1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3 * Filename: target_core_transport.c
4 *
5 * This file contains the Generic Target Engine Core.
6 *
7 * (c) Copyright 2002-2013 Datera, Inc.
8 *
9 * Nicholas A. Bellinger <nab@kernel.org>
10 *
11 ******************************************************************************/
12
13 #include <linux/net.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/kthread.h>
20 #include <linux/in.h>
21 #include <linux/cdrom.h>
22 #include <linux/module.h>
23 #include <linux/ratelimit.h>
24 #include <linux/vmalloc.h>
25 #include <linux/unaligned.h>
26 #include <net/sock.h>
27 #include <net/tcp.h>
28 #include <scsi/scsi_proto.h>
29 #include <scsi/scsi_common.h>
30
31 #include <target/target_core_base.h>
32 #include <target/target_core_backend.h>
33 #include <target/target_core_fabric.h>
34
35 #include "target_core_internal.h"
36 #include "target_core_alua.h"
37 #include "target_core_pr.h"
38 #include "target_core_ua.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/target.h>
42
43 static struct workqueue_struct *target_completion_wq;
44 static struct workqueue_struct *target_submission_wq;
45 static struct kmem_cache *se_sess_cache;
46 struct kmem_cache *se_ua_cache;
47 struct kmem_cache *t10_pr_reg_cache;
48 struct kmem_cache *t10_alua_lu_gp_cache;
49 struct kmem_cache *t10_alua_lu_gp_mem_cache;
50 struct kmem_cache *t10_alua_tg_pt_gp_cache;
51 struct kmem_cache *t10_alua_lba_map_cache;
52 struct kmem_cache *t10_alua_lba_map_mem_cache;
53
54 static void transport_complete_task_attr(struct se_cmd *cmd);
55 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
56 static void transport_handle_queue_full(struct se_cmd *cmd,
57 struct se_device *dev, int err, bool write_pending);
58 static void target_complete_ok_work(struct work_struct *work);
59
init_se_kmem_caches(void)60 int init_se_kmem_caches(void)
61 {
62 se_sess_cache = kmem_cache_create("se_sess_cache",
63 sizeof(struct se_session), __alignof__(struct se_session),
64 0, NULL);
65 if (!se_sess_cache) {
66 pr_err("kmem_cache_create() for struct se_session"
67 " failed\n");
68 goto out;
69 }
70 se_ua_cache = kmem_cache_create("se_ua_cache",
71 sizeof(struct se_ua), __alignof__(struct se_ua),
72 0, NULL);
73 if (!se_ua_cache) {
74 pr_err("kmem_cache_create() for struct se_ua failed\n");
75 goto out_free_sess_cache;
76 }
77 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
78 sizeof(struct t10_pr_registration),
79 __alignof__(struct t10_pr_registration), 0, NULL);
80 if (!t10_pr_reg_cache) {
81 pr_err("kmem_cache_create() for struct t10_pr_registration"
82 " failed\n");
83 goto out_free_ua_cache;
84 }
85 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
86 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
87 0, NULL);
88 if (!t10_alua_lu_gp_cache) {
89 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
90 " failed\n");
91 goto out_free_pr_reg_cache;
92 }
93 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
94 sizeof(struct t10_alua_lu_gp_member),
95 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
96 if (!t10_alua_lu_gp_mem_cache) {
97 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
98 "cache failed\n");
99 goto out_free_lu_gp_cache;
100 }
101 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
102 sizeof(struct t10_alua_tg_pt_gp),
103 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
104 if (!t10_alua_tg_pt_gp_cache) {
105 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
106 "cache failed\n");
107 goto out_free_lu_gp_mem_cache;
108 }
109 t10_alua_lba_map_cache = kmem_cache_create(
110 "t10_alua_lba_map_cache",
111 sizeof(struct t10_alua_lba_map),
112 __alignof__(struct t10_alua_lba_map), 0, NULL);
113 if (!t10_alua_lba_map_cache) {
114 pr_err("kmem_cache_create() for t10_alua_lba_map_"
115 "cache failed\n");
116 goto out_free_tg_pt_gp_cache;
117 }
118 t10_alua_lba_map_mem_cache = kmem_cache_create(
119 "t10_alua_lba_map_mem_cache",
120 sizeof(struct t10_alua_lba_map_member),
121 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
122 if (!t10_alua_lba_map_mem_cache) {
123 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
124 "cache failed\n");
125 goto out_free_lba_map_cache;
126 }
127
128 target_completion_wq = alloc_workqueue("target_completion",
129 WQ_MEM_RECLAIM | WQ_PERCPU, 0);
130 if (!target_completion_wq)
131 goto out_free_lba_map_mem_cache;
132
133 target_submission_wq = alloc_workqueue("target_submission",
134 WQ_MEM_RECLAIM | WQ_PERCPU, 0);
135 if (!target_submission_wq)
136 goto out_free_completion_wq;
137
138 return 0;
139
140 out_free_completion_wq:
141 destroy_workqueue(target_completion_wq);
142 out_free_lba_map_mem_cache:
143 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
144 out_free_lba_map_cache:
145 kmem_cache_destroy(t10_alua_lba_map_cache);
146 out_free_tg_pt_gp_cache:
147 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
148 out_free_lu_gp_mem_cache:
149 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
150 out_free_lu_gp_cache:
151 kmem_cache_destroy(t10_alua_lu_gp_cache);
152 out_free_pr_reg_cache:
153 kmem_cache_destroy(t10_pr_reg_cache);
154 out_free_ua_cache:
155 kmem_cache_destroy(se_ua_cache);
156 out_free_sess_cache:
157 kmem_cache_destroy(se_sess_cache);
158 out:
159 return -ENOMEM;
160 }
161
release_se_kmem_caches(void)162 void release_se_kmem_caches(void)
163 {
164 destroy_workqueue(target_submission_wq);
165 destroy_workqueue(target_completion_wq);
166 kmem_cache_destroy(se_sess_cache);
167 kmem_cache_destroy(se_ua_cache);
168 kmem_cache_destroy(t10_pr_reg_cache);
169 kmem_cache_destroy(t10_alua_lu_gp_cache);
170 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
171 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
172 kmem_cache_destroy(t10_alua_lba_map_cache);
173 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
174 }
175
176 /* This code ensures unique mib indexes are handed out. */
177 static DEFINE_SPINLOCK(scsi_mib_index_lock);
178 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
179
180 /*
181 * Allocate a new row index for the entry type specified
182 */
scsi_get_new_index(scsi_index_t type)183 u32 scsi_get_new_index(scsi_index_t type)
184 {
185 u32 new_index;
186
187 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
188
189 spin_lock(&scsi_mib_index_lock);
190 new_index = ++scsi_mib_index[type];
191 spin_unlock(&scsi_mib_index_lock);
192
193 return new_index;
194 }
195
transport_subsystem_check_init(void)196 void transport_subsystem_check_init(void)
197 {
198 int ret;
199 static int sub_api_initialized;
200
201 if (sub_api_initialized)
202 return;
203
204 ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
205 if (ret != 0)
206 pr_err("Unable to load target_core_iblock\n");
207
208 ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
209 if (ret != 0)
210 pr_err("Unable to load target_core_file\n");
211
212 ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
213 if (ret != 0)
214 pr_err("Unable to load target_core_pscsi\n");
215
216 ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
217 if (ret != 0)
218 pr_err("Unable to load target_core_user\n");
219
220 sub_api_initialized = 1;
221 }
222
target_release_cmd_refcnt(struct percpu_ref * ref)223 static void target_release_cmd_refcnt(struct percpu_ref *ref)
224 {
225 struct target_cmd_counter *cmd_cnt = container_of(ref,
226 typeof(*cmd_cnt),
227 refcnt);
228 wake_up(&cmd_cnt->refcnt_wq);
229 }
230
target_alloc_cmd_counter(void)231 struct target_cmd_counter *target_alloc_cmd_counter(void)
232 {
233 struct target_cmd_counter *cmd_cnt;
234 int rc;
235
236 cmd_cnt = kzalloc(sizeof(*cmd_cnt), GFP_KERNEL);
237 if (!cmd_cnt)
238 return NULL;
239
240 init_completion(&cmd_cnt->stop_done);
241 init_waitqueue_head(&cmd_cnt->refcnt_wq);
242 atomic_set(&cmd_cnt->stopped, 0);
243
244 rc = percpu_ref_init(&cmd_cnt->refcnt, target_release_cmd_refcnt, 0,
245 GFP_KERNEL);
246 if (rc)
247 goto free_cmd_cnt;
248
249 return cmd_cnt;
250
251 free_cmd_cnt:
252 kfree(cmd_cnt);
253 return NULL;
254 }
255 EXPORT_SYMBOL_GPL(target_alloc_cmd_counter);
256
target_free_cmd_counter(struct target_cmd_counter * cmd_cnt)257 void target_free_cmd_counter(struct target_cmd_counter *cmd_cnt)
258 {
259 /*
260 * Drivers like loop do not call target_stop_session during session
261 * shutdown so we have to drop the ref taken at init time here.
262 */
263 if (!atomic_read(&cmd_cnt->stopped))
264 percpu_ref_put(&cmd_cnt->refcnt);
265
266 percpu_ref_exit(&cmd_cnt->refcnt);
267 kfree(cmd_cnt);
268 }
269 EXPORT_SYMBOL_GPL(target_free_cmd_counter);
270
271 /**
272 * transport_init_session - initialize a session object
273 * @se_sess: Session object pointer.
274 *
275 * The caller must have zero-initialized @se_sess before calling this function.
276 */
transport_init_session(struct se_session * se_sess)277 void transport_init_session(struct se_session *se_sess)
278 {
279 INIT_LIST_HEAD(&se_sess->sess_list);
280 INIT_LIST_HEAD(&se_sess->sess_acl_list);
281 spin_lock_init(&se_sess->sess_cmd_lock);
282 }
283 EXPORT_SYMBOL(transport_init_session);
284
285 /**
286 * transport_alloc_session - allocate a session object and initialize it
287 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
288 */
transport_alloc_session(enum target_prot_op sup_prot_ops)289 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
290 {
291 struct se_session *se_sess;
292
293 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
294 if (!se_sess) {
295 pr_err("Unable to allocate struct se_session from"
296 " se_sess_cache\n");
297 return ERR_PTR(-ENOMEM);
298 }
299 transport_init_session(se_sess);
300 se_sess->sup_prot_ops = sup_prot_ops;
301
302 return se_sess;
303 }
304 EXPORT_SYMBOL(transport_alloc_session);
305
306 /**
307 * transport_alloc_session_tags - allocate target driver private data
308 * @se_sess: Session pointer.
309 * @tag_num: Maximum number of in-flight commands between initiator and target.
310 * @tag_size: Size in bytes of the private data a target driver associates with
311 * each command.
312 */
transport_alloc_session_tags(struct se_session * se_sess,unsigned int tag_num,unsigned int tag_size)313 int transport_alloc_session_tags(struct se_session *se_sess,
314 unsigned int tag_num, unsigned int tag_size)
315 {
316 int rc;
317
318 se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
319 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
320 if (!se_sess->sess_cmd_map) {
321 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
322 return -ENOMEM;
323 }
324
325 rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
326 false, GFP_KERNEL, NUMA_NO_NODE);
327 if (rc < 0) {
328 pr_err("Unable to init se_sess->sess_tag_pool,"
329 " tag_num: %u\n", tag_num);
330 kvfree(se_sess->sess_cmd_map);
331 se_sess->sess_cmd_map = NULL;
332 return -ENOMEM;
333 }
334
335 return 0;
336 }
337 EXPORT_SYMBOL(transport_alloc_session_tags);
338
339 /**
340 * transport_init_session_tags - allocate a session and target driver private data
341 * @tag_num: Maximum number of in-flight commands between initiator and target.
342 * @tag_size: Size in bytes of the private data a target driver associates with
343 * each command.
344 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
345 */
346 static struct se_session *
transport_init_session_tags(unsigned int tag_num,unsigned int tag_size,enum target_prot_op sup_prot_ops)347 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
348 enum target_prot_op sup_prot_ops)
349 {
350 struct se_session *se_sess;
351 int rc;
352
353 if (tag_num != 0 && !tag_size) {
354 pr_err("init_session_tags called with percpu-ida tag_num:"
355 " %u, but zero tag_size\n", tag_num);
356 return ERR_PTR(-EINVAL);
357 }
358 if (!tag_num && tag_size) {
359 pr_err("init_session_tags called with percpu-ida tag_size:"
360 " %u, but zero tag_num\n", tag_size);
361 return ERR_PTR(-EINVAL);
362 }
363
364 se_sess = transport_alloc_session(sup_prot_ops);
365 if (IS_ERR(se_sess))
366 return se_sess;
367
368 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
369 if (rc < 0) {
370 transport_free_session(se_sess);
371 return ERR_PTR(-ENOMEM);
372 }
373
374 return se_sess;
375 }
376
377 /*
378 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
379 */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)380 void __transport_register_session(
381 struct se_portal_group *se_tpg,
382 struct se_node_acl *se_nacl,
383 struct se_session *se_sess,
384 void *fabric_sess_ptr)
385 {
386 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
387 unsigned char buf[PR_REG_ISID_LEN];
388 unsigned long flags;
389
390 se_sess->se_tpg = se_tpg;
391 se_sess->fabric_sess_ptr = fabric_sess_ptr;
392 /*
393 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
394 *
395 * Only set for struct se_session's that will actually be moving I/O.
396 * eg: *NOT* discovery sessions.
397 */
398 if (se_nacl) {
399 /*
400 *
401 * Determine if fabric allows for T10-PI feature bits exposed to
402 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
403 *
404 * If so, then always save prot_type on a per se_node_acl node
405 * basis and re-instate the previous sess_prot_type to avoid
406 * disabling PI from below any previously initiator side
407 * registered LUNs.
408 */
409 if (se_nacl->saved_prot_type)
410 se_sess->sess_prot_type = se_nacl->saved_prot_type;
411 else if (tfo->tpg_check_prot_fabric_only)
412 se_sess->sess_prot_type = se_nacl->saved_prot_type =
413 tfo->tpg_check_prot_fabric_only(se_tpg);
414 /*
415 * If the fabric module supports an ISID based TransportID,
416 * save this value in binary from the fabric I_T Nexus now.
417 */
418 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
419 memset(&buf[0], 0, PR_REG_ISID_LEN);
420 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
421 &buf[0], PR_REG_ISID_LEN);
422 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
423 }
424
425 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
426 /*
427 * The se_nacl->nacl_sess pointer will be set to the
428 * last active I_T Nexus for each struct se_node_acl.
