1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3 * Filename: target_core_transport.c
4 *
5 * This file contains the Generic Target Engine Core.
6 *
7 * (c) Copyright 2002-2013 Datera, Inc.
8 *
9 * Nicholas A. Bellinger <nab@kernel.org>
10 *
11 ******************************************************************************/
12
13 #include <linux/net.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/kthread.h>
20 #include <linux/in.h>
21 #include <linux/cdrom.h>
22 #include <linux/module.h>
23 #include <linux/ratelimit.h>
24 #include <linux/vmalloc.h>
25 #include <linux/unaligned.h>
26 #include <net/sock.h>
27 #include <net/tcp.h>
28 #include <scsi/scsi_proto.h>
29 #include <scsi/scsi_common.h>
30
31 #include <target/target_core_base.h>
32 #include <target/target_core_backend.h>
33 #include <target/target_core_fabric.h>
34
35 #include "target_core_internal.h"
36 #include "target_core_alua.h"
37 #include "target_core_pr.h"
38 #include "target_core_ua.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/target.h>
42
43 static struct workqueue_struct *target_completion_wq;
44 static struct workqueue_struct *target_submission_wq;
45 static struct kmem_cache *se_sess_cache;
46 struct kmem_cache *se_ua_cache;
47 struct kmem_cache *t10_pr_reg_cache;
48 struct kmem_cache *t10_alua_lu_gp_cache;
49 struct kmem_cache *t10_alua_lu_gp_mem_cache;
50 struct kmem_cache *t10_alua_tg_pt_gp_cache;
51 struct kmem_cache *t10_alua_lba_map_cache;
52 struct kmem_cache *t10_alua_lba_map_mem_cache;
53
54 static void transport_complete_task_attr(struct se_cmd *cmd);
55 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
56 static void transport_handle_queue_full(struct se_cmd *cmd,
57 struct se_device *dev, int err, bool write_pending);
58 static void target_complete_ok_work(struct work_struct *work);
59
init_se_kmem_caches(void)60 int init_se_kmem_caches(void)
61 {
62 se_sess_cache = kmem_cache_create("se_sess_cache",
63 sizeof(struct se_session), __alignof__(struct se_session),
64 0, NULL);
65 if (!se_sess_cache) {
66 pr_err("kmem_cache_create() for struct se_session"
67 " failed\n");
68 goto out;
69 }
70 se_ua_cache = kmem_cache_create("se_ua_cache",
71 sizeof(struct se_ua), __alignof__(struct se_ua),
72 0, NULL);
73 if (!se_ua_cache) {
74 pr_err("kmem_cache_create() for struct se_ua failed\n");
75 goto out_free_sess_cache;
76 }
77 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
78 sizeof(struct t10_pr_registration),
79 __alignof__(struct t10_pr_registration), 0, NULL);
80 if (!t10_pr_reg_cache) {
81 pr_err("kmem_cache_create() for struct t10_pr_registration"
82 " failed\n");
83 goto out_free_ua_cache;
84 }
85 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
86 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
87 0, NULL);
88 if (!t10_alua_lu_gp_cache) {
89 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
90 " failed\n");
91 goto out_free_pr_reg_cache;
92 }
93 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
94 sizeof(struct t10_alua_lu_gp_member),
95 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
96 if (!t10_alua_lu_gp_mem_cache) {
97 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
98 "cache failed\n");
99 goto out_free_lu_gp_cache;
100 }
101 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
102 sizeof(struct t10_alua_tg_pt_gp),
103 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
104 if (!t10_alua_tg_pt_gp_cache) {
105 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
106 "cache failed\n");
107 goto out_free_lu_gp_mem_cache;
108 }
109 t10_alua_lba_map_cache = kmem_cache_create(
110 "t10_alua_lba_map_cache",
111 sizeof(struct t10_alua_lba_map),
112 __alignof__(struct t10_alua_lba_map), 0, NULL);
113 if (!t10_alua_lba_map_cache) {
114 pr_err("kmem_cache_create() for t10_alua_lba_map_"
115 "cache failed\n");
116 goto out_free_tg_pt_gp_cache;
117 }
118 t10_alua_lba_map_mem_cache = kmem_cache_create(
119 "t10_alua_lba_map_mem_cache",
120 sizeof(struct t10_alua_lba_map_member),
121 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
122 if (!t10_alua_lba_map_mem_cache) {
123 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
124 "cache failed\n");
125 goto out_free_lba_map_cache;
126 }
127
128 target_completion_wq = alloc_workqueue("target_completion",
129 WQ_MEM_RECLAIM, 0);
130 if (!target_completion_wq)
131 goto out_free_lba_map_mem_cache;
132
133 target_submission_wq = alloc_workqueue("target_submission",
134 WQ_MEM_RECLAIM, 0);
135 if (!target_submission_wq)
136 goto out_free_completion_wq;
137
138 return 0;
139
140 out_free_completion_wq:
141 destroy_workqueue(target_completion_wq);
142 out_free_lba_map_mem_cache:
143 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
144 out_free_lba_map_cache:
145 kmem_cache_destroy(t10_alua_lba_map_cache);
146 out_free_tg_pt_gp_cache:
147 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
148 out_free_lu_gp_mem_cache:
149 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
150 out_free_lu_gp_cache:
151 kmem_cache_destroy(t10_alua_lu_gp_cache);
152 out_free_pr_reg_cache:
153 kmem_cache_destroy(t10_pr_reg_cache);
154 out_free_ua_cache:
155 kmem_cache_destroy(se_ua_cache);
156 out_free_sess_cache:
157 kmem_cache_destroy(se_sess_cache);
158 out:
159 return -ENOMEM;
160 }
161
release_se_kmem_caches(void)162 void release_se_kmem_caches(void)
163 {
164 destroy_workqueue(target_submission_wq);
165 destroy_workqueue(target_completion_wq);
166 kmem_cache_destroy(se_sess_cache);
167 kmem_cache_destroy(se_ua_cache);
168 kmem_cache_destroy(t10_pr_reg_cache);
169 kmem_cache_destroy(t10_alua_lu_gp_cache);
170 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
171 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
172 kmem_cache_destroy(t10_alua_lba_map_cache);
173 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
174 }
175
176 /* This code ensures unique mib indexes are handed out. */
177 static DEFINE_SPINLOCK(scsi_mib_index_lock);
178 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
179
180 /*
181 * Allocate a new row index for the entry type specified
182 */
scsi_get_new_index(scsi_index_t type)183 u32 scsi_get_new_index(scsi_index_t type)
184 {
185 u32 new_index;
186
187 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
188
189 spin_lock(&scsi_mib_index_lock);
190 new_index = ++scsi_mib_index[type];
191 spin_unlock(&scsi_mib_index_lock);
192
193 return new_index;
194 }
195
transport_subsystem_check_init(void)196 void transport_subsystem_check_init(void)
197 {
198 int ret;
199 static int sub_api_initialized;
200
201 if (sub_api_initialized)
202 return;
203
204 ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
205 if (ret != 0)
206 pr_err("Unable to load target_core_iblock\n");
207
208 ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
209 if (ret != 0)
210 pr_err("Unable to load target_core_file\n");
211
212 ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
213 if (ret != 0)
214 pr_err("Unable to load target_core_pscsi\n");
215
216 ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
217 if (ret != 0)
218 pr_err("Unable to load target_core_user\n");
219
220 sub_api_initialized = 1;
221 }
222
target_release_cmd_refcnt(struct percpu_ref * ref)223 static void target_release_cmd_refcnt(struct percpu_ref *ref)
224 {
225 struct target_cmd_counter *cmd_cnt = container_of(ref,
226 typeof(*cmd_cnt),
227 refcnt);
228 wake_up(&cmd_cnt->refcnt_wq);
229 }
230
target_alloc_cmd_counter(void)231 struct target_cmd_counter *target_alloc_cmd_counter(void)
232 {
233 struct target_cmd_counter *cmd_cnt;
234 int rc;
235
236 cmd_cnt = kzalloc(sizeof(*cmd_cnt), GFP_KERNEL);
237 if (!cmd_cnt)
238 return NULL;
239
240 init_completion(&cmd_cnt->stop_done);
241 init_waitqueue_head(&cmd_cnt->refcnt_wq);
242 atomic_set(&cmd_cnt->stopped, 0);
243
244 rc = percpu_ref_init(&cmd_cnt->refcnt, target_release_cmd_refcnt, 0,
245 GFP_KERNEL);
246 if (rc)
247 goto free_cmd_cnt;
248
249 return cmd_cnt;
250
251 free_cmd_cnt:
252 kfree(cmd_cnt);
253 return NULL;
254 }
255 EXPORT_SYMBOL_GPL(target_alloc_cmd_counter);
256
target_free_cmd_counter(struct target_cmd_counter * cmd_cnt)257 void target_free_cmd_counter(struct target_cmd_counter *cmd_cnt)
258 {
259 /*
260 * Drivers like loop do not call target_stop_session during session
261 * shutdown so we have to drop the ref taken at init time here.
262 */
263 if (!atomic_read(&cmd_cnt->stopped))
264 percpu_ref_put(&cmd_cnt->refcnt);
265
266 percpu_ref_exit(&cmd_cnt->refcnt);
267 kfree(cmd_cnt);
268 }
269 EXPORT_SYMBOL_GPL(target_free_cmd_counter);
270
271 /**
272 * transport_init_session - initialize a session object
273 * @se_sess: Session object pointer.
274 *
275 * The caller must have zero-initialized @se_sess before calling this function.
276 */
transport_init_session(struct se_session * se_sess)277 void transport_init_session(struct se_session *se_sess)
278 {
279 INIT_LIST_HEAD(&se_sess->sess_list);
280 INIT_LIST_HEAD(&se_sess->sess_acl_list);
281 spin_lock_init(&se_sess->sess_cmd_lock);
282 }
283 EXPORT_SYMBOL(transport_init_session);
284
285 /**
286 * transport_alloc_session - allocate a session object and initialize it
287 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
288 */
transport_alloc_session(enum target_prot_op sup_prot_ops)289 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
290 {
291 struct se_session *se_sess;
292
293 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
294 if (!se_sess) {
295 pr_err("Unable to allocate struct se_session from"
296 " se_sess_cache\n");
297 return ERR_PTR(-ENOMEM);
298 }
299 transport_init_session(se_sess);
300 se_sess->sup_prot_ops = sup_prot_ops;
301
302 return se_sess;
303 }
304 EXPORT_SYMBOL(transport_alloc_session);
305
306 /**
307 * transport_alloc_session_tags - allocate target driver private data
308 * @se_sess: Session pointer.
309 * @tag_num: Maximum number of in-flight commands between initiator and target.
310 * @tag_size: Size in bytes of the private data a target driver associates with
311 * each command.
312 */
transport_alloc_session_tags(struct se_session * se_sess,unsigned int tag_num,unsigned int tag_size)313 int transport_alloc_session_tags(struct se_session *se_sess,
314 unsigned int tag_num, unsigned int tag_size)
315 {
316 int rc;
317
318 se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
319 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
320 if (!se_sess->sess_cmd_map) {
321 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
322 return -ENOMEM;
323 }
324
325 rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
326 false, GFP_KERNEL, NUMA_NO_NODE);
327 if (rc < 0) {
328 pr_err("Unable to init se_sess->sess_tag_pool,"
329 " tag_num: %u\n", tag_num);
330 kvfree(se_sess->sess_cmd_map);
331 se_sess->sess_cmd_map = NULL;
332 return -ENOMEM;
333 }
334
335 return 0;
336 }
337 EXPORT_SYMBOL(transport_alloc_session_tags);
338
339 /**
340 * transport_init_session_tags - allocate a session and target driver private data
341 * @tag_num: Maximum number of in-flight commands between initiator and target.
342 * @tag_size: Size in bytes of the private data a target driver associates with
343 * each command.
344 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
345 */
346 static struct se_session *
transport_init_session_tags(unsigned int tag_num,unsigned int tag_size,enum target_prot_op sup_prot_ops)347 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
348 enum target_prot_op sup_prot_ops)
349 {
350 struct se_session *se_sess;
351 int rc;
352
353 if (tag_num != 0 && !tag_size) {
354 pr_err("init_session_tags called with percpu-ida tag_num:"
355 " %u, but zero tag_size\n", tag_num);
356 return ERR_PTR(-EINVAL);
357 }
358 if (!tag_num && tag_size) {
359 pr_err("init_session_tags called with percpu-ida tag_size:"
360 " %u, but zero tag_num\n", tag_size);
361 return ERR_PTR(-EINVAL);
362 }
363
364 se_sess = transport_alloc_session(sup_prot_ops);
365 if (IS_ERR(se_sess))
366 return se_sess;
367
368 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
369 if (rc < 0) {
370 transport_free_session(se_sess);
371 return ERR_PTR(-ENOMEM);
372 }
373
374 return se_sess;
375 }
376
377 /*
378 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
379 */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)380 void __transport_register_session(
381 struct se_portal_group *se_tpg,
382 struct se_node_acl *se_nacl,
383 struct se_session *se_sess,
384 void *fabric_sess_ptr)
385 {
386 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
387 unsigned char buf[PR_REG_ISID_LEN];
388 unsigned long flags;
389
390 se_sess->se_tpg = se_tpg;
391 se_sess->fabric_sess_ptr = fabric_sess_ptr;
392 /*
393 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
394 *
395 * Only set for struct se_session's that will actually be moving I/O.
396 * eg: *NOT* discovery sessions.
397 */
398 if (se_nacl) {
399 /*
400 *
401 * Determine if fabric allows for T10-PI feature bits exposed to
402 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
403 *
404 * If so, then always save prot_type on a per se_node_acl node
405 * basis and re-instate the previous sess_prot_type to avoid
406 * disabling PI from below any previously initiator side
407 * registered LUNs.
408 */
409 if (se_nacl->saved_prot_type)
410 se_sess->sess_prot_type = se_nacl->saved_prot_type;
411 else if (tfo->tpg_check_prot_fabric_only)
412 se_sess->sess_prot_type = se_nacl->saved_prot_type =
413 tfo->tpg_check_prot_fabric_only(se_tpg);
414 /*
415 * If the fabric module supports an ISID based TransportID,
416 * save this value in binary from the fabric I_T Nexus now.
417 */
418 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
419 memset(&buf[0], 0, PR_REG_ISID_LEN);
420 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
421 &buf[0], PR_REG_ISID_LEN);
422 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
423 }
424
425 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
426 /*
427 * The se_nacl->nacl_sess pointer will be set to the
428 * last active I_T Nexus for each struct se_node_acl.
