struct mm_struct * mm,struct task_struct * task,unsigned int mode)1380 static bool may_access_mm(struct mm_struct *mm, struct task_struct *task, unsigned int mode)
1381 {
1382 	if (mm == current->mm)
1383 		return true;
1384 	if (ptrace_may_access(task, mode))
1385 		return true;
1386 	if ((mode & PTRACE_MODE_READ) && perfmon_capable())
1387 		return true;
1388 	return false;
1389 }
1390 
mm_access(struct task_struct * task,unsigned int mode)1391 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1392 {
1393 	struct mm_struct *mm;
1394 	int err;
1395 
1396 	err =  down_read_killable(&task->signal->exec_update_lock);
1397 	if (err)
1398 		return ERR_PTR(err);
1399 
1400 	mm = get_task_mm(task);
1401 	if (!mm) {
1402 		mm = ERR_PTR(-ESRCH);
1403 	} else if (!may_access_mm(mm, task, mode)) {
1404 		mmput(mm);
1405 		mm = ERR_PTR(-EACCES);
1406 	}
1407 	up_read(&task->signal->exec_update_lock);
1408 
1409 	return mm;
1410 }
1411 
complete_vfork_done(struct task_struct * tsk)1412 static void complete_vfork_done(struct task_struct *tsk)
1413 {
1414 	struct completion *vfork;
1415 
1416 	task_lock(tsk);
1417 	vfork = tsk->vfork_done;
1418 	if (likely(vfork)) {
1419 		tsk->vfork_done = NULL;
1420 		complete(vfork);
1421 	}
1422 	task_unlock(tsk);
1423 }
1424 
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1425 static int wait_for_vfork_done(struct task_struct *child,
1426 				struct completion *vfork)
1427 {
1428 	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1429 	int killed;
1430 
1431 	cgroup_enter_frozen();
1432 	killed = wait_for_completion_state(vfork, state);
1433 	cgroup_leave_frozen(false);
1434 
1435 	if (killed) {
1436 		task_lock(child);
1437 		child->vfork_done = NULL;
1438 		task_unlock(child);
1439 	}
1440 
1441 	put_task_struct(child);
1442 	return killed;
1443 }
1444 
1445 /* Please note the differences between mmput and mm_release.
1446  * mmput is called whenever we stop holding onto a mm_struct,
1447  * error success whatever.
1448  *
1449  * mm_release is called after a mm_struct has been removed
1450  * from the current process.
1451  *
1452  * This difference is important for error handling, when we
1453  * only half set up a mm_struct for a new process and need to restore
1454  * the old one.  Because we mmput the new mm_struct before
1455  * restoring the old one. . .
1456  * Eric Biederman 10 January 1998
1457  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1458 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1459 {
1460 	uprobe_free_utask(tsk);
1461 
1462 	/* Get rid of any cached register state */
1463 	deactivate_mm(tsk, mm);
1464 
1465 	/*
1466 	 * Signal userspace if we're not exiting with a core dump
1467 	 * because we want to leave the value intact for debugging
1468 	 * purposes.
1469 	 */
1470 	if (tsk->clear_child_tid) {
1471 		if (atomic_read(&mm->mm_users) > 1) {
1472 			/*
1473 			 * We don't check the error code - if userspace has
1474 			 * not set up a proper pointer then tough luck.
1475 			 */
1476 			put_user(0, tsk->clear_child_tid);
1477 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1478 					1, NULL, NULL, 0, 0);
1479 		}
1480 		tsk->clear_child_tid = NULL;
1481 	}
1482 
1483 	/*
1484 	 * All done, finally we can wake up parent and return this mm to him.
1485 	 * Also kthread_stop() uses this completion for synchronization.
1486 	 */
1487 	if (tsk->vfork_done)
1488 		complete_vfork_done(tsk);
1489 }
1490 
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1491 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1492 {
1493 	futex_exit_release(tsk);
1494 	mm_release(tsk, mm);
1495 }
1496 
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1497 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1498 {
1499 	futex_exec_release(tsk);
1500 	mm_release(tsk, mm);
1501 }
1502 
1503 /**
1504  * dup_mm() - duplicates an existing mm structure
1505  * @tsk: the task_struct with which the new mm will be associated.
1506  * @oldmm: the mm to duplicate.
1507  *
1508  * Allocates a new mm structure and duplicates the provided @oldmm structure
1509  * content into it.
1510  *
1511  * Return: the duplicated mm or NULL on failure.
1512  */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1513 static struct mm_struct *dup_mm(struct task_struct *tsk,
1514 				struct mm_struct *oldmm)
1515 {
1516 	struct mm_struct *mm;
1517 	int err;
1518 
1519 	mm = allocate_mm();
1520 	if (!mm)
1521 		goto fail_nomem;
1522 
1523 	memcpy(mm, oldmm, sizeof(*mm));
1524 
1525 	if (!mm_init(mm, tsk, mm->user_ns))
1526 		goto fail_nomem;
1527 
1528 	uprobe_start_dup_mmap();
1529 	err = dup_mmap(mm, oldmm);
1530 	if (err)
1531 		goto free_pt;
1532 	uprobe_end_dup_mmap();
1533 
1534 	mm->hiwater_rss = get_mm_rss(mm);
1535 	mm->hiwater_vm = mm->total_vm;
1536 
1537 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1538 		goto free_pt;
1539 
1540 	return mm;
1541 
1542 free_pt:
1543 	/* don't put binfmt in mmput, we haven't got module yet */
1544 	mm->binfmt = NULL;
1545 	mm_init_owner(mm, NULL);
1546 	mmput(mm);
1547 	if (err)
1548 		uprobe_end_dup_mmap();
1549 
1550 fail_nomem:
1551 	return NULL;
1552 }
1553 
copy_mm(u64 clone_flags,struct task_struct * tsk)1554 static int copy_mm(u64 clone_flags, struct task_struct *tsk)
1555 {
1556 	struct mm_struct *mm, *oldmm;
1557 
1558 	tsk->min_flt = tsk->maj_flt = 0;
1559 	tsk->nvcsw = tsk->nivcsw = 0;
1560 #ifdef CONFIG_DETECT_HUNG_TASK
1561 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1562 	tsk->last_switch_time = 0;
1563 #endif
1564 
1565 	tsk->mm = NULL;
1566 	tsk->active_mm = NULL;
1567 
1568 	/*
1569 	 * Are we cloning a kernel thread?
1570 	 *
1571 	 * We need to steal a active VM for that..
1572 	 */
1573 	oldmm = current->mm;
1574 	if (!oldmm)
1575 		return 0;
1576 
1577 	if (clone_flags & CLONE_VM) {
1578 		mmget(oldmm);
1579 		mm = oldmm;
1580 	} else {
1581 		mm = dup_mm(tsk, current->mm);
1582 		if (!mm)
1583 			return -ENOMEM;
1584 	}
1585 
1586 	tsk->mm = mm;
1587 	tsk->active_mm = mm;
1588 	sched_mm_cid_fork(tsk);
1589 	return 0;
1590 }
1591 
copy_fs(u64 clone_flags,struct task_struct * tsk)1592 static int copy_fs(u64 clone_flags, struct task_struct *tsk)
1593 {
1594 	struct fs_struct *fs = current->fs;
1595 	if (clone_flags & CLONE_FS) {
1596 		/* tsk->fs is already what we want */
1597 		read_seqlock_excl(&fs->seq);
1598 		/* "users" and "in_exec" locked for check_unsafe_exec() */
1599 		if (fs->in_exec) {
1600 			read_sequnlock_excl(&fs->seq);
1601 			return -EAGAIN;
1602 		}
1603 		fs->users++;
1604 		read_sequnlock_excl(&fs->seq);
1605 		return 0;
1606 	}
1607 	tsk->fs = copy_fs_struct(fs);
1608 	if (!tsk->fs)
1609 		return -ENOMEM;
1610 	return 0;
1611 }
1612 
copy_files(u64 clone_flags,struct task_struct * tsk,int no_files)1613 static int copy_files(u64 clone_flags, struct task_struct *tsk,
1614 		      int no_files)
1615 {
1616 	struct files_struct *oldf, *newf;
1617 
1618 	/*
1619 	 * A background process may not have any files ...