429 */
430 se_nacl->nacl_sess = se_sess;
431
432 list_add_tail(&se_sess->sess_acl_list,
433 &se_nacl->acl_sess_list);
434 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
435 }
436 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
437
438 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
439 se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
440 }
441 EXPORT_SYMBOL(__transport_register_session);
442
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)443 void transport_register_session(
444 struct se_portal_group *se_tpg,
445 struct se_node_acl *se_nacl,
446 struct se_session *se_sess,
447 void *fabric_sess_ptr)
448 {
449 unsigned long flags;
450
451 spin_lock_irqsave(&se_tpg->session_lock, flags);
452 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
453 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
454 }
455 EXPORT_SYMBOL(transport_register_session);
456
457 struct se_session *
target_setup_session(struct se_portal_group * tpg,unsigned int tag_num,unsigned int tag_size,enum target_prot_op prot_op,const char * initiatorname,void * private,int (* callback)(struct se_portal_group *,struct se_session *,void *))458 target_setup_session(struct se_portal_group *tpg,
459 unsigned int tag_num, unsigned int tag_size,
460 enum target_prot_op prot_op,
461 const char *initiatorname, void *private,
462 int (*callback)(struct se_portal_group *,
463 struct se_session *, void *))
464 {
465 struct target_cmd_counter *cmd_cnt;
466 struct se_session *sess;
467 int rc;
468
469 cmd_cnt = target_alloc_cmd_counter();
470 if (!cmd_cnt)
471 return ERR_PTR(-ENOMEM);
472 /*
473 * If the fabric driver is using percpu-ida based pre allocation
474 * of I/O descriptor tags, go ahead and perform that setup now..
475 */
476 if (tag_num != 0)
477 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
478 else
479 sess = transport_alloc_session(prot_op);
480
481 if (IS_ERR(sess)) {
482 rc = PTR_ERR(sess);
483 goto free_cnt;
484 }
485 sess->cmd_cnt = cmd_cnt;
486
487 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
488 (unsigned char *)initiatorname);
489 if (!sess->se_node_acl) {
490 rc = -EACCES;
491 goto free_sess;
492 }
493 /*
494 * Go ahead and perform any remaining fabric setup that is
495 * required before transport_register_session().
496 */
497 if (callback != NULL) {
498 rc = callback(tpg, sess, private);
499 if (rc)
500 goto free_sess;
501 }
502
503 transport_register_session(tpg, sess->se_node_acl, sess, private);
504 return sess;
505
506 free_sess:
507 transport_free_session(sess);
508 return ERR_PTR(rc);
509
510 free_cnt:
511 target_free_cmd_counter(cmd_cnt);
512 return ERR_PTR(rc);
513 }
514 EXPORT_SYMBOL(target_setup_session);
515
target_show_dynamic_sessions(struct se_portal_group * se_tpg,char * page)516 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
517 {
518 struct se_session *se_sess;
519 ssize_t len = 0;
520
521 spin_lock_bh(&se_tpg->session_lock);
522 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
523 if (!se_sess->se_node_acl)
524 continue;
525 if (!se_sess->se_node_acl->dynamic_node_acl)
526 continue;
527 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
528 break;
529
530 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
531 se_sess->se_node_acl->initiatorname);
532 len += 1; /* Include NULL terminator */
533 }
534 spin_unlock_bh(&se_tpg->session_lock);
535
536 return len;
537 }
538 EXPORT_SYMBOL(target_show_dynamic_sessions);
539
target_complete_nacl(struct kref * kref)540 static void target_complete_nacl(struct kref *kref)
541 {
542 struct se_node_acl *nacl = container_of(kref,
543 struct se_node_acl, acl_kref);
544 struct se_portal_group *se_tpg = nacl->se_tpg;
545
546 if (!nacl->dynamic_stop) {
547 complete(&nacl->acl_free_comp);
548 return;
549 }
550
551 mutex_lock(&se_tpg->acl_node_mutex);
552 list_del_init(&nacl->acl_list);
553 mutex_unlock(&se_tpg->acl_node_mutex);
554
555 core_tpg_wait_for_nacl_pr_ref(nacl);
556 core_free_device_list_for_node(nacl, se_tpg);
557 kfree(nacl);
558 }
559
target_put_nacl(struct se_node_acl * nacl)560 void target_put_nacl(struct se_node_acl *nacl)
561 {
562 kref_put(&nacl->acl_kref, target_complete_nacl);
563 }
564 EXPORT_SYMBOL(target_put_nacl);
565
transport_deregister_session_configfs(struct se_session * se_sess)566 void transport_deregister_session_configfs(struct se_session *se_sess)
567 {
568 struct se_node_acl *se_nacl;
569 unsigned long flags;
570 /*
571 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
572 */
573 se_nacl = se_sess->se_node_acl;
574 if (se_nacl) {
575 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
576 if (!list_empty(&se_sess->sess_acl_list))
577 list_del_init(&se_sess->sess_acl_list);
578 /*
579 * If the session list is empty, then clear the pointer.
580 * Otherwise, set the struct se_session pointer from the tail
581 * element of the per struct se_node_acl active session list.
582 */
583 if (list_empty(&se_nacl->acl_sess_list))
584 se_nacl->nacl_sess = NULL;
585 else {
586 se_nacl->nacl_sess = container_of(
587 se_nacl->acl_sess_list.prev,
588 struct se_session, sess_acl_list);
589 }
590 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
591 }
592 }
593 EXPORT_SYMBOL(transport_deregister_session_configfs);
594
transport_free_session(struct se_session * se_sess)595 void transport_free_session(struct se_session *se_sess)
596 {
597 struct se_node_acl *se_nacl = se_sess->se_node_acl;
598
599 /*
600 * Drop the se_node_acl->nacl_kref obtained from within
601 * core_tpg_get_initiator_node_acl().
602 */
603 if (se_nacl) {
604 struct se_portal_group *se_tpg = se_nacl->se_tpg;
605 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
606 unsigned long flags;
607
608 se_sess->se_node_acl = NULL;
609
610 /*
611 * Also determine if we need to drop the extra ->cmd_kref if
612 * it had been previously dynamically generated, and
613 * the endpoint is not caching dynamic ACLs.
614 */
615 mutex_lock(&se_tpg->acl_node_mutex);
616 if (se_nacl->dynamic_node_acl &&
617 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
618 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
619 if (list_empty(&se_nacl->acl_sess_list))
620 se_nacl->dynamic_stop = true;
621 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
622
623 if (se_nacl->dynamic_stop)
624 list_del_init(&se_nacl->acl_list);
625 }
626 mutex_unlock(&se_tpg->acl_node_mutex);
627
628 if (se_nacl->dynamic_stop)
629 target_put_nacl(se_nacl);
630
631 target_put_nacl(se_nacl);
632 }
633 if (se_sess->sess_cmd_map) {
634 sbitmap_queue_free(&se_sess->sess_tag_pool);
635 kvfree(se_sess->sess_cmd_map);
636 }
637 if (se_sess->cmd_cnt)
638 target_free_cmd_counter(se_sess->cmd_cnt);
639 kmem_cache_free(se_sess_cache, se_sess);
640 }
641 EXPORT_SYMBOL(transport_free_session);
642
target_release_res(struct se_device * dev,void * data)643 static int target_release_res(struct se_device *dev, void *data)
644 {
645 struct se_session *sess = data;
646
647 if (dev->reservation_holder == sess)
648 target_release_reservation(dev);
649 return 0;
650 }
651
transport_deregister_session(struct se_session * se_sess)652 void transport_deregister_session(struct se_session *se_sess)
653 {
654 struct se_portal_group *se_tpg = se_sess->se_tpg;
655 unsigned long flags;
656
657 if (!se_tpg) {
658 transport_free_session(se_sess);
659 return;
660 }
661
662 spin_lock_irqsave(&se_tpg->session_lock, flags);
663 list_del(&se_sess->sess_list);
664 se_sess->se_tpg = NULL;
665 se_sess->fabric_sess_ptr = NULL;
666 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
667
668 /*
669 * Since the session is being removed, release SPC-2
670 * reservations held by the session that is disappearing.
671 */
672 target_for_each_device(target_release_res, se_sess);
673
674 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
675 se_tpg->se_tpg_tfo->fabric_name);
676 /*
677 * If last kref is dropping now for an explicit NodeACL, awake sleeping
678 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
679 * removal context from within transport_free_session() code.
680 *
681 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
682 * to release all remaining generate_node_acl=1 created ACL resources.
683 */
684
685 transport_free_session(se_sess);
686 }
687 EXPORT_SYMBOL(transport_deregister_session);
688
target_remove_session(struct se_session * se_sess)689 void target_remove_session(struct se_session *se_sess)
690 {
691 transport_deregister_session_configfs(se_sess);
692 transport_deregister_session(se_sess);
693 }
694 EXPORT_SYMBOL(target_remove_session);
695
target_remove_from_state_list(struct se_cmd * cmd)696 static void target_remove_from_state_list(struct se_cmd *cmd)
697 {
698 struct se_device *dev = cmd->se_dev;
699 unsigned long flags;
700
701 if (!dev)
702 return;
703
704 spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
705 if (cmd->state_active) {
706 list_del(&cmd->state_list);
707 cmd->state_active = false;
708 }
709 spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
710 }
711
target_remove_from_tmr_list(struct se_cmd * cmd)712 static void target_remove_from_tmr_list(struct se_cmd *cmd)
713 {
714 struct se_device *dev = NULL;
715 unsigned long flags;
716
717 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
718 dev = cmd->se_tmr_req->tmr_dev;
719
720 if (dev) {
721 spin_lock_irqsave(&dev->se_tmr_lock, flags);
722 if (cmd->se_tmr_req->tmr_dev)
723 list_del_init(&cmd->se_tmr_req->tmr_list);
724 spin_unlock_irqrestore(&dev->se_tmr_lock, flags);
725 }
726 }
727 /*
728 * This function is called by the target core after the target core has
729 * finished processing a SCSI command or SCSI TMF. Both the regular command
730 * processing code and the code for aborting commands can call this
731 * function. CMD_T_STOP is set if and only if another thread is waiting
732 * inside transport_wait_for_tasks() for t_transport_stop_comp.
733 */
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)734 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
735 {
736 unsigned long flags;
737
738 spin_lock_irqsave(&cmd->t_state_lock, flags);
739 /*
740 * Determine if frontend context caller is requesting the stopping of
741 * this command for frontend exceptions.
742 */
743 if (cmd->transport_state & CMD_T_STOP) {
744 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
745 __func__, __LINE__, cmd->tag);
746
747 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
748
749 complete_all(&cmd->t_transport_stop_comp);
750 return 1;
751 }
752 cmd->transport_state &= ~CMD_T_ACTIVE;
753 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
754
755 /*
756 * Some fabric modules like tcm_loop can release their internally
757 * allocated I/O reference and struct se_cmd now.
758 *
759 * Fabric modules are expected to return '1' here if the se_cmd being
760 * passed is released at this point, or zero if not being released.
761 */
762 return cmd->se_tfo->check_stop_free(cmd);
763 }
764
transport_lun_remove_cmd(struct se_cmd * cmd)765 static void transport_lun_remove_cmd(struct se_cmd *cmd)
766 {
767 struct se_lun *lun = cmd->se_lun;
768
769 if (!lun)
770 return;
771
772 target_remove_from_state_list(cmd);
773 target_remove_from_tmr_list(cmd);
774
775 if (cmpxchg(&cmd->lun_ref_active, true, false))
776 percpu_ref_put(&lun->lun_ref);
777
778 /*
779 * Clear struct se_cmd->se_lun before the handoff to FE.
780 */
781 cmd->se_lun = NULL;
782 }
783
target_complete_failure_work(struct work_struct * work)784 static void target_complete_failure_work(struct work_struct *work)
785 {
786 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
787
788 transport_generic_request_failure(cmd, cmd->sense_reason);
789 }
790
791 /*
792 * Used when asking transport to copy Sense Data from the underlying
793 * Linux/SCSI struct scsi_cmnd
794 */
transport_get_sense_buffer(struct se_cmd * cmd)795 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
796 {
797 struct se_device *dev = cmd->se_dev;
798
799 WARN_ON(!cmd->se_lun);
800
801 if (!dev)
802 return NULL;
803
804 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
805 return NULL;
806
807 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
808
809 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
810 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
811 return cmd->sense_buffer;
812 }
813
transport_copy_sense_to_cmd(struct se_cmd * cmd,unsigned char * sense)814 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
815 {
816 unsigned char *cmd_sense_buf;
817 unsigned long flags;
818
819 spin_lock_irqsave(&cmd->t_state_lock, flags);
820 cmd_sense_buf = transport_get_sense_buffer(cmd);
821 if (!cmd_sense_buf) {
822 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
823 return;
824 }
825
826 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
827 memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
828 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
829 }
830 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
831
target_handle_abort(struct se_cmd * cmd)832 static void target_handle_abort(struct se_cmd *cmd)
833 {
834 bool tas = cmd->transport_state & CMD_T_TAS;
835 bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
836 int ret;
837
838 pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
839
840 if (tas) {
841 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
842 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
843 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
844 cmd->t_task_cdb[0], cmd->tag);
845 trace_target_cmd_complete(cmd);
846 ret = cmd->se_tfo->queue_status(cmd);
847 if (ret) {
848 transport_handle_queue_full(cmd, cmd->se_dev,
849 ret, false);
850 return;
851 }
852 } else {
853 cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
854 cmd->se_tfo->queue_tm_rsp(cmd);
855 }
856 } else {
857 /*
858 * Allow the fabric driver to unmap any resources before
859 * releasing the descriptor via TFO->release_cmd().
860 */
861 cmd->se_tfo->aborted_task(cmd);
862 if (ack_kref)
863 WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
864 /*
865 * To do: establish a unit attention condition on the I_T
866 * nexus associated with cmd. See also the paragraph "Aborting
867 * commands" in SAM.
868 */
869 }
870
871 WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
872
873 transport_lun_remove_cmd(cmd);
874
875 transport_cmd_check_stop_to_fabric(cmd);
876 }
877
target_abort_work(struct work_struct * work)878 static void target_abort_work(struct work_struct *work)
879 {
880 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
881
882 target_handle_abort(cmd);
883 }
884
target_cmd_interrupted(struct se_cmd * cmd)885 static bool target_cmd_interrupted(struct se_cmd *cmd)
886 {
887 int post_ret;
888
889 if (cmd->transport_state & CMD_T_ABORTED) {
890 if (cmd->transport_complete_callback)
891 cmd->transport_complete_callback(cmd, false, &post_ret);
892 INIT_WORK(&cmd->work, target_abort_work);
893 queue_work(target_completion_wq, &cmd->work);
894 return true;
895 } else if (cmd->transport_state & CMD_T_STOP) {
896 if (cmd->transport_complete_callback)
897 cmd->transport_complete_callback(cmd, false, &post_ret);
898 complete_all(&cmd->t_transport_stop_comp);
899 return true;
900 }
901
902 return false;
903 }
904
905 /* May be called from interrupt context so must not sleep. */
target_complete_cmd_with_sense(struct se_cmd * cmd,u8 scsi_status,sense_reason_t sense_reason)906 void target_complete_cmd_with_sense(struct se_cmd *cmd, u8 scsi_status,
907 sense_reason_t sense_reason)
908 {
909 struct se_wwn *wwn = cmd->se_sess->se_tpg->se_tpg_wwn;
910 int success, cpu;
911 unsigned long flags;
912
913 if (target_cmd_interrupted(cmd))
914 return;
915
916 cmd->scsi_status = scsi_status;
917 cmd->sense_reason = sense_reason;
918
919 spin_lock_irqsave(&cmd->t_state_lock, flags);
920 switch (cmd->scsi_status) {
921 case SAM_STAT_CHECK_CONDITION:
922 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
923 success = 1;
924 else
925 success = 0;
926 break;
927 default:
928 success = 1;
929 break;
930 }
931
932 cmd->t_state = TRANSPORT_COMPLETE;
933 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
934 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
935
936 INIT_WORK(&cmd->work, success ? target_complete_ok_work :
937 target_complete_failure_work);
938
939 if (!wwn || wwn->cmd_compl_affinity == SE_COMPL_AFFINITY_CPUID)
940 cpu = cmd->cpuid;
941 else
942 cpu = wwn->cmd_compl_affinity;
943
944 queue_work_on(cpu, target_completion_wq, &cmd->work);
945 }
946 EXPORT_SYMBOL(target_complete_cmd_with_sense);
947
target_complete_cmd(struct se_cmd * cmd,u8 scsi_status)948 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
949 {
950 target_complete_cmd_with_sense(cmd, scsi_status, scsi_status ?
