xref: /linux/drivers/target/target_core_transport.c (revision 7eb7f5723df50a7d5564aa609e4c147f669a5cb4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3  * Filename:  target_core_transport.c
4  *
5  * This file contains the Generic Target Engine Core.
6  *
7  * (c) Copyright 2002-2013 Datera, Inc.
8  *
9  * Nicholas A. Bellinger <nab@kernel.org>
10  *
11  ******************************************************************************/
12 
13 #include <linux/net.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/kthread.h>
20 #include <linux/in.h>
21 #include <linux/cdrom.h>
22 #include <linux/module.h>
23 #include <linux/ratelimit.h>
24 #include <linux/vmalloc.h>
25 #include <linux/unaligned.h>
26 #include <net/sock.h>
27 #include <net/tcp.h>
28 #include <scsi/scsi_proto.h>
29 #include <scsi/scsi_common.h>
30 
31 #include <target/target_core_base.h>
32 #include <target/target_core_backend.h>
33 #include <target/target_core_fabric.h>
34 
35 #include "target_core_internal.h"
36 #include "target_core_alua.h"
37 #include "target_core_pr.h"
38 #include "target_core_ua.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/target.h>
42 
43 static struct workqueue_struct *target_completion_wq;
44 static struct workqueue_struct *target_submission_wq;
45 static struct kmem_cache *se_sess_cache;
46 struct kmem_cache *se_ua_cache;
47 struct kmem_cache *t10_pr_reg_cache;
48 struct kmem_cache *t10_alua_lu_gp_cache;
49 struct kmem_cache *t10_alua_lu_gp_mem_cache;
50 struct kmem_cache *t10_alua_tg_pt_gp_cache;
51 struct kmem_cache *t10_alua_lba_map_cache;
52 struct kmem_cache *t10_alua_lba_map_mem_cache;
53 
54 static void transport_complete_task_attr(struct se_cmd *cmd);
55 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
56 static void transport_handle_queue_full(struct se_cmd *cmd,
57 		struct se_device *dev, int err, bool write_pending);
58 static void target_complete_ok_work(struct work_struct *work);
59 
init_se_kmem_caches(void)60 int init_se_kmem_caches(void)
61 {
62 	se_sess_cache = kmem_cache_create("se_sess_cache",
63 			sizeof(struct se_session), __alignof__(struct se_session),
64 			0, NULL);
65 	if (!se_sess_cache) {
66 		pr_err("kmem_cache_create() for struct se_session"
67 				" failed\n");
68 		goto out;
69 	}
70 	se_ua_cache = kmem_cache_create("se_ua_cache",
71 			sizeof(struct se_ua), __alignof__(struct se_ua),
72 			0, NULL);
73 	if (!se_ua_cache) {
74 		pr_err("kmem_cache_create() for struct se_ua failed\n");
75 		goto out_free_sess_cache;
76 	}
77 	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
78 			sizeof(struct t10_pr_registration),
79 			__alignof__(struct t10_pr_registration), 0, NULL);
80 	if (!t10_pr_reg_cache) {
81 		pr_err("kmem_cache_create() for struct t10_pr_registration"
82 				" failed\n");
83 		goto out_free_ua_cache;
84 	}
85 	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
86 			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
87 			0, NULL);
88 	if (!t10_alua_lu_gp_cache) {
89 		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
90 				" failed\n");
91 		goto out_free_pr_reg_cache;
92 	}
93 	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
94 			sizeof(struct t10_alua_lu_gp_member),
95 			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
96 	if (!t10_alua_lu_gp_mem_cache) {
97 		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
98 				"cache failed\n");
99 		goto out_free_lu_gp_cache;
100 	}
101 	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
102 			sizeof(struct t10_alua_tg_pt_gp),
103 			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
104 	if (!t10_alua_tg_pt_gp_cache) {
105 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
106 				"cache failed\n");
107 		goto out_free_lu_gp_mem_cache;
108 	}
109 	t10_alua_lba_map_cache = kmem_cache_create(
110 			"t10_alua_lba_map_cache",
111 			sizeof(struct t10_alua_lba_map),
112 			__alignof__(struct t10_alua_lba_map), 0, NULL);
113 	if (!t10_alua_lba_map_cache) {
114 		pr_err("kmem_cache_create() for t10_alua_lba_map_"
115 				"cache failed\n");
116 		goto out_free_tg_pt_gp_cache;
117 	}
118 	t10_alua_lba_map_mem_cache = kmem_cache_create(
119 			"t10_alua_lba_map_mem_cache",
120 			sizeof(struct t10_alua_lba_map_member),
121 			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
122 	if (!t10_alua_lba_map_mem_cache) {
123 		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
124 				"cache failed\n");
125 		goto out_free_lba_map_cache;
126 	}
127 
128 	target_completion_wq = alloc_workqueue("target_completion",
129 					       WQ_MEM_RECLAIM | WQ_PERCPU, 0);
130 	if (!target_completion_wq)
131 		goto out_free_lba_map_mem_cache;
132 
133 	target_submission_wq = alloc_workqueue("target_submission",
134 					       WQ_MEM_RECLAIM | WQ_PERCPU, 0);
135 	if (!target_submission_wq)
136 		goto out_free_completion_wq;
137 
138 	return 0;
139 
140 out_free_completion_wq:
141 	destroy_workqueue(target_completion_wq);
142 out_free_lba_map_mem_cache:
143 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
144 out_free_lba_map_cache:
145 	kmem_cache_destroy(t10_alua_lba_map_cache);
146 out_free_tg_pt_gp_cache:
147 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
148 out_free_lu_gp_mem_cache:
149 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
150 out_free_lu_gp_cache:
151 	kmem_cache_destroy(t10_alua_lu_gp_cache);
152 out_free_pr_reg_cache:
153 	kmem_cache_destroy(t10_pr_reg_cache);
154 out_free_ua_cache:
155 	kmem_cache_destroy(se_ua_cache);
156 out_free_sess_cache:
157 	kmem_cache_destroy(se_sess_cache);
158 out:
159 	return -ENOMEM;
160 }
161 
release_se_kmem_caches(void)162 void release_se_kmem_caches(void)
163 {
164 	destroy_workqueue(target_submission_wq);
165 	destroy_workqueue(target_completion_wq);
166 	kmem_cache_destroy(se_sess_cache);
167 	kmem_cache_destroy(se_ua_cache);
168 	kmem_cache_destroy(t10_pr_reg_cache);
169 	kmem_cache_destroy(t10_alua_lu_gp_cache);
170 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
171 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
172 	kmem_cache_destroy(t10_alua_lba_map_cache);
173 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
174 }
175 
176 /* This code ensures unique mib indexes are handed out. */
177 static DEFINE_SPINLOCK(scsi_mib_index_lock);
178 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
179 
180 /*
181  * Allocate a new row index for the entry type specified
182  */
scsi_get_new_index(scsi_index_t type)183 u32 scsi_get_new_index(scsi_index_t type)
184 {
185 	u32 new_index;
186 
187 	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
188 
189 	spin_lock(&scsi_mib_index_lock);
190 	new_index = ++scsi_mib_index[type];
191 	spin_unlock(&scsi_mib_index_lock);
192 
193 	return new_index;
194 }
195 
transport_subsystem_check_init(void)196 void transport_subsystem_check_init(void)
197 {
198 	int ret;
199 	static int sub_api_initialized;
200 
201 	if (sub_api_initialized)
202 		return;
203 
204 	ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
205 	if (ret != 0)
206 		pr_err("Unable to load target_core_iblock\n");
207 
208 	ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
209 	if (ret != 0)
210 		pr_err("Unable to load target_core_file\n");
211 
212 	ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
213 	if (ret != 0)
214 		pr_err("Unable to load target_core_pscsi\n");
215 
216 	ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
217 	if (ret != 0)
218 		pr_err("Unable to load target_core_user\n");
219 
220 	sub_api_initialized = 1;
221 }
222 
target_release_cmd_refcnt(struct percpu_ref * ref)223 static void target_release_cmd_refcnt(struct percpu_ref *ref)
224 {
225 	struct target_cmd_counter *cmd_cnt  = container_of(ref,
226 							   typeof(*cmd_cnt),
227 							   refcnt);
228 	wake_up(&cmd_cnt->refcnt_wq);
229 }
230 
target_alloc_cmd_counter(void)231 struct target_cmd_counter *target_alloc_cmd_counter(void)
232 {
233 	struct target_cmd_counter *cmd_cnt;
234 	int rc;
235 
236 	cmd_cnt = kzalloc(sizeof(*cmd_cnt), GFP_KERNEL);
237 	if (!cmd_cnt)
238 		return NULL;
239 
240 	init_completion(&cmd_cnt->stop_done);
241 	init_waitqueue_head(&cmd_cnt->refcnt_wq);
242 	atomic_set(&cmd_cnt->stopped, 0);
243 
244 	rc = percpu_ref_init(&cmd_cnt->refcnt, target_release_cmd_refcnt, 0,
245 			     GFP_KERNEL);
246 	if (rc)
247 		goto free_cmd_cnt;
248 
249 	return cmd_cnt;
250 
251 free_cmd_cnt:
252 	kfree(cmd_cnt);
253 	return NULL;
254 }
255 EXPORT_SYMBOL_GPL(target_alloc_cmd_counter);
256 
target_free_cmd_counter(struct target_cmd_counter * cmd_cnt)257 void target_free_cmd_counter(struct target_cmd_counter *cmd_cnt)
258 {
259 	/*
260 	 * Drivers like loop do not call target_stop_session during session
261 	 * shutdown so we have to drop the ref taken at init time here.
262 	 */
263 	if (!atomic_read(&cmd_cnt->stopped))
264 		percpu_ref_put(&cmd_cnt->refcnt);
265 
266 	percpu_ref_exit(&cmd_cnt->refcnt);
267 	kfree(cmd_cnt);
268 }
269 EXPORT_SYMBOL_GPL(target_free_cmd_counter);
270 
271 /**
272  * transport_init_session - initialize a session object
273  * @se_sess: Session object pointer.
274  *
275  * The caller must have zero-initialized @se_sess before calling this function.
276  */
transport_init_session(struct se_session * se_sess)277 void transport_init_session(struct se_session *se_sess)
278 {
279 	INIT_LIST_HEAD(&se_sess->sess_list);
280 	INIT_LIST_HEAD(&se_sess->sess_acl_list);
281 	spin_lock_init(&se_sess->sess_cmd_lock);
282 }
283 EXPORT_SYMBOL(transport_init_session);
284 
285 /**
286  * transport_alloc_session - allocate a session object and initialize it
287  * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
288  */
transport_alloc_session(enum target_prot_op sup_prot_ops)289 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
290 {
291 	struct se_session *se_sess;
292 
293 	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
294 	if (!se_sess) {
295 		pr_err("Unable to allocate struct se_session from"
296 				" se_sess_cache\n");
297 		return ERR_PTR(-ENOMEM);
298 	}
299 	transport_init_session(se_sess);
300 	se_sess->sup_prot_ops = sup_prot_ops;
301 
302 	return se_sess;
303 }
304 EXPORT_SYMBOL(transport_alloc_session);
305 
306 /**
307  * transport_alloc_session_tags - allocate target driver private data
308  * @se_sess:  Session pointer.
309  * @tag_num:  Maximum number of in-flight commands between initiator and target.
310  * @tag_size: Size in bytes of the private data a target driver associates with
311  *	      each command.
312  */
transport_alloc_session_tags(struct se_session * se_sess,unsigned int tag_num,unsigned int tag_size)313 int transport_alloc_session_tags(struct se_session *se_sess,
314 			         unsigned int tag_num, unsigned int tag_size)
315 {
316 	int rc;
317 
318 	se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
319 					 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
320 	if (!se_sess->sess_cmd_map) {
321 		pr_err("Unable to allocate se_sess->sess_cmd_map\n");
322 		return -ENOMEM;
323 	}
324 
325 	rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
326 			false, GFP_KERNEL, NUMA_NO_NODE);
327 	if (rc < 0) {
328 		pr_err("Unable to init se_sess->sess_tag_pool,"
329 			" tag_num: %u\n", tag_num);
330 		kvfree(se_sess->sess_cmd_map);
331 		se_sess->sess_cmd_map = NULL;
332 		return -ENOMEM;
333 	}
334 
335 	return 0;
336 }
337 EXPORT_SYMBOL(transport_alloc_session_tags);
338 
339 /**
340  * transport_init_session_tags - allocate a session and target driver private data
341  * @tag_num:  Maximum number of in-flight commands between initiator and target.
342  * @tag_size: Size in bytes of the private data a target driver associates with
343  *	      each command.
344  * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
345  */
346 static struct se_session *
transport_init_session_tags(unsigned int tag_num,unsigned int tag_size,enum target_prot_op sup_prot_ops)347 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
348 			    enum target_prot_op sup_prot_ops)
349 {
350 	struct se_session *se_sess;
351 	int rc;
352 
353 	if (tag_num != 0 && !tag_size) {
354 		pr_err("init_session_tags called with percpu-ida tag_num:"
355 		       " %u, but zero tag_size\n", tag_num);
356 		return ERR_PTR(-EINVAL);
357 	}
358 	if (!tag_num && tag_size) {
359 		pr_err("init_session_tags called with percpu-ida tag_size:"
360 		       " %u, but zero tag_num\n", tag_size);
361 		return ERR_PTR(-EINVAL);
362 	}
363 
364 	se_sess = transport_alloc_session(sup_prot_ops);
365 	if (IS_ERR(se_sess))
366 		return se_sess;
367 
368 	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
369 	if (rc < 0) {
370 		transport_free_session(se_sess);
371 		return ERR_PTR(-ENOMEM);
372 	}
373 
374 	return se_sess;
375 }
376 
377 /*
378  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
379  */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)380 void __transport_register_session(
381 	struct se_portal_group *se_tpg,
382 	struct se_node_acl *se_nacl,
383 	struct se_session *se_sess,
384 	void *fabric_sess_ptr)
385 {
386 	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
387 	unsigned char buf[PR_REG_ISID_LEN];
388 	unsigned long flags;
389 
390 	se_sess->se_tpg = se_tpg;
391 	se_sess->fabric_sess_ptr = fabric_sess_ptr;
392 	/*
393 	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
394 	 *
395 	 * Only set for struct se_session's that will actually be moving I/O.
396 	 * eg: *NOT* discovery sessions.
397 	 */
398 	if (se_nacl) {
399 		/*
400 		 *
401 		 * Determine if fabric allows for T10-PI feature bits exposed to
402 		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
403 		 *
404 		 * If so, then always save prot_type on a per se_node_acl node
405 		 * basis and re-instate the previous sess_prot_type to avoid
406 		 * disabling PI from below any previously initiator side
407 		 * registered LUNs.
408 		 */
409 		if (se_nacl->saved_prot_type)
410 			se_sess->sess_prot_type = se_nacl->saved_prot_type;
411 		else if (tfo->tpg_check_prot_fabric_only)
412 			se_sess->sess_prot_type = se_nacl->saved_prot_type =
413 					tfo->tpg_check_prot_fabric_only(se_tpg);
414 		/*
415 		 * If the fabric module supports an ISID based TransportID,
416 		 * save this value in binary from the fabric I_T Nexus now.
417 		 */
418 		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
419 			memset(&buf[0], 0, PR_REG_ISID_LEN);
420 			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
421 					&buf[0], PR_REG_ISID_LEN);
422 			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
423 		}
424 
425 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
426 		/*
427 		 * The se_nacl->nacl_sess pointer will be set to the
428 		 * last active I_T Nexus for each struct se_node_acl.