1620 	 */
1621 	oldf = current->files;
1622 	if (!oldf)
1623 		return 0;
1624 
1625 	if (no_files) {
1626 		tsk->files = NULL;
1627 		return 0;
1628 	}
1629 
1630 	if (clone_flags & CLONE_FILES) {
1631 		atomic_inc(&oldf->count);
1632 		return 0;
1633 	}
1634 
1635 	newf = dup_fd(oldf, NULL);
1636 	if (IS_ERR(newf))
1637 		return PTR_ERR(newf);
1638 
1639 	tsk->files = newf;
1640 	return 0;
1641 }
1642 
copy_sighand(u64 clone_flags,struct task_struct * tsk)1643 static int copy_sighand(u64 clone_flags, struct task_struct *tsk)
1644 {
1645 	struct sighand_struct *sig;
1646 
1647 	if (clone_flags & CLONE_SIGHAND) {
1648 		refcount_inc(&current->sighand->count);
1649 		return 0;
1650 	}
1651 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1652 	RCU_INIT_POINTER(tsk->sighand, sig);
1653 	if (!sig)
1654 		return -ENOMEM;
1655 
1656 	refcount_set(&sig->count, 1);
1657 	spin_lock_irq(&current->sighand->siglock);
1658 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1659 	spin_unlock_irq(&current->sighand->siglock);
1660 
1661 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1662 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1663 		flush_signal_handlers(tsk, 0);
1664 
1665 	return 0;
1666 }
1667 
__cleanup_sighand(struct sighand_struct * sighand)1668 void __cleanup_sighand(struct sighand_struct *sighand)
1669 {
1670 	if (refcount_dec_and_test(&sighand->count)) {
1671 		signalfd_cleanup(sighand);
1672 		/*
1673 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1674 		 * without an RCU grace period, see __lock_task_sighand().
1675 		 */
1676 		kmem_cache_free(sighand_cachep, sighand);
1677 	}
1678 }
1679 
1680 /*
1681  * Initialize POSIX timer handling for a thread group.
1682  */
posix_cpu_timers_init_group(struct signal_struct * sig)1683 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1684 {
1685 	struct posix_cputimers *pct = &sig->posix_cputimers;
1686 	unsigned long cpu_limit;
1687 
1688 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1689 	posix_cputimers_group_init(pct, cpu_limit);
1690 }
1691 
copy_signal(u64 clone_flags,struct task_struct * tsk)1692 static int copy_signal(u64 clone_flags, struct task_struct *tsk)
1693 {
1694 	struct signal_struct *sig;
1695 
1696 	if (clone_flags & CLONE_THREAD)
1697 		return 0;
1698 
1699 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1700 	tsk->signal = sig;
1701 	if (!sig)
1702 		return -ENOMEM;
1703 
1704 	sig->nr_threads = 1;
1705 	sig->quick_threads = 1;
1706 	atomic_set(&sig->live, 1);
1707 	refcount_set(&sig->sigcnt, 1);
1708 
1709 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1710 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1711 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1712 
1713 	init_waitqueue_head(&sig->wait_chldexit);
1714 	sig->curr_target = tsk;
1715 	init_sigpending(&sig->shared_pending);
1716 	INIT_HLIST_HEAD(&sig->multiprocess);
1717 	seqlock_init(&sig->stats_lock);
1718 	prev_cputime_init(&sig->prev_cputime);
1719 
1720 #ifdef CONFIG_POSIX_TIMERS
1721 	INIT_HLIST_HEAD(&sig->posix_timers);
1722 	INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1723 	hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1724 #endif
1725 
1726 	task_lock(current->group_leader);
1727 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1728 	task_unlock(current->group_leader);
1729 
1730 	posix_cpu_timers_init_group(sig);
1731 
1732 	tty_audit_fork(sig);
1733 	sched_autogroup_fork(sig);
1734 
1735 #ifdef CONFIG_CGROUPS
1736 	init_rwsem(&sig->cgroup_threadgroup_rwsem);
1737 #endif
1738 
1739 	sig->oom_score_adj = current->signal->oom_score_adj;
1740 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1741 
1742 	mutex_init(&sig->cred_guard_mutex);
1743 	init_rwsem(&sig->exec_update_lock);
1744 
1745 	return 0;
1746 }
1747 
copy_seccomp(struct task_struct * p)1748 static void copy_seccomp(struct task_struct *p)
1749 {
1750 #ifdef CONFIG_SECCOMP
1751 	/*
1752 	 * Must be called with sighand->lock held, which is common to
1753 	 * all threads in the group. Holding cred_guard_mutex is not
1754 	 * needed because this new task is not yet running and cannot
1755 	 * be racing exec.
1756 	 */
1757 	assert_spin_locked(&current->sighand->siglock);
1758 
1759 	/* Ref-count the new filter user, and assign it. */
1760 	get_seccomp_filter(current);
1761 	p->seccomp = current->seccomp;
1762 
1763 	/*
1764 	 * Explicitly enable no_new_privs here in case it got set
1765 	 * between the task_struct being duplicated and holding the
1766 	 * sighand lock. The seccomp state and nnp must be in sync.
1767 	 */
1768 	if (task_no_new_privs(current))
1769 		task_set_no_new_privs(p);
1770 
1771 	/*
1772 	 * If the parent gained a seccomp mode after copying thread
1773 	 * flags and between before we held the sighand lock, we have
1774 	 * to manually enable the seccomp thread flag here.
1775 	 */
1776 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1777 		set_task_syscall_work(p, SECCOMP);
1778 #endif
1779 }
1780 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1781 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1782 {
1783 	current->clear_child_tid = tidptr;
1784 
1785 	return task_pid_vnr(current);
1786 }
1787 
rt_mutex_init_task(struct task_struct * p)1788 static void rt_mutex_init_task(struct task_struct *p)
1789 {
1790 	raw_spin_lock_init(&p->pi_lock);
1791 #ifdef CONFIG_RT_MUTEXES
1792 	p->pi_waiters = RB_ROOT_CACHED;
1793 	p->pi_top_task = NULL;
1794 	p->pi_blocked_on = NULL;
1795 #endif
1796 }
1797 
init_task_pid_links(struct task_struct * task)1798 static inline void init_task_pid_links(struct task_struct *task)
1799 {
1800 	enum pid_type type;
1801 
1802 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1803 		INIT_HLIST_NODE(&task->pid_links[type]);
1804 }
1805 
1806 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1807 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1808 {
1809 	if (type == PIDTYPE_PID)
1810 		task->thread_pid = pid;
1811 	else
1812 		task->signal->pids[type] = pid;
1813 }
1814 
rcu_copy_process(struct task_struct * p)1815 static inline void rcu_copy_process(struct task_struct *p)
1816 {
1817 #ifdef CONFIG_PREEMPT_RCU
1818 	p->rcu_read_lock_nesting = 0;
1819 	p->rcu_read_unlock_special.s = 0;
1820 	p->rcu_blocked_node = NULL;
1821 	INIT_LIST_HEAD(&p->rcu_node_entry);
1822 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1823 #ifdef CONFIG_TASKS_RCU
1824 	p->rcu_tasks_holdout = false;
1825 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1826 	p->rcu_tasks_idle_cpu = -1;
1827 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1828 #endif /* #ifdef CONFIG_TASKS_RCU */
1829 #ifdef CONFIG_TASKS_TRACE_RCU
1830 	p->trc_reader_nesting = 0;
1831 	p->trc_reader_special.s = 0;
1832 	INIT_LIST_HEAD(&p->trc_holdout_list);
1833 	INIT_LIST_HEAD(&p->trc_blkd_node);
1834 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1835 }
1836 
1837 /**
1838  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1839  * @pid:   the struct pid for which to create a pidfd
1840  * @flags: flags of the new @pidfd
1841  * @ret_file: return the new pidfs file
1842  *
1843  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1844  * caller's file descriptor table. The pidfd is reserved but not installed yet.
1845  *
1846  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
1847  * task identified by @pid must be a thread-group leader.
1848  *
1849  * If this function returns successfully the caller is responsible to either
1850  * call fd_install() passing the returned pidfd and pidfd file as arguments in
1851  * order to install the pidfd into its file descriptor table or they must use
1852  * put_unused_fd() and fput() on the returned pidfd and pidfd file
1853  * respectively.
