xref: /linux/include/linux/sched.h (revision 88221ac0d560700b50493aedc768f728aa585141)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask_types.h>
17 
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/syscall_user_dispatch_types.h>
38 #include <linux/mm_types_task.h>
39 #include <linux/netdevice_xmit.h>
40 #include <linux/task_io_accounting.h>
41 #include <linux/posix-timers_types.h>
42 #include <linux/restart_block.h>
43 #include <uapi/linux/rseq.h>
44 #include <linux/seqlock_types.h>
45 #include <linux/kcsan.h>
46 #include <linux/rv.h>
47 #include <linux/livepatch_sched.h>
48 #include <linux/uidgid_types.h>
49 #include <linux/tracepoint-defs.h>
50 #include <asm/kmap_size.h>
51 
52 /* task_struct member predeclarations (sorted alphabetically): */
53 struct audit_context;
54 struct bio_list;
55 struct blk_plug;
56 struct bpf_local_storage;
57 struct bpf_run_ctx;
58 struct bpf_net_context;
59 struct capture_control;
60 struct cfs_rq;
61 struct fs_struct;
62 struct futex_pi_state;
63 struct io_context;
64 struct io_uring_task;
65 struct mempolicy;
66 struct nameidata;
67 struct nsproxy;
68 struct perf_event_context;
69 struct perf_ctx_data;
70 struct pid_namespace;
71 struct pipe_inode_info;
72 struct rcu_node;
73 struct reclaim_state;
74 struct robust_list_head;
75 struct root_domain;
76 struct rq;
77 struct sched_attr;
78 struct sched_dl_entity;
79 struct seq_file;
80 struct sighand_struct;
81 struct signal_struct;
82 struct task_delay_info;
83 struct task_group;
84 struct task_struct;
85 struct user_event_mm;
86 
87 #include <linux/sched/ext.h>
88 
89 /*
90  * Task state bitmask. NOTE! These bits are also
91  * encoded in fs/proc/array.c: get_task_state().
92  *
93  * We have two separate sets of flags: task->__state
94  * is about runnability, while task->exit_state are
95  * about the task exiting. Confusing, but this way
96  * modifying one set can't modify the other one by
97  * mistake.
98  */
99 
100 /* Used in tsk->__state: */
101 #define TASK_RUNNING			0x00000000
102 #define TASK_INTERRUPTIBLE		0x00000001
103 #define TASK_UNINTERRUPTIBLE		0x00000002
104 #define __TASK_STOPPED			0x00000004
105 #define __TASK_TRACED			0x00000008
106 /* Used in tsk->exit_state: */
107 #define EXIT_DEAD			0x00000010
108 #define EXIT_ZOMBIE			0x00000020
109 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
110 /* Used in tsk->__state again: */
111 #define TASK_PARKED			0x00000040
112 #define TASK_DEAD			0x00000080
113 #define TASK_WAKEKILL			0x00000100
114 #define TASK_WAKING			0x00000200
115 #define TASK_NOLOAD			0x00000400
116 #define TASK_NEW			0x00000800
117 #define TASK_RTLOCK_WAIT		0x00001000
118 #define TASK_FREEZABLE			0x00002000
119 #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
120 #define TASK_FROZEN			0x00008000
121 #define TASK_STATE_MAX			0x00010000
122 
123 #define TASK_ANY			(TASK_STATE_MAX-1)
124 
125 /*
126  * DO NOT ADD ANY NEW USERS !
127  */
128 #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
129 
130 /* Convenience macros for the sake of set_current_state: */
131 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
132 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
133 #define TASK_TRACED			__TASK_TRACED
134 
135 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
136 
137 /* Convenience macros for the sake of wake_up(): */
138 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
139 
140 /* get_task_state(): */
141 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
142 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
143 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
144 					 TASK_PARKED)
145 
146 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
147 
148 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
149 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
150 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
151 
152 /*
153  * Special states are those that do not use the normal wait-loop pattern. See
154  * the comment with set_special_state().
155  */
156 #define is_special_task_state(state)					\
157 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED |	\
158 		    TASK_DEAD | TASK_FROZEN))
159 
160 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
161 # define debug_normal_state_change(state_value)				\
162 	do {								\
163 		WARN_ON_ONCE(is_special_task_state(state_value));	\
164 		current->task_state_change = _THIS_IP_;			\
165 	} while (0)
166 
167 # define debug_special_state_change(state_value)			\
168 	do {								\
169 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
170 		current->task_state_change = _THIS_IP_;			\
171 	} while (0)
172 
173 # define debug_rtlock_wait_set_state()					\
174 	do {								 \
175 		current->saved_state_change = current->task_state_change;\
176 		current->task_state_change = _THIS_IP_;			 \
177 	} while (0)
178 
179 # define debug_rtlock_wait_restore_state()				\
180 	do {								 \
181 		current->task_state_change = current->saved_state_change;\
182 	} while (0)
183 
184 #else
185 # define debug_normal_state_change(cond)	do { } while (0)
186 # define debug_special_state_change(cond)	do { } while (0)
187 # define debug_rtlock_wait_set_state()		do { } while (0)
188 # define debug_rtlock_wait_restore_state()	do { } while (0)
189 #endif
190 
191 #define trace_set_current_state(state_value)                     \
192 	do {                                                     \
193 		if (tracepoint_enabled(sched_set_state_tp))      \
194 			__trace_set_current_state(state_value); \
195 	} while (0)
196 
197 /*
198  * set_current_state() includes a barrier so that the write of current->__state
199  * is correctly serialised wrt the caller's subsequent test of whether to
200  * actually sleep:
201  *
202  *   for (;;) {
203  *	set_current_state(TASK_UNINTERRUPTIBLE);
204  *	if (CONDITION)
205  *	   break;
206  *
207  *	schedule();
208  *   }
209  *   __set_current_state(TASK_RUNNING);
210  *
211  * If the caller does not need such serialisation (because, for instance, the
212  * CONDITION test and condition change and wakeup are under the same lock) then
213  * use __set_current_state().
214  *
215  * The above is typically ordered against the wakeup, which does:
216  *
217  *   CONDITION = 1;
218  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
219  *
220  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
221  * accessing p->__state.
222  *
223  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
224  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
225  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
226  *
227  * However, with slightly different timing the wakeup TASK_RUNNING store can
228  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
229  * a problem either because that will result in one extra go around the loop
230  * and our @cond test will save the day.
231  *
232  * Also see the comments of try_to_wake_up().
233  */
234 #define __set_current_state(state_value)				\
235 	do {								\
236 		debug_normal_state_change((state_value));		\
237 		trace_set_current_state(state_value);			\
238 		WRITE_ONCE(current->__state, (state_value));		\
239 	} while (0)
240 
241 #define set_current_state(state_value)					\
242 	do {								\
243 		debug_normal_state_change((state_value));		\
244 		trace_set_current_state(state_value);			\
245 		smp_store_mb(current->__state, (state_value));		\
246 	} while (0)
247 
248 /*
249  * set_special_state() should be used for those states when the blocking task
250  * can not use the regular condition based wait-loop. In that case we must
251  * serialize against wakeups such that any possible in-flight TASK_RUNNING
252  * stores will not collide with our state change.
253  */
254 #define set_special_state(state_value)					\
255 	do {								\
256 		unsigned long flags; /* may shadow */			\
257 									\
258 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
259 		debug_special_state_change((state_value));		\
260 		trace_set_current_state(state_value);			\
261 		WRITE_ONCE(current->__state, (state_value));		\
262 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
263 	} while (0)
264 
265 /*
266  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
267  *
268  * RT's spin/rwlock substitutions are state preserving. The state of the
269  * task when blocking on the lock is saved in task_struct::saved_state and
270  * restored after the lock has been acquired.  These operations are
271  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
272  * lock related wakeups while the task is blocked on the lock are
273  * redirected to operate on task_struct::saved_state to ensure that these
274  * are not dropped. On restore task_struct::saved_state is set to
275  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
276  *
277  * The lock operation looks like this:
278  *
279  *	current_save_and_set_rtlock_wait_state();
280  *	for (;;) {
281  *		if (try_lock())
282  *			break;
283  *		raw_spin_unlock_irq(&lock->wait_lock);
284  *		schedule_rtlock();
285  *		raw_spin_lock_irq(&lock->wait_lock);
286  *		set_current_state(TASK_RTLOCK_WAIT);
287  *	}
288  *	current_restore_rtlock_saved_state();
289  */
290 #define current_save_and_set_rtlock_wait_state()			\
291 	do {								\
292 		lockdep_assert_irqs_disabled();				\
293 		raw_spin_lock(&current->pi_lock);			\
294 		current->saved_state = current->__state;		\
295 		debug_rtlock_wait_set_state();				\
296 		trace_set_current_state(TASK_RTLOCK_WAIT);		\
297 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
298 		raw_spin_unlock(&current->pi_lock);			\
299 	} while (0);
300 
301 #define current_restore_rtlock_saved_state()				\
302 	do {								\
303 		lockdep_assert_irqs_disabled();				\
304 		raw_spin_lock(&current->pi_lock);			\
305 		debug_rtlock_wait_restore_state();			\
306 		trace_set_current_state(current->saved_state);		\
307 		WRITE_ONCE(current->__state, current->saved_state);	\
308 		current->saved_state = TASK_RUNNING;			\
309 		raw_spin_unlock(&current->pi_lock);			\
310 	} while (0);
311 
312 #define get_current_state()	READ_ONCE(current->__state)
313 
314 /*
315  * Define the task command name length as enum, then it can be visible to
316  * BPF programs.