429 */
430 se_nacl->nacl_sess = se_sess;
431
432 list_add_tail(&se_sess->sess_acl_list,
433 &se_nacl->acl_sess_list);
434 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
435 }
436 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
437
438 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
439 se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
440 }
441 EXPORT_SYMBOL(__transport_register_session);
442
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)443 void transport_register_session(
444 struct se_portal_group *se_tpg,
445 struct se_node_acl *se_nacl,
446 struct se_session *se_sess,
447 void *fabric_sess_ptr)
448 {
449 unsigned long flags;
450
451 spin_lock_irqsave(&se_tpg->session_lock, flags);
452 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
453 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
454 }
455 EXPORT_SYMBOL(transport_register_session);
456
457 struct se_session *
target_setup_session(struct se_portal_group * tpg,unsigned int tag_num,unsigned int tag_size,enum target_prot_op prot_op,const char * initiatorname,void * private,int (* callback)(struct se_portal_group *,struct se_session *,void *))458 target_setup_session(struct se_portal_group *tpg,
459 unsigned int tag_num, unsigned int tag_size,
460 enum target_prot_op prot_op,
461 const char *initiatorname, void *private,
462 int (*callback)(struct se_portal_group *,
463 struct se_session *, void *))
464 {
465 struct target_cmd_counter *cmd_cnt;
466 struct se_session *sess;
467 int rc;
468
469 cmd_cnt = target_alloc_cmd_counter();
470 if (!cmd_cnt)
471 return ERR_PTR(-ENOMEM);
472 /*
473 * If the fabric driver is using percpu-ida based pre allocation
474 * of I/O descriptor tags, go ahead and perform that setup now..
475 */
476 if (tag_num != 0)
477 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
478 else
479 sess = transport_alloc_session(prot_op);
480
481 if (IS_ERR(sess)) {
482 rc = PTR_ERR(sess);
483 goto free_cnt;
484 }
485 sess->cmd_cnt = cmd_cnt;
486
487 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
488 (unsigned char *)initiatorname);
489 if (!sess->se_node_acl) {
490 rc = -EACCES;
491 goto free_sess;
492 }
493 /*
494 * Go ahead and perform any remaining fabric setup that is
495 * required before transport_register_session().
496 */
497 if (callback != NULL) {
498 rc = callback(tpg, sess, private);
499 if (rc)
500 goto free_sess;
501 }
502
503 transport_register_session(tpg, sess->se_node_acl, sess, private);
504 return sess;
505
506 free_sess:
507 transport_free_session(sess);
508 return ERR_PTR(rc);
509
510 free_cnt:
511 target_free_cmd_counter(cmd_cnt);
512 return ERR_PTR(rc);
513 }
514 EXPORT_SYMBOL(target_setup_session);
515
target_show_dynamic_sessions(struct se_portal_group * se_tpg,char * page)516 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
517 {
518 struct se_session *se_sess;
519 ssize_t len = 0;
520
521 spin_lock_bh(&se_tpg->session_lock);
522 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
523 if (!se_sess->se_node_acl)
524 continue;
525 if (!se_sess->se_node_acl->dynamic_node_acl)
526 continue;
527 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
528 break;
529
530 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
531 se_sess->se_node_acl->initiatorname);
532 len += 1; /* Include NULL terminator */
533 }
534 spin_unlock_bh(&se_tpg->session_lock);
535
536 return len;
537 }
538 EXPORT_SYMBOL(target_show_dynamic_sessions);
539
target_complete_nacl(struct kref * kref)540 static void target_complete_nacl(struct kref *kref)
541 {
542 struct se_node_acl *nacl = container_of(kref,
543 struct se_node_acl, acl_kref);
544 struct se_portal_group *se_tpg = nacl->se_tpg;
545
546 if (!nacl->dynamic_stop) {
547 complete(&nacl->acl_free_comp);
548 return;
549 }
550
551 mutex_lock(&se_tpg->acl_node_mutex);
552 list_del_init(&nacl->acl_list);
553 mutex_unlock(&se_tpg->acl_node_mutex);
554
555 core_tpg_wait_for_nacl_pr_ref(nacl);
556 core_free_device_list_for_node(nacl, se_tpg);
557 kfree(nacl);
558 }
559
target_put_nacl(struct se_node_acl * nacl)560 void target_put_nacl(struct se_node_acl *nacl)
561 {
562 kref_put(&nacl->acl_kref, target_complete_nacl);
563 }
564 EXPORT_SYMBOL(target_put_nacl);
565
transport_deregister_session_configfs(struct se_session * se_sess)566 void transport_deregister_session_configfs(struct se_session *se_sess)
567 {
568 struct se_node_acl *se_nacl;
569 unsigned long flags;
570 /*
571 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
572 */
573 se_nacl = se_sess->se_node_acl;
574 if (se_nacl) {
575 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
576 if (!list_empty(&se_sess->sess_acl_list))
577 list_del_init(&se_sess->sess_acl_list);
578 /*
579 * If the session list is empty, then clear the pointer.
580 * Otherwise, set the struct se_session pointer from the tail
581 * element of the per struct se_node_acl active session list.
582 */
583 if (list_empty(&se_nacl->acl_sess_list))
584 se_nacl->nacl_sess = NULL;
585 else {
586 se_nacl->nacl_sess = container_of(
587 se_nacl->acl_sess_list.prev,
588 struct se_session, sess_acl_list);
589 }
590 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
591 }
592 }
593 EXPORT_SYMBOL(transport_deregister_session_configfs);
594
transport_free_session(struct se_session * se_sess)595 void transport_free_session(struct se_session *se_sess)
596 {
597 struct se_node_acl *se_nacl = se_sess->se_node_acl;
598
599 /*
600 * Drop the se_node_acl->nacl_kref obtained from within
601 * core_tpg_get_initiator_node_acl().
602 */
603 if (se_nacl) {
604 struct se_portal_group *se_tpg = se_nacl->se_tpg;
605 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
606 unsigned long flags;
607
608 se_sess->se_node_acl = NULL;
609
610 /*
611 * Also determine if we need to drop the extra ->cmd_kref if
612 * it had been previously dynamically generated, and
613 * the endpoint is not caching dynamic ACLs.
614 */
615 mutex_lock(&se_tpg->acl_node_mutex);
616 if (se_nacl->dynamic_node_acl &&
617 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
618 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
619 if (list_empty(&se_nacl->acl_sess_list))
620 se_nacl->dynamic_stop = true;
621 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
622
623 if (se_nacl->dynamic_stop)
624 list_del_init(&se_nacl->acl_list);
625 }
626 mutex_unlock(&se_tpg->acl_node_mutex);
627
628 if (se_nacl->dynamic_stop)
629 target_put_nacl(se_nacl);
630
631 target_put_nacl(se_nacl);
632 }
633 if (se_sess->sess_cmd_map) {
634 sbitmap_queue_free(&se_sess->sess_tag_pool);
635 kvfree(se_sess->sess_cmd_map);
636 }
637 if (se_sess->cmd_cnt)
638 target_free_cmd_counter(se_sess->cmd_cnt);
639 kmem_cache_free(se_sess_cache, se_sess);
640 }
641 EXPORT_SYMBOL(transport_free_session);
642
target_release_res(struct se_device * dev,void * data)643 static int target_release_res(struct se_device *dev, void *data)
644 {
645 struct se_session *sess = data;
646
647 if (dev->reservation_holder == sess)
648 target_release_reservation(dev);
649 return 0;
650 }
651
transport_deregister_session(struct se_session * se_sess)652 void transport_deregister_session(struct se_session *se_sess)
653 {
654 struct se_portal_group *se_tpg = se_sess->se_tpg;
655 unsigned long flags;
656
657 if (!se_tpg) {
658 transport_free_session(se_sess);
659 return;
660 }
661
662 spin_lock_irqsave(&se_tpg->session_lock, flags);
663 list_del(&se_sess->sess_list);
664 se_sess->se_tpg = NULL;
665 se_sess->fabric_sess_ptr = NULL;
666 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
667
668 /*
669 * Since the session is being removed, release SPC-2
670 * reservations held by the session that is disappearing.
671 */
672 target_for_each_device(target_release_res, se_sess);
673
674 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
675 se_tpg->se_tpg_tfo->fabric_name);
676 /*
677 * If last kref is dropping now for an explicit NodeACL, awake sleeping
678 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
679 * removal context from within transport_free_session() code.
680 *
681 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
682 * to release all remaining generate_node_acl=1 created ACL resources.
683 */
684
685 transport_free_session(se_sess);
686 }
687 EXPORT_SYMBOL(transport_deregister_session);
688
target_remove_session(struct se_session * se_sess)689 void target_remove_session(struct se_session *se_sess)
690 {
691 transport_deregister_session_configfs(se_sess);
692 transport_deregister_session(se_sess);
693 }
694 EXPORT_SYMBOL(target_remove_session);
695
target_remove_from_state_list(struct se_cmd * cmd)696 static void target_remove_from_state_list(struct se_cmd *cmd)
697 {
698 struct se_device *dev = cmd->se_dev;
699 unsigned long flags;
700
701 if (!dev)
702 return;
703
704 spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
705 if (cmd->state_active) {
706 list_del(&cmd->state_list);
707 cmd->state_active = false;
708 }
709 spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
710 }
711
target_remove_from_tmr_list(struct se_cmd * cmd)712 static void target_remove_from_tmr_list(struct se_cmd *cmd)
713 {
714 struct se_device *dev = NULL;
715 unsigned long flags;
716
717 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
718 dev = cmd->se_tmr_req->tmr_dev;
719
720 if (dev) {
721 spin_lock_irqsave(&dev->se_tmr_lock, flags);
722 if (cmd->se_tmr_req->tmr_dev)
723 list_del_init(&cmd->se_tmr_req->tmr_list);
724 spin_unlock_irqrestore(&dev->se_tmr_lock, flags);
725 }
726 }
727 /*
728 * This function is called by the target core after the target core has
729 * finished processing a SCSI command or SCSI TMF. Both the regular command
730 * processing code and the code for aborting commands can call this
731 * function. CMD_T_STOP is set if and only if another thread is waiting
732 * inside transport_wait_for_tasks() for t_transport_stop_comp.
733 */
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)734 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
735 {
736 unsigned long flags;
737
738 spin_lock_irqsave(&cmd->t_state_lock, flags);
739 /*
740 * Determine if frontend context caller is requesting the stopping of
741 * this command for frontend exceptions.
742 */
743 if (cmd->transport_state & CMD_T_STOP) {
744 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
745 __func__, __LINE__, cmd->tag);
746
747 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
748
749 complete_all(&cmd->t_transport_stop_comp);
750 return 1;
751 }
752 cmd->transport_state &= ~CMD_T_ACTIVE;
753 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
754
755 /*
756 * Some fabric modules like tcm_loop can release their internally
757 * allocated I/O reference and struct se_cmd now.
758 *
759 * Fabric modules are expected to return '1' here if the se_cmd being
760 * passed is released at this point, or zero if not being released.
761 */
762 return cmd->se_tfo->check_stop_free(cmd);
763 }
764
transport_lun_remove_cmd(struct se_cmd * cmd)765 static void transport_lun_remove_cmd(struct se_cmd *cmd)
766 {
767 struct se_lun *lun = cmd->se_lun;
768
769 if (!lun)
770 return;
771
772 target_remove_from_state_list(cmd);
773 target_remove_from_tmr_list(cmd);
774
775 if (cmpxchg(&cmd->lun_ref_active, true, false))
776 percpu_ref_put(&lun->lun_ref);
777
778 /*
779 * Clear struct se_cmd->se_lun before the handoff to FE.
780 */
781 cmd->se_lun = NULL;
782 }
783
target_complete_failure_work(struct work_struct * work)784 static void target_complete_failure_work(struct work_struct *work)
785 {
786 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
787
788 transport_generic_request_failure(cmd, cmd->sense_reason);
789 }
790
791 /*
792 * Used when asking transport to copy Sense Data from the underlying
793 * Linux/SCSI struct scsi_cmnd
794 */
transport_get_sense_buffer(struct se_cmd * cmd)795 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
796 {
797 struct se_device *dev = cmd->se_dev;
798
799 WARN_ON(!cmd->se_lun);
800
801 if (!dev)
802 return NULL;
803
804 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
805 return NULL;
806
807 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
808
809 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
810 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
811 return cmd->sense_buffer;
812 }
813
transport_copy_sense_to_cmd(struct se_cmd * cmd,unsigned char * sense)814 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
815 {
816 unsigned char *cmd_sense_buf;
817 unsigned long flags;
818
819 spin_lock_irqsave(&cmd->t_state_lock, flags);
820 cmd_sense_buf = transport_get_sense_buffer(cmd);
821 if (!cmd_sense_buf) {
822 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
823 return;
824 }
825
826 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
827 memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
828 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
829 }
830 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
831
target_handle_abort(struct se_cmd * cmd)832 static void target_handle_abort(struct se_cmd *cmd)
833 {
834 bool tas = cmd->transport_state & CMD_T_TAS;
835 bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
836 int ret;
837
838 pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
839
840 if (tas) {
841 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
842 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
843 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
844 cmd->t_task_cdb[0], cmd->tag);
845 trace_target_cmd_complete(cmd);
846 ret = cmd->se_tfo->queue_status(cmd);
847 if (ret) {
848 transport_handle_queue_full(cmd, cmd->se_dev,
849 ret, false);
850 return;
851 }
852 } else {
853 cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
854 cmd->se_tfo->queue_tm_rsp(cmd);
855 }
856 } else {
857 /*
858 * Allow the fabric driver to unmap any resources before
859 * releasing the descriptor via TFO->release_cmd().
860 */
861 cmd->se_tfo->aborted_task(cmd);
862 if (ack_kref)
863 WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
864 /*
865 * To do: establish a unit attention condition on the I_T
866 * nexus associated with cmd. See also the paragraph "Aborting
867 * commands" in SAM.
868 */
869 }
870
871 WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
872
873 transport_lun_remove_cmd(cmd);
874
875 transport_cmd_check_stop_to_fabric(cmd);
876 }
877
target_abort_work(struct work_struct * work)878 static void target_abort_work(struct work_struct *work)
879 {
880 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
881
882 target_handle_abort(cmd);
883 }
884
target_cmd_interrupted(struct se_cmd * cmd)885 static bool target_cmd_interrupted(struct se_cmd *cmd)
886 {
887 int post_ret;
888
889 if (cmd->transport_state & CMD_T_ABORTED) {
890 if (cmd->transport_complete_callback)
891 cmd->transport_complete_callback(cmd, false, &post_ret);
892 INIT_WORK(&cmd->work, target_abort_work);
893 queue_work(target_completion_wq, &cmd->work);
894 return true;
895 } else if (cmd->transport_state & CMD_T_STOP) {
896 if (cmd->transport_complete_callback)
897 cmd->transport_complete_callback(cmd, false, &post_ret);
898 complete_all(&cmd->t_transport_stop_comp);
899 return true;
900 }
901
902 return false;
903 }
904
905 /* May be called from interrupt context so must not sleep. */
target_complete_cmd_with_sense(struct se_cmd * cmd,u8 scsi_status,sense_reason_t sense_reason)906 void target_complete_cmd_with_sense(struct se_cmd *cmd, u8 scsi_status,
907 sense_reason_t sense_reason)
908 {
909 struct se_wwn *wwn = cmd->se_sess->se_tpg->se_tpg_wwn;
910 int success, cpu;
911 unsigned long flags;
912
913 if (target_cmd_interrupted(cmd))
914 return;
915
916 cmd->scsi_status = scsi_status;
917 cmd->sense_reason = sense_reason;
918
919 spin_lock_irqsave(&cmd->t_state_lock, flags);
920 switch (cmd->scsi_status) {
921 case SAM_STAT_CHECK_CONDITION:
922 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
923 success = 1;
924 else
925 success = 0;
926 break;
927 default:
928 success = 1;
929 break;
930 }
931
932 cmd->t_state = TRANSPORT_COMPLETE;
933 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
934 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
935
936 INIT_WORK(&cmd->work, success ? target_complete_ok_work :
937 target_complete_failure_work);
938
939 if (!wwn || wwn->cmd_compl_affinity == SE_COMPL_AFFINITY_CPUID)
940 cpu = cmd->cpuid;
941 else
942 cpu = wwn->cmd_compl_affinity;
943
944 queue_work_on(cpu, target_completion_wq, &cmd->work);
945 }
946 EXPORT_SYMBOL(target_complete_cmd_with_sense);
947
target_complete_cmd(struct se_cmd * cmd,u8 scsi_status)948 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
949 {
950 target_complete_cmd_with_sense(cmd, scsi_status, scsi_status ?