1854  *
1855  * This function is useful when a pidfd must already be reserved but there
1856  * might still be points of failure afterwards and the caller wants to ensure
1857  * that no pidfd is leaked into its file descriptor table.
1858  *
1859  * Return: On success, a reserved pidfd is returned from the function and a new
1860  *         pidfd file is returned in the last argument to the function. On
1861  *         error, a negative error code is returned from the function and the
1862  *         last argument remains unchanged.
1863  */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret_file)1864 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret_file)
1865 {
1866 	struct file *pidfs_file;
1867 
1868 	/*
1869 	 * PIDFD_STALE is only allowed to be passed if the caller knows
1870 	 * that @pid is already registered in pidfs and thus
1871 	 * PIDFD_INFO_EXIT information is guaranteed to be available.
1872 	 */
1873 	if (!(flags & PIDFD_STALE)) {
1874 		/*
1875 		 * While holding the pidfd waitqueue lock removing the
1876 		 * task linkage for the thread-group leader pid
1877 		 * (PIDTYPE_TGID) isn't possible. Thus, if there's still
1878 		 * task linkage for PIDTYPE_PID not having thread-group
1879 		 * leader linkage for the pid means it wasn't a
1880 		 * thread-group leader in the first place.
1881 		 */
1882 		guard(spinlock_irq)(&pid->wait_pidfd.lock);
1883 
1884 		/* Task has already been reaped. */
1885 		if (!pid_has_task(pid, PIDTYPE_PID))
1886 			return -ESRCH;
1887 		/*
1888 		 * If this struct pid isn't used as a thread-group
1889 		 * leader but the caller requested to create a
1890 		 * thread-group leader pidfd then report ENOENT.
1891 		 */
1892 		if (!(flags & PIDFD_THREAD) && !pid_has_task(pid, PIDTYPE_TGID))
1893 			return -ENOENT;
1894 	}
1895 
1896 	CLASS(get_unused_fd, pidfd)(O_CLOEXEC);
1897 	if (pidfd < 0)
1898 		return pidfd;
1899 
1900 	pidfs_file = pidfs_alloc_file(pid, flags | O_RDWR);
1901 	if (IS_ERR(pidfs_file))
1902 		return PTR_ERR(pidfs_file);
1903 
1904 	*ret_file = pidfs_file;
1905 	return take_fd(pidfd);
1906 }
1907 
__delayed_free_task(struct rcu_head * rhp)1908 static void __delayed_free_task(struct rcu_head *rhp)
1909 {
1910 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1911 
1912 	free_task(tsk);
1913 }
1914 
delayed_free_task(struct task_struct * tsk)1915 static __always_inline void delayed_free_task(struct task_struct *tsk)
1916 {
1917 	if (IS_ENABLED(CONFIG_MEMCG))
1918 		call_rcu(&tsk->rcu, __delayed_free_task);
1919 	else
1920 		free_task(tsk);
1921 }
1922 
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1923 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1924 {
1925 	/* Skip if kernel thread */
1926 	if (!tsk->mm)
1927 		return;
1928 
1929 	/* Skip if spawning a thread or using vfork */
1930 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1931 		return;
1932 
1933 	/* We need to synchronize with __set_oom_adj */
1934 	mutex_lock(&oom_adj_mutex);
1935 	mm_flags_set(MMF_MULTIPROCESS, tsk->mm);
1936 	/* Update the values in case they were changed after copy_signal */
1937 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1938 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1939 	mutex_unlock(&oom_adj_mutex);
1940 }
1941 
1942 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)1943 static void rv_task_fork(struct task_struct *p)
1944 {
1945 	memset(&p->rv, 0, sizeof(p->rv));
1946 }
1947 #else
1948 #define rv_task_fork(p) do {} while (0)
1949 #endif
1950 
need_futex_hash_allocate_default(u64 clone_flags)1951 static bool need_futex_hash_allocate_default(u64 clone_flags)
1952 {
1953 	if ((clone_flags & (CLONE_THREAD | CLONE_VM)) != (CLONE_THREAD | CLONE_VM))
1954 		return false;
1955 	return true;
1956 }
1957 
1958 /*
1959  * This creates a new process as a copy of the old one,
1960  * but does not actually start it yet.
1961  *
1962  * It copies the registers, and all the appropriate
1963  * parts of the process environment (as per the clone
1964  * flags). The actual kick-off is left to the caller.
1965  */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1966 __latent_entropy struct task_struct *copy_process(
1967 					struct pid *pid,
1968 					int trace,
1969 					int node,
1970 					struct kernel_clone_args *args)
1971 {
1972 	int pidfd = -1, retval;
1973 	struct task_struct *p;
1974 	struct multiprocess_signals delayed;
1975 	struct file *pidfile = NULL;
1976 	const u64 clone_flags = args->flags;
1977 	struct nsproxy *nsp = current->nsproxy;
1978 
1979 	/*
1980 	 * Don't allow sharing the root directory with processes in a different
1981 	 * namespace
1982 	 */
1983 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1984 		return ERR_PTR(-EINVAL);
1985 
1986 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1987 		return ERR_PTR(-EINVAL);
1988 
1989 	/*
1990 	 * Thread groups must share signals as well, and detached threads
1991 	 * can only be started up within the thread group.
1992 	 */
1993 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1994 		return ERR_PTR(-EINVAL);
1995 
1996 	/*
1997 	 * Shared signal handlers imply shared VM. By way of the above,
1998 	 * thread groups also imply shared VM. Blocking this case allows
1999 	 * for various simplifications in other code.
2000 	 */
2001 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2002 		return ERR_PTR(-EINVAL);
2003 
2004 	/*
2005 	 * Siblings of global init remain as zombies on exit since they are
2006 	 * not reaped by their parent (swapper). To solve this and to avoid
2007 	 * multi-rooted process trees, prevent global and container-inits
2008 	 * from creating siblings.
2009 	 */
2010 	if ((clone_flags & CLONE_PARENT) &&
2011 				current->signal->flags & SIGNAL_UNKILLABLE)
2012 		return ERR_PTR(-EINVAL);
2013 
2014 	/*
2015 	 * If the new process will be in a different pid or user namespace
2016 	 * do not allow it to share a thread group with the forking task.
2017 	 */
2018 	if (clone_flags & CLONE_THREAD) {
2019 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2020 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2021 			return ERR_PTR(-EINVAL);
2022 	}
2023 
2024 	if (clone_flags & CLONE_PIDFD) {
2025 		/*
2026 		 * - CLONE_DETACHED is blocked so that we can potentially
2027 		 *   reuse it later for CLONE_PIDFD.
2028 		 */
2029 		if (clone_flags & CLONE_DETACHED)
2030 			return ERR_PTR(-EINVAL);
2031 	}
2032 
2033 	/*
2034 	 * Force any signals received before this point to be delivered
2035 	 * before the fork happens.  Collect up signals sent to multiple
2036 	 * processes that happen during the fork and delay them so that
2037 	 * they appear to happen after the fork.
2038 	 */
2039 	sigemptyset(&delayed.signal);
2040 	INIT_HLIST_NODE(&delayed.node);
2041 
2042 	spin_lock_irq(&current->sighand->siglock);
2043 	if (!(clone_flags & CLONE_THREAD))
2044 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2045 	recalc_sigpending();
2046 	spin_unlock_irq(&current->sighand->siglock);
2047 	retval = -ERESTARTNOINTR;
2048 	if (task_sigpending(current))
2049 		goto fork_out;
2050 
2051 	retval = -ENOMEM;
2052 	p = dup_task_struct(current, node);
2053 	if (!p)
2054 		goto fork_out;
2055 	p->flags &= ~PF_KTHREAD;
2056 	if (args->kthread)
2057 		p->flags |= PF_KTHREAD;
2058 	if (args->user_worker) {
2059 		/*
2060 		 * Mark us a user worker, and block any signal that isn't
2061 		 * fatal or STOP
2062 		 */
2063 		p->flags |= PF_USER_WORKER;
2064 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2065 	}
2066 	if (args->io_thread)
2067 		p->flags |= PF_IO_WORKER;
2068 
2069 	if (args->name)
2070 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2071 
2072 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2073 	/*
2074 	 * Clear TID on mm_release()?