429 		 */
430 		se_nacl->nacl_sess = se_sess;
431 
432 		list_add_tail(&se_sess->sess_acl_list,
433 			      &se_nacl->acl_sess_list);
434 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
435 	}
436 	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
437 
438 	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
439 		se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
440 }
441 EXPORT_SYMBOL(__transport_register_session);
442 
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)443 void transport_register_session(
444 	struct se_portal_group *se_tpg,
445 	struct se_node_acl *se_nacl,
446 	struct se_session *se_sess,
447 	void *fabric_sess_ptr)
448 {
449 	unsigned long flags;
450 
451 	spin_lock_irqsave(&se_tpg->session_lock, flags);
452 	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
453 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
454 }
455 EXPORT_SYMBOL(transport_register_session);
456 
457 struct se_session *
target_setup_session(struct se_portal_group * tpg,unsigned int tag_num,unsigned int tag_size,enum target_prot_op prot_op,const char * initiatorname,void * private,int (* callback)(struct se_portal_group *,struct se_session *,void *))458 target_setup_session(struct se_portal_group *tpg,
459 		     unsigned int tag_num, unsigned int tag_size,
460 		     enum target_prot_op prot_op,
461 		     const char *initiatorname, void *private,
462 		     int (*callback)(struct se_portal_group *,
463 				     struct se_session *, void *))
464 {
465 	struct target_cmd_counter *cmd_cnt;
466 	struct se_session *sess;
467 	int rc;
468 
469 	cmd_cnt = target_alloc_cmd_counter();
470 	if (!cmd_cnt)
471 		return ERR_PTR(-ENOMEM);
472 	/*
473 	 * If the fabric driver is using percpu-ida based pre allocation
474 	 * of I/O descriptor tags, go ahead and perform that setup now..
475 	 */
476 	if (tag_num != 0)
477 		sess = transport_init_session_tags(tag_num, tag_size, prot_op);
478 	else
479 		sess = transport_alloc_session(prot_op);
480 
481 	if (IS_ERR(sess)) {
482 		rc = PTR_ERR(sess);
483 		goto free_cnt;
484 	}
485 	sess->cmd_cnt = cmd_cnt;
486 
487 	sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
488 					(unsigned char *)initiatorname);
489 	if (!sess->se_node_acl) {
490 		rc = -EACCES;
491 		goto free_sess;
492 	}
493 	/*
494 	 * Go ahead and perform any remaining fabric setup that is
495 	 * required before transport_register_session().
496 	 */
497 	if (callback != NULL) {
498 		rc = callback(tpg, sess, private);
499 		if (rc)
500 			goto free_sess;
501 	}
502 
503 	transport_register_session(tpg, sess->se_node_acl, sess, private);
504 	return sess;
505 
506 free_sess:
507 	transport_free_session(sess);
508 	return ERR_PTR(rc);
509 
510 free_cnt:
511 	target_free_cmd_counter(cmd_cnt);
512 	return ERR_PTR(rc);
513 }
514 EXPORT_SYMBOL(target_setup_session);
515 
target_show_dynamic_sessions(struct se_portal_group * se_tpg,char * page)516 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
517 {
518 	struct se_session *se_sess;
519 	ssize_t len = 0;
520 
521 	spin_lock_bh(&se_tpg->session_lock);
522 	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
523 		if (!se_sess->se_node_acl)
524 			continue;
525 		if (!se_sess->se_node_acl->dynamic_node_acl)
526 			continue;
527 		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
528 			break;
529 
530 		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
531 				se_sess->se_node_acl->initiatorname);
532 		len += 1; /* Include NULL terminator */
533 	}
534 	spin_unlock_bh(&se_tpg->session_lock);
535 
536 	return len;
537 }
538 EXPORT_SYMBOL(target_show_dynamic_sessions);
539 
target_complete_nacl(struct kref * kref)540 static void target_complete_nacl(struct kref *kref)
541 {
542 	struct se_node_acl *nacl = container_of(kref,
543 				struct se_node_acl, acl_kref);
544 	struct se_portal_group *se_tpg = nacl->se_tpg;
545 
546 	if (!nacl->dynamic_stop) {
547 		complete(&nacl->acl_free_comp);
548 		return;
549 	}
550 
551 	mutex_lock(&se_tpg->acl_node_mutex);
552 	list_del_init(&nacl->acl_list);
553 	mutex_unlock(&se_tpg->acl_node_mutex);
554 
555 	core_tpg_wait_for_nacl_pr_ref(nacl);
556 	core_free_device_list_for_node(nacl, se_tpg);
557 	kfree(nacl);
558 }
559 
target_put_nacl(struct se_node_acl * nacl)560 void target_put_nacl(struct se_node_acl *nacl)
561 {
562 	kref_put(&nacl->acl_kref, target_complete_nacl);
563 }
564 EXPORT_SYMBOL(target_put_nacl);
565 
transport_deregister_session_configfs(struct se_session * se_sess)566 void transport_deregister_session_configfs(struct se_session *se_sess)
567 {
568 	struct se_node_acl *se_nacl;
569 	unsigned long flags;
570 	/*
571 	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
572 	 */
573 	se_nacl = se_sess->se_node_acl;
574 	if (se_nacl) {
575 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
576 		if (!list_empty(&se_sess->sess_acl_list))
577 			list_del_init(&se_sess->sess_acl_list);
578 		/*
579 		 * If the session list is empty, then clear the pointer.
580 		 * Otherwise, set the struct se_session pointer from the tail
581 		 * element of the per struct se_node_acl active session list.
582 		 */
583 		if (list_empty(&se_nacl->acl_sess_list))
584 			se_nacl->nacl_sess = NULL;
585 		else {
586 			se_nacl->nacl_sess = container_of(
587 					se_nacl->acl_sess_list.prev,
588 					struct se_session, sess_acl_list);
589 		}
590 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
591 	}
592 }
593 EXPORT_SYMBOL(transport_deregister_session_configfs);
594 
transport_free_session(struct se_session * se_sess)595 void transport_free_session(struct se_session *se_sess)
596 {
597 	struct se_node_acl *se_nacl = se_sess->se_node_acl;
598 
599 	/*
600 	 * Drop the se_node_acl->nacl_kref obtained from within
601 	 * core_tpg_get_initiator_node_acl().
602 	 */
603 	if (se_nacl) {
604 		struct se_portal_group *se_tpg = se_nacl->se_tpg;
605 		const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
606 		unsigned long flags;
607 
608 		se_sess->se_node_acl = NULL;
609 
610 		/*
611 		 * Also determine if we need to drop the extra ->cmd_kref if
612 		 * it had been previously dynamically generated, and
613 		 * the endpoint is not caching dynamic ACLs.
614 		 */
615 		mutex_lock(&se_tpg->acl_node_mutex);
616 		if (se_nacl->dynamic_node_acl &&
617 		    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
618 			spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
619 			if (list_empty(&se_nacl->acl_sess_list))
620 				se_nacl->dynamic_stop = true;
621 			spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
622 
623 			if (se_nacl->dynamic_stop)
624 				list_del_init(&se_nacl->acl_list);
625 		}
626 		mutex_unlock(&se_tpg->acl_node_mutex);
627 
628 		if (se_nacl->dynamic_stop)
629 			target_put_nacl(se_nacl);
630 
631 		target_put_nacl(se_nacl);
632 	}
633 	if (se_sess->sess_cmd_map) {
634 		sbitmap_queue_free(&se_sess->sess_tag_pool);
635 		kvfree(se_sess->sess_cmd_map);
636 	}
637 	if (se_sess->cmd_cnt)
638 		target_free_cmd_counter(se_sess->cmd_cnt);
639 	kmem_cache_free(se_sess_cache, se_sess);
640 }
641 EXPORT_SYMBOL(transport_free_session);
642 
target_release_res(struct se_device * dev,void * data)643 static int target_release_res(struct se_device *dev, void *data)
644 {
645 	struct se_session *sess = data;
646 
647 	if (dev->reservation_holder == sess)
648 		target_release_reservation(dev);
649 	return 0;
650 }
651 
transport_deregister_session(struct se_session * se_sess)652 void transport_deregister_session(struct se_session *se_sess)
653 {
654 	struct se_portal_group *se_tpg = se_sess->se_tpg;
655 	unsigned long flags;
656 
657 	if (!se_tpg) {
658 		transport_free_session(se_sess);
659 		return;
660 	}
661 
662 	spin_lock_irqsave(&se_tpg->session_lock, flags);
663 	list_del(&se_sess->sess_list);
664 	se_sess->se_tpg = NULL;
665 	se_sess->fabric_sess_ptr = NULL;
666 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
667 
668 	/*
669 	 * Since the session is being removed, release SPC-2
670 	 * reservations held by the session that is disappearing.
671 	 */
672 	target_for_each_device(target_release_res, se_sess);
673 
674 	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
675 		se_tpg->se_tpg_tfo->fabric_name);
676 	/*
677 	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
678 	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
679 	 * removal context from within transport_free_session() code.
680 	 *
681 	 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
682 	 * to release all remaining generate_node_acl=1 created ACL resources.
683 	 */
684 
685 	transport_free_session(se_sess);
686 }
687 EXPORT_SYMBOL(transport_deregister_session);
688 
target_remove_session(struct se_session * se_sess)689 void target_remove_session(struct se_session *se_sess)
690 {
691 	transport_deregister_session_configfs(se_sess);
692 	transport_deregister_session(se_sess);
693 }
694 EXPORT_SYMBOL(target_remove_session);
695 
target_remove_from_state_list(struct se_cmd * cmd)696 static void target_remove_from_state_list(struct se_cmd *cmd)
697 {
698 	struct se_device *dev = cmd->se_dev;
699 	unsigned long flags;
700 
701 	if (!dev)
702 		return;
703 
704 	spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
705 	if (cmd->state_active) {
706 		list_del(&cmd->state_list);
707 		cmd->state_active = false;
708 	}
709 	spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
710 }
711 
target_remove_from_tmr_list(struct se_cmd * cmd)712 static void target_remove_from_tmr_list(struct se_cmd *cmd)
713 {
714 	struct se_device *dev = NULL;
715 	unsigned long flags;
716 
717 	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
718 		dev = cmd->se_tmr_req->tmr_dev;
719 
720 	if (dev) {
721 		spin_lock_irqsave(&dev->se_tmr_lock, flags);
722 		if (cmd->se_tmr_req->tmr_dev)
723 			list_del_init(&cmd->se_tmr_req->tmr_list);
724 		spin_unlock_irqrestore(&dev->se_tmr_lock, flags);
725 	}
726 }
727 /*
728  * This function is called by the target core after the target core has
729  * finished processing a SCSI command or SCSI TMF. Both the regular command
730  * processing code and the code for aborting commands can call this
731  * function. CMD_T_STOP is set if and only if another thread is waiting
732  * inside transport_wait_for_tasks() for t_transport_stop_comp.
733  */
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)734 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
735 {
736 	unsigned long flags;
737 
738 	spin_lock_irqsave(&cmd->t_state_lock, flags);
739 	/*
740 	 * Determine if frontend context caller is requesting the stopping of
741 	 * this command for frontend exceptions.
742 	 */
743 	if (cmd->transport_state & CMD_T_STOP) {
744 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
745 			__func__, __LINE__, cmd->tag);
746 
747 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
748 
749 		complete_all(&cmd->t_transport_stop_comp);
750 		return 1;
751 	}
752 	cmd->transport_state &= ~CMD_T_ACTIVE;
753 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
754 
755 	/*
756 	 * Some fabric modules like tcm_loop can release their internally
757 	 * allocated I/O reference and struct se_cmd now.
758 	 *
759 	 * Fabric modules are expected to return '1' here if the se_cmd being
760 	 * passed is released at this point, or zero if not being released.
761 	 */
762 	return cmd->se_tfo->check_stop_free(cmd);
763 }
764 
transport_lun_remove_cmd(struct se_cmd * cmd)765 static void transport_lun_remove_cmd(struct se_cmd *cmd)
766 {
767 	struct se_lun *lun = cmd->se_lun;
768 
769 	if (!lun)
770 		return;
771 
772 	target_remove_from_state_list(cmd);
773 	target_remove_from_tmr_list(cmd);
774 
775 	if (cmpxchg(&cmd->lun_ref_active, true, false))
776 		percpu_ref_put(&lun->lun_ref);
777 
778 	/*
779 	 * Clear struct se_cmd->se_lun before the handoff to FE.
780 	 */
781 	cmd->se_lun = NULL;
782 }
783 
target_complete_failure_work(struct work_struct * work)784 static void target_complete_failure_work(struct work_struct *work)
785 {
786 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
787 
788 	transport_generic_request_failure(cmd, cmd->sense_reason);
789 }
790 
791 /*
792  * Used when asking transport to copy Sense Data from the underlying
793  * Linux/SCSI struct scsi_cmnd
794  */
transport_get_sense_buffer(struct se_cmd * cmd)795 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
796 {
797 	struct se_device *dev = cmd->se_dev;
798 
799 	WARN_ON(!cmd->se_lun);
800 
801 	if (!dev)
802 		return NULL;
803 
804 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
805 		return NULL;
806 
807 	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
808 
809 	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
810 		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
811 	return cmd->sense_buffer;
812 }
813 
transport_copy_sense_to_cmd(struct se_cmd * cmd,unsigned char * sense)814 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
815 {
816 	unsigned char *cmd_sense_buf;
817 	unsigned long flags;
818 
819 	spin_lock_irqsave(&cmd->t_state_lock, flags);
820 	cmd_sense_buf = transport_get_sense_buffer(cmd);
821 	if (!cmd_sense_buf) {
822 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
823 		return;
824 	}
825 
826 	cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
827 	memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
828 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
829 }
830 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
831 
target_handle_abort(struct se_cmd * cmd)832 static void target_handle_abort(struct se_cmd *cmd)
833 {
834 	bool tas = cmd->transport_state & CMD_T_TAS;
835 	bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
836 	int ret;
837 
838 	pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
839 
840 	if (tas) {
841 		if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
842 			cmd->scsi_status = SAM_STAT_TASK_ABORTED;
843 			pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
844 				 cmd->t_task_cdb[0], cmd->tag);
845 			trace_target_cmd_complete(cmd);
846 			ret = cmd->se_tfo->queue_status(cmd);
847 			if (ret) {
848 				transport_handle_queue_full(cmd, cmd->se_dev,
849 							    ret, false);
850 				return;
851 			}
852 		} else {
853 			cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
854 			cmd->se_tfo->queue_tm_rsp(cmd);
855 		}
856 	} else {
857 		/*
858 		 * Allow the fabric driver to unmap any resources before
859 		 * releasing the descriptor via TFO->release_cmd().
860 		 */
861 		cmd->se_tfo->aborted_task(cmd);
862 		if (ack_kref)
863 			WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
864 		/*
865 		 * To do: establish a unit attention condition on the I_T
866 		 * nexus associated with cmd. See also the paragraph "Aborting
867 		 * commands" in SAM.
868 		 */
869 	}
870 
871 	WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
872 
873 	transport_lun_remove_cmd(cmd);
874 
875 	transport_cmd_check_stop_to_fabric(cmd);
876 }
877 
target_abort_work(struct work_struct * work)878 static void target_abort_work(struct work_struct *work)
879 {
880 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
881 
882 	target_handle_abort(cmd);
883 }
884 
target_cmd_interrupted(struct se_cmd * cmd)885 static bool target_cmd_interrupted(struct se_cmd *cmd)
886 {
887 	int post_ret;
888 
889 	if (cmd->transport_state & CMD_T_ABORTED) {
890 		if (cmd->transport_complete_callback)
891 			cmd->transport_complete_callback(cmd, false, &post_ret);
892 		INIT_WORK(&cmd->work, target_abort_work);
893 		queue_work(target_completion_wq, &cmd->work);
894 		return true;
895 	} else if (cmd->transport_state & CMD_T_STOP) {
896 		if (cmd->transport_complete_callback)
897 			cmd->transport_complete_callback(cmd, false, &post_ret);
898 		complete_all(&cmd->t_transport_stop_comp);
899 		return true;
900 	}
901 
902 	return false;
903 }
904 
905 /* May be called from interrupt context so must not sleep. */
target_complete_cmd_with_sense(struct se_cmd * cmd,u8 scsi_status,sense_reason_t sense_reason)906 void target_complete_cmd_with_sense(struct se_cmd *cmd, u8 scsi_status,
907 				    sense_reason_t sense_reason)
908 {
909 	struct se_wwn *wwn = cmd->se_sess->se_tpg->se_tpg_wwn;
910 	int success, cpu;
911 	unsigned long flags;
912 
913 	if (target_cmd_interrupted(cmd))
914 		return;
915 
916 	cmd->scsi_status = scsi_status;
917 	cmd->sense_reason = sense_reason;
918 
919 	spin_lock_irqsave(&cmd->t_state_lock, flags);
920 	switch (cmd->scsi_status) {
921 	case SAM_STAT_CHECK_CONDITION:
922 		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
923 			success = 1;
924 		else
925 			success = 0;
926 		break;
927 	default:
928 		success = 1;
929 		break;
930 	}
931 
932 	cmd->t_state = TRANSPORT_COMPLETE;
933 	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
934 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
935 
936 	INIT_WORK(&cmd->work, success ? target_complete_ok_work :
937 		  target_complete_failure_work);
938 
939 	if (!wwn || wwn->cmd_compl_affinity == SE_COMPL_AFFINITY_CPUID)
940 		cpu = cmd->cpuid;
941 	else
942 		cpu = wwn->cmd_compl_affinity;
943 
944 	queue_work_on(cpu, target_completion_wq, &cmd->work);
945 }
946 EXPORT_SYMBOL(target_complete_cmd_with_sense);
947 
target_complete_cmd(struct se_cmd * cmd,u8 scsi_status)948 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
949 {
950 	target_complete_cmd_with_sense(cmd, scsi_status, scsi_status ?