951 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE :
952 TCM_NO_SENSE);
953 }
954 EXPORT_SYMBOL(target_complete_cmd);
955
target_set_cmd_data_length(struct se_cmd * cmd,int length)956 void target_set_cmd_data_length(struct se_cmd *cmd, int length)
957 {
958 if (length < cmd->data_length) {
959 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
960 cmd->residual_count += cmd->data_length - length;
961 } else {
962 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
963 cmd->residual_count = cmd->data_length - length;
964 }
965
966 cmd->data_length = length;
967 }
968 }
969 EXPORT_SYMBOL(target_set_cmd_data_length);
970
target_complete_cmd_with_length(struct se_cmd * cmd,u8 scsi_status,int length)971 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
972 {
973 if (scsi_status == SAM_STAT_GOOD ||
974 cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) {
975 target_set_cmd_data_length(cmd, length);
976 }
977
978 target_complete_cmd(cmd, scsi_status);
979 }
980 EXPORT_SYMBOL(target_complete_cmd_with_length);
981
target_add_to_state_list(struct se_cmd * cmd)982 static void target_add_to_state_list(struct se_cmd *cmd)
983 {
984 struct se_device *dev = cmd->se_dev;
985 unsigned long flags;
986
987 spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
988 if (!cmd->state_active) {
989 list_add_tail(&cmd->state_list,
990 &dev->queues[cmd->cpuid].state_list);
991 cmd->state_active = true;
992 }
993 spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
994 }
995
996 /*
997 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
998 */
999 static void transport_write_pending_qf(struct se_cmd *cmd);
1000 static void transport_complete_qf(struct se_cmd *cmd);
1001
target_qf_do_work(struct work_struct * work)1002 void target_qf_do_work(struct work_struct *work)
1003 {
1004 struct se_device *dev = container_of(work, struct se_device,
1005 qf_work_queue);
1006 LIST_HEAD(qf_cmd_list);
1007 struct se_cmd *cmd, *cmd_tmp;
1008
1009 spin_lock_irq(&dev->qf_cmd_lock);
1010 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
1011 spin_unlock_irq(&dev->qf_cmd_lock);
1012
1013 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
1014 list_del(&cmd->se_qf_node);
1015 atomic_dec_mb(&dev->dev_qf_count);
1016
1017 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
1018 " context: %s\n", cmd->se_tfo->fabric_name, cmd,
1019 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
1020 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
1021 : "UNKNOWN");
1022
1023 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
1024 transport_write_pending_qf(cmd);
1025 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
1026 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
1027 transport_complete_qf(cmd);
1028 }
1029 }
1030
transport_dump_cmd_direction(struct se_cmd * cmd)1031 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1032 {
1033 switch (cmd->data_direction) {
1034 case DMA_NONE:
1035 return "NONE";
1036 case DMA_FROM_DEVICE:
1037 return "READ";
1038 case DMA_TO_DEVICE:
1039 return "WRITE";
1040 case DMA_BIDIRECTIONAL:
1041 return "BIDI";
1042 default:
1043 break;
1044 }
1045
1046 return "UNKNOWN";
1047 }
1048
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)1049 void transport_dump_dev_state(
1050 struct se_device *dev,
1051 char *b,
1052 int *bl)
1053 {
1054 *bl += sprintf(b + *bl, "Status: ");
1055 if (dev->export_count)
1056 *bl += sprintf(b + *bl, "ACTIVATED");
1057 else
1058 *bl += sprintf(b + *bl, "DEACTIVATED");
1059
1060 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
1061 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
1062 dev->dev_attrib.block_size,
1063 dev->dev_attrib.hw_max_sectors);
1064 *bl += sprintf(b + *bl, " ");
1065 }
1066
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1067 void transport_dump_vpd_proto_id(
1068 struct t10_vpd *vpd,
1069 unsigned char *p_buf,
1070 int p_buf_len)
1071 {
1072 unsigned char buf[VPD_TMP_BUF_SIZE];
1073 int len;
1074
1075 memset(buf, 0, VPD_TMP_BUF_SIZE);
1076 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1077
1078 switch (vpd->protocol_identifier) {
1079 case 0x00:
1080 sprintf(buf+len, "Fibre Channel\n");
1081 break;
1082 case 0x10:
1083 sprintf(buf+len, "Parallel SCSI\n");
1084 break;
1085 case 0x20:
1086 sprintf(buf+len, "SSA\n");
1087 break;
1088 case 0x30:
1089 sprintf(buf+len, "IEEE 1394\n");
1090 break;
1091 case 0x40:
1092 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1093 " Protocol\n");
1094 break;
1095 case 0x50:
1096 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1097 break;
1098 case 0x60:
1099 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1100 break;
1101 case 0x70:
1102 sprintf(buf+len, "Automation/Drive Interface Transport"
1103 " Protocol\n");
1104 break;
1105 case 0x80:
1106 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1107 break;
1108 default:
1109 sprintf(buf+len, "Unknown 0x%02x\n",
1110 vpd->protocol_identifier);
1111 break;
1112 }
1113
1114 if (p_buf)
1115 strncpy(p_buf, buf, p_buf_len);
1116 else
1117 pr_debug("%s", buf);
1118 }
1119
1120 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)1121 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1122 {
1123 /*
1124 * Check if the Protocol Identifier Valid (PIV) bit is set..
1125 *
1126 * from spc3r23.pdf section 7.5.1
1127 */
1128 if (page_83[1] & 0x80) {
1129 vpd->protocol_identifier = (page_83[0] & 0xf0);
1130 vpd->protocol_identifier_set = 1;
1131 transport_dump_vpd_proto_id(vpd, NULL, 0);
1132 }
1133 }
1134 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1135
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1136 int transport_dump_vpd_assoc(
1137 struct t10_vpd *vpd,
1138 unsigned char *p_buf,
1139 int p_buf_len)
1140 {
1141 unsigned char buf[VPD_TMP_BUF_SIZE];
1142 int ret = 0;
1143 int len;
1144
1145 memset(buf, 0, VPD_TMP_BUF_SIZE);
1146 len = sprintf(buf, "T10 VPD Identifier Association: ");
1147
1148 switch (vpd->association) {
1149 case 0x00:
1150 sprintf(buf+len, "addressed logical unit\n");
1151 break;
1152 case 0x10:
1153 sprintf(buf+len, "target port\n");
1154 break;
1155 case 0x20:
1156 sprintf(buf+len, "SCSI target device\n");
1157 break;
1158 default:
1159 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1160 ret = -EINVAL;
1161 break;
1162 }
1163
1164 if (p_buf)
1165 strncpy(p_buf, buf, p_buf_len);
1166 else
1167 pr_debug("%s", buf);
1168
1169 return ret;
1170 }
1171
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)1172 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1173 {
1174 /*
1175 * The VPD identification association..
1176 *
1177 * from spc3r23.pdf Section 7.6.3.1 Table 297
1178 */
1179 vpd->association = (page_83[1] & 0x30);
1180 return transport_dump_vpd_assoc(vpd, NULL, 0);
1181 }
1182 EXPORT_SYMBOL(transport_set_vpd_assoc);
1183
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1184 int transport_dump_vpd_ident_type(
1185 struct t10_vpd *vpd,
1186 unsigned char *p_buf,
1187 int p_buf_len)
1188 {
1189 unsigned char buf[VPD_TMP_BUF_SIZE];
1190 int ret = 0;
1191 int len;
1192
1193 memset(buf, 0, VPD_TMP_BUF_SIZE);
1194 len = sprintf(buf, "T10 VPD Identifier Type: ");
1195
1196 switch (vpd->device_identifier_type) {
1197 case 0x00:
1198 sprintf(buf+len, "Vendor specific\n");
1199 break;
1200 case 0x01:
1201 sprintf(buf+len, "T10 Vendor ID based\n");
1202 break;
1203 case 0x02:
1204 sprintf(buf+len, "EUI-64 based\n");
1205 break;
1206 case 0x03:
1207 sprintf(buf+len, "NAA\n");
1208 break;
1209 case 0x04:
1210 sprintf(buf+len, "Relative target port identifier\n");
1211 break;
1212 case 0x08:
1213 sprintf(buf+len, "SCSI name string\n");
1214 break;
1215 default:
1216 sprintf(buf+len, "Unsupported: 0x%02x\n",
1217 vpd->device_identifier_type);
1218 ret = -EINVAL;
1219 break;
1220 }
1221
1222 if (p_buf) {
1223 if (p_buf_len < strlen(buf)+1)
1224 return -EINVAL;
1225 strncpy(p_buf, buf, p_buf_len);
1226 } else {
1227 pr_debug("%s", buf);
1228 }
1229
1230 return ret;
1231 }
1232
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)1233 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1234 {
1235 /*
1236 * The VPD identifier type..
1237 *
1238 * from spc3r23.pdf Section 7.6.3.1 Table 298
1239 */
1240 vpd->device_identifier_type = (page_83[1] & 0x0f);
1241 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1242 }
1243 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1244
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1245 int transport_dump_vpd_ident(
1246 struct t10_vpd *vpd,
1247 unsigned char *p_buf,
1248 int p_buf_len)
1249 {
1250 unsigned char buf[VPD_TMP_BUF_SIZE];
1251 int ret = 0;
1252
1253 memset(buf, 0, VPD_TMP_BUF_SIZE);
1254
1255 switch (vpd->device_identifier_code_set) {
1256 case 0x01: /* Binary */
1257 snprintf(buf, sizeof(buf),
1258 "T10 VPD Binary Device Identifier: %s\n",
1259 &vpd->device_identifier[0]);
1260 break;
1261 case 0x02: /* ASCII */
1262 snprintf(buf, sizeof(buf),
1263 "T10 VPD ASCII Device Identifier: %s\n",
1264 &vpd->device_identifier[0]);
1265 break;
1266 case 0x03: /* UTF-8 */
1267 snprintf(buf, sizeof(buf),
1268 "T10 VPD UTF-8 Device Identifier: %s\n",
1269 &vpd->device_identifier[0]);
1270 break;
1271 default:
1272 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1273 " 0x%02x", vpd->device_identifier_code_set);
1274 ret = -EINVAL;
1275 break;
1276 }
1277
1278 if (p_buf)
1279 strncpy(p_buf, buf, p_buf_len);
1280 else
1281 pr_debug("%s", buf);
1282
1283 return ret;
1284 }
1285
1286 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1287 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1288 {
1289 static const char hex_str[] = "0123456789abcdef";
1290 int j = 0, i = 4; /* offset to start of the identifier */
1291
1292 /*
1293 * The VPD Code Set (encoding)
1294 *
1295 * from spc3r23.pdf Section 7.6.3.1 Table 296
1296 */
1297 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1298 switch (vpd->device_identifier_code_set) {
1299 case 0x01: /* Binary */
1300 vpd->device_identifier[j++] =
1301 hex_str[vpd->device_identifier_type];
1302 while (i < (4 + page_83[3])) {
1303 vpd->device_identifier[j++] =
1304 hex_str[(page_83[i] & 0xf0) >> 4];
1305 vpd->device_identifier[j++] =
1306 hex_str[page_83[i] & 0x0f];
1307 i++;
1308 }
1309 break;
1310 case 0x02: /* ASCII */
1311 case 0x03: /* UTF-8 */
1312 while (i < (4 + page_83[3]))
1313 vpd->device_identifier[j++] = page_83[i++];
1314 break;
1315 default:
1316 break;
1317 }
1318
1319 return transport_dump_vpd_ident(vpd, NULL, 0);
1320 }
1321 EXPORT_SYMBOL(transport_set_vpd_ident);
1322
1323 static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd * cmd,struct se_device * dev,unsigned int size)1324 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1325 unsigned int size)
1326 {
1327 u32 mtl;
1328
1329 if (!cmd->se_tfo->max_data_sg_nents)
1330 return TCM_NO_SENSE;
1331 /*
1332 * Check if fabric enforced maximum SGL entries per I/O descriptor
1333 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1334 * residual_count and reduce original cmd->data_length to maximum
1335 * length based on single PAGE_SIZE entry scatter-lists.
1336 */
1337 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1338 if (cmd->data_length > mtl) {
1339 /*
1340 * If an existing CDB overflow is present, calculate new residual
1341 * based on CDB size minus fabric maximum transfer length.
1342 *
1343 * If an existing CDB underflow is present, calculate new residual
1344 * based on original cmd->data_length minus fabric maximum transfer
1345 * length.
1346 *
1347 * Otherwise, set the underflow residual based on cmd->data_length
1348 * minus fabric maximum transfer length.
1349 */
1350 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1351 cmd->residual_count = (size - mtl);
1352 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1353 u32 orig_dl = size + cmd->residual_count;
1354 cmd->residual_count = (orig_dl - mtl);
1355 } else {
1356 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1357 cmd->residual_count = (cmd->data_length - mtl);
1358 }
1359 cmd->data_length = mtl;
1360 /*
1361 * Reset sbc_check_prot() calculated protection payload
1362 * length based upon the new smaller MTL.
1363 */
1364 if (cmd->prot_length) {
1365 u32 sectors = (mtl / dev->dev_attrib.block_size);
1366 cmd->prot_length = dev->prot_length * sectors;
1367 }
1368 }
1369 return TCM_NO_SENSE;
1370 }
1371
1372 /**
1373 * target_cmd_size_check - Check whether there will be a residual.
1374 * @cmd: SCSI command.
1375 * @size: Data buffer size derived from CDB. The data buffer size provided by
1376 * the SCSI transport driver is available in @cmd->data_length.
1377 *
1378 * Compare the data buffer size from the CDB with the data buffer limit from the transport
1379 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1380 *
1381 * Note: target drivers set @cmd->data_length by calling __target_init_cmd().
1382 *
1383 * Return: TCM_NO_SENSE
1384 */
1385 sense_reason_t
target_cmd_size_check(struct se_cmd * cmd,unsigned int size)1386 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1387 {
1388 struct se_device *dev = cmd->se_dev;
1389
1390 if (cmd->unknown_data_length) {
1391 cmd->data_length = size;
1392 } else if (size != cmd->data_length) {
1393 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1394 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1395 " 0x%02x\n", cmd->se_tfo->fabric_name,
1396 cmd->data_length, size, cmd->t_task_cdb[0]);
1397 /*
1398 * For READ command for the overflow case keep the existing
1399 * fabric provided ->data_length. Otherwise for the underflow
1400 * case, reset ->data_length to the smaller SCSI expected data
1401 * transfer length.
