1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /******************************************************************************* 3 * Filename: target_core_transport.c 4 * 5 * This file contains the Generic Target Engine Core. 6 * 7 * (c) Copyright 2002-2013 Datera, Inc. 8 * 9 * Nicholas A. Bellinger <nab@kernel.org> 10 * 11 ******************************************************************************/ 12 13 #include <linux/net.h> 14 #include <linux/delay.h> 15 #include <linux/string.h> 16 #include <linux/timer.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/kthread.h> 20 #include <linux/in.h> 21 #include <linux/cdrom.h> 22 #include <linux/module.h> 23 #include <linux/ratelimit.h> 24 #include <linux/vmalloc.h> 25 #include <linux/unaligned.h> 26 #include <net/sock.h> 27 #include <net/tcp.h> 28 #include <scsi/scsi_proto.h> 29 #include <scsi/scsi_common.h> 30 31 #include <target/target_core_base.h> 32 #include <target/target_core_backend.h> 33 #include <target/target_core_fabric.h> 34 35 #include "target_core_internal.h" 36 #include "target_core_alua.h" 37 #include "target_core_pr.h" 38 #include "target_core_ua.h" 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/target.h> 42 43 static struct workqueue_struct *target_completion_wq; 44 static struct workqueue_struct *target_submission_wq; 45 static struct kmem_cache *se_sess_cache; 46 struct kmem_cache *se_ua_cache; 47 struct kmem_cache *t10_pr_reg_cache; 48 struct kmem_cache *t10_alua_lu_gp_cache; 49 struct kmem_cache *t10_alua_lu_gp_mem_cache; 50 struct kmem_cache *t10_alua_tg_pt_gp_cache; 51 struct kmem_cache *t10_alua_lba_map_cache; 52 struct kmem_cache *t10_alua_lba_map_mem_cache; 53 54 static void transport_complete_task_attr(struct se_cmd *cmd); 55 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason); 56 static void transport_handle_queue_full(struct se_cmd *cmd, 57 struct se_device *dev, int err, bool write_pending); 58 static void target_complete_ok_work(struct work_struct *work); 59 60 int init_se_kmem_caches(void) 61 { 62 se_sess_cache = kmem_cache_create("se_sess_cache", 63 sizeof(struct se_session), __alignof__(struct se_session), 64 0, NULL); 65 if (!se_sess_cache) { 66 pr_err("kmem_cache_create() for struct se_session" 67 " failed\n"); 68 goto out; 69 } 70 se_ua_cache = kmem_cache_create("se_ua_cache", 71 sizeof(struct se_ua), __alignof__(struct se_ua), 72 0, NULL); 73 if (!se_ua_cache) { 74 pr_err("kmem_cache_create() for struct se_ua failed\n"); 75 goto out_free_sess_cache; 76 } 77 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 78 sizeof(struct t10_pr_registration), 79 __alignof__(struct t10_pr_registration), 0, NULL); 80 if (!t10_pr_reg_cache) { 81 pr_err("kmem_cache_create() for struct t10_pr_registration" 82 " failed\n"); 83 goto out_free_ua_cache; 84 } 85 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 86 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 87 0, NULL); 88 if (!t10_alua_lu_gp_cache) { 89 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 90 " failed\n"); 91 goto out_free_pr_reg_cache; 92 } 93 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 94 sizeof(struct t10_alua_lu_gp_member), 95 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 96 if (!t10_alua_lu_gp_mem_cache) { 97 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 98 "cache failed\n"); 99 goto out_free_lu_gp_cache; 100 } 101 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 102 sizeof(struct t10_alua_tg_pt_gp), 103 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 104 if (!t10_alua_tg_pt_gp_cache) { 105 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 106 "cache failed\n"); 107 goto out_free_lu_gp_mem_cache; 108 } 109 t10_alua_lba_map_cache = kmem_cache_create( 110 "t10_alua_lba_map_cache", 111 sizeof(struct t10_alua_lba_map), 112 __alignof__(struct t10_alua_lba_map), 0, NULL); 113 if (!t10_alua_lba_map_cache) { 114 pr_err("kmem_cache_create() for t10_alua_lba_map_" 115 "cache failed\n"); 116 goto out_free_tg_pt_gp_cache; 117 } 118 t10_alua_lba_map_mem_cache = kmem_cache_create( 119 "t10_alua_lba_map_mem_cache", 120 sizeof(struct t10_alua_lba_map_member), 121 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 122 if (!t10_alua_lba_map_mem_cache) { 123 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 124 "cache failed\n"); 125 goto out_free_lba_map_cache; 126 } 127 128 target_completion_wq = alloc_workqueue("target_completion", 129 WQ_MEM_RECLAIM | WQ_PERCPU, 0); 130 if (!target_completion_wq) 131 goto out_free_lba_map_mem_cache; 132 133 target_submission_wq = alloc_workqueue("target_submission", 134 WQ_MEM_RECLAIM | WQ_PERCPU, 0); 135 if (!target_submission_wq) 136 goto out_free_completion_wq; 137 138 return 0; 139 140 out_free_completion_wq: 141 destroy_workqueue(target_completion_wq); 142 out_free_lba_map_mem_cache: 143 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 144 out_free_lba_map_cache: 145 kmem_cache_destroy(t10_alua_lba_map_cache); 146 out_free_tg_pt_gp_cache: 147 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 148 out_free_lu_gp_mem_cache: 149 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 150 out_free_lu_gp_cache: 151 kmem_cache_destroy(t10_alua_lu_gp_cache); 152 out_free_pr_reg_cache: 153 kmem_cache_destroy(t10_pr_reg_cache); 154 out_free_ua_cache: 155 kmem_cache_destroy(se_ua_cache); 156 out_free_sess_cache: 157 kmem_cache_destroy(se_sess_cache); 158 out: 159 return -ENOMEM; 160 } 161 162 void release_se_kmem_caches(void) 163 { 164 destroy_workqueue(target_submission_wq); 165 destroy_workqueue(target_completion_wq); 166 kmem_cache_destroy(se_sess_cache); 167 kmem_cache_destroy(se_ua_cache); 168 kmem_cache_destroy(t10_pr_reg_cache); 169 kmem_cache_destroy(t10_alua_lu_gp_cache); 170 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 171 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 172 kmem_cache_destroy(t10_alua_lba_map_cache); 173 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 174 } 175 176 /* This code ensures unique mib indexes are handed out. */ 177 static DEFINE_SPINLOCK(scsi_mib_index_lock); 178 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 179 180 /* 181 * Allocate a new row index for the entry type specified 182 */ 183 u32 scsi_get_new_index(scsi_index_t type) 184 { 185 u32 new_index; 186 187 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 188 189 spin_lock(&scsi_mib_index_lock); 190 new_index = ++scsi_mib_index[type]; 191 spin_unlock(&scsi_mib_index_lock); 192 193 return new_index; 194 } 195 196 void transport_subsystem_check_init(void) 197 { 198 int ret; 199 static int sub_api_initialized; 200 201 if (sub_api_initialized) 202 return; 203 204 ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock"); 205 if (ret != 0) 206 pr_err("Unable to load target_core_iblock\n"); 207 208 ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file"); 209 if (ret != 0) 210 pr_err("Unable to load target_core_file\n"); 211 212 ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi"); 213 if (ret != 0) 214 pr_err("Unable to load target_core_pscsi\n"); 215 216 ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user"); 217 if (ret != 0) 218 pr_err("Unable to load target_core_user\n"); 219 220 sub_api_initialized = 1; 221 } 222 223 static void target_release_cmd_refcnt(struct percpu_ref *ref) 224 { 225 struct target_cmd_counter *cmd_cnt = container_of(ref, 226 typeof(*cmd_cnt), 227 refcnt); 228 wake_up(&cmd_cnt->refcnt_wq); 229 } 230 231 struct target_cmd_counter *target_alloc_cmd_counter(void) 232 { 233 struct target_cmd_counter *cmd_cnt; 234 int rc; 235 236 cmd_cnt = kzalloc(sizeof(*cmd_cnt), GFP_KERNEL); 237 if (!cmd_cnt) 238 return NULL; 239 240 init_completion(&cmd_cnt->stop_done); 241 init_waitqueue_head(&cmd_cnt->refcnt_wq); 242 atomic_set(&cmd_cnt->stopped, 0); 243 244 rc = percpu_ref_init(&cmd_cnt->refcnt, target_release_cmd_refcnt, 0, 245 GFP_KERNEL); 246 if (rc) 247 goto free_cmd_cnt; 248 249 return cmd_cnt; 250 251 free_cmd_cnt: 252 kfree(cmd_cnt); 253 return NULL; 254 } 255 EXPORT_SYMBOL_GPL(target_alloc_cmd_counter); 256 257 void target_free_cmd_counter(struct target_cmd_counter *cmd_cnt) 258 { 259 /* 260 * Drivers like loop do not call target_stop_session during session 261 * shutdown so we have to drop the ref taken at init time here. 262 */ 263 if (!atomic_read(&cmd_cnt->stopped)) 264 percpu_ref_put(&cmd_cnt->refcnt); 265 266 percpu_ref_exit(&cmd_cnt->refcnt); 267 kfree(cmd_cnt); 268 } 269 EXPORT_SYMBOL_GPL(target_free_cmd_counter); 270 271 /** 272 * transport_init_session - initialize a session object 273 * @se_sess: Session object pointer. 274 * 275 * The caller must have zero-initialized @se_sess before calling this function. 276 */ 277 void transport_init_session(struct se_session *se_sess) 278 { 279 INIT_LIST_HEAD(&se_sess->sess_list); 280 INIT_LIST_HEAD(&se_sess->sess_acl_list); 281 spin_lock_init(&se_sess->sess_cmd_lock); 282 } 283 EXPORT_SYMBOL(transport_init_session); 284 285 /** 286 * transport_alloc_session - allocate a session object and initialize it 287 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported. 288 */ 289 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops) 290 { 291 struct se_session *se_sess; 292 293 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 294 if (!se_sess) { 295 pr_err("Unable to allocate struct se_session from" 296 " se_sess_cache\n"); 297 return ERR_PTR(-ENOMEM); 298 } 299 transport_init_session(se_sess); 300 se_sess->sup_prot_ops = sup_prot_ops; 301 302 return se_sess; 303 } 304 EXPORT_SYMBOL(transport_alloc_session); 305 306 /** 307 * transport_alloc_session_tags - allocate target driver private data 308 * @se_sess: Session pointer. 309 * @tag_num: Maximum number of in-flight commands between initiator and target. 310 * @tag_size: Size in bytes of the private data a target driver associates with 311 * each command. 312 */ 313 int transport_alloc_session_tags(struct se_session *se_sess, 314 unsigned int tag_num, unsigned int tag_size) 315 { 316 int rc; 317 318 se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num, 319 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 320 if (!se_sess->sess_cmd_map) { 321 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 322 return -ENOMEM; 323 } 324 325 rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1, 326 false, GFP_KERNEL, NUMA_NO_NODE); 327 if (rc < 0) { 328 pr_err("Unable to init se_sess->sess_tag_pool," 329 " tag_num: %u\n", tag_num); 330 kvfree(se_sess->sess_cmd_map); 331 se_sess->sess_cmd_map = NULL; 332 return -ENOMEM; 333 } 334 335 return 0; 336 } 337 EXPORT_SYMBOL(transport_alloc_session_tags); 338 339 /** 340 * transport_init_session_tags - allocate a session and target driver private data 341 * @tag_num: Maximum number of in-flight commands between initiator and target. 342 * @tag_size: Size in bytes of the private data a target driver associates with 343 * each command. 344 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported. 345 */ 346 static struct se_session * 347 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size, 348 enum target_prot_op sup_prot_ops) 349 { 350 struct se_session *se_sess; 351 int rc; 352 353 if (tag_num != 0 && !tag_size) { 354 pr_err("init_session_tags called with percpu-ida tag_num:" 355 " %u, but zero tag_size\n", tag_num); 356 return ERR_PTR(-EINVAL); 357 } 358 if (!tag_num && tag_size) { 359 pr_err("init_session_tags called with percpu-ida tag_size:" 360 " %u, but zero tag_num\n", tag_size); 361 return ERR_PTR(-EINVAL); 362 } 363 364 se_sess = transport_alloc_session(sup_prot_ops); 365 if (IS_ERR(se_sess)) 366 return se_sess; 367 368 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 369 if (rc < 0) { 370 transport_free_session(se_sess); 371 return ERR_PTR(-ENOMEM); 372 } 373 374 return se_sess; 375 } 376 377 /* 378 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 379 */ 380 void __transport_register_session( 381 struct se_portal_group *se_tpg, 382 struct se_node_acl *se_nacl, 383 struct se_session *se_sess, 384 void *fabric_sess_ptr) 385 { 386 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo; 387 unsigned char buf[PR_REG_ISID_LEN]; 388 unsigned long flags; 389 390 se_sess->se_tpg = se_tpg; 391 se_sess->fabric_sess_ptr = fabric_sess_ptr; 392 /* 393 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 394 * 395 * Only set for struct se_session's that will actually be moving I/O. 396 * eg: *NOT* discovery sessions. 397 */ 398 if (se_nacl) { 399 /* 400 * 401 * Determine if fabric allows for T10-PI feature bits exposed to 402 * initiators for device backends with !dev->dev_attrib.pi_prot_type. 403 * 404 * If so, then always save prot_type on a per se_node_acl node 405 * basis and re-instate the previous sess_prot_type to avoid 406 * disabling PI from below any previously initiator side 407 * registered LUNs. 408 */ 409 if (se_nacl->saved_prot_type) 410 se_sess->sess_prot_type = se_nacl->saved_prot_type; 411 else if (tfo->tpg_check_prot_fabric_only) 412 se_sess->sess_prot_type = se_nacl->saved_prot_type = 413 tfo->tpg_check_prot_fabric_only(se_tpg); 414 /* 415 * If the fabric module supports an ISID based TransportID, 416 * save this value in binary from the fabric I_T Nexus now. 417 */ 418 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 419 memset(&buf[0], 0, PR_REG_ISID_LEN); 420 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 421 &buf[0], PR_REG_ISID_LEN); 422 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 423 } 424 425 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 426 /* 427 * The se_nacl->nacl_sess pointer will be set to the 428 * last active I_T Nexus for each struct se_node_acl. 429 */ 430 se_nacl->nacl_sess = se_sess; 431 432 list_add_tail(&se_sess->sess_acl_list, 433 &se_nacl->acl_sess_list); 434 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 435 } 436 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 437 438 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 439 se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr); 440 } 441 EXPORT_SYMBOL(__transport_register_session); 442 443 void transport_register_session( 444 struct se_portal_group *se_tpg, 445 struct se_node_acl *se_nacl, 446 struct se_session *se_sess, 447 void *fabric_sess_ptr) 448 { 449 unsigned long flags; 450 451 spin_lock_irqsave(&se_tpg->session_lock, flags); 452 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 453 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 454 } 455 EXPORT_SYMBOL(transport_register_session); 456 457 struct se_session * 458 target_setup_session(struct se_portal_group *tpg, 459 unsigned int tag_num, unsigned int tag_size, 460 enum target_prot_op prot_op, 461 const char *initiatorname, void *private, 462 int (*callback)(struct se_portal_group *, 463 struct se_session *, void *)) 464 { 465 struct target_cmd_counter *cmd_cnt; 466 struct se_session *sess; 467 int rc; 468 469 cmd_cnt = target_alloc_cmd_counter(); 470 if (!cmd_cnt) 471 return ERR_PTR(-ENOMEM); 472 /* 473 * If the fabric driver is using percpu-ida based pre allocation 474 * of I/O descriptor tags, go ahead and perform that setup now.. 475 */ 476 if (tag_num != 0) 477 sess = transport_init_session_tags(tag_num, tag_size, prot_op); 478 else 479 sess = transport_alloc_session(prot_op); 480 481 if (IS_ERR(sess)) { 482 rc = PTR_ERR(sess); 483 goto free_cnt; 484 } 485 sess->cmd_cnt = cmd_cnt; 486 487 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg, 488 (unsigned char *)initiatorname); 489 if (!sess->se_node_acl) { 490 rc = -EACCES; 491 goto free_sess; 492 } 493 /* 494 * Go ahead and perform any remaining fabric setup that is 495 * required before transport_register_session(). 