951 			      TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE :
952 			      TCM_NO_SENSE);
953 }
954 EXPORT_SYMBOL(target_complete_cmd);
955 
target_set_cmd_data_length(struct se_cmd * cmd,int length)956 void target_set_cmd_data_length(struct se_cmd *cmd, int length)
957 {
958 	if (length < cmd->data_length) {
959 		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
960 			cmd->residual_count += cmd->data_length - length;
961 		} else {
962 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
963 			cmd->residual_count = cmd->data_length - length;
964 		}
965 
966 		cmd->data_length = length;
967 	}
968 }
969 EXPORT_SYMBOL(target_set_cmd_data_length);
970 
target_complete_cmd_with_length(struct se_cmd * cmd,u8 scsi_status,int length)971 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
972 {
973 	if (scsi_status == SAM_STAT_GOOD ||
974 	    cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) {
975 		target_set_cmd_data_length(cmd, length);
976 	}
977 
978 	target_complete_cmd(cmd, scsi_status);
979 }
980 EXPORT_SYMBOL(target_complete_cmd_with_length);
981 
target_add_to_state_list(struct se_cmd * cmd)982 static void target_add_to_state_list(struct se_cmd *cmd)
983 {
984 	struct se_device *dev = cmd->se_dev;
985 	unsigned long flags;
986 
987 	spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
988 	if (!cmd->state_active) {
989 		list_add_tail(&cmd->state_list,
990 			      &dev->queues[cmd->cpuid].state_list);
991 		cmd->state_active = true;
992 	}
993 	spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
994 }
995 
996 /*
997  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
998  */
999 static void transport_write_pending_qf(struct se_cmd *cmd);
1000 static void transport_complete_qf(struct se_cmd *cmd);
1001 
target_qf_do_work(struct work_struct * work)1002 void target_qf_do_work(struct work_struct *work)
1003 {
1004 	struct se_device *dev = container_of(work, struct se_device,
1005 					qf_work_queue);
1006 	LIST_HEAD(qf_cmd_list);
1007 	struct se_cmd *cmd, *cmd_tmp;
1008 
1009 	spin_lock_irq(&dev->qf_cmd_lock);
1010 	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
1011 	spin_unlock_irq(&dev->qf_cmd_lock);
1012 
1013 	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
1014 		list_del(&cmd->se_qf_node);
1015 		atomic_dec_mb(&dev->dev_qf_count);
1016 
1017 		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
1018 			" context: %s\n", cmd->se_tfo->fabric_name, cmd,
1019 			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
1020 			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
1021 			: "UNKNOWN");
1022 
1023 		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
1024 			transport_write_pending_qf(cmd);
1025 		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
1026 			 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
1027 			transport_complete_qf(cmd);
1028 	}
1029 }
1030 
transport_dump_cmd_direction(struct se_cmd * cmd)1031 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1032 {
1033 	switch (cmd->data_direction) {
1034 	case DMA_NONE:
1035 		return "NONE";
1036 	case DMA_FROM_DEVICE:
1037 		return "READ";
1038 	case DMA_TO_DEVICE:
1039 		return "WRITE";
1040 	case DMA_BIDIRECTIONAL:
1041 		return "BIDI";
1042 	default:
1043 		break;
1044 	}
1045 
1046 	return "UNKNOWN";
1047 }
1048 
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)1049 void transport_dump_dev_state(
1050 	struct se_device *dev,
1051 	char *b,
1052 	int *bl)
1053 {
1054 	*bl += sprintf(b + *bl, "Status: ");
1055 	if (dev->export_count)
1056 		*bl += sprintf(b + *bl, "ACTIVATED");
1057 	else
1058 		*bl += sprintf(b + *bl, "DEACTIVATED");
1059 
1060 	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
1061 	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
1062 		dev->dev_attrib.block_size,
1063 		dev->dev_attrib.hw_max_sectors);
1064 	*bl += sprintf(b + *bl, "        ");
1065 }
1066 
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1067 void transport_dump_vpd_proto_id(
1068 	struct t10_vpd *vpd,
1069 	unsigned char *p_buf,
1070 	int p_buf_len)
1071 {
1072 	unsigned char buf[VPD_TMP_BUF_SIZE];
1073 	int len;
1074 
1075 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1076 	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1077 
1078 	switch (vpd->protocol_identifier) {
1079 	case 0x00:
1080 		sprintf(buf+len, "Fibre Channel\n");
1081 		break;
1082 	case 0x10:
1083 		sprintf(buf+len, "Parallel SCSI\n");
1084 		break;
1085 	case 0x20:
1086 		sprintf(buf+len, "SSA\n");
1087 		break;
1088 	case 0x30:
1089 		sprintf(buf+len, "IEEE 1394\n");
1090 		break;
1091 	case 0x40:
1092 		sprintf(buf+len, "SCSI Remote Direct Memory Access"
1093 				" Protocol\n");
1094 		break;
1095 	case 0x50:
1096 		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1097 		break;
1098 	case 0x60:
1099 		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1100 		break;
1101 	case 0x70:
1102 		sprintf(buf+len, "Automation/Drive Interface Transport"
1103 				" Protocol\n");
1104 		break;
1105 	case 0x80:
1106 		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1107 		break;
1108 	default:
1109 		sprintf(buf+len, "Unknown 0x%02x\n",
1110 				vpd->protocol_identifier);
1111 		break;
1112 	}
1113 
1114 	if (p_buf)
1115 		strncpy(p_buf, buf, p_buf_len);
1116 	else
1117 		pr_debug("%s", buf);
1118 }
1119 
1120 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)1121 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1122 {
1123 	/*
1124 	 * Check if the Protocol Identifier Valid (PIV) bit is set..
1125 	 *
1126 	 * from spc3r23.pdf section 7.5.1
1127 	 */
1128 	 if (page_83[1] & 0x80) {
1129 		vpd->protocol_identifier = (page_83[0] & 0xf0);
1130 		vpd->protocol_identifier_set = 1;
1131 		transport_dump_vpd_proto_id(vpd, NULL, 0);
1132 	}
1133 }
1134 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1135 
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1136 int transport_dump_vpd_assoc(
1137 	struct t10_vpd *vpd,
1138 	unsigned char *p_buf,
1139 	int p_buf_len)
1140 {
1141 	unsigned char buf[VPD_TMP_BUF_SIZE];
1142 	int ret = 0;
1143 	int len;
1144 
1145 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1146 	len = sprintf(buf, "T10 VPD Identifier Association: ");
1147 
1148 	switch (vpd->association) {
1149 	case 0x00:
1150 		sprintf(buf+len, "addressed logical unit\n");
1151 		break;
1152 	case 0x10:
1153 		sprintf(buf+len, "target port\n");
1154 		break;
1155 	case 0x20:
1156 		sprintf(buf+len, "SCSI target device\n");
1157 		break;
1158 	default:
1159 		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1160 		ret = -EINVAL;
1161 		break;
1162 	}
1163 
1164 	if (p_buf)
1165 		strncpy(p_buf, buf, p_buf_len);
1166 	else
1167 		pr_debug("%s", buf);
1168 
1169 	return ret;
1170 }
1171 
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)1172 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1173 {
1174 	/*
1175 	 * The VPD identification association..
1176 	 *
1177 	 * from spc3r23.pdf Section 7.6.3.1 Table 297
1178 	 */
1179 	vpd->association = (page_83[1] & 0x30);
1180 	return transport_dump_vpd_assoc(vpd, NULL, 0);
1181 }
1182 EXPORT_SYMBOL(transport_set_vpd_assoc);
1183 
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1184 int transport_dump_vpd_ident_type(
1185 	struct t10_vpd *vpd,
1186 	unsigned char *p_buf,
1187 	int p_buf_len)
1188 {
1189 	unsigned char buf[VPD_TMP_BUF_SIZE];
1190 	int ret = 0;
1191 	int len;
1192 
1193 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1194 	len = sprintf(buf, "T10 VPD Identifier Type: ");
1195 
1196 	switch (vpd->device_identifier_type) {
1197 	case 0x00:
1198 		sprintf(buf+len, "Vendor specific\n");
1199 		break;
1200 	case 0x01:
1201 		sprintf(buf+len, "T10 Vendor ID based\n");
1202 		break;
1203 	case 0x02:
1204 		sprintf(buf+len, "EUI-64 based\n");
1205 		break;
1206 	case 0x03:
1207 		sprintf(buf+len, "NAA\n");
1208 		break;
1209 	case 0x04:
1210 		sprintf(buf+len, "Relative target port identifier\n");
1211 		break;
1212 	case 0x08:
1213 		sprintf(buf+len, "SCSI name string\n");
1214 		break;
1215 	default:
1216 		sprintf(buf+len, "Unsupported: 0x%02x\n",
1217 				vpd->device_identifier_type);
1218 		ret = -EINVAL;
1219 		break;
1220 	}
1221 
1222 	if (p_buf) {
1223 		if (p_buf_len < strlen(buf)+1)
1224 			return -EINVAL;
1225 		strncpy(p_buf, buf, p_buf_len);
1226 	} else {
1227 		pr_debug("%s", buf);
1228 	}
1229 
1230 	return ret;
1231 }
1232 
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)1233 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1234 {
1235 	/*
1236 	 * The VPD identifier type..
1237 	 *
1238 	 * from spc3r23.pdf Section 7.6.3.1 Table 298
1239 	 */
1240 	vpd->device_identifier_type = (page_83[1] & 0x0f);
1241 	return transport_dump_vpd_ident_type(vpd, NULL, 0);
1242 }
1243 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1244 
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1245 int transport_dump_vpd_ident(
1246 	struct t10_vpd *vpd,
1247 	unsigned char *p_buf,
1248 	int p_buf_len)
1249 {
1250 	unsigned char buf[VPD_TMP_BUF_SIZE];
1251 	int ret = 0;
1252 
1253 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1254 
1255 	switch (vpd->device_identifier_code_set) {
1256 	case 0x01: /* Binary */
1257 		snprintf(buf, sizeof(buf),
1258 			"T10 VPD Binary Device Identifier: %s\n",
1259 			&vpd->device_identifier[0]);
1260 		break;
1261 	case 0x02: /* ASCII */
1262 		snprintf(buf, sizeof(buf),
1263 			"T10 VPD ASCII Device Identifier: %s\n",
1264 			&vpd->device_identifier[0]);
1265 		break;
1266 	case 0x03: /* UTF-8 */
1267 		snprintf(buf, sizeof(buf),
1268 			"T10 VPD UTF-8 Device Identifier: %s\n",
1269 			&vpd->device_identifier[0]);
1270 		break;
1271 	default:
1272 		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1273 			" 0x%02x", vpd->device_identifier_code_set);
1274 		ret = -EINVAL;
1275 		break;
1276 	}
1277 
1278 	if (p_buf)
1279 		strncpy(p_buf, buf, p_buf_len);
1280 	else
1281 		pr_debug("%s", buf);
1282 
1283 	return ret;
1284 }
1285 
1286 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1287 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1288 {
1289 	static const char hex_str[] = "0123456789abcdef";
1290 	int j = 0, i = 4; /* offset to start of the identifier */
1291 
1292 	/*
1293 	 * The VPD Code Set (encoding)
1294 	 *
1295 	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1296 	 */
1297 	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1298 	switch (vpd->device_identifier_code_set) {
1299 	case 0x01: /* Binary */
1300 		vpd->device_identifier[j++] =
1301 				hex_str[vpd->device_identifier_type];
1302 		while (i < (4 + page_83[3])) {
1303 			vpd->device_identifier[j++] =
1304 				hex_str[(page_83[i] & 0xf0) >> 4];
1305 			vpd->device_identifier[j++] =
1306 				hex_str[page_83[i] & 0x0f];
1307 			i++;
1308 		}
1309 		break;
1310 	case 0x02: /* ASCII */
1311 	case 0x03: /* UTF-8 */
1312 		while (i < (4 + page_83[3]))
1313 			vpd->device_identifier[j++] = page_83[i++];
1314 		break;
1315 	default:
1316 		break;
1317 	}
1318 
1319 	return transport_dump_vpd_ident(vpd, NULL, 0);
1320 }
1321 EXPORT_SYMBOL(transport_set_vpd_ident);
1322 
1323 static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd * cmd,struct se_device * dev,unsigned int size)1324 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1325 			       unsigned int size)
1326 {
1327 	u32 mtl;
1328 
1329 	if (!cmd->se_tfo->max_data_sg_nents)
1330 		return TCM_NO_SENSE;
1331 	/*
1332 	 * Check if fabric enforced maximum SGL entries per I/O descriptor
1333 	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1334 	 * residual_count and reduce original cmd->data_length to maximum
1335 	 * length based on single PAGE_SIZE entry scatter-lists.
1336 	 */
1337 	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1338 	if (cmd->data_length > mtl) {
1339 		/*
1340 		 * If an existing CDB overflow is present, calculate new residual
1341 		 * based on CDB size minus fabric maximum transfer length.
1342 		 *
1343 		 * If an existing CDB underflow is present, calculate new residual
1344 		 * based on original cmd->data_length minus fabric maximum transfer
1345 		 * length.
1346 		 *
1347 		 * Otherwise, set the underflow residual based on cmd->data_length
1348 		 * minus fabric maximum transfer length.
1349 		 */
1350 		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1351 			cmd->residual_count = (size - mtl);
1352 		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1353 			u32 orig_dl = size + cmd->residual_count;
1354 			cmd->residual_count = (orig_dl - mtl);
1355 		} else {
1356 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1357 			cmd->residual_count = (cmd->data_length - mtl);
1358 		}
1359 		cmd->data_length = mtl;
1360 		/*
1361 		 * Reset sbc_check_prot() calculated protection payload
1362 		 * length based upon the new smaller MTL.
1363 		 */
1364 		if (cmd->prot_length) {
1365 			u32 sectors = (mtl / dev->dev_attrib.block_size);
1366 			cmd->prot_length = dev->prot_length * sectors;
1367 		}
1368 	}
1369 	return TCM_NO_SENSE;
1370 }
1371 
1372 /**
1373  * target_cmd_size_check - Check whether there will be a residual.
1374  * @cmd: SCSI command.
1375  * @size: Data buffer size derived from CDB. The data buffer size provided by
1376  *   the SCSI transport driver is available in @cmd->data_length.
1377  *
1378  * Compare the data buffer size from the CDB with the data buffer limit from the transport
1379  * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1380  *
1381  * Note: target drivers set @cmd->data_length by calling __target_init_cmd().
1382  *
1383  * Return: TCM_NO_SENSE
1384  */
1385 sense_reason_t
target_cmd_size_check(struct se_cmd * cmd,unsigned int size)1386 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1387 {
1388 	struct se_device *dev = cmd->se_dev;
1389 
1390 	if (cmd->unknown_data_length) {
1391 		cmd->data_length = size;
1392 	} else if (size != cmd->data_length) {
1393 		pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1394 			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1395 			" 0x%02x\n", cmd->se_tfo->fabric_name,
1396 				cmd->data_length, size, cmd->t_task_cdb[0]);
1397 		/*
1398 		 * For READ command for the overflow case keep the existing
1399 		 * fabric provided ->data_length. Otherwise for the underflow
1400 		 * case, reset ->data_length to the smaller SCSI expected data
1401 		 * transfer length.