1402 */
1403 if (size > cmd->data_length) {
1404 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1405 cmd->residual_count = (size - cmd->data_length);
1406 } else {
1407 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1408 cmd->residual_count = (cmd->data_length - size);
1409 /*
1410 * Do not truncate ->data_length for WRITE command to
1411 * dump all payload
1412 */
1413 if (cmd->data_direction == DMA_FROM_DEVICE) {
1414 cmd->data_length = size;
1415 }
1416 }
1417
1418 if (cmd->data_direction == DMA_TO_DEVICE) {
1419 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1420 pr_err_ratelimited("Rejecting underflow/overflow"
1421 " for WRITE data CDB\n");
1422 return TCM_INVALID_FIELD_IN_COMMAND_IU;
1423 }
1424 /*
1425 * Some fabric drivers like iscsi-target still expect to
1426 * always reject overflow writes. Reject this case until
1427 * full fabric driver level support for overflow writes
1428 * is introduced tree-wide.
1429 */
1430 if (size > cmd->data_length) {
1431 pr_err_ratelimited("Rejecting overflow for"
1432 " WRITE control CDB\n");
1433 return TCM_INVALID_CDB_FIELD;
1434 }
1435 }
1436 }
1437
1438 return target_check_max_data_sg_nents(cmd, dev, size);
1439
1440 }
1441
1442 /*
1443 * Used by fabric modules containing a local struct se_cmd within their
1444 * fabric dependent per I/O descriptor.
1445 *
1446 * Preserves the value of @cmd->tag.
1447 */
__target_init_cmd(struct se_cmd * cmd,const struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer,u64 unpacked_lun,struct target_cmd_counter * cmd_cnt)1448 void __target_init_cmd(struct se_cmd *cmd,
1449 const struct target_core_fabric_ops *tfo,
1450 struct se_session *se_sess, u32 data_length,
1451 int data_direction, int task_attr,
1452 unsigned char *sense_buffer, u64 unpacked_lun,
1453 struct target_cmd_counter *cmd_cnt)
1454 {
1455 INIT_LIST_HEAD(&cmd->se_delayed_node);
1456 INIT_LIST_HEAD(&cmd->se_qf_node);
1457 INIT_LIST_HEAD(&cmd->state_list);
1458 init_completion(&cmd->t_transport_stop_comp);
1459 cmd->free_compl = NULL;
1460 cmd->abrt_compl = NULL;
1461 spin_lock_init(&cmd->t_state_lock);
1462 INIT_WORK(&cmd->work, NULL);
1463 kref_init(&cmd->cmd_kref);
1464
1465 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1466 cmd->se_tfo = tfo;
1467 cmd->se_sess = se_sess;
1468 cmd->data_length = data_length;
1469 cmd->data_direction = data_direction;
1470 cmd->sam_task_attr = task_attr;
1471 cmd->sense_buffer = sense_buffer;
1472 cmd->orig_fe_lun = unpacked_lun;
1473 cmd->cmd_cnt = cmd_cnt;
1474
1475 if (!(cmd->se_cmd_flags & SCF_USE_CPUID))
1476 cmd->cpuid = raw_smp_processor_id();
1477
1478 cmd->state_active = false;
1479 }
1480 EXPORT_SYMBOL(__target_init_cmd);
1481
1482 static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd * cmd)1483 transport_check_alloc_task_attr(struct se_cmd *cmd)
1484 {
1485 struct se_device *dev = cmd->se_dev;
1486
1487 /*
1488 * Check if SAM Task Attribute emulation is enabled for this
1489 * struct se_device storage object
1490 */
1491 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1492 return 0;
1493
1494 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1495 pr_debug("SAM Task Attribute ACA"
1496 " emulation is not supported\n");
1497 return TCM_INVALID_CDB_FIELD;
1498 }
1499
1500 return 0;
1501 }
1502
1503 sense_reason_t
target_cmd_init_cdb(struct se_cmd * cmd,unsigned char * cdb,gfp_t gfp)1504 target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb, gfp_t gfp)
1505 {
1506 sense_reason_t ret;
1507
1508 /*
1509 * Ensure that the received CDB is less than the max (252 + 8) bytes
1510 * for VARIABLE_LENGTH_CMD
1511 */
1512 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1513 pr_err("Received SCSI CDB with command_size: %d that"
1514 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1515 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1516 ret = TCM_INVALID_CDB_FIELD;
1517 goto err;
1518 }
1519 /*
1520 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1521 * allocate the additional extended CDB buffer now.. Otherwise
1522 * setup the pointer from __t_task_cdb to t_task_cdb.
1523 */
1524 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1525 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), gfp);
1526 if (!cmd->t_task_cdb) {
1527 pr_err("Unable to allocate cmd->t_task_cdb"
1528 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1529 scsi_command_size(cdb),
1530 (unsigned long)sizeof(cmd->__t_task_cdb));
1531 ret = TCM_OUT_OF_RESOURCES;
1532 goto err;
1533 }
1534 }
1535 /*
1536 * Copy the original CDB into cmd->
1537 */
1538 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1539
1540 trace_target_sequencer_start(cmd);
1541 return 0;
1542
1543 err:
1544 /*
1545 * Copy the CDB here to allow trace_target_cmd_complete() to
1546 * print the cdb to the trace buffers.
1547 */
1548 memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb),
1549 (unsigned int)TCM_MAX_COMMAND_SIZE));
1550 return ret;
1551 }
1552 EXPORT_SYMBOL(target_cmd_init_cdb);
1553
1554 sense_reason_t
target_cmd_parse_cdb(struct se_cmd * cmd)1555 target_cmd_parse_cdb(struct se_cmd *cmd)
1556 {
1557 struct se_device *dev = cmd->se_dev;
1558 sense_reason_t ret;
1559
1560 ret = dev->transport->parse_cdb(cmd);
1561 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1562 pr_debug_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1563 cmd->se_tfo->fabric_name,
1564 cmd->se_sess->se_node_acl->initiatorname,
1565 cmd->t_task_cdb[0]);
1566 if (ret)
1567 return ret;
1568
1569 ret = transport_check_alloc_task_attr(cmd);
1570 if (ret)
1571 return ret;
1572
1573 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1574 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1575 return 0;
1576 }
1577 EXPORT_SYMBOL(target_cmd_parse_cdb);
1578
__target_submit(struct se_cmd * cmd)1579 static int __target_submit(struct se_cmd *cmd)
1580 {
1581 sense_reason_t ret;
1582
1583 might_sleep();
1584
1585 /*
1586 * Check if we need to delay processing because of ALUA
1587 * Active/NonOptimized primary access state..
1588 */
1589 core_alua_check_nonop_delay(cmd);
1590
1591 if (cmd->t_data_nents != 0) {
1592 /*
1593 * This is primarily a hack for udev and tcm loop which sends
1594 * INQUIRYs with a single page and expects the data to be
1595 * cleared.
1596 */
1597 if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1598 cmd->data_direction == DMA_FROM_DEVICE) {
1599 struct scatterlist *sgl = cmd->t_data_sg;
1600 unsigned char *buf = NULL;
1601
1602 BUG_ON(!sgl);
1603
1604 buf = kmap_local_page(sg_page(sgl));
1605 if (buf) {
1606 memset(buf + sgl->offset, 0, sgl->length);
1607 kunmap_local(buf);
1608 }
1609 }
1610 }
1611
1612 if (!cmd->se_lun) {
1613 dump_stack();
1614 pr_err("cmd->se_lun is NULL\n");
1615 return -EINVAL;
1616 }
1617
1618 /*
1619 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1620 * outstanding descriptors are handled correctly during shutdown via
1621 * transport_wait_for_tasks()
1622 *
1623 * Also, we don't take cmd->t_state_lock here as we only expect
1624 * this to be called for initial descriptor submission.
1625 */
1626 cmd->t_state = TRANSPORT_NEW_CMD;
1627 cmd->transport_state |= CMD_T_ACTIVE;
1628
1629 /*
1630 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1631 * so follow TRANSPORT_NEW_CMD processing thread context usage
1632 * and call transport_generic_request_failure() if necessary..
1633 */
1634 ret = transport_generic_new_cmd(cmd);
1635 if (ret)
1636 transport_generic_request_failure(cmd, ret);
1637 return 0;
1638 }
1639
1640 sense_reason_t
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)1641 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1642 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1643 {
1644 if (!sgl || !sgl_count)
1645 return 0;
1646
1647 /*
1648 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1649 * scatterlists already have been set to follow what the fabric
1650 * passes for the original expected data transfer length.
1651 */
1652 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1653 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1654 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1655 return TCM_INVALID_CDB_FIELD;
1656 }
1657
1658 cmd->t_data_sg = sgl;
1659 cmd->t_data_nents = sgl_count;
1660 cmd->t_bidi_data_sg = sgl_bidi;
1661 cmd->t_bidi_data_nents = sgl_bidi_count;
1662
1663 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1664 return 0;
1665 }
1666
1667 /**
1668 * target_init_cmd - initialize se_cmd
1669 * @se_cmd: command descriptor to init
1670 * @se_sess: associated se_sess for endpoint
1671 * @sense: pointer to SCSI sense buffer
1672 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1673 * @data_length: fabric expected data transfer length
1674 * @task_attr: SAM task attribute
1675 * @data_dir: DMA data direction
1676 * @flags: flags for command submission from target_sc_flags_tables
1677 *
1678 * Task tags are supported if the caller has set @se_cmd->tag.
1679 *
1680 * Returns:
1681 * - less than zero to signal active I/O shutdown failure.
1682 * - zero on success.
1683 *
1684 * If the fabric driver calls target_stop_session, then it must check the
1685 * return code and handle failures. This will never fail for other drivers,
1686 * and the return code can be ignored.
1687 */
target_init_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1688 int target_init_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1689 unsigned char *sense, u64 unpacked_lun,
1690 u32 data_length, int task_attr, int data_dir, int flags)
1691 {
1692 struct se_portal_group *se_tpg;
1693
1694 se_tpg = se_sess->se_tpg;
1695 BUG_ON(!se_tpg);
1696 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1697
1698 if (flags & TARGET_SCF_USE_CPUID)
1699 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1700 /*
1701 * Signal bidirectional data payloads to target-core
1702 */
1703 if (flags & TARGET_SCF_BIDI_OP)
1704 se_cmd->se_cmd_flags |= SCF_BIDI;
1705
1706 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1707 se_cmd->unknown_data_length = 1;
1708 /*
1709 * Initialize se_cmd for target operation. From this point
1710 * exceptions are handled by sending exception status via
1711 * target_core_fabric_ops->queue_status() callback
1712 */
1713 __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, data_length,
1714 data_dir, task_attr, sense, unpacked_lun,
1715 se_sess->cmd_cnt);
1716
1717 /*
1718 * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is
1719 * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second
1720 * kref_put() to happen during fabric packet acknowledgement.
1721 */
1722 return target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1723 }
1724 EXPORT_SYMBOL_GPL(target_init_cmd);
1725
1726 /**
1727 * target_submit_prep - prepare cmd for submission
1728 * @se_cmd: command descriptor to prep
1729 * @cdb: pointer to SCSI CDB
1730 * @sgl: struct scatterlist memory for unidirectional mapping
1731 * @sgl_count: scatterlist count for unidirectional mapping
1732 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1733 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1734 * @sgl_prot: struct scatterlist memory protection information
1735 * @sgl_prot_count: scatterlist count for protection information
1736 * @gfp: gfp allocation type
1737 *
1738 * Returns:
1739 * - less than zero to signal failure.
1740 * - zero on success.
1741 *
1742 * If failure is returned, lio will the callers queue_status to complete
1743 * the cmd.
1744 */
target_submit_prep(struct se_cmd * se_cmd,unsigned char * cdb,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count,struct scatterlist * sgl_prot,u32 sgl_prot_count,gfp_t gfp)1745 int target_submit_prep(struct se_cmd *se_cmd, unsigned char *cdb,
1746 struct scatterlist *sgl, u32 sgl_count,
1747 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1748 struct scatterlist *sgl_prot, u32 sgl_prot_count,
1749 gfp_t gfp)
1750 {
1751 sense_reason_t rc;
1752
1753 rc = target_cmd_init_cdb(se_cmd, cdb, gfp);
1754 if (rc)
1755 goto send_cc_direct;
1756
1757 /*
1758 * Locate se_lun pointer and attach it to struct se_cmd
1759 */
1760 rc = transport_lookup_cmd_lun(se_cmd);
1761 if (rc)
1762 goto send_cc_direct;
1763
1764 rc = target_cmd_parse_cdb(se_cmd);
1765 if (rc != 0)
1766 goto generic_fail;
1767
1768 /*
1769 * Save pointers for SGLs containing protection information,
1770 * if present.
1771 */
1772 if (sgl_prot_count) {
1773 se_cmd->t_prot_sg = sgl_prot;
1774 se_cmd->t_prot_nents = sgl_prot_count;
1775 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1776 }
1777
1778 /*
1779 * When a non zero sgl_count has been passed perform SGL passthrough
1780 * mapping for pre-allocated fabric memory instead of having target
1781 * core perform an internal SGL allocation..
1782 */
1783 if (sgl_count != 0) {
1784 BUG_ON(!sgl);
1785
1786 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1787 sgl_bidi, sgl_bidi_count);
1788 if (rc != 0)
1789 goto generic_fail;
1790 }
1791
1792 return 0;
1793
1794 send_cc_direct:
1795 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1796 target_put_sess_cmd(se_cmd);
1797 return -EIO;
1798
1799 generic_fail:
1800 transport_generic_request_failure(se_cmd, rc);
1801 return -EIO;
1802 }
1803 EXPORT_SYMBOL_GPL(target_submit_prep);
1804
1805 /**
1806 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1807 *
1808 * @se_cmd: command descriptor to submit
1809 * @se_sess: associated se_sess for endpoint
1810 * @cdb: pointer to SCSI CDB
1811 * @sense: pointer to SCSI sense buffer
1812 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1813 * @data_length: fabric expected data transfer length
1814 * @task_attr: SAM task attribute
1815 * @data_dir: DMA data direction
1816 * @flags: flags for command submission from target_sc_flags_tables
1817 *
1818 * Task tags are supported if the caller has set @se_cmd->tag.
1819 *
1820 * This may only be called from process context, and also currently
1821 * assumes internal allocation of fabric payload buffer by target-core.
1822 *
1823 * It also assumes interal target core SGL memory allocation.
1824 *
1825 * This function must only be used by drivers that do their own
1826 * sync during shutdown and does not use target_stop_session. If there
1827 * is a failure this function will call into the fabric driver's
1828 * queue_status with a CHECK_CONDITION.
1829 */
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1830 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1831 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1832 u32 data_length, int task_attr, int data_dir, int flags)
1833 {
1834 int rc;
1835
1836 rc = target_init_cmd(se_cmd, se_sess, sense, unpacked_lun, data_length,
1837 task_attr, data_dir, flags);
1838 WARN(rc, "Invalid target_submit_cmd use. Driver must not use target_stop_session or call target_init_cmd directly.\n");
1839 if (rc)
1840 return;
1841
1842 if (target_submit_prep(se_cmd, cdb, NULL, 0, NULL, 0, NULL, 0,
1843 GFP_KERNEL))
1844 return;
1845
1846 target_submit(se_cmd);
1847 }
1848 EXPORT_SYMBOL(target_submit_cmd);
1849
1850
target_plug_device(struct se_device * se_dev)1851 static struct se_dev_plug *target_plug_device(struct se_device *se_dev)
1852 {
1853 struct se_dev_plug *se_plug;
1854
1855 if (!se_dev->transport->plug_device)
1856 return NULL;
1857
1858 se_plug = se_dev->transport->plug_device(se_dev);
1859 if (!se_plug)
1860 return NULL;
1861
1862 se_plug->se_dev = se_dev;
1863 /*
1864 * We have a ref to the lun at this point, but the cmds could
1865 * complete before we unplug, so grab a ref to the se_device so we
1866 * can call back into the backend.