2075 	 */
2076 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2077 
2078 	ftrace_graph_init_task(p);
2079 
2080 	rt_mutex_init_task(p);
2081 
2082 	lockdep_assert_irqs_enabled();
2083 #ifdef CONFIG_PROVE_LOCKING
2084 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2085 #endif
2086 	retval = copy_creds(p, clone_flags);
2087 	if (retval < 0)
2088 		goto bad_fork_free;
2089 
2090 	retval = -EAGAIN;
2091 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2092 		if (p->real_cred->user != INIT_USER &&
2093 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2094 			goto bad_fork_cleanup_count;
2095 	}
2096 	current->flags &= ~PF_NPROC_EXCEEDED;
2097 
2098 	/*
2099 	 * If multiple threads are within copy_process(), then this check
2100 	 * triggers too late. This doesn't hurt, the check is only there
2101 	 * to stop root fork bombs.
2102 	 */
2103 	retval = -EAGAIN;
2104 	if (data_race(nr_threads >= max_threads))
2105 		goto bad_fork_cleanup_count;
2106 
2107 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2108 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2109 	p->flags |= PF_FORKNOEXEC;
2110 	INIT_LIST_HEAD(&p->children);
2111 	INIT_LIST_HEAD(&p->sibling);
2112 	rcu_copy_process(p);
2113 	p->vfork_done = NULL;
2114 	spin_lock_init(&p->alloc_lock);
2115 
2116 	init_sigpending(&p->pending);
2117 
2118 	p->utime = p->stime = p->gtime = 0;
2119 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2120 	p->utimescaled = p->stimescaled = 0;
2121 #endif
2122 	prev_cputime_init(&p->prev_cputime);
2123 
2124 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2125 	seqcount_init(&p->vtime.seqcount);
2126 	p->vtime.starttime = 0;
2127 	p->vtime.state = VTIME_INACTIVE;
2128 #endif
2129 
2130 #ifdef CONFIG_IO_URING
2131 	p->io_uring = NULL;
2132 #endif
2133 
2134 	p->default_timer_slack_ns = current->timer_slack_ns;
2135 
2136 #ifdef CONFIG_PSI
2137 	p->psi_flags = 0;
2138 #endif
2139 
2140 	task_io_accounting_init(&p->ioac);
2141 	acct_clear_integrals(p);
2142 
2143 	posix_cputimers_init(&p->posix_cputimers);
2144 	tick_dep_init_task(p);
2145 
2146 	p->io_context = NULL;
2147 	audit_set_context(p, NULL);
2148 	cgroup_fork(p);
2149 	if (args->kthread) {
2150 		if (!set_kthread_struct(p))
2151 			goto bad_fork_cleanup_delayacct;
2152 	}
2153 #ifdef CONFIG_NUMA
2154 	p->mempolicy = mpol_dup(p->mempolicy);
2155 	if (IS_ERR(p->mempolicy)) {
2156 		retval = PTR_ERR(p->mempolicy);
2157 		p->mempolicy = NULL;
2158 		goto bad_fork_cleanup_delayacct;
2159 	}
2160 #endif
2161 #ifdef CONFIG_CPUSETS
2162 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2163 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2164 #endif
2165 #ifdef CONFIG_TRACE_IRQFLAGS
2166 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2167 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2168 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2169 	p->softirqs_enabled		= 1;
2170 	p->softirq_context		= 0;
2171 #endif
2172 
2173 	p->pagefault_disabled = 0;
2174 
2175 	lockdep_init_task(p);
2176 
2177 	p->blocked_on = NULL; /* not blocked yet */
2178 
2179 #ifdef CONFIG_BCACHE
2180 	p->sequential_io	= 0;
2181 	p->sequential_io_avg	= 0;
2182 #endif
2183 #ifdef CONFIG_BPF_SYSCALL
2184 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2185 	p->bpf_ctx = NULL;
2186 #endif
2187 
2188 	unwind_task_init(p);
2189 
2190 	/* Perform scheduler related setup. Assign this task to a CPU. */
2191 	retval = sched_fork(clone_flags, p);
2192 	if (retval)
2193 		goto bad_fork_cleanup_policy;
2194 
2195 	retval = perf_event_init_task(p, clone_flags);
2196 	if (retval)
2197 		goto bad_fork_sched_cancel_fork;
2198 	retval = audit_alloc(p);
2199 	if (retval)
2200 		goto bad_fork_cleanup_perf;
2201 	/* copy all the process information */
2202 	shm_init_task(p);
2203 	retval = security_task_alloc(p, clone_flags);
2204 	if (retval)
2205 		goto bad_fork_cleanup_audit;
2206 	retval = copy_semundo(clone_flags, p);
2207 	if (retval)
2208 		goto bad_fork_cleanup_security;
2209 	retval = copy_files(clone_flags, p, args->no_files);
2210 	if (retval)
2211 		goto bad_fork_cleanup_semundo;
2212 	retval = copy_fs(clone_flags, p);
2213 	if (retval)
2214 		goto bad_fork_cleanup_files;
2215 	retval = copy_sighand(clone_flags, p);
2216 	if (retval)
2217 		goto bad_fork_cleanup_fs;
2218 	retval = copy_signal(clone_flags, p);
2219 	if (retval)
2220 		goto bad_fork_cleanup_sighand;
2221 	retval = copy_mm(clone_flags, p);
2222 	if (retval)
2223 		goto bad_fork_cleanup_signal;
2224 	retval = copy_namespaces(clone_flags, p);
2225 	if (retval)
2226 		goto bad_fork_cleanup_mm;
2227 	retval = copy_io(clone_flags, p);
2228 	if (retval)
2229 		goto bad_fork_cleanup_namespaces;
2230 	retval = copy_thread(p, args);
2231 	if (retval)
2232 		goto bad_fork_cleanup_io;
2233 
2234 	stackleak_task_init(p);
2235 
2236 	if (pid != &init_struct_pid) {
2237 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2238 				args->set_tid_size);
2239 		if (IS_ERR(pid)) {
2240 			retval = PTR_ERR(pid);
2241 			goto bad_fork_cleanup_thread;
2242 		}
2243 	}
2244 
2245 	/*
2246 	 * This has to happen after we've potentially unshared the file
2247 	 * descriptor table (so that the pidfd doesn't leak into the child
2248 	 * if the fd table isn't shared).
2249 	 */
2250 	if (clone_flags & CLONE_PIDFD) {
2251 		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2252 
2253 		/*
2254 		 * Note that no task has been attached to @pid yet indicate
2255 		 * that via CLONE_PIDFD.
2256 		 */
2257 		retval = pidfd_prepare(pid, flags | PIDFD_STALE, &pidfile);
2258 		if (retval < 0)
2259 			goto bad_fork_free_pid;
2260 		pidfd = retval;
2261 
2262 		retval = put_user(pidfd, args->pidfd);
2263 		if (retval)
2264 			goto bad_fork_put_pidfd;
2265 	}
2266 
2267 #ifdef CONFIG_BLOCK
2268 	p->plug = NULL;
2269 #endif
2270 	futex_init_task(p);
2271 
2272 	/*
2273 	 * sigaltstack should be cleared when sharing the same VM
2274 	 */
2275 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2276 		sas_ss_reset(p);
2277 
2278 	/*
2279 	 * Syscall tracing and stepping should be turned off in the
2280 	 * child regardless of CLONE_PTRACE.
2281 	 */
2282 	user_disable_single_step(p);
2283 	clear_task_syscall_work(p, SYSCALL_TRACE);
2284 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2285 	clear_task_syscall_work(p, SYSCALL_EMU);
2286 #endif
2287 	clear_tsk_latency_tracing(p);
2288 
2289 	/* ok, now we should be set up.. */
2290 	p->pid = pid_nr(pid);
2291 	if (clone_flags & CLONE_THREAD) {
2292 		p->group_leader = current->group_leader;
2293 		p->tgid = current->tgid;
2294 	} else {
2295 		p->group_leader = p;
2296 		p->tgid = p->pid;
2297 	}
2298 
2299 	p->nr_dirtied = 0;
2300 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2301 	p->dirty_paused_when = 0;
2302 
2303 	p->pdeath_signal = 0;
2304 	p->task_works = NULL;
2305 	clear_posix_cputimers_work(p);
2306 
2307 #ifdef CONFIG_KRETPROBES
2308 	p->kretprobe_instances.first = NULL;
2309 #endif
2310 #ifdef CONFIG_RETHOOK
2311 	p->rethooks.first = NULL;
2312 #endif
2313 
2314 	/*
2315 	 * Ensure that the cgroup subsystem policies allow the new process to be
2316 	 * forked. It should be noted that the new process's css_set can be changed
2317 	 * between here and cgroup_post_fork() if an organisation operation is in
2318 	 * progress.