317  */
318 enum {
319 	TASK_COMM_LEN = 16,
320 };
321 
322 extern void sched_tick(void);
323 
324 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
325 
326 extern long schedule_timeout(long timeout);
327 extern long schedule_timeout_interruptible(long timeout);
328 extern long schedule_timeout_killable(long timeout);
329 extern long schedule_timeout_uninterruptible(long timeout);
330 extern long schedule_timeout_idle(long timeout);
331 asmlinkage void schedule(void);
332 extern void schedule_preempt_disabled(void);
333 asmlinkage void preempt_schedule_irq(void);
334 #ifdef CONFIG_PREEMPT_RT
335  extern void schedule_rtlock(void);
336 #endif
337 
338 extern int __must_check io_schedule_prepare(void);
339 extern void io_schedule_finish(int token);
340 extern long io_schedule_timeout(long timeout);
341 extern void io_schedule(void);
342 
343 /* wrapper function to trace from this header file */
344 DECLARE_TRACEPOINT(sched_set_state_tp);
345 extern void __trace_set_current_state(int state_value);
346 
347 /**
348  * struct prev_cputime - snapshot of system and user cputime
349  * @utime: time spent in user mode
350  * @stime: time spent in system mode
351  * @lock: protects the above two fields
352  *
353  * Stores previous user/system time values such that we can guarantee
354  * monotonicity.
355  */
356 struct prev_cputime {
357 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
358 	u64				utime;
359 	u64				stime;
360 	raw_spinlock_t			lock;
361 #endif
362 };
363 
364 enum vtime_state {
365 	/* Task is sleeping or running in a CPU with VTIME inactive: */
366 	VTIME_INACTIVE = 0,
367 	/* Task is idle */
368 	VTIME_IDLE,
369 	/* Task runs in kernelspace in a CPU with VTIME active: */
370 	VTIME_SYS,
371 	/* Task runs in userspace in a CPU with VTIME active: */
372 	VTIME_USER,
373 	/* Task runs as guests in a CPU with VTIME active: */
374 	VTIME_GUEST,
375 };
376 
377 struct vtime {
378 	seqcount_t		seqcount;
379 	unsigned long long	starttime;
380 	enum vtime_state	state;
381 	unsigned int		cpu;
382 	u64			utime;
383 	u64			stime;
384 	u64			gtime;
385 };
386 
387 /*
388  * Utilization clamp constraints.
389  * @UCLAMP_MIN:	Minimum utilization
390  * @UCLAMP_MAX:	Maximum utilization
391  * @UCLAMP_CNT:	Utilization clamp constraints count
392  */
393 enum uclamp_id {
394 	UCLAMP_MIN = 0,
395 	UCLAMP_MAX,
396 	UCLAMP_CNT
397 };
398 
399 #ifdef CONFIG_SMP
400 extern struct root_domain def_root_domain;
401 extern struct mutex sched_domains_mutex;
402 extern void sched_domains_mutex_lock(void);
403 extern void sched_domains_mutex_unlock(void);
404 #else
sched_domains_mutex_lock(void)405 static inline void sched_domains_mutex_lock(void) { }
sched_domains_mutex_unlock(void)406 static inline void sched_domains_mutex_unlock(void) { }
407 #endif
408 
409 struct sched_param {
410 	int sched_priority;
411 };
412 
413 struct sched_info {
414 #ifdef CONFIG_SCHED_INFO
415 	/* Cumulative counters: */
416 
417 	/* # of times we have run on this CPU: */
418 	unsigned long			pcount;
419 
420 	/* Time spent waiting on a runqueue: */
421 	unsigned long long		run_delay;
422 
423 	/* Max time spent waiting on a runqueue: */
424 	unsigned long long		max_run_delay;
425 
426 	/* Min time spent waiting on a runqueue: */
427 	unsigned long long		min_run_delay;
428 
429 	/* Timestamps: */
430 
431 	/* When did we last run on a CPU? */
432 	unsigned long long		last_arrival;
433 
434 	/* When were we last queued to run? */
435 	unsigned long long		last_queued;
436 
437 #endif /* CONFIG_SCHED_INFO */
438 };
439 
440 /*
441  * Integer metrics need fixed point arithmetic, e.g., sched/fair
442  * has a few: load, load_avg, util_avg, freq, and capacity.
443  *
444  * We define a basic fixed point arithmetic range, and then formalize
445  * all these metrics based on that basic range.
446  */
447 # define SCHED_FIXEDPOINT_SHIFT		10
448 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
449 
450 /* Increase resolution of cpu_capacity calculations */
451 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
452 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
453 
454 struct load_weight {
455 	unsigned long			weight;
456 	u32				inv_weight;
457 };
458 
459 /*
460  * The load/runnable/util_avg accumulates an infinite geometric series
461  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
462  *
463  * [load_avg definition]
464  *
465  *   load_avg = runnable% * scale_load_down(load)
466  *
467  * [runnable_avg definition]
468  *
469  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
470  *
471  * [util_avg definition]
472  *
473  *   util_avg = running% * SCHED_CAPACITY_SCALE
474  *
475  * where runnable% is the time ratio that a sched_entity is runnable and
476  * running% the time ratio that a sched_entity is running.
477  *
478  * For cfs_rq, they are the aggregated values of all runnable and blocked
479  * sched_entities.
480  *
481  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
482  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
483  * for computing those signals (see update_rq_clock_pelt())
484  *
485  * N.B., the above ratios (runnable% and running%) themselves are in the
486  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
487  * to as large a range as necessary. This is for example reflected by
488  * util_avg's SCHED_CAPACITY_SCALE.
489  *
490  * [Overflow issue]
491  *
492  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
493  * with the highest load (=88761), always runnable on a single cfs_rq,
494  * and should not overflow as the number already hits PID_MAX_LIMIT.
495  *
496  * For all other cases (including 32-bit kernels), struct load_weight's
497  * weight will overflow first before we do, because:
498  *
499  *    Max(load_avg) <= Max(load.weight)
500  *
501  * Then it is the load_weight's responsibility to consider overflow
502  * issues.
503  */
504 struct sched_avg {
505 	u64				last_update_time;
506 	u64				load_sum;
507 	u64				runnable_sum;
508 	u32				util_sum;
509 	u32				period_contrib;
510 	unsigned long			load_avg;
511 	unsigned long			runnable_avg;
512 	unsigned long			util_avg;
513 	unsigned int			util_est;
514 } ____cacheline_aligned;
515 
516 /*
517  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
518  * updates. When a task is dequeued, its util_est should not be updated if its
519  * util_avg has not been updated in the meantime.
520  * This information is mapped into the MSB bit of util_est at dequeue time.
521  * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
522  * it is safe to use MSB.
523  */
524 #define UTIL_EST_WEIGHT_SHIFT		2
525 #define UTIL_AVG_UNCHANGED		0x80000000
526 
527 struct sched_statistics {
528 #ifdef CONFIG_SCHEDSTATS
529 	u64				wait_start;
530 	u64				wait_max;
531 	u64				wait_count;
532 	u64				wait_sum;
533 	u64				iowait_count;
534 	u64				iowait_sum;
535 
536 	u64				sleep_start;
537 	u64				sleep_max;
538 	s64				sum_sleep_runtime;
539 
540 	u64				block_start;
541 	u64				block_max;
542 	s64				sum_block_runtime;
543 
544 	s64				exec_max;
545 	u64				slice_max;
546 
547 	u64				nr_migrations_cold;
548 	u64				nr_failed_migrations_affine;
549 	u64				nr_failed_migrations_running;
550 	u64				nr_failed_migrations_hot;
551 	u64				nr_forced_migrations;
552 
553 	u64				nr_wakeups;
554 	u64				nr_wakeups_sync;
555 	u64				nr_wakeups_migrate;
556 	u64				nr_wakeups_local;
557 	u64				nr_wakeups_remote;
558 	u64				nr_wakeups_affine;
559 	u64				nr_wakeups_affine_attempts;
560 	u64				nr_wakeups_passive;
561 	u64				nr_wakeups_idle;
562 
563 #ifdef CONFIG_SCHED_CORE
564 	u64				core_forceidle_sum;
565 #endif
566 #endif /* CONFIG_SCHEDSTATS */
567 } ____cacheline_aligned;
568 
569 struct sched_entity {
570 	/* For load-balancing: */
571 	struct load_weight		load;
572 	struct rb_node			run_node;
573 	u64				deadline;
574 	u64				min_vruntime;
575 	u64				min_slice;
576 
577 	struct list_head		group_node;
578 	unsigned char			on_rq;
579 	unsigned char			sched_delayed;
580 	unsigned char			rel_deadline;
581 	unsigned char			custom_slice;
582 					/* hole */
583 
584 	u64				exec_start;
585 	u64				sum_exec_runtime;
586 	u64				prev_sum_exec_runtime;
587 	u64				vruntime;
588 	s64				vlag;
589 	u64				slice;
590 
591 	u64				nr_migrations;
592 
593 #ifdef CONFIG_FAIR_GROUP_SCHED
594 	int				depth;
595 	struct sched_entity		*parent;
596 	/* rq on which this entity is (to be) queued: */
597 	struct cfs_rq			*cfs_rq;
598 	/* rq "owned" by this entity/group: */
599 	struct cfs_rq			*my_q;
600 	/* cached value of my_q->h_nr_running */
601 	unsigned long			runnable_weight;
602 #endif
603 
604 #ifdef CONFIG_SMP
605 	/*
606 	 * Per entity load average tracking.