1867 */
1868 config_group_get(&se_dev->dev_group);
1869 return se_plug;
1870 }
1871
target_unplug_device(struct se_dev_plug * se_plug)1872 static void target_unplug_device(struct se_dev_plug *se_plug)
1873 {
1874 struct se_device *se_dev = se_plug->se_dev;
1875
1876 se_dev->transport->unplug_device(se_plug);
1877 config_group_put(&se_dev->dev_group);
1878 }
1879
target_queued_submit_work(struct work_struct * work)1880 void target_queued_submit_work(struct work_struct *work)
1881 {
1882 struct se_cmd_queue *sq = container_of(work, struct se_cmd_queue, work);
1883 struct se_cmd *se_cmd, *next_cmd;
1884 struct se_dev_plug *se_plug = NULL;
1885 struct se_device *se_dev = NULL;
1886 struct llist_node *cmd_list;
1887
1888 cmd_list = llist_del_all(&sq->cmd_list);
1889 if (!cmd_list)
1890 /* Previous call took what we were queued to submit */
1891 return;
1892
1893 cmd_list = llist_reverse_order(cmd_list);
1894 llist_for_each_entry_safe(se_cmd, next_cmd, cmd_list, se_cmd_list) {
1895 if (!se_dev) {
1896 se_dev = se_cmd->se_dev;
1897 se_plug = target_plug_device(se_dev);
1898 }
1899
1900 __target_submit(se_cmd);
1901 }
1902
1903 if (se_plug)
1904 target_unplug_device(se_plug);
1905 }
1906
1907 /**
1908 * target_queue_submission - queue the cmd to run on the LIO workqueue
1909 * @se_cmd: command descriptor to submit
1910 */
target_queue_submission(struct se_cmd * se_cmd)1911 static void target_queue_submission(struct se_cmd *se_cmd)
1912 {
1913 struct se_device *se_dev = se_cmd->se_dev;
1914 int cpu = se_cmd->cpuid;
1915 struct se_cmd_queue *sq;
1916
1917 sq = &se_dev->queues[cpu].sq;
1918 llist_add(&se_cmd->se_cmd_list, &sq->cmd_list);
1919 queue_work_on(cpu, target_submission_wq, &sq->work);
1920 }
1921
1922 /**
1923 * target_submit - perform final initialization and submit cmd to LIO core
1924 * @se_cmd: command descriptor to submit
1925 *
1926 * target_submit_prep or something similar must have been called on the cmd,
1927 * and this must be called from process context.
1928 */
target_submit(struct se_cmd * se_cmd)1929 int target_submit(struct se_cmd *se_cmd)
1930 {
1931 const struct target_core_fabric_ops *tfo = se_cmd->se_sess->se_tpg->se_tpg_tfo;
1932 struct se_dev_attrib *da = &se_cmd->se_dev->dev_attrib;
1933 u8 submit_type;
1934
1935 if (da->submit_type == TARGET_FABRIC_DEFAULT_SUBMIT)
1936 submit_type = tfo->default_submit_type;
1937 else if (da->submit_type == TARGET_DIRECT_SUBMIT &&
1938 tfo->direct_submit_supp)
1939 submit_type = TARGET_DIRECT_SUBMIT;
1940 else
1941 submit_type = TARGET_QUEUE_SUBMIT;
1942
1943 if (submit_type == TARGET_DIRECT_SUBMIT)
1944 return __target_submit(se_cmd);
1945
1946 target_queue_submission(se_cmd);
1947 return 0;
1948 }
1949 EXPORT_SYMBOL_GPL(target_submit);
1950
target_complete_tmr_failure(struct work_struct * work)1951 static void target_complete_tmr_failure(struct work_struct *work)
1952 {
1953 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1954
1955 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1956 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1957
1958 transport_lun_remove_cmd(se_cmd);
1959 transport_cmd_check_stop_to_fabric(se_cmd);
1960 }
1961
1962 /**
1963 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1964 * for TMR CDBs
1965 *
1966 * @se_cmd: command descriptor to submit
1967 * @se_sess: associated se_sess for endpoint
1968 * @sense: pointer to SCSI sense buffer
1969 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1970 * @fabric_tmr_ptr: fabric context for TMR req
1971 * @tm_type: Type of TM request
1972 * @gfp: gfp type for caller
1973 * @tag: referenced task tag for TMR_ABORT_TASK
1974 * @flags: submit cmd flags
1975 *
1976 * Callable from all contexts.
1977 **/
1978
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u64 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,u64 tag,int flags)1979 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1980 unsigned char *sense, u64 unpacked_lun,
1981 void *fabric_tmr_ptr, unsigned char tm_type,
1982 gfp_t gfp, u64 tag, int flags)
1983 {
1984 struct se_portal_group *se_tpg;
1985 int ret;
1986
1987 se_tpg = se_sess->se_tpg;
1988 BUG_ON(!se_tpg);
1989
1990 __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1991 0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun,
1992 se_sess->cmd_cnt);
1993 /*
1994 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1995 * allocation failure.
1996 */
1997 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1998 if (ret < 0)
1999 return -ENOMEM;
2000
2001 if (tm_type == TMR_ABORT_TASK)
2002 se_cmd->se_tmr_req->ref_task_tag = tag;
2003
2004 /* See target_submit_cmd for commentary */
2005 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
2006 if (ret) {
2007 core_tmr_release_req(se_cmd->se_tmr_req);
2008 return ret;
2009 }
2010
2011 ret = transport_lookup_tmr_lun(se_cmd);
2012 if (ret)
2013 goto failure;
2014
2015 transport_generic_handle_tmr(se_cmd);
2016 return 0;
2017
2018 /*
2019 * For callback during failure handling, push this work off
2020 * to process context with TMR_LUN_DOES_NOT_EXIST status.
2021 */
2022 failure:
2023 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
2024 schedule_work(&se_cmd->work);
2025 return 0;
2026 }
2027 EXPORT_SYMBOL(target_submit_tmr);
2028
2029 /*
2030 * Handle SAM-esque emulation for generic transport request failures.
2031 */
transport_generic_request_failure(struct se_cmd * cmd,sense_reason_t sense_reason)2032 void transport_generic_request_failure(struct se_cmd *cmd,
2033 sense_reason_t sense_reason)
2034 {
2035 int ret = 0, post_ret;
2036
2037 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
2038 sense_reason);
2039 target_show_cmd("-----[ ", cmd);
2040
2041 /*
2042 * For SAM Task Attribute emulation for failed struct se_cmd
2043 */
2044 transport_complete_task_attr(cmd);
2045
2046 if (cmd->transport_complete_callback)
2047 cmd->transport_complete_callback(cmd, false, &post_ret);
2048
2049 if (cmd->transport_state & CMD_T_ABORTED) {
2050 INIT_WORK(&cmd->work, target_abort_work);
2051 queue_work(target_completion_wq, &cmd->work);
2052 return;
2053 }
2054
2055 switch (sense_reason) {
2056 case TCM_NON_EXISTENT_LUN:
2057 case TCM_UNSUPPORTED_SCSI_OPCODE:
2058 case TCM_INVALID_CDB_FIELD:
2059 case TCM_INVALID_PARAMETER_LIST:
2060 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2061 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2062 case TCM_UNKNOWN_MODE_PAGE:
2063 case TCM_WRITE_PROTECTED:
2064 case TCM_ADDRESS_OUT_OF_RANGE:
2065 case TCM_CHECK_CONDITION_ABORT_CMD:
2066 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2067 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2068 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2069 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2070 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
2071 case TCM_TOO_MANY_TARGET_DESCS:
2072 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
2073 case TCM_TOO_MANY_SEGMENT_DESCS:
2074 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
2075 case TCM_INVALID_FIELD_IN_COMMAND_IU:
2076 case TCM_ALUA_TG_PT_STANDBY:
2077 case TCM_ALUA_TG_PT_UNAVAILABLE:
2078 case TCM_ALUA_STATE_TRANSITION:
2079 case TCM_ALUA_OFFLINE:
2080 break;
2081 case TCM_OUT_OF_RESOURCES:
2082 cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
2083 goto queue_status;
2084 case TCM_LUN_BUSY:
2085 cmd->scsi_status = SAM_STAT_BUSY;
2086 goto queue_status;
2087 case TCM_RESERVATION_CONFLICT:
2088 /*
2089 * No SENSE Data payload for this case, set SCSI Status
2090 * and queue the response to $FABRIC_MOD.
2091 *
2092 * Uses linux/include/scsi/scsi.h SAM status codes defs
2093 */
2094 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2095 /*
2096 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2097 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2098 * CONFLICT STATUS.
2099 *
2100 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2101 */
2102 if (cmd->se_sess &&
2103 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl
2104 == TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) {
2105 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
2106 cmd->orig_fe_lun, 0x2C,
2107 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2108 }
2109
2110 goto queue_status;
2111 default:
2112 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2113 cmd->t_task_cdb[0], sense_reason);
2114 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2115 break;
2116 }
2117
2118 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
2119 if (ret)
2120 goto queue_full;
2121
2122 check_stop:
2123 transport_lun_remove_cmd(cmd);
2124 transport_cmd_check_stop_to_fabric(cmd);
2125 return;
2126
2127 queue_status:
2128 trace_target_cmd_complete(cmd);
2129 ret = cmd->se_tfo->queue_status(cmd);
2130 if (!ret)
2131 goto check_stop;
2132 queue_full:
2133 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2134 }
2135 EXPORT_SYMBOL(transport_generic_request_failure);
2136
__target_execute_cmd(struct se_cmd * cmd,bool do_checks)2137 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
2138 {
2139 sense_reason_t ret;
2140
2141 if (!cmd->execute_cmd) {
2142 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2143 goto err;
2144 }
2145 if (do_checks) {
2146 /*
2147 * Check for an existing UNIT ATTENTION condition after
2148 * target_handle_task_attr() has done SAM task attr
2149 * checking, and possibly have already defered execution
2150 * out to target_restart_delayed_cmds() context.
2151 */
2152 ret = target_scsi3_ua_check(cmd);
2153 if (ret)
2154 goto err;
2155
2156 ret = target_alua_state_check(cmd);
2157 if (ret)
2158 goto err;
2159
2160 ret = target_check_reservation(cmd);
2161 if (ret) {
2162 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2163 goto err;
2164 }
2165 }
2166
2167 ret = cmd->execute_cmd(cmd);
2168 if (!ret)
2169 return;
2170 err:
2171 spin_lock_irq(&cmd->t_state_lock);
2172 cmd->transport_state &= ~CMD_T_SENT;
2173 spin_unlock_irq(&cmd->t_state_lock);
2174
2175 transport_generic_request_failure(cmd, ret);
2176 }
2177
target_write_prot_action(struct se_cmd * cmd)2178 static int target_write_prot_action(struct se_cmd *cmd)
2179 {
2180 u32 sectors;
2181 /*
2182 * Perform WRITE_INSERT of PI using software emulation when backend
2183 * device has PI enabled, if the transport has not already generated
2184 * PI using hardware WRITE_INSERT offload.
2185 */
2186 switch (cmd->prot_op) {
2187 case TARGET_PROT_DOUT_INSERT:
2188 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
2189 sbc_dif_generate(cmd);
2190 break;
2191 case TARGET_PROT_DOUT_STRIP:
2192 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
2193 break;
2194
2195 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
2196 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2197 sectors, 0, cmd->t_prot_sg, 0);
2198 if (unlikely(cmd->pi_err)) {
2199 spin_lock_irq(&cmd->t_state_lock);
2200 cmd->transport_state &= ~CMD_T_SENT;
2201 spin_unlock_irq(&cmd->t_state_lock);
2202 transport_generic_request_failure(cmd, cmd->pi_err);
2203 return -1;
2204 }
2205 break;
2206 default:
2207 break;
2208 }
2209
2210 return 0;
2211 }
2212
target_handle_task_attr(struct se_cmd * cmd)2213 static bool target_handle_task_attr(struct se_cmd *cmd)
2214 {
2215 struct se_device *dev = cmd->se_dev;
2216 unsigned long flags;
2217
2218 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2219 return false;
2220
2221 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
2222
2223 /*
2224 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2225 * to allow the passed struct se_cmd list of tasks to the front of the list.
2226 */
2227 switch (cmd->sam_task_attr) {
2228 case TCM_HEAD_TAG:
2229 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2230 cmd->t_task_cdb[0]);
2231 return false;
2232 case TCM_ORDERED_TAG:
2233 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2234 cmd->t_task_cdb[0]);
2235 break;
2236 default:
2237 /*
2238 * For SIMPLE and UNTAGGED Task Attribute commands
2239 */
2240 retry:
2241 if (percpu_ref_tryget_live(&dev->non_ordered))
2242 return false;
2243
2244 break;
2245 }
2246
2247 spin_lock_irqsave(&dev->delayed_cmd_lock, flags);
2248 if (cmd->sam_task_attr == TCM_SIMPLE_TAG &&
2249 !percpu_ref_is_dying(&dev->non_ordered)) {
2250 spin_unlock_irqrestore(&dev->delayed_cmd_lock, flags);
2251 /* We raced with the last ordered completion so retry. */
2252 goto retry;
2253 } else if (!percpu_ref_is_dying(&dev->non_ordered)) {
2254 percpu_ref_kill(&dev->non_ordered);
2255 }
2256
2257 spin_lock(&cmd->t_state_lock);
2258 cmd->transport_state &= ~CMD_T_SENT;
2259 spin_unlock(&cmd->t_state_lock);
2260
2261 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2262 spin_unlock_irqrestore(&dev->delayed_cmd_lock, flags);
2263
2264 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2265 cmd->t_task_cdb[0], cmd->sam_task_attr);
2266 /*
2267 * We may have no non ordered cmds when this function started or we
2268 * could have raced with the last simple/head cmd completing, so kick
2269 * the delayed handler here.
2270 */
2271 schedule_work(&dev->delayed_cmd_work);
2272 return true;
2273 }
2274
target_execute_cmd(struct se_cmd * cmd)2275 void target_execute_cmd(struct se_cmd *cmd)
2276 {
2277 /*
2278 * Determine if frontend context caller is requesting the stopping of
2279 * this command for frontend exceptions.
2280 *
2281 * If the received CDB has already been aborted stop processing it here.