496 */ 497 if (callback != NULL) { 498 rc = callback(tpg, sess, private); 499 if (rc) 500 goto free_sess; 501 } 502 503 transport_register_session(tpg, sess->se_node_acl, sess, private); 504 return sess; 505 506 free_sess: 507 transport_free_session(sess); 508 return ERR_PTR(rc); 509 510 free_cnt: 511 target_free_cmd_counter(cmd_cnt); 512 return ERR_PTR(rc); 513 } 514 EXPORT_SYMBOL(target_setup_session); 515 516 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page) 517 { 518 struct se_session *se_sess; 519 ssize_t len = 0; 520 521 spin_lock_bh(&se_tpg->session_lock); 522 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) { 523 if (!se_sess->se_node_acl) 524 continue; 525 if (!se_sess->se_node_acl->dynamic_node_acl) 526 continue; 527 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE) 528 break; 529 530 len += snprintf(page + len, PAGE_SIZE - len, "%s\n", 531 se_sess->se_node_acl->initiatorname); 532 len += 1; /* Include NULL terminator */ 533 } 534 spin_unlock_bh(&se_tpg->session_lock); 535 536 return len; 537 } 538 EXPORT_SYMBOL(target_show_dynamic_sessions); 539 540 static void target_complete_nacl(struct kref *kref) 541 { 542 struct se_node_acl *nacl = container_of(kref, 543 struct se_node_acl, acl_kref); 544 struct se_portal_group *se_tpg = nacl->se_tpg; 545 546 if (!nacl->dynamic_stop) { 547 complete(&nacl->acl_free_comp); 548 return; 549 } 550 551 mutex_lock(&se_tpg->acl_node_mutex); 552 list_del_init(&nacl->acl_list); 553 mutex_unlock(&se_tpg->acl_node_mutex); 554 555 core_tpg_wait_for_nacl_pr_ref(nacl); 556 core_free_device_list_for_node(nacl, se_tpg); 557 kfree(nacl); 558 } 559 560 void target_put_nacl(struct se_node_acl *nacl) 561 { 562 kref_put(&nacl->acl_kref, target_complete_nacl); 563 } 564 EXPORT_SYMBOL(target_put_nacl); 565 566 void transport_deregister_session_configfs(struct se_session *se_sess) 567 { 568 struct se_node_acl *se_nacl; 569 unsigned long flags; 570 /* 571 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 572 */ 573 se_nacl = se_sess->se_node_acl; 574 if (se_nacl) { 575 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 576 if (!list_empty(&se_sess->sess_acl_list)) 577 list_del_init(&se_sess->sess_acl_list); 578 /* 579 * If the session list is empty, then clear the pointer. 580 * Otherwise, set the struct se_session pointer from the tail 581 * element of the per struct se_node_acl active session list. 582 */ 583 if (list_empty(&se_nacl->acl_sess_list)) 584 se_nacl->nacl_sess = NULL; 585 else { 586 se_nacl->nacl_sess = container_of( 587 se_nacl->acl_sess_list.prev, 588 struct se_session, sess_acl_list); 589 } 590 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 591 } 592 } 593 EXPORT_SYMBOL(transport_deregister_session_configfs); 594 595 void transport_free_session(struct se_session *se_sess) 596 { 597 struct se_node_acl *se_nacl = se_sess->se_node_acl; 598 599 /* 600 * Drop the se_node_acl->nacl_kref obtained from within 601 * core_tpg_get_initiator_node_acl(). 602 */ 603 if (se_nacl) { 604 struct se_portal_group *se_tpg = se_nacl->se_tpg; 605 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo; 606 unsigned long flags; 607 608 se_sess->se_node_acl = NULL; 609 610 /* 611 * Also determine if we need to drop the extra ->cmd_kref if 612 * it had been previously dynamically generated, and 613 * the endpoint is not caching dynamic ACLs. 614 */ 615 mutex_lock(&se_tpg->acl_node_mutex); 616 if (se_nacl->dynamic_node_acl && 617 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 618 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 619 if (list_empty(&se_nacl->acl_sess_list)) 620 se_nacl->dynamic_stop = true; 621 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 622 623 if (se_nacl->dynamic_stop) 624 list_del_init(&se_nacl->acl_list); 625 } 626 mutex_unlock(&se_tpg->acl_node_mutex); 627 628 if (se_nacl->dynamic_stop) 629 target_put_nacl(se_nacl); 630 631 target_put_nacl(se_nacl); 632 } 633 if (se_sess->sess_cmd_map) { 634 sbitmap_queue_free(&se_sess->sess_tag_pool); 635 kvfree(se_sess->sess_cmd_map); 636 } 637 if (se_sess->cmd_cnt) 638 target_free_cmd_counter(se_sess->cmd_cnt); 639 kmem_cache_free(se_sess_cache, se_sess); 640 } 641 EXPORT_SYMBOL(transport_free_session); 642 643 static int target_release_res(struct se_device *dev, void *data) 644 { 645 struct se_session *sess = data; 646 647 if (dev->reservation_holder == sess) 648 target_release_reservation(dev); 649 return 0; 650 } 651 652 void transport_deregister_session(struct se_session *se_sess) 653 { 654 struct se_portal_group *se_tpg = se_sess->se_tpg; 655 unsigned long flags; 656 657 if (!se_tpg) { 658 transport_free_session(se_sess); 659 return; 660 } 661 662 spin_lock_irqsave(&se_tpg->session_lock, flags); 663 list_del(&se_sess->sess_list); 664 se_sess->se_tpg = NULL; 665 se_sess->fabric_sess_ptr = NULL; 666 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 667 668 /* 669 * Since the session is being removed, release SPC-2 670 * reservations held by the session that is disappearing. 671 */ 672 target_for_each_device(target_release_res, se_sess); 673 674 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 675 se_tpg->se_tpg_tfo->fabric_name); 676 /* 677 * If last kref is dropping now for an explicit NodeACL, awake sleeping 678 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 679 * removal context from within transport_free_session() code. 680 * 681 * For dynamic ACL, target_put_nacl() uses target_complete_nacl() 682 * to release all remaining generate_node_acl=1 created ACL resources. 683 */ 684 685 transport_free_session(se_sess); 686 } 687 EXPORT_SYMBOL(transport_deregister_session); 688 689 void target_remove_session(struct se_session *se_sess) 690 { 691 transport_deregister_session_configfs(se_sess); 692 transport_deregister_session(se_sess); 693 } 694 EXPORT_SYMBOL(target_remove_session); 695 696 static void target_remove_from_state_list(struct se_cmd *cmd) 697 { 698 struct se_device *dev = cmd->se_dev; 699 unsigned long flags; 700 701 if (!dev) 702 return; 703 704 spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags); 705 if (cmd->state_active) { 706 list_del(&cmd->state_list); 707 cmd->state_active = false; 708 } 709 spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags); 710 } 711 712 static void target_remove_from_tmr_list(struct se_cmd *cmd) 713 { 714 struct se_device *dev = NULL; 715 unsigned long flags; 716 717 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 718 dev = cmd->se_tmr_req->tmr_dev; 719 720 if (dev) { 721 spin_lock_irqsave(&dev->se_tmr_lock, flags); 722 if (cmd->se_tmr_req->tmr_dev) 723 list_del_init(&cmd->se_tmr_req->tmr_list); 724 spin_unlock_irqrestore(&dev->se_tmr_lock, flags); 725 } 726 } 727 /* 728 * This function is called by the target core after the target core has 729 * finished processing a SCSI command or SCSI TMF. Both the regular command 730 * processing code and the code for aborting commands can call this 731 * function. CMD_T_STOP is set if and only if another thread is waiting 732 * inside transport_wait_for_tasks() for t_transport_stop_comp. 733 */ 734 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 735 { 736 unsigned long flags; 737 738 spin_lock_irqsave(&cmd->t_state_lock, flags); 739 /* 740 * Determine if frontend context caller is requesting the stopping of 741 * this command for frontend exceptions. 742 */ 743 if (cmd->transport_state & CMD_T_STOP) { 744 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 745 __func__, __LINE__, cmd->tag); 746 747 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 748 749 complete_all(&cmd->t_transport_stop_comp); 750 return 1; 751 } 752 cmd->transport_state &= ~CMD_T_ACTIVE; 753 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 754 755 /* 756 * Some fabric modules like tcm_loop can release their internally 757 * allocated I/O reference and struct se_cmd now. 758 * 759 * Fabric modules are expected to return '1' here if the se_cmd being 760 * passed is released at this point, or zero if not being released. 761 */ 762 return cmd->se_tfo->check_stop_free(cmd); 763 } 764 765 static void transport_lun_remove_cmd(struct se_cmd *cmd) 766 { 767 struct se_lun *lun = cmd->se_lun; 768 769 if (!lun) 770 return; 771 772 target_remove_from_state_list(cmd); 773 target_remove_from_tmr_list(cmd); 774 775 if (cmpxchg(&cmd->lun_ref_active, true, false)) 776 percpu_ref_put(&lun->lun_ref); 777 778 /* 779 * Clear struct se_cmd->se_lun before the handoff to FE. 780 */ 781 cmd->se_lun = NULL; 782 } 783 784 static void target_complete_failure_work(struct work_struct *work) 785 { 786 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 787 788 transport_generic_request_failure(cmd, cmd->sense_reason); 789 } 790 791 /* 792 * Used when asking transport to copy Sense Data from the underlying 793 * Linux/SCSI struct scsi_cmnd 794 */ 795 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 796 { 797 struct se_device *dev = cmd->se_dev; 798 799 WARN_ON(!cmd->se_lun); 800 801 if (!dev) 802 return NULL; 803 804 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 805 return NULL; 806 807 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 808 809 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 810 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 811 return cmd->sense_buffer; 812 } 813 814 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense) 815 { 816 unsigned char *cmd_sense_buf; 817 unsigned long flags; 818 819 spin_lock_irqsave(&cmd->t_state_lock, flags); 820 cmd_sense_buf = transport_get_sense_buffer(cmd); 821 if (!cmd_sense_buf) { 822 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 823 return; 824 } 825 826 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE; 827 memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length); 828 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 829 } 830 EXPORT_SYMBOL(transport_copy_sense_to_cmd); 831 832 static void target_handle_abort(struct se_cmd *cmd) 833 { 834 bool tas = cmd->transport_state & CMD_T_TAS; 835 bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF; 836 int ret; 837 838 pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas); 839 840 if (tas) { 841 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 842 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 843 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n", 844 cmd->t_task_cdb[0], cmd->tag); 845 trace_target_cmd_complete(cmd); 846 ret = cmd->se_tfo->queue_status(cmd); 847 if (ret) { 848 transport_handle_queue_full(cmd, cmd->se_dev, 849 ret, false); 850 return; 851 } 852 } else { 853 cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED; 854 cmd->se_tfo->queue_tm_rsp(cmd); 855 } 856 } else { 857 /* 858 * Allow the fabric driver to unmap any resources before 859 * releasing the descriptor via TFO->release_cmd(). 860 */ 861 cmd->se_tfo->aborted_task(cmd); 862 if (ack_kref) 863 WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0); 864 /* 865 * To do: establish a unit attention condition on the I_T 866 * nexus associated with cmd. See also the paragraph "Aborting 867 * commands" in SAM. 868 */ 869 } 870 871 WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0); 872 873 transport_lun_remove_cmd(cmd); 874 875 transport_cmd_check_stop_to_fabric(cmd); 876 } 877 878 static void target_abort_work(struct work_struct *work) 879 { 880 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 881 882 target_handle_abort(cmd); 883 } 884 885 static bool target_cmd_interrupted(struct se_cmd *cmd) 886 { 887 int post_ret; 888 889 if (cmd->transport_state & CMD_T_ABORTED) { 890 if (cmd->transport_complete_callback) 891 cmd->transport_complete_callback(cmd, false, &post_ret); 892 INIT_WORK(&cmd->work, target_abort_work); 893 queue_work(target_completion_wq, &cmd->work); 894 return true; 895 } else if (cmd->transport_state & CMD_T_STOP) { 896 if (cmd->transport_complete_callback) 897 cmd->transport_complete_callback(cmd, false, &post_ret); 898 complete_all(&cmd->t_transport_stop_comp); 899 return true; 900 } 901 902 return false; 903 } 904 905 /* May be called from interrupt context so must not sleep. */ 906 void target_complete_cmd_with_sense(struct se_cmd *cmd, u8 scsi_status, 907 sense_reason_t sense_reason) 908 { 909 struct se_wwn *wwn = cmd->se_sess->se_tpg->se_tpg_wwn; 910 int success, cpu; 911 unsigned long flags; 912 913 if (target_cmd_interrupted(cmd)) 914 return; 915 916 cmd->scsi_status = scsi_status; 917 cmd->sense_reason = sense_reason; 918 919 spin_lock_irqsave(&cmd->t_state_lock, flags); 920 switch (cmd->scsi_status) { 921 case SAM_STAT_CHECK_CONDITION: 922 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 923 success = 1; 924 else 925 success = 0; 926 break; 927 default: 928 success = 1; 929 break; 930 } 931 932 cmd->t_state = TRANSPORT_COMPLETE; 933 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 934 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 935 936 INIT_WORK(&cmd->work, success ? target_complete_ok_work : 937 target_complete_failure_work); 938 939 if (!wwn || wwn->cmd_compl_affinity == SE_COMPL_AFFINITY_CPUID) 940 cpu = cmd->cpuid; 941 else 942 cpu = wwn->cmd_compl_affinity; 943 944 queue_work_on(cpu, target_completion_wq, &cmd->work); 945 } 946 EXPORT_SYMBOL(target_complete_cmd_with_sense); 947 948 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 949 { 950 target_complete_cmd_with_sense(cmd, scsi_status, scsi_status ? 