607 	 *
608 	 * Put into separate cache line so it does not
609 	 * collide with read-mostly values above.
610 	 */
611 	struct sched_avg		avg;
612 #endif
613 };
614 
615 struct sched_rt_entity {
616 	struct list_head		run_list;
617 	unsigned long			timeout;
618 	unsigned long			watchdog_stamp;
619 	unsigned int			time_slice;
620 	unsigned short			on_rq;
621 	unsigned short			on_list;
622 
623 	struct sched_rt_entity		*back;
624 #ifdef CONFIG_RT_GROUP_SCHED
625 	struct sched_rt_entity		*parent;
626 	/* rq on which this entity is (to be) queued: */
627 	struct rt_rq			*rt_rq;
628 	/* rq "owned" by this entity/group: */
629 	struct rt_rq			*my_q;
630 #endif
631 } __randomize_layout;
632 
633 typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
634 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
635 
636 struct sched_dl_entity {
637 	struct rb_node			rb_node;
638 
639 	/*
640 	 * Original scheduling parameters. Copied here from sched_attr
641 	 * during sched_setattr(), they will remain the same until
642 	 * the next sched_setattr().
643 	 */
644 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
645 	u64				dl_deadline;	/* Relative deadline of each instance	*/
646 	u64				dl_period;	/* Separation of two instances (period) */
647 	u64				dl_bw;		/* dl_runtime / dl_period		*/
648 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
649 
650 	/*
651 	 * Actual scheduling parameters. Initialized with the values above,
652 	 * they are continuously updated during task execution. Note that
653 	 * the remaining runtime could be < 0 in case we are in overrun.
654 	 */
655 	s64				runtime;	/* Remaining runtime for this instance	*/
656 	u64				deadline;	/* Absolute deadline for this instance	*/
657 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
658 
659 	/*
660 	 * Some bool flags:
661 	 *
662 	 * @dl_throttled tells if we exhausted the runtime. If so, the
663 	 * task has to wait for a replenishment to be performed at the
664 	 * next firing of dl_timer.
665 	 *
666 	 * @dl_yielded tells if task gave up the CPU before consuming
667 	 * all its available runtime during the last job.
668 	 *
669 	 * @dl_non_contending tells if the task is inactive while still
670 	 * contributing to the active utilization. In other words, it
671 	 * indicates if the inactive timer has been armed and its handler
672 	 * has not been executed yet. This flag is useful to avoid race
673 	 * conditions between the inactive timer handler and the wakeup
674 	 * code.
675 	 *
676 	 * @dl_overrun tells if the task asked to be informed about runtime
677 	 * overruns.
678 	 *
679 	 * @dl_server tells if this is a server entity.
680 	 *
681 	 * @dl_defer tells if this is a deferred or regular server. For
682 	 * now only defer server exists.
683 	 *
684 	 * @dl_defer_armed tells if the deferrable server is waiting
685 	 * for the replenishment timer to activate it.
686 	 *
687 	 * @dl_server_active tells if the dlserver is active(started).
688 	 * dlserver is started on first cfs enqueue on an idle runqueue
689 	 * and is stopped when a dequeue results in 0 cfs tasks on the
690 	 * runqueue. In other words, dlserver is active only when cpu's
691 	 * runqueue has atleast one cfs task.
692 	 *
693 	 * @dl_defer_running tells if the deferrable server is actually
694 	 * running, skipping the defer phase.
695 	 */
696 	unsigned int			dl_throttled      : 1;
697 	unsigned int			dl_yielded        : 1;
698 	unsigned int			dl_non_contending : 1;
699 	unsigned int			dl_overrun	  : 1;
700 	unsigned int			dl_server         : 1;
701 	unsigned int			dl_server_active  : 1;
702 	unsigned int			dl_defer	  : 1;
703 	unsigned int			dl_defer_armed	  : 1;
704 	unsigned int			dl_defer_running  : 1;
705 
706 	/*
707 	 * Bandwidth enforcement timer. Each -deadline task has its
708 	 * own bandwidth to be enforced, thus we need one timer per task.
709 	 */
710 	struct hrtimer			dl_timer;
711 
712 	/*
713 	 * Inactive timer, responsible for decreasing the active utilization
714 	 * at the "0-lag time". When a -deadline task blocks, it contributes
715 	 * to GRUB's active utilization until the "0-lag time", hence a
716 	 * timer is needed to decrease the active utilization at the correct
717 	 * time.
718 	 */
719 	struct hrtimer			inactive_timer;
720 
721 	/*
722 	 * Bits for DL-server functionality. Also see the comment near
723 	 * dl_server_update().
724 	 *
725 	 * @rq the runqueue this server is for
726 	 *
727 	 * @server_has_tasks() returns true if @server_pick return a
728 	 * runnable task.
729 	 */
730 	struct rq			*rq;
731 	dl_server_has_tasks_f		server_has_tasks;
732 	dl_server_pick_f		server_pick_task;
733 
734 #ifdef CONFIG_RT_MUTEXES
735 	/*
736 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
737 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
738 	 * to (the original one/itself).
739 	 */
740 	struct sched_dl_entity *pi_se;
741 #endif
742 };
743 
744 #ifdef CONFIG_UCLAMP_TASK
745 /* Number of utilization clamp buckets (shorter alias) */
746 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
747 
748 /*
749  * Utilization clamp for a scheduling entity
750  * @value:		clamp value "assigned" to a se
751  * @bucket_id:		bucket index corresponding to the "assigned" value
752  * @active:		the se is currently refcounted in a rq's bucket
753  * @user_defined:	the requested clamp value comes from user-space
754  *
755  * The bucket_id is the index of the clamp bucket matching the clamp value
756  * which is pre-computed and stored to avoid expensive integer divisions from
757  * the fast path.
758  *
759  * The active bit is set whenever a task has got an "effective" value assigned,
760  * which can be different from the clamp value "requested" from user-space.
761  * This allows to know a task is refcounted in the rq's bucket corresponding
762  * to the "effective" bucket_id.
763  *
764  * The user_defined bit is set whenever a task has got a task-specific clamp
765  * value requested from userspace, i.e. the system defaults apply to this task
766  * just as a restriction. This allows to relax default clamps when a less
767  * restrictive task-specific value has been requested, thus allowing to
768  * implement a "nice" semantic. For example, a task running with a 20%
769  * default boost can still drop its own boosting to 0%.
770  */
771 struct uclamp_se {
772 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
773 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
774 	unsigned int active		: 1;
775 	unsigned int user_defined	: 1;
776 };
777 #endif /* CONFIG_UCLAMP_TASK */
778 
779 union rcu_special {
780 	struct {
781 		u8			blocked;
782 		u8			need_qs;
783 		u8			exp_hint; /* Hint for performance. */
784 		u8			need_mb; /* Readers need smp_mb(). */
785 	} b; /* Bits. */
786 	u32 s; /* Set of bits. */
787 };
788 
789 enum perf_event_task_context {
790 	perf_invalid_context = -1,
791 	perf_hw_context = 0,
792 	perf_sw_context,
793 	perf_nr_task_contexts,
794 };
795 
796 /*
797  * Number of contexts where an event can trigger:
798  *      task, softirq, hardirq, nmi.
799  */
800 #define PERF_NR_CONTEXTS	4
801 
802 struct wake_q_node {
803 	struct wake_q_node *next;
804 };
805 
806 struct kmap_ctrl {
807 #ifdef CONFIG_KMAP_LOCAL
808 	int				idx;
809 	pte_t				pteval[KM_MAX_IDX];
810 #endif
811 };
812 
813 struct task_struct {
814 #ifdef CONFIG_THREAD_INFO_IN_TASK
815 	/*
816 	 * For reasons of header soup (see current_thread_info()), this
817 	 * must be the first element of task_struct.
818 	 */
819 	struct thread_info		thread_info;
820 #endif
821 	unsigned int			__state;
822 
823 	/* saved state for "spinlock sleepers" */
824 	unsigned int			saved_state;
825 
826 	/*
827 	 * This begins the randomizable portion of task_struct. Only
828 	 * scheduling-critical items should be added above here.
829 	 */
830 	randomized_struct_fields_start
831 
832 	void				*stack;
833 	refcount_t			usage;
834 	/* Per task flags (PF_*), defined further below: */
835 	unsigned int			flags;
836 	unsigned int			ptrace;
837 
838 #ifdef CONFIG_MEM_ALLOC_PROFILING
839 	struct alloc_tag		*alloc_tag;
840 #endif
841 
842 #ifdef CONFIG_SMP
843 	int				on_cpu;
844 	struct __call_single_node	wake_entry;
845 	unsigned int			wakee_flips;
846 	unsigned long			wakee_flip_decay_ts;
847 	struct task_struct		*last_wakee;
848 
849 	/*
850 	 * recent_used_cpu is initially set as the last CPU used by a task
851 	 * that wakes affine another task. Waker/wakee relationships can
852 	 * push tasks around a CPU where each wakeup moves to the next one.
853 	 * Tracking a recently used CPU allows a quick search for a recently
854 	 * used CPU that may be idle.