951 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE :
952 TCM_NO_SENSE);
953 }
954 EXPORT_SYMBOL(target_complete_cmd);
955
target_set_cmd_data_length(struct se_cmd * cmd,int length)956 void target_set_cmd_data_length(struct se_cmd *cmd, int length)
957 {
958 if (length < cmd->data_length) {
959 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
960 cmd->residual_count += cmd->data_length - length;
961 } else {
962 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
963 cmd->residual_count = cmd->data_length - length;
964 }
965
966 cmd->data_length = length;
967 }
968 }
969 EXPORT_SYMBOL(target_set_cmd_data_length);
970
target_complete_cmd_with_length(struct se_cmd * cmd,u8 scsi_status,int length)971 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
972 {
973 if (scsi_status == SAM_STAT_GOOD ||
974 cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) {
975 target_set_cmd_data_length(cmd, length);
976 }
977
978 target_complete_cmd(cmd, scsi_status);
979 }
980 EXPORT_SYMBOL(target_complete_cmd_with_length);
981
target_add_to_state_list(struct se_cmd * cmd)982 static void target_add_to_state_list(struct se_cmd *cmd)
983 {
984 struct se_device *dev = cmd->se_dev;
985 unsigned long flags;
986
987 spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
988 if (!cmd->state_active) {
989 list_add_tail(&cmd->state_list,
990 &dev->queues[cmd->cpuid].state_list);
991 cmd->state_active = true;
992 }
993 spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
994 }
995
996 /*
997 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
998 */
999 static void transport_write_pending_qf(struct se_cmd *cmd);
1000 static void transport_complete_qf(struct se_cmd *cmd);
1001
target_qf_do_work(struct work_struct * work)1002 void target_qf_do_work(struct work_struct *work)
1003 {
1004 struct se_device *dev = container_of(work, struct se_device,
1005 qf_work_queue);
1006 LIST_HEAD(qf_cmd_list);
1007 struct se_cmd *cmd, *cmd_tmp;
1008
1009 spin_lock_irq(&dev->qf_cmd_lock);
1010 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
1011 spin_unlock_irq(&dev->qf_cmd_lock);
1012
1013 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
1014 list_del(&cmd->se_qf_node);
1015 atomic_dec_mb(&dev->dev_qf_count);
1016
1017 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
1018 " context: %s\n", cmd->se_tfo->fabric_name, cmd,
1019 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
1020 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
1021 : "UNKNOWN");
1022
1023 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
1024 transport_write_pending_qf(cmd);
1025 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
1026 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
1027 transport_complete_qf(cmd);
1028 }
1029 }
1030
transport_dump_cmd_direction(struct se_cmd * cmd)1031 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1032 {
1033 switch (cmd->data_direction) {
1034 case DMA_NONE:
1035 return "NONE";
1036 case DMA_FROM_DEVICE:
1037 return "READ";
1038 case DMA_TO_DEVICE:
1039 return "WRITE";
1040 case DMA_BIDIRECTIONAL:
1041 return "BIDI";
1042 default:
1043 break;
1044 }
1045
1046 return "UNKNOWN";
1047 }
1048
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)1049 void transport_dump_dev_state(
1050 struct se_device *dev,
1051 char *b,
1052 int *bl)
1053 {
1054 *bl += sprintf(b + *bl, "Status: ");
1055 if (dev->export_count)
1056 *bl += sprintf(b + *bl, "ACTIVATED");
1057 else
1058 *bl += sprintf(b + *bl, "DEACTIVATED");
1059
1060 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
1061 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
1062 dev->dev_attrib.block_size,
1063 dev->dev_attrib.hw_max_sectors);
1064 *bl += sprintf(b + *bl, " ");
1065 }
1066
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1067 void transport_dump_vpd_proto_id(
1068 struct t10_vpd *vpd,
1069 unsigned char *p_buf,
1070 int p_buf_len)
1071 {
1072 unsigned char buf[VPD_TMP_BUF_SIZE];
1073 int len;
1074
1075 memset(buf, 0, VPD_TMP_BUF_SIZE);
1076 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1077
1078 switch (vpd->protocol_identifier) {
1079 case 0x00:
1080 sprintf(buf+len, "Fibre Channel\n");
1081 break;
1082 case 0x10:
1083 sprintf(buf+len, "Parallel SCSI\n");
1084 break;
1085 case 0x20:
1086 sprintf(buf+len, "SSA\n");
1087 break;
1088 case 0x30:
1089 sprintf(buf+len, "IEEE 1394\n");
1090 break;
1091 case 0x40:
1092 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1093 " Protocol\n");
1094 break;
1095 case 0x50:
1096 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1097 break;
1098 case 0x60:
1099 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1100 break;
1101 case 0x70:
1102 sprintf(buf+len, "Automation/Drive Interface Transport"
1103 " Protocol\n");
1104 break;
1105 case 0x80:
1106 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1107 break;
1108 default:
1109 sprintf(buf+len, "Unknown 0x%02x\n",
1110 vpd->protocol_identifier);
1111 break;
1112 }
1113
1114 if (p_buf)
1115 strncpy(p_buf, buf, p_buf_len);
1116 else
1117 pr_debug("%s", buf);
1118 }
1119
1120 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)1121 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1122 {
1123 /*
1124 * Check if the Protocol Identifier Valid (PIV) bit is set..
1125 *
1126 * from spc3r23.pdf section 7.5.1
1127 */
1128 if (page_83[1] & 0x80) {
1129 vpd->protocol_identifier = (page_83[0] & 0xf0);
1130 vpd->protocol_identifier_set = 1;
1131 transport_dump_vpd_proto_id(vpd, NULL, 0);
1132 }
1133 }
1134 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1135
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1136 int transport_dump_vpd_assoc(
1137 struct t10_vpd *vpd,
1138 unsigned char *p_buf,
1139 int p_buf_len)
1140 {
1141 unsigned char buf[VPD_TMP_BUF_SIZE];
1142 int ret = 0;
1143 int len;
1144
1145 memset(buf, 0, VPD_TMP_BUF_SIZE);
1146 len = sprintf(buf, "T10 VPD Identifier Association: ");
1147
1148 switch (vpd->association) {
1149 case 0x00:
1150 sprintf(buf+len, "addressed logical unit\n");
1151 break;
1152 case 0x10:
1153 sprintf(buf+len, "target port\n");
1154 break;
1155 case 0x20:
1156 sprintf(buf+len, "SCSI target device\n");
1157 break;
1158 default:
1159 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1160 ret = -EINVAL;
1161 break;
1162 }
1163
1164 if (p_buf)
1165 strncpy(p_buf, buf, p_buf_len);
1166 else
1167 pr_debug("%s", buf);
1168
1169 return ret;
1170 }
1171
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)1172 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1173 {
1174 /*
1175 * The VPD identification association..
1176 *
1177 * from spc3r23.pdf Section 7.6.3.1 Table 297
1178 */
1179 vpd->association = (page_83[1] & 0x30);
1180 return transport_dump_vpd_assoc(vpd, NULL, 0);
1181 }
1182 EXPORT_SYMBOL(transport_set_vpd_assoc);
1183
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1184 int transport_dump_vpd_ident_type(
1185 struct t10_vpd *vpd,
1186 unsigned char *p_buf,
1187 int p_buf_len)
1188 {
1189 unsigned char buf[VPD_TMP_BUF_SIZE];
1190 int ret = 0;
1191 int len;
1192
1193 memset(buf, 0, VPD_TMP_BUF_SIZE);
1194 len = sprintf(buf, "T10 VPD Identifier Type: ");
1195
1196 switch (vpd->device_identifier_type) {
1197 case 0x00:
1198 sprintf(buf+len, "Vendor specific\n");
1199 break;
1200 case 0x01:
1201 sprintf(buf+len, "T10 Vendor ID based\n");
1202 break;
1203 case 0x02:
1204 sprintf(buf+len, "EUI-64 based\n");
1205 break;
1206 case 0x03:
1207 sprintf(buf+len, "NAA\n");
1208 break;
1209 case 0x04:
1210 sprintf(buf+len, "Relative target port identifier\n");
1211 break;
1212 case 0x08:
1213 sprintf(buf+len, "SCSI name string\n");
1214 break;
1215 default:
1216 sprintf(buf+len, "Unsupported: 0x%02x\n",
1217 vpd->device_identifier_type);
1218 ret = -EINVAL;
1219 break;
1220 }
1221
1222 if (p_buf) {
1223 if (p_buf_len < strlen(buf)+1)
1224 return -EINVAL;
1225 strncpy(p_buf, buf, p_buf_len);
1226 } else {
1227 pr_debug("%s", buf);
1228 }
1229
1230 return ret;
1231 }
1232
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)1233 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1234 {
1235 /*
1236 * The VPD identifier type..
1237 *
1238 * from spc3r23.pdf Section 7.6.3.1 Table 298
1239 */
1240 vpd->device_identifier_type = (page_83[1] & 0x0f);
1241 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1242 }
1243 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1244
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1245 int transport_dump_vpd_ident(
1246 struct t10_vpd *vpd,
1247 unsigned char *p_buf,
1248 int p_buf_len)
1249 {
1250 unsigned char buf[VPD_TMP_BUF_SIZE];
1251 int ret = 0;
1252
1253 memset(buf, 0, VPD_TMP_BUF_SIZE);
1254
1255 switch (vpd->device_identifier_code_set) {
1256 case 0x01: /* Binary */
1257 snprintf(buf, sizeof(buf),
1258 "T10 VPD Binary Device Identifier: %s\n",
1259 &vpd->device_identifier[0]);
1260 break;
1261 case 0x02: /* ASCII */
1262 snprintf(buf, sizeof(buf),
1263 "T10 VPD ASCII Device Identifier: %s\n",
1264 &vpd->device_identifier[0]);
1265 break;
1266 case 0x03: /* UTF-8 */
1267 snprintf(buf, sizeof(buf),
1268 "T10 VPD UTF-8 Device Identifier: %s\n",
1269 &vpd->device_identifier[0]);
1270 break;
1271 default:
1272 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1273 " 0x%02x", vpd->device_identifier_code_set);
1274 ret = -EINVAL;
1275 break;
1276 }
1277
1278 if (p_buf)
1279 strncpy(p_buf, buf, p_buf_len);
1280 else
1281 pr_debug("%s", buf);
1282
1283 return ret;
1284 }
1285
1286 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1287 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1288 {
1289 static const char hex_str[] = "0123456789abcdef";
1290 int j = 0, i = 4; /* offset to start of the identifier */
1291
1292 /*
1293 * The VPD Code Set (encoding)
1294 *
1295 * from spc3r23.pdf Section 7.6.3.1 Table 296
1296 */
1297 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1298 switch (vpd->device_identifier_code_set) {
1299 case 0x01: /* Binary */
1300 vpd->device_identifier[j++] =
1301 hex_str[vpd->device_identifier_type];
1302 while (i < (4 + page_83[3])) {
1303 vpd->device_identifier[j++] =
1304 hex_str[(page_83[i] & 0xf0) >> 4];
1305 vpd->device_identifier[j++] =
1306 hex_str[page_83[i] & 0x0f];
1307 i++;
1308 }
1309 break;
1310 case 0x02: /* ASCII */
1311 case 0x03: /* UTF-8 */
1312 while (i < (4 + page_83[3]))
1313 vpd->device_identifier[j++] = page_83[i++];
1314 break;
1315 default:
1316 break;
1317 }
1318
1319 return transport_dump_vpd_ident(vpd, NULL, 0);
1320 }
1321 EXPORT_SYMBOL(transport_set_vpd_ident);
1322
1323 static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd * cmd,struct se_device * dev,unsigned int size)1324 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1325 unsigned int size)
1326 {
1327 u32 mtl;
1328
1329 if (!cmd->se_tfo->max_data_sg_nents)
1330 return TCM_NO_SENSE;
1331 /*
1332 * Check if fabric enforced maximum SGL entries per I/O descriptor
1333 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1334 * residual_count and reduce original cmd->data_length to maximum
1335 * length based on single PAGE_SIZE entry scatter-lists.
1336 */
1337 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1338 if (cmd->data_length > mtl) {
1339 /*
1340 * If an existing CDB overflow is present, calculate new residual
1341 * based on CDB size minus fabric maximum transfer length.
1342 *
1343 * If an existing CDB underflow is present, calculate new residual
1344 * based on original cmd->data_length minus fabric maximum transfer
1345 * length.
1346 *
1347 * Otherwise, set the underflow residual based on cmd->data_length
1348 * minus fabric maximum transfer length.
1349 */
1350 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1351 cmd->residual_count = (size - mtl);
1352 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1353 u32 orig_dl = size + cmd->residual_count;
1354 cmd->residual_count = (orig_dl - mtl);
1355 } else {
1356 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1357 cmd->residual_count = (cmd->data_length - mtl);
1358 }
1359 cmd->data_length = mtl;
1360 /*
1361 * Reset sbc_check_prot() calculated protection payload
1362 * length based upon the new smaller MTL.
1363 */
1364 if (cmd->prot_length) {
1365 u32 sectors = (mtl / dev->dev_attrib.block_size);
1366 cmd->prot_length = dev->prot_length * sectors;
1367 }
1368 }
1369 return TCM_NO_SENSE;
1370 }
1371
1372 /**
1373 * target_cmd_size_check - Check whether there will be a residual.
1374 * @cmd: SCSI command.
1375 * @size: Data buffer size derived from CDB. The data buffer size provided by
1376 * the SCSI transport driver is available in @cmd->data_length.
1377 *
1378 * Compare the data buffer size from the CDB with the data buffer limit from the transport
1379 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1380 *
1381 * Note: target drivers set @cmd->data_length by calling __target_init_cmd().
1382 *
1383 * Return: TCM_NO_SENSE
1384 */
1385 sense_reason_t
target_cmd_size_check(struct se_cmd * cmd,unsigned int size)1386 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1387 {
1388 struct se_device *dev = cmd->se_dev;
1389
1390 if (cmd->unknown_data_length) {
1391 cmd->data_length = size;
1392 } else if (size != cmd->data_length) {
1393 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1394 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1395 " 0x%02x\n", cmd->se_tfo->fabric_name,
1396 cmd->data_length, size, cmd->t_task_cdb[0]);
1397 /*
1398 * For READ command for the overflow case keep the existing
1399 * fabric provided ->data_length. Otherwise for the underflow
1400 * case, reset ->data_length to the smaller SCSI expected data
1401 * transfer length.