2319 	 */
2320 	retval = cgroup_can_fork(p, args);
2321 	if (retval)
2322 		goto bad_fork_put_pidfd;
2323 
2324 	/*
2325 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2326 	 * the new task on the correct runqueue. All this *before* the task
2327 	 * becomes visible.
2328 	 *
2329 	 * This isn't part of ->can_fork() because while the re-cloning is
2330 	 * cgroup specific, it unconditionally needs to place the task on a
2331 	 * runqueue.
2332 	 */
2333 	retval = sched_cgroup_fork(p, args);
2334 	if (retval)
2335 		goto bad_fork_cancel_cgroup;
2336 
2337 	/*
2338 	 * Allocate a default futex hash for the user process once the first
2339 	 * thread spawns.
2340 	 */
2341 	if (need_futex_hash_allocate_default(clone_flags)) {
2342 		retval = futex_hash_allocate_default();
2343 		if (retval)
2344 			goto bad_fork_cancel_cgroup;
2345 		/*
2346 		 * If we fail beyond this point we don't free the allocated
2347 		 * futex hash map. We assume that another thread will be created
2348 		 * and makes use of it. The hash map will be freed once the main
2349 		 * thread terminates.
2350 		 */
2351 	}
2352 	/*
2353 	 * From this point on we must avoid any synchronous user-space
2354 	 * communication until we take the tasklist-lock. In particular, we do
2355 	 * not want user-space to be able to predict the process start-time by
2356 	 * stalling fork(2) after we recorded the start_time but before it is
2357 	 * visible to the system.
2358 	 */
2359 
2360 	p->start_time = ktime_get_ns();
2361 	p->start_boottime = ktime_get_boottime_ns();
2362 
2363 	/*
2364 	 * Make it visible to the rest of the system, but dont wake it up yet.
2365 	 * Need tasklist lock for parent etc handling!
2366 	 */
2367 	write_lock_irq(&tasklist_lock);
2368 
2369 	/* CLONE_PARENT re-uses the old parent */
2370 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2371 		p->real_parent = current->real_parent;
2372 		p->parent_exec_id = current->parent_exec_id;
2373 		if (clone_flags & CLONE_THREAD)
2374 			p->exit_signal = -1;
2375 		else
2376 			p->exit_signal = current->group_leader->exit_signal;
2377 	} else {
2378 		p->real_parent = current;
2379 		p->parent_exec_id = current->self_exec_id;
2380 		p->exit_signal = args->exit_signal;
2381 	}
2382 
2383 	klp_copy_process(p);
2384 
2385 	sched_core_fork(p);
2386 
2387 	spin_lock(&current->sighand->siglock);
2388 
2389 	rv_task_fork(p);
2390 
2391 	rseq_fork(p, clone_flags);
2392 
2393 	/* Don't start children in a dying pid namespace */
2394 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2395 		retval = -ENOMEM;
2396 		goto bad_fork_core_free;
2397 	}
2398 
2399 	/* Let kill terminate clone/fork in the middle */
2400 	if (fatal_signal_pending(current)) {
2401 		retval = -EINTR;
2402 		goto bad_fork_core_free;
2403 	}
2404 
2405 	/* No more failure paths after this point. */
2406 
2407 	/*
2408 	 * Copy seccomp details explicitly here, in case they were changed
2409 	 * before holding sighand lock.
2410 	 */
2411 	copy_seccomp(p);
2412 
2413 	init_task_pid_links(p);
2414 	if (likely(p->pid)) {
2415 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2416 
2417 		init_task_pid(p, PIDTYPE_PID, pid);
2418 		if (thread_group_leader(p)) {
2419 			init_task_pid(p, PIDTYPE_TGID, pid);
2420 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2421 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2422 
2423 			if (is_child_reaper(pid)) {
2424 				ns_of_pid(pid)->child_reaper = p;
2425 				p->signal->flags |= SIGNAL_UNKILLABLE;
2426 			}
2427 			p->signal->shared_pending.signal = delayed.signal;
2428 			p->signal->tty = tty_kref_get(current->signal->tty);
2429 			/*
2430 			 * Inherit has_child_subreaper flag under the same
2431 			 * tasklist_lock with adding child to the process tree
2432 			 * for propagate_has_child_subreaper optimization.
2433 			 */
2434 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2435 							 p->real_parent->signal->is_child_subreaper;
2436 			list_add_tail(&p->sibling, &p->real_parent->children);
2437 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2438 			attach_pid(p, PIDTYPE_TGID);
2439 			attach_pid(p, PIDTYPE_PGID);
2440 			attach_pid(p, PIDTYPE_SID);
2441 			__this_cpu_inc(process_counts);
2442 		} else {
2443 			current->signal->nr_threads++;
2444 			current->signal->quick_threads++;
2445 			atomic_inc(&current->signal->live);
2446 			refcount_inc(&current->signal->sigcnt);
2447 			task_join_group_stop(p);
2448 			list_add_tail_rcu(&p->thread_node,
2449 					  &p->signal->thread_head);
2450 		}
2451 		attach_pid(p, PIDTYPE_PID);
2452 		nr_threads++;
2453 	}
2454 	total_forks++;
2455 	hlist_del_init(&delayed.node);
2456 	spin_unlock(&current->sighand->siglock);
2457 	syscall_tracepoint_update(p);
2458 	write_unlock_irq(&tasklist_lock);
2459 
2460 	if (pidfile)
2461 		fd_install(pidfd, pidfile);
2462 
2463 	proc_fork_connector(p);
2464 	sched_post_fork(p);
2465 	cgroup_post_fork(p, args);
2466 	perf_event_fork(p);
2467 
2468 	trace_task_newtask(p, clone_flags);
2469 	uprobe_copy_process(p, clone_flags);
2470 	user_events_fork(p, clone_flags);
2471 
2472 	copy_oom_score_adj(clone_flags, p);
2473 
2474 	return p;
2475 
2476 bad_fork_core_free:
2477 	sched_core_free(p);
2478 	spin_unlock(&current->sighand->siglock);
2479 	write_unlock_irq(&tasklist_lock);
2480 bad_fork_cancel_cgroup:
2481 	cgroup_cancel_fork(p, args);
2482 bad_fork_put_pidfd:
2483 	if (clone_flags & CLONE_PIDFD) {
2484 		fput(pidfile);
2485 		put_unused_fd(pidfd);
2486 	}
2487 bad_fork_free_pid:
2488 	if (pid != &init_struct_pid)
2489 		free_pid(pid);
2490 bad_fork_cleanup_thread:
2491 	exit_thread(p);
2492 bad_fork_cleanup_io:
2493 	if (p->io_context)
2494 		exit_io_context(p);
2495 bad_fork_cleanup_namespaces:
2496 	exit_nsproxy_namespaces(p);
2497 bad_fork_cleanup_mm:
2498 	if (p->mm) {
2499 		sched_mm_cid_exit(p);
2500 		mm_clear_owner(p->mm, p);
2501 		mmput(p->mm);
2502 	}
2503 bad_fork_cleanup_signal:
2504 	if (!(clone_flags & CLONE_THREAD))
2505 		free_signal_struct(p->signal);
2506 bad_fork_cleanup_sighand:
2507 	__cleanup_sighand(p->sighand);
2508 bad_fork_cleanup_fs:
2509 	exit_fs(p); /* blocking */
2510 bad_fork_cleanup_files:
2511 	exit_files(p); /* blocking */
2512 bad_fork_cleanup_semundo:
2513 	exit_sem(p);
2514 bad_fork_cleanup_security:
2515 	security_task_free(p);
2516 bad_fork_cleanup_audit:
2517 	audit_free(p);
2518 bad_fork_cleanup_perf:
2519 	perf_event_free_task(p);
2520 bad_fork_sched_cancel_fork:
2521 	sched_cancel_fork(p);
2522 bad_fork_cleanup_policy:
2523 	lockdep_free_task(p);
2524 #ifdef CONFIG_NUMA
2525 	mpol_put(p->mempolicy);
2526 #endif
2527 bad_fork_cleanup_delayacct:
2528 	delayacct_tsk_free(p);
2529 bad_fork_cleanup_count:
2530 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2531 	exit_cred_namespaces(p);
2532 	exit_creds(p);
2533 bad_fork_free:
2534 	WRITE_ONCE(p->__state, TASK_DEAD);
2535 	exit_task_stack_account(p);
2536 	put_task_stack(p);
2537 	delayed_free_task(p);
2538 fork_out:
2539 	spin_lock_irq(&current->sighand->siglock);
2540 	hlist_del_init(&delayed.node);
2541 	spin_unlock_irq(&current->sighand->siglock);
2542 	return ERR_PTR(retval);
2543 }
2544 
init_idle_pids(struct task_struct * idle)2545 static inline void init_idle_pids(struct task_struct *idle)
2546 {
2547 	enum pid_type type;
2548 
2549 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2550 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2551 		init_task_pid(idle, type, &init_struct_pid);
2552 	}
2553 }
2554 
idle_dummy(void * dummy)2555 static int idle_dummy(void *dummy)
2556 {
2557 	/* This function is never called */
2558 	return 0;
2559 }
2560 
fork_idle(int cpu)2561 struct task_struct * __init fork_idle(int cpu)
2562 {
2563 	struct task_struct *task;
2564 	struct kernel_clone_args args = {
2565 		.flags		= CLONE_VM,
2566 		.fn		= &idle_dummy,
2567 		.fn_arg		= NULL,
2568 		.kthread	= 1,
2569 		.idle		= 1,
2570 	};
2571 
2572 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2573 	if (!IS_ERR(task)) {
2574 		init_idle_pids(task);
2575 		init_idle(task, cpu);
2576 	}
2577 
2578 	return task;
2579 }
2580 
2581 /*
2582  * This is like kernel_clone(), but shaved down and tailored to just
2583  * creating io_uring workers. It returns a created task, or an error pointer.