855 	 */
856 	int				recent_used_cpu;
857 	int				wake_cpu;
858 #endif
859 	int				on_rq;
860 
861 	int				prio;
862 	int				static_prio;
863 	int				normal_prio;
864 	unsigned int			rt_priority;
865 
866 	struct sched_entity		se;
867 	struct sched_rt_entity		rt;
868 	struct sched_dl_entity		dl;
869 	struct sched_dl_entity		*dl_server;
870 #ifdef CONFIG_SCHED_CLASS_EXT
871 	struct sched_ext_entity		scx;
872 #endif
873 	const struct sched_class	*sched_class;
874 
875 #ifdef CONFIG_SCHED_CORE
876 	struct rb_node			core_node;
877 	unsigned long			core_cookie;
878 	unsigned int			core_occupation;
879 #endif
880 
881 #ifdef CONFIG_CGROUP_SCHED
882 	struct task_group		*sched_task_group;
883 #endif
884 
885 
886 #ifdef CONFIG_UCLAMP_TASK
887 	/*
888 	 * Clamp values requested for a scheduling entity.
889 	 * Must be updated with task_rq_lock() held.
890 	 */
891 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
892 	/*
893 	 * Effective clamp values used for a scheduling entity.
894 	 * Must be updated with task_rq_lock() held.
895 	 */
896 	struct uclamp_se		uclamp[UCLAMP_CNT];
897 #endif
898 
899 	struct sched_statistics         stats;
900 
901 #ifdef CONFIG_PREEMPT_NOTIFIERS
902 	/* List of struct preempt_notifier: */
903 	struct hlist_head		preempt_notifiers;
904 #endif
905 
906 #ifdef CONFIG_BLK_DEV_IO_TRACE
907 	unsigned int			btrace_seq;
908 #endif
909 
910 	unsigned int			policy;
911 	unsigned long			max_allowed_capacity;
912 	int				nr_cpus_allowed;
913 	const cpumask_t			*cpus_ptr;
914 	cpumask_t			*user_cpus_ptr;
915 	cpumask_t			cpus_mask;
916 	void				*migration_pending;
917 #ifdef CONFIG_SMP
918 	unsigned short			migration_disabled;
919 #endif
920 	unsigned short			migration_flags;
921 
922 #ifdef CONFIG_PREEMPT_RCU
923 	int				rcu_read_lock_nesting;
924 	union rcu_special		rcu_read_unlock_special;
925 	struct list_head		rcu_node_entry;
926 	struct rcu_node			*rcu_blocked_node;
927 #endif /* #ifdef CONFIG_PREEMPT_RCU */
928 
929 #ifdef CONFIG_TASKS_RCU
930 	unsigned long			rcu_tasks_nvcsw;
931 	u8				rcu_tasks_holdout;
932 	u8				rcu_tasks_idx;
933 	int				rcu_tasks_idle_cpu;
934 	struct list_head		rcu_tasks_holdout_list;
935 	int				rcu_tasks_exit_cpu;
936 	struct list_head		rcu_tasks_exit_list;
937 #endif /* #ifdef CONFIG_TASKS_RCU */
938 
939 #ifdef CONFIG_TASKS_TRACE_RCU
940 	int				trc_reader_nesting;
941 	int				trc_ipi_to_cpu;
942 	union rcu_special		trc_reader_special;
943 	struct list_head		trc_holdout_list;
944 	struct list_head		trc_blkd_node;
945 	int				trc_blkd_cpu;
946 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
947 
948 	struct sched_info		sched_info;
949 
950 	struct list_head		tasks;
951 #ifdef CONFIG_SMP
952 	struct plist_node		pushable_tasks;
953 	struct rb_node			pushable_dl_tasks;
954 #endif
955 
956 	struct mm_struct		*mm;
957 	struct mm_struct		*active_mm;
958 	struct address_space		*faults_disabled_mapping;
959 
960 	int				exit_state;
961 	int				exit_code;
962 	int				exit_signal;
963 	/* The signal sent when the parent dies: */
964 	int				pdeath_signal;
965 	/* JOBCTL_*, siglock protected: */
966 	unsigned long			jobctl;
967 
968 	/* Used for emulating ABI behavior of previous Linux versions: */
969 	unsigned int			personality;
970 
971 	/* Scheduler bits, serialized by scheduler locks: */
972 	unsigned			sched_reset_on_fork:1;
973 	unsigned			sched_contributes_to_load:1;
974 	unsigned			sched_migrated:1;
975 	unsigned			sched_task_hot:1;
976 
977 	/* Force alignment to the next boundary: */
978 	unsigned			:0;
979 
980 	/* Unserialized, strictly 'current' */
981 
982 	/*
983 	 * This field must not be in the scheduler word above due to wakelist
984 	 * queueing no longer being serialized by p->on_cpu. However:
985 	 *
986 	 * p->XXX = X;			ttwu()
987 	 * schedule()			  if (p->on_rq && ..) // false
988 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
989 	 *   deactivate_task()		      ttwu_queue_wakelist())
990 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
991 	 *
992 	 * guarantees all stores of 'current' are visible before
993 	 * ->sched_remote_wakeup gets used, so it can be in this word.
994 	 */
995 	unsigned			sched_remote_wakeup:1;
996 #ifdef CONFIG_RT_MUTEXES
997 	unsigned			sched_rt_mutex:1;
998 #endif
999 
1000 	/* Bit to tell TOMOYO we're in execve(): */
1001 	unsigned			in_execve:1;
1002 	unsigned			in_iowait:1;
1003 #ifndef TIF_RESTORE_SIGMASK
1004 	unsigned			restore_sigmask:1;
1005 #endif
1006 #ifdef CONFIG_MEMCG_V1
1007 	unsigned			in_user_fault:1;
1008 #endif
1009 #ifdef CONFIG_LRU_GEN
1010 	/* whether the LRU algorithm may apply to this access */
1011 	unsigned			in_lru_fault:1;
1012 #endif
1013 #ifdef CONFIG_COMPAT_BRK
1014 	unsigned			brk_randomized:1;
1015 #endif
1016 #ifdef CONFIG_CGROUPS
1017 	/* disallow userland-initiated cgroup migration */
1018 	unsigned			no_cgroup_migration:1;
1019 	/* task is frozen/stopped (used by the cgroup freezer) */
1020 	unsigned			frozen:1;
1021 #endif
1022 #ifdef CONFIG_BLK_CGROUP
1023 	unsigned			use_memdelay:1;
1024 #endif
1025 #ifdef CONFIG_PSI
1026 	/* Stalled due to lack of memory */
1027 	unsigned			in_memstall:1;
1028 #endif
1029 #ifdef CONFIG_PAGE_OWNER
1030 	/* Used by page_owner=on to detect recursion in page tracking. */
1031 	unsigned			in_page_owner:1;
1032 #endif
1033 #ifdef CONFIG_EVENTFD
1034 	/* Recursion prevention for eventfd_signal() */
1035 	unsigned			in_eventfd:1;
1036 #endif
1037 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1038 	unsigned			pasid_activated:1;
1039 #endif
1040 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1041 	unsigned			reported_split_lock:1;
1042 #endif
1043 #ifdef CONFIG_TASK_DELAY_ACCT
1044 	/* delay due to memory thrashing */
1045 	unsigned                        in_thrashing:1;
1046 #endif
1047 #ifdef CONFIG_PREEMPT_RT
1048 	struct netdev_xmit		net_xmit;
1049 #endif
1050 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
1051 
1052 	struct restart_block		restart_block;
1053 
1054 	pid_t				pid;
1055 	pid_t				tgid;
1056 
1057 #ifdef CONFIG_STACKPROTECTOR
1058 	/* Canary value for the -fstack-protector GCC feature: */
1059 	unsigned long			stack_canary;
1060 #endif
1061 	/*
1062 	 * Pointers to the (original) parent process, youngest child, younger sibling,
1063 	 * older sibling, respectively.  (p->father can be replaced with
1064 	 * p->real_parent->pid)
1065 	 */
1066 
1067 	/* Real parent process: */
1068 	struct task_struct __rcu	*real_parent;
1069 
1070 	/* Recipient of SIGCHLD, wait4() reports: */
1071 	struct task_struct __rcu	*parent;
1072 
1073 	/*
1074 	 * Children/sibling form the list of natural children:
1075 	 */
1076 	struct list_head		children;
1077 	struct list_head		sibling;
1078 	struct task_struct		*group_leader;
1079 
1080 	/*
1081 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
1082 	 *
1083 	 * This includes both natural children and PTRACE_ATTACH targets.
1084 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1085 	 */
1086 	struct list_head		ptraced;
1087 	struct list_head		ptrace_entry;
1088 
1089 	/* PID/PID hash table linkage. */
1090 	struct pid			*thread_pid;
1091 	struct hlist_node		pid_links[PIDTYPE_MAX];
1092 	struct list_head		thread_node;
1093 
1094 	struct completion		*vfork_done;
1095 
1096 	/* CLONE_CHILD_SETTID: */
1097 	int __user			*set_child_tid;
1098 
1099 	/* CLONE_CHILD_CLEARTID: */
1100 	int __user			*clear_child_tid;
1101 
1102 	/* PF_KTHREAD | PF_IO_WORKER */
1103 	void				*worker_private;
1104 
1105 	u64				utime;
1106 	u64				stime;
1107 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1108 	u64				utimescaled;
1109 	u64				stimescaled;
1110 #endif
1111 	u64				gtime;
1112 	struct prev_cputime		prev_cputime;
1113 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1114 	struct vtime			vtime;
1115 #endif
1116 
1117 #ifdef CONFIG_NO_HZ_FULL
1118 	atomic_t			tick_dep_mask;
1119 #endif
1120 	/* Context switch counts: */
1121 	unsigned long			nvcsw;
1122 	unsigned long			nivcsw;
1123 
1124 	/* Monotonic time in nsecs: */
1125 	u64				start_time;
1126 
1127 	/* Boot based time in nsecs: */
1128 	u64				start_boottime;
1129 
1130 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1131 	unsigned long			min_flt;
1132 	unsigned long			maj_flt;
1133 
1134 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1135 	struct posix_cputimers		posix_cputimers;
1136 
1137 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1138 	struct posix_cputimers_work	posix_cputimers_work;
1139 #endif
1140 
1141 	/* Process credentials: */
1142 
1143 	/* Tracer's credentials at attach: */
1144 	const struct cred __rcu		*ptracer_cred;
1145 
1146 	/* Objective and real subjective task credentials (COW): */
1147 	const struct cred __rcu		*real_cred;
1148 
1149 	/* Effective (overridable) subjective task credentials (COW): */
1150 	const struct cred __rcu		*cred;
1151 
1152 #ifdef CONFIG_KEYS
1153 	/* Cached requested key. */
1154 	struct key			*cached_requested_key;
1155 #endif
1156 
1157 	/*
1158 	 * executable name, excluding path.