1402 		 */
1403 		if (size > cmd->data_length) {
1404 			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1405 			cmd->residual_count = (size - cmd->data_length);
1406 		} else {
1407 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1408 			cmd->residual_count = (cmd->data_length - size);
1409 			/*
1410 			 * Do not truncate ->data_length for WRITE command to
1411 			 * dump all payload
1412 			 */
1413 			if (cmd->data_direction == DMA_FROM_DEVICE) {
1414 				cmd->data_length = size;
1415 			}
1416 		}
1417 
1418 		if (cmd->data_direction == DMA_TO_DEVICE) {
1419 			if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1420 				pr_err_ratelimited("Rejecting underflow/overflow"
1421 						   " for WRITE data CDB\n");
1422 				return TCM_INVALID_FIELD_IN_COMMAND_IU;
1423 			}
1424 			/*
1425 			 * Some fabric drivers like iscsi-target still expect to
1426 			 * always reject overflow writes.  Reject this case until
1427 			 * full fabric driver level support for overflow writes
1428 			 * is introduced tree-wide.
1429 			 */
1430 			if (size > cmd->data_length) {
1431 				pr_err_ratelimited("Rejecting overflow for"
1432 						   " WRITE control CDB\n");
1433 				return TCM_INVALID_CDB_FIELD;
1434 			}
1435 		}
1436 	}
1437 
1438 	return target_check_max_data_sg_nents(cmd, dev, size);
1439 
1440 }
1441 
1442 /*
1443  * Used by fabric modules containing a local struct se_cmd within their
1444  * fabric dependent per I/O descriptor.
1445  *
1446  * Preserves the value of @cmd->tag.
1447  */
__target_init_cmd(struct se_cmd * cmd,const struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer,u64 unpacked_lun,struct target_cmd_counter * cmd_cnt)1448 void __target_init_cmd(struct se_cmd *cmd,
1449 		       const struct target_core_fabric_ops *tfo,
1450 		       struct se_session *se_sess, u32 data_length,
1451 		       int data_direction, int task_attr,
1452 		       unsigned char *sense_buffer, u64 unpacked_lun,
1453 		       struct target_cmd_counter *cmd_cnt)
1454 {
1455 	INIT_LIST_HEAD(&cmd->se_delayed_node);
1456 	INIT_LIST_HEAD(&cmd->se_qf_node);
1457 	INIT_LIST_HEAD(&cmd->state_list);
1458 	init_completion(&cmd->t_transport_stop_comp);
1459 	cmd->free_compl = NULL;
1460 	cmd->abrt_compl = NULL;
1461 	spin_lock_init(&cmd->t_state_lock);
1462 	INIT_WORK(&cmd->work, NULL);
1463 	kref_init(&cmd->cmd_kref);
1464 
1465 	cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1466 	cmd->se_tfo = tfo;
1467 	cmd->se_sess = se_sess;
1468 	cmd->data_length = data_length;
1469 	cmd->data_direction = data_direction;
1470 	cmd->sam_task_attr = task_attr;
1471 	cmd->sense_buffer = sense_buffer;
1472 	cmd->orig_fe_lun = unpacked_lun;
1473 	cmd->cmd_cnt = cmd_cnt;
1474 
1475 	if (!(cmd->se_cmd_flags & SCF_USE_CPUID))
1476 		cmd->cpuid = raw_smp_processor_id();
1477 
1478 	cmd->state_active = false;
1479 }
1480 EXPORT_SYMBOL(__target_init_cmd);
1481 
1482 static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd * cmd)1483 transport_check_alloc_task_attr(struct se_cmd *cmd)
1484 {
1485 	struct se_device *dev = cmd->se_dev;
1486 
1487 	/*
1488 	 * Check if SAM Task Attribute emulation is enabled for this
1489 	 * struct se_device storage object
1490 	 */
1491 	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1492 		return 0;
1493 
1494 	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1495 		pr_debug("SAM Task Attribute ACA"
1496 			" emulation is not supported\n");
1497 		return TCM_INVALID_CDB_FIELD;
1498 	}
1499 
1500 	return 0;
1501 }
1502 
1503 sense_reason_t
target_cmd_init_cdb(struct se_cmd * cmd,unsigned char * cdb,gfp_t gfp)1504 target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb, gfp_t gfp)
1505 {
1506 	sense_reason_t ret;
1507 
1508 	/*
1509 	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1510 	 * for VARIABLE_LENGTH_CMD
1511 	 */
1512 	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1513 		pr_err("Received SCSI CDB with command_size: %d that"
1514 			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1515 			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1516 		ret = TCM_INVALID_CDB_FIELD;
1517 		goto err;
1518 	}
1519 	/*
1520 	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1521 	 * allocate the additional extended CDB buffer now..  Otherwise
1522 	 * setup the pointer from __t_task_cdb to t_task_cdb.
1523 	 */
1524 	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1525 		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), gfp);
1526 		if (!cmd->t_task_cdb) {
1527 			pr_err("Unable to allocate cmd->t_task_cdb"
1528 				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1529 				scsi_command_size(cdb),
1530 				(unsigned long)sizeof(cmd->__t_task_cdb));
1531 			ret = TCM_OUT_OF_RESOURCES;
1532 			goto err;
1533 		}
1534 	}
1535 	/*
1536 	 * Copy the original CDB into cmd->
1537 	 */
1538 	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1539 
1540 	trace_target_sequencer_start(cmd);
1541 	return 0;
1542 
1543 err:
1544 	/*
1545 	 * Copy the CDB here to allow trace_target_cmd_complete() to
1546 	 * print the cdb to the trace buffers.
1547 	 */
1548 	memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb),
1549 					 (unsigned int)TCM_MAX_COMMAND_SIZE));
1550 	return ret;
1551 }
1552 EXPORT_SYMBOL(target_cmd_init_cdb);
1553 
1554 sense_reason_t
target_cmd_parse_cdb(struct se_cmd * cmd)1555 target_cmd_parse_cdb(struct se_cmd *cmd)
1556 {
1557 	struct se_device *dev = cmd->se_dev;
1558 	sense_reason_t ret;
1559 
1560 	ret = dev->transport->parse_cdb(cmd);
1561 	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1562 		pr_debug_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1563 				     cmd->se_tfo->fabric_name,
1564 				     cmd->se_sess->se_node_acl->initiatorname,
1565 				     cmd->t_task_cdb[0]);
1566 	if (ret)
1567 		return ret;
1568 
1569 	ret = transport_check_alloc_task_attr(cmd);
1570 	if (ret)
1571 		return ret;
1572 
1573 	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1574 	/*
1575 	 * If this is the xcopy_lun then we won't have lun_stats since we
1576 	 * can't export them.
1577 	 */
1578 	if (cmd->se_lun->lun_stats)
1579 		this_cpu_inc(cmd->se_lun->lun_stats->cmd_pdus);
1580 	return 0;
1581 }
1582 EXPORT_SYMBOL(target_cmd_parse_cdb);
1583 
__target_submit(struct se_cmd * cmd)1584 static int __target_submit(struct se_cmd *cmd)
1585 {
1586 	sense_reason_t ret;
1587 
1588 	might_sleep();
1589 
1590 	/*
1591 	 * Check if we need to delay processing because of ALUA
1592 	 * Active/NonOptimized primary access state..
1593 	 */
1594 	core_alua_check_nonop_delay(cmd);
1595 
1596 	if (cmd->t_data_nents != 0) {
1597 		/*
1598 		 * This is primarily a hack for udev and tcm loop which sends
1599 		 * INQUIRYs with a single page and expects the data to be
1600 		 * cleared.
1601 		 */
1602 		if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1603 		    cmd->data_direction == DMA_FROM_DEVICE) {
1604 			struct scatterlist *sgl = cmd->t_data_sg;
1605 			unsigned char *buf = NULL;
1606 
1607 			BUG_ON(!sgl);
1608 
1609 			buf = kmap_local_page(sg_page(sgl));
1610 			if (buf) {
1611 				memset(buf + sgl->offset, 0, sgl->length);
1612 				kunmap_local(buf);
1613 			}
1614 		}
1615 	}
1616 
1617 	if (!cmd->se_lun) {
1618 		dump_stack();
1619 		pr_err("cmd->se_lun is NULL\n");
1620 		return -EINVAL;
1621 	}
1622 
1623 	/*
1624 	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1625 	 * outstanding descriptors are handled correctly during shutdown via
1626 	 * transport_wait_for_tasks()
1627 	 *
1628 	 * Also, we don't take cmd->t_state_lock here as we only expect
1629 	 * this to be called for initial descriptor submission.
1630 	 */
1631 	cmd->t_state = TRANSPORT_NEW_CMD;
1632 	cmd->transport_state |= CMD_T_ACTIVE;
1633 
1634 	/*
1635 	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1636 	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1637 	 * and call transport_generic_request_failure() if necessary..
1638 	 */
1639 	ret = transport_generic_new_cmd(cmd);
1640 	if (ret)
1641 		transport_generic_request_failure(cmd, ret);
1642 	return 0;
1643 }
1644 
1645 sense_reason_t
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)1646 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1647 		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1648 {
1649 	if (!sgl || !sgl_count)
1650 		return 0;
1651 
1652 	/*
1653 	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1654 	 * scatterlists already have been set to follow what the fabric
1655 	 * passes for the original expected data transfer length.
1656 	 */
1657 	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1658 		pr_warn("Rejecting SCSI DATA overflow for fabric using"
1659 			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1660 		return TCM_INVALID_CDB_FIELD;
1661 	}
1662 
1663 	cmd->t_data_sg = sgl;
1664 	cmd->t_data_nents = sgl_count;
1665 	cmd->t_bidi_data_sg = sgl_bidi;
1666 	cmd->t_bidi_data_nents = sgl_bidi_count;
1667 
1668 	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1669 	return 0;
1670 }
1671 
1672 /**
1673  * target_init_cmd - initialize se_cmd
1674  * @se_cmd: command descriptor to init
1675  * @se_sess: associated se_sess for endpoint
1676  * @sense: pointer to SCSI sense buffer
1677  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1678  * @data_length: fabric expected data transfer length
1679  * @task_attr: SAM task attribute
1680  * @data_dir: DMA data direction
1681  * @flags: flags for command submission from target_sc_flags_tables
1682  *
1683  * Task tags are supported if the caller has set @se_cmd->tag.
1684  *
1685  * Returns:
1686  *	- less than zero to signal active I/O shutdown failure.
1687  *	- zero on success.
1688  *
1689  * If the fabric driver calls target_stop_session, then it must check the
1690  * return code and handle failures. This will never fail for other drivers,
1691  * and the return code can be ignored.
1692  */
target_init_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1693 int target_init_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1694 		    unsigned char *sense, u64 unpacked_lun,
1695 		    u32 data_length, int task_attr, int data_dir, int flags)
1696 {
1697 	struct se_portal_group *se_tpg;
1698 
1699 	se_tpg = se_sess->se_tpg;
1700 	BUG_ON(!se_tpg);
1701 	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1702 
1703 	if (flags & TARGET_SCF_USE_CPUID)
1704 		se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1705 	/*
1706 	 * Signal bidirectional data payloads to target-core
1707 	 */
1708 	if (flags & TARGET_SCF_BIDI_OP)
1709 		se_cmd->se_cmd_flags |= SCF_BIDI;
1710 
1711 	if (flags & TARGET_SCF_UNKNOWN_SIZE)
1712 		se_cmd->unknown_data_length = 1;
1713 	/*
1714 	 * Initialize se_cmd for target operation.  From this point
1715 	 * exceptions are handled by sending exception status via
1716 	 * target_core_fabric_ops->queue_status() callback
1717 	 */
1718 	__target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, data_length,
1719 			  data_dir, task_attr, sense, unpacked_lun,
1720 			  se_sess->cmd_cnt);
1721 
1722 	/*
1723 	 * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is
1724 	 * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second
1725 	 * kref_put() to happen during fabric packet acknowledgement.
1726 	 */
1727 	return target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1728 }
1729 EXPORT_SYMBOL_GPL(target_init_cmd);
1730 
1731 /**
1732  * target_submit_prep - prepare cmd for submission
1733  * @se_cmd: command descriptor to prep
1734  * @cdb: pointer to SCSI CDB
1735  * @sgl: struct scatterlist memory for unidirectional mapping
1736  * @sgl_count: scatterlist count for unidirectional mapping
1737  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1738  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1739  * @sgl_prot: struct scatterlist memory protection information
1740  * @sgl_prot_count: scatterlist count for protection information
1741  * @gfp: gfp allocation type
1742  *
1743  * Returns:
1744  *	- less than zero to signal failure.
1745  *	- zero on success.
1746  *
1747  * If failure is returned, lio will the callers queue_status to complete
1748  * the cmd.
1749  */
target_submit_prep(struct se_cmd * se_cmd,unsigned char * cdb,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count,struct scatterlist * sgl_prot,u32 sgl_prot_count,gfp_t gfp)1750 int target_submit_prep(struct se_cmd *se_cmd, unsigned char *cdb,
1751 		       struct scatterlist *sgl, u32 sgl_count,
1752 		       struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1753 		       struct scatterlist *sgl_prot, u32 sgl_prot_count,
1754 		       gfp_t gfp)
1755 {
1756 	sense_reason_t rc;
1757 
1758 	rc = target_cmd_init_cdb(se_cmd, cdb, gfp);
1759 	if (rc)
1760 		goto send_cc_direct;
1761 
1762 	/*
1763 	 * Locate se_lun pointer and attach it to struct se_cmd
1764 	 */
1765 	rc = transport_lookup_cmd_lun(se_cmd);
1766 	if (rc)
1767 		goto send_cc_direct;
1768 
1769 	rc = target_cmd_parse_cdb(se_cmd);
1770 	if (rc != 0)
1771 		goto generic_fail;
1772 
1773 	/*
1774 	 * Save pointers for SGLs containing protection information,
1775 	 * if present.
1776 	 */
1777 	if (sgl_prot_count) {
1778 		se_cmd->t_prot_sg = sgl_prot;
1779 		se_cmd->t_prot_nents = sgl_prot_count;
1780 		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1781 	}
1782 
1783 	/*
1784 	 * When a non zero sgl_count has been passed perform SGL passthrough
1785 	 * mapping for pre-allocated fabric memory instead of having target
1786 	 * core perform an internal SGL allocation..
1787 	 */
1788 	if (sgl_count != 0) {
1789 		BUG_ON(!sgl);
1790 
1791 		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1792 				sgl_bidi, sgl_bidi_count);
1793 		if (rc != 0)
1794 			goto generic_fail;
1795 	}
1796 
1797 	return 0;
1798 
1799 send_cc_direct:
1800 	transport_send_check_condition_and_sense(se_cmd, rc, 0);
1801 	target_put_sess_cmd(se_cmd);
1802 	return -EIO;
1803 
1804 generic_fail:
1805 	transport_generic_request_failure(se_cmd, rc);
1806 	return -EIO;
1807 }
1808 EXPORT_SYMBOL_GPL(target_submit_prep);
1809 
1810 /**
1811  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1812  *
1813  * @se_cmd: command descriptor to submit
1814  * @se_sess: associated se_sess for endpoint
1815  * @cdb: pointer to SCSI CDB
1816  * @sense: pointer to SCSI sense buffer
1817  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1818  * @data_length: fabric expected data transfer length
1819  * @task_attr: SAM task attribute
1820  * @data_dir: DMA data direction
1821  * @flags: flags for command submission from target_sc_flags_tables
1822  *
1823  * Task tags are supported if the caller has set @se_cmd->tag.
1824  *
1825  * This may only be called from process context, and also currently
1826  * assumes internal allocation of fabric payload buffer by target-core.
1827  *
1828  * It also assumes interal target core SGL memory allocation.
1829  *
1830  * This function must only be used by drivers that do their own
1831  * sync during shutdown and does not use target_stop_session. If there
1832  * is a failure this function will call into the fabric driver's
1833  * queue_status with a CHECK_CONDITION.
1834  */
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1835 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1836 		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1837 		u32 data_length, int task_attr, int data_dir, int flags)
1838 {
1839 	int rc;
1840 
1841 	rc = target_init_cmd(se_cmd, se_sess, sense, unpacked_lun, data_length,
1842 			     task_attr, data_dir, flags);
1843 	WARN(rc, "Invalid target_submit_cmd use. Driver must not use target_stop_session or call target_init_cmd directly.\n");
1844 	if (rc)
1845 		return;
1846 
1847 	if (target_submit_prep(se_cmd, cdb, NULL, 0, NULL, 0, NULL, 0,
1848 			       GFP_KERNEL))
1849 		return;
1850 
1851 	target_submit(se_cmd);
1852 }
1853 EXPORT_SYMBOL(target_submit_cmd);
1854 
1855 
target_plug_device(struct se_device * se_dev)1856 static struct se_dev_plug *target_plug_device(struct se_device *se_dev)
1857 {
1858 	struct se_dev_plug *se_plug;
1859 
1860 	if (!se_dev->transport->plug_device)
1861 		return NULL;
1862 
1863 	se_plug = se_dev->transport->plug_device(se_dev);
1864 	if (!se_plug)
1865 		return NULL;
1866 
1867 	se_plug->se_dev = se_dev;
1868 	/*
1869 	 * We have a ref to the lun at this point, but the cmds could
1870 	 * complete before we unplug, so grab a ref to the se_device so we
1871 	 * can call back into the backend.