951 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE : 952 TCM_NO_SENSE); 953 } 954 EXPORT_SYMBOL(target_complete_cmd); 955 956 void target_set_cmd_data_length(struct se_cmd *cmd, int length) 957 { 958 if (length < cmd->data_length) { 959 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 960 cmd->residual_count += cmd->data_length - length; 961 } else { 962 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 963 cmd->residual_count = cmd->data_length - length; 964 } 965 966 cmd->data_length = length; 967 } 968 } 969 EXPORT_SYMBOL(target_set_cmd_data_length); 970 971 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) 972 { 973 if (scsi_status == SAM_STAT_GOOD || 974 cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) { 975 target_set_cmd_data_length(cmd, length); 976 } 977 978 target_complete_cmd(cmd, scsi_status); 979 } 980 EXPORT_SYMBOL(target_complete_cmd_with_length); 981 982 static void target_add_to_state_list(struct se_cmd *cmd) 983 { 984 struct se_device *dev = cmd->se_dev; 985 unsigned long flags; 986 987 spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags); 988 if (!cmd->state_active) { 989 list_add_tail(&cmd->state_list, 990 &dev->queues[cmd->cpuid].state_list); 991 cmd->state_active = true; 992 } 993 spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags); 994 } 995 996 /* 997 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 998 */ 999 static void transport_write_pending_qf(struct se_cmd *cmd); 1000 static void transport_complete_qf(struct se_cmd *cmd); 1001 1002 void target_qf_do_work(struct work_struct *work) 1003 { 1004 struct se_device *dev = container_of(work, struct se_device, 1005 qf_work_queue); 1006 LIST_HEAD(qf_cmd_list); 1007 struct se_cmd *cmd, *cmd_tmp; 1008 1009 spin_lock_irq(&dev->qf_cmd_lock); 1010 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 1011 spin_unlock_irq(&dev->qf_cmd_lock); 1012 1013 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 1014 list_del(&cmd->se_qf_node); 1015 atomic_dec_mb(&dev->dev_qf_count); 1016 1017 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 1018 " context: %s\n", cmd->se_tfo->fabric_name, cmd, 1019 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 1020 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 1021 : "UNKNOWN"); 1022 1023 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 1024 transport_write_pending_qf(cmd); 1025 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK || 1026 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) 1027 transport_complete_qf(cmd); 1028 } 1029 } 1030 1031 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 1032 { 1033 switch (cmd->data_direction) { 1034 case DMA_NONE: 1035 return "NONE"; 1036 case DMA_FROM_DEVICE: 1037 return "READ"; 1038 case DMA_TO_DEVICE: 1039 return "WRITE"; 1040 case DMA_BIDIRECTIONAL: 1041 return "BIDI"; 1042 default: 1043 break; 1044 } 1045 1046 return "UNKNOWN"; 1047 } 1048 1049 void transport_dump_dev_state( 1050 struct se_device *dev, 1051 char *b, 1052 int *bl) 1053 { 1054 *bl += sprintf(b + *bl, "Status: "); 1055 if (dev->export_count) 1056 *bl += sprintf(b + *bl, "ACTIVATED"); 1057 else 1058 *bl += sprintf(b + *bl, "DEACTIVATED"); 1059 1060 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 1061 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 1062 dev->dev_attrib.block_size, 1063 dev->dev_attrib.hw_max_sectors); 1064 *bl += sprintf(b + *bl, " "); 1065 } 1066 1067 void transport_dump_vpd_proto_id( 1068 struct t10_vpd *vpd, 1069 unsigned char *p_buf, 1070 int p_buf_len) 1071 { 1072 unsigned char buf[VPD_TMP_BUF_SIZE]; 1073 int len; 1074 1075 memset(buf, 0, VPD_TMP_BUF_SIZE); 1076 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 1077 1078 switch (vpd->protocol_identifier) { 1079 case 0x00: 1080 sprintf(buf+len, "Fibre Channel\n"); 1081 break; 1082 case 0x10: 1083 sprintf(buf+len, "Parallel SCSI\n"); 1084 break; 1085 case 0x20: 1086 sprintf(buf+len, "SSA\n"); 1087 break; 1088 case 0x30: 1089 sprintf(buf+len, "IEEE 1394\n"); 1090 break; 1091 case 0x40: 1092 sprintf(buf+len, "SCSI Remote Direct Memory Access" 1093 " Protocol\n"); 1094 break; 1095 case 0x50: 1096 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 1097 break; 1098 case 0x60: 1099 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 1100 break; 1101 case 0x70: 1102 sprintf(buf+len, "Automation/Drive Interface Transport" 1103 " Protocol\n"); 1104 break; 1105 case 0x80: 1106 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 1107 break; 1108 default: 1109 sprintf(buf+len, "Unknown 0x%02x\n", 1110 vpd->protocol_identifier); 1111 break; 1112 } 1113 1114 if (p_buf) 1115 strncpy(p_buf, buf, p_buf_len); 1116 else 1117 pr_debug("%s", buf); 1118 } 1119 1120 void 1121 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 1122 { 1123 /* 1124 * Check if the Protocol Identifier Valid (PIV) bit is set.. 1125 * 1126 * from spc3r23.pdf section 7.5.1 1127 */ 1128 if (page_83[1] & 0x80) { 1129 vpd->protocol_identifier = (page_83[0] & 0xf0); 1130 vpd->protocol_identifier_set = 1; 1131 transport_dump_vpd_proto_id(vpd, NULL, 0); 1132 } 1133 } 1134 EXPORT_SYMBOL(transport_set_vpd_proto_id); 1135 1136 int transport_dump_vpd_assoc( 1137 struct t10_vpd *vpd, 1138 unsigned char *p_buf, 1139 int p_buf_len) 1140 { 1141 unsigned char buf[VPD_TMP_BUF_SIZE]; 1142 int ret = 0; 1143 int len; 1144 1145 memset(buf, 0, VPD_TMP_BUF_SIZE); 1146 len = sprintf(buf, "T10 VPD Identifier Association: "); 1147 1148 switch (vpd->association) { 1149 case 0x00: 1150 sprintf(buf+len, "addressed logical unit\n"); 1151 break; 1152 case 0x10: 1153 sprintf(buf+len, "target port\n"); 1154 break; 1155 case 0x20: 1156 sprintf(buf+len, "SCSI target device\n"); 1157 break; 1158 default: 1159 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 1160 ret = -EINVAL; 1161 break; 1162 } 1163 1164 if (p_buf) 1165 strncpy(p_buf, buf, p_buf_len); 1166 else 1167 pr_debug("%s", buf); 1168 1169 return ret; 1170 } 1171 1172 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 1173 { 1174 /* 1175 * The VPD identification association.. 1176 * 1177 * from spc3r23.pdf Section 7.6.3.1 Table 297 1178 */ 1179 vpd->association = (page_83[1] & 0x30); 1180 return transport_dump_vpd_assoc(vpd, NULL, 0); 1181 } 1182 EXPORT_SYMBOL(transport_set_vpd_assoc); 1183 1184 int transport_dump_vpd_ident_type( 1185 struct t10_vpd *vpd, 1186 unsigned char *p_buf, 1187 int p_buf_len) 1188 { 1189 unsigned char buf[VPD_TMP_BUF_SIZE]; 1190 int ret = 0; 1191 int len; 1192 1193 memset(buf, 0, VPD_TMP_BUF_SIZE); 1194 len = sprintf(buf, "T10 VPD Identifier Type: "); 1195 1196 switch (vpd->device_identifier_type) { 1197 case 0x00: 1198 sprintf(buf+len, "Vendor specific\n"); 1199 break; 1200 case 0x01: 1201 sprintf(buf+len, "T10 Vendor ID based\n"); 1202 break; 1203 case 0x02: 1204 sprintf(buf+len, "EUI-64 based\n"); 1205 break; 1206 case 0x03: 1207 sprintf(buf+len, "NAA\n"); 1208 break; 1209 case 0x04: 1210 sprintf(buf+len, "Relative target port identifier\n"); 1211 break; 1212 case 0x08: 1213 sprintf(buf+len, "SCSI name string\n"); 1214 break; 1215 default: 1216 sprintf(buf+len, "Unsupported: 0x%02x\n", 1217 vpd->device_identifier_type); 1218 ret = -EINVAL; 1219 break; 1220 } 1221 1222 if (p_buf) { 1223 if (p_buf_len < strlen(buf)+1) 1224 return -EINVAL; 1225 strncpy(p_buf, buf, p_buf_len); 1226 } else { 1227 pr_debug("%s", buf); 1228 } 1229 1230 return ret; 1231 } 1232 1233 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 1234 { 1235 /* 1236 * The VPD identifier type.. 1237 * 1238 * from spc3r23.pdf Section 7.6.3.1 Table 298 1239 */ 1240 vpd->device_identifier_type = (page_83[1] & 0x0f); 1241 return transport_dump_vpd_ident_type(vpd, NULL, 0); 1242 } 1243 EXPORT_SYMBOL(transport_set_vpd_ident_type); 1244 1245 int transport_dump_vpd_ident( 1246 struct t10_vpd *vpd, 1247 unsigned char *p_buf, 1248 int p_buf_len) 1249 { 1250 unsigned char buf[VPD_TMP_BUF_SIZE]; 1251 int ret = 0; 1252 1253 memset(buf, 0, VPD_TMP_BUF_SIZE); 1254 1255 switch (vpd->device_identifier_code_set) { 1256 case 0x01: /* Binary */ 1257 snprintf(buf, sizeof(buf), 1258 "T10 VPD Binary Device Identifier: %s\n", 1259 &vpd->device_identifier[0]); 1260 break; 1261 case 0x02: /* ASCII */ 1262 snprintf(buf, sizeof(buf), 1263 "T10 VPD ASCII Device Identifier: %s\n", 1264 &vpd->device_identifier[0]); 1265 break; 1266 case 0x03: /* UTF-8 */ 1267 snprintf(buf, sizeof(buf), 1268 "T10 VPD UTF-8 Device Identifier: %s\n", 1269 &vpd->device_identifier[0]); 1270 break; 1271 default: 1272 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1273 " 0x%02x", vpd->device_identifier_code_set); 1274 ret = -EINVAL; 1275 break; 1276 } 1277 1278 if (p_buf) 1279 strncpy(p_buf, buf, p_buf_len); 1280 else 1281 pr_debug("%s", buf); 1282 1283 return ret; 1284 } 1285 1286 int 1287 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1288 { 1289 static const char hex_str[] = "0123456789abcdef"; 1290 int j = 0, i = 4; /* offset to start of the identifier */ 1291 1292 /* 1293 * The VPD Code Set (encoding) 1294 * 1295 * from spc3r23.pdf Section 7.6.3.1 Table 296 1296 */ 1297 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1298 switch (vpd->device_identifier_code_set) { 1299 case 0x01: /* Binary */ 1300 vpd->device_identifier[j++] = 1301 hex_str[vpd->device_identifier_type]; 1302 while (i < (4 + page_83[3])) { 1303 vpd->device_identifier[j++] = 1304 hex_str[(page_83[i] & 0xf0) >> 4]; 1305 vpd->device_identifier[j++] = 1306 hex_str[page_83[i] & 0x0f]; 1307 i++; 1308 } 1309 break; 1310 case 0x02: /* ASCII */ 1311 case 0x03: /* UTF-8 */ 1312 while (i < (4 + page_83[3])) 1313 vpd->device_identifier[j++] = page_83[i++]; 1314 break; 1315 default: 1316 break; 1317 } 1318 1319 return transport_dump_vpd_ident(vpd, NULL, 0); 1320 } 1321 EXPORT_SYMBOL(transport_set_vpd_ident); 1322 1323 static sense_reason_t 1324 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev, 1325 unsigned int size) 1326 { 1327 u32 mtl; 1328 1329 if (!cmd->se_tfo->max_data_sg_nents) 1330 return TCM_NO_SENSE; 1331 /* 1332 * Check if fabric enforced maximum SGL entries per I/O descriptor 1333 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT + 1334 * residual_count and reduce original cmd->data_length to maximum 1335 * length based on single PAGE_SIZE entry scatter-lists. 1336 */ 1337 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE); 1338 if (cmd->data_length > mtl) { 1339 /* 1340 * If an existing CDB overflow is present, calculate new residual 1341 * based on CDB size minus fabric maximum transfer length. 1342 * 1343 * If an existing CDB underflow is present, calculate new residual 1344 * based on original cmd->data_length minus fabric maximum transfer 1345 * length. 1346 * 1347 * Otherwise, set the underflow residual based on cmd->data_length 1348 * minus fabric maximum transfer length. 1349 */ 1350 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1351 cmd->residual_count = (size - mtl); 1352 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 1353 u32 orig_dl = size + cmd->residual_count; 1354 cmd->residual_count = (orig_dl - mtl); 1355 } else { 1356 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1357 cmd->residual_count = (cmd->data_length - mtl); 1358 } 1359 cmd->data_length = mtl; 1360 /* 1361 * Reset sbc_check_prot() calculated protection payload 1362 * length based upon the new smaller MTL. 1363 */ 1364 if (cmd->prot_length) { 1365 u32 sectors = (mtl / dev->dev_attrib.block_size); 1366 cmd->prot_length = dev->prot_length * sectors; 1367 } 1368 } 1369 return TCM_NO_SENSE; 1370 } 1371 1372 /** 1373 * target_cmd_size_check - Check whether there will be a residual. 1374 * @cmd: SCSI command. 1375 * @size: Data buffer size derived from CDB. The data buffer size provided by 1376 * the SCSI transport driver is available in @cmd->data_length. 1377 * 1378 * Compare the data buffer size from the CDB with the data buffer limit from the transport 1379 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary. 1380 * 1381 * Note: target drivers set @cmd->data_length by calling __target_init_cmd(). 1382 * 1383 * Return: TCM_NO_SENSE 1384 */ 1385 sense_reason_t 1386 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1387 { 1388 struct se_device *dev = cmd->se_dev; 1389 1390 if (cmd->unknown_data_length) { 1391 cmd->data_length = size; 1392 } else if (size != cmd->data_length) { 1393 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:" 1394 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1395 " 0x%02x\n", cmd->se_tfo->fabric_name, 1396 cmd->data_length, size, cmd->t_task_cdb[0]); 1397 /* 1398 * For READ command for the overflow case keep the existing 1399 * fabric provided ->data_length. Otherwise for the underflow 1400 * case, reset ->data_length to the smaller SCSI expected data 1401 * transfer length. 