1159 	 *
1160 	 * - normally initialized begin_new_exec()
1161 	 * - set it with set_task_comm()
1162 	 *   - strscpy_pad() to ensure it is always NUL-terminated and
1163 	 *     zero-padded
1164 	 *   - task_lock() to ensure the operation is atomic and the name is
1165 	 *     fully updated.
1166 	 */
1167 	char				comm[TASK_COMM_LEN];
1168 
1169 	struct nameidata		*nameidata;
1170 
1171 #ifdef CONFIG_SYSVIPC
1172 	struct sysv_sem			sysvsem;
1173 	struct sysv_shm			sysvshm;
1174 #endif
1175 #ifdef CONFIG_DETECT_HUNG_TASK
1176 	unsigned long			last_switch_count;
1177 	unsigned long			last_switch_time;
1178 #endif
1179 	/* Filesystem information: */
1180 	struct fs_struct		*fs;
1181 
1182 	/* Open file information: */
1183 	struct files_struct		*files;
1184 
1185 #ifdef CONFIG_IO_URING
1186 	struct io_uring_task		*io_uring;
1187 #endif
1188 
1189 	/* Namespaces: */
1190 	struct nsproxy			*nsproxy;
1191 
1192 	/* Signal handlers: */
1193 	struct signal_struct		*signal;
1194 	struct sighand_struct __rcu		*sighand;
1195 	sigset_t			blocked;
1196 	sigset_t			real_blocked;
1197 	/* Restored if set_restore_sigmask() was used: */
1198 	sigset_t			saved_sigmask;
1199 	struct sigpending		pending;
1200 	unsigned long			sas_ss_sp;
1201 	size_t				sas_ss_size;
1202 	unsigned int			sas_ss_flags;
1203 
1204 	struct callback_head		*task_works;
1205 
1206 #ifdef CONFIG_AUDIT
1207 #ifdef CONFIG_AUDITSYSCALL
1208 	struct audit_context		*audit_context;
1209 #endif
1210 	kuid_t				loginuid;
1211 	unsigned int			sessionid;
1212 #endif
1213 	struct seccomp			seccomp;
1214 	struct syscall_user_dispatch	syscall_dispatch;
1215 
1216 	/* Thread group tracking: */
1217 	u64				parent_exec_id;
1218 	u64				self_exec_id;
1219 
1220 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1221 	spinlock_t			alloc_lock;
1222 
1223 	/* Protection of the PI data structures: */
1224 	raw_spinlock_t			pi_lock;
1225 
1226 	struct wake_q_node		wake_q;
1227 
1228 #ifdef CONFIG_RT_MUTEXES
1229 	/* PI waiters blocked on a rt_mutex held by this task: */
1230 	struct rb_root_cached		pi_waiters;
1231 	/* Updated under owner's pi_lock and rq lock */
1232 	struct task_struct		*pi_top_task;
1233 	/* Deadlock detection and priority inheritance handling: */
1234 	struct rt_mutex_waiter		*pi_blocked_on;
1235 #endif
1236 
1237 #ifdef CONFIG_DEBUG_MUTEXES
1238 	/* Mutex deadlock detection: */
1239 	struct mutex_waiter		*blocked_on;
1240 #endif
1241 
1242 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1243 	int				non_block_count;
1244 #endif
1245 
1246 #ifdef CONFIG_TRACE_IRQFLAGS
1247 	struct irqtrace_events		irqtrace;
1248 	unsigned int			hardirq_threaded;
1249 	u64				hardirq_chain_key;
1250 	int				softirqs_enabled;
1251 	int				softirq_context;
1252 	int				irq_config;
1253 #endif
1254 #ifdef CONFIG_PREEMPT_RT
1255 	int				softirq_disable_cnt;
1256 #endif
1257 
1258 #ifdef CONFIG_LOCKDEP
1259 # define MAX_LOCK_DEPTH			48UL
1260 	u64				curr_chain_key;
1261 	int				lockdep_depth;
1262 	unsigned int			lockdep_recursion;
1263 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1264 #endif
1265 
1266 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1267 	unsigned int			in_ubsan;
1268 #endif
1269 
1270 	/* Journalling filesystem info: */
1271 	void				*journal_info;
1272 
1273 	/* Stacked block device info: */
1274 	struct bio_list			*bio_list;
1275 
1276 	/* Stack plugging: */
1277 	struct blk_plug			*plug;
1278 
1279 	/* VM state: */
1280 	struct reclaim_state		*reclaim_state;
1281 
1282 	struct io_context		*io_context;
1283 
1284 #ifdef CONFIG_COMPACTION
1285 	struct capture_control		*capture_control;
1286 #endif
1287 	/* Ptrace state: */
1288 	unsigned long			ptrace_message;
1289 	kernel_siginfo_t		*last_siginfo;
1290 
1291 	struct task_io_accounting	ioac;
1292 #ifdef CONFIG_PSI
1293 	/* Pressure stall state */
1294 	unsigned int			psi_flags;
1295 #endif
1296 #ifdef CONFIG_TASK_XACCT
1297 	/* Accumulated RSS usage: */
1298 	u64				acct_rss_mem1;
1299 	/* Accumulated virtual memory usage: */
1300 	u64				acct_vm_mem1;
1301 	/* stime + utime since last update: */
1302 	u64				acct_timexpd;
1303 #endif
1304 #ifdef CONFIG_CPUSETS
1305 	/* Protected by ->alloc_lock: */
1306 	nodemask_t			mems_allowed;
1307 	/* Sequence number to catch updates: */
1308 	seqcount_spinlock_t		mems_allowed_seq;
1309 	int				cpuset_mem_spread_rotor;
1310 #endif
1311 #ifdef CONFIG_CGROUPS
1312 	/* Control Group info protected by css_set_lock: */
1313 	struct css_set __rcu		*cgroups;
1314 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1315 	struct list_head		cg_list;
1316 #endif
1317 #ifdef CONFIG_X86_CPU_RESCTRL
1318 	u32				closid;
1319 	u32				rmid;
1320 #endif
1321 #ifdef CONFIG_FUTEX
1322 	struct robust_list_head __user	*robust_list;
1323 #ifdef CONFIG_COMPAT
1324 	struct compat_robust_list_head __user *compat_robust_list;
1325 #endif
1326 	struct list_head		pi_state_list;
1327 	struct futex_pi_state		*pi_state_cache;
1328 	struct mutex			futex_exit_mutex;
1329 	unsigned int			futex_state;
1330 #endif
1331 #ifdef CONFIG_PERF_EVENTS
1332 	u8				perf_recursion[PERF_NR_CONTEXTS];
1333 	struct perf_event_context	*perf_event_ctxp;
1334 	struct mutex			perf_event_mutex;
1335 	struct list_head		perf_event_list;
1336 	struct perf_ctx_data __rcu	*perf_ctx_data;
1337 #endif
1338 #ifdef CONFIG_DEBUG_PREEMPT
1339 	unsigned long			preempt_disable_ip;
1340 #endif
1341 #ifdef CONFIG_NUMA
1342 	/* Protected by alloc_lock: */
1343 	struct mempolicy		*mempolicy;
1344 	short				il_prev;
1345 	u8				il_weight;
1346 	short				pref_node_fork;
1347 #endif
1348 #ifdef CONFIG_NUMA_BALANCING
1349 	int				numa_scan_seq;
1350 	unsigned int			numa_scan_period;
1351 	unsigned int			numa_scan_period_max;
1352 	int				numa_preferred_nid;
1353 	unsigned long			numa_migrate_retry;
1354 	/* Migration stamp: */
1355 	u64				node_stamp;
1356 	u64				last_task_numa_placement;
1357 	u64				last_sum_exec_runtime;
1358 	struct callback_head		numa_work;
1359 
1360 	/*
1361 	 * This pointer is only modified for current in syscall and
1362 	 * pagefault context (and for tasks being destroyed), so it can be read
1363 	 * from any of the following contexts:
1364 	 *  - RCU read-side critical section
1365 	 *  - current->numa_group from everywhere
1366 	 *  - task's runqueue locked, task not running
1367 	 */
1368 	struct numa_group __rcu		*numa_group;
1369 
1370 	/*
1371 	 * numa_faults is an array split into four regions:
1372 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1373 	 * in this precise order.
1374 	 *
1375 	 * faults_memory: Exponential decaying average of faults on a per-node
1376 	 * basis. Scheduling placement decisions are made based on these
1377 	 * counts. The values remain static for the duration of a PTE scan.
1378 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1379 	 * hinting fault was incurred.
1380 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1381 	 * during the current scan window. When the scan completes, the counts
1382 	 * in faults_memory and faults_cpu decay and these values are copied.