1402 */
1403 if (size > cmd->data_length) {
1404 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1405 cmd->residual_count = (size - cmd->data_length);
1406 } else {
1407 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1408 cmd->residual_count = (cmd->data_length - size);
1409 /*
1410 * Do not truncate ->data_length for WRITE command to
1411 * dump all payload
1412 */
1413 if (cmd->data_direction == DMA_FROM_DEVICE) {
1414 cmd->data_length = size;
1415 }
1416 }
1417
1418 if (cmd->data_direction == DMA_TO_DEVICE) {
1419 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1420 pr_err_ratelimited("Rejecting underflow/overflow"
1421 " for WRITE data CDB\n");
1422 return TCM_INVALID_FIELD_IN_COMMAND_IU;
1423 }
1424 /*
1425 * Some fabric drivers like iscsi-target still expect to
1426 * always reject overflow writes. Reject this case until
1427 * full fabric driver level support for overflow writes
1428 * is introduced tree-wide.
1429 */
1430 if (size > cmd->data_length) {
1431 pr_err_ratelimited("Rejecting overflow for"
1432 " WRITE control CDB\n");
1433 return TCM_INVALID_CDB_FIELD;
1434 }
1435 }
1436 }
1437
1438 return target_check_max_data_sg_nents(cmd, dev, size);
1439
1440 }
1441
1442 /*
1443 * Used by fabric modules containing a local struct se_cmd within their
1444 * fabric dependent per I/O descriptor.
1445 *
1446 * Preserves the value of @cmd->tag.
1447 */
__target_init_cmd(struct se_cmd * cmd,const struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer,u64 unpacked_lun,struct target_cmd_counter * cmd_cnt)1448 void __target_init_cmd(struct se_cmd *cmd,
1449 const struct target_core_fabric_ops *tfo,
1450 struct se_session *se_sess, u32 data_length,
1451 int data_direction, int task_attr,
1452 unsigned char *sense_buffer, u64 unpacked_lun,
1453 struct target_cmd_counter *cmd_cnt)
1454 {
1455 INIT_LIST_HEAD(&cmd->se_delayed_node);
1456 INIT_LIST_HEAD(&cmd->se_qf_node);
1457 INIT_LIST_HEAD(&cmd->state_list);
1458 init_completion(&cmd->t_transport_stop_comp);
1459 cmd->free_compl = NULL;
1460 cmd->abrt_compl = NULL;
1461 spin_lock_init(&cmd->t_state_lock);
1462 INIT_WORK(&cmd->work, NULL);
1463 kref_init(&cmd->cmd_kref);
1464
1465 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1466 cmd->se_tfo = tfo;
1467 cmd->se_sess = se_sess;
1468 cmd->data_length = data_length;
1469 cmd->data_direction = data_direction;
1470 cmd->sam_task_attr = task_attr;
1471 cmd->sense_buffer = sense_buffer;
1472 cmd->orig_fe_lun = unpacked_lun;
1473 cmd->cmd_cnt = cmd_cnt;
1474
1475 if (!(cmd->se_cmd_flags & SCF_USE_CPUID))
1476 cmd->cpuid = raw_smp_processor_id();
1477
1478 cmd->state_active = false;
1479 }
1480 EXPORT_SYMBOL(__target_init_cmd);
1481
1482 static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd * cmd)1483 transport_check_alloc_task_attr(struct se_cmd *cmd)
1484 {
1485 struct se_device *dev = cmd->se_dev;
1486
1487 /*
1488 * Check if SAM Task Attribute emulation is enabled for this
1489 * struct se_device storage object
1490 */
1491 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1492 return 0;
1493
1494 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1495 pr_debug("SAM Task Attribute ACA"
1496 " emulation is not supported\n");
1497 return TCM_INVALID_CDB_FIELD;
1498 }
1499
1500 return 0;
1501 }
1502
1503 sense_reason_t
target_cmd_init_cdb(struct se_cmd * cmd,unsigned char * cdb,gfp_t gfp)1504 target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb, gfp_t gfp)
1505 {
1506 sense_reason_t ret;
1507
1508 /*
1509 * Ensure that the received CDB is less than the max (252 + 8) bytes
1510 * for VARIABLE_LENGTH_CMD
1511 */
1512 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1513 pr_err("Received SCSI CDB with command_size: %d that"
1514 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1515 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1516 ret = TCM_INVALID_CDB_FIELD;
1517 goto err;
1518 }
1519 /*
1520 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1521 * allocate the additional extended CDB buffer now.. Otherwise
1522 * setup the pointer from __t_task_cdb to t_task_cdb.
1523 */
1524 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1525 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), gfp);
1526 if (!cmd->t_task_cdb) {
1527 pr_err("Unable to allocate cmd->t_task_cdb"
1528 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1529 scsi_command_size(cdb),
1530 (unsigned long)sizeof(cmd->__t_task_cdb));
1531 ret = TCM_OUT_OF_RESOURCES;
1532 goto err;
1533 }
1534 }
1535 /*
1536 * Copy the original CDB into cmd->
1537 */
1538 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1539
1540 trace_target_sequencer_start(cmd);
1541 return 0;
1542
1543 err:
1544 /*
1545 * Copy the CDB here to allow trace_target_cmd_complete() to
1546 * print the cdb to the trace buffers.
1547 */
1548 memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb),
1549 (unsigned int)TCM_MAX_COMMAND_SIZE));
1550 return ret;
1551 }
1552 EXPORT_SYMBOL(target_cmd_init_cdb);
1553
1554 sense_reason_t
target_cmd_parse_cdb(struct se_cmd * cmd)1555 target_cmd_parse_cdb(struct se_cmd *cmd)
1556 {
1557 struct se_device *dev = cmd->se_dev;
1558 sense_reason_t ret;
1559
1560 ret = dev->transport->parse_cdb(cmd);
1561 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1562 pr_debug_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1563 cmd->se_tfo->fabric_name,
1564 cmd->se_sess->se_node_acl->initiatorname,
1565 cmd->t_task_cdb[0]);
1566 if (ret)
1567 return ret;
1568
1569 ret = transport_check_alloc_task_attr(cmd);
1570 if (ret)
1571 return ret;
1572
1573 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1574 /*
1575 * If this is the xcopy_lun then we won't have lun_stats since we
1576 * can't export them.
1577 */
1578 if (cmd->se_lun->lun_stats)
1579 this_cpu_inc(cmd->se_lun->lun_stats->cmd_pdus);
1580 return 0;
1581 }
1582 EXPORT_SYMBOL(target_cmd_parse_cdb);
1583
__target_submit(struct se_cmd * cmd)1584 static int __target_submit(struct se_cmd *cmd)
1585 {
1586 sense_reason_t ret;
1587
1588 might_sleep();
1589
1590 /*
1591 * Check if we need to delay processing because of ALUA
1592 * Active/NonOptimized primary access state..
1593 */
1594 core_alua_check_nonop_delay(cmd);
1595
1596 if (cmd->t_data_nents != 0) {
1597 /*
1598 * This is primarily a hack for udev and tcm loop which sends
1599 * INQUIRYs with a single page and expects the data to be
1600 * cleared.
1601 */
1602 if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1603 cmd->data_direction == DMA_FROM_DEVICE) {
1604 struct scatterlist *sgl = cmd->t_data_sg;
1605 unsigned char *buf = NULL;
1606
1607 BUG_ON(!sgl);
1608
1609 buf = kmap_local_page(sg_page(sgl));
1610 if (buf) {
1611 memset(buf + sgl->offset, 0, sgl->length);
1612 kunmap_local(buf);
1613 }
1614 }
1615 }
1616
1617 if (!cmd->se_lun) {
1618 dump_stack();
1619 pr_err("cmd->se_lun is NULL\n");
1620 return -EINVAL;
1621 }
1622
1623 /*
1624 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1625 * outstanding descriptors are handled correctly during shutdown via
1626 * transport_wait_for_tasks()
1627 *
1628 * Also, we don't take cmd->t_state_lock here as we only expect
1629 * this to be called for initial descriptor submission.
1630 */
1631 cmd->t_state = TRANSPORT_NEW_CMD;
1632 cmd->transport_state |= CMD_T_ACTIVE;
1633
1634 /*
1635 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1636 * so follow TRANSPORT_NEW_CMD processing thread context usage
1637 * and call transport_generic_request_failure() if necessary..
1638 */
1639 ret = transport_generic_new_cmd(cmd);
1640 if (ret)
1641 transport_generic_request_failure(cmd, ret);
1642 return 0;
1643 }
1644
1645 sense_reason_t
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)1646 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1647 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1648 {
1649 if (!sgl || !sgl_count)
1650 return 0;
1651
1652 /*
1653 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1654 * scatterlists already have been set to follow what the fabric
1655 * passes for the original expected data transfer length.
1656 */
1657 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1658 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1659 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1660 return TCM_INVALID_CDB_FIELD;
1661 }
1662
1663 cmd->t_data_sg = sgl;
1664 cmd->t_data_nents = sgl_count;
1665 cmd->t_bidi_data_sg = sgl_bidi;
1666 cmd->t_bidi_data_nents = sgl_bidi_count;
1667
1668 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1669 return 0;
1670 }
1671
1672 /**
1673 * target_init_cmd - initialize se_cmd
1674 * @se_cmd: command descriptor to init
1675 * @se_sess: associated se_sess for endpoint
1676 * @sense: pointer to SCSI sense buffer
1677 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1678 * @data_length: fabric expected data transfer length
1679 * @task_attr: SAM task attribute
1680 * @data_dir: DMA data direction
1681 * @flags: flags for command submission from target_sc_flags_tables
1682 *
1683 * Task tags are supported if the caller has set @se_cmd->tag.
1684 *
1685 * Returns:
1686 * - less than zero to signal active I/O shutdown failure.
1687 * - zero on success.
1688 *
1689 * If the fabric driver calls target_stop_session, then it must check the
1690 * return code and handle failures. This will never fail for other drivers,
1691 * and the return code can be ignored.
1692 */
target_init_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1693 int target_init_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1694 unsigned char *sense, u64 unpacked_lun,
1695 u32 data_length, int task_attr, int data_dir, int flags)
1696 {
1697 struct se_portal_group *se_tpg;
1698
1699 se_tpg = se_sess->se_tpg;
1700 BUG_ON(!se_tpg);
1701 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1702
1703 if (flags & TARGET_SCF_USE_CPUID)
1704 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1705 /*
1706 * Signal bidirectional data payloads to target-core
1707 */
1708 if (flags & TARGET_SCF_BIDI_OP)
1709 se_cmd->se_cmd_flags |= SCF_BIDI;
1710
1711 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1712 se_cmd->unknown_data_length = 1;
1713 /*
1714 * Initialize se_cmd for target operation. From this point
1715 * exceptions are handled by sending exception status via
1716 * target_core_fabric_ops->queue_status() callback
1717 */
1718 __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, data_length,
1719 data_dir, task_attr, sense, unpacked_lun,
1720 se_sess->cmd_cnt);
1721
1722 /*
1723 * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is
1724 * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second
1725 * kref_put() to happen during fabric packet acknowledgement.
1726 */
1727 return target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1728 }
1729 EXPORT_SYMBOL_GPL(target_init_cmd);
1730
1731 /**
1732 * target_submit_prep - prepare cmd for submission
1733 * @se_cmd: command descriptor to prep
1734 * @cdb: pointer to SCSI CDB
1735 * @sgl: struct scatterlist memory for unidirectional mapping
1736 * @sgl_count: scatterlist count for unidirectional mapping
1737 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1738 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1739 * @sgl_prot: struct scatterlist memory protection information
1740 * @sgl_prot_count: scatterlist count for protection information
1741 * @gfp: gfp allocation type
1742 *
1743 * Returns:
1744 * - less than zero to signal failure.
1745 * - zero on success.
1746 *
1747 * If failure is returned, lio will the callers queue_status to complete
1748 * the cmd.
1749 */
target_submit_prep(struct se_cmd * se_cmd,unsigned char * cdb,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count,struct scatterlist * sgl_prot,u32 sgl_prot_count,gfp_t gfp)1750 int target_submit_prep(struct se_cmd *se_cmd, unsigned char *cdb,
1751 struct scatterlist *sgl, u32 sgl_count,
1752 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1753 struct scatterlist *sgl_prot, u32 sgl_prot_count,
1754 gfp_t gfp)
1755 {
1756 sense_reason_t rc;
1757
1758 rc = target_cmd_init_cdb(se_cmd, cdb, gfp);
1759 if (rc)
1760 goto send_cc_direct;
1761
1762 /*
1763 * Locate se_lun pointer and attach it to struct se_cmd
1764 */
1765 rc = transport_lookup_cmd_lun(se_cmd);
1766 if (rc)
1767 goto send_cc_direct;
1768
1769 rc = target_cmd_parse_cdb(se_cmd);
1770 if (rc != 0)
1771 goto generic_fail;
1772
1773 /*
1774 * Save pointers for SGLs containing protection information,
1775 * if present.
1776 */
1777 if (sgl_prot_count) {
1778 se_cmd->t_prot_sg = sgl_prot;
1779 se_cmd->t_prot_nents = sgl_prot_count;
1780 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1781 }
1782
1783 /*
1784 * When a non zero sgl_count has been passed perform SGL passthrough
1785 * mapping for pre-allocated fabric memory instead of having target
1786 * core perform an internal SGL allocation..
1787 */
1788 if (sgl_count != 0) {
1789 BUG_ON(!sgl);
1790
1791 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1792 sgl_bidi, sgl_bidi_count);
1793 if (rc != 0)
1794 goto generic_fail;
1795 }
1796
1797 return 0;
1798
1799 send_cc_direct:
1800 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1801 target_put_sess_cmd(se_cmd);
1802 return -EIO;
1803
1804 generic_fail:
1805 transport_generic_request_failure(se_cmd, rc);
1806 return -EIO;
1807 }
1808 EXPORT_SYMBOL_GPL(target_submit_prep);
1809
1810 /**
1811 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1812 *
1813 * @se_cmd: command descriptor to submit
1814 * @se_sess: associated se_sess for endpoint
1815 * @cdb: pointer to SCSI CDB
1816 * @sense: pointer to SCSI sense buffer
1817 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1818 * @data_length: fabric expected data transfer length
1819 * @task_attr: SAM task attribute
1820 * @data_dir: DMA data direction
1821 * @flags: flags for command submission from target_sc_flags_tables
1822 *
1823 * Task tags are supported if the caller has set @se_cmd->tag.
1824 *
1825 * This may only be called from process context, and also currently
1826 * assumes internal allocation of fabric payload buffer by target-core.
1827 *
1828 * It also assumes interal target core SGL memory allocation.
1829 *
1830 * This function must only be used by drivers that do their own
1831 * sync during shutdown and does not use target_stop_session. If there
1832 * is a failure this function will call into the fabric driver's
1833 * queue_status with a CHECK_CONDITION.