1402 */ 1403 if (size > cmd->data_length) { 1404 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1405 cmd->residual_count = (size - cmd->data_length); 1406 } else { 1407 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1408 cmd->residual_count = (cmd->data_length - size); 1409 /* 1410 * Do not truncate ->data_length for WRITE command to 1411 * dump all payload 1412 */ 1413 if (cmd->data_direction == DMA_FROM_DEVICE) { 1414 cmd->data_length = size; 1415 } 1416 } 1417 1418 if (cmd->data_direction == DMA_TO_DEVICE) { 1419 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) { 1420 pr_err_ratelimited("Rejecting underflow/overflow" 1421 " for WRITE data CDB\n"); 1422 return TCM_INVALID_FIELD_IN_COMMAND_IU; 1423 } 1424 /* 1425 * Some fabric drivers like iscsi-target still expect to 1426 * always reject overflow writes. Reject this case until 1427 * full fabric driver level support for overflow writes 1428 * is introduced tree-wide. 1429 */ 1430 if (size > cmd->data_length) { 1431 pr_err_ratelimited("Rejecting overflow for" 1432 " WRITE control CDB\n"); 1433 return TCM_INVALID_CDB_FIELD; 1434 } 1435 } 1436 } 1437 1438 return target_check_max_data_sg_nents(cmd, dev, size); 1439 1440 } 1441 1442 /* 1443 * Used by fabric modules containing a local struct se_cmd within their 1444 * fabric dependent per I/O descriptor. 1445 * 1446 * Preserves the value of @cmd->tag. 1447 */ 1448 void __target_init_cmd(struct se_cmd *cmd, 1449 const struct target_core_fabric_ops *tfo, 1450 struct se_session *se_sess, u32 data_length, 1451 int data_direction, int task_attr, 1452 unsigned char *sense_buffer, u64 unpacked_lun, 1453 struct target_cmd_counter *cmd_cnt) 1454 { 1455 INIT_LIST_HEAD(&cmd->se_delayed_node); 1456 INIT_LIST_HEAD(&cmd->se_qf_node); 1457 INIT_LIST_HEAD(&cmd->state_list); 1458 init_completion(&cmd->t_transport_stop_comp); 1459 cmd->free_compl = NULL; 1460 cmd->abrt_compl = NULL; 1461 spin_lock_init(&cmd->t_state_lock); 1462 INIT_WORK(&cmd->work, NULL); 1463 kref_init(&cmd->cmd_kref); 1464 1465 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1466 cmd->se_tfo = tfo; 1467 cmd->se_sess = se_sess; 1468 cmd->data_length = data_length; 1469 cmd->data_direction = data_direction; 1470 cmd->sam_task_attr = task_attr; 1471 cmd->sense_buffer = sense_buffer; 1472 cmd->orig_fe_lun = unpacked_lun; 1473 cmd->cmd_cnt = cmd_cnt; 1474 1475 if (!(cmd->se_cmd_flags & SCF_USE_CPUID)) 1476 cmd->cpuid = raw_smp_processor_id(); 1477 1478 cmd->state_active = false; 1479 } 1480 EXPORT_SYMBOL(__target_init_cmd); 1481 1482 static sense_reason_t 1483 transport_check_alloc_task_attr(struct se_cmd *cmd) 1484 { 1485 struct se_device *dev = cmd->se_dev; 1486 1487 /* 1488 * Check if SAM Task Attribute emulation is enabled for this 1489 * struct se_device storage object 1490 */ 1491 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1492 return 0; 1493 1494 if (cmd->sam_task_attr == TCM_ACA_TAG) { 1495 pr_debug("SAM Task Attribute ACA" 1496 " emulation is not supported\n"); 1497 return TCM_INVALID_CDB_FIELD; 1498 } 1499 1500 return 0; 1501 } 1502 1503 sense_reason_t 1504 target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb, gfp_t gfp) 1505 { 1506 sense_reason_t ret; 1507 1508 /* 1509 * Ensure that the received CDB is less than the max (252 + 8) bytes 1510 * for VARIABLE_LENGTH_CMD 1511 */ 1512 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1513 pr_err("Received SCSI CDB with command_size: %d that" 1514 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1515 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1516 ret = TCM_INVALID_CDB_FIELD; 1517 goto err; 1518 } 1519 /* 1520 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1521 * allocate the additional extended CDB buffer now.. Otherwise 1522 * setup the pointer from __t_task_cdb to t_task_cdb. 1523 */ 1524 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1525 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), gfp); 1526 if (!cmd->t_task_cdb) { 1527 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1528 pr_err("Unable to allocate cmd->t_task_cdb" 1529 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1530 scsi_command_size(cdb), 1531 (unsigned long)sizeof(cmd->__t_task_cdb)); 1532 ret = TCM_OUT_OF_RESOURCES; 1533 goto err; 1534 } 1535 } 1536 /* 1537 * Copy the original CDB into cmd-> 1538 */ 1539 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1540 1541 trace_target_sequencer_start(cmd); 1542 return 0; 1543 1544 err: 1545 /* 1546 * Copy the CDB here to allow trace_target_cmd_complete() to 1547 * print the cdb to the trace buffers. 1548 */ 1549 memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb), 1550 (unsigned int)TCM_MAX_COMMAND_SIZE)); 1551 return ret; 1552 } 1553 EXPORT_SYMBOL(target_cmd_init_cdb); 1554 1555 sense_reason_t 1556 target_cmd_parse_cdb(struct se_cmd *cmd) 1557 { 1558 struct se_device *dev = cmd->se_dev; 1559 sense_reason_t ret; 1560 1561 ret = dev->transport->parse_cdb(cmd); 1562 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE) 1563 pr_debug_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n", 1564 cmd->se_tfo->fabric_name, 1565 cmd->se_sess->se_node_acl->initiatorname, 1566 cmd->t_task_cdb[0]); 1567 if (ret) 1568 return ret; 1569 1570 ret = transport_check_alloc_task_attr(cmd); 1571 if (ret) 1572 return ret; 1573 1574 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1575 /* 1576 * If this is the xcopy_lun then we won't have lun_stats since we 1577 * can't export them. 1578 */ 1579 if (cmd->se_lun->lun_stats) 1580 this_cpu_inc(cmd->se_lun->lun_stats->cmd_pdus); 1581 return 0; 1582 } 1583 EXPORT_SYMBOL(target_cmd_parse_cdb); 1584 1585 static int __target_submit(struct se_cmd *cmd) 1586 { 1587 sense_reason_t ret; 1588 1589 might_sleep(); 1590 1591 /* 1592 * Check if we need to delay processing because of ALUA 1593 * Active/NonOptimized primary access state.. 1594 */ 1595 core_alua_check_nonop_delay(cmd); 1596 1597 if (cmd->t_data_nents != 0) { 1598 /* 1599 * This is primarily a hack for udev and tcm loop which sends 1600 * INQUIRYs with a single page and expects the data to be 1601 * cleared. 1602 */ 1603 if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1604 cmd->data_direction == DMA_FROM_DEVICE) { 1605 struct scatterlist *sgl = cmd->t_data_sg; 1606 unsigned char *buf = NULL; 1607 1608 BUG_ON(!sgl); 1609 1610 buf = kmap_local_page(sg_page(sgl)); 1611 if (buf) { 1612 memset(buf + sgl->offset, 0, sgl->length); 1613 kunmap_local(buf); 1614 } 1615 } 1616 } 1617 1618 if (!cmd->se_lun) { 1619 dump_stack(); 1620 pr_err("cmd->se_lun is NULL\n"); 1621 return -EINVAL; 1622 } 1623 1624 /* 1625 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1626 * outstanding descriptors are handled correctly during shutdown via 1627 * transport_wait_for_tasks() 1628 * 1629 * Also, we don't take cmd->t_state_lock here as we only expect 1630 * this to be called for initial descriptor submission. 1631 */ 1632 cmd->t_state = TRANSPORT_NEW_CMD; 1633 cmd->transport_state |= CMD_T_ACTIVE; 1634 1635 /* 1636 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1637 * so follow TRANSPORT_NEW_CMD processing thread context usage 1638 * and call transport_generic_request_failure() if necessary.. 1639 */ 1640 ret = transport_generic_new_cmd(cmd); 1641 if (ret) 1642 transport_generic_request_failure(cmd, ret); 1643 return 0; 1644 } 1645 1646 sense_reason_t 1647 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1648 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1649 { 1650 if (!sgl || !sgl_count) 1651 return 0; 1652 1653 /* 1654 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1655 * scatterlists already have been set to follow what the fabric 1656 * passes for the original expected data transfer length. 1657 */ 1658 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1659 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1660 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1661 return TCM_INVALID_CDB_FIELD; 1662 } 1663 1664 cmd->t_data_sg = sgl; 1665 cmd->t_data_nents = sgl_count; 1666 cmd->t_bidi_data_sg = sgl_bidi; 1667 cmd->t_bidi_data_nents = sgl_bidi_count; 1668 1669 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1670 return 0; 1671 } 1672 1673 /** 1674 * target_init_cmd - initialize se_cmd 1675 * @se_cmd: command descriptor to init 1676 * @se_sess: associated se_sess for endpoint 1677 * @sense: pointer to SCSI sense buffer 1678 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1679 * @data_length: fabric expected data transfer length 1680 * @task_attr: SAM task attribute 1681 * @data_dir: DMA data direction 1682 * @flags: flags for command submission from target_sc_flags_tables 1683 * 1684 * Task tags are supported if the caller has set @se_cmd->tag. 1685 * 1686 * Returns: 1687 * - less than zero to signal active I/O shutdown failure. 1688 * - zero on success. 1689 * 1690 * If the fabric driver calls target_stop_session, then it must check the 1691 * return code and handle failures. This will never fail for other drivers, 1692 * and the return code can be ignored. 1693 */ 1694 int target_init_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1695 unsigned char *sense, u64 unpacked_lun, 1696 u32 data_length, int task_attr, int data_dir, int flags) 1697 { 1698 struct se_portal_group *se_tpg; 1699 1700 se_tpg = se_sess->se_tpg; 1701 BUG_ON(!se_tpg); 1702 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1703 1704 if (flags & TARGET_SCF_USE_CPUID) 1705 se_cmd->se_cmd_flags |= SCF_USE_CPUID; 1706 /* 1707 * Signal bidirectional data payloads to target-core 1708 */ 1709 if (flags & TARGET_SCF_BIDI_OP) 1710 se_cmd->se_cmd_flags |= SCF_BIDI; 1711 1712 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1713 se_cmd->unknown_data_length = 1; 1714 /* 1715 * Initialize se_cmd for target operation. From this point 1716 * exceptions are handled by sending exception status via 1717 * target_core_fabric_ops->queue_status() callback 1718 */ 1719 __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, data_length, 1720 data_dir, task_attr, sense, unpacked_lun, 1721 se_sess->cmd_cnt); 1722 1723 /* 1724 * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is 1725 * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second 1726 * kref_put() to happen during fabric packet acknowledgement. 1727 */ 1728 return target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1729 } 1730 EXPORT_SYMBOL_GPL(target_init_cmd); 1731 1732 /** 1733 * target_submit_prep - prepare cmd for submission 1734 * @se_cmd: command descriptor to prep 1735 * @cdb: pointer to SCSI CDB 1736 * @sgl: struct scatterlist memory for unidirectional mapping 1737 * @sgl_count: scatterlist count for unidirectional mapping 1738 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1739 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1740 * @sgl_prot: struct scatterlist memory protection information 1741 * @sgl_prot_count: scatterlist count for protection information 1742 * @gfp: gfp allocation type 1743 * 1744 * Returns: 1745 * - less than zero to signal failure. 1746 * - zero on success. 1747 * 1748 * If failure is returned, lio will the callers queue_status to complete 1749 * the cmd. 1750 */ 1751 int target_submit_prep(struct se_cmd *se_cmd, unsigned char *cdb, 1752 struct scatterlist *sgl, u32 sgl_count, 1753 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1754 struct scatterlist *sgl_prot, u32 sgl_prot_count, 1755 gfp_t gfp) 1756 { 1757 sense_reason_t rc; 1758 1759 rc = target_cmd_init_cdb(se_cmd, cdb, gfp); 1760 if (rc) 1761 goto send_cc_direct; 1762 1763 /* 1764 * Locate se_lun pointer and attach it to struct se_cmd 1765 */ 1766 rc = transport_lookup_cmd_lun(se_cmd); 1767 if (rc) 1768 goto send_cc_direct; 1769 1770 rc = target_cmd_parse_cdb(se_cmd); 1771 if (rc != 0) 1772 goto generic_fail; 1773 1774 /* 1775 * Save pointers for SGLs containing protection information, 1776 * if present. 1777 */ 1778 if (sgl_prot_count) { 1779 se_cmd->t_prot_sg = sgl_prot; 1780 se_cmd->t_prot_nents = sgl_prot_count; 1781 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC; 1782 } 1783 1784 /* 1785 * When a non zero sgl_count has been passed perform SGL passthrough 1786 * mapping for pre-allocated fabric memory instead of having target 1787 * core perform an internal SGL allocation.. 1788 */ 1789 if (sgl_count != 0) { 1790 BUG_ON(!sgl); 1791 1792 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1793 sgl_bidi, sgl_bidi_count); 1794 if (rc != 0) 1795 goto generic_fail; 1796 } 1797 1798 return 0; 1799 1800 send_cc_direct: 1801 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1802 target_put_sess_cmd(se_cmd); 1803 return -EIO; 1804 1805 generic_fail: 1806 transport_generic_request_failure(se_cmd, rc); 1807 return -EIO; 1808 } 1809 EXPORT_SYMBOL_GPL(target_submit_prep); 1810 1811 /** 1812 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1813 * 1814 * @se_cmd: command descriptor to submit 1815 * @se_sess: associated se_sess for endpoint 1816 * @cdb: pointer to SCSI CDB 1817 * @sense: pointer to SCSI sense buffer 1818 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1819 * @data_length: fabric expected data transfer length 1820 * @task_attr: SAM task attribute 1821 * @data_dir: DMA data direction 1822 * @flags: flags for command submission from target_sc_flags_tables 1823 * 1824 * Task tags are supported if the caller has set @se_cmd->tag. 1825 * 1826 * This may only be called from process context, and also currently 1827 * assumes internal allocation of fabric payload buffer by target-core. 1828 * 1829 * It also assumes interal target core SGL memory allocation. 1830 * 1831 * This function must only be used by drivers that do their own 1832 * sync during shutdown and does not use target_stop_session. If there 1833 * is a failure this function will call into the fabric driver's 1834 * queue_status with a CHECK_CONDITION. 1835 */ 1836 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1837 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1838 u32 data_length, int task_attr, int data_dir, int flags) 1839 { 1840 int rc; 1841 1842 rc = target_init_cmd(se_cmd, se_sess, sense, unpacked_lun, data_length, 1843 task_attr, data_dir, flags); 1844 WARN(rc, "Invalid target_submit_cmd use. Driver must not use target_stop_session or call target_init_cmd directly.