2282 */
2283 if (target_cmd_interrupted(cmd))
2284 return;
2285
2286 spin_lock_irq(&cmd->t_state_lock);
2287 cmd->t_state = TRANSPORT_PROCESSING;
2288 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2289 spin_unlock_irq(&cmd->t_state_lock);
2290
2291 if (target_write_prot_action(cmd))
2292 return;
2293
2294 if (target_handle_task_attr(cmd))
2295 return;
2296
2297 __target_execute_cmd(cmd, true);
2298 }
2299 EXPORT_SYMBOL(target_execute_cmd);
2300
2301 /*
2302 * Process all commands up to the last received ORDERED task attribute which
2303 * requires another blocking boundary
2304 */
target_do_delayed_work(struct work_struct * work)2305 void target_do_delayed_work(struct work_struct *work)
2306 {
2307 struct se_device *dev = container_of(work, struct se_device,
2308 delayed_cmd_work);
2309
2310 spin_lock(&dev->delayed_cmd_lock);
2311 while (!dev->ordered_sync_in_progress) {
2312 struct se_cmd *cmd;
2313
2314 /*
2315 * We can be woken up early/late due to races or the
2316 * extra wake up we do when adding commands to the list.
2317 * We check for both cases here.
2318 */
2319 if (list_empty(&dev->delayed_cmd_list) ||
2320 !percpu_ref_is_zero(&dev->non_ordered))
2321 break;
2322
2323 cmd = list_entry(dev->delayed_cmd_list.next,
2324 struct se_cmd, se_delayed_node);
2325 cmd->se_cmd_flags |= SCF_TASK_ORDERED_SYNC;
2326 cmd->transport_state |= CMD_T_SENT;
2327
2328 dev->ordered_sync_in_progress = true;
2329
2330 list_del(&cmd->se_delayed_node);
2331 spin_unlock(&dev->delayed_cmd_lock);
2332
2333 __target_execute_cmd(cmd, true);
2334 spin_lock(&dev->delayed_cmd_lock);
2335 }
2336 spin_unlock(&dev->delayed_cmd_lock);
2337 }
2338
transport_complete_ordered_sync(struct se_cmd * cmd)2339 static void transport_complete_ordered_sync(struct se_cmd *cmd)
2340 {
2341 struct se_device *dev = cmd->se_dev;
2342 unsigned long flags;
2343
2344 spin_lock_irqsave(&dev->delayed_cmd_lock, flags);
2345 dev->dev_cur_ordered_id++;
2346
2347 pr_debug("Incremented dev_cur_ordered_id: %u for type %d\n",
2348 dev->dev_cur_ordered_id, cmd->sam_task_attr);
2349
2350 dev->ordered_sync_in_progress = false;
2351
2352 if (list_empty(&dev->delayed_cmd_list))
2353 percpu_ref_resurrect(&dev->non_ordered);
2354 else
2355 schedule_work(&dev->delayed_cmd_work);
2356
2357 spin_unlock_irqrestore(&dev->delayed_cmd_lock, flags);
2358 }
2359
2360 /*
2361 * Called from I/O completion to determine which dormant/delayed
2362 * and ordered cmds need to have their tasks added to the execution queue.
2363 */
transport_complete_task_attr(struct se_cmd * cmd)2364 static void transport_complete_task_attr(struct se_cmd *cmd)
2365 {
2366 struct se_device *dev = cmd->se_dev;
2367
2368 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2369 return;
2370
2371 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2372 return;
2373
2374 cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2375
2376 if (cmd->se_cmd_flags & SCF_TASK_ORDERED_SYNC) {
2377 transport_complete_ordered_sync(cmd);
2378 return;
2379 }
2380
2381 switch (cmd->sam_task_attr) {
2382 case TCM_SIMPLE_TAG:
2383 percpu_ref_put(&dev->non_ordered);
2384 break;
2385 case TCM_ORDERED_TAG:
2386 /* All ordered should have been executed as sync */
2387 WARN_ON(1);
2388 break;
2389 }
2390 }
2391
transport_complete_qf(struct se_cmd * cmd)2392 static void transport_complete_qf(struct se_cmd *cmd)
2393 {
2394 int ret = 0;
2395
2396 transport_complete_task_attr(cmd);
2397 /*
2398 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2399 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2400 * the same callbacks should not be retried. Return CHECK_CONDITION
2401 * if a scsi_status is not already set.
2402 *
2403 * If a fabric driver ->queue_status() has returned non zero, always
2404 * keep retrying no matter what..
2405 */
2406 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2407 if (cmd->scsi_status)
2408 goto queue_status;
2409
2410 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2411 goto queue_status;
2412 }
2413
2414 /*
2415 * Check if we need to send a sense buffer from
2416 * the struct se_cmd in question. We do NOT want
2417 * to take this path of the IO has been marked as
2418 * needing to be treated like a "normal read". This
2419 * is the case if it's a tape read, and either the
2420 * FM, EOM, or ILI bits are set, but there is no
2421 * sense data.
2422 */
2423 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2424 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2425 goto queue_status;
2426
2427 switch (cmd->data_direction) {
2428 case DMA_FROM_DEVICE:
2429 /* queue status if not treating this as a normal read */
2430 if (cmd->scsi_status &&
2431 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2432 goto queue_status;
2433
2434 trace_target_cmd_complete(cmd);
2435 ret = cmd->se_tfo->queue_data_in(cmd);
2436 break;
2437 case DMA_TO_DEVICE:
2438 if (cmd->se_cmd_flags & SCF_BIDI) {
2439 ret = cmd->se_tfo->queue_data_in(cmd);
2440 break;
2441 }
2442 fallthrough;
2443 case DMA_NONE:
2444 queue_status:
2445 trace_target_cmd_complete(cmd);
2446 ret = cmd->se_tfo->queue_status(cmd);
2447 break;
2448 default:
2449 break;
2450 }
2451
2452 if (ret < 0) {
2453 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2454 return;
2455 }
2456 transport_lun_remove_cmd(cmd);
2457 transport_cmd_check_stop_to_fabric(cmd);
2458 }
2459
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev,int err,bool write_pending)2460 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2461 int err, bool write_pending)
2462 {
2463 /*
2464 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2465 * ->queue_data_in() callbacks from new process context.
2466 *
2467 * Otherwise for other errors, transport_complete_qf() will send
2468 * CHECK_CONDITION via ->queue_status() instead of attempting to
2469 * retry associated fabric driver data-transfer callbacks.
2470 */
2471 if (err == -EAGAIN || err == -ENOMEM) {
2472 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2473 TRANSPORT_COMPLETE_QF_OK;
2474 } else {
2475 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2476 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2477 }
2478
2479 spin_lock_irq(&dev->qf_cmd_lock);
2480 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2481 atomic_inc_mb(&dev->dev_qf_count);
2482 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2483
2484 schedule_work(&cmd->se_dev->qf_work_queue);
2485 }
2486
target_read_prot_action(struct se_cmd * cmd)2487 static bool target_read_prot_action(struct se_cmd *cmd)
2488 {
2489 switch (cmd->prot_op) {
2490 case TARGET_PROT_DIN_STRIP:
2491 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2492 u32 sectors = cmd->data_length >>
2493 ilog2(cmd->se_dev->dev_attrib.block_size);
2494
2495 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2496 sectors, 0, cmd->t_prot_sg,
2497 0);
2498 if (cmd->pi_err)
2499 return true;
2500 }
2501 break;
2502 case TARGET_PROT_DIN_INSERT:
2503 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2504 break;
2505
2506 sbc_dif_generate(cmd);
2507 break;
2508 default:
2509 break;
2510 }
2511
2512 return false;
2513 }
2514
target_complete_ok_work(struct work_struct * work)2515 static void target_complete_ok_work(struct work_struct *work)
2516 {
2517 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2518 int ret;
2519
2520 /*
2521 * Check if we need to move delayed/dormant tasks from cmds on the
2522 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2523 * Attribute.
2524 */
2525 transport_complete_task_attr(cmd);
2526
2527 /*
2528 * Check to schedule QUEUE_FULL work, or execute an existing
2529 * cmd->transport_qf_callback()
2530 */
2531 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2532 schedule_work(&cmd->se_dev->qf_work_queue);
2533
2534 /*
2535 * Check if we need to send a sense buffer from
2536 * the struct se_cmd in question. We do NOT want
2537 * to take this path of the IO has been marked as
2538 * needing to be treated like a "normal read". This
2539 * is the case if it's a tape read, and either the
2540 * FM, EOM, or ILI bits are set, but there is no
2541 * sense data.
2542 */
2543 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2544 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2545 WARN_ON(!cmd->scsi_status);
2546 ret = transport_send_check_condition_and_sense(
2547 cmd, 0, 1);
2548 if (ret)
2549 goto queue_full;
2550
2551 transport_lun_remove_cmd(cmd);
2552 transport_cmd_check_stop_to_fabric(cmd);
2553 return;
2554 }
2555 /*
2556 * Check for a callback, used by amongst other things
2557 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2558 */
2559 if (cmd->transport_complete_callback) {
2560 sense_reason_t rc;
2561 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2562 bool zero_dl = !(cmd->data_length);
2563 int post_ret = 0;
2564
2565 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2566 if (!rc && !post_ret) {
2567 if (caw && zero_dl)
2568 goto queue_rsp;
2569
2570 return;
2571 } else if (rc) {
2572 ret = transport_send_check_condition_and_sense(cmd,
2573 rc, 0);
2574 if (ret)
2575 goto queue_full;
2576
2577 transport_lun_remove_cmd(cmd);
2578 transport_cmd_check_stop_to_fabric(cmd);
2579 return;
2580 }
2581 }
2582
2583 queue_rsp:
2584 switch (cmd->data_direction) {
2585 case DMA_FROM_DEVICE:
2586 /*
2587 * if this is a READ-type IO, but SCSI status
2588 * is set, then skip returning data and just
2589 * return the status -- unless this IO is marked
2590 * as needing to be treated as a normal read,
2591 * in which case we want to go ahead and return
2592 * the data. This happens, for example, for tape
2593 * reads with the FM, EOM, or ILI bits set, with
2594 * no sense data.
2595 */
2596 if (cmd->scsi_status &&
2597 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2598 goto queue_status;
2599
2600 atomic_long_add(cmd->data_length,
2601 &cmd->se_lun->lun_stats.tx_data_octets);
2602 /*
2603 * Perform READ_STRIP of PI using software emulation when
2604 * backend had PI enabled, if the transport will not be
2605 * performing hardware READ_STRIP offload.
2606 */
2607 if (target_read_prot_action(cmd)) {
2608 ret = transport_send_check_condition_and_sense(cmd,
2609 cmd->pi_err, 0);
2610 if (ret)
2611 goto queue_full;
2612
2613 transport_lun_remove_cmd(cmd);
2614 transport_cmd_check_stop_to_fabric(cmd);
2615 return;
2616 }
2617
2618 trace_target_cmd_complete(cmd);
2619 ret = cmd->se_tfo->queue_data_in(cmd);
2620 if (ret)
2621 goto queue_full;
2622 break;
2623 case DMA_TO_DEVICE:
2624 atomic_long_add(cmd->data_length,
2625 &cmd->se_lun->lun_stats.rx_data_octets);
2626 /*
2627 * Check if we need to send READ payload for BIDI-COMMAND
2628 */
2629 if (cmd->se_cmd_flags & SCF_BIDI) {
2630 atomic_long_add(cmd->data_length,
2631 &cmd->se_lun->lun_stats.tx_data_octets);
2632 ret = cmd->se_tfo->queue_data_in(cmd);
2633 if (ret)
2634 goto queue_full;
2635 break;
2636 }
2637 fallthrough;
2638 case DMA_NONE:
2639 queue_status:
2640 trace_target_cmd_complete(cmd);
2641 ret = cmd->se_tfo->queue_status(cmd);
2642 if (ret)
2643 goto queue_full;
2644 break;
2645 default:
2646 break;
2647 }
2648
2649 transport_lun_remove_cmd(cmd);
2650 transport_cmd_check_stop_to_fabric(cmd);
2651 return;
2652
2653 queue_full:
2654 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2655 " data_direction: %d\n", cmd, cmd->data_direction);
2656
2657 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2658 }
2659
target_free_sgl(struct scatterlist * sgl,int nents)2660 void target_free_sgl(struct scatterlist *sgl, int nents)
2661 {
2662 sgl_free_n_order(sgl, nents, 0);
2663 }
2664 EXPORT_SYMBOL(target_free_sgl);
2665
transport_reset_sgl_orig(struct se_cmd * cmd)2666 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2667 {
2668 /*
2669 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2670 * emulation, and free + reset pointers if necessary..
2671 */
2672 if (!cmd->t_data_sg_orig)
2673 return;
2674
2675 kfree(cmd->t_data_sg);
2676 cmd->t_data_sg = cmd->t_data_sg_orig;
2677 cmd->t_data_sg_orig = NULL;
2678 cmd->t_data_nents = cmd->t_data_nents_orig;
2679 cmd->t_data_nents_orig = 0;
2680 }
2681
transport_free_pages(struct se_cmd * cmd)2682 static inline void transport_free_pages(struct se_cmd *cmd)
2683 {
2684 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2685 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2686 cmd->t_prot_sg = NULL;
2687 cmd->t_prot_nents = 0;
2688 }
2689
2690 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2691 /*
2692 * Release special case READ buffer payload required for
2693 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2694 */
2695 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2696 target_free_sgl(cmd->t_bidi_data_sg,
2697 cmd->t_bidi_data_nents);
2698 cmd->t_bidi_data_sg = NULL;
2699 cmd->t_bidi_data_nents = 0;
2700 }
2701 transport_reset_sgl_orig(cmd);
2702 return;
2703 }
2704 transport_reset_sgl_orig(cmd);
2705
2706 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2707 cmd->t_data_sg = NULL;
2708 cmd->t_data_nents = 0;
2709
2710 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2711 cmd->t_bidi_data_sg = NULL;
2712 cmd->t_bidi_data_nents = 0;
2713 }
2714
transport_kmap_data_sg(struct se_cmd * cmd)2715 void *transport_kmap_data_sg(struct se_cmd *cmd)
2716 {
2717 struct scatterlist *sg = cmd->t_data_sg;
2718 struct page **pages;
2719 int i;
2720
2721 /*
2722 * We need to take into account a possible offset here for fabrics like
2723 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2724 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2725 */
2726 if (!cmd->t_data_nents)
2727 return NULL;
2728
2729 BUG_ON(!sg);
2730 if (cmd->t_data_nents == 1)
2731 return kmap(sg_page(sg)) + sg->offset;
2732
2733 /* >1 page. use vmap */
2734 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2735 if (!pages)
2736 return NULL;
2737
2738 /* convert sg[] to pages[] */
2739 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2740 pages[i] = sg_page(sg);
2741 }
2742
2743 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2744 kfree(pages);
2745 if (!cmd->t_data_vmap)
2746 return NULL;
2747
2748 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2749 }
2750 EXPORT_SYMBOL(transport_kmap_data_sg);
2751
transport_kunmap_data_sg(struct se_cmd * cmd)2752 void transport_kunmap_data_sg(struct se_cmd *cmd)
2753 {
2754 if (!cmd->t_data_nents) {
2755 return;
2756 } else if (cmd->t_data_nents == 1) {
2757 kunmap(sg_page(cmd->t_data_sg));
2758 return;
2759 }
2760
2761 vunmap(cmd->t_data_vmap);
2762 cmd->t_data_vmap = NULL;
2763 }
2764 EXPORT_SYMBOL(transport_kunmap_data_sg);
2765
2766 int
target_alloc_sgl(struct scatterlist ** sgl,unsigned int * nents,u32 length,bool zero_page,bool chainable)2767 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2768 bool zero_page, bool chainable)
2769 {
2770 gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2771
2772 *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2773 return *sgl ? 0 : -ENOMEM;
2774 }
2775 EXPORT_SYMBOL(target_alloc_sgl);
2776
2777 /*
2778 * Allocate any required resources to execute the command. For writes we
2779 * might not have the payload yet, so notify the fabric via a call to
2780 * ->write_pending instead. Otherwise place it on the execution queue.