1834 */
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1835 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1836 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1837 u32 data_length, int task_attr, int data_dir, int flags)
1838 {
1839 int rc;
1840
1841 rc = target_init_cmd(se_cmd, se_sess, sense, unpacked_lun, data_length,
1842 task_attr, data_dir, flags);
1843 WARN(rc, "Invalid target_submit_cmd use. Driver must not use target_stop_session or call target_init_cmd directly.\n");
1844 if (rc)
1845 return;
1846
1847 if (target_submit_prep(se_cmd, cdb, NULL, 0, NULL, 0, NULL, 0,
1848 GFP_KERNEL))
1849 return;
1850
1851 target_submit(se_cmd);
1852 }
1853 EXPORT_SYMBOL(target_submit_cmd);
1854
1855
target_plug_device(struct se_device * se_dev)1856 static struct se_dev_plug *target_plug_device(struct se_device *se_dev)
1857 {
1858 struct se_dev_plug *se_plug;
1859
1860 if (!se_dev->transport->plug_device)
1861 return NULL;
1862
1863 se_plug = se_dev->transport->plug_device(se_dev);
1864 if (!se_plug)
1865 return NULL;
1866
1867 se_plug->se_dev = se_dev;
1868 /*
1869 * We have a ref to the lun at this point, but the cmds could
1870 * complete before we unplug, so grab a ref to the se_device so we
1871 * can call back into the backend.
1872 */
1873 config_group_get(&se_dev->dev_group);
1874 return se_plug;
1875 }
1876
target_unplug_device(struct se_dev_plug * se_plug)1877 static void target_unplug_device(struct se_dev_plug *se_plug)
1878 {
1879 struct se_device *se_dev = se_plug->se_dev;
1880
1881 se_dev->transport->unplug_device(se_plug);
1882 config_group_put(&se_dev->dev_group);
1883 }
1884
target_queued_submit_work(struct work_struct * work)1885 void target_queued_submit_work(struct work_struct *work)
1886 {
1887 struct se_cmd_queue *sq = container_of(work, struct se_cmd_queue, work);
1888 struct se_cmd *se_cmd, *next_cmd;
1889 struct se_dev_plug *se_plug = NULL;
1890 struct se_device *se_dev = NULL;
1891 struct llist_node *cmd_list;
1892
1893 cmd_list = llist_del_all(&sq->cmd_list);
1894 if (!cmd_list)
1895 /* Previous call took what we were queued to submit */
1896 return;
1897
1898 cmd_list = llist_reverse_order(cmd_list);
1899 llist_for_each_entry_safe(se_cmd, next_cmd, cmd_list, se_cmd_list) {
1900 if (!se_dev) {
1901 se_dev = se_cmd->se_dev;
1902 se_plug = target_plug_device(se_dev);
1903 }
1904
1905 __target_submit(se_cmd);
1906 }
1907
1908 if (se_plug)
1909 target_unplug_device(se_plug);
1910 }
1911
1912 /**
1913 * target_queue_submission - queue the cmd to run on the LIO workqueue
1914 * @se_cmd: command descriptor to submit
1915 */
target_queue_submission(struct se_cmd * se_cmd)1916 static void target_queue_submission(struct se_cmd *se_cmd)
1917 {
1918 struct se_device *se_dev = se_cmd->se_dev;
1919 int cpu = se_cmd->cpuid;
1920 struct se_cmd_queue *sq;
1921
1922 sq = &se_dev->queues[cpu].sq;
1923 llist_add(&se_cmd->se_cmd_list, &sq->cmd_list);
1924 queue_work_on(cpu, target_submission_wq, &sq->work);
1925 }
1926
1927 /**
1928 * target_submit - perform final initialization and submit cmd to LIO core
1929 * @se_cmd: command descriptor to submit
1930 *
1931 * target_submit_prep or something similar must have been called on the cmd,
1932 * and this must be called from process context.
1933 */
target_submit(struct se_cmd * se_cmd)1934 int target_submit(struct se_cmd *se_cmd)
1935 {
1936 const struct target_core_fabric_ops *tfo = se_cmd->se_sess->se_tpg->se_tpg_tfo;
1937 struct se_dev_attrib *da = &se_cmd->se_dev->dev_attrib;
1938 u8 submit_type;
1939
1940 if (da->submit_type == TARGET_FABRIC_DEFAULT_SUBMIT)
1941 submit_type = tfo->default_submit_type;
1942 else if (da->submit_type == TARGET_DIRECT_SUBMIT &&
1943 tfo->direct_submit_supp)
1944 submit_type = TARGET_DIRECT_SUBMIT;
1945 else
1946 submit_type = TARGET_QUEUE_SUBMIT;
1947
1948 if (submit_type == TARGET_DIRECT_SUBMIT)
1949 return __target_submit(se_cmd);
1950
1951 target_queue_submission(se_cmd);
1952 return 0;
1953 }
1954 EXPORT_SYMBOL_GPL(target_submit);
1955
target_complete_tmr_failure(struct work_struct * work)1956 static void target_complete_tmr_failure(struct work_struct *work)
1957 {
1958 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1959
1960 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1961 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1962
1963 transport_lun_remove_cmd(se_cmd);
1964 transport_cmd_check_stop_to_fabric(se_cmd);
1965 }
1966
1967 /**
1968 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1969 * for TMR CDBs
1970 *
1971 * @se_cmd: command descriptor to submit
1972 * @se_sess: associated se_sess for endpoint
1973 * @sense: pointer to SCSI sense buffer
1974 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1975 * @fabric_tmr_ptr: fabric context for TMR req
1976 * @tm_type: Type of TM request
1977 * @gfp: gfp type for caller
1978 * @tag: referenced task tag for TMR_ABORT_TASK
1979 * @flags: submit cmd flags
1980 *
1981 * Callable from all contexts.
1982 **/
1983
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u64 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,u64 tag,int flags)1984 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1985 unsigned char *sense, u64 unpacked_lun,
1986 void *fabric_tmr_ptr, unsigned char tm_type,
1987 gfp_t gfp, u64 tag, int flags)
1988 {
1989 struct se_portal_group *se_tpg;
1990 int ret;
1991
1992 se_tpg = se_sess->se_tpg;
1993 BUG_ON(!se_tpg);
1994
1995 __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1996 0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun,
1997 se_sess->cmd_cnt);
1998 /*
1999 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
2000 * allocation failure.
2001 */
2002 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
2003 if (ret < 0)
2004 return -ENOMEM;
2005
2006 if (tm_type == TMR_ABORT_TASK)
2007 se_cmd->se_tmr_req->ref_task_tag = tag;
2008
2009 /* See target_submit_cmd for commentary */
2010 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
2011 if (ret) {
2012 core_tmr_release_req(se_cmd->se_tmr_req);
2013 return ret;
2014 }
2015
2016 ret = transport_lookup_tmr_lun(se_cmd);
2017 if (ret)
2018 goto failure;
2019
2020 transport_generic_handle_tmr(se_cmd);
2021 return 0;
2022
2023 /*
2024 * For callback during failure handling, push this work off
2025 * to process context with TMR_LUN_DOES_NOT_EXIST status.
2026 */
2027 failure:
2028 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
2029 schedule_work(&se_cmd->work);
2030 return 0;
2031 }
2032 EXPORT_SYMBOL(target_submit_tmr);
2033
2034 /*
2035 * Handle SAM-esque emulation for generic transport request failures.
2036 */
transport_generic_request_failure(struct se_cmd * cmd,sense_reason_t sense_reason)2037 void transport_generic_request_failure(struct se_cmd *cmd,
2038 sense_reason_t sense_reason)
2039 {
2040 int ret = 0, post_ret;
2041
2042 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
2043 sense_reason);
2044 target_show_cmd("-----[ ", cmd);
2045
2046 /*
2047 * For SAM Task Attribute emulation for failed struct se_cmd
2048 */
2049 transport_complete_task_attr(cmd);
2050
2051 if (cmd->transport_complete_callback)
2052 cmd->transport_complete_callback(cmd, false, &post_ret);
2053
2054 if (cmd->transport_state & CMD_T_ABORTED) {
2055 INIT_WORK(&cmd->work, target_abort_work);
2056 queue_work(target_completion_wq, &cmd->work);
2057 return;
2058 }
2059
2060 switch (sense_reason) {
2061 case TCM_NON_EXISTENT_LUN:
2062 case TCM_UNSUPPORTED_SCSI_OPCODE:
2063 case TCM_INVALID_CDB_FIELD:
2064 case TCM_INVALID_PARAMETER_LIST:
2065 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2066 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2067 case TCM_UNKNOWN_MODE_PAGE:
2068 case TCM_WRITE_PROTECTED:
2069 case TCM_ADDRESS_OUT_OF_RANGE:
2070 case TCM_CHECK_CONDITION_ABORT_CMD:
2071 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2072 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2073 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2074 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2075 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
2076 case TCM_TOO_MANY_TARGET_DESCS:
2077 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
2078 case TCM_TOO_MANY_SEGMENT_DESCS:
2079 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
2080 case TCM_INVALID_FIELD_IN_COMMAND_IU:
2081 case TCM_ALUA_TG_PT_STANDBY:
2082 case TCM_ALUA_TG_PT_UNAVAILABLE:
2083 case TCM_ALUA_STATE_TRANSITION:
2084 case TCM_ALUA_OFFLINE:
2085 break;
2086 case TCM_OUT_OF_RESOURCES:
2087 cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
2088 goto queue_status;
2089 case TCM_LUN_BUSY:
2090 cmd->scsi_status = SAM_STAT_BUSY;
2091 goto queue_status;
2092 case TCM_RESERVATION_CONFLICT:
2093 /*
2094 * No SENSE Data payload for this case, set SCSI Status
2095 * and queue the response to $FABRIC_MOD.
2096 *
2097 * Uses linux/include/scsi/scsi.h SAM status codes defs
2098 */
2099 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2100 /*
2101 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2102 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2103 * CONFLICT STATUS.
2104 *
2105 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2106 */
2107 if (cmd->se_sess &&
2108 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl
2109 == TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) {
2110 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
2111 cmd->orig_fe_lun, 0x2C,
2112 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2113 }
2114
2115 goto queue_status;
2116 default:
2117 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2118 cmd->t_task_cdb[0], sense_reason);
2119 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2120 break;
2121 }
2122
2123 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
2124 if (ret)
2125 goto queue_full;
2126
2127 check_stop:
2128 transport_lun_remove_cmd(cmd);
2129 transport_cmd_check_stop_to_fabric(cmd);
2130 return;
2131
2132 queue_status:
2133 trace_target_cmd_complete(cmd);
2134 ret = cmd->se_tfo->queue_status(cmd);
2135 if (!ret)
2136 goto check_stop;
2137 queue_full:
2138 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2139 }
2140 EXPORT_SYMBOL(transport_generic_request_failure);
2141
__target_execute_cmd(struct se_cmd * cmd,bool do_checks)2142 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
2143 {
2144 sense_reason_t ret;
2145
2146 if (!cmd->execute_cmd) {
2147 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2148 goto err;
2149 }
2150 if (do_checks) {
2151 /*
2152 * Check for an existing UNIT ATTENTION condition after
2153 * target_handle_task_attr() has done SAM task attr
2154 * checking, and possibly have already defered execution
2155 * out to target_restart_delayed_cmds() context.
2156 */
2157 ret = target_scsi3_ua_check(cmd);
2158 if (ret)
2159 goto err;
2160
2161 ret = target_alua_state_check(cmd);
2162 if (ret)
2163 goto err;
2164
2165 ret = target_check_reservation(cmd);
2166 if (ret) {
2167 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2168 goto err;
2169 }
2170 }
2171
2172 ret = cmd->execute_cmd(cmd);
2173 if (!ret)
2174 return;
2175 err:
2176 spin_lock_irq(&cmd->t_state_lock);
2177 cmd->transport_state &= ~CMD_T_SENT;
2178 spin_unlock_irq(&cmd->t_state_lock);
2179
2180 transport_generic_request_failure(cmd, ret);
2181 }
2182
target_write_prot_action(struct se_cmd * cmd)2183 static int target_write_prot_action(struct se_cmd *cmd)
2184 {
2185 u32 sectors;
2186 /*
2187 * Perform WRITE_INSERT of PI using software emulation when backend
2188 * device has PI enabled, if the transport has not already generated
2189 * PI using hardware WRITE_INSERT offload.
2190 */
2191 switch (cmd->prot_op) {
2192 case TARGET_PROT_DOUT_INSERT:
2193 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
2194 sbc_dif_generate(cmd);
2195 break;
2196 case TARGET_PROT_DOUT_STRIP:
2197 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
2198 break;
2199
2200 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
2201 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2202 sectors, 0, cmd->t_prot_sg, 0);
2203 if (unlikely(cmd->pi_err)) {
2204 spin_lock_irq(&cmd->t_state_lock);
2205 cmd->transport_state &= ~CMD_T_SENT;
2206 spin_unlock_irq(&cmd->t_state_lock);
2207 transport_generic_request_failure(cmd, cmd->pi_err);
2208 return -1;
2209 }
2210 break;
2211 default:
2212 break;
2213 }
2214
2215 return 0;
2216 }
2217
target_handle_task_attr(struct se_cmd * cmd)2218 static bool target_handle_task_attr(struct se_cmd *cmd)
2219 {
2220 struct se_device *dev = cmd->se_dev;
2221 unsigned long flags;
2222
2223 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2224 return false;
2225
2226 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
2227
2228 /*
2229 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2230 * to allow the passed struct se_cmd list of tasks to the front of the list.
2231 */
2232 switch (cmd->sam_task_attr) {
2233 case TCM_HEAD_TAG:
2234 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2235 cmd->t_task_cdb[0]);
2236 return false;
2237 case TCM_ORDERED_TAG:
2238 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2239 cmd->t_task_cdb[0]);
2240 break;
2241 default:
2242 /*
2243 * For SIMPLE and UNTAGGED Task Attribute commands
2244 */
2245 retry:
2246 if (percpu_ref_tryget_live(&dev->non_ordered))
2247 return false;
2248
2249 break;
2250 }
2251
2252 spin_lock_irqsave(&dev->delayed_cmd_lock, flags);
2253 if (cmd->sam_task_attr == TCM_SIMPLE_TAG &&
2254 !percpu_ref_is_dying(&dev->non_ordered)) {
2255 spin_unlock_irqrestore(&dev->delayed_cmd_lock, flags);
2256 /* We raced with the last ordered completion so retry. */
2257 goto retry;
2258 } else if (!percpu_ref_is_dying(&dev->non_ordered)) {
2259 percpu_ref_kill(&dev->non_ordered);
2260 }
2261
2262 spin_lock(&cmd->t_state_lock);
2263 cmd->transport_state &= ~CMD_T_SENT;
2264 spin_unlock(&cmd->t_state_lock);
2265
2266 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2267 spin_unlock_irqrestore(&dev->delayed_cmd_lock, flags);
2268
2269 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2270 cmd->t_task_cdb[0], cmd->sam_task_attr);
2271 /*
2272 * We may have no non ordered cmds when this function started or we
2273 * could have raced with the last simple/head cmd completing, so kick
2274 * the delayed handler here.
2275 */
2276 schedule_work(&dev->delayed_cmd_work);
2277 return true;
2278 }
2279
target_execute_cmd(struct se_cmd * cmd)2280 void target_execute_cmd(struct se_cmd *cmd)
2281 {
2282 /*
2283 * Determine if frontend context caller is requesting the stopping of
2284 * this command for frontend exceptions.
2285 *
2286 * If the received CDB has already been aborted stop processing it here.