1872 	 */
1873 	config_group_get(&se_dev->dev_group);
1874 	return se_plug;
1875 }
1876 
target_unplug_device(struct se_dev_plug * se_plug)1877 static void target_unplug_device(struct se_dev_plug *se_plug)
1878 {
1879 	struct se_device *se_dev = se_plug->se_dev;
1880 
1881 	se_dev->transport->unplug_device(se_plug);
1882 	config_group_put(&se_dev->dev_group);
1883 }
1884 
target_queued_submit_work(struct work_struct * work)1885 void target_queued_submit_work(struct work_struct *work)
1886 {
1887 	struct se_cmd_queue *sq = container_of(work, struct se_cmd_queue, work);
1888 	struct se_cmd *se_cmd, *next_cmd;
1889 	struct se_dev_plug *se_plug = NULL;
1890 	struct se_device *se_dev = NULL;
1891 	struct llist_node *cmd_list;
1892 
1893 	cmd_list = llist_del_all(&sq->cmd_list);
1894 	if (!cmd_list)
1895 		/* Previous call took what we were queued to submit */
1896 		return;
1897 
1898 	cmd_list = llist_reverse_order(cmd_list);
1899 	llist_for_each_entry_safe(se_cmd, next_cmd, cmd_list, se_cmd_list) {
1900 		if (!se_dev) {
1901 			se_dev = se_cmd->se_dev;
1902 			se_plug = target_plug_device(se_dev);
1903 		}
1904 
1905 		__target_submit(se_cmd);
1906 	}
1907 
1908 	if (se_plug)
1909 		target_unplug_device(se_plug);
1910 }
1911 
1912 /**
1913  * target_queue_submission - queue the cmd to run on the LIO workqueue
1914  * @se_cmd: command descriptor to submit
1915  */
target_queue_submission(struct se_cmd * se_cmd)1916 static void target_queue_submission(struct se_cmd *se_cmd)
1917 {
1918 	struct se_device *se_dev = se_cmd->se_dev;
1919 	int cpu = se_cmd->cpuid;
1920 	struct se_cmd_queue *sq;
1921 
1922 	sq = &se_dev->queues[cpu].sq;
1923 	llist_add(&se_cmd->se_cmd_list, &sq->cmd_list);
1924 	queue_work_on(cpu, target_submission_wq, &sq->work);
1925 }
1926 
1927 /**
1928  * target_submit - perform final initialization and submit cmd to LIO core
1929  * @se_cmd: command descriptor to submit
1930  *
1931  * target_submit_prep or something similar must have been called on the cmd,
1932  * and this must be called from process context.
1933  */
target_submit(struct se_cmd * se_cmd)1934 int target_submit(struct se_cmd *se_cmd)
1935 {
1936 	const struct target_core_fabric_ops *tfo = se_cmd->se_sess->se_tpg->se_tpg_tfo;
1937 	struct se_dev_attrib *da = &se_cmd->se_dev->dev_attrib;
1938 	u8 submit_type;
1939 
1940 	if (da->submit_type == TARGET_FABRIC_DEFAULT_SUBMIT)
1941 		submit_type = tfo->default_submit_type;
1942 	else if (da->submit_type == TARGET_DIRECT_SUBMIT &&
1943 		 tfo->direct_submit_supp)
1944 		submit_type = TARGET_DIRECT_SUBMIT;
1945 	else
1946 		submit_type = TARGET_QUEUE_SUBMIT;
1947 
1948 	if (submit_type == TARGET_DIRECT_SUBMIT)
1949 		return __target_submit(se_cmd);
1950 
1951 	target_queue_submission(se_cmd);
1952 	return 0;
1953 }
1954 EXPORT_SYMBOL_GPL(target_submit);
1955 
target_complete_tmr_failure(struct work_struct * work)1956 static void target_complete_tmr_failure(struct work_struct *work)
1957 {
1958 	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1959 
1960 	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1961 	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1962 
1963 	transport_lun_remove_cmd(se_cmd);
1964 	transport_cmd_check_stop_to_fabric(se_cmd);
1965 }
1966 
1967 /**
1968  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1969  *                     for TMR CDBs
1970  *
1971  * @se_cmd: command descriptor to submit
1972  * @se_sess: associated se_sess for endpoint
1973  * @sense: pointer to SCSI sense buffer
1974  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1975  * @fabric_tmr_ptr: fabric context for TMR req
1976  * @tm_type: Type of TM request
1977  * @gfp: gfp type for caller
1978  * @tag: referenced task tag for TMR_ABORT_TASK
1979  * @flags: submit cmd flags
1980  *
1981  * Callable from all contexts.
1982  **/
1983 
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u64 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,u64 tag,int flags)1984 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1985 		unsigned char *sense, u64 unpacked_lun,
1986 		void *fabric_tmr_ptr, unsigned char tm_type,
1987 		gfp_t gfp, u64 tag, int flags)
1988 {
1989 	struct se_portal_group *se_tpg;
1990 	int ret;
1991 
1992 	se_tpg = se_sess->se_tpg;
1993 	BUG_ON(!se_tpg);
1994 
1995 	__target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1996 			  0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun,
1997 			  se_sess->cmd_cnt);
1998 	/*
1999 	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
2000 	 * allocation failure.
2001 	 */
2002 	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
2003 	if (ret < 0)
2004 		return -ENOMEM;
2005 
2006 	if (tm_type == TMR_ABORT_TASK)
2007 		se_cmd->se_tmr_req->ref_task_tag = tag;
2008 
2009 	/* See target_submit_cmd for commentary */
2010 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
2011 	if (ret) {
2012 		core_tmr_release_req(se_cmd->se_tmr_req);
2013 		return ret;
2014 	}
2015 
2016 	ret = transport_lookup_tmr_lun(se_cmd);
2017 	if (ret)
2018 		goto failure;
2019 
2020 	transport_generic_handle_tmr(se_cmd);
2021 	return 0;
2022 
2023 	/*
2024 	 * For callback during failure handling, push this work off
2025 	 * to process context with TMR_LUN_DOES_NOT_EXIST status.
2026 	 */
2027 failure:
2028 	INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
2029 	schedule_work(&se_cmd->work);
2030 	return 0;
2031 }
2032 EXPORT_SYMBOL(target_submit_tmr);
2033 
2034 /*
2035  * Handle SAM-esque emulation for generic transport request failures.
2036  */
transport_generic_request_failure(struct se_cmd * cmd,sense_reason_t sense_reason)2037 void transport_generic_request_failure(struct se_cmd *cmd,
2038 		sense_reason_t sense_reason)
2039 {
2040 	int ret = 0, post_ret;
2041 
2042 	pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
2043 		 sense_reason);
2044 	target_show_cmd("-----[ ", cmd);
2045 
2046 	/*
2047 	 * For SAM Task Attribute emulation for failed struct se_cmd
2048 	 */
2049 	transport_complete_task_attr(cmd);
2050 
2051 	if (cmd->transport_complete_callback)
2052 		cmd->transport_complete_callback(cmd, false, &post_ret);
2053 
2054 	if (cmd->transport_state & CMD_T_ABORTED) {
2055 		INIT_WORK(&cmd->work, target_abort_work);
2056 		queue_work(target_completion_wq, &cmd->work);
2057 		return;
2058 	}
2059 
2060 	switch (sense_reason) {
2061 	case TCM_NON_EXISTENT_LUN:
2062 	case TCM_UNSUPPORTED_SCSI_OPCODE:
2063 	case TCM_INVALID_CDB_FIELD:
2064 	case TCM_INVALID_PARAMETER_LIST:
2065 	case TCM_PARAMETER_LIST_LENGTH_ERROR:
2066 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2067 	case TCM_UNKNOWN_MODE_PAGE:
2068 	case TCM_WRITE_PROTECTED:
2069 	case TCM_ADDRESS_OUT_OF_RANGE:
2070 	case TCM_CHECK_CONDITION_ABORT_CMD:
2071 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2072 	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2073 	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2074 	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2075 	case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
2076 	case TCM_TOO_MANY_TARGET_DESCS:
2077 	case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
2078 	case TCM_TOO_MANY_SEGMENT_DESCS:
2079 	case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
2080 	case TCM_INVALID_FIELD_IN_COMMAND_IU:
2081 	case TCM_ALUA_TG_PT_STANDBY:
2082 	case TCM_ALUA_TG_PT_UNAVAILABLE:
2083 	case TCM_ALUA_STATE_TRANSITION:
2084 	case TCM_ALUA_OFFLINE:
2085 		break;
2086 	case TCM_OUT_OF_RESOURCES:
2087 		cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
2088 		goto queue_status;
2089 	case TCM_LUN_BUSY:
2090 		cmd->scsi_status = SAM_STAT_BUSY;
2091 		goto queue_status;
2092 	case TCM_RESERVATION_CONFLICT:
2093 		/*
2094 		 * No SENSE Data payload for this case, set SCSI Status
2095 		 * and queue the response to $FABRIC_MOD.
2096 		 *
2097 		 * Uses linux/include/scsi/scsi.h SAM status codes defs
2098 		 */
2099 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2100 		/*
2101 		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2102 		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2103 		 * CONFLICT STATUS.
2104 		 *
2105 		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2106 		 */
2107 		if (cmd->se_sess &&
2108 		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl
2109 					== TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) {
2110 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
2111 					       cmd->orig_fe_lun, 0x2C,
2112 					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2113 		}
2114 
2115 		goto queue_status;
2116 	default:
2117 		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2118 			cmd->t_task_cdb[0], sense_reason);
2119 		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2120 		break;
2121 	}
2122 
2123 	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
2124 	if (ret)
2125 		goto queue_full;
2126 
2127 check_stop:
2128 	transport_lun_remove_cmd(cmd);
2129 	transport_cmd_check_stop_to_fabric(cmd);
2130 	return;
2131 
2132 queue_status:
2133 	trace_target_cmd_complete(cmd);
2134 	ret = cmd->se_tfo->queue_status(cmd);
2135 	if (!ret)
2136 		goto check_stop;
2137 queue_full:
2138 	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2139 }
2140 EXPORT_SYMBOL(transport_generic_request_failure);
2141 
__target_execute_cmd(struct se_cmd * cmd,bool do_checks)2142 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
2143 {
2144 	sense_reason_t ret;
2145 
2146 	if (!cmd->execute_cmd) {
2147 		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2148 		goto err;
2149 	}
2150 	if (do_checks) {
2151 		/*
2152 		 * Check for an existing UNIT ATTENTION condition after
2153 		 * target_handle_task_attr() has done SAM task attr
2154 		 * checking, and possibly have already defered execution
2155 		 * out to target_restart_delayed_cmds() context.
2156 		 */
2157 		ret = target_scsi3_ua_check(cmd);
2158 		if (ret)
2159 			goto err;
2160 
2161 		ret = target_alua_state_check(cmd);
2162 		if (ret)
2163 			goto err;
2164 
2165 		ret = target_check_reservation(cmd);
2166 		if (ret) {
2167 			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2168 			goto err;
2169 		}
2170 	}
2171 
2172 	ret = cmd->execute_cmd(cmd);
2173 	if (!ret)
2174 		return;
2175 err:
2176 	spin_lock_irq(&cmd->t_state_lock);
2177 	cmd->transport_state &= ~CMD_T_SENT;
2178 	spin_unlock_irq(&cmd->t_state_lock);
2179 
2180 	transport_generic_request_failure(cmd, ret);
2181 }
2182 
target_write_prot_action(struct se_cmd * cmd)2183 static int target_write_prot_action(struct se_cmd *cmd)
2184 {
2185 	u32 sectors;
2186 	/*
2187 	 * Perform WRITE_INSERT of PI using software emulation when backend
2188 	 * device has PI enabled, if the transport has not already generated
2189 	 * PI using hardware WRITE_INSERT offload.
2190 	 */
2191 	switch (cmd->prot_op) {
2192 	case TARGET_PROT_DOUT_INSERT:
2193 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
2194 			sbc_dif_generate(cmd);
2195 		break;
2196 	case TARGET_PROT_DOUT_STRIP:
2197 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
2198 			break;
2199 
2200 		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
2201 		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2202 					     sectors, 0, cmd->t_prot_sg, 0);
2203 		if (unlikely(cmd->pi_err)) {
2204 			spin_lock_irq(&cmd->t_state_lock);
2205 			cmd->transport_state &= ~CMD_T_SENT;
2206 			spin_unlock_irq(&cmd->t_state_lock);
2207 			transport_generic_request_failure(cmd, cmd->pi_err);
2208 			return -1;
2209 		}
2210 		break;
2211 	default:
2212 		break;
2213 	}
2214 
2215 	return 0;
2216 }
2217 
target_handle_task_attr(struct se_cmd * cmd)2218 static bool target_handle_task_attr(struct se_cmd *cmd)
2219 {
2220 	struct se_device *dev = cmd->se_dev;
2221 	unsigned long flags;
2222 
2223 	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2224 		return false;
2225 
2226 	cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
2227 
2228 	/*
2229 	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2230 	 * to allow the passed struct se_cmd list of tasks to the front of the list.
2231 	 */
2232 	switch (cmd->sam_task_attr) {
2233 	case TCM_HEAD_TAG:
2234 		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2235 			 cmd->t_task_cdb[0]);
2236 		return false;
2237 	case TCM_ORDERED_TAG:
2238 		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2239 			 cmd->t_task_cdb[0]);
2240 		break;
2241 	default:
2242 		/*
2243 		 * For SIMPLE and UNTAGGED Task Attribute commands
2244 		 */
2245 retry:
2246 		if (percpu_ref_tryget_live(&dev->non_ordered))
2247 			return false;
2248 
2249 		break;
2250 	}
2251 
2252 	spin_lock_irqsave(&dev->delayed_cmd_lock, flags);
2253 	if (cmd->sam_task_attr == TCM_SIMPLE_TAG &&
2254 	    !percpu_ref_is_dying(&dev->non_ordered)) {
2255 		spin_unlock_irqrestore(&dev->delayed_cmd_lock, flags);
2256 		/* We raced with the last ordered completion so retry. */
2257 		goto retry;
2258 	} else if (!percpu_ref_is_dying(&dev->non_ordered)) {
2259 		percpu_ref_kill(&dev->non_ordered);
2260 	}
2261 
2262 	spin_lock(&cmd->t_state_lock);
2263 	cmd->transport_state &= ~CMD_T_SENT;
2264 	spin_unlock(&cmd->t_state_lock);
2265 
2266 	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2267 	spin_unlock_irqrestore(&dev->delayed_cmd_lock, flags);
2268 
2269 	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2270 		cmd->t_task_cdb[0], cmd->sam_task_attr);
2271 	/*
2272 	 * We may have no non ordered cmds when this function started or we
2273 	 * could have raced with the last simple/head cmd completing, so kick
2274 	 * the delayed handler here.
2275 	 */
2276 	schedule_work(&dev->delayed_cmd_work);
2277 	return true;
2278 }
2279 
target_execute_cmd(struct se_cmd * cmd)2280 void target_execute_cmd(struct se_cmd *cmd)
2281 {
2282 	/*
2283 	 * Determine if frontend context caller is requesting the stopping of
2284 	 * this command for frontend exceptions.
2285 	 *
2286 	 * If the received CDB has already been aborted stop processing it here.
2287 	 */
2288 	if (target_cmd_interrupted(cmd))
2289 		return;
2290 
2291 	spin_lock_irq(&cmd->t_state_lock);
2292 	cmd->t_state = TRANSPORT_PROCESSING;
2293 	cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2294 	spin_unlock_irq(&cmd->t_state_lock);
2295 
2296 	if (target_write_prot_action(cmd))
2297 		return;
2298 
2299 	if (target_handle_task_attr(cmd))
2300 		return;
2301 
2302 	__target_execute_cmd(cmd, true);
2303 }
2304 EXPORT_SYMBOL(target_execute_cmd);
2305 
2306 /*
2307  * Process all commands up to the last received ORDERED task attribute which
2308  * requires another blocking boundary
2309  */
target_do_delayed_work(struct work_struct * work)2310 void target_do_delayed_work(struct work_struct *work)
2311 {
2312 	struct se_device *dev = container_of(work, struct se_device,
2313 					     delayed_cmd_work);
2314 
2315 	spin_lock(&dev->delayed_cmd_lock);
2316 	while (!dev->ordered_sync_in_progress) {
2317 		struct se_cmd *cmd;
2318 
2319 		/*
2320 		 * We can be woken up early/late due to races or the
2321 		 * extra wake up we do when adding commands to the list.