\n"); 1845 if (rc) 1846 return; 1847 1848 if (target_submit_prep(se_cmd, cdb, NULL, 0, NULL, 0, NULL, 0, 1849 GFP_KERNEL)) 1850 return; 1851 1852 target_submit(se_cmd); 1853 } 1854 EXPORT_SYMBOL(target_submit_cmd); 1855 1856 1857 static struct se_dev_plug *target_plug_device(struct se_device *se_dev) 1858 { 1859 struct se_dev_plug *se_plug; 1860 1861 if (!se_dev->transport->plug_device) 1862 return NULL; 1863 1864 se_plug = se_dev->transport->plug_device(se_dev); 1865 if (!se_plug) 1866 return NULL; 1867 1868 se_plug->se_dev = se_dev; 1869 /* 1870 * We have a ref to the lun at this point, but the cmds could 1871 * complete before we unplug, so grab a ref to the se_device so we 1872 * can call back into the backend. 1873 */ 1874 config_group_get(&se_dev->dev_group); 1875 return se_plug; 1876 } 1877 1878 static void target_unplug_device(struct se_dev_plug *se_plug) 1879 { 1880 struct se_device *se_dev = se_plug->se_dev; 1881 1882 se_dev->transport->unplug_device(se_plug); 1883 config_group_put(&se_dev->dev_group); 1884 } 1885 1886 void target_queued_submit_work(struct work_struct *work) 1887 { 1888 struct se_cmd_queue *sq = container_of(work, struct se_cmd_queue, work); 1889 struct se_cmd *se_cmd, *next_cmd; 1890 struct se_dev_plug *se_plug = NULL; 1891 struct se_device *se_dev = NULL; 1892 struct llist_node *cmd_list; 1893 1894 cmd_list = llist_del_all(&sq->cmd_list); 1895 if (!cmd_list) 1896 /* Previous call took what we were queued to submit */ 1897 return; 1898 1899 cmd_list = llist_reverse_order(cmd_list); 1900 llist_for_each_entry_safe(se_cmd, next_cmd, cmd_list, se_cmd_list) { 1901 if (!se_dev) { 1902 se_dev = se_cmd->se_dev; 1903 se_plug = target_plug_device(se_dev); 1904 } 1905 1906 __target_submit(se_cmd); 1907 } 1908 1909 if (se_plug) 1910 target_unplug_device(se_plug); 1911 } 1912 1913 /** 1914 * target_queue_submission - queue the cmd to run on the LIO workqueue 1915 * @se_cmd: command descriptor to submit 1916 */ 1917 static void target_queue_submission(struct se_cmd *se_cmd) 1918 { 1919 struct se_device *se_dev = se_cmd->se_dev; 1920 int cpu = se_cmd->cpuid; 1921 struct se_cmd_queue *sq; 1922 1923 sq = &se_dev->queues[cpu].sq; 1924 llist_add(&se_cmd->se_cmd_list, &sq->cmd_list); 1925 queue_work_on(cpu, target_submission_wq, &sq->work); 1926 } 1927 1928 /** 1929 * target_submit - perform final initialization and submit cmd to LIO core 1930 * @se_cmd: command descriptor to submit 1931 * 1932 * target_submit_prep or something similar must have been called on the cmd, 1933 * and this must be called from process context. 1934 */ 1935 int target_submit(struct se_cmd *se_cmd) 1936 { 1937 const struct target_core_fabric_ops *tfo = se_cmd->se_sess->se_tpg->se_tpg_tfo; 1938 struct se_dev_attrib *da = &se_cmd->se_dev->dev_attrib; 1939 u8 submit_type; 1940 1941 if (da->submit_type == TARGET_FABRIC_DEFAULT_SUBMIT) 1942 submit_type = tfo->default_submit_type; 1943 else if (da->submit_type == TARGET_DIRECT_SUBMIT && 1944 tfo->direct_submit_supp) 1945 submit_type = TARGET_DIRECT_SUBMIT; 1946 else 1947 submit_type = TARGET_QUEUE_SUBMIT; 1948 1949 if (submit_type == TARGET_DIRECT_SUBMIT) 1950 return __target_submit(se_cmd); 1951 1952 target_queue_submission(se_cmd); 1953 return 0; 1954 } 1955 EXPORT_SYMBOL_GPL(target_submit); 1956 1957 static void target_complete_tmr_failure(struct work_struct *work) 1958 { 1959 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1960 1961 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1962 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1963 1964 transport_lun_remove_cmd(se_cmd); 1965 transport_cmd_check_stop_to_fabric(se_cmd); 1966 } 1967 1968 /** 1969 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1970 * for TMR CDBs 1971 * 1972 * @se_cmd: command descriptor to submit 1973 * @se_sess: associated se_sess for endpoint 1974 * @sense: pointer to SCSI sense buffer 1975 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1976 * @fabric_tmr_ptr: fabric context for TMR req 1977 * @tm_type: Type of TM request 1978 * @gfp: gfp type for caller 1979 * @tag: referenced task tag for TMR_ABORT_TASK 1980 * @flags: submit cmd flags 1981 * 1982 * Callable from all contexts. 1983 **/ 1984 1985 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1986 unsigned char *sense, u64 unpacked_lun, 1987 void *fabric_tmr_ptr, unsigned char tm_type, 1988 gfp_t gfp, u64 tag, int flags) 1989 { 1990 struct se_portal_group *se_tpg; 1991 int ret; 1992 1993 se_tpg = se_sess->se_tpg; 1994 BUG_ON(!se_tpg); 1995 1996 __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1997 0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun, 1998 se_sess->cmd_cnt); 1999 /* 2000 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 2001 * allocation failure. 2002 */ 2003 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 2004 if (ret < 0) 2005 return -ENOMEM; 2006 2007 if (tm_type == TMR_ABORT_TASK) 2008 se_cmd->se_tmr_req->ref_task_tag = tag; 2009 2010 /* See target_submit_cmd for commentary */ 2011 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 2012 if (ret) { 2013 core_tmr_release_req(se_cmd->se_tmr_req); 2014 return ret; 2015 } 2016 2017 ret = transport_lookup_tmr_lun(se_cmd); 2018 if (ret) 2019 goto failure; 2020 2021 transport_generic_handle_tmr(se_cmd); 2022 return 0; 2023 2024 /* 2025 * For callback during failure handling, push this work off 2026 * to process context with TMR_LUN_DOES_NOT_EXIST status. 2027 */ 2028 failure: 2029 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 2030 schedule_work(&se_cmd->work); 2031 return 0; 2032 } 2033 EXPORT_SYMBOL(target_submit_tmr); 2034 2035 /* 2036 * Handle SAM-esque emulation for generic transport request failures. 2037 */ 2038 void transport_generic_request_failure(struct se_cmd *cmd, 2039 sense_reason_t sense_reason) 2040 { 2041 int ret = 0, post_ret; 2042 2043 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n", 2044 sense_reason); 2045 target_show_cmd("-----[ ", cmd); 2046 2047 /* 2048 * For SAM Task Attribute emulation for failed struct se_cmd 2049 */ 2050 transport_complete_task_attr(cmd); 2051 2052 if (cmd->transport_complete_callback) 2053 cmd->transport_complete_callback(cmd, false, &post_ret); 2054 2055 if (cmd->transport_state & CMD_T_ABORTED) { 2056 INIT_WORK(&cmd->work, target_abort_work); 2057 queue_work(target_completion_wq, &cmd->work); 2058 return; 2059 } 2060 2061 switch (sense_reason) { 2062 case TCM_NON_EXISTENT_LUN: 2063 case TCM_UNSUPPORTED_SCSI_OPCODE: 2064 case TCM_INVALID_CDB_FIELD: 2065 case TCM_INVALID_PARAMETER_LIST: 2066 case TCM_PARAMETER_LIST_LENGTH_ERROR: 2067 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 2068 case TCM_UNKNOWN_MODE_PAGE: 2069 case TCM_WRITE_PROTECTED: 2070 case TCM_ADDRESS_OUT_OF_RANGE: 2071 case TCM_CHECK_CONDITION_ABORT_CMD: 2072 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 2073 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 2074 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 2075 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 2076 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE: 2077 case TCM_TOO_MANY_TARGET_DESCS: 2078 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE: 2079 case TCM_TOO_MANY_SEGMENT_DESCS: 2080 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE: 2081 case TCM_INVALID_FIELD_IN_COMMAND_IU: 2082 case TCM_ALUA_TG_PT_STANDBY: 2083 case TCM_ALUA_TG_PT_UNAVAILABLE: 2084 case TCM_ALUA_STATE_TRANSITION: 2085 case TCM_ALUA_OFFLINE: 2086 break; 2087 case TCM_OUT_OF_RESOURCES: 2088 cmd->scsi_status = SAM_STAT_TASK_SET_FULL; 2089 goto queue_status; 2090 case TCM_LUN_BUSY: 2091 cmd->scsi_status = SAM_STAT_BUSY; 2092 goto queue_status; 2093 case TCM_RESERVATION_CONFLICT: 2094 /* 2095 * No SENSE Data payload for this case, set SCSI Status 2096 * and queue the response to $FABRIC_MOD. 2097 * 2098 * Uses linux/include/scsi/scsi.h SAM status codes defs 2099 */ 2100 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 2101 /* 2102 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 2103 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 2104 * CONFLICT STATUS. 2105 * 2106 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 2107 */ 2108 if (cmd->se_sess && 2109 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl 2110 == TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) { 2111 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 2112 cmd->orig_fe_lun, 0x2C, 2113 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 2114 } 2115 2116 goto queue_status; 2117 default: 2118 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 2119 cmd->t_task_cdb[0], sense_reason); 2120 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 2121 break; 2122 } 2123 2124 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 2125 if (ret) 2126 goto queue_full; 2127 2128 check_stop: 2129 transport_lun_remove_cmd(cmd); 2130 transport_cmd_check_stop_to_fabric(cmd); 2131 return; 2132 2133 queue_status: 2134 trace_target_cmd_complete(cmd); 2135 ret = cmd->se_tfo->queue_status(cmd); 2136 if (!ret) 2137 goto check_stop; 2138 queue_full: 2139 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 2140 } 2141 EXPORT_SYMBOL(transport_generic_request_failure); 2142 2143 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks) 2144 { 2145 sense_reason_t ret; 2146 2147 if (!cmd->execute_cmd) { 2148 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2149 goto err; 2150 } 2151 if (do_checks) { 2152 /* 2153 * Check for an existing UNIT ATTENTION condition after 2154 * target_handle_task_attr() has done SAM task attr 2155 * checking, and possibly have already defered execution 2156 * out to target_restart_delayed_cmds() context. 2157 */ 2158 ret = target_scsi3_ua_check(cmd); 2159 if (ret) 2160 goto err; 2161 2162 ret = target_alua_state_check(cmd); 2163 if (ret) 2164 goto err; 2165 2166 ret = target_check_reservation(cmd); 2167 if (ret) { 2168 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 2169 goto err; 2170 } 2171 } 2172 2173 ret = cmd->execute_cmd(cmd); 2174 if (!ret) 2175 return; 2176 err: 2177 spin_lock_irq(&cmd->t_state_lock); 2178 cmd->transport_state &= ~CMD_T_SENT; 2179 spin_unlock_irq(&cmd->t_state_lock); 2180 2181 transport_generic_request_failure(cmd, ret); 2182 } 2183 2184 static int target_write_prot_action(struct se_cmd *cmd) 2185 { 2186 u32 sectors; 2187 /* 2188 * Perform WRITE_INSERT of PI using software emulation when backend 2189 * device has PI enabled, if the transport has not already generated 2190 * PI using hardware WRITE_INSERT offload. 2191 */ 2192 switch (cmd->prot_op) { 2193 case TARGET_PROT_DOUT_INSERT: 2194 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) 2195 sbc_dif_generate(cmd); 2196 break; 2197 case TARGET_PROT_DOUT_STRIP: 2198 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP) 2199 break; 2200 2201 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size); 2202 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 2203 sectors, 0, cmd->t_prot_sg, 0); 2204 if (unlikely(cmd->pi_err)) { 2205 spin_lock_irq(&cmd->t_state_lock); 2206 cmd->transport_state &= ~CMD_T_SENT; 2207 spin_unlock_irq(&cmd->t_state_lock); 2208 transport_generic_request_failure(cmd, cmd->pi_err); 2209 return -1; 2210 } 2211 break; 2212 default: 2213 break; 2214 } 2215 2216 return 0; 2217 } 2218 2219 static bool target_handle_task_attr(struct se_cmd *cmd) 2220 { 2221 struct se_device *dev = cmd->se_dev; 2222 unsigned long flags; 2223 2224 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 2225 return false; 2226 2227 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET; 2228 2229 /* 2230 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 2231 * to allow the passed struct se_cmd list of tasks to the front of the list. 2232 */ 2233 switch (cmd->sam_task_attr) { 2234 case TCM_HEAD_TAG: 2235 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n", 2236 cmd->t_task_cdb[0]); 2237 return false; 2238 case TCM_ORDERED_TAG: 2239 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n", 2240 cmd->t_task_cdb[0]); 2241 break; 2242 default: 2243 /* 2244 * For SIMPLE and UNTAGGED Task Attribute commands 2245 */ 2246 retry: 2247 if (percpu_ref_tryget_live(&dev->non_ordered)) 2248 return false; 2249 2250 break; 2251 } 2252 2253 spin_lock_irqsave(&dev->delayed_cmd_lock, flags); 2254 if (cmd->sam_task_attr == TCM_SIMPLE_TAG && 2255 !percpu_ref_is_dying(&dev->non_ordered)) { 2256 spin_unlock_irqrestore(&dev->delayed_cmd_lock, flags); 2257 /* We raced with the last ordered completion so retry. */ 2258 goto retry; 2259 } else if (!percpu_ref_is_dying(&dev->non_ordered)) { 2260 percpu_ref_kill(&dev->non_ordered); 2261 } 2262 2263 spin_lock(&cmd->t_state_lock); 2264 cmd->transport_state &= ~CMD_T_SENT; 2265 spin_unlock(&cmd->t_state_lock); 2266 2267 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 2268 spin_unlock_irqrestore(&dev->delayed_cmd_lock, flags); 2269 2270 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn", 2271 cmd->t_task_cdb[0], cmd->sam_task_attr); 2272 /* 2273 * We may have no non ordered cmds when this function started or we 2274 * could have raced with the last simple/head cmd completing, so kick 2275 * the delayed handler here. 2276 */ 2277 schedule_work(&dev->delayed_cmd_work); 2278 return true; 2279 } 2280 2281 void target_execute_cmd(struct se_cmd *cmd) 2282 { 2283 /* 2284 * Determine if frontend context caller is requesting the stopping of 2285 * this command for frontend exceptions. 