2287 */
2288 if (target_cmd_interrupted(cmd))
2289 return;
2290
2291 spin_lock_irq(&cmd->t_state_lock);
2292 cmd->t_state = TRANSPORT_PROCESSING;
2293 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2294 spin_unlock_irq(&cmd->t_state_lock);
2295
2296 if (target_write_prot_action(cmd))
2297 return;
2298
2299 if (target_handle_task_attr(cmd))
2300 return;
2301
2302 __target_execute_cmd(cmd, true);
2303 }
2304 EXPORT_SYMBOL(target_execute_cmd);
2305
2306 /*
2307 * Process all commands up to the last received ORDERED task attribute which
2308 * requires another blocking boundary
2309 */
target_do_delayed_work(struct work_struct * work)2310 void target_do_delayed_work(struct work_struct *work)
2311 {
2312 struct se_device *dev = container_of(work, struct se_device,
2313 delayed_cmd_work);
2314
2315 spin_lock(&dev->delayed_cmd_lock);
2316 while (!dev->ordered_sync_in_progress) {
2317 struct se_cmd *cmd;
2318
2319 /*
2320 * We can be woken up early/late due to races or the
2321 * extra wake up we do when adding commands to the list.
2322 * We check for both cases here.
2323 */
2324 if (list_empty(&dev->delayed_cmd_list) ||
2325 !percpu_ref_is_zero(&dev->non_ordered))
2326 break;
2327
2328 cmd = list_entry(dev->delayed_cmd_list.next,
2329 struct se_cmd, se_delayed_node);
2330 cmd->se_cmd_flags |= SCF_TASK_ORDERED_SYNC;
2331 cmd->transport_state |= CMD_T_SENT;
2332
2333 dev->ordered_sync_in_progress = true;
2334
2335 list_del(&cmd->se_delayed_node);
2336 spin_unlock(&dev->delayed_cmd_lock);
2337
2338 __target_execute_cmd(cmd, true);
2339 spin_lock(&dev->delayed_cmd_lock);
2340 }
2341 spin_unlock(&dev->delayed_cmd_lock);
2342 }
2343
transport_complete_ordered_sync(struct se_cmd * cmd)2344 static void transport_complete_ordered_sync(struct se_cmd *cmd)
2345 {
2346 struct se_device *dev = cmd->se_dev;
2347 unsigned long flags;
2348
2349 spin_lock_irqsave(&dev->delayed_cmd_lock, flags);
2350 dev->dev_cur_ordered_id++;
2351
2352 pr_debug("Incremented dev_cur_ordered_id: %u for type %d\n",
2353 dev->dev_cur_ordered_id, cmd->sam_task_attr);
2354
2355 dev->ordered_sync_in_progress = false;
2356
2357 if (list_empty(&dev->delayed_cmd_list))
2358 percpu_ref_resurrect(&dev->non_ordered);
2359 else
2360 schedule_work(&dev->delayed_cmd_work);
2361
2362 spin_unlock_irqrestore(&dev->delayed_cmd_lock, flags);
2363 }
2364
2365 /*
2366 * Called from I/O completion to determine which dormant/delayed
2367 * and ordered cmds need to have their tasks added to the execution queue.
2368 */
transport_complete_task_attr(struct se_cmd * cmd)2369 static void transport_complete_task_attr(struct se_cmd *cmd)
2370 {
2371 struct se_device *dev = cmd->se_dev;
2372
2373 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2374 return;
2375
2376 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2377 return;
2378
2379 cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2380
2381 if (cmd->se_cmd_flags & SCF_TASK_ORDERED_SYNC) {
2382 transport_complete_ordered_sync(cmd);
2383 return;
2384 }
2385
2386 switch (cmd->sam_task_attr) {
2387 case TCM_SIMPLE_TAG:
2388 percpu_ref_put(&dev->non_ordered);
2389 break;
2390 case TCM_ORDERED_TAG:
2391 /* All ordered should have been executed as sync */
2392 WARN_ON(1);
2393 break;
2394 }
2395 }
2396
transport_complete_qf(struct se_cmd * cmd)2397 static void transport_complete_qf(struct se_cmd *cmd)
2398 {
2399 int ret = 0;
2400
2401 transport_complete_task_attr(cmd);
2402 /*
2403 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2404 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2405 * the same callbacks should not be retried. Return CHECK_CONDITION
2406 * if a scsi_status is not already set.
2407 *
2408 * If a fabric driver ->queue_status() has returned non zero, always
2409 * keep retrying no matter what..
2410 */
2411 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2412 if (cmd->scsi_status)
2413 goto queue_status;
2414
2415 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2416 goto queue_status;
2417 }
2418
2419 /*
2420 * Check if we need to send a sense buffer from
2421 * the struct se_cmd in question. We do NOT want
2422 * to take this path of the IO has been marked as
2423 * needing to be treated like a "normal read". This
2424 * is the case if it's a tape read, and either the
2425 * FM, EOM, or ILI bits are set, but there is no
2426 * sense data.
2427 */
2428 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2429 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2430 goto queue_status;
2431
2432 switch (cmd->data_direction) {
2433 case DMA_FROM_DEVICE:
2434 /* queue status if not treating this as a normal read */
2435 if (cmd->scsi_status &&
2436 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2437 goto queue_status;
2438
2439 trace_target_cmd_complete(cmd);
2440 ret = cmd->se_tfo->queue_data_in(cmd);
2441 break;
2442 case DMA_TO_DEVICE:
2443 if (cmd->se_cmd_flags & SCF_BIDI) {
2444 ret = cmd->se_tfo->queue_data_in(cmd);
2445 break;
2446 }
2447 fallthrough;
2448 case DMA_NONE:
2449 queue_status:
2450 trace_target_cmd_complete(cmd);
2451 ret = cmd->se_tfo->queue_status(cmd);
2452 break;
2453 default:
2454 break;
2455 }
2456
2457 if (ret < 0) {
2458 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2459 return;
2460 }
2461 transport_lun_remove_cmd(cmd);
2462 transport_cmd_check_stop_to_fabric(cmd);
2463 }
2464
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev,int err,bool write_pending)2465 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2466 int err, bool write_pending)
2467 {
2468 /*
2469 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2470 * ->queue_data_in() callbacks from new process context.
2471 *
2472 * Otherwise for other errors, transport_complete_qf() will send
2473 * CHECK_CONDITION via ->queue_status() instead of attempting to
2474 * retry associated fabric driver data-transfer callbacks.
2475 */
2476 if (err == -EAGAIN || err == -ENOMEM) {
2477 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2478 TRANSPORT_COMPLETE_QF_OK;
2479 } else {
2480 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2481 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2482 }
2483
2484 spin_lock_irq(&dev->qf_cmd_lock);
2485 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2486 atomic_inc_mb(&dev->dev_qf_count);
2487 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2488
2489 schedule_work(&cmd->se_dev->qf_work_queue);
2490 }
2491
target_read_prot_action(struct se_cmd * cmd)2492 static bool target_read_prot_action(struct se_cmd *cmd)
2493 {
2494 switch (cmd->prot_op) {
2495 case TARGET_PROT_DIN_STRIP:
2496 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2497 u32 sectors = cmd->data_length >>
2498 ilog2(cmd->se_dev->dev_attrib.block_size);
2499
2500 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2501 sectors, 0, cmd->t_prot_sg,
2502 0);
2503 if (cmd->pi_err)
2504 return true;
2505 }
2506 break;
2507 case TARGET_PROT_DIN_INSERT:
2508 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2509 break;
2510
2511 sbc_dif_generate(cmd);
2512 break;
2513 default:
2514 break;
2515 }
2516
2517 return false;
2518 }
2519
target_complete_ok_work(struct work_struct * work)2520 static void target_complete_ok_work(struct work_struct *work)
2521 {
2522 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2523 int ret;
2524
2525 /*
2526 * Check if we need to move delayed/dormant tasks from cmds on the
2527 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2528 * Attribute.
2529 */
2530 transport_complete_task_attr(cmd);
2531
2532 /*
2533 * Check to schedule QUEUE_FULL work, or execute an existing
2534 * cmd->transport_qf_callback()
2535 */
2536 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2537 schedule_work(&cmd->se_dev->qf_work_queue);
2538
2539 /*
2540 * Check if we need to send a sense buffer from
2541 * the struct se_cmd in question. We do NOT want
2542 * to take this path of the IO has been marked as
2543 * needing to be treated like a "normal read". This
2544 * is the case if it's a tape read, and either the
2545 * FM, EOM, or ILI bits are set, but there is no
2546 * sense data.
2547 */
2548 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2549 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2550 WARN_ON(!cmd->scsi_status);
2551 ret = transport_send_check_condition_and_sense(
2552 cmd, 0, 1);
2553 if (ret)
2554 goto queue_full;
2555
2556 transport_lun_remove_cmd(cmd);
2557 transport_cmd_check_stop_to_fabric(cmd);
2558 return;
2559 }
2560 /*
2561 * Check for a callback, used by amongst other things
2562 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2563 */
2564 if (cmd->transport_complete_callback) {
2565 sense_reason_t rc;
2566 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2567 bool zero_dl = !(cmd->data_length);
2568 int post_ret = 0;
2569
2570 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2571 if (!rc && !post_ret) {
2572 if (caw && zero_dl)
2573 goto queue_rsp;
2574
2575 return;
2576 } else if (rc) {
2577 ret = transport_send_check_condition_and_sense(cmd,
2578 rc, 0);
2579 if (ret)
2580 goto queue_full;
2581
2582 transport_lun_remove_cmd(cmd);
2583 transport_cmd_check_stop_to_fabric(cmd);
2584 return;
2585 }
2586 }
2587
2588 queue_rsp:
2589 switch (cmd->data_direction) {
2590 case DMA_FROM_DEVICE:
2591 /*
2592 * if this is a READ-type IO, but SCSI status
2593 * is set, then skip returning data and just
2594 * return the status -- unless this IO is marked
2595 * as needing to be treated as a normal read,
2596 * in which case we want to go ahead and return
2597 * the data. This happens, for example, for tape
2598 * reads with the FM, EOM, or ILI bits set, with
2599 * no sense data.
2600 */
2601 if (cmd->scsi_status &&
2602 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2603 goto queue_status;
2604
2605 if (cmd->se_lun->lun_stats)
2606 this_cpu_add(cmd->se_lun->lun_stats->tx_data_octets,
2607 cmd->data_length);
2608 /*
2609 * Perform READ_STRIP of PI using software emulation when
2610 * backend had PI enabled, if the transport will not be
2611 * performing hardware READ_STRIP offload.
2612 */
2613 if (target_read_prot_action(cmd)) {
2614 ret = transport_send_check_condition_and_sense(cmd,
2615 cmd->pi_err, 0);
2616 if (ret)
2617 goto queue_full;
2618
2619 transport_lun_remove_cmd(cmd);
2620 transport_cmd_check_stop_to_fabric(cmd);
2621 return;
2622 }
2623
2624 trace_target_cmd_complete(cmd);
2625 ret = cmd->se_tfo->queue_data_in(cmd);
2626 if (ret)
2627 goto queue_full;
2628 break;
2629 case DMA_TO_DEVICE:
2630 if (cmd->se_lun->lun_stats)
2631 this_cpu_add(cmd->se_lun->lun_stats->rx_data_octets,
2632 cmd->data_length);
2633 /*
2634 * Check if we need to send READ payload for BIDI-COMMAND
2635 */
2636 if (cmd->se_cmd_flags & SCF_BIDI) {
2637 if (cmd->se_lun->lun_stats)
2638 this_cpu_add(cmd->se_lun->lun_stats->tx_data_octets,
2639 cmd->data_length);
2640 ret = cmd->se_tfo->queue_data_in(cmd);
2641 if (ret)
2642 goto queue_full;
2643 break;
2644 }
2645 fallthrough;
2646 case DMA_NONE:
2647 queue_status:
2648 trace_target_cmd_complete(cmd);
2649 ret = cmd->se_tfo->queue_status(cmd);
2650 if (ret)
2651 goto queue_full;
2652 break;
2653 default:
2654 break;
2655 }
2656
2657 transport_lun_remove_cmd(cmd);
2658 transport_cmd_check_stop_to_fabric(cmd);
2659 return;
2660
2661 queue_full:
2662 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2663 " data_direction: %d\n", cmd, cmd->data_direction);
2664
2665 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2666 }
2667
target_free_sgl(struct scatterlist * sgl,int nents)2668 void target_free_sgl(struct scatterlist *sgl, int nents)
2669 {
2670 sgl_free_n_order(sgl, nents, 0);
2671 }
2672 EXPORT_SYMBOL(target_free_sgl);
2673
transport_reset_sgl_orig(struct se_cmd * cmd)2674 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2675 {
2676 /*
2677 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2678 * emulation, and free + reset pointers if necessary..
2679 */
2680 if (!cmd->t_data_sg_orig)
2681 return;
2682
2683 kfree(cmd->t_data_sg);
2684 cmd->t_data_sg = cmd->t_data_sg_orig;
2685 cmd->t_data_sg_orig = NULL;
2686 cmd->t_data_nents = cmd->t_data_nents_orig;
2687 cmd->t_data_nents_orig = 0;
2688 }
2689
transport_free_pages(struct se_cmd * cmd)2690 static inline void transport_free_pages(struct se_cmd *cmd)
2691 {
2692 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2693 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2694 cmd->t_prot_sg = NULL;
2695 cmd->t_prot_nents = 0;
2696 }
2697
2698 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2699 /*
2700 * Release special case READ buffer payload required for
2701 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2702 */
2703 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2704 target_free_sgl(cmd->t_bidi_data_sg,
2705 cmd->t_bidi_data_nents);
2706 cmd->t_bidi_data_sg = NULL;
2707 cmd->t_bidi_data_nents = 0;
2708 }
2709 transport_reset_sgl_orig(cmd);
2710 return;
2711 }
2712 transport_reset_sgl_orig(cmd);
2713
2714 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2715 cmd->t_data_sg = NULL;
2716 cmd->t_data_nents = 0;
2717
2718 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2719 cmd->t_bidi_data_sg = NULL;
2720 cmd->t_bidi_data_nents = 0;
2721 }
2722
transport_kmap_data_sg(struct se_cmd * cmd)2723 void *transport_kmap_data_sg(struct se_cmd *cmd)
2724 {
2725 struct scatterlist *sg = cmd->t_data_sg;
2726 struct page **pages;
2727 int i;
2728
2729 /*
2730 * We need to take into account a possible offset here for fabrics like
2731 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2732 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2733 */
2734 if (!cmd->t_data_nents)
2735 return NULL;
2736
2737 BUG_ON(!sg);
2738 if (cmd->t_data_nents == 1)
2739 return kmap(sg_page(sg)) + sg->offset;
2740
2741 /* >1 page. use vmap */
2742 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2743 if (!pages)
2744 return NULL;
2745
2746 /* convert sg[] to pages[] */
2747 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2748 pages[i] = sg_page(sg);
2749 }
2750
2751 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2752 kfree(pages);
2753 if (!cmd->t_data_vmap)
2754 return NULL;
2755
2756 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2757 }
2758 EXPORT_SYMBOL(transport_kmap_data_sg);
2759
transport_kunmap_data_sg(struct se_cmd * cmd)2760 void transport_kunmap_data_sg(struct se_cmd *cmd)
2761 {
2762 if (!cmd->t_data_nents) {
2763 return;
2764 } else if (cmd->t_data_nents == 1) {
2765 kunmap(sg_page(cmd->t_data_sg));
2766 return;
2767 }
2768
2769 vunmap(cmd->t_data_vmap);
2770 cmd->t_data_vmap = NULL;
2771 }
2772 EXPORT_SYMBOL(transport_kunmap_data_sg);
2773
2774 int
target_alloc_sgl(struct scatterlist ** sgl,unsigned int * nents,u32 length,bool zero_page,bool chainable)2775 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2776 bool zero_page, bool chainable)
2777 {
2778 gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2779
2780 *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2781 return *sgl ? 0 : -ENOMEM;
2782 }
2783 EXPORT_SYMBOL(target_alloc_sgl);
2784
2785 /*
2786 * Allocate any required resources to execute the command. For writes we
2787 * might not have the payload yet, so notify the fabric via a call to
2788 * ->write_pending instead. Otherwise place it on the execution queue.