2781 */
2782 sense_reason_t
transport_generic_new_cmd(struct se_cmd * cmd)2783 transport_generic_new_cmd(struct se_cmd *cmd)
2784 {
2785 unsigned long flags;
2786 int ret = 0;
2787 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2788
2789 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2790 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2791 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2792 cmd->prot_length, true, false);
2793 if (ret < 0)
2794 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2795 }
2796
2797 /*
2798 * Determine if the TCM fabric module has already allocated physical
2799 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2800 * beforehand.
2801 */
2802 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2803 cmd->data_length) {
2804
2805 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2806 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2807 u32 bidi_length;
2808
2809 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2810 bidi_length = cmd->t_task_nolb *
2811 cmd->se_dev->dev_attrib.block_size;
2812 else
2813 bidi_length = cmd->data_length;
2814
2815 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2816 &cmd->t_bidi_data_nents,
2817 bidi_length, zero_flag, false);
2818 if (ret < 0)
2819 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2820 }
2821
2822 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2823 cmd->data_length, zero_flag, false);
2824 if (ret < 0)
2825 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2826 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2827 cmd->data_length) {
2828 /*
2829 * Special case for COMPARE_AND_WRITE with fabrics
2830 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2831 */
2832 u32 caw_length = cmd->t_task_nolb *
2833 cmd->se_dev->dev_attrib.block_size;
2834
2835 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2836 &cmd->t_bidi_data_nents,
2837 caw_length, zero_flag, false);
2838 if (ret < 0)
2839 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2840 }
2841 /*
2842 * If this command is not a write we can execute it right here,
2843 * for write buffers we need to notify the fabric driver first
2844 * and let it call back once the write buffers are ready.
2845 */
2846 target_add_to_state_list(cmd);
2847 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2848 target_execute_cmd(cmd);
2849 return 0;
2850 }
2851
2852 spin_lock_irqsave(&cmd->t_state_lock, flags);
2853 cmd->t_state = TRANSPORT_WRITE_PENDING;
2854 /*
2855 * Determine if frontend context caller is requesting the stopping of
2856 * this command for frontend exceptions.
2857 */
2858 if (cmd->transport_state & CMD_T_STOP &&
2859 !cmd->se_tfo->write_pending_must_be_called) {
2860 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2861 __func__, __LINE__, cmd->tag);
2862
2863 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2864
2865 complete_all(&cmd->t_transport_stop_comp);
2866 return 0;
2867 }
2868 cmd->transport_state &= ~CMD_T_ACTIVE;
2869 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2870
2871 ret = cmd->se_tfo->write_pending(cmd);
2872 if (ret)
2873 goto queue_full;
2874
2875 return 0;
2876
2877 queue_full:
2878 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2879 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2880 return 0;
2881 }
2882 EXPORT_SYMBOL(transport_generic_new_cmd);
2883
transport_write_pending_qf(struct se_cmd * cmd)2884 static void transport_write_pending_qf(struct se_cmd *cmd)
2885 {
2886 unsigned long flags;
2887 int ret;
2888 bool stop;
2889
2890 spin_lock_irqsave(&cmd->t_state_lock, flags);
2891 stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2892 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2893
2894 if (stop) {
2895 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2896 __func__, __LINE__, cmd->tag);
2897 complete_all(&cmd->t_transport_stop_comp);
2898 return;
2899 }
2900
2901 ret = cmd->se_tfo->write_pending(cmd);
2902 if (ret) {
2903 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2904 cmd);
2905 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2906 }
2907 }
2908
2909 static bool
2910 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2911 unsigned long *flags);
2912
target_wait_free_cmd(struct se_cmd * cmd,bool * aborted,bool * tas)2913 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2914 {
2915 unsigned long flags;
2916
2917 spin_lock_irqsave(&cmd->t_state_lock, flags);
2918 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2919 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2920 }
2921
2922 /*
2923 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2924 * finished.
2925 */
target_put_cmd_and_wait(struct se_cmd * cmd)2926 void target_put_cmd_and_wait(struct se_cmd *cmd)
2927 {
2928 DECLARE_COMPLETION_ONSTACK(compl);
2929
2930 WARN_ON_ONCE(cmd->abrt_compl);
2931 cmd->abrt_compl = &compl;
2932 target_put_sess_cmd(cmd);
2933 wait_for_completion(&compl);
2934 }
2935
2936 /*
2937 * This function is called by frontend drivers after processing of a command
2938 * has finished.
2939 *
2940 * The protocol for ensuring that either the regular frontend command
2941 * processing flow or target_handle_abort() code drops one reference is as
2942 * follows:
2943 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2944 * the frontend driver to call this function synchronously or asynchronously.
2945 * That will cause one reference to be dropped.
2946 * - During regular command processing the target core sets CMD_T_COMPLETE
2947 * before invoking one of the .queue_*() functions.
2948 * - The code that aborts commands skips commands and TMFs for which
2949 * CMD_T_COMPLETE has been set.
2950 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2951 * commands that will be aborted.
2952 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2953 * transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2954 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2955 * be called and will drop a reference.
2956 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2957 * will be called. target_handle_abort() will drop the final reference.
2958 */
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)2959 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2960 {
2961 DECLARE_COMPLETION_ONSTACK(compl);
2962 int ret = 0;
2963 bool aborted = false, tas = false;
2964
2965 if (wait_for_tasks)
2966 target_wait_free_cmd(cmd, &aborted, &tas);
2967
2968 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2969 /*
2970 * Handle WRITE failure case where transport_generic_new_cmd()
2971 * has already added se_cmd to state_list, but fabric has
2972 * failed command before I/O submission.
2973 */
2974 if (cmd->state_active)
2975 target_remove_from_state_list(cmd);
2976
2977 if (cmd->se_lun)
2978 transport_lun_remove_cmd(cmd);
2979 }
2980 if (aborted)
2981 cmd->free_compl = &compl;
2982 ret = target_put_sess_cmd(cmd);
2983 if (aborted) {
2984 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2985 wait_for_completion(&compl);
2986 ret = 1;
2987 }
2988 return ret;
2989 }
2990 EXPORT_SYMBOL(transport_generic_free_cmd);
2991
2992 /**
2993 * target_get_sess_cmd - Verify the session is accepting cmds and take ref
2994 * @se_cmd: command descriptor to add
2995 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2996 */
target_get_sess_cmd(struct se_cmd * se_cmd,bool ack_kref)2997 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2998 {
2999 int ret = 0;
3000
3001 /*
3002 * Add a second kref if the fabric caller is expecting to handle
3003 * fabric acknowledgement that requires two target_put_sess_cmd()
3004 * invocations before se_cmd descriptor release.
3005 */
3006 if (ack_kref) {
3007 kref_get(&se_cmd->cmd_kref);
3008 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
3009 }
3010
3011 /*
3012 * Users like xcopy do not use counters since they never do a stop
3013 * and wait.
3014 */
3015 if (se_cmd->cmd_cnt) {
3016 if (!percpu_ref_tryget_live(&se_cmd->cmd_cnt->refcnt))
3017 ret = -ESHUTDOWN;
3018 }
3019 if (ret && ack_kref)
3020 target_put_sess_cmd(se_cmd);
3021
3022 return ret;
3023 }
3024 EXPORT_SYMBOL(target_get_sess_cmd);
3025
target_free_cmd_mem(struct se_cmd * cmd)3026 static void target_free_cmd_mem(struct se_cmd *cmd)
3027 {
3028 transport_free_pages(cmd);
3029
3030 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
3031 core_tmr_release_req(cmd->se_tmr_req);
3032 if (cmd->t_task_cdb != cmd->__t_task_cdb)
3033 kfree(cmd->t_task_cdb);
3034 }
3035
target_release_cmd_kref(struct kref * kref)3036 static void target_release_cmd_kref(struct kref *kref)
3037 {
3038 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
3039 struct target_cmd_counter *cmd_cnt = se_cmd->cmd_cnt;
3040 struct completion *free_compl = se_cmd->free_compl;
3041 struct completion *abrt_compl = se_cmd->abrt_compl;
3042
3043 target_free_cmd_mem(se_cmd);
3044 se_cmd->se_tfo->release_cmd(se_cmd);
3045 if (free_compl)
3046 complete(free_compl);
3047 if (abrt_compl)
3048 complete(abrt_compl);
3049
3050 if (cmd_cnt)
3051 percpu_ref_put(&cmd_cnt->refcnt);
3052 }
3053
3054 /**
3055 * target_put_sess_cmd - decrease the command reference count
3056 * @se_cmd: command to drop a reference from
3057 *
3058 * Returns 1 if and only if this target_put_sess_cmd() call caused the
3059 * refcount to drop to zero. Returns zero otherwise.
3060 */
target_put_sess_cmd(struct se_cmd * se_cmd)3061 int target_put_sess_cmd(struct se_cmd *se_cmd)
3062 {
3063 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
3064 }
3065 EXPORT_SYMBOL(target_put_sess_cmd);
3066
data_dir_name(enum dma_data_direction d)3067 static const char *data_dir_name(enum dma_data_direction d)
3068 {
3069 switch (d) {
3070 case DMA_BIDIRECTIONAL: return "BIDI";
3071 case DMA_TO_DEVICE: return "WRITE";
3072 case DMA_FROM_DEVICE: return "READ";
3073 case DMA_NONE: return "NONE";
3074 }
3075
3076 return "(?)";
3077 }
3078
cmd_state_name(enum transport_state_table t)3079 static const char *cmd_state_name(enum transport_state_table t)
3080 {
3081 switch (t) {
3082 case TRANSPORT_NO_STATE: return "NO_STATE";
3083 case TRANSPORT_NEW_CMD: return "NEW_CMD";
3084 case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING";
3085 case TRANSPORT_PROCESSING: return "PROCESSING";
3086 case TRANSPORT_COMPLETE: return "COMPLETE";
3087 case TRANSPORT_ISTATE_PROCESSING:
3088 return "ISTATE_PROCESSING";
3089 case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP";
3090 case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK";
3091 case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR";
3092 }
3093
3094 return "(?)";
3095 }
3096
target_append_str(char ** str,const char * txt)3097 static void target_append_str(char **str, const char *txt)
3098 {
3099 char *prev = *str;
3100
3101 *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
3102 kstrdup(txt, GFP_ATOMIC);
3103 kfree(prev);
3104 }
3105
3106 /*
3107 * Convert a transport state bitmask into a string. The caller is
3108 * responsible for freeing the returned pointer.
3109 */
target_ts_to_str(u32 ts)3110 static char *target_ts_to_str(u32 ts)
3111 {
3112 char *str = NULL;
3113
3114 if (ts & CMD_T_ABORTED)
3115 target_append_str(&str, "aborted");
3116 if (ts & CMD_T_ACTIVE)
3117 target_append_str(&str, "active");
3118 if (ts & CMD_T_COMPLETE)
3119 target_append_str(&str, "complete");
3120 if (ts & CMD_T_SENT)
3121 target_append_str(&str, "sent");
3122 if (ts & CMD_T_STOP)
3123 target_append_str(&str, "stop");
3124 if (ts & CMD_T_FABRIC_STOP)
3125 target_append_str(&str, "fabric_stop");
3126
3127 return str;
3128 }
3129
target_tmf_name(enum tcm_tmreq_table tmf)3130 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
3131 {
3132 switch (tmf) {
3133 case TMR_ABORT_TASK: return "ABORT_TASK";
3134 case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET";
3135 case TMR_CLEAR_ACA: return "CLEAR_ACA";
3136 case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET";
3137 case TMR_LUN_RESET: return "LUN_RESET";
3138 case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET";
3139 case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET";
3140 case TMR_LUN_RESET_PRO: return "LUN_RESET_PRO";
3141 case TMR_UNKNOWN: break;
3142 }
3143 return "(?)";
3144 }
3145
target_show_cmd(const char * pfx,struct se_cmd * cmd)3146 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
3147 {
3148 char *ts_str = target_ts_to_str(cmd->transport_state);
3149 const u8 *cdb = cmd->t_task_cdb;
3150 struct se_tmr_req *tmf = cmd->se_tmr_req;
3151
3152 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3153 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
3154 pfx, cdb[0], cdb[1], cmd->tag,
3155 data_dir_name(cmd->data_direction),
3156 cmd->se_tfo->get_cmd_state(cmd),
3157 cmd_state_name(cmd->t_state), cmd->data_length,
3158 kref_read(&cmd->cmd_kref), ts_str);
3159 } else {
3160 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
3161 pfx, target_tmf_name(tmf->function), cmd->tag,
3162 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
3163 cmd_state_name(cmd->t_state),
3164 kref_read(&cmd->cmd_kref), ts_str);
3165 }
3166 kfree(ts_str);
3167 }
3168 EXPORT_SYMBOL(target_show_cmd);
3169
target_stop_cmd_counter_confirm(struct percpu_ref * ref)3170 static void target_stop_cmd_counter_confirm(struct percpu_ref *ref)
3171 {
3172 struct target_cmd_counter *cmd_cnt = container_of(ref,
3173 struct target_cmd_counter,
3174 refcnt);
3175 complete_all(&cmd_cnt->stop_done);
3176 }
3177
3178 /**
3179 * target_stop_cmd_counter - Stop new IO from being added to the counter.
3180 * @cmd_cnt: counter to stop
3181 */
target_stop_cmd_counter(struct target_cmd_counter * cmd_cnt)3182 void target_stop_cmd_counter(struct target_cmd_counter *cmd_cnt)
3183 {
3184 pr_debug("Stopping command counter.\n");
3185 if (!atomic_cmpxchg(&cmd_cnt->stopped, 0, 1))
3186 percpu_ref_kill_and_confirm(&cmd_cnt->refcnt,
3187 target_stop_cmd_counter_confirm);
3188 }
3189 EXPORT_SYMBOL_GPL(target_stop_cmd_counter);
3190
3191 /**
3192 * target_stop_session - Stop new IO from being queued on the session.
3193 * @se_sess: session to stop
3194 */
target_stop_session(struct se_session * se_sess)3195 void target_stop_session(struct se_session *se_sess)
3196 {
3197 target_stop_cmd_counter(se_sess->cmd_cnt);
3198 }
3199 EXPORT_SYMBOL(target_stop_session);
3200
3201 /**
3202 * target_wait_for_cmds - Wait for outstanding cmds.
3203 * @cmd_cnt: counter to wait for active I/O for.