2286 * 2287 * If the received CDB has already been aborted stop processing it here. 2288 */ 2289 if (target_cmd_interrupted(cmd)) 2290 return; 2291 2292 spin_lock_irq(&cmd->t_state_lock); 2293 cmd->t_state = TRANSPORT_PROCESSING; 2294 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT; 2295 spin_unlock_irq(&cmd->t_state_lock); 2296 2297 if (target_write_prot_action(cmd)) 2298 return; 2299 2300 if (target_handle_task_attr(cmd)) 2301 return; 2302 2303 __target_execute_cmd(cmd, true); 2304 } 2305 EXPORT_SYMBOL(target_execute_cmd); 2306 2307 /* 2308 * Process all commands up to the last received ORDERED task attribute which 2309 * requires another blocking boundary 2310 */ 2311 void target_do_delayed_work(struct work_struct *work) 2312 { 2313 struct se_device *dev = container_of(work, struct se_device, 2314 delayed_cmd_work); 2315 2316 spin_lock(&dev->delayed_cmd_lock); 2317 while (!dev->ordered_sync_in_progress) { 2318 struct se_cmd *cmd; 2319 2320 /* 2321 * We can be woken up early/late due to races or the 2322 * extra wake up we do when adding commands to the list. 2323 * We check for both cases here. 2324 */ 2325 if (list_empty(&dev->delayed_cmd_list) || 2326 !percpu_ref_is_zero(&dev->non_ordered)) 2327 break; 2328 2329 cmd = list_entry(dev->delayed_cmd_list.next, 2330 struct se_cmd, se_delayed_node); 2331 cmd->se_cmd_flags |= SCF_TASK_ORDERED_SYNC; 2332 cmd->transport_state |= CMD_T_SENT; 2333 2334 dev->ordered_sync_in_progress = true; 2335 2336 list_del(&cmd->se_delayed_node); 2337 spin_unlock(&dev->delayed_cmd_lock); 2338 2339 __target_execute_cmd(cmd, true); 2340 spin_lock(&dev->delayed_cmd_lock); 2341 } 2342 spin_unlock(&dev->delayed_cmd_lock); 2343 } 2344 2345 static void transport_complete_ordered_sync(struct se_cmd *cmd) 2346 { 2347 struct se_device *dev = cmd->se_dev; 2348 unsigned long flags; 2349 2350 spin_lock_irqsave(&dev->delayed_cmd_lock, flags); 2351 dev->dev_cur_ordered_id++; 2352 2353 pr_debug("Incremented dev_cur_ordered_id: %u for type %d\n", 2354 dev->dev_cur_ordered_id, cmd->sam_task_attr); 2355 2356 dev->ordered_sync_in_progress = false; 2357 2358 if (list_empty(&dev->delayed_cmd_list)) 2359 percpu_ref_resurrect(&dev->non_ordered); 2360 else 2361 schedule_work(&dev->delayed_cmd_work); 2362 2363 spin_unlock_irqrestore(&dev->delayed_cmd_lock, flags); 2364 } 2365 2366 /* 2367 * Called from I/O completion to determine which dormant/delayed 2368 * and ordered cmds need to have their tasks added to the execution queue. 2369 */ 2370 static void transport_complete_task_attr(struct se_cmd *cmd) 2371 { 2372 struct se_device *dev = cmd->se_dev; 2373 2374 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 2375 return; 2376 2377 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET)) 2378 return; 2379 2380 cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET; 2381 2382 if (cmd->se_cmd_flags & SCF_TASK_ORDERED_SYNC) { 2383 transport_complete_ordered_sync(cmd); 2384 return; 2385 } 2386 2387 switch (cmd->sam_task_attr) { 2388 case TCM_SIMPLE_TAG: 2389 percpu_ref_put(&dev->non_ordered); 2390 break; 2391 case TCM_ORDERED_TAG: 2392 /* All ordered should have been executed as sync */ 2393 WARN_ON(1); 2394 break; 2395 } 2396 } 2397 2398 static void transport_complete_qf(struct se_cmd *cmd) 2399 { 2400 int ret = 0; 2401 2402 transport_complete_task_attr(cmd); 2403 /* 2404 * If a fabric driver ->write_pending() or ->queue_data_in() callback 2405 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and 2406 * the same callbacks should not be retried. Return CHECK_CONDITION 2407 * if a scsi_status is not already set. 2408 * 2409 * If a fabric driver ->queue_status() has returned non zero, always 2410 * keep retrying no matter what.. 2411 */ 2412 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) { 2413 if (cmd->scsi_status) 2414 goto queue_status; 2415 2416 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 2417 goto queue_status; 2418 } 2419 2420 /* 2421 * Check if we need to send a sense buffer from 2422 * the struct se_cmd in question. We do NOT want 2423 * to take this path of the IO has been marked as 2424 * needing to be treated like a "normal read". This 2425 * is the case if it's a tape read, and either the 2426 * FM, EOM, or ILI bits are set, but there is no 2427 * sense data. 2428 */ 2429 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) && 2430 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 2431 goto queue_status; 2432 2433 switch (cmd->data_direction) { 2434 case DMA_FROM_DEVICE: 2435 /* queue status if not treating this as a normal read */ 2436 if (cmd->scsi_status && 2437 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL)) 2438 goto queue_status; 2439 2440 trace_target_cmd_complete(cmd); 2441 ret = cmd->se_tfo->queue_data_in(cmd); 2442 break; 2443 case DMA_TO_DEVICE: 2444 if (cmd->se_cmd_flags & SCF_BIDI) { 2445 ret = cmd->se_tfo->queue_data_in(cmd); 2446 break; 2447 } 2448 fallthrough; 2449 case DMA_NONE: 2450 queue_status: 2451 trace_target_cmd_complete(cmd); 2452 ret = cmd->se_tfo->queue_status(cmd); 2453 break; 2454 default: 2455 break; 2456 } 2457 2458 if (ret < 0) { 2459 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 2460 return; 2461 } 2462 transport_lun_remove_cmd(cmd); 2463 transport_cmd_check_stop_to_fabric(cmd); 2464 } 2465 2466 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev, 2467 int err, bool write_pending) 2468 { 2469 /* 2470 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or 2471 * ->queue_data_in() callbacks from new process context. 2472 * 2473 * Otherwise for other errors, transport_complete_qf() will send 2474 * CHECK_CONDITION via ->queue_status() instead of attempting to 2475 * retry associated fabric driver data-transfer callbacks. 2476 */ 2477 if (err == -EAGAIN || err == -ENOMEM) { 2478 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP : 2479 TRANSPORT_COMPLETE_QF_OK; 2480 } else { 2481 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err); 2482 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR; 2483 } 2484 2485 spin_lock_irq(&dev->qf_cmd_lock); 2486 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 2487 atomic_inc_mb(&dev->dev_qf_count); 2488 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 2489 2490 schedule_work(&cmd->se_dev->qf_work_queue); 2491 } 2492 2493 static bool target_read_prot_action(struct se_cmd *cmd) 2494 { 2495 switch (cmd->prot_op) { 2496 case TARGET_PROT_DIN_STRIP: 2497 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { 2498 u32 sectors = cmd->data_length >> 2499 ilog2(cmd->se_dev->dev_attrib.block_size); 2500 2501 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 2502 sectors, 0, cmd->t_prot_sg, 2503 0); 2504 if (cmd->pi_err) 2505 return true; 2506 } 2507 break; 2508 case TARGET_PROT_DIN_INSERT: 2509 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT) 2510 break; 2511 2512 sbc_dif_generate(cmd); 2513 break; 2514 default: 2515 break; 2516 } 2517 2518 return false; 2519 } 2520 2521 static void target_complete_ok_work(struct work_struct *work) 2522 { 2523 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2524 int ret; 2525 2526 /* 2527 * Check if we need to move delayed/dormant tasks from cmds on the 2528 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 2529 * Attribute. 2530 */ 2531 transport_complete_task_attr(cmd); 2532 2533 /* 2534 * Check to schedule QUEUE_FULL work, or execute an existing 2535 * cmd->transport_qf_callback() 2536 */ 2537 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 2538 schedule_work(&cmd->se_dev->qf_work_queue); 2539 2540 /* 2541 * Check if we need to send a sense buffer from 2542 * the struct se_cmd in question. We do NOT want 2543 * to take this path of the IO has been marked as 2544 * needing to be treated like a "normal read". This 2545 * is the case if it's a tape read, and either the 2546 * FM, EOM, or ILI bits are set, but there is no 2547 * sense data. 2548 */ 2549 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) && 2550 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 2551 WARN_ON(!cmd->scsi_status); 2552 ret = transport_send_check_condition_and_sense( 2553 cmd, 0, 1); 2554 if (ret) 2555 goto queue_full; 2556 2557 transport_lun_remove_cmd(cmd); 2558 transport_cmd_check_stop_to_fabric(cmd); 2559 return; 2560 } 2561 /* 2562 * Check for a callback, used by amongst other things 2563 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 2564 */ 2565 if (cmd->transport_complete_callback) { 2566 sense_reason_t rc; 2567 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE); 2568 bool zero_dl = !(cmd->data_length); 2569 int post_ret = 0; 2570 2571 rc = cmd->transport_complete_callback(cmd, true, &post_ret); 2572 if (!rc && !post_ret) { 2573 if (caw && zero_dl) 2574 goto queue_rsp; 2575 2576 return; 2577 } else if (rc) { 2578 ret = transport_send_check_condition_and_sense(cmd, 2579 rc, 0); 2580 if (ret) 2581 goto queue_full; 2582 2583 transport_lun_remove_cmd(cmd); 2584 transport_cmd_check_stop_to_fabric(cmd); 2585 return; 2586 } 2587 } 2588 2589 queue_rsp: 2590 switch (cmd->data_direction) { 2591 case DMA_FROM_DEVICE: 2592 /* 2593 * if this is a READ-type IO, but SCSI status 2594 * is set, then skip returning data and just 2595 * return the status -- unless this IO is marked 2596 * as needing to be treated as a normal read, 2597 * in which case we want to go ahead and return 2598 * the data. This happens, for example, for tape 2599 * reads with the FM, EOM, or ILI bits set, with 2600 * no sense data. 2601 */ 2602 if (cmd->scsi_status && 2603 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL)) 2604 goto queue_status; 2605 2606 if (cmd->se_lun->lun_stats) 2607 this_cpu_add(cmd->se_lun->lun_stats->tx_data_octets, 2608 cmd->data_length); 2609 /* 2610 * Perform READ_STRIP of PI using software emulation when 2611 * backend had PI enabled, if the transport will not be 2612 * performing hardware READ_STRIP offload. 2613 */ 2614 if (target_read_prot_action(cmd)) { 2615 ret = transport_send_check_condition_and_sense(cmd, 2616 cmd->pi_err, 0); 2617 if (ret) 2618 goto queue_full; 2619 2620 transport_lun_remove_cmd(cmd); 2621 transport_cmd_check_stop_to_fabric(cmd); 2622 return; 2623 } 2624 2625 trace_target_cmd_complete(cmd); 2626 ret = cmd->se_tfo->queue_data_in(cmd); 2627 if (ret) 2628 goto queue_full; 2629 break; 2630 case DMA_TO_DEVICE: 2631 if (cmd->se_lun->lun_stats) 2632 this_cpu_add(cmd->se_lun->lun_stats->rx_data_octets, 2633 cmd->data_length); 2634 /* 2635 * Check if we need to send READ payload for BIDI-COMMAND 2636 */ 2637 if (cmd->se_cmd_flags & SCF_BIDI) { 2638 if (cmd->se_lun->lun_stats) 2639 this_cpu_add(cmd->se_lun->lun_stats->tx_data_octets, 2640 cmd->data_length); 2641 ret = cmd->se_tfo->queue_data_in(cmd); 2642 if (ret) 2643 goto queue_full; 2644 break; 2645 } 2646 fallthrough; 2647 case DMA_NONE: 2648 queue_status: 2649 trace_target_cmd_complete(cmd); 2650 ret = cmd->se_tfo->queue_status(cmd); 2651 if (ret) 2652 goto queue_full; 2653 break; 2654 default: 2655 break; 2656 } 2657 2658 transport_lun_remove_cmd(cmd); 2659 transport_cmd_check_stop_to_fabric(cmd); 2660 return; 2661 2662 queue_full: 2663 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 2664 " data_direction: %d\n", cmd, cmd->data_direction); 2665 2666 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 2667 } 2668 2669 void target_free_sgl(struct scatterlist *sgl, int nents) 2670 { 2671 sgl_free_n_order(sgl, nents, 0); 2672 } 2673 EXPORT_SYMBOL(target_free_sgl); 2674 2675 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2676 { 2677 /* 2678 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2679 * emulation, and free + reset pointers if necessary.. 2680 */ 2681 if (!cmd->t_data_sg_orig) 2682 return; 2683 2684 kfree(cmd->t_data_sg); 2685 cmd->t_data_sg = cmd->t_data_sg_orig; 2686 cmd->t_data_sg_orig = NULL; 2687 cmd->t_data_nents = cmd->t_data_nents_orig; 2688 cmd->t_data_nents_orig = 0; 2689 } 2690 2691 static inline void transport_free_pages(struct se_cmd *cmd) 2692 { 2693 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2694 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); 2695 cmd->t_prot_sg = NULL; 2696 cmd->t_prot_nents = 0; 2697 } 2698 2699 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2700 /* 2701 * Release special case READ buffer payload required for 2702 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE 2703 */ 2704 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { 2705 target_free_sgl(cmd->t_bidi_data_sg, 2706 cmd->t_bidi_data_nents); 2707 cmd->t_bidi_data_sg = NULL; 2708 cmd->t_bidi_data_nents = 0; 2709 } 2710 transport_reset_sgl_orig(cmd); 2711 return; 2712 } 2713 transport_reset_sgl_orig(cmd); 2714 2715 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2716 cmd->t_data_sg = NULL; 2717 cmd->t_data_nents = 0; 2718 2719 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2720 cmd->t_bidi_data_sg = NULL; 2721 cmd->t_bidi_data_nents = 0; 2722 } 2723 2724 void *transport_kmap_data_sg(struct se_cmd *cmd) 2725 { 2726 struct scatterlist *sg = cmd->t_data_sg; 2727 struct page **pages; 2728 int i; 2729 2730 /* 2731 * We need to take into account a possible offset here for fabrics like 2732 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2733 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2734 */ 2735 if (!cmd->t_data_nents) 2736 return NULL; 2737 2738 BUG_ON(!sg); 2739 if (cmd->t_data_nents == 1) 2740 return kmap(sg_page(sg)) + sg->offset; 2741 2742 /* >1 page. use vmap */ 2743 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL); 2744 if (!pages) 2745 return NULL; 2746 2747 /* convert sg[] to pages[] */ 2748 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2749 pages[i] = sg_page(sg); 2750 } 2751 2752 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2753 kfree(pages); 2754 if (!cmd->t_data_vmap) 2755 return NULL; 2756 2757 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2758 } 2759 EXPORT_SYMBOL(transport_kmap_data_sg); 2760 2761 void transport_kunmap_data_sg(struct se_cmd *cmd) 2762 { 2763 if (!cmd->t_data_nents) { 2764 return; 2765 } else if (cmd->t_data_nents == 1) { 2766 kunmap(sg_page(cmd->t_data_sg)); 2767 return; 2768 } 2769 2770 vunmap(cmd->t_data_vmap); 2771 cmd->t_data_vmap = NULL; 2772 } 2773 EXPORT_SYMBOL(transport_kunmap_data_sg); 2774 2775 int 2776 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2777 bool zero_page, bool chainable) 2778 { 2779 gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0); 2780 2781 *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents); 2782 return *sgl ? 0 : -ENOMEM; 2783 } 2784 EXPORT_SYMBOL(target_alloc_sgl); 2785 2786 /* 2787 * Allocate any required resources to execute the command. For writes we 2788 * might not have the payload yet, so notify the fabric via a call to 2789 * ->write_pending instead. Otherwise place it on the execution queue. 