2322 		 * We check for both cases here.
2323 		 */
2324 		if (list_empty(&dev->delayed_cmd_list) ||
2325 		    !percpu_ref_is_zero(&dev->non_ordered))
2326 			break;
2327 
2328 		cmd = list_entry(dev->delayed_cmd_list.next,
2329 				 struct se_cmd, se_delayed_node);
2330 		cmd->se_cmd_flags |= SCF_TASK_ORDERED_SYNC;
2331 		cmd->transport_state |= CMD_T_SENT;
2332 
2333 		dev->ordered_sync_in_progress = true;
2334 
2335 		list_del(&cmd->se_delayed_node);
2336 		spin_unlock(&dev->delayed_cmd_lock);
2337 
2338 		__target_execute_cmd(cmd, true);
2339 		spin_lock(&dev->delayed_cmd_lock);
2340 	}
2341 	spin_unlock(&dev->delayed_cmd_lock);
2342 }
2343 
transport_complete_ordered_sync(struct se_cmd * cmd)2344 static void transport_complete_ordered_sync(struct se_cmd *cmd)
2345 {
2346 	struct se_device *dev = cmd->se_dev;
2347 	unsigned long flags;
2348 
2349 	spin_lock_irqsave(&dev->delayed_cmd_lock, flags);
2350 	dev->dev_cur_ordered_id++;
2351 
2352 	pr_debug("Incremented dev_cur_ordered_id: %u for type %d\n",
2353 		 dev->dev_cur_ordered_id, cmd->sam_task_attr);
2354 
2355 	dev->ordered_sync_in_progress = false;
2356 
2357 	if (list_empty(&dev->delayed_cmd_list))
2358 		percpu_ref_resurrect(&dev->non_ordered);
2359 	else
2360 		schedule_work(&dev->delayed_cmd_work);
2361 
2362 	spin_unlock_irqrestore(&dev->delayed_cmd_lock, flags);
2363 }
2364 
2365 /*
2366  * Called from I/O completion to determine which dormant/delayed
2367  * and ordered cmds need to have their tasks added to the execution queue.
2368  */
transport_complete_task_attr(struct se_cmd * cmd)2369 static void transport_complete_task_attr(struct se_cmd *cmd)
2370 {
2371 	struct se_device *dev = cmd->se_dev;
2372 
2373 	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2374 		return;
2375 
2376 	if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2377 		return;
2378 
2379 	cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2380 
2381 	if (cmd->se_cmd_flags & SCF_TASK_ORDERED_SYNC) {
2382 		transport_complete_ordered_sync(cmd);
2383 		return;
2384 	}
2385 
2386 	switch (cmd->sam_task_attr) {
2387 	case TCM_SIMPLE_TAG:
2388 		percpu_ref_put(&dev->non_ordered);
2389 		break;
2390 	case TCM_ORDERED_TAG:
2391 		/* All ordered should have been executed as sync */
2392 		WARN_ON(1);
2393 		break;
2394 	}
2395 }
2396 
transport_complete_qf(struct se_cmd * cmd)2397 static void transport_complete_qf(struct se_cmd *cmd)
2398 {
2399 	int ret = 0;
2400 
2401 	transport_complete_task_attr(cmd);
2402 	/*
2403 	 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2404 	 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2405 	 * the same callbacks should not be retried.  Return CHECK_CONDITION
2406 	 * if a scsi_status is not already set.
2407 	 *
2408 	 * If a fabric driver ->queue_status() has returned non zero, always
2409 	 * keep retrying no matter what..
2410 	 */
2411 	if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2412 		if (cmd->scsi_status)
2413 			goto queue_status;
2414 
2415 		translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2416 		goto queue_status;
2417 	}
2418 
2419 	/*
2420 	 * Check if we need to send a sense buffer from
2421 	 * the struct se_cmd in question. We do NOT want
2422 	 * to take this path of the IO has been marked as
2423 	 * needing to be treated like a "normal read". This
2424 	 * is the case if it's a tape read, and either the
2425 	 * FM, EOM, or ILI bits are set, but there is no
2426 	 * sense data.
2427 	 */
2428 	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2429 	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2430 		goto queue_status;
2431 
2432 	switch (cmd->data_direction) {
2433 	case DMA_FROM_DEVICE:
2434 		/* queue status if not treating this as a normal read */
2435 		if (cmd->scsi_status &&
2436 		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2437 			goto queue_status;
2438 
2439 		trace_target_cmd_complete(cmd);
2440 		ret = cmd->se_tfo->queue_data_in(cmd);
2441 		break;
2442 	case DMA_TO_DEVICE:
2443 		if (cmd->se_cmd_flags & SCF_BIDI) {
2444 			ret = cmd->se_tfo->queue_data_in(cmd);
2445 			break;
2446 		}
2447 		fallthrough;
2448 	case DMA_NONE:
2449 queue_status:
2450 		trace_target_cmd_complete(cmd);
2451 		ret = cmd->se_tfo->queue_status(cmd);
2452 		break;
2453 	default:
2454 		break;
2455 	}
2456 
2457 	if (ret < 0) {
2458 		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2459 		return;
2460 	}
2461 	transport_lun_remove_cmd(cmd);
2462 	transport_cmd_check_stop_to_fabric(cmd);
2463 }
2464 
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev,int err,bool write_pending)2465 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2466 					int err, bool write_pending)
2467 {
2468 	/*
2469 	 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2470 	 * ->queue_data_in() callbacks from new process context.
2471 	 *
2472 	 * Otherwise for other errors, transport_complete_qf() will send
2473 	 * CHECK_CONDITION via ->queue_status() instead of attempting to
2474 	 * retry associated fabric driver data-transfer callbacks.
2475 	 */
2476 	if (err == -EAGAIN || err == -ENOMEM) {
2477 		cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2478 						 TRANSPORT_COMPLETE_QF_OK;
2479 	} else {
2480 		pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2481 		cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2482 	}
2483 
2484 	spin_lock_irq(&dev->qf_cmd_lock);
2485 	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2486 	atomic_inc_mb(&dev->dev_qf_count);
2487 	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2488 
2489 	schedule_work(&cmd->se_dev->qf_work_queue);
2490 }
2491 
target_read_prot_action(struct se_cmd * cmd)2492 static bool target_read_prot_action(struct se_cmd *cmd)
2493 {
2494 	switch (cmd->prot_op) {
2495 	case TARGET_PROT_DIN_STRIP:
2496 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2497 			u32 sectors = cmd->data_length >>
2498 				  ilog2(cmd->se_dev->dev_attrib.block_size);
2499 
2500 			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2501 						     sectors, 0, cmd->t_prot_sg,
2502 						     0);
2503 			if (cmd->pi_err)
2504 				return true;
2505 		}
2506 		break;
2507 	case TARGET_PROT_DIN_INSERT:
2508 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2509 			break;
2510 
2511 		sbc_dif_generate(cmd);
2512 		break;
2513 	default:
2514 		break;
2515 	}
2516 
2517 	return false;
2518 }
2519 
target_complete_ok_work(struct work_struct * work)2520 static void target_complete_ok_work(struct work_struct *work)
2521 {
2522 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2523 	int ret;
2524 
2525 	/*
2526 	 * Check if we need to move delayed/dormant tasks from cmds on the
2527 	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2528 	 * Attribute.
2529 	 */
2530 	transport_complete_task_attr(cmd);
2531 
2532 	/*
2533 	 * Check to schedule QUEUE_FULL work, or execute an existing
2534 	 * cmd->transport_qf_callback()
2535 	 */
2536 	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2537 		schedule_work(&cmd->se_dev->qf_work_queue);
2538 
2539 	/*
2540 	 * Check if we need to send a sense buffer from
2541 	 * the struct se_cmd in question. We do NOT want
2542 	 * to take this path of the IO has been marked as
2543 	 * needing to be treated like a "normal read". This
2544 	 * is the case if it's a tape read, and either the
2545 	 * FM, EOM, or ILI bits are set, but there is no
2546 	 * sense data.
2547 	 */
2548 	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2549 	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2550 		WARN_ON(!cmd->scsi_status);
2551 		ret = transport_send_check_condition_and_sense(
2552 					cmd, 0, 1);
2553 		if (ret)
2554 			goto queue_full;
2555 
2556 		transport_lun_remove_cmd(cmd);
2557 		transport_cmd_check_stop_to_fabric(cmd);
2558 		return;
2559 	}
2560 	/*
2561 	 * Check for a callback, used by amongst other things
2562 	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2563 	 */
2564 	if (cmd->transport_complete_callback) {
2565 		sense_reason_t rc;
2566 		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2567 		bool zero_dl = !(cmd->data_length);
2568 		int post_ret = 0;
2569 
2570 		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2571 		if (!rc && !post_ret) {
2572 			if (caw && zero_dl)
2573 				goto queue_rsp;
2574 
2575 			return;
2576 		} else if (rc) {
2577 			ret = transport_send_check_condition_and_sense(cmd,
2578 						rc, 0);
2579 			if (ret)
2580 				goto queue_full;
2581 
2582 			transport_lun_remove_cmd(cmd);
2583 			transport_cmd_check_stop_to_fabric(cmd);
2584 			return;
2585 		}
2586 	}
2587 
2588 queue_rsp:
2589 	switch (cmd->data_direction) {
2590 	case DMA_FROM_DEVICE:
2591 		/*
2592 		 * if this is a READ-type IO, but SCSI status
2593 		 * is set, then skip returning data and just
2594 		 * return the status -- unless this IO is marked
2595 		 * as needing to be treated as a normal read,
2596 		 * in which case we want to go ahead and return
2597 		 * the data. This happens, for example, for tape
2598 		 * reads with the FM, EOM, or ILI bits set, with
2599 		 * no sense data.
2600 		 */
2601 		if (cmd->scsi_status &&
2602 		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2603 			goto queue_status;
2604 
2605 		if (cmd->se_lun->lun_stats)
2606 			this_cpu_add(cmd->se_lun->lun_stats->tx_data_octets,
2607 				     cmd->data_length);
2608 		/*
2609 		 * Perform READ_STRIP of PI using software emulation when
2610 		 * backend had PI enabled, if the transport will not be
2611 		 * performing hardware READ_STRIP offload.
2612 		 */
2613 		if (target_read_prot_action(cmd)) {
2614 			ret = transport_send_check_condition_and_sense(cmd,
2615 						cmd->pi_err, 0);
2616 			if (ret)
2617 				goto queue_full;
2618 
2619 			transport_lun_remove_cmd(cmd);
2620 			transport_cmd_check_stop_to_fabric(cmd);
2621 			return;
2622 		}
2623 
2624 		trace_target_cmd_complete(cmd);
2625 		ret = cmd->se_tfo->queue_data_in(cmd);
2626 		if (ret)
2627 			goto queue_full;
2628 		break;
2629 	case DMA_TO_DEVICE:
2630 		if (cmd->se_lun->lun_stats)
2631 			this_cpu_add(cmd->se_lun->lun_stats->rx_data_octets,
2632 				     cmd->data_length);
2633 		/*
2634 		 * Check if we need to send READ payload for BIDI-COMMAND
2635 		 */
2636 		if (cmd->se_cmd_flags & SCF_BIDI) {
2637 			if (cmd->se_lun->lun_stats)
2638 				this_cpu_add(cmd->se_lun->lun_stats->tx_data_octets,
2639 					     cmd->data_length);
2640 			ret = cmd->se_tfo->queue_data_in(cmd);
2641 			if (ret)
2642 				goto queue_full;
2643 			break;
2644 		}
2645 		fallthrough;
2646 	case DMA_NONE:
2647 queue_status:
2648 		trace_target_cmd_complete(cmd);
2649 		ret = cmd->se_tfo->queue_status(cmd);
2650 		if (ret)
2651 			goto queue_full;
2652 		break;
2653 	default:
2654 		break;
2655 	}
2656 
2657 	transport_lun_remove_cmd(cmd);
2658 	transport_cmd_check_stop_to_fabric(cmd);
2659 	return;
2660 
2661 queue_full:
2662 	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2663 		" data_direction: %d\n", cmd, cmd->data_direction);
2664 
2665 	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2666 }
2667 
target_free_sgl(struct scatterlist * sgl,int nents)2668 void target_free_sgl(struct scatterlist *sgl, int nents)
2669 {
2670 	sgl_free_n_order(sgl, nents, 0);
2671 }
2672 EXPORT_SYMBOL(target_free_sgl);
2673 
transport_reset_sgl_orig(struct se_cmd * cmd)2674 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2675 {
2676 	/*
2677 	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2678 	 * emulation, and free + reset pointers if necessary..
2679 	 */
2680 	if (!cmd->t_data_sg_orig)
2681 		return;
2682 
2683 	kfree(cmd->t_data_sg);
2684 	cmd->t_data_sg = cmd->t_data_sg_orig;
2685 	cmd->t_data_sg_orig = NULL;
2686 	cmd->t_data_nents = cmd->t_data_nents_orig;
2687 	cmd->t_data_nents_orig = 0;
2688 }
2689 
transport_free_pages(struct se_cmd * cmd)2690 static inline void transport_free_pages(struct se_cmd *cmd)
2691 {
2692 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2693 		target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2694 		cmd->t_prot_sg = NULL;
2695 		cmd->t_prot_nents = 0;
2696 	}
2697 
2698 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2699 		/*
2700 		 * Release special case READ buffer payload required for
2701 		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2702 		 */
2703 		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2704 			target_free_sgl(cmd->t_bidi_data_sg,
2705 					   cmd->t_bidi_data_nents);
2706 			cmd->t_bidi_data_sg = NULL;
2707 			cmd->t_bidi_data_nents = 0;
2708 		}
2709 		transport_reset_sgl_orig(cmd);
2710 		return;
2711 	}
2712 	transport_reset_sgl_orig(cmd);
2713 
2714 	target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2715 	cmd->t_data_sg = NULL;
2716 	cmd->t_data_nents = 0;
2717 
2718 	target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2719 	cmd->t_bidi_data_sg = NULL;
2720 	cmd->t_bidi_data_nents = 0;
2721 }
2722 
transport_kmap_data_sg(struct se_cmd * cmd)2723 void *transport_kmap_data_sg(struct se_cmd *cmd)
2724 {
2725 	struct scatterlist *sg = cmd->t_data_sg;
2726 	struct page **pages;
2727 	int i;
2728 
2729 	/*
2730 	 * We need to take into account a possible offset here for fabrics like
2731 	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2732 	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2733 	 */
2734 	if (!cmd->t_data_nents)
2735 		return NULL;
2736 
2737 	BUG_ON(!sg);
2738 	if (cmd->t_data_nents == 1)
2739 		return kmap(sg_page(sg)) + sg->offset;
2740 
2741 	/* >1 page. use vmap */
2742 	pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2743 	if (!pages)
2744 		return NULL;
2745 
2746 	/* convert sg[] to pages[] */
2747 	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2748 		pages[i] = sg_page(sg);
2749 	}
2750 
2751 	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2752 	kfree(pages);
2753 	if (!cmd->t_data_vmap)
2754 		return NULL;
2755 
2756 	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2757 }
2758 EXPORT_SYMBOL(transport_kmap_data_sg);
2759 
transport_kunmap_data_sg(struct se_cmd * cmd)2760 void transport_kunmap_data_sg(struct se_cmd *cmd)
2761 {
2762 	if (!cmd->t_data_nents) {
2763 		return;
2764 	} else if (cmd->t_data_nents == 1) {
2765 		kunmap(sg_page(cmd->t_data_sg));
2766 		return;
2767 	}
2768 
2769 	vunmap(cmd->t_data_vmap);
2770 	cmd->t_data_vmap = NULL;
2771 }
2772 EXPORT_SYMBOL(transport_kunmap_data_sg);
2773 
2774 int
target_alloc_sgl(struct scatterlist ** sgl,unsigned int * nents,u32 length,bool zero_page,bool chainable)2775 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2776 		 bool zero_page, bool chainable)
2777 {
2778 	gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2779 
2780 	*sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2781 	return *sgl ? 0 : -ENOMEM;
2782 }
2783 EXPORT_SYMBOL(target_alloc_sgl);
2784 
2785 /*
2786  * Allocate any required resources to execute the command.  For writes we
2787  * might not have the payload yet, so notify the fabric via a call to
2788  * ->write_pending instead. Otherwise place it on the execution queue.