2584  * The returned task is inactive, and the caller must fire it up through
2585  * wake_up_new_task(p). All signals are blocked in the created task.
2586  */
create_io_thread(int (* fn)(void *),void * arg,int node)2587 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2588 {
2589 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2590 			      CLONE_IO|CLONE_VM|CLONE_UNTRACED;
2591 	struct kernel_clone_args args = {
2592 		.flags		= flags,
2593 		.fn		= fn,
2594 		.fn_arg		= arg,
2595 		.io_thread	= 1,
2596 		.user_worker	= 1,
2597 	};
2598 
2599 	return copy_process(NULL, 0, node, &args);
2600 }
2601 
2602 /*
2603  *  Ok, this is the main fork-routine.
2604  *
2605  * It copies the process, and if successful kick-starts
2606  * it and waits for it to finish using the VM if required.
2607  *
2608  * args->exit_signal is expected to be checked for sanity by the caller.
2609  */
kernel_clone(struct kernel_clone_args * args)2610 pid_t kernel_clone(struct kernel_clone_args *args)
2611 {
2612 	u64 clone_flags = args->flags;
2613 	struct completion vfork;
2614 	struct pid *pid;
2615 	struct task_struct *p;
2616 	int trace = 0;
2617 	pid_t nr;
2618 
2619 	/*
2620 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2621 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2622 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2623 	 * field in struct clone_args and it still doesn't make sense to have
2624 	 * them both point at the same memory location. Performing this check
2625 	 * here has the advantage that we don't need to have a separate helper
2626 	 * to check for legacy clone().
2627 	 */
2628 	if ((clone_flags & CLONE_PIDFD) &&
2629 	    (clone_flags & CLONE_PARENT_SETTID) &&
2630 	    (args->pidfd == args->parent_tid))
2631 		return -EINVAL;
2632 
2633 	/*
2634 	 * Determine whether and which event to report to ptracer.  When
2635 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2636 	 * requested, no event is reported; otherwise, report if the event
2637 	 * for the type of forking is enabled.
2638 	 */
2639 	if (!(clone_flags & CLONE_UNTRACED)) {
2640 		if (clone_flags & CLONE_VFORK)
2641 			trace = PTRACE_EVENT_VFORK;
2642 		else if (args->exit_signal != SIGCHLD)
2643 			trace = PTRACE_EVENT_CLONE;
2644 		else
2645 			trace = PTRACE_EVENT_FORK;
2646 
2647 		if (likely(!ptrace_event_enabled(current, trace)))
2648 			trace = 0;
2649 	}
2650 
2651 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2652 	add_latent_entropy();
2653 
2654 	if (IS_ERR(p))
2655 		return PTR_ERR(p);
2656 
2657 	/*
2658 	 * Do this prior waking up the new thread - the thread pointer
2659 	 * might get invalid after that point, if the thread exits quickly.
2660 	 */
2661 	trace_sched_process_fork(current, p);
2662 
2663 	pid = get_task_pid(p, PIDTYPE_PID);
2664 	nr = pid_vnr(pid);
2665 
2666 	if (clone_flags & CLONE_PARENT_SETTID)
2667 		put_user(nr, args->parent_tid);
2668 
2669 	if (clone_flags & CLONE_VFORK) {
2670 		p->vfork_done = &vfork;
2671 		init_completion(&vfork);
2672 		get_task_struct(p);
2673 	}
2674 
2675 	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2676 		/* lock the task to synchronize with memcg migration */
2677 		task_lock(p);
2678 		lru_gen_add_mm(p->mm);
2679 		task_unlock(p);
2680 	}
2681 
2682 	wake_up_new_task(p);
2683 
2684 	/* forking complete and child started to run, tell ptracer */
2685 	if (unlikely(trace))
2686 		ptrace_event_pid(trace, pid);
2687 
2688 	if (clone_flags & CLONE_VFORK) {
2689 		if (!wait_for_vfork_done(p, &vfork))
2690 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2691 	}
2692 
2693 	put_pid(pid);
2694 	return nr;
2695 }
2696 
2697 /*
2698  * Create a kernel thread.
2699  */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2700 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2701 		    unsigned long flags)
2702 {
2703 	struct kernel_clone_args args = {
2704 		.flags		= ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2705 		.exit_signal	= (flags & CSIGNAL),
2706 		.fn		= fn,
2707 		.fn_arg		= arg,
2708 		.name		= name,
2709 		.kthread	= 1,
2710 	};
2711 
2712 	return kernel_clone(&args);
2713 }
2714 
2715 /*
2716  * Create a user mode thread.