3204 */
target_wait_for_cmds(struct target_cmd_counter * cmd_cnt)3205 void target_wait_for_cmds(struct target_cmd_counter *cmd_cnt)
3206 {
3207 int ret;
3208
3209 WARN_ON_ONCE(!atomic_read(&cmd_cnt->stopped));
3210
3211 do {
3212 pr_debug("Waiting for running cmds to complete.\n");
3213 ret = wait_event_timeout(cmd_cnt->refcnt_wq,
3214 percpu_ref_is_zero(&cmd_cnt->refcnt),
3215 180 * HZ);
3216 } while (ret <= 0);
3217
3218 wait_for_completion(&cmd_cnt->stop_done);
3219 pr_debug("Waiting for cmds done.\n");
3220 }
3221 EXPORT_SYMBOL_GPL(target_wait_for_cmds);
3222
3223 /**
3224 * target_wait_for_sess_cmds - Wait for outstanding commands
3225 * @se_sess: session to wait for active I/O
3226 */
target_wait_for_sess_cmds(struct se_session * se_sess)3227 void target_wait_for_sess_cmds(struct se_session *se_sess)
3228 {
3229 target_wait_for_cmds(se_sess->cmd_cnt);
3230 }
3231 EXPORT_SYMBOL(target_wait_for_sess_cmds);
3232
3233 /*
3234 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
3235 * all references to the LUN have been released. Called during LUN shutdown.
3236 */
transport_clear_lun_ref(struct se_lun * lun)3237 void transport_clear_lun_ref(struct se_lun *lun)
3238 {
3239 percpu_ref_kill(&lun->lun_ref);
3240 wait_for_completion(&lun->lun_shutdown_comp);
3241 }
3242
3243 static bool
__transport_wait_for_tasks(struct se_cmd * cmd,bool fabric_stop,bool * aborted,bool * tas,unsigned long * flags)3244 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
3245 bool *aborted, bool *tas, unsigned long *flags)
3246 __releases(&cmd->t_state_lock)
3247 __acquires(&cmd->t_state_lock)
3248 {
3249 lockdep_assert_held(&cmd->t_state_lock);
3250
3251 if (fabric_stop)
3252 cmd->transport_state |= CMD_T_FABRIC_STOP;
3253
3254 if (cmd->transport_state & CMD_T_ABORTED)
3255 *aborted = true;
3256
3257 if (cmd->transport_state & CMD_T_TAS)
3258 *tas = true;
3259
3260 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3261 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3262 return false;
3263
3264 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3265 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3266 return false;
3267
3268 if (!(cmd->transport_state & CMD_T_ACTIVE))
3269 return false;
3270
3271 if (fabric_stop && *aborted)
3272 return false;
3273
3274 cmd->transport_state |= CMD_T_STOP;
3275
3276 target_show_cmd("wait_for_tasks: Stopping ", cmd);
3277
3278 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3279
3280 while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3281 180 * HZ))
3282 target_show_cmd("wait for tasks: ", cmd);
3283
3284 spin_lock_irqsave(&cmd->t_state_lock, *flags);
3285 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3286
3287 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3288 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3289
3290 return true;
3291 }
3292
3293 /**
3294 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3295 * @cmd: command to wait on
3296 */
transport_wait_for_tasks(struct se_cmd * cmd)3297 bool transport_wait_for_tasks(struct se_cmd *cmd)
3298 {
3299 unsigned long flags;
3300 bool ret, aborted = false, tas = false;
3301
3302 spin_lock_irqsave(&cmd->t_state_lock, flags);
3303 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3304 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3305
3306 return ret;
3307 }
3308 EXPORT_SYMBOL(transport_wait_for_tasks);
3309
3310 struct sense_detail {
3311 u8 key;
3312 u8 asc;
3313 u8 ascq;
3314 bool add_sense_info;
3315 };
3316
3317 static const struct sense_detail sense_detail_table[] = {
3318 [TCM_NO_SENSE] = {
3319 .key = NOT_READY
3320 },
3321 [TCM_NON_EXISTENT_LUN] = {
3322 .key = ILLEGAL_REQUEST,
3323 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3324 },
3325 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
3326 .key = ILLEGAL_REQUEST,
3327 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3328 },
3329 [TCM_SECTOR_COUNT_TOO_MANY] = {
3330 .key = ILLEGAL_REQUEST,
3331 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3332 },
3333 [TCM_UNKNOWN_MODE_PAGE] = {
3334 .key = ILLEGAL_REQUEST,
3335 .asc = 0x24, /* INVALID FIELD IN CDB */
3336 },
3337 [TCM_CHECK_CONDITION_ABORT_CMD] = {
3338 .key = ABORTED_COMMAND,
3339 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3340 .ascq = 0x03,
3341 },
3342 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
3343 .key = ABORTED_COMMAND,
3344 .asc = 0x0c, /* WRITE ERROR */
3345 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3346 },
3347 [TCM_INVALID_CDB_FIELD] = {
3348 .key = ILLEGAL_REQUEST,
3349 .asc = 0x24, /* INVALID FIELD IN CDB */
3350 },
3351 [TCM_INVALID_PARAMETER_LIST] = {
3352 .key = ILLEGAL_REQUEST,
3353 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3354 },
3355 [TCM_TOO_MANY_TARGET_DESCS] = {
3356 .key = ILLEGAL_REQUEST,
3357 .asc = 0x26,
3358 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3359 },
3360 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3361 .key = ILLEGAL_REQUEST,
3362 .asc = 0x26,
3363 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3364 },
3365 [TCM_TOO_MANY_SEGMENT_DESCS] = {
3366 .key = ILLEGAL_REQUEST,
3367 .asc = 0x26,
3368 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3369 },
3370 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3371 .key = ILLEGAL_REQUEST,
3372 .asc = 0x26,
3373 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3374 },
3375 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3376 .key = ILLEGAL_REQUEST,
3377 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3378 },
3379 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3380 .key = ILLEGAL_REQUEST,
3381 .asc = 0x0c, /* WRITE ERROR */
3382 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3383 },
3384 [TCM_SERVICE_CRC_ERROR] = {
3385 .key = ABORTED_COMMAND,
3386 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3387 .ascq = 0x05, /* N/A */
3388 },
3389 [TCM_SNACK_REJECTED] = {
3390 .key = ABORTED_COMMAND,
3391 .asc = 0x11, /* READ ERROR */
3392 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3393 },
3394 [TCM_WRITE_PROTECTED] = {
3395 .key = DATA_PROTECT,
3396 .asc = 0x27, /* WRITE PROTECTED */
3397 },
3398 [TCM_ADDRESS_OUT_OF_RANGE] = {
3399 .key = ILLEGAL_REQUEST,
3400 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3401 },
3402 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3403 .key = UNIT_ATTENTION,
3404 },
3405 [TCM_MISCOMPARE_VERIFY] = {
3406 .key = MISCOMPARE,
3407 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3408 .ascq = 0x00,
3409 .add_sense_info = true,
3410 },
3411 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3412 .key = ABORTED_COMMAND,
3413 .asc = 0x10,
3414 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3415 .add_sense_info = true,
3416 },
3417 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3418 .key = ABORTED_COMMAND,
3419 .asc = 0x10,
3420 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3421 .add_sense_info = true,
3422 },
3423 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3424 .key = ABORTED_COMMAND,
3425 .asc = 0x10,
3426 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3427 .add_sense_info = true,
3428 },
3429 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3430 .key = COPY_ABORTED,
3431 .asc = 0x0d,
3432 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3433
3434 },
3435 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3436 /*
3437 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3438 * Solaris initiators. Returning NOT READY instead means the
3439 * operations will be retried a finite number of times and we
3440 * can survive intermittent errors.
3441 */
3442 .key = NOT_READY,
3443 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3444 },
3445 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3446 /*
3447 * From spc4r22 section5.7.7,5.7.8
3448 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3449 * or a REGISTER AND IGNORE EXISTING KEY service action or
3450 * REGISTER AND MOVE service actionis attempted,
3451 * but there are insufficient device server resources to complete the
3452 * operation, then the command shall be terminated with CHECK CONDITION
3453 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3454 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3455 */
3456 .key = ILLEGAL_REQUEST,
3457 .asc = 0x55,
3458 .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3459 },
3460 [TCM_INVALID_FIELD_IN_COMMAND_IU] = {
3461 .key = ILLEGAL_REQUEST,
3462 .asc = 0x0e,
3463 .ascq = 0x03, /* INVALID FIELD IN COMMAND INFORMATION UNIT */
3464 },
3465 [TCM_ALUA_TG_PT_STANDBY] = {
3466 .key = NOT_READY,
3467 .asc = 0x04,
3468 .ascq = ASCQ_04H_ALUA_TG_PT_STANDBY,
3469 },
3470 [TCM_ALUA_TG_PT_UNAVAILABLE] = {
3471 .key = NOT_READY,
3472 .asc = 0x04,
3473 .ascq = ASCQ_04H_ALUA_TG_PT_UNAVAILABLE,
3474 },
3475 [TCM_ALUA_STATE_TRANSITION] = {
3476 .key = NOT_READY,
3477 .asc = 0x04,
3478 .ascq = ASCQ_04H_ALUA_STATE_TRANSITION,
3479 },
3480 [TCM_ALUA_OFFLINE] = {
3481 .key = NOT_READY,
3482 .asc = 0x04,
3483 .ascq = ASCQ_04H_ALUA_OFFLINE,
3484 },
3485 };
3486
3487 /**
3488 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3489 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3490 * be stored.
3491 * @reason: LIO sense reason code. If this argument has the value
3492 * TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3493 * dequeuing a unit attention fails due to multiple commands being processed
3494 * concurrently, set the command status to BUSY.
3495 *
3496 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3497 */
translate_sense_reason(struct se_cmd * cmd,sense_reason_t reason)3498 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3499 {
3500 const struct sense_detail *sd;
3501 u8 *buffer = cmd->sense_buffer;
3502 int r = (__force int)reason;
3503 u8 key, asc, ascq;
3504 bool desc_format = target_sense_desc_format(cmd->se_dev);
3505
3506 if (r < ARRAY_SIZE(sense_detail_table) && sense_detail_table[r].key)
3507 sd = &sense_detail_table[r];
3508 else
3509 sd = &sense_detail_table[(__force int)
3510 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3511
3512 key = sd->key;
3513 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3514 if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3515 &ascq)) {
3516 cmd->scsi_status = SAM_STAT_BUSY;
3517 return;
3518 }
3519 } else {
3520 WARN_ON_ONCE(sd->asc == 0);
3521 asc = sd->asc;
3522 ascq = sd->ascq;
3523 }
3524
3525 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3526 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3527 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3528 scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3529 if (sd->add_sense_info)
3530 WARN_ON_ONCE(scsi_set_sense_information(buffer,
3531 cmd->scsi_sense_length,
3532 cmd->sense_info) < 0);
3533 }
3534
3535 int
transport_send_check_condition_and_sense(struct se_cmd * cmd,sense_reason_t reason,int from_transport)3536 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3537 sense_reason_t reason, int from_transport)
3538 {
3539 unsigned long flags;
3540
3541 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3542
3543 spin_lock_irqsave(&cmd->t_state_lock, flags);
3544 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3545 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3546 return 0;
3547 }
3548 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3549 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3550
3551 if (!from_transport)
3552 translate_sense_reason(cmd, reason);
3553
3554 trace_target_cmd_complete(cmd);
3555 return cmd->se_tfo->queue_status(cmd);
3556 }
3557 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3558
3559 /**
3560 * target_send_busy - Send SCSI BUSY status back to the initiator
3561 * @cmd: SCSI command for which to send a BUSY reply.
3562 *
3563 * Note: Only call this function if target_submit_cmd*() failed.
3564 */
target_send_busy(struct se_cmd * cmd)3565 int target_send_busy(struct se_cmd *cmd)
3566 {
3567 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3568
3569 cmd->scsi_status = SAM_STAT_BUSY;
3570 trace_target_cmd_complete(cmd);
3571 return cmd->se_tfo->queue_status(cmd);
3572 }
3573 EXPORT_SYMBOL(target_send_busy);
3574
target_tmr_work(struct work_struct * work)3575 static void target_tmr_work(struct work_struct *work)
3576 {
3577 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3578 struct se_device *dev = cmd->se_dev;
3579 struct se_tmr_req *tmr = cmd->se_tmr_req;
3580 int ret;
3581
3582 if (cmd->transport_state & CMD_T_ABORTED)
3583 goto aborted;
3584
3585 switch (tmr->function) {
3586 case TMR_ABORT_TASK:
3587 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3588 break;
3589 case TMR_ABORT_TASK_SET:
3590 case TMR_CLEAR_ACA:
3591 case TMR_CLEAR_TASK_SET:
3592 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3593 break;
3594 case TMR_LUN_RESET:
3595 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3596 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3597 TMR_FUNCTION_REJECTED;
3598 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3599 target_dev_ua_allocate(dev, 0x29,
3600 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3601 }
3602 break;
3603 case TMR_TARGET_WARM_RESET:
3604 tmr->response = TMR_FUNCTION_REJECTED;
3605 break;
3606 case TMR_TARGET_COLD_RESET:
3607 tmr->response = TMR_FUNCTION_REJECTED;
3608 break;
3609 default:
3610 pr_err("Unknown TMR function: 0x%02x.\n",
3611 tmr->function);
3612 tmr->response = TMR_FUNCTION_REJECTED;
3613 break;
3614 }
3615
3616 if (cmd->transport_state & CMD_T_ABORTED)
3617 goto aborted;
3618
3619 cmd->se_tfo->queue_tm_rsp(cmd);
3620
3621 transport_lun_remove_cmd(cmd);
3622 transport_cmd_check_stop_to_fabric(cmd);
3623 return;
3624
3625 aborted:
3626 target_handle_abort(cmd);
3627 }
3628
transport_generic_handle_tmr(struct se_cmd * cmd)3629 int transport_generic_handle_tmr(
3630 struct se_cmd *cmd)
3631 {
3632 unsigned long flags;
3633 bool aborted = false;
3634
3635 spin_lock_irqsave(&cmd->se_dev->se_tmr_lock, flags);
3636 list_add_tail(&cmd->se_tmr_req->tmr_list, &cmd->se_dev->dev_tmr_list);
3637 spin_unlock_irqrestore(&cmd->se_dev->se_tmr_lock, flags);
3638
3639 spin_lock_irqsave(&cmd->t_state_lock, flags);
3640 if (cmd->transport_state & CMD_T_ABORTED) {
3641 aborted = true;
3642 } else {
3643 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3644 cmd->transport_state |= CMD_T_ACTIVE;
3645 }
3646 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3647
3648 if (aborted) {
3649 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3650 cmd->se_tmr_req->function,
3651 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3652 target_handle_abort(cmd);
3653 return 0;
3654 }
3655
3656 INIT_WORK(&cmd->work, target_tmr_work);
3657 schedule_work(&cmd->work);
3658 return 0;
3659 }
3660 EXPORT_SYMBOL(transport_generic_handle_tmr);
3661
3662 bool
target_check_wce(struct se_device * dev)3663 target_check_wce(struct se_device *dev)
3664 {
3665 bool wce = false;
3666
3667 if (dev->transport->get_write_cache)
3668 wce = dev->transport->get_write_cache(dev);
3669 else if (dev->dev_attrib.emulate_write_cache > 0)
3670 wce = true;
3671
3672 return wce;
3673 }
3674
3675 bool
target_check_fua(struct se_device * dev)3676 target_check_fua(struct se_device *dev)
3677 {
3678 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3679 }
3680