2789  */
2790 sense_reason_t
transport_generic_new_cmd(struct se_cmd * cmd)2791 transport_generic_new_cmd(struct se_cmd *cmd)
2792 {
2793 	unsigned long flags;
2794 	int ret = 0;
2795 	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2796 
2797 	if (cmd->prot_op != TARGET_PROT_NORMAL &&
2798 	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2799 		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2800 				       cmd->prot_length, true, false);
2801 		if (ret < 0)
2802 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2803 	}
2804 
2805 	/*
2806 	 * Determine if the TCM fabric module has already allocated physical
2807 	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2808 	 * beforehand.
2809 	 */
2810 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2811 	    cmd->data_length) {
2812 
2813 		if ((cmd->se_cmd_flags & SCF_BIDI) ||
2814 		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2815 			u32 bidi_length;
2816 
2817 			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2818 				bidi_length = cmd->t_task_nolb *
2819 					      cmd->se_dev->dev_attrib.block_size;
2820 			else
2821 				bidi_length = cmd->data_length;
2822 
2823 			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2824 					       &cmd->t_bidi_data_nents,
2825 					       bidi_length, zero_flag, false);
2826 			if (ret < 0)
2827 				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2828 		}
2829 
2830 		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2831 				       cmd->data_length, zero_flag, false);
2832 		if (ret < 0)
2833 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2834 	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2835 		    cmd->data_length) {
2836 		/*
2837 		 * Special case for COMPARE_AND_WRITE with fabrics
2838 		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2839 		 */
2840 		u32 caw_length = cmd->t_task_nolb *
2841 				 cmd->se_dev->dev_attrib.block_size;
2842 
2843 		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2844 				       &cmd->t_bidi_data_nents,
2845 				       caw_length, zero_flag, false);
2846 		if (ret < 0)
2847 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2848 	}
2849 	/*
2850 	 * If this command is not a write we can execute it right here,
2851 	 * for write buffers we need to notify the fabric driver first
2852 	 * and let it call back once the write buffers are ready.
2853 	 */
2854 	target_add_to_state_list(cmd);
2855 	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2856 		target_execute_cmd(cmd);
2857 		return 0;
2858 	}
2859 
2860 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2861 	cmd->t_state = TRANSPORT_WRITE_PENDING;
2862 	/*
2863 	 * Determine if frontend context caller is requesting the stopping of
2864 	 * this command for frontend exceptions.
2865 	 */
2866 	if (cmd->transport_state & CMD_T_STOP &&
2867 	    !cmd->se_tfo->write_pending_must_be_called) {
2868 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2869 			 __func__, __LINE__, cmd->tag);
2870 
2871 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2872 
2873 		complete_all(&cmd->t_transport_stop_comp);
2874 		return 0;
2875 	}
2876 	cmd->transport_state &= ~CMD_T_ACTIVE;
2877 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2878 
2879 	ret = cmd->se_tfo->write_pending(cmd);
2880 	if (ret)
2881 		goto queue_full;
2882 
2883 	return 0;
2884 
2885 queue_full:
2886 	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2887 	transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2888 	return 0;
2889 }
2890 EXPORT_SYMBOL(transport_generic_new_cmd);
2891 
transport_write_pending_qf(struct se_cmd * cmd)2892 static void transport_write_pending_qf(struct se_cmd *cmd)
2893 {
2894 	unsigned long flags;
2895 	int ret;
2896 	bool stop;
2897 
2898 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2899 	stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2900 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2901 
2902 	if (stop) {
2903 		pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2904 			__func__, __LINE__, cmd->tag);
2905 		complete_all(&cmd->t_transport_stop_comp);
2906 		return;
2907 	}
2908 
2909 	ret = cmd->se_tfo->write_pending(cmd);
2910 	if (ret) {
2911 		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2912 			 cmd);
2913 		transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2914 	}
2915 }
2916 
2917 static bool
2918 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2919 			   unsigned long *flags);
2920 
target_wait_free_cmd(struct se_cmd * cmd,bool * aborted,bool * tas)2921 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2922 {
2923 	unsigned long flags;
2924 
2925 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2926 	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2927 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2928 }
2929 
2930 /*
2931  * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2932  * finished.
2933  */
target_put_cmd_and_wait(struct se_cmd * cmd)2934 void target_put_cmd_and_wait(struct se_cmd *cmd)
2935 {
2936 	DECLARE_COMPLETION_ONSTACK(compl);
2937 
2938 	WARN_ON_ONCE(cmd->abrt_compl);
2939 	cmd->abrt_compl = &compl;
2940 	target_put_sess_cmd(cmd);
2941 	wait_for_completion(&compl);
2942 }
2943 
2944 /*
2945  * This function is called by frontend drivers after processing of a command
2946  * has finished.
2947  *
2948  * The protocol for ensuring that either the regular frontend command
2949  * processing flow or target_handle_abort() code drops one reference is as
2950  * follows:
2951  * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2952  *   the frontend driver to call this function synchronously or asynchronously.
2953  *   That will cause one reference to be dropped.
2954  * - During regular command processing the target core sets CMD_T_COMPLETE
2955  *   before invoking one of the .queue_*() functions.
2956  * - The code that aborts commands skips commands and TMFs for which
2957  *   CMD_T_COMPLETE has been set.
2958  * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2959  *   commands that will be aborted.
2960  * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2961  *   transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2962  * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2963  *   be called and will drop a reference.
2964  * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2965  *   will be called. target_handle_abort() will drop the final reference.
2966  */
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)2967 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2968 {
2969 	DECLARE_COMPLETION_ONSTACK(compl);
2970 	int ret = 0;
2971 	bool aborted = false, tas = false;
2972 
2973 	if (wait_for_tasks)
2974 		target_wait_free_cmd(cmd, &aborted, &tas);
2975 
2976 	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2977 		/*
2978 		 * Handle WRITE failure case where transport_generic_new_cmd()
2979 		 * has already added se_cmd to state_list, but fabric has
2980 		 * failed command before I/O submission.
2981 		 */
2982 		if (cmd->state_active)
2983 			target_remove_from_state_list(cmd);
2984 
2985 		if (cmd->se_lun)
2986 			transport_lun_remove_cmd(cmd);
2987 	}
2988 	if (aborted)
2989 		cmd->free_compl = &compl;
2990 	ret = target_put_sess_cmd(cmd);
2991 	if (aborted) {
2992 		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2993 		wait_for_completion(&compl);
2994 		ret = 1;
2995 	}
2996 	return ret;
2997 }
2998 EXPORT_SYMBOL(transport_generic_free_cmd);
2999 
3000 /**
3001  * target_get_sess_cmd - Verify the session is accepting cmds and take ref
3002  * @se_cmd:	command descriptor to add
3003  * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
3004  */
target_get_sess_cmd(struct se_cmd * se_cmd,bool ack_kref)3005 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
3006 {
3007 	int ret = 0;
3008 
3009 	/*
3010 	 * Add a second kref if the fabric caller is expecting to handle
3011 	 * fabric acknowledgement that requires two target_put_sess_cmd()
3012 	 * invocations before se_cmd descriptor release.
3013 	 */
3014 	if (ack_kref) {
3015 		kref_get(&se_cmd->cmd_kref);
3016 		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
3017 	}
3018 
3019 	/*
3020 	 * Users like xcopy do not use counters since they never do a stop
3021 	 * and wait.
3022 	 */
3023 	if (se_cmd->cmd_cnt) {
3024 		if (!percpu_ref_tryget_live(&se_cmd->cmd_cnt->refcnt))
3025 			ret = -ESHUTDOWN;
3026 	}
3027 	if (ret && ack_kref)
3028 		target_put_sess_cmd(se_cmd);
3029 
3030 	return ret;
3031 }
3032 EXPORT_SYMBOL(target_get_sess_cmd);
3033 
target_free_cmd_mem(struct se_cmd * cmd)3034 static void target_free_cmd_mem(struct se_cmd *cmd)
3035 {
3036 	transport_free_pages(cmd);
3037 
3038 	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
3039 		core_tmr_release_req(cmd->se_tmr_req);
3040 	if (cmd->t_task_cdb != cmd->__t_task_cdb)
3041 		kfree(cmd->t_task_cdb);
3042 }
3043 
target_release_cmd_kref(struct kref * kref)3044 static void target_release_cmd_kref(struct kref *kref)
3045 {
3046 	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
3047 	struct target_cmd_counter *cmd_cnt = se_cmd->cmd_cnt;
3048 	struct completion *free_compl = se_cmd->free_compl;
3049 	struct completion *abrt_compl = se_cmd->abrt_compl;
3050 
3051 	target_free_cmd_mem(se_cmd);
3052 	se_cmd->se_tfo->release_cmd(se_cmd);
3053 	if (free_compl)
3054 		complete(free_compl);
3055 	if (abrt_compl)
3056 		complete(abrt_compl);
3057 
3058 	if (cmd_cnt)
3059 		percpu_ref_put(&cmd_cnt->refcnt);
3060 }
3061 
3062 /**
3063  * target_put_sess_cmd - decrease the command reference count
3064  * @se_cmd:	command to drop a reference from
3065  *
3066  * Returns 1 if and only if this target_put_sess_cmd() call caused the
3067  * refcount to drop to zero. Returns zero otherwise.
3068  */
target_put_sess_cmd(struct se_cmd * se_cmd)3069 int target_put_sess_cmd(struct se_cmd *se_cmd)
3070 {
3071 	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
3072 }
3073 EXPORT_SYMBOL(target_put_sess_cmd);
3074 
data_dir_name(enum dma_data_direction d)3075 static const char *data_dir_name(enum dma_data_direction d)
3076 {
3077 	switch (d) {
3078 	case DMA_BIDIRECTIONAL:	return "BIDI";
3079 	case DMA_TO_DEVICE:	return "WRITE";
3080 	case DMA_FROM_DEVICE:	return "READ";
3081 	case DMA_NONE:		return "NONE";
3082 	}
3083 
3084 	return "(?)";
3085 }
3086 
cmd_state_name(enum transport_state_table t)3087 static const char *cmd_state_name(enum transport_state_table t)
3088 {
3089 	switch (t) {
3090 	case TRANSPORT_NO_STATE:	return "NO_STATE";
3091 	case TRANSPORT_NEW_CMD:		return "NEW_CMD";
3092 	case TRANSPORT_WRITE_PENDING:	return "WRITE_PENDING";
3093 	case TRANSPORT_PROCESSING:	return "PROCESSING";
3094 	case TRANSPORT_COMPLETE:	return "COMPLETE";
3095 	case TRANSPORT_ISTATE_PROCESSING:
3096 					return "ISTATE_PROCESSING";
3097 	case TRANSPORT_COMPLETE_QF_WP:	return "COMPLETE_QF_WP";
3098 	case TRANSPORT_COMPLETE_QF_OK:	return "COMPLETE_QF_OK";
3099 	case TRANSPORT_COMPLETE_QF_ERR:	return "COMPLETE_QF_ERR";
3100 	}
3101 
3102 	return "(?)";
3103 }
3104 
target_append_str(char ** str,const char * txt)3105 static void target_append_str(char **str, const char *txt)
3106 {
3107 	char *prev = *str;
3108 
3109 	*str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
3110 		kstrdup(txt, GFP_ATOMIC);
3111 	kfree(prev);
3112 }
3113 
3114 /*
3115  * Convert a transport state bitmask into a string. The caller is
3116  * responsible for freeing the returned pointer.
3117  */
target_ts_to_str(u32 ts)3118 static char *target_ts_to_str(u32 ts)
3119 {
3120 	char *str = NULL;
3121 
3122 	if (ts & CMD_T_ABORTED)
3123 		target_append_str(&str, "aborted");
3124 	if (ts & CMD_T_ACTIVE)
3125 		target_append_str(&str, "active");
3126 	if (ts & CMD_T_COMPLETE)
3127 		target_append_str(&str, "complete");
3128 	if (ts & CMD_T_SENT)
3129 		target_append_str(&str, "sent");
3130 	if (ts & CMD_T_STOP)
3131 		target_append_str(&str, "stop");
3132 	if (ts & CMD_T_FABRIC_STOP)
3133 		target_append_str(&str, "fabric_stop");
3134 
3135 	return str;
3136 }
3137 
target_tmf_name(enum tcm_tmreq_table tmf)3138 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
3139 {
3140 	switch (tmf) {
3141 	case TMR_ABORT_TASK:		return "ABORT_TASK";
3142 	case TMR_ABORT_TASK_SET:	return "ABORT_TASK_SET";
3143 	case TMR_CLEAR_ACA:		return "CLEAR_ACA";
3144 	case TMR_CLEAR_TASK_SET:	return "CLEAR_TASK_SET";
3145 	case TMR_LUN_RESET:		return "LUN_RESET";
3146 	case TMR_TARGET_WARM_RESET:	return "TARGET_WARM_RESET";
3147 	case TMR_TARGET_COLD_RESET:	return "TARGET_COLD_RESET";
3148 	case TMR_LUN_RESET_PRO:		return "LUN_RESET_PRO";
3149 	case TMR_UNKNOWN:		break;
3150 	}
3151 	return "(?)";
3152 }
3153 
target_show_cmd(const char * pfx,struct se_cmd * cmd)3154 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
3155 {
3156 	char *ts_str = target_ts_to_str(cmd->transport_state);
3157 	const u8 *cdb = cmd->t_task_cdb;
3158 	struct se_tmr_req *tmf = cmd->se_tmr_req;
3159 
3160 	if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3161 		pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
3162 			 pfx, cdb[0], cdb[1], cmd->tag,
3163 			 data_dir_name(cmd->data_direction),
3164 			 cmd->se_tfo->get_cmd_state(cmd),
3165 			 cmd_state_name(cmd->t_state), cmd->data_length,
3166 			 kref_read(&cmd->cmd_kref), ts_str);
3167 	} else {
3168 		pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
3169 			 pfx, target_tmf_name(tmf->function), cmd->tag,
3170 			 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
3171 			 cmd_state_name(cmd->t_state),
3172 			 kref_read(&cmd->cmd_kref), ts_str);
3173 	}
3174 	kfree(ts_str);
3175 }
3176 EXPORT_SYMBOL(target_show_cmd);
3177 
target_stop_cmd_counter_confirm(struct percpu_ref * ref)3178 static void target_stop_cmd_counter_confirm(struct percpu_ref *ref)
3179 {
3180 	struct target_cmd_counter *cmd_cnt = container_of(ref,
3181 						struct target_cmd_counter,
3182 						refcnt);
3183 	complete_all(&cmd_cnt->stop_done);
3184 }
3185 
3186 /**
3187  * target_stop_cmd_counter - Stop new IO from being added to the counter.
3188  * @cmd_cnt: counter to stop
3189  */
target_stop_cmd_counter(struct target_cmd_counter * cmd_cnt)3190 void target_stop_cmd_counter(struct target_cmd_counter *cmd_cnt)
3191 {
3192 	pr_debug("Stopping command counter.\n");
3193 	if (!atomic_cmpxchg(&cmd_cnt->stopped, 0, 1))
3194 		percpu_ref_kill_and_confirm(&cmd_cnt->refcnt,
3195 					    target_stop_cmd_counter_confirm);
3196 }
3197 EXPORT_SYMBOL_GPL(target_stop_cmd_counter);
3198 
3199 /**
3200  * target_stop_session - Stop new IO from being queued on the session.
3201  * @se_sess: session to stop
3202  */
target_stop_session(struct se_session * se_sess)3203 void target_stop_session(struct se_session *se_sess)
3204 {
3205 	target_stop_cmd_counter(se_sess->cmd_cnt);
3206 }
3207 EXPORT_SYMBOL(target_stop_session);
3208 
3209 /**
3210  * target_wait_for_cmds - Wait for outstanding cmds.
3211  * @cmd_cnt: counter to wait for active I/O for.