2790 */ 2791 sense_reason_t 2792 transport_generic_new_cmd(struct se_cmd *cmd) 2793 { 2794 unsigned long flags; 2795 int ret = 0; 2796 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2797 2798 if (cmd->prot_op != TARGET_PROT_NORMAL && 2799 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2800 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents, 2801 cmd->prot_length, true, false); 2802 if (ret < 0) 2803 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2804 } 2805 2806 /* 2807 * Determine if the TCM fabric module has already allocated physical 2808 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2809 * beforehand. 2810 */ 2811 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2812 cmd->data_length) { 2813 2814 if ((cmd->se_cmd_flags & SCF_BIDI) || 2815 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2816 u32 bidi_length; 2817 2818 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2819 bidi_length = cmd->t_task_nolb * 2820 cmd->se_dev->dev_attrib.block_size; 2821 else 2822 bidi_length = cmd->data_length; 2823 2824 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2825 &cmd->t_bidi_data_nents, 2826 bidi_length, zero_flag, false); 2827 if (ret < 0) 2828 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2829 } 2830 2831 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2832 cmd->data_length, zero_flag, false); 2833 if (ret < 0) 2834 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2835 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 2836 cmd->data_length) { 2837 /* 2838 * Special case for COMPARE_AND_WRITE with fabrics 2839 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC. 2840 */ 2841 u32 caw_length = cmd->t_task_nolb * 2842 cmd->se_dev->dev_attrib.block_size; 2843 2844 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2845 &cmd->t_bidi_data_nents, 2846 caw_length, zero_flag, false); 2847 if (ret < 0) 2848 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2849 } 2850 /* 2851 * If this command is not a write we can execute it right here, 2852 * for write buffers we need to notify the fabric driver first 2853 * and let it call back once the write buffers are ready. 2854 */ 2855 target_add_to_state_list(cmd); 2856 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) { 2857 target_execute_cmd(cmd); 2858 return 0; 2859 } 2860 2861 spin_lock_irqsave(&cmd->t_state_lock, flags); 2862 cmd->t_state = TRANSPORT_WRITE_PENDING; 2863 /* 2864 * Determine if frontend context caller is requesting the stopping of 2865 * this command for frontend exceptions. 2866 */ 2867 if (cmd->transport_state & CMD_T_STOP && 2868 !cmd->se_tfo->write_pending_must_be_called) { 2869 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 2870 __func__, __LINE__, cmd->tag); 2871 2872 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2873 2874 complete_all(&cmd->t_transport_stop_comp); 2875 return 0; 2876 } 2877 cmd->transport_state &= ~CMD_T_ACTIVE; 2878 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2879 2880 ret = cmd->se_tfo->write_pending(cmd); 2881 if (ret) 2882 goto queue_full; 2883 2884 return 0; 2885 2886 queue_full: 2887 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2888 transport_handle_queue_full(cmd, cmd->se_dev, ret, true); 2889 return 0; 2890 } 2891 EXPORT_SYMBOL(transport_generic_new_cmd); 2892 2893 static void transport_write_pending_qf(struct se_cmd *cmd) 2894 { 2895 unsigned long flags; 2896 int ret; 2897 bool stop; 2898 2899 spin_lock_irqsave(&cmd->t_state_lock, flags); 2900 stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED)); 2901 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2902 2903 if (stop) { 2904 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n", 2905 __func__, __LINE__, cmd->tag); 2906 complete_all(&cmd->t_transport_stop_comp); 2907 return; 2908 } 2909 2910 ret = cmd->se_tfo->write_pending(cmd); 2911 if (ret) { 2912 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2913 cmd); 2914 transport_handle_queue_full(cmd, cmd->se_dev, ret, true); 2915 } 2916 } 2917 2918 static bool 2919 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *, 2920 unsigned long *flags); 2921 2922 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas) 2923 { 2924 unsigned long flags; 2925 2926 spin_lock_irqsave(&cmd->t_state_lock, flags); 2927 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags); 2928 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2929 } 2930 2931 /* 2932 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has 2933 * finished. 2934 */ 2935 void target_put_cmd_and_wait(struct se_cmd *cmd) 2936 { 2937 DECLARE_COMPLETION_ONSTACK(compl); 2938 2939 WARN_ON_ONCE(cmd->abrt_compl); 2940 cmd->abrt_compl = &compl; 2941 target_put_sess_cmd(cmd); 2942 wait_for_completion(&compl); 2943 } 2944 2945 /* 2946 * This function is called by frontend drivers after processing of a command 2947 * has finished. 2948 * 2949 * The protocol for ensuring that either the regular frontend command 2950 * processing flow or target_handle_abort() code drops one reference is as 2951 * follows: 2952 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause 2953 * the frontend driver to call this function synchronously or asynchronously. 2954 * That will cause one reference to be dropped. 2955 * - During regular command processing the target core sets CMD_T_COMPLETE 2956 * before invoking one of the .queue_*() functions. 2957 * - The code that aborts commands skips commands and TMFs for which 2958 * CMD_T_COMPLETE has been set. 2959 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for 2960 * commands that will be aborted. 2961 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set 2962 * transport_generic_free_cmd() skips its call to target_put_sess_cmd(). 2963 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will 2964 * be called and will drop a reference. 2965 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task() 2966 * will be called. target_handle_abort() will drop the final reference. 2967 */ 2968 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2969 { 2970 DECLARE_COMPLETION_ONSTACK(compl); 2971 int ret = 0; 2972 bool aborted = false, tas = false; 2973 2974 if (wait_for_tasks) 2975 target_wait_free_cmd(cmd, &aborted, &tas); 2976 2977 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) { 2978 /* 2979 * Handle WRITE failure case where transport_generic_new_cmd() 2980 * has already added se_cmd to state_list, but fabric has 2981 * failed command before I/O submission. 2982 */ 2983 if (cmd->state_active) 2984 target_remove_from_state_list(cmd); 2985 2986 if (cmd->se_lun) 2987 transport_lun_remove_cmd(cmd); 2988 } 2989 if (aborted) 2990 cmd->free_compl = &compl; 2991 ret = target_put_sess_cmd(cmd); 2992 if (aborted) { 2993 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag); 2994 wait_for_completion(&compl); 2995 ret = 1; 2996 } 2997 return ret; 2998 } 2999 EXPORT_SYMBOL(transport_generic_free_cmd); 3000 3001 /** 3002 * target_get_sess_cmd - Verify the session is accepting cmds and take ref 3003 * @se_cmd: command descriptor to add 3004 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 3005 */ 3006 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref) 3007 { 3008 int ret = 0; 3009 3010 /* 3011 * Add a second kref if the fabric caller is expecting to handle 3012 * fabric acknowledgement that requires two target_put_sess_cmd() 3013 * invocations before se_cmd descriptor release. 3014 */ 3015 if (ack_kref) { 3016 kref_get(&se_cmd->cmd_kref); 3017 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 3018 } 3019 3020 /* 3021 * Users like xcopy do not use counters since they never do a stop 3022 * and wait. 3023 */ 3024 if (se_cmd->cmd_cnt) { 3025 if (!percpu_ref_tryget_live(&se_cmd->cmd_cnt->refcnt)) 3026 ret = -ESHUTDOWN; 3027 } 3028 if (ret && ack_kref) 3029 target_put_sess_cmd(se_cmd); 3030 3031 return ret; 3032 } 3033 EXPORT_SYMBOL(target_get_sess_cmd); 3034 3035 static void target_free_cmd_mem(struct se_cmd *cmd) 3036 { 3037 transport_free_pages(cmd); 3038 3039 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 3040 core_tmr_release_req(cmd->se_tmr_req); 3041 if (cmd->t_task_cdb != cmd->__t_task_cdb) 3042 kfree(cmd->t_task_cdb); 3043 } 3044 3045 static void target_release_cmd_kref(struct kref *kref) 3046 { 3047 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 3048 struct target_cmd_counter *cmd_cnt = se_cmd->cmd_cnt; 3049 struct completion *free_compl = se_cmd->free_compl; 3050 struct completion *abrt_compl = se_cmd->abrt_compl; 3051 3052 target_free_cmd_mem(se_cmd); 3053 se_cmd->se_tfo->release_cmd(se_cmd); 3054 if (free_compl) 3055 complete(free_compl); 3056 if (abrt_compl) 3057 complete(abrt_compl); 3058 3059 if (cmd_cnt) 3060 percpu_ref_put(&cmd_cnt->refcnt); 3061 } 3062 3063 /** 3064 * target_put_sess_cmd - decrease the command reference count 3065 * @se_cmd: command to drop a reference from 3066 * 3067 * Returns 1 if and only if this target_put_sess_cmd() call caused the 3068 * refcount to drop to zero. Returns zero otherwise. 3069 */ 3070 int target_put_sess_cmd(struct se_cmd *se_cmd) 3071 { 3072 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref); 3073 } 3074 EXPORT_SYMBOL(target_put_sess_cmd); 3075 3076 static const char *data_dir_name(enum dma_data_direction d) 3077 { 3078 switch (d) { 3079 case DMA_BIDIRECTIONAL: return "BIDI"; 3080 case DMA_TO_DEVICE: return "WRITE"; 3081 case DMA_FROM_DEVICE: return "READ"; 3082 case DMA_NONE: return "NONE"; 3083 } 3084 3085 return "(?)"; 3086 } 3087 3088 static const char *cmd_state_name(enum transport_state_table t) 3089 { 3090 switch (t) { 3091 case TRANSPORT_NO_STATE: return "NO_STATE"; 3092 case TRANSPORT_NEW_CMD: return "NEW_CMD"; 3093 case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING"; 3094 case TRANSPORT_PROCESSING: return "PROCESSING"; 3095 case TRANSPORT_COMPLETE: return "COMPLETE"; 3096 case TRANSPORT_ISTATE_PROCESSING: 3097 return "ISTATE_PROCESSING"; 3098 case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP"; 3099 case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK"; 3100 case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR"; 3101 } 3102 3103 return "(?)"; 3104 } 3105 3106 static void target_append_str(char **str, const char *txt) 3107 { 3108 char *prev = *str; 3109 3110 *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) : 3111 kstrdup(txt, GFP_ATOMIC); 3112 kfree(prev); 3113 } 3114 3115 /* 3116 * Convert a transport state bitmask into a string. The caller is 3117 * responsible for freeing the returned pointer. 3118 */ 3119 static char *target_ts_to_str(u32 ts) 3120 { 3121 char *str = NULL; 3122 3123 if (ts & CMD_T_ABORTED) 3124 target_append_str(&str, "aborted"); 3125 if (ts & CMD_T_ACTIVE) 3126 target_append_str(&str, "active"); 3127 if (ts & CMD_T_COMPLETE) 3128 target_append_str(&str, "complete"); 3129 if (ts & CMD_T_SENT) 3130 target_append_str(&str, "sent"); 3131 if (ts & CMD_T_STOP) 3132 target_append_str(&str, "stop"); 3133 if (ts & CMD_T_FABRIC_STOP) 3134 target_append_str(&str, "fabric_stop"); 3135 3136 return str; 3137 } 3138 3139 static const char *target_tmf_name(enum tcm_tmreq_table tmf) 3140 { 3141 switch (tmf) { 3142 case TMR_ABORT_TASK: return "ABORT_TASK"; 3143 case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET"; 3144 case TMR_CLEAR_ACA: return "CLEAR_ACA"; 3145 case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET"; 3146 case TMR_LUN_RESET: return "LUN_RESET"; 3147 case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET"; 3148 case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET"; 3149 case TMR_LUN_RESET_PRO: return "LUN_RESET_PRO"; 3150 case TMR_UNKNOWN: break; 3151 } 3152 return "(?)"; 3153 } 3154 3155 void target_show_cmd(const char *pfx, struct se_cmd *cmd) 3156 { 3157 char *ts_str = target_ts_to_str(cmd->transport_state); 3158 const u8 *cdb = cmd->t_task_cdb; 3159 struct se_tmr_req *tmf = cmd->se_tmr_req; 3160 3161 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 3162 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n", 3163 pfx, cdb[0], cdb[1], cmd->tag, 3164 data_dir_name(cmd->data_direction), 3165 cmd->se_tfo->get_cmd_state(cmd), 3166 cmd_state_name(cmd->t_state), cmd->data_length, 3167 kref_read(&cmd->cmd_kref), ts_str); 3168 } else { 3169 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n", 3170 pfx, target_tmf_name(tmf->function), cmd->tag, 3171 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd), 3172 cmd_state_name(cmd->t_state), 3173 kref_read(&cmd->cmd_kref), ts_str); 3174 } 3175 kfree(ts_str); 3176 } 3177 EXPORT_SYMBOL(target_show_cmd); 3178 3179 static void target_stop_cmd_counter_confirm(struct percpu_ref *ref) 3180 { 3181 struct target_cmd_counter *cmd_cnt = container_of(ref, 3182 struct target_cmd_counter, 3183 refcnt); 3184 complete_all(&cmd_cnt->stop_done); 3185 } 3186 3187 /** 3188 * target_stop_cmd_counter - Stop new IO from being added to the counter. 3189 * @cmd_cnt: counter to stop 3190 */ 3191 void target_stop_cmd_counter(struct target_cmd_counter *cmd_cnt) 3192 { 3193 pr_debug("Stopping command counter.\n"); 3194 if (!atomic_cmpxchg(&cmd_cnt->stopped, 0, 1)) 3195 percpu_ref_kill_and_confirm(&cmd_cnt->refcnt, 3196 target_stop_cmd_counter_confirm); 3197 } 3198 EXPORT_SYMBOL_GPL(target_stop_cmd_counter); 3199 3200 /** 3201 * target_stop_session - Stop new IO from being queued on the session. 3202 * @se_sess: session to stop 3203 */ 3204 void target_stop_session(struct se_session *se_sess) 3205 { 3206 target_stop_cmd_counter(se_sess->cmd_cnt); 3207 } 3208 EXPORT_SYMBOL(target_stop_session); 3209 3210 /** 3211 * target_wait_for_cmds - Wait for outstanding cmds. 3212 * @cmd_cnt: counter to wait for active I/O for. 3213 */ 3214 void target_wait_for_cmds(struct target_cmd_counter *cmd_cnt) 3215 { 3216 int ret; 3217 3218 WARN_ON_ONCE(!atomic_read(&cmd_cnt->stopped)); 3219 3220 do { 3221 pr_debug("Waiting for running cmds to complete.\n"); 3222 ret = wait_event_timeout(cmd_cnt->refcnt_wq, 3223 percpu_ref_is_zero(&cmd_cnt->refcnt), 3224 180 * HZ); 3225 } while (ret <= 0); 3226 3227 wait_for_completion(&cmd_cnt->stop_done); 3228 pr_debug("Waiting for cmds done.