1383 	 */
1384 	unsigned long			*numa_faults;
1385 	unsigned long			total_numa_faults;
1386 
1387 	/*
1388 	 * numa_faults_locality tracks if faults recorded during the last
1389 	 * scan window were remote/local or failed to migrate. The task scan
1390 	 * period is adapted based on the locality of the faults with different
1391 	 * weights depending on whether they were shared or private faults
1392 	 */
1393 	unsigned long			numa_faults_locality[3];
1394 
1395 	unsigned long			numa_pages_migrated;
1396 #endif /* CONFIG_NUMA_BALANCING */
1397 
1398 #ifdef CONFIG_RSEQ
1399 	struct rseq __user *rseq;
1400 	u32 rseq_len;
1401 	u32 rseq_sig;
1402 	/*
1403 	 * RmW on rseq_event_mask must be performed atomically
1404 	 * with respect to preemption.
1405 	 */
1406 	unsigned long rseq_event_mask;
1407 # ifdef CONFIG_DEBUG_RSEQ
1408 	/*
1409 	 * This is a place holder to save a copy of the rseq fields for
1410 	 * validation of read-only fields. The struct rseq has a
1411 	 * variable-length array at the end, so it cannot be used
1412 	 * directly. Reserve a size large enough for the known fields.
1413 	 */
1414 	char				rseq_fields[sizeof(struct rseq)];
1415 # endif
1416 #endif
1417 
1418 #ifdef CONFIG_SCHED_MM_CID
1419 	int				mm_cid;		/* Current cid in mm */
1420 	int				last_mm_cid;	/* Most recent cid in mm */
1421 	int				migrate_from_cpu;
1422 	int				mm_cid_active;	/* Whether cid bitmap is active */
1423 	struct callback_head		cid_work;
1424 #endif
1425 
1426 	struct tlbflush_unmap_batch	tlb_ubc;
1427 
1428 	/* Cache last used pipe for splice(): */
1429 	struct pipe_inode_info		*splice_pipe;
1430 
1431 	struct page_frag		task_frag;
1432 
1433 #ifdef CONFIG_TASK_DELAY_ACCT
1434 	struct task_delay_info		*delays;
1435 #endif
1436 
1437 #ifdef CONFIG_FAULT_INJECTION
1438 	int				make_it_fail;
1439 	unsigned int			fail_nth;
1440 #endif
1441 	/*
1442 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1443 	 * balance_dirty_pages() for a dirty throttling pause:
1444 	 */
1445 	int				nr_dirtied;
1446 	int				nr_dirtied_pause;
1447 	/* Start of a write-and-pause period: */
1448 	unsigned long			dirty_paused_when;
1449 
1450 #ifdef CONFIG_LATENCYTOP
1451 	int				latency_record_count;
1452 	struct latency_record		latency_record[LT_SAVECOUNT];
1453 #endif
1454 	/*
1455 	 * Time slack values; these are used to round up poll() and
1456 	 * select() etc timeout values. These are in nanoseconds.
1457 	 */
1458 	u64				timer_slack_ns;
1459 	u64				default_timer_slack_ns;
1460 
1461 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1462 	unsigned int			kasan_depth;
1463 #endif
1464 
1465 #ifdef CONFIG_KCSAN
1466 	struct kcsan_ctx		kcsan_ctx;
1467 #ifdef CONFIG_TRACE_IRQFLAGS
1468 	struct irqtrace_events		kcsan_save_irqtrace;
1469 #endif
1470 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1471 	int				kcsan_stack_depth;
1472 #endif
1473 #endif
1474 
1475 #ifdef CONFIG_KMSAN
1476 	struct kmsan_ctx		kmsan_ctx;
1477 #endif
1478 
1479 #if IS_ENABLED(CONFIG_KUNIT)
1480 	struct kunit			*kunit_test;
1481 #endif
1482 
1483 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1484 	/* Index of current stored address in ret_stack: */
1485 	int				curr_ret_stack;
1486 	int				curr_ret_depth;
1487 
1488 	/* Stack of return addresses for return function tracing: */
1489 	unsigned long			*ret_stack;
1490 
1491 	/* Timestamp for last schedule: */
1492 	unsigned long long		ftrace_timestamp;
1493 	unsigned long long		ftrace_sleeptime;
1494 
1495 	/*
1496 	 * Number of functions that haven't been traced
1497 	 * because of depth overrun:
1498 	 */
1499 	atomic_t			trace_overrun;
1500 
1501 	/* Pause tracing: */
1502 	atomic_t			tracing_graph_pause;
1503 #endif
1504 
1505 #ifdef CONFIG_TRACING
1506 	/* Bitmask and counter of trace recursion: */
1507 	unsigned long			trace_recursion;
1508 #endif /* CONFIG_TRACING */
1509 
1510 #ifdef CONFIG_KCOV
1511 	/* See kernel/kcov.c for more details. */
1512 
1513 	/* Coverage collection mode enabled for this task (0 if disabled): */
1514 	unsigned int			kcov_mode;
1515 
1516 	/* Size of the kcov_area: */
1517 	unsigned int			kcov_size;
1518 
1519 	/* Buffer for coverage collection: */
1520 	void				*kcov_area;
1521 
1522 	/* KCOV descriptor wired with this task or NULL: */
1523 	struct kcov			*kcov;
1524 
1525 	/* KCOV common handle for remote coverage collection: */
1526 	u64				kcov_handle;
1527 
1528 	/* KCOV sequence number: */
1529 	int				kcov_sequence;
1530 
1531 	/* Collect coverage from softirq context: */
1532 	unsigned int			kcov_softirq;
1533 #endif
1534 
1535 #ifdef CONFIG_MEMCG_V1
1536 	struct mem_cgroup		*memcg_in_oom;
1537 #endif
1538 
1539 #ifdef CONFIG_MEMCG
1540 	/* Number of pages to reclaim on returning to userland: */
1541 	unsigned int			memcg_nr_pages_over_high;
1542 
1543 	/* Used by memcontrol for targeted memcg charge: */
1544 	struct mem_cgroup		*active_memcg;
1545 
1546 	/* Cache for current->cgroups->memcg->objcg lookups: */
1547 	struct obj_cgroup		*objcg;
1548 #endif
1549 
1550 #ifdef CONFIG_BLK_CGROUP
1551 	struct gendisk			*throttle_disk;
1552 #endif
1553 
1554 #ifdef CONFIG_UPROBES
1555 	struct uprobe_task		*utask;
1556 #endif
1557 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1558 	unsigned int			sequential_io;
1559 	unsigned int			sequential_io_avg;
1560 #endif
1561 	struct kmap_ctrl		kmap_ctrl;
1562 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1563 	unsigned long			task_state_change;
1564 # ifdef CONFIG_PREEMPT_RT
1565 	unsigned long			saved_state_change;
1566 # endif
1567 #endif
1568 	struct rcu_head			rcu;
1569 	refcount_t			rcu_users;
1570 	int				pagefault_disabled;
1571 #ifdef CONFIG_MMU
1572 	struct task_struct		*oom_reaper_list;
1573 	struct timer_list		oom_reaper_timer;
1574 #endif
1575 #ifdef CONFIG_VMAP_STACK
1576 	struct vm_struct		*stack_vm_area;
1577 #endif
1578 #ifdef CONFIG_THREAD_INFO_IN_TASK
1579 	/* A live task holds one reference: */
1580 	refcount_t			stack_refcount;
1581 #endif
1582 #ifdef CONFIG_LIVEPATCH
1583 	int patch_state;
1584 #endif
1585 #ifdef CONFIG_SECURITY
1586 	/* Used by LSM modules for access restriction: */
1587 	void				*security;
1588 #endif
1589 #ifdef CONFIG_BPF_SYSCALL
1590 	/* Used by BPF task local storage */
1591 	struct bpf_local_storage __rcu	*bpf_storage;
1592 	/* Used for BPF run context */
1593 	struct bpf_run_ctx		*bpf_ctx;
1594 #endif
1595 	/* Used by BPF for per-TASK xdp storage */
1596 	struct bpf_net_context		*bpf_net_context;
1597 
1598 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1599 	unsigned long			lowest_stack;
1600 	unsigned long			prev_lowest_stack;
1601 #endif
1602 
1603 #ifdef CONFIG_X86_MCE
1604 	void __user			*mce_vaddr;
1605 	__u64				mce_kflags;
1606 	u64				mce_addr;
1607 	__u64				mce_ripv : 1,
1608 					mce_whole_page : 1,
1609 					__mce_reserved : 62;
1610 	struct callback_head		mce_kill_me;
1611 	int				mce_count;
1612 #endif
1613 
1614 #ifdef CONFIG_KRETPROBES
1615 	struct llist_head               kretprobe_instances;
1616 #endif
1617 #ifdef CONFIG_RETHOOK
1618 	struct llist_head               rethooks;
1619 #endif
1620 
1621 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1622 	/*
1623 	 * If L1D flush is supported on mm context switch
1624 	 * then we use this callback head to queue kill work
1625 	 * to kill tasks that are not running on SMT disabled
1626 	 * cores
1627 	 */
1628 	struct callback_head		l1d_flush_kill;
1629 #endif
1630 
1631 #ifdef CONFIG_RV
1632 	/*
1633 	 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1634 	 * If we find justification for more monitors, we can think
1635 	 * about adding more or developing a dynamic method. So far,
1636 	 * none of these are justified.
1637 	 */
1638 	union rv_task_monitor		rv[RV_PER_TASK_MONITORS];
1639 #endif
1640 
1641 #ifdef CONFIG_USER_EVENTS
1642 	struct user_event_mm		*user_event_mm;
1643 #endif
1644 
1645 	/*
1646 	 * New fields for task_struct should be added above here, so that
1647 	 * they are included in the randomized portion of task_struct.