2717  */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2718 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2719 {
2720 	struct kernel_clone_args args = {
2721 		.flags		= ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2722 		.exit_signal	= (flags & CSIGNAL),
2723 		.fn		= fn,
2724 		.fn_arg		= arg,
2725 	};
2726 
2727 	return kernel_clone(&args);
2728 }
2729 
2730 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2731 SYSCALL_DEFINE0(fork)
2732 {
2733 #ifdef CONFIG_MMU
2734 	struct kernel_clone_args args = {
2735 		.exit_signal = SIGCHLD,
2736 	};
2737 
2738 	return kernel_clone(&args);
2739 #else
2740 	/* can not support in nommu mode */
2741 	return -EINVAL;
2742 #endif
2743 }
2744 #endif
2745 
2746 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2747 SYSCALL_DEFINE0(vfork)
2748 {
2749 	struct kernel_clone_args args = {
2750 		.flags		= CLONE_VFORK | CLONE_VM,
2751 		.exit_signal	= SIGCHLD,
2752 	};
2753 
2754 	return kernel_clone(&args);
2755 }
2756 #endif
2757 
2758 #ifdef __ARCH_WANT_SYS_CLONE
2759 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2760 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2761 		 int __user *, parent_tidptr,
2762 		 unsigned long, tls,
2763 		 int __user *, child_tidptr)
2764 #elif defined(CONFIG_CLONE_BACKWARDS2)
2765 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2766 		 int __user *, parent_tidptr,
2767 		 int __user *, child_tidptr,
2768 		 unsigned long, tls)
2769 #elif defined(CONFIG_CLONE_BACKWARDS3)
2770 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2771 		int, stack_size,
2772 		int __user *, parent_tidptr,
2773 		int __user *, child_tidptr,
2774 		unsigned long, tls)
2775 #else
2776 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2777 		 int __user *, parent_tidptr,
2778 		 int __user *, child_tidptr,
2779 		 unsigned long, tls)
2780 #endif
2781 {
2782 	struct kernel_clone_args args = {
2783 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2784 		.pidfd		= parent_tidptr,
2785 		.child_tid	= child_tidptr,
2786 		.parent_tid	= parent_tidptr,
2787 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2788 		.stack		= newsp,
2789 		.tls		= tls,
2790 	};
2791 
2792 	return kernel_clone(&args);
2793 }
2794 #endif
2795 
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2796 static noinline int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2797 					      struct clone_args __user *uargs,
2798 					      size_t usize)
2799 {
2800 	int err;
2801 	struct clone_args args;
2802 	pid_t *kset_tid = kargs->set_tid;
2803 
2804 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2805 		     CLONE_ARGS_SIZE_VER0);
2806 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2807 		     CLONE_ARGS_SIZE_VER1);
2808 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2809 		     CLONE_ARGS_SIZE_VER2);
2810 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2811 
2812 	if (unlikely(usize > PAGE_SIZE))
2813 		return -E2BIG;
2814 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2815 		return -EINVAL;
2816 
2817 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2818 	if (err)
2819 		return err;
2820 
2821 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2822 		return -EINVAL;
2823 
2824 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2825 		return -EINVAL;
2826 
2827 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2828 		return -EINVAL;
2829 
2830 	/*
2831 	 * Verify that higher 32bits of exit_signal are unset and that
2832 	 * it is a valid signal
2833 	 */
2834 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2835 		     !valid_signal(args.exit_signal)))
2836 		return -EINVAL;
2837 
2838 	if ((args.flags & CLONE_INTO_CGROUP) &&
2839 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2840 		return -EINVAL;
2841 
2842 	*kargs = (struct kernel_clone_args){
2843 		.flags		= args.flags,
2844 		.pidfd		= u64_to_user_ptr(args.pidfd),
2845 		.child_tid	= u64_to_user_ptr(args.child_tid),
2846 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2847 		.exit_signal	= args.exit_signal,
2848 		.stack		= args.stack,
2849 		.stack_size	= args.stack_size,
2850 		.tls		= args.tls,
2851 		.set_tid_size	= args.set_tid_size,
2852 		.cgroup		= args.cgroup,
2853 	};
2854 
2855 	if (args.set_tid &&
2856 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2857 			(kargs->set_tid_size * sizeof(pid_t))))
2858 		return -EFAULT;
2859 
2860 	kargs->set_tid = kset_tid;
2861 
2862 	return 0;
2863 }
2864 
2865 /**
2866  * clone3_stack_valid - check and prepare stack
2867  * @kargs: kernel clone args
2868  *
2869  * Verify that the stack arguments userspace gave us are sane.
2870  * In addition, set the stack direction for userspace since it's easy for us to
2871  * determine.
2872  */
clone3_stack_valid(struct kernel_clone_args * kargs)2873 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2874 {
2875 	if (kargs->stack == 0) {
2876 		if (kargs->stack_size > 0)
2877 			return false;
2878 	} else {
2879 		if (kargs->stack_size == 0)
2880 			return false;
2881 
2882 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2883 			return false;
2884 
2885 #if !defined(CONFIG_STACK_GROWSUP)
2886 		kargs->stack += kargs->stack_size;
2887 #endif
2888 	}
2889 
2890 	return true;
2891 }
2892 
clone3_args_valid(struct kernel_clone_args * kargs)2893 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2894 {
2895 	/* Verify that no unknown flags are passed along. */
2896 	if (kargs->flags &
2897 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2898 		return false;
2899 
2900 	/*
2901 	 * - make the CLONE_DETACHED bit reusable for clone3
2902 	 * - make the CSIGNAL bits reusable for clone3
2903 	 */
2904 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
2905 		return false;
2906 
2907 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2908 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2909 		return false;
2910 
2911 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2912 	    kargs->exit_signal)
2913 		return false;
2914 
2915 	if (!clone3_stack_valid(kargs))
2916 		return false;
2917 
2918 	return true;
2919 }
2920 
2921 /**
2922  * sys_clone3 - create a new process with specific properties
2923  * @uargs: argument structure
2924  * @size:  size of @uargs
2925  *
2926  * clone3() is the extensible successor to clone()/clone2().
2927  * It takes a struct as argument that is versioned by its size.
2928  *
2929  * Return: On success, a positive PID for the child process.
2930  *         On error, a negative errno number.
2931  */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2932 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2933 {
2934 	int err;
2935 
2936 	struct kernel_clone_args kargs;
2937 	pid_t set_tid[MAX_PID_NS_LEVEL];
2938 
2939 #ifdef __ARCH_BROKEN_SYS_CLONE3
2940 #warning clone3() entry point is missing, please fix
2941 	return -ENOSYS;
2942 #endif
2943 
2944 	kargs.set_tid = set_tid;
2945 
2946 	err = copy_clone_args_from_user(&kargs, uargs, size);
2947 	if (err)
2948 		return err;
2949 
2950 	if (!clone3_args_valid(&kargs))
2951 		return -EINVAL;
2952 
2953 	return kernel_clone(&kargs);
2954 }
2955 
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2956 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2957 {
2958 	struct task_struct *leader, *parent, *child;
2959 	int res;
2960 
2961 	read_lock(&tasklist_lock);
2962 	leader = top = top->group_leader;
2963 down:
2964 	for_each_thread(leader, parent) {
2965 		list_for_each_entry(child, &parent->children, sibling) {
2966 			res = visitor(child, data);
2967 			if (res) {
2968 				if (res < 0)
2969 					goto out;
2970 				leader = child;
2971 				goto down;
2972 			}
2973 up:
2974 			;
2975 		}
2976 	}
2977 
2978 	if (leader != top) {
2979 		child = leader;
2980 		parent = child->real_parent;
2981 		leader = parent->group_leader;
2982 		goto up;
2983 	}
2984 out:
2985 	read_unlock(&tasklist_lock);
2986 }
2987 
2988 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2989 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2990 #endif
2991 
sighand_ctor(void * data)2992 static void sighand_ctor(void *data)
2993 {
2994 	struct sighand_struct *sighand = data;
2995 
2996 	spin_lock_init(&sighand->siglock);
2997 	init_waitqueue_head(&sighand->signalfd_wqh);
2998 }
2999 
mm_cache_init(void)3000 void __init mm_cache_init(void)
3001 {
3002 	unsigned int mm_size;
3003 
3004 	/*
3005 	 * The mm_cpumask is located at the end of mm_struct, and is
3006 	 * dynamically sized based on the maximum CPU number this system
3007 	 * can have, taking hotplug into account (nr_cpu_ids).
3008 	 */
3009 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3010 
3011 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3012 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3013 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3014 			offsetof(struct mm_struct, saved_auxv),
3015 			sizeof_field(struct mm_struct, saved_auxv),
3016 			NULL);
3017 }
3018 
proc_caches_init(void)3019 void __init proc_caches_init(void)
3020 {
3021 	sighand_cachep = kmem_cache_create("sighand_cache",
3022 			sizeof(struct sighand_struct), 0,
3023 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3024 			SLAB_ACCOUNT, sighand_ctor);
3025 	signal_cachep = kmem_cache_create("signal_cache",
3026 			sizeof(struct signal_struct), 0,
3027 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3028 			NULL);
3029 	files_cachep = kmem_cache_create("files_cache",
3030 			sizeof(struct files_struct), 0,
3031 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3032 			NULL);
3033 	fs_cachep = kmem_cache_create("fs_cache",
3034 			sizeof(struct fs_struct), 0,
3035 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3036 			NULL);
3037 	mmap_init();
3038 	nsproxy_cache_init();
3039 }
3040 
3041 /*
3042  * Check constraints on flags passed to the unshare system call.