3212  */
target_wait_for_cmds(struct target_cmd_counter * cmd_cnt)3213 void target_wait_for_cmds(struct target_cmd_counter *cmd_cnt)
3214 {
3215 	int ret;
3216 
3217 	WARN_ON_ONCE(!atomic_read(&cmd_cnt->stopped));
3218 
3219 	do {
3220 		pr_debug("Waiting for running cmds to complete.\n");
3221 		ret = wait_event_timeout(cmd_cnt->refcnt_wq,
3222 					 percpu_ref_is_zero(&cmd_cnt->refcnt),
3223 					 180 * HZ);
3224 	} while (ret <= 0);
3225 
3226 	wait_for_completion(&cmd_cnt->stop_done);
3227 	pr_debug("Waiting for cmds done.\n");
3228 }
3229 EXPORT_SYMBOL_GPL(target_wait_for_cmds);
3230 
3231 /**
3232  * target_wait_for_sess_cmds - Wait for outstanding commands
3233  * @se_sess: session to wait for active I/O
3234  */
target_wait_for_sess_cmds(struct se_session * se_sess)3235 void target_wait_for_sess_cmds(struct se_session *se_sess)
3236 {
3237 	target_wait_for_cmds(se_sess->cmd_cnt);
3238 }
3239 EXPORT_SYMBOL(target_wait_for_sess_cmds);
3240 
3241 /*
3242  * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
3243  * all references to the LUN have been released. Called during LUN shutdown.
3244  */
transport_clear_lun_ref(struct se_lun * lun)3245 void transport_clear_lun_ref(struct se_lun *lun)
3246 {
3247 	percpu_ref_kill(&lun->lun_ref);
3248 	wait_for_completion(&lun->lun_shutdown_comp);
3249 }
3250 
3251 static bool
__transport_wait_for_tasks(struct se_cmd * cmd,bool fabric_stop,bool * aborted,bool * tas,unsigned long * flags)3252 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
3253 			   bool *aborted, bool *tas, unsigned long *flags)
3254 	__releases(&cmd->t_state_lock)
3255 	__acquires(&cmd->t_state_lock)
3256 {
3257 	lockdep_assert_held(&cmd->t_state_lock);
3258 
3259 	if (fabric_stop)
3260 		cmd->transport_state |= CMD_T_FABRIC_STOP;
3261 
3262 	if (cmd->transport_state & CMD_T_ABORTED)
3263 		*aborted = true;
3264 
3265 	if (cmd->transport_state & CMD_T_TAS)
3266 		*tas = true;
3267 
3268 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3269 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3270 		return false;
3271 
3272 	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3273 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3274 		return false;
3275 
3276 	if (!(cmd->transport_state & CMD_T_ACTIVE))
3277 		return false;
3278 
3279 	if (fabric_stop && *aborted)
3280 		return false;
3281 
3282 	cmd->transport_state |= CMD_T_STOP;
3283 
3284 	target_show_cmd("wait_for_tasks: Stopping ", cmd);
3285 
3286 	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3287 
3288 	while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3289 					    180 * HZ))
3290 		target_show_cmd("wait for tasks: ", cmd);
3291 
3292 	spin_lock_irqsave(&cmd->t_state_lock, *flags);
3293 	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3294 
3295 	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3296 		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3297 
3298 	return true;
3299 }
3300 
3301 /**
3302  * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3303  * @cmd: command to wait on
3304  */
transport_wait_for_tasks(struct se_cmd * cmd)3305 bool transport_wait_for_tasks(struct se_cmd *cmd)
3306 {
3307 	unsigned long flags;
3308 	bool ret, aborted = false, tas = false;
3309 
3310 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3311 	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3312 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3313 
3314 	return ret;
3315 }
3316 EXPORT_SYMBOL(transport_wait_for_tasks);
3317 
3318 struct sense_detail {
3319 	u8 key;
3320 	u8 asc;
3321 	u8 ascq;
3322 	bool add_sense_info;
3323 };
3324 
3325 static const struct sense_detail sense_detail_table[] = {
3326 	[TCM_NO_SENSE] = {
3327 		.key = NOT_READY
3328 	},
3329 	[TCM_NON_EXISTENT_LUN] = {
3330 		.key = ILLEGAL_REQUEST,
3331 		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3332 	},
3333 	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
3334 		.key = ILLEGAL_REQUEST,
3335 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3336 	},
3337 	[TCM_SECTOR_COUNT_TOO_MANY] = {
3338 		.key = ILLEGAL_REQUEST,
3339 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3340 	},
3341 	[TCM_UNKNOWN_MODE_PAGE] = {
3342 		.key = ILLEGAL_REQUEST,
3343 		.asc = 0x24, /* INVALID FIELD IN CDB */
3344 	},
3345 	[TCM_CHECK_CONDITION_ABORT_CMD] = {
3346 		.key = ABORTED_COMMAND,
3347 		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3348 		.ascq = 0x03,
3349 	},
3350 	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
3351 		.key = ABORTED_COMMAND,
3352 		.asc = 0x0c, /* WRITE ERROR */
3353 		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3354 	},
3355 	[TCM_INVALID_CDB_FIELD] = {
3356 		.key = ILLEGAL_REQUEST,
3357 		.asc = 0x24, /* INVALID FIELD IN CDB */
3358 	},
3359 	[TCM_INVALID_PARAMETER_LIST] = {
3360 		.key = ILLEGAL_REQUEST,
3361 		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3362 	},
3363 	[TCM_TOO_MANY_TARGET_DESCS] = {
3364 		.key = ILLEGAL_REQUEST,
3365 		.asc = 0x26,
3366 		.ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3367 	},
3368 	[TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3369 		.key = ILLEGAL_REQUEST,
3370 		.asc = 0x26,
3371 		.ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3372 	},
3373 	[TCM_TOO_MANY_SEGMENT_DESCS] = {
3374 		.key = ILLEGAL_REQUEST,
3375 		.asc = 0x26,
3376 		.ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3377 	},
3378 	[TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3379 		.key = ILLEGAL_REQUEST,
3380 		.asc = 0x26,
3381 		.ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3382 	},
3383 	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3384 		.key = ILLEGAL_REQUEST,
3385 		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3386 	},
3387 	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3388 		.key = ILLEGAL_REQUEST,
3389 		.asc = 0x0c, /* WRITE ERROR */
3390 		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3391 	},
3392 	[TCM_SERVICE_CRC_ERROR] = {
3393 		.key = ABORTED_COMMAND,
3394 		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3395 		.ascq = 0x05, /* N/A */
3396 	},
3397 	[TCM_SNACK_REJECTED] = {
3398 		.key = ABORTED_COMMAND,
3399 		.asc = 0x11, /* READ ERROR */
3400 		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3401 	},
3402 	[TCM_WRITE_PROTECTED] = {
3403 		.key = DATA_PROTECT,
3404 		.asc = 0x27, /* WRITE PROTECTED */
3405 	},
3406 	[TCM_ADDRESS_OUT_OF_RANGE] = {
3407 		.key = ILLEGAL_REQUEST,
3408 		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3409 	},
3410 	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3411 		.key = UNIT_ATTENTION,
3412 	},
3413 	[TCM_MISCOMPARE_VERIFY] = {
3414 		.key = MISCOMPARE,
3415 		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3416 		.ascq = 0x00,
3417 		.add_sense_info = true,
3418 	},
3419 	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3420 		.key = ABORTED_COMMAND,
3421 		.asc = 0x10,
3422 		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3423 		.add_sense_info = true,
3424 	},
3425 	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3426 		.key = ABORTED_COMMAND,
3427 		.asc = 0x10,
3428 		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3429 		.add_sense_info = true,
3430 	},
3431 	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3432 		.key = ABORTED_COMMAND,
3433 		.asc = 0x10,
3434 		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3435 		.add_sense_info = true,
3436 	},
3437 	[TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3438 		.key = COPY_ABORTED,
3439 		.asc = 0x0d,
3440 		.ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3441 
3442 	},
3443 	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3444 		/*
3445 		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3446 		 * Solaris initiators.  Returning NOT READY instead means the
3447 		 * operations will be retried a finite number of times and we
3448 		 * can survive intermittent errors.
3449 		 */
3450 		.key = NOT_READY,
3451 		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3452 	},
3453 	[TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3454 		/*
3455 		 * From spc4r22 section5.7.7,5.7.8
3456 		 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3457 		 * or a REGISTER AND IGNORE EXISTING KEY service action or
3458 		 * REGISTER AND MOVE service actionis attempted,
3459 		 * but there are insufficient device server resources to complete the
3460 		 * operation, then the command shall be terminated with CHECK CONDITION
3461 		 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3462 		 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3463 		 */
3464 		.key = ILLEGAL_REQUEST,
3465 		.asc = 0x55,
3466 		.ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3467 	},
3468 	[TCM_INVALID_FIELD_IN_COMMAND_IU] = {
3469 		.key = ILLEGAL_REQUEST,
3470 		.asc = 0x0e,
3471 		.ascq = 0x03, /* INVALID FIELD IN COMMAND INFORMATION UNIT */
3472 	},
3473 	[TCM_ALUA_TG_PT_STANDBY] = {
3474 		.key = NOT_READY,
3475 		.asc = 0x04,
3476 		.ascq = ASCQ_04H_ALUA_TG_PT_STANDBY,
3477 	},
3478 	[TCM_ALUA_TG_PT_UNAVAILABLE] = {
3479 		.key = NOT_READY,
3480 		.asc = 0x04,
3481 		.ascq = ASCQ_04H_ALUA_TG_PT_UNAVAILABLE,
3482 	},
3483 	[TCM_ALUA_STATE_TRANSITION] = {
3484 		.key = NOT_READY,
3485 		.asc = 0x04,
3486 		.ascq = ASCQ_04H_ALUA_STATE_TRANSITION,
3487 	},
3488 	[TCM_ALUA_OFFLINE] = {
3489 		.key = NOT_READY,
3490 		.asc = 0x04,
3491 		.ascq = ASCQ_04H_ALUA_OFFLINE,
3492 	},
3493 };
3494 
3495 /**
3496  * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3497  * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3498  *   be stored.
3499  * @reason: LIO sense reason code. If this argument has the value
3500  *   TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3501  *   dequeuing a unit attention fails due to multiple commands being processed
3502  *   concurrently, set the command status to BUSY.
3503  *
3504  * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3505  */
translate_sense_reason(struct se_cmd * cmd,sense_reason_t reason)3506 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3507 {
3508 	const struct sense_detail *sd;
3509 	u8 *buffer = cmd->sense_buffer;
3510 	int r = (__force int)reason;
3511 	u8 key, asc, ascq;
3512 	bool desc_format = target_sense_desc_format(cmd->se_dev);
3513 
3514 	if (r < ARRAY_SIZE(sense_detail_table) && sense_detail_table[r].key)
3515 		sd = &sense_detail_table[r];
3516 	else
3517 		sd = &sense_detail_table[(__force int)
3518 				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3519 
3520 	key = sd->key;
3521 	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3522 		if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3523 						       &ascq)) {
3524 			cmd->scsi_status = SAM_STAT_BUSY;
3525 			return;
3526 		}
3527 	} else {
3528 		WARN_ON_ONCE(sd->asc == 0);
3529 		asc = sd->asc;
3530 		ascq = sd->ascq;
3531 	}
3532 
3533 	cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3534 	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3535 	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3536 	scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3537 	if (sd->add_sense_info)
3538 		WARN_ON_ONCE(scsi_set_sense_information(buffer,
3539 							cmd->scsi_sense_length,
3540 							cmd->sense_info) < 0);
3541 }
3542 
3543 int
transport_send_check_condition_and_sense(struct se_cmd * cmd,sense_reason_t reason,int from_transport)3544 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3545 		sense_reason_t reason, int from_transport)
3546 {
3547 	unsigned long flags;
3548 
3549 	WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3550 
3551 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3552 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3553 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3554 		return 0;
3555 	}
3556 	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3557 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3558 
3559 	if (!from_transport)
3560 		translate_sense_reason(cmd, reason);
3561 
3562 	trace_target_cmd_complete(cmd);
3563 	return cmd->se_tfo->queue_status(cmd);
3564 }
3565 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3566 
3567 /**
3568  * target_send_busy - Send SCSI BUSY status back to the initiator
3569  * @cmd: SCSI command for which to send a BUSY reply.
3570  *
3571  * Note: Only call this function if target_submit_cmd*() failed.
3572  */
target_send_busy(struct se_cmd * cmd)3573 int target_send_busy(struct se_cmd *cmd)
3574 {
3575 	WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3576 
3577 	cmd->scsi_status = SAM_STAT_BUSY;
3578 	trace_target_cmd_complete(cmd);
3579 	return cmd->se_tfo->queue_status(cmd);
3580 }
3581 EXPORT_SYMBOL(target_send_busy);
3582 
target_tmr_work(struct work_struct * work)3583 static void target_tmr_work(struct work_struct *work)
3584 {
3585 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3586 	struct se_device *dev = cmd->se_dev;
3587 	struct se_tmr_req *tmr = cmd->se_tmr_req;
3588 	int ret;
3589 
3590 	if (cmd->transport_state & CMD_T_ABORTED)
3591 		goto aborted;
3592 
3593 	switch (tmr->function) {
3594 	case TMR_ABORT_TASK:
3595 		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3596 		break;
3597 	case TMR_ABORT_TASK_SET:
3598 	case TMR_CLEAR_ACA:
3599 	case TMR_CLEAR_TASK_SET:
3600 		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3601 		break;
3602 	case TMR_LUN_RESET:
3603 		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3604 		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3605 					 TMR_FUNCTION_REJECTED;
3606 		if (tmr->response == TMR_FUNCTION_COMPLETE) {
3607 			target_dev_ua_allocate(dev, 0x29,
3608 					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3609 		}
3610 		break;
3611 	case TMR_TARGET_WARM_RESET:
3612 		tmr->response = TMR_FUNCTION_REJECTED;
3613 		break;
3614 	case TMR_TARGET_COLD_RESET:
3615 		tmr->response = TMR_FUNCTION_REJECTED;
3616 		break;
3617 	default:
3618 		pr_err("Unknown TMR function: 0x%02x.\n",
3619 				tmr->function);
3620 		tmr->response = TMR_FUNCTION_REJECTED;
3621 		break;
3622 	}
3623 
3624 	if (cmd->transport_state & CMD_T_ABORTED)
3625 		goto aborted;
3626 
3627 	cmd->se_tfo->queue_tm_rsp(cmd);
3628 
3629 	transport_lun_remove_cmd(cmd);
3630 	transport_cmd_check_stop_to_fabric(cmd);
3631 	return;
3632 
3633 aborted:
3634 	target_handle_abort(cmd);
3635 }
3636 
transport_generic_handle_tmr(struct se_cmd * cmd)3637 int transport_generic_handle_tmr(
3638 	struct se_cmd *cmd)
3639 {
3640 	unsigned long flags;
3641 	bool aborted = false;
3642 
3643 	spin_lock_irqsave(&cmd->se_dev->se_tmr_lock, flags);
3644 	list_add_tail(&cmd->se_tmr_req->tmr_list, &cmd->se_dev->dev_tmr_list);
3645 	spin_unlock_irqrestore(&cmd->se_dev->se_tmr_lock, flags);
3646 
3647 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3648 	if (cmd->transport_state & CMD_T_ABORTED) {
3649 		aborted = true;
3650 	} else {
3651 		cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3652 		cmd->transport_state |= CMD_T_ACTIVE;
3653 	}
3654 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3655 
3656 	if (aborted) {
3657 		pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3658 				    cmd->se_tmr_req->function,
3659 				    cmd->se_tmr_req->ref_task_tag, cmd->tag);
3660 		target_handle_abort(cmd);
3661 		return 0;
3662 	}
3663 
3664 	INIT_WORK(&cmd->work, target_tmr_work);
3665 	schedule_work(&cmd->work);
3666 	return 0;
3667 }
3668 EXPORT_SYMBOL(transport_generic_handle_tmr);
3669 
3670 bool
target_check_wce(struct se_device * dev)3671 target_check_wce(struct se_device *dev)
3672 {
3673 	bool wce = false;
3674 
3675 	if (dev->transport->get_write_cache)
3676 		wce = dev->transport->get_write_cache(dev);
3677 	else if (dev->dev_attrib.emulate_write_cache > 0)
3678 		wce = true;
3679 
3680 	return wce;
3681 }
3682 
3683 bool
target_check_fua(struct se_device * dev)3684 target_check_fua(struct se_device *dev)
3685 {
3686 	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3687 }
3688