1648 	 */
1649 	randomized_struct_fields_end
1650 
1651 	/* CPU-specific state of this task: */
1652 	struct thread_struct		thread;
1653 
1654 	/*
1655 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1656 	 * structure.  It *MUST* be at the end of 'task_struct'.
1657 	 *
1658 	 * Do not put anything below here!
1659 	 */
1660 };
1661 
1662 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1663 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1664 
__task_state_index(unsigned int tsk_state,unsigned int tsk_exit_state)1665 static inline unsigned int __task_state_index(unsigned int tsk_state,
1666 					      unsigned int tsk_exit_state)
1667 {
1668 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1669 
1670 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1671 
1672 	if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1673 		state = TASK_REPORT_IDLE;
1674 
1675 	/*
1676 	 * We're lying here, but rather than expose a completely new task state
1677 	 * to userspace, we can make this appear as if the task has gone through
1678 	 * a regular rt_mutex_lock() call.
1679 	 * Report frozen tasks as uninterruptible.
1680 	 */
1681 	if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
1682 		state = TASK_UNINTERRUPTIBLE;
1683 
1684 	return fls(state);
1685 }
1686 
task_state_index(struct task_struct * tsk)1687 static inline unsigned int task_state_index(struct task_struct *tsk)
1688 {
1689 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1690 }
1691 
task_index_to_char(unsigned int state)1692 static inline char task_index_to_char(unsigned int state)
1693 {
1694 	static const char state_char[] = "RSDTtXZPI";
1695 
1696 	BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1));
1697 
1698 	return state_char[state];
1699 }
1700 
task_state_to_char(struct task_struct * tsk)1701 static inline char task_state_to_char(struct task_struct *tsk)
1702 {
1703 	return task_index_to_char(task_state_index(tsk));
1704 }
1705 
1706 extern struct pid *cad_pid;
1707 
1708 /*
1709  * Per process flags
1710  */
1711 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1712 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1713 #define PF_EXITING		0x00000004	/* Getting shut down */
1714 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1715 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1716 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1717 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1718 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1719 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1720 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1721 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1722 #define PF_MEMALLOC		0x00000800	/* Allocating memory to free memory. See memalloc_noreclaim_save() */
1723 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1724 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1725 #define PF_USER_WORKER		0x00004000	/* Kernel thread cloned from userspace thread */
1726 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1727 #define PF_KCOMPACTD		0x00010000	/* I am kcompactd */
1728 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1729 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1730 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1731 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1732 						 * I am cleaning dirty pages from some other bdi. */
1733 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1734 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1735 #define PF__HOLE__00800000	0x00800000
1736 #define PF__HOLE__01000000	0x01000000
1737 #define PF__HOLE__02000000	0x02000000
1738 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1739 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1740 #define PF_MEMALLOC_PIN		0x10000000	/* Allocations constrained to zones which allow long term pinning.
1741 						 * See memalloc_pin_save() */
1742 #define PF_BLOCK_TS		0x20000000	/* plug has ts that needs updating */
1743 #define PF__HOLE__40000000	0x40000000
1744 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1745 
1746 /*
1747  * Only the _current_ task can read/write to tsk->flags, but other
1748  * tasks can access tsk->flags in readonly mode for example
1749  * with tsk_used_math (like during threaded core dumping).
1750  * There is however an exception to this rule during ptrace
1751  * or during fork: the ptracer task is allowed to write to the
1752  * child->flags of its traced child (same goes for fork, the parent
1753  * can write to the child->flags), because we're guaranteed the
1754  * child is not running and in turn not changing child->flags
1755  * at the same time the parent does it.
1756  */
1757 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1758 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1759 #define clear_used_math()			clear_stopped_child_used_math(current)
1760 #define set_used_math()				set_stopped_child_used_math(current)
1761 
1762 #define conditional_stopped_child_used_math(condition, child) \
1763 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1764 
1765 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1766 
1767 #define copy_to_stopped_child_used_math(child) \
1768 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1769 
1770 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1771 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1772 #define used_math()				tsk_used_math(current)
1773 
is_percpu_thread(void)1774 static __always_inline bool is_percpu_thread(void)
1775 {
1776 #ifdef CONFIG_SMP
1777 	return (current->flags & PF_NO_SETAFFINITY) &&
1778 		(current->nr_cpus_allowed  == 1);
1779 #else
1780 	return true;
1781 #endif
1782 }
1783 
1784 /* Per-process atomic flags. */
1785 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1786 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1787 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1788 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1789 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1790 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1791 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1792 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1793 
1794 #define TASK_PFA_TEST(name, func)					\
1795 	static inline bool task_##func(struct task_struct *p)		\
1796 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1797 
1798 #define TASK_PFA_SET(name, func)					\
1799 	static inline void task_set_##func(struct task_struct *p)	\
1800 	{ set_bit(PFA_##name, &p->atomic_flags); }
1801 
1802 #define TASK_PFA_CLEAR(name, func)					\
1803 	static inline void task_clear_##func(struct task_struct *p)	\
1804 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1805 
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1806 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1807 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1808 
1809 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1810 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1811 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1812 
1813 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1814 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1815 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1816 
1817 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1818 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1819 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1820 
1821 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1822 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1823 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1824 
1825 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1826 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1827 
1828 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1829 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1830 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1831 
1832 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1833 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1834 
1835 static inline void
1836 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1837 {
1838 	current->flags &= ~flags;
1839 	current->flags |= orig_flags & flags;
1840 }
1841 
1842 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1843 extern int task_can_attach(struct task_struct *p);
1844 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1845 extern void dl_bw_free(int cpu, u64 dl_bw);
1846 #ifdef CONFIG_SMP
1847 
1848 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1849 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1850 
1851 /**
1852  * set_cpus_allowed_ptr - set CPU affinity mask of a task
1853  * @p: the task
1854  * @new_mask: CPU affinity mask
1855  *
1856  * Return: zero if successful, or a negative error code
1857  */
1858 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1859 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1860 extern void release_user_cpus_ptr(struct task_struct *p);
1861 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1862 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1863 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1864 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1865 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1866 {
1867 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1868 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1869 {
1870 	/* Opencoded cpumask_test_cpu(0, new_mask) to avoid dependency on cpumask.h */
1871 	if ((*cpumask_bits(new_mask) & 1) == 0)
1872 		return -EINVAL;
1873 	return 0;
1874 }
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)1875 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1876 {
1877 	if (src->user_cpus_ptr)
1878 		return -EINVAL;
1879 	return 0;
1880 }
release_user_cpus_ptr(struct task_struct * p)1881 static inline void release_user_cpus_ptr(struct task_struct *p)
1882 {
1883 	WARN_ON(p->user_cpus_ptr);
1884 }
1885 
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)1886 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1887 {
1888 	return 0;
1889 }
1890 #endif
1891 
1892 extern int yield_to(struct task_struct *p, bool preempt);
1893 extern void set_user_nice(struct task_struct *p, long nice);
1894 extern int task_prio(const struct task_struct *p);
1895 
1896 /**
1897  * task_nice - return the nice value of a given task.
1898  * @p: the task in question.
1899  *
1900  * Return: The nice value [ -20 ... 0 ... 19 ].
1901  */
task_nice(const struct task_struct * p)1902 static inline int task_nice(const struct task_struct *p)
1903 {
1904 	return PRIO_TO_NICE((p)->static_prio);
1905 }
1906 
1907 extern int can_nice(const struct task_struct *p, const int nice);
1908 extern int task_curr(const struct task_struct *p);
1909 extern int idle_cpu(int cpu);
1910 extern int available_idle_cpu(int cpu);
1911 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1912 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1913 extern void sched_set_fifo(struct task_struct *p);
1914 extern void sched_set_fifo_low(struct task_struct *p);
1915 extern void sched_set_normal(struct task_struct *p, int nice);
1916 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1917 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1918 extern struct task_struct *idle_task(int cpu);
1919 
1920 /**
1921  * is_idle_task - is the specified task an idle task?
1922  * @p: the task in question.
1923  *
1924  * Return: 1 if @p is an idle task. 0 otherwise.
1925  */
is_idle_task(const struct task_struct * p)1926 static __always_inline bool is_idle_task(const struct task_struct *p)
1927 {
1928 	return !!(p->flags & PF_IDLE);
1929 }
1930 
1931 extern struct task_struct *curr_task(int cpu);
1932 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1933 
1934 void yield(void);
1935 
1936 union thread_union {
1937 	struct task_struct task;
1938 #ifndef CONFIG_THREAD_INFO_IN_TASK
1939 	struct thread_info thread_info;
1940 #endif
1941 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1942 };
1943 
1944 #ifndef CONFIG_THREAD_INFO_IN_TASK
1945 extern struct thread_info init_thread_info;
1946 #endif
1947 
1948 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1949 
1950 #ifdef CONFIG_THREAD_INFO_IN_TASK
1951 # define task_thread_info(task)	(&(task)->thread_info)
1952 #else
1953 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1954 #endif
1955 
1956 /*
1957  * find a task by one of its numerical ids
1958  *
1959  * find_task_by_pid_ns():
1960  *      finds a task by its pid in the specified namespace
1961  * find_task_by_vpid():
1962  *      finds a task by its virtual pid
1963  *
1964  * see also find_vpid() etc in include/linux/pid.h
1965  */
1966 
1967 extern struct task_struct *find_task_by_vpid(pid_t nr);
1968 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1969 
1970 /*
1971  * find a task by its virtual pid and get the task struct
1972  */
1973 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1974 
1975 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1976 extern int wake_up_process(struct task_struct *tsk);
1977 extern void wake_up_new_task(struct task_struct *tsk);
1978 
1979 #ifdef CONFIG_SMP
1980 extern void kick_process(struct task_struct *tsk);
1981 #else
kick_process(struct task_struct * tsk)1982 static inline void kick_process(struct task_struct *tsk) { }
1983 #endif
1984 
1985 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1986 #define set_task_comm(tsk, from) ({			\
1987 	BUILD_BUG_ON(sizeof(from) != TASK_COMM_LEN);	\
1988 	__set_task_comm(tsk, from, false);		\
1989 })
1990 
1991 /*
1992  * - Why not use task_lock()?