2789 */
2790 sense_reason_t
transport_generic_new_cmd(struct se_cmd * cmd)2791 transport_generic_new_cmd(struct se_cmd *cmd)
2792 {
2793 unsigned long flags;
2794 int ret = 0;
2795 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2796
2797 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2798 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2799 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2800 cmd->prot_length, true, false);
2801 if (ret < 0)
2802 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2803 }
2804
2805 /*
2806 * Determine if the TCM fabric module has already allocated physical
2807 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2808 * beforehand.
2809 */
2810 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2811 cmd->data_length) {
2812
2813 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2814 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2815 u32 bidi_length;
2816
2817 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2818 bidi_length = cmd->t_task_nolb *
2819 cmd->se_dev->dev_attrib.block_size;
2820 else
2821 bidi_length = cmd->data_length;
2822
2823 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2824 &cmd->t_bidi_data_nents,
2825 bidi_length, zero_flag, false);
2826 if (ret < 0)
2827 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2828 }
2829
2830 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2831 cmd->data_length, zero_flag, false);
2832 if (ret < 0)
2833 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2834 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2835 cmd->data_length) {
2836 /*
2837 * Special case for COMPARE_AND_WRITE with fabrics
2838 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2839 */
2840 u32 caw_length = cmd->t_task_nolb *
2841 cmd->se_dev->dev_attrib.block_size;
2842
2843 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2844 &cmd->t_bidi_data_nents,
2845 caw_length, zero_flag, false);
2846 if (ret < 0)
2847 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2848 }
2849 /*
2850 * If this command is not a write we can execute it right here,
2851 * for write buffers we need to notify the fabric driver first
2852 * and let it call back once the write buffers are ready.
2853 */
2854 target_add_to_state_list(cmd);
2855 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2856 target_execute_cmd(cmd);
2857 return 0;
2858 }
2859
2860 spin_lock_irqsave(&cmd->t_state_lock, flags);
2861 cmd->t_state = TRANSPORT_WRITE_PENDING;
2862 /*
2863 * Determine if frontend context caller is requesting the stopping of
2864 * this command for frontend exceptions.
2865 */
2866 if (cmd->transport_state & CMD_T_STOP &&
2867 !cmd->se_tfo->write_pending_must_be_called) {
2868 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2869 __func__, __LINE__, cmd->tag);
2870
2871 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2872
2873 complete_all(&cmd->t_transport_stop_comp);
2874 return 0;
2875 }
2876 cmd->transport_state &= ~CMD_T_ACTIVE;
2877 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2878
2879 ret = cmd->se_tfo->write_pending(cmd);
2880 if (ret)
2881 goto queue_full;
2882
2883 return 0;
2884
2885 queue_full:
2886 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2887 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2888 return 0;
2889 }
2890 EXPORT_SYMBOL(transport_generic_new_cmd);
2891
transport_write_pending_qf(struct se_cmd * cmd)2892 static void transport_write_pending_qf(struct se_cmd *cmd)
2893 {
2894 unsigned long flags;
2895 int ret;
2896 bool stop;
2897
2898 spin_lock_irqsave(&cmd->t_state_lock, flags);
2899 stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2900 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2901
2902 if (stop) {
2903 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2904 __func__, __LINE__, cmd->tag);
2905 complete_all(&cmd->t_transport_stop_comp);
2906 return;
2907 }
2908
2909 ret = cmd->se_tfo->write_pending(cmd);
2910 if (ret) {
2911 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2912 cmd);
2913 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2914 }
2915 }
2916
2917 static bool
2918 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2919 unsigned long *flags);
2920
target_wait_free_cmd(struct se_cmd * cmd,bool * aborted,bool * tas)2921 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2922 {
2923 unsigned long flags;
2924
2925 spin_lock_irqsave(&cmd->t_state_lock, flags);
2926 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2927 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2928 }
2929
2930 /*
2931 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2932 * finished.
2933 */
target_put_cmd_and_wait(struct se_cmd * cmd)2934 void target_put_cmd_and_wait(struct se_cmd *cmd)
2935 {
2936 DECLARE_COMPLETION_ONSTACK(compl);
2937
2938 WARN_ON_ONCE(cmd->abrt_compl);
2939 cmd->abrt_compl = &compl;
2940 target_put_sess_cmd(cmd);
2941 wait_for_completion(&compl);
2942 }
2943
2944 /*
2945 * This function is called by frontend drivers after processing of a command
2946 * has finished.
2947 *
2948 * The protocol for ensuring that either the regular frontend command
2949 * processing flow or target_handle_abort() code drops one reference is as
2950 * follows:
2951 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2952 * the frontend driver to call this function synchronously or asynchronously.
2953 * That will cause one reference to be dropped.
2954 * - During regular command processing the target core sets CMD_T_COMPLETE
2955 * before invoking one of the .queue_*() functions.
2956 * - The code that aborts commands skips commands and TMFs for which
2957 * CMD_T_COMPLETE has been set.
2958 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2959 * commands that will be aborted.
2960 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2961 * transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2962 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2963 * be called and will drop a reference.
2964 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2965 * will be called. target_handle_abort() will drop the final reference.
2966 */
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)2967 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2968 {
2969 DECLARE_COMPLETION_ONSTACK(compl);
2970 int ret = 0;
2971 bool aborted = false, tas = false;
2972
2973 if (wait_for_tasks)
2974 target_wait_free_cmd(cmd, &aborted, &tas);
2975
2976 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2977 /*
2978 * Handle WRITE failure case where transport_generic_new_cmd()
2979 * has already added se_cmd to state_list, but fabric has
2980 * failed command before I/O submission.
2981 */
2982 if (cmd->state_active)
2983 target_remove_from_state_list(cmd);
2984
2985 if (cmd->se_lun)
2986 transport_lun_remove_cmd(cmd);
2987 }
2988 if (aborted)
2989 cmd->free_compl = &compl;
2990 ret = target_put_sess_cmd(cmd);
2991 if (aborted) {
2992 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2993 wait_for_completion(&compl);
2994 ret = 1;
2995 }
2996 return ret;
2997 }
2998 EXPORT_SYMBOL(transport_generic_free_cmd);
2999
3000 /**
3001 * target_get_sess_cmd - Verify the session is accepting cmds and take ref
3002 * @se_cmd: command descriptor to add
3003 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
3004 */
target_get_sess_cmd(struct se_cmd * se_cmd,bool ack_kref)3005 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
3006 {
3007 int ret = 0;
3008
3009 /*
3010 * Add a second kref if the fabric caller is expecting to handle
3011 * fabric acknowledgement that requires two target_put_sess_cmd()
3012 * invocations before se_cmd descriptor release.
3013 */
3014 if (ack_kref) {
3015 kref_get(&se_cmd->cmd_kref);
3016 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
3017 }
3018
3019 /*
3020 * Users like xcopy do not use counters since they never do a stop
3021 * and wait.
3022 */
3023 if (se_cmd->cmd_cnt) {
3024 if (!percpu_ref_tryget_live(&se_cmd->cmd_cnt->refcnt))
3025 ret = -ESHUTDOWN;
3026 }
3027 if (ret && ack_kref)
3028 target_put_sess_cmd(se_cmd);
3029
3030 return ret;
3031 }
3032 EXPORT_SYMBOL(target_get_sess_cmd);
3033
target_free_cmd_mem(struct se_cmd * cmd)3034 static void target_free_cmd_mem(struct se_cmd *cmd)
3035 {
3036 transport_free_pages(cmd);
3037
3038 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
3039 core_tmr_release_req(cmd->se_tmr_req);
3040 if (cmd->t_task_cdb != cmd->__t_task_cdb)
3041 kfree(cmd->t_task_cdb);
3042 }
3043
target_release_cmd_kref(struct kref * kref)3044 static void target_release_cmd_kref(struct kref *kref)
3045 {
3046 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
3047 struct target_cmd_counter *cmd_cnt = se_cmd->cmd_cnt;
3048 struct completion *free_compl = se_cmd->free_compl;
3049 struct completion *abrt_compl = se_cmd->abrt_compl;
3050
3051 target_free_cmd_mem(se_cmd);
3052 se_cmd->se_tfo->release_cmd(se_cmd);
3053 if (free_compl)
3054 complete(free_compl);
3055 if (abrt_compl)
3056 complete(abrt_compl);
3057
3058 if (cmd_cnt)
3059 percpu_ref_put(&cmd_cnt->refcnt);
3060 }
3061
3062 /**
3063 * target_put_sess_cmd - decrease the command reference count
3064 * @se_cmd: command to drop a reference from
3065 *
3066 * Returns 1 if and only if this target_put_sess_cmd() call caused the
3067 * refcount to drop to zero. Returns zero otherwise.
3068 */
target_put_sess_cmd(struct se_cmd * se_cmd)3069 int target_put_sess_cmd(struct se_cmd *se_cmd)
3070 {
3071 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
3072 }
3073 EXPORT_SYMBOL(target_put_sess_cmd);
3074
data_dir_name(enum dma_data_direction d)3075 static const char *data_dir_name(enum dma_data_direction d)
3076 {
3077 switch (d) {
3078 case DMA_BIDIRECTIONAL: return "BIDI";
3079 case DMA_TO_DEVICE: return "WRITE";
3080 case DMA_FROM_DEVICE: return "READ";
3081 case DMA_NONE: return "NONE";
3082 }
3083
3084 return "(?)";
3085 }
3086
cmd_state_name(enum transport_state_table t)3087 static const char *cmd_state_name(enum transport_state_table t)
3088 {
3089 switch (t) {
3090 case TRANSPORT_NO_STATE: return "NO_STATE";
3091 case TRANSPORT_NEW_CMD: return "NEW_CMD";
3092 case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING";
3093 case TRANSPORT_PROCESSING: return "PROCESSING";
3094 case TRANSPORT_COMPLETE: return "COMPLETE";
3095 case TRANSPORT_ISTATE_PROCESSING:
3096 return "ISTATE_PROCESSING";
3097 case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP";
3098 case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK";
3099 case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR";
3100 }
3101
3102 return "(?)";
3103 }
3104
target_append_str(char ** str,const char * txt)3105 static void target_append_str(char **str, const char *txt)
3106 {
3107 char *prev = *str;
3108
3109 *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
3110 kstrdup(txt, GFP_ATOMIC);
3111 kfree(prev);
3112 }
3113
3114 /*
3115 * Convert a transport state bitmask into a string. The caller is
3116 * responsible for freeing the returned pointer.
3117 */
target_ts_to_str(u32 ts)3118 static char *target_ts_to_str(u32 ts)
3119 {
3120 char *str = NULL;
3121
3122 if (ts & CMD_T_ABORTED)
3123 target_append_str(&str, "aborted");
3124 if (ts & CMD_T_ACTIVE)
3125 target_append_str(&str, "active");
3126 if (ts & CMD_T_COMPLETE)
3127 target_append_str(&str, "complete");
3128 if (ts & CMD_T_SENT)
3129 target_append_str(&str, "sent");
3130 if (ts & CMD_T_STOP)
3131 target_append_str(&str, "stop");
3132 if (ts & CMD_T_FABRIC_STOP)
3133 target_append_str(&str, "fabric_stop");
3134
3135 return str;
3136 }
3137
target_tmf_name(enum tcm_tmreq_table tmf)3138 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
3139 {
3140 switch (tmf) {
3141 case TMR_ABORT_TASK: return "ABORT_TASK";
3142 case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET";
3143 case TMR_CLEAR_ACA: return "CLEAR_ACA";
3144 case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET";
3145 case TMR_LUN_RESET: return "LUN_RESET";
3146 case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET";
3147 case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET";
3148 case TMR_LUN_RESET_PRO: return "LUN_RESET_PRO";
3149 case TMR_UNKNOWN: break;
3150 }
3151 return "(?)";
3152 }
3153
target_show_cmd(const char * pfx,struct se_cmd * cmd)3154 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
3155 {
3156 char *ts_str = target_ts_to_str(cmd->transport_state);
3157 const u8 *cdb = cmd->t_task_cdb;
3158 struct se_tmr_req *tmf = cmd->se_tmr_req;
3159
3160 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3161 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
3162 pfx, cdb[0], cdb[1], cmd->tag,
3163 data_dir_name(cmd->data_direction),
3164 cmd->se_tfo->get_cmd_state(cmd),
3165 cmd_state_name(cmd->t_state), cmd->data_length,
3166 kref_read(&cmd->cmd_kref), ts_str);
3167 } else {
3168 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
3169 pfx, target_tmf_name(tmf->function), cmd->tag,
3170 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
3171 cmd_state_name(cmd->t_state),
3172 kref_read(&cmd->cmd_kref), ts_str);
3173 }
3174 kfree(ts_str);
3175 }
3176 EXPORT_SYMBOL(target_show_cmd);
3177
target_stop_cmd_counter_confirm(struct percpu_ref * ref)3178 static void target_stop_cmd_counter_confirm(struct percpu_ref *ref)
3179 {
3180 struct target_cmd_counter *cmd_cnt = container_of(ref,
3181 struct target_cmd_counter,
3182 refcnt);
3183 complete_all(&cmd_cnt->stop_done);
3184 }
3185
3186 /**
3187 * target_stop_cmd_counter - Stop new IO from being added to the counter.
3188 * @cmd_cnt: counter to stop
3189 */
target_stop_cmd_counter(struct target_cmd_counter * cmd_cnt)3190 void target_stop_cmd_counter(struct target_cmd_counter *cmd_cnt)
3191 {
3192 pr_debug("Stopping command counter.\n");
3193 if (!atomic_cmpxchg(&cmd_cnt->stopped, 0, 1))
3194 percpu_ref_kill_and_confirm(&cmd_cnt->refcnt,
3195 target_stop_cmd_counter_confirm);
3196 }
3197 EXPORT_SYMBOL_GPL(target_stop_cmd_counter);
3198
3199 /**
3200 * target_stop_session - Stop new IO from being queued on the session.
3201 * @se_sess: session to stop
3202 */
target_stop_session(struct se_session * se_sess)3203 void target_stop_session(struct se_session *se_sess)
3204 {
3205 target_stop_cmd_counter(se_sess->cmd_cnt);
3206 }
3207 EXPORT_SYMBOL(target_stop_session);
3208
3209 /**
3210 * target_wait_for_cmds - Wait for outstanding cmds.
3211 * @cmd_cnt: counter to wait for active I/O for.