\n"); 3229 } 3230 EXPORT_SYMBOL_GPL(target_wait_for_cmds); 3231 3232 /** 3233 * target_wait_for_sess_cmds - Wait for outstanding commands 3234 * @se_sess: session to wait for active I/O 3235 */ 3236 void target_wait_for_sess_cmds(struct se_session *se_sess) 3237 { 3238 target_wait_for_cmds(se_sess->cmd_cnt); 3239 } 3240 EXPORT_SYMBOL(target_wait_for_sess_cmds); 3241 3242 /* 3243 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until 3244 * all references to the LUN have been released. Called during LUN shutdown. 3245 */ 3246 void transport_clear_lun_ref(struct se_lun *lun) 3247 { 3248 percpu_ref_kill(&lun->lun_ref); 3249 wait_for_completion(&lun->lun_shutdown_comp); 3250 } 3251 3252 static bool 3253 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop, 3254 bool *aborted, bool *tas, unsigned long *flags) 3255 __releases(&cmd->t_state_lock) 3256 __acquires(&cmd->t_state_lock) 3257 { 3258 lockdep_assert_held(&cmd->t_state_lock); 3259 3260 if (fabric_stop) 3261 cmd->transport_state |= CMD_T_FABRIC_STOP; 3262 3263 if (cmd->transport_state & CMD_T_ABORTED) 3264 *aborted = true; 3265 3266 if (cmd->transport_state & CMD_T_TAS) 3267 *tas = true; 3268 3269 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 3270 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 3271 return false; 3272 3273 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 3274 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 3275 return false; 3276 3277 if (!(cmd->transport_state & CMD_T_ACTIVE)) 3278 return false; 3279 3280 if (fabric_stop && *aborted) 3281 return false; 3282 3283 cmd->transport_state |= CMD_T_STOP; 3284 3285 target_show_cmd("wait_for_tasks: Stopping ", cmd); 3286 3287 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 3288 3289 while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp, 3290 180 * HZ)) 3291 target_show_cmd("wait for tasks: ", cmd); 3292 3293 spin_lock_irqsave(&cmd->t_state_lock, *flags); 3294 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 3295 3296 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->" 3297 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag); 3298 3299 return true; 3300 } 3301 3302 /** 3303 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp 3304 * @cmd: command to wait on 3305 */ 3306 bool transport_wait_for_tasks(struct se_cmd *cmd) 3307 { 3308 unsigned long flags; 3309 bool ret, aborted = false, tas = false; 3310 3311 spin_lock_irqsave(&cmd->t_state_lock, flags); 3312 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags); 3313 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3314 3315 return ret; 3316 } 3317 EXPORT_SYMBOL(transport_wait_for_tasks); 3318 3319 struct sense_detail { 3320 u8 key; 3321 u8 asc; 3322 u8 ascq; 3323 bool add_sense_info; 3324 }; 3325 3326 static const struct sense_detail sense_detail_table[] = { 3327 [TCM_NO_SENSE] = { 3328 .key = NOT_READY 3329 }, 3330 [TCM_NON_EXISTENT_LUN] = { 3331 .key = ILLEGAL_REQUEST, 3332 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */ 3333 }, 3334 [TCM_UNSUPPORTED_SCSI_OPCODE] = { 3335 .key = ILLEGAL_REQUEST, 3336 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 3337 }, 3338 [TCM_SECTOR_COUNT_TOO_MANY] = { 3339 .key = ILLEGAL_REQUEST, 3340 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 3341 }, 3342 [TCM_UNKNOWN_MODE_PAGE] = { 3343 .key = ILLEGAL_REQUEST, 3344 .asc = 0x24, /* INVALID FIELD IN CDB */ 3345 }, 3346 [TCM_CHECK_CONDITION_ABORT_CMD] = { 3347 .key = ABORTED_COMMAND, 3348 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */ 3349 .ascq = 0x03, 3350 }, 3351 [TCM_INCORRECT_AMOUNT_OF_DATA] = { 3352 .key = ABORTED_COMMAND, 3353 .asc = 0x0c, /* WRITE ERROR */ 3354 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */ 3355 }, 3356 [TCM_INVALID_CDB_FIELD] = { 3357 .key = ILLEGAL_REQUEST, 3358 .asc = 0x24, /* INVALID FIELD IN CDB */ 3359 }, 3360 [TCM_INVALID_PARAMETER_LIST] = { 3361 .key = ILLEGAL_REQUEST, 3362 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */ 3363 }, 3364 [TCM_TOO_MANY_TARGET_DESCS] = { 3365 .key = ILLEGAL_REQUEST, 3366 .asc = 0x26, 3367 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */ 3368 }, 3369 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = { 3370 .key = ILLEGAL_REQUEST, 3371 .asc = 0x26, 3372 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */ 3373 }, 3374 [TCM_TOO_MANY_SEGMENT_DESCS] = { 3375 .key = ILLEGAL_REQUEST, 3376 .asc = 0x26, 3377 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */ 3378 }, 3379 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = { 3380 .key = ILLEGAL_REQUEST, 3381 .asc = 0x26, 3382 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */ 3383 }, 3384 [TCM_PARAMETER_LIST_LENGTH_ERROR] = { 3385 .key = ILLEGAL_REQUEST, 3386 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */ 3387 }, 3388 [TCM_UNEXPECTED_UNSOLICITED_DATA] = { 3389 .key = ILLEGAL_REQUEST, 3390 .asc = 0x0c, /* WRITE ERROR */ 3391 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */ 3392 }, 3393 [TCM_SERVICE_CRC_ERROR] = { 3394 .key = ABORTED_COMMAND, 3395 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */ 3396 .ascq = 0x05, /* N/A */ 3397 }, 3398 [TCM_SNACK_REJECTED] = { 3399 .key = ABORTED_COMMAND, 3400 .asc = 0x11, /* READ ERROR */ 3401 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */ 3402 }, 3403 [TCM_WRITE_PROTECTED] = { 3404 .key = DATA_PROTECT, 3405 .asc = 0x27, /* WRITE PROTECTED */ 3406 }, 3407 [TCM_ADDRESS_OUT_OF_RANGE] = { 3408 .key = ILLEGAL_REQUEST, 3409 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 3410 }, 3411 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = { 3412 .key = UNIT_ATTENTION, 3413 }, 3414 [TCM_MISCOMPARE_VERIFY] = { 3415 .key = MISCOMPARE, 3416 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */ 3417 .ascq = 0x00, 3418 .add_sense_info = true, 3419 }, 3420 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = { 3421 .key = ABORTED_COMMAND, 3422 .asc = 0x10, 3423 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */ 3424 .add_sense_info = true, 3425 }, 3426 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = { 3427 .key = ABORTED_COMMAND, 3428 .asc = 0x10, 3429 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 3430 .add_sense_info = true, 3431 }, 3432 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = { 3433 .key = ABORTED_COMMAND, 3434 .asc = 0x10, 3435 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 3436 .add_sense_info = true, 3437 }, 3438 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = { 3439 .key = COPY_ABORTED, 3440 .asc = 0x0d, 3441 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */ 3442 3443 }, 3444 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = { 3445 /* 3446 * Returning ILLEGAL REQUEST would cause immediate IO errors on 3447 * Solaris initiators. Returning NOT READY instead means the 3448 * operations will be retried a finite number of times and we 3449 * can survive intermittent errors. 3450 */ 3451 .key = NOT_READY, 3452 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */ 3453 }, 3454 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = { 3455 /* 3456 * From spc4r22 section5.7.7,5.7.8 3457 * If a PERSISTENT RESERVE OUT command with a REGISTER service action 3458 * or a REGISTER AND IGNORE EXISTING KEY service action or 3459 * REGISTER AND MOVE service actionis attempted, 3460 * but there are insufficient device server resources to complete the 3461 * operation, then the command shall be terminated with CHECK CONDITION 3462 * status, with the sense key set to ILLEGAL REQUEST,and the additonal 3463 * sense code set to INSUFFICIENT REGISTRATION RESOURCES. 3464 */ 3465 .key = ILLEGAL_REQUEST, 3466 .asc = 0x55, 3467 .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */ 3468 }, 3469 [TCM_INVALID_FIELD_IN_COMMAND_IU] = { 3470 .key = ILLEGAL_REQUEST, 3471 .asc = 0x0e, 3472 .ascq = 0x03, /* INVALID FIELD IN COMMAND INFORMATION UNIT */ 3473 }, 3474 [TCM_ALUA_TG_PT_STANDBY] = { 3475 .key = NOT_READY, 3476 .asc = 0x04, 3477 .ascq = ASCQ_04H_ALUA_TG_PT_STANDBY, 3478 }, 3479 [TCM_ALUA_TG_PT_UNAVAILABLE] = { 3480 .key = NOT_READY, 3481 .asc = 0x04, 3482 .ascq = ASCQ_04H_ALUA_TG_PT_UNAVAILABLE, 3483 }, 3484 [TCM_ALUA_STATE_TRANSITION] = { 3485 .key = NOT_READY, 3486 .asc = 0x04, 3487 .ascq = ASCQ_04H_ALUA_STATE_TRANSITION, 3488 }, 3489 [TCM_ALUA_OFFLINE] = { 3490 .key = NOT_READY, 3491 .asc = 0x04, 3492 .ascq = ASCQ_04H_ALUA_OFFLINE, 3493 }, 3494 }; 3495 3496 /** 3497 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq 3498 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will 3499 * be stored. 3500 * @reason: LIO sense reason code. If this argument has the value 3501 * TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If 3502 * dequeuing a unit attention fails due to multiple commands being processed 3503 * concurrently, set the command status to BUSY. 3504 * 3505 * Return: 0 upon success or -EINVAL if the sense buffer is too small. 3506 */ 3507 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason) 3508 { 3509 const struct sense_detail *sd; 3510 u8 *buffer = cmd->sense_buffer; 3511 int r = (__force int)reason; 3512 u8 key, asc, ascq; 3513 bool desc_format = target_sense_desc_format(cmd->se_dev); 3514 3515 if (r < ARRAY_SIZE(sense_detail_table) && sense_detail_table[r].key) 3516 sd = &sense_detail_table[r]; 3517 else 3518 sd = &sense_detail_table[(__force int) 3519 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE]; 3520 3521 key = sd->key; 3522 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) { 3523 if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc, 3524 &ascq)) { 3525 cmd->scsi_status = SAM_STAT_BUSY; 3526 return; 3527 } 3528 } else { 3529 WARN_ON_ONCE(sd->asc == 0); 3530 asc = sd->asc; 3531 ascq = sd->ascq; 3532 } 3533 3534 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 3535 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 3536 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 3537 scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq); 3538 if (sd->add_sense_info) 3539 WARN_ON_ONCE(scsi_set_sense_information(buffer, 3540 cmd->scsi_sense_length, 3541 cmd->sense_info) < 0); 3542 } 3543 3544 int 3545 transport_send_check_condition_and_sense(struct se_cmd *cmd, 3546 sense_reason_t reason, int from_transport) 3547 { 3548 unsigned long flags; 3549 3550 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB); 3551 3552 spin_lock_irqsave(&cmd->t_state_lock, flags); 3553 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 3554 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3555 return 0; 3556 } 3557 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 3558 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3559 3560 if (!from_transport) 3561 translate_sense_reason(cmd, reason); 3562 3563 trace_target_cmd_complete(cmd); 3564 return cmd->se_tfo->queue_status(cmd); 3565 } 3566 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 3567 3568 /** 3569 * target_send_busy - Send SCSI BUSY status back to the initiator 3570 * @cmd: SCSI command for which to send a BUSY reply. 3571 * 3572 * Note: Only call this function if target_submit_cmd*() failed. 3573 */ 3574 int target_send_busy(struct se_cmd *cmd) 3575 { 3576 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB); 3577 3578 cmd->scsi_status = SAM_STAT_BUSY; 3579 trace_target_cmd_complete(cmd); 3580 return cmd->se_tfo->queue_status(cmd); 3581 } 3582 EXPORT_SYMBOL(target_send_busy); 3583 3584 static void target_tmr_work(struct work_struct *work) 3585 { 3586 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 3587 struct se_device *dev = cmd->se_dev; 3588 struct se_tmr_req *tmr = cmd->se_tmr_req; 3589 int ret; 3590 3591 if (cmd->transport_state & CMD_T_ABORTED) 3592 goto aborted; 3593 3594 switch (tmr->function) { 3595 case TMR_ABORT_TASK: 3596 core_tmr_abort_task(dev, tmr, cmd->se_sess); 3597 break; 3598 case TMR_ABORT_TASK_SET: 3599 case TMR_CLEAR_ACA: 3600 case TMR_CLEAR_TASK_SET: 3601 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 3602 break; 3603 case TMR_LUN_RESET: 3604 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 3605 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 3606 TMR_FUNCTION_REJECTED; 3607 if (tmr->response == TMR_FUNCTION_COMPLETE) { 3608 target_dev_ua_allocate(dev, 0x29, 3609 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED); 3610 } 3611 break; 3612 case TMR_TARGET_WARM_RESET: 3613 tmr->response = TMR_FUNCTION_REJECTED; 3614 break; 3615 case TMR_TARGET_COLD_RESET: 3616 tmr->response = TMR_FUNCTION_REJECTED; 3617 break; 3618 default: 3619 pr_err("Unknown TMR function: 0x%02x.\n", 3620 tmr->function); 3621 tmr->response = TMR_FUNCTION_REJECTED; 3622 break; 3623 } 3624 3625 if (cmd->transport_state & CMD_T_ABORTED) 3626 goto aborted; 3627 3628 cmd->se_tfo->queue_tm_rsp(cmd); 3629 3630 transport_lun_remove_cmd(cmd); 3631 transport_cmd_check_stop_to_fabric(cmd); 3632 return; 3633 3634 aborted: 3635 target_handle_abort(cmd); 3636 } 3637 3638 int transport_generic_handle_tmr( 3639 struct se_cmd *cmd) 3640 { 3641 unsigned long flags; 3642 bool aborted = false; 3643 3644 spin_lock_irqsave(&cmd->se_dev->se_tmr_lock, flags); 3645 list_add_tail(&cmd->se_tmr_req->tmr_list, &cmd->se_dev->dev_tmr_list); 3646 spin_unlock_irqrestore(&cmd->se_dev->se_tmr_lock, flags); 3647 3648 spin_lock_irqsave(&cmd->t_state_lock, flags); 3649 if (cmd->transport_state & CMD_T_ABORTED) { 3650 aborted = true; 3651 } else { 3652 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 3653 cmd->transport_state |= CMD_T_ACTIVE; 3654 } 3655 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3656 3657 if (aborted) { 3658 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n", 3659 cmd->se_tmr_req->function, 3660 cmd->se_tmr_req->ref_task_tag, cmd->tag); 3661 target_handle_abort(cmd); 3662 return 0; 3663 } 3664 3665 INIT_WORK(&cmd->work, target_tmr_work); 3666 schedule_work(&cmd->work); 3667 return 0; 3668 } 3669 EXPORT_SYMBOL(transport_generic_handle_tmr); 3670 3671 bool 3672 target_check_wce(struct se_device *dev) 3673 { 3674 bool wce = false; 3675 3676 if (dev->transport->get_write_cache) 3677 wce = dev->transport->get_write_cache(dev); 3678 else if (dev->dev_attrib.emulate_write_cache > 0) 3679 wce = true; 3680 3681 return wce; 3682 } 3683 3684 bool 3685 target_check_fua(struct se_device *dev) 3686 { 3687 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0; 3688 } 3689