1993  *   User space can randomly change their names anyway, so locking for readers
1994  *   doesn't make sense. For writers, locking is probably necessary, as a race
1995  *   condition could lead to long-term mixed results.
1996  *   The strscpy_pad() in __set_task_comm() can ensure that the task comm is
1997  *   always NUL-terminated and zero-padded. Therefore the race condition between
1998  *   reader and writer is not an issue.
1999  *
2000  * - BUILD_BUG_ON() can help prevent the buf from being truncated.
2001  *   Since the callers don't perform any return value checks, this safeguard is
2002  *   necessary.
2003  */
2004 #define get_task_comm(buf, tsk) ({			\
2005 	BUILD_BUG_ON(sizeof(buf) < TASK_COMM_LEN);	\
2006 	strscpy_pad(buf, (tsk)->comm);			\
2007 	buf;						\
2008 })
2009 
2010 #ifdef CONFIG_SMP
scheduler_ipi(void)2011 static __always_inline void scheduler_ipi(void)
2012 {
2013 	/*
2014 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2015 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2016 	 * this IPI.
2017 	 */
2018 	preempt_fold_need_resched();
2019 }
2020 #else
scheduler_ipi(void)2021 static inline void scheduler_ipi(void) { }
2022 #endif
2023 
2024 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2025 
2026 /*
2027  * Set thread flags in other task's structures.
2028  * See asm/thread_info.h for TIF_xxxx flags available:
2029  */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2030 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2031 {
2032 	set_ti_thread_flag(task_thread_info(tsk), flag);
2033 }
2034 
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2035 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2036 {
2037 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2038 }
2039 
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)2040 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2041 					  bool value)
2042 {
2043 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
2044 }
2045 
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2046 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2047 {
2048 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2049 }
2050 
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2051 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2052 {
2053 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2054 }
2055 
test_tsk_thread_flag(struct task_struct * tsk,int flag)2056 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2057 {
2058 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2059 }
2060 
set_tsk_need_resched(struct task_struct * tsk)2061 static inline void set_tsk_need_resched(struct task_struct *tsk)
2062 {
2063 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2064 }
2065 
clear_tsk_need_resched(struct task_struct * tsk)2066 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2067 {
2068 	atomic_long_andnot(_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY,
2069 			   (atomic_long_t *)&task_thread_info(tsk)->flags);
2070 }
2071 
test_tsk_need_resched(struct task_struct * tsk)2072 static inline int test_tsk_need_resched(struct task_struct *tsk)
2073 {
2074 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2075 }
2076 
2077 /*
2078  * cond_resched() and cond_resched_lock(): latency reduction via
2079  * explicit rescheduling in places that are safe. The return
2080  * value indicates whether a reschedule was done in fact.
2081  * cond_resched_lock() will drop the spinlock before scheduling,
2082  */
2083 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2084 extern int __cond_resched(void);
2085 
2086 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2087 
2088 void sched_dynamic_klp_enable(void);
2089 void sched_dynamic_klp_disable(void);
2090 
2091 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2092 
_cond_resched(void)2093 static __always_inline int _cond_resched(void)
2094 {
2095 	return static_call_mod(cond_resched)();
2096 }
2097 
2098 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2099 
2100 extern int dynamic_cond_resched(void);
2101 
_cond_resched(void)2102 static __always_inline int _cond_resched(void)
2103 {
2104 	return dynamic_cond_resched();
2105 }
2106 
2107 #else /* !CONFIG_PREEMPTION */
2108 
_cond_resched(void)2109 static inline int _cond_resched(void)
2110 {
2111 	klp_sched_try_switch();
2112 	return __cond_resched();
2113 }
2114 
2115 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2116 
2117 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2118 
_cond_resched(void)2119 static inline int _cond_resched(void)
2120 {
2121 	klp_sched_try_switch();
2122 	return 0;
2123 }
2124 
2125 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2126 
2127 #define cond_resched() ({			\
2128 	__might_resched(__FILE__, __LINE__, 0);	\
2129 	_cond_resched();			\
2130 })
2131 
2132 extern int __cond_resched_lock(spinlock_t *lock);
2133 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2134 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2135 
2136 #define MIGHT_RESCHED_RCU_SHIFT		8
2137 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2138 
2139 #ifndef CONFIG_PREEMPT_RT
2140 /*
2141  * Non RT kernels have an elevated preempt count due to the held lock,
2142  * but are not allowed to be inside a RCU read side critical section
2143  */
2144 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2145 #else
2146 /*
2147  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2148  * cond_resched*lock() has to take that into account because it checks for
2149  * preempt_count() and rcu_preempt_depth().
2150  */
2151 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2152 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2153 #endif
2154 
2155 #define cond_resched_lock(lock) ({						\
2156 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2157 	__cond_resched_lock(lock);						\
2158 })
2159 
2160 #define cond_resched_rwlock_read(lock) ({					\
2161 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2162 	__cond_resched_rwlock_read(lock);					\
2163 })
2164 
2165 #define cond_resched_rwlock_write(lock) ({					\
2166 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2167 	__cond_resched_rwlock_write(lock);					\
2168 })
2169 
need_resched(void)2170 static __always_inline bool need_resched(void)
2171 {
2172 	return unlikely(tif_need_resched());
2173 }
2174 
2175 /*
2176  * Wrappers for p->thread_info->cpu access. No-op on UP.
2177  */
2178 #ifdef CONFIG_SMP
2179 
task_cpu(const struct task_struct * p)2180 static inline unsigned int task_cpu(const struct task_struct *p)
2181 {
2182 	return READ_ONCE(task_thread_info(p)->cpu);
2183 }
2184 
2185 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2186 
2187 #else
2188 
task_cpu(const struct task_struct * p)2189 static inline unsigned int task_cpu(const struct task_struct *p)
2190 {
2191 	return 0;
2192 }
2193 
set_task_cpu(struct task_struct * p,unsigned int cpu)2194 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2195 {
2196 }
2197 
2198 #endif /* CONFIG_SMP */
2199 
task_is_runnable(struct task_struct * p)2200 static inline bool task_is_runnable(struct task_struct *p)
2201 {
2202 	return p->on_rq && !p->se.sched_delayed;
2203 }
2204 
2205 extern bool sched_task_on_rq(struct task_struct *p);
2206 extern unsigned long get_wchan(struct task_struct *p);
2207 extern struct task_struct *cpu_curr_snapshot(int cpu);
2208 
2209 #include <linux/spinlock.h>
2210 
2211 /*
2212  * In order to reduce various lock holder preemption latencies provide an
2213  * interface to see if a vCPU is currently running or not.
2214  *
2215  * This allows us to terminate optimistic spin loops and block, analogous to
2216  * the native optimistic spin heuristic of testing if the lock owner task is
2217  * running or not.
2218  */
2219 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2220 static inline bool vcpu_is_preempted(int cpu)
2221 {
2222 	return false;
2223 }
2224 #endif
2225 
2226 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2227 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2228 
2229 #ifndef TASK_SIZE_OF
2230 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2231 #endif
2232 
2233 #ifdef CONFIG_SMP
owner_on_cpu(struct task_struct * owner)2234 static inline bool owner_on_cpu(struct task_struct *owner)
2235 {
2236 	/*
2237 	 * As lock holder preemption issue, we both skip spinning if
2238 	 * task is not on cpu or its cpu is preempted
2239 	 */
2240 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2241 }
2242 
2243 /* Returns effective CPU energy utilization, as seen by the scheduler */
2244 unsigned long sched_cpu_util(int cpu);
2245 #endif /* CONFIG_SMP */
2246 
2247 #ifdef CONFIG_SCHED_CORE
2248 extern void sched_core_free(struct task_struct *tsk);
2249 extern void sched_core_fork(struct task_struct *p);
2250 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2251 				unsigned long uaddr);
2252 extern int sched_core_idle_cpu(int cpu);
2253 #else
sched_core_free(struct task_struct * tsk)2254 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2255 static inline void sched_core_fork(struct task_struct *p) { }
sched_core_idle_cpu(int cpu)2256 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2257 #endif
2258 
2259 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2260 
2261 #ifdef CONFIG_MEM_ALLOC_PROFILING
alloc_tag_save(struct alloc_tag * tag)2262 static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
2263 {
2264 	swap(current->alloc_tag, tag);
2265 	return tag;
2266 }
2267 
alloc_tag_restore(struct alloc_tag * tag,struct alloc_tag * old)2268 static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
2269 {
2270 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2271 	WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
2272 #endif
2273 	current->alloc_tag = old;
2274 }
2275 #else
2276 #define alloc_tag_save(_tag)			NULL
2277 #define alloc_tag_restore(_tag, _old)		do {} while (0)
2278 #endif
2279 
2280 #endif
2281