3212 */
target_wait_for_cmds(struct target_cmd_counter * cmd_cnt)3213 void target_wait_for_cmds(struct target_cmd_counter *cmd_cnt)
3214 {
3215 int ret;
3216
3217 WARN_ON_ONCE(!atomic_read(&cmd_cnt->stopped));
3218
3219 do {
3220 pr_debug("Waiting for running cmds to complete.\n");
3221 ret = wait_event_timeout(cmd_cnt->refcnt_wq,
3222 percpu_ref_is_zero(&cmd_cnt->refcnt),
3223 180 * HZ);
3224 } while (ret <= 0);
3225
3226 wait_for_completion(&cmd_cnt->stop_done);
3227 pr_debug("Waiting for cmds done.\n");
3228 }
3229 EXPORT_SYMBOL_GPL(target_wait_for_cmds);
3230
3231 /**
3232 * target_wait_for_sess_cmds - Wait for outstanding commands
3233 * @se_sess: session to wait for active I/O
3234 */
target_wait_for_sess_cmds(struct se_session * se_sess)3235 void target_wait_for_sess_cmds(struct se_session *se_sess)
3236 {
3237 target_wait_for_cmds(se_sess->cmd_cnt);
3238 }
3239 EXPORT_SYMBOL(target_wait_for_sess_cmds);
3240
3241 /*
3242 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
3243 * all references to the LUN have been released. Called during LUN shutdown.
3244 */
transport_clear_lun_ref(struct se_lun * lun)3245 void transport_clear_lun_ref(struct se_lun *lun)
3246 {
3247 percpu_ref_kill(&lun->lun_ref);
3248 wait_for_completion(&lun->lun_shutdown_comp);
3249 }
3250
3251 static bool
__transport_wait_for_tasks(struct se_cmd * cmd,bool fabric_stop,bool * aborted,bool * tas,unsigned long * flags)3252 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
3253 bool *aborted, bool *tas, unsigned long *flags)
3254 __releases(&cmd->t_state_lock)
3255 __acquires(&cmd->t_state_lock)
3256 {
3257 lockdep_assert_held(&cmd->t_state_lock);
3258
3259 if (fabric_stop)
3260 cmd->transport_state |= CMD_T_FABRIC_STOP;
3261
3262 if (cmd->transport_state & CMD_T_ABORTED)
3263 *aborted = true;
3264
3265 if (cmd->transport_state & CMD_T_TAS)
3266 *tas = true;
3267
3268 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3269 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3270 return false;
3271
3272 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3273 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3274 return false;
3275
3276 if (!(cmd->transport_state & CMD_T_ACTIVE))
3277 return false;
3278
3279 if (fabric_stop && *aborted)
3280 return false;
3281
3282 cmd->transport_state |= CMD_T_STOP;
3283
3284 target_show_cmd("wait_for_tasks: Stopping ", cmd);
3285
3286 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3287
3288 while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3289 180 * HZ))
3290 target_show_cmd("wait for tasks: ", cmd);
3291
3292 spin_lock_irqsave(&cmd->t_state_lock, *flags);
3293 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3294
3295 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3296 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3297
3298 return true;
3299 }
3300
3301 /**
3302 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3303 * @cmd: command to wait on
3304 */
transport_wait_for_tasks(struct se_cmd * cmd)3305 bool transport_wait_for_tasks(struct se_cmd *cmd)
3306 {
3307 unsigned long flags;
3308 bool ret, aborted = false, tas = false;
3309
3310 spin_lock_irqsave(&cmd->t_state_lock, flags);
3311 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3312 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3313
3314 return ret;
3315 }
3316 EXPORT_SYMBOL(transport_wait_for_tasks);
3317
3318 struct sense_detail {
3319 u8 key;
3320 u8 asc;
3321 u8 ascq;
3322 bool add_sense_info;
3323 };
3324
3325 static const struct sense_detail sense_detail_table[] = {
3326 [TCM_NO_SENSE] = {
3327 .key = NOT_READY
3328 },
3329 [TCM_NON_EXISTENT_LUN] = {
3330 .key = ILLEGAL_REQUEST,
3331 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3332 },
3333 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
3334 .key = ILLEGAL_REQUEST,
3335 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3336 },
3337 [TCM_SECTOR_COUNT_TOO_MANY] = {
3338 .key = ILLEGAL_REQUEST,
3339 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3340 },
3341 [TCM_UNKNOWN_MODE_PAGE] = {
3342 .key = ILLEGAL_REQUEST,
3343 .asc = 0x24, /* INVALID FIELD IN CDB */
3344 },
3345 [TCM_CHECK_CONDITION_ABORT_CMD] = {
3346 .key = ABORTED_COMMAND,
3347 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3348 .ascq = 0x03,
3349 },
3350 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
3351 .key = ABORTED_COMMAND,
3352 .asc = 0x0c, /* WRITE ERROR */
3353 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3354 },
3355 [TCM_INVALID_CDB_FIELD] = {
3356 .key = ILLEGAL_REQUEST,
3357 .asc = 0x24, /* INVALID FIELD IN CDB */
3358 },
3359 [TCM_INVALID_PARAMETER_LIST] = {
3360 .key = ILLEGAL_REQUEST,
3361 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3362 },
3363 [TCM_TOO_MANY_TARGET_DESCS] = {
3364 .key = ILLEGAL_REQUEST,
3365 .asc = 0x26,
3366 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3367 },
3368 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3369 .key = ILLEGAL_REQUEST,
3370 .asc = 0x26,
3371 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3372 },
3373 [TCM_TOO_MANY_SEGMENT_DESCS] = {
3374 .key = ILLEGAL_REQUEST,
3375 .asc = 0x26,
3376 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3377 },
3378 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3379 .key = ILLEGAL_REQUEST,
3380 .asc = 0x26,
3381 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3382 },
3383 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3384 .key = ILLEGAL_REQUEST,
3385 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3386 },
3387 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3388 .key = ILLEGAL_REQUEST,
3389 .asc = 0x0c, /* WRITE ERROR */
3390 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3391 },
3392 [TCM_SERVICE_CRC_ERROR] = {
3393 .key = ABORTED_COMMAND,
3394 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3395 .ascq = 0x05, /* N/A */
3396 },
3397 [TCM_SNACK_REJECTED] = {
3398 .key = ABORTED_COMMAND,
3399 .asc = 0x11, /* READ ERROR */
3400 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3401 },
3402 [TCM_WRITE_PROTECTED] = {
3403 .key = DATA_PROTECT,
3404 .asc = 0x27, /* WRITE PROTECTED */
3405 },
3406 [TCM_ADDRESS_OUT_OF_RANGE] = {
3407 .key = ILLEGAL_REQUEST,
3408 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3409 },
3410 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3411 .key = UNIT_ATTENTION,
3412 },
3413 [TCM_MISCOMPARE_VERIFY] = {
3414 .key = MISCOMPARE,
3415 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3416 .ascq = 0x00,
3417 .add_sense_info = true,
3418 },
3419 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3420 .key = ABORTED_COMMAND,
3421 .asc = 0x10,
3422 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3423 .add_sense_info = true,
3424 },
3425 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3426 .key = ABORTED_COMMAND,
3427 .asc = 0x10,
3428 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3429 .add_sense_info = true,
3430 },
3431 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3432 .key = ABORTED_COMMAND,
3433 .asc = 0x10,
3434 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3435 .add_sense_info = true,
3436 },
3437 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3438 .key = COPY_ABORTED,
3439 .asc = 0x0d,
3440 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3441
3442 },
3443 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3444 /*
3445 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3446 * Solaris initiators. Returning NOT READY instead means the
3447 * operations will be retried a finite number of times and we
3448 * can survive intermittent errors.
3449 */
3450 .key = NOT_READY,
3451 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3452 },
3453 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3454 /*
3455 * From spc4r22 section5.7.7,5.7.8
3456 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3457 * or a REGISTER AND IGNORE EXISTING KEY service action or
3458 * REGISTER AND MOVE service actionis attempted,
3459 * but there are insufficient device server resources to complete the
3460 * operation, then the command shall be terminated with CHECK CONDITION
3461 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3462 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3463 */
3464 .key = ILLEGAL_REQUEST,
3465 .asc = 0x55,
3466 .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3467 },
3468 [TCM_INVALID_FIELD_IN_COMMAND_IU] = {
3469 .key = ILLEGAL_REQUEST,
3470 .asc = 0x0e,
3471 .ascq = 0x03, /* INVALID FIELD IN COMMAND INFORMATION UNIT */
3472 },
3473 [TCM_ALUA_TG_PT_STANDBY] = {
3474 .key = NOT_READY,
3475 .asc = 0x04,
3476 .ascq = ASCQ_04H_ALUA_TG_PT_STANDBY,
3477 },
3478 [TCM_ALUA_TG_PT_UNAVAILABLE] = {
3479 .key = NOT_READY,
3480 .asc = 0x04,
3481 .ascq = ASCQ_04H_ALUA_TG_PT_UNAVAILABLE,
3482 },
3483 [TCM_ALUA_STATE_TRANSITION] = {
3484 .key = NOT_READY,
3485 .asc = 0x04,
3486 .ascq = ASCQ_04H_ALUA_STATE_TRANSITION,
3487 },
3488 [TCM_ALUA_OFFLINE] = {
3489 .key = NOT_READY,
3490 .asc = 0x04,
3491 .ascq = ASCQ_04H_ALUA_OFFLINE,
3492 },
3493 };
3494
3495 /**
3496 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3497 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3498 * be stored.
3499 * @reason: LIO sense reason code. If this argument has the value
3500 * TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3501 * dequeuing a unit attention fails due to multiple commands being processed
3502 * concurrently, set the command status to BUSY.
3503 *
3504 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3505 */
translate_sense_reason(struct se_cmd * cmd,sense_reason_t reason)3506 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3507 {
3508 const struct sense_detail *sd;
3509 u8 *buffer = cmd->sense_buffer;
3510 int r = (__force int)reason;
3511 u8 key, asc, ascq;
3512 bool desc_format = target_sense_desc_format(cmd->se_dev);
3513
3514 if (r < ARRAY_SIZE(sense_detail_table) && sense_detail_table[r].key)
3515 sd = &sense_detail_table[r];
3516 else
3517 sd = &sense_detail_table[(__force int)
3518 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3519
3520 key = sd->key;
3521 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3522 if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3523 &ascq)) {
3524 cmd->scsi_status = SAM_STAT_BUSY;
3525 return;
3526 }
3527 } else {
3528 WARN_ON_ONCE(sd->asc == 0);
3529 asc = sd->asc;
3530 ascq = sd->ascq;
3531 }
3532
3533 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3534 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3535 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3536 scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3537 if (sd->add_sense_info)
3538 WARN_ON_ONCE(scsi_set_sense_information(buffer,
3539 cmd->scsi_sense_length,
3540 cmd->sense_info) < 0);
3541 }
3542
3543 int
transport_send_check_condition_and_sense(struct se_cmd * cmd,sense_reason_t reason,int from_transport)3544 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3545 sense_reason_t reason, int from_transport)
3546 {
3547 unsigned long flags;
3548
3549 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3550
3551 spin_lock_irqsave(&cmd->t_state_lock, flags);
3552 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3553 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3554 return 0;
3555 }
3556 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3557 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3558
3559 if (!from_transport)
3560 translate_sense_reason(cmd, reason);
3561
3562 trace_target_cmd_complete(cmd);
3563 return cmd->se_tfo->queue_status(cmd);
3564 }
3565 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3566
3567 /**
3568 * target_send_busy - Send SCSI BUSY status back to the initiator
3569 * @cmd: SCSI command for which to send a BUSY reply.
3570 *
3571 * Note: Only call this function if target_submit_cmd*() failed.
3572 */
target_send_busy(struct se_cmd * cmd)3573 int target_send_busy(struct se_cmd *cmd)
3574 {
3575 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3576
3577 cmd->scsi_status = SAM_STAT_BUSY;
3578 trace_target_cmd_complete(cmd);
3579 return cmd->se_tfo->queue_status(cmd);
3580 }
3581 EXPORT_SYMBOL(target_send_busy);
3582
target_tmr_work(struct work_struct * work)3583 static void target_tmr_work(struct work_struct *work)
3584 {
3585 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3586 struct se_device *dev = cmd->se_dev;
3587 struct se_tmr_req *tmr = cmd->se_tmr_req;
3588 int ret;
3589
3590 if (cmd->transport_state & CMD_T_ABORTED)
3591 goto aborted;
3592
3593 switch (tmr->function) {
3594 case TMR_ABORT_TASK:
3595 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3596 break;
3597 case TMR_ABORT_TASK_SET:
3598 case TMR_CLEAR_ACA:
3599 case TMR_CLEAR_TASK_SET:
3600 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3601 break;
3602 case TMR_LUN_RESET:
3603 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3604 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3605 TMR_FUNCTION_REJECTED;
3606 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3607 target_dev_ua_allocate(dev, 0x29,
3608 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3609 }
3610 break;
3611 case TMR_TARGET_WARM_RESET:
3612 tmr->response = TMR_FUNCTION_REJECTED;
3613 break;
3614 case TMR_TARGET_COLD_RESET:
3615 tmr->response = TMR_FUNCTION_REJECTED;
3616 break;
3617 default:
3618 pr_err("Unknown TMR function: 0x%02x.\n",
3619 tmr->function);
3620 tmr->response = TMR_FUNCTION_REJECTED;
3621 break;
3622 }
3623
3624 if (cmd->transport_state & CMD_T_ABORTED)
3625 goto aborted;
3626
3627 cmd->se_tfo->queue_tm_rsp(cmd);
3628
3629 transport_lun_remove_cmd(cmd);
3630 transport_cmd_check_stop_to_fabric(cmd);
3631 return;
3632
3633 aborted:
3634 target_handle_abort(cmd);
3635 }
3636
transport_generic_handle_tmr(struct se_cmd * cmd)3637 int transport_generic_handle_tmr(
3638 struct se_cmd *cmd)
3639 {
3640 unsigned long flags;
3641 bool aborted = false;
3642
3643 spin_lock_irqsave(&cmd->se_dev->se_tmr_lock, flags);
3644 list_add_tail(&cmd->se_tmr_req->tmr_list, &cmd->se_dev->dev_tmr_list);
3645 spin_unlock_irqrestore(&cmd->se_dev->se_tmr_lock, flags);
3646
3647 spin_lock_irqsave(&cmd->t_state_lock, flags);
3648 if (cmd->transport_state & CMD_T_ABORTED) {
3649 aborted = true;
3650 } else {
3651 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3652 cmd->transport_state |= CMD_T_ACTIVE;
3653 }
3654 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3655
3656 if (aborted) {
3657 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3658 cmd->se_tmr_req->function,
3659 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3660 target_handle_abort(cmd);
3661 return 0;
3662 }
3663
3664 INIT_WORK(&cmd->work, target_tmr_work);
3665 schedule_work(&cmd->work);
3666 return 0;
3667 }
3668 EXPORT_SYMBOL(transport_generic_handle_tmr);
3669
3670 bool
target_check_wce(struct se_device * dev)3671 target_check_wce(struct se_device *dev)
3672 {
3673 bool wce = false;
3674
3675 if (dev->transport->get_write_cache)
3676 wce = dev->transport->get_write_cache(dev);
3677 else if (dev->dev_attrib.emulate_write_cache > 0)
3678 wce = true;
3679
3680 return wce;
3681 }
3682
3683 bool
target_check_fua(struct se_device * dev)3684 target_check_fua(struct se_device *dev)
3685 {
3686 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3687 }
3688