3043  */
check_unshare_flags(unsigned long unshare_flags)3044 static int check_unshare_flags(unsigned long unshare_flags)
3045 {
3046 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3047 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3048 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3049 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3050 				CLONE_NEWTIME))
3051 		return -EINVAL;
3052 	/*
3053 	 * Not implemented, but pretend it works if there is nothing
3054 	 * to unshare.  Note that unsharing the address space or the
3055 	 * signal handlers also need to unshare the signal queues (aka
3056 	 * CLONE_THREAD).
3057 	 */
3058 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3059 		if (!thread_group_empty(current))
3060 			return -EINVAL;
3061 	}
3062 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3063 		if (refcount_read(&current->sighand->count) > 1)
3064 			return -EINVAL;
3065 	}
3066 	if (unshare_flags & CLONE_VM) {
3067 		if (!current_is_single_threaded())
3068 			return -EINVAL;
3069 	}
3070 
3071 	return 0;
3072 }
3073 
3074 /*
3075  * Unshare the filesystem structure if it is being shared
3076  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3077 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3078 {
3079 	struct fs_struct *fs = current->fs;
3080 
3081 	if (!(unshare_flags & CLONE_FS) || !fs)
3082 		return 0;
3083 
3084 	/* don't need lock here; in the worst case we'll do useless copy */
3085 	if (fs->users == 1)
3086 		return 0;
3087 
3088 	*new_fsp = copy_fs_struct(fs);
3089 	if (!*new_fsp)
3090 		return -ENOMEM;
3091 
3092 	return 0;
3093 }
3094 
3095 /*
3096  * Unshare file descriptor table if it is being shared
3097  */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3098 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3099 {
3100 	struct files_struct *fd = current->files;
3101 
3102 	if ((unshare_flags & CLONE_FILES) &&
3103 	    (fd && atomic_read(&fd->count) > 1)) {
3104 		fd = dup_fd(fd, NULL);
3105 		if (IS_ERR(fd))
3106 			return PTR_ERR(fd);
3107 		*new_fdp = fd;
3108 	}
3109 
3110 	return 0;
3111 }
3112 
3113 /*
3114  * unshare allows a process to 'unshare' part of the process
3115  * context which was originally shared using clone.  copy_*
3116  * functions used by kernel_clone() cannot be used here directly
3117  * because they modify an inactive task_struct that is being
3118  * constructed. Here we are modifying the current, active,
3119  * task_struct.
3120  */
ksys_unshare(unsigned long unshare_flags)3121 int ksys_unshare(unsigned long unshare_flags)
3122 {
3123 	struct fs_struct *fs, *new_fs = NULL;
3124 	struct files_struct *new_fd = NULL;
3125 	struct cred *new_cred = NULL;
3126 	struct nsproxy *new_nsproxy = NULL;
3127 	int do_sysvsem = 0;
3128 	int err;
3129 
3130 	/*
3131 	 * If unsharing a user namespace must also unshare the thread group
3132 	 * and unshare the filesystem root and working directories.
3133 	 */
3134 	if (unshare_flags & CLONE_NEWUSER)
3135 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3136 	/*
3137 	 * If unsharing vm, must also unshare signal handlers.
3138 	 */
3139 	if (unshare_flags & CLONE_VM)
3140 		unshare_flags |= CLONE_SIGHAND;
3141 	/*
3142 	 * If unsharing a signal handlers, must also unshare the signal queues.
3143 	 */
3144 	if (unshare_flags & CLONE_SIGHAND)
3145 		unshare_flags |= CLONE_THREAD;
3146 	/*
3147 	 * If unsharing namespace, must also unshare filesystem information.
3148 	 */
3149 	if (unshare_flags & CLONE_NEWNS)
3150 		unshare_flags |= CLONE_FS;
3151 
3152 	err = check_unshare_flags(unshare_flags);
3153 	if (err)
3154 		goto bad_unshare_out;
3155 	/*
3156 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3157 	 * to a new ipc namespace, the semaphore arrays from the old
3158 	 * namespace are unreachable.
3159 	 */
3160 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3161 		do_sysvsem = 1;
3162 	err = unshare_fs(unshare_flags, &new_fs);
3163 	if (err)
3164 		goto bad_unshare_out;
3165 	err = unshare_fd(unshare_flags, &new_fd);
3166 	if (err)
3167 		goto bad_unshare_cleanup_fs;
3168 	err = unshare_userns(unshare_flags, &new_cred);
3169 	if (err)
3170 		goto bad_unshare_cleanup_fd;
3171 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3172 					 new_cred, new_fs);
3173 	if (err)
3174 		goto bad_unshare_cleanup_cred;
3175 
3176 	if (new_cred) {
3177 		err = set_cred_ucounts(new_cred);
3178 		if (err)
3179 			goto bad_unshare_cleanup_cred;
3180 	}
3181 
3182 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3183 		if (do_sysvsem) {
3184 			/*
3185 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3186 			 */
3187 			exit_sem(current);
3188 		}
3189 		if (unshare_flags & CLONE_NEWIPC) {
3190 			/* Orphan segments in old ns (see sem above). */
3191 			exit_shm(current);
3192 			shm_init_task(current);
3193 		}
3194 
3195 		if (new_nsproxy)
3196 			switch_task_namespaces(current, new_nsproxy);
3197 
3198 		task_lock(current);
3199 
3200 		if (new_fs) {
3201 			fs = current->fs;
3202 			read_seqlock_excl(&fs->seq);
3203 			current->fs = new_fs;
3204 			if (--fs->users)
3205 				new_fs = NULL;
3206 			else
3207 				new_fs = fs;
3208 			read_sequnlock_excl(&fs->seq);
3209 		}
3210 
3211 		if (new_fd)
3212 			swap(current->files, new_fd);
3213 
3214 		task_unlock(current);
3215 
3216 		if (new_cred) {
3217 			/* Install the new user namespace */
3218 			commit_creds(new_cred);
3219 			new_cred = NULL;
3220 		}
3221 	}
3222 
3223 	perf_event_namespaces(current);
3224 
3225 bad_unshare_cleanup_cred:
3226 	if (new_cred)
3227 		put_cred(new_cred);
3228 bad_unshare_cleanup_fd:
3229 	if (new_fd)
3230 		put_files_struct(new_fd);
3231 
3232 bad_unshare_cleanup_fs:
3233 	if (new_fs)
3234 		free_fs_struct(new_fs);
3235 
3236 bad_unshare_out:
3237 	return err;
3238 }
3239 
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3240 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3241 {
3242 	return ksys_unshare(unshare_flags);
3243 }
3244 
3245 /*
3246  *	Helper to unshare the files of the current task.
3247  *	We don't want to expose copy_files internals to
3248  *	the exec layer of the kernel.
3249  */
3250 
unshare_files(void)3251 int unshare_files(void)
3252 {
3253 	struct task_struct *task = current;
3254 	struct files_struct *old, *copy = NULL;
3255 	int error;
3256 
3257 	error = unshare_fd(CLONE_FILES, &copy);
3258 	if (error || !copy)
3259 		return error;
3260 
3261 	old = task->files;
3262 	task_lock(task);
3263 	task->files = copy;
3264 	task_unlock(task);
3265 	put_files_struct(old);
3266 	return 0;
3267 }
3268 
sysctl_max_threads(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3269 static int sysctl_max_threads(const struct ctl_table *table, int write,
3270 		       void *buffer, size_t *lenp, loff_t *ppos)
3271 {
3272 	struct ctl_table t;
3273 	int ret;
3274 	int threads = max_threads;
3275 	int min = 1;
3276 	int max = MAX_THREADS;
3277 
3278 	t = *table;
3279 	t.data = &threads;
3280 	t.extra1 = &min;
3281 	t.extra2 = &max;
3282 
3283 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3284 	if (ret || !write)
3285 		return ret;
3286 
3287 	max_threads = threads;
3288 
3289 	return 0;
3290 }
3291 
3292 static const struct ctl_table fork_sysctl_table[] = {
3293 	{
3294 		.procname	= "threads-max",
3295 		.data		= NULL,
3296 		.maxlen		= sizeof(int),
3297 		.mode		= 0644,
3298 		.proc_handler	= sysctl_max_threads,
3299 	},
3300 };
3301 
init_fork_sysctl(void)3302 static int __init init_fork_sysctl(void)
3303 {
3304 	register_sysctl_init("kernel", fork_sysctl_table);
3305 	return 0;
3306 }
3307 
3308 subsys_initcall(init_fork_sysctl);
3309