xref: /linux/net/sched/sch_taprio.c (revision 8f7aa3d3c7323f4ca2768a9e74ebbe359c4f8f88)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
4  *
5  * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8 
9 #include <linux/ethtool.h>
10 #include <linux/ethtool_netlink.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/string.h>
15 #include <linux/list.h>
16 #include <linux/errno.h>
17 #include <linux/skbuff.h>
18 #include <linux/math64.h>
19 #include <linux/module.h>
20 #include <linux/spinlock.h>
21 #include <linux/rcupdate.h>
22 #include <linux/time.h>
23 #include <net/gso.h>
24 #include <net/netlink.h>
25 #include <net/pkt_sched.h>
26 #include <net/pkt_cls.h>
27 #include <net/sch_generic.h>
28 #include <net/sock.h>
29 #include <net/tcp.h>
30 
31 #define TAPRIO_STAT_NOT_SET	(~0ULL)
32 
33 #include "sch_mqprio_lib.h"
34 
35 static LIST_HEAD(taprio_list);
36 static struct static_key_false taprio_have_broken_mqprio;
37 static struct static_key_false taprio_have_working_mqprio;
38 
39 #define TAPRIO_ALL_GATES_OPEN -1
40 
41 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
42 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
43 #define TAPRIO_SUPPORTED_FLAGS \
44 	(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
45 #define TAPRIO_FLAGS_INVALID U32_MAX
46 /* Minimum value for picos_per_byte to ensure non-zero duration
47  * for minimum-sized Ethernet frames (ETH_ZLEN = 60).
48  * 60 * 17 > PSEC_PER_NSEC (1000)
49  */
50 #define TAPRIO_PICOS_PER_BYTE_MIN 17
51 
52 struct sched_entry {
53 	/* Durations between this GCL entry and the GCL entry where the
54 	 * respective traffic class gate closes
55 	 */
56 	u64 gate_duration[TC_MAX_QUEUE];
57 	atomic_t budget[TC_MAX_QUEUE];
58 	/* The qdisc makes some effort so that no packet leaves
59 	 * after this time
60 	 */
61 	ktime_t gate_close_time[TC_MAX_QUEUE];
62 	struct list_head list;
63 	/* Used to calculate when to advance the schedule */
64 	ktime_t end_time;
65 	ktime_t next_txtime;
66 	int index;
67 	u32 gate_mask;
68 	u32 interval;
69 	u8 command;
70 };
71 
72 struct sched_gate_list {
73 	/* Longest non-zero contiguous gate durations per traffic class,
74 	 * or 0 if a traffic class gate never opens during the schedule.
75 	 */
76 	u64 max_open_gate_duration[TC_MAX_QUEUE];
77 	u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */
78 	u32 max_sdu[TC_MAX_QUEUE]; /* for dump */
79 	struct rcu_head rcu;
80 	struct list_head entries;
81 	size_t num_entries;
82 	ktime_t cycle_end_time;
83 	s64 cycle_time;
84 	s64 cycle_time_extension;
85 	s64 base_time;
86 };
87 
88 struct taprio_sched {
89 	struct Qdisc **qdiscs;
90 	struct Qdisc *root;
91 	u32 flags;
92 	enum tk_offsets tk_offset;
93 	int clockid;
94 	bool offloaded;
95 	bool detected_mqprio;
96 	bool broken_mqprio;
97 	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
98 				    * speeds it's sub-nanoseconds per byte
99 				    */
100 
101 	/* Protects the update side of the RCU protected current_entry */
102 	spinlock_t current_entry_lock;
103 	struct sched_entry __rcu *current_entry;
104 	struct sched_gate_list __rcu *oper_sched;
105 	struct sched_gate_list __rcu *admin_sched;
106 	struct hrtimer advance_timer;
107 	struct list_head taprio_list;
108 	int cur_txq[TC_MAX_QUEUE];
109 	u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */
110 	u32 fp[TC_QOPT_MAX_QUEUE]; /* only for dump and offloading */
111 	u32 txtime_delay;
112 };
113 
114 struct __tc_taprio_qopt_offload {
115 	refcount_t users;
116 	struct tc_taprio_qopt_offload offload;
117 };
118 
119 static void taprio_calculate_gate_durations(struct taprio_sched *q,
120 					    struct sched_gate_list *sched)
121 {
122 	struct net_device *dev = qdisc_dev(q->root);
123 	int num_tc = netdev_get_num_tc(dev);
124 	struct sched_entry *entry, *cur;
125 	int tc;
126 
127 	list_for_each_entry(entry, &sched->entries, list) {
128 		u32 gates_still_open = entry->gate_mask;
129 
130 		/* For each traffic class, calculate each open gate duration,
131 		 * starting at this schedule entry and ending at the schedule
132 		 * entry containing a gate close event for that TC.
133 		 */
134 		cur = entry;
135 
136 		do {
137 			if (!gates_still_open)
138 				break;
139 
140 			for (tc = 0; tc < num_tc; tc++) {
141 				if (!(gates_still_open & BIT(tc)))
142 					continue;
143 
144 				if (cur->gate_mask & BIT(tc))
145 					entry->gate_duration[tc] += cur->interval;
146 				else
147 					gates_still_open &= ~BIT(tc);
148 			}
149 
150 			cur = list_next_entry_circular(cur, &sched->entries, list);
151 		} while (cur != entry);
152 
153 		/* Keep track of the maximum gate duration for each traffic
154 		 * class, taking care to not confuse a traffic class which is
155 		 * temporarily closed with one that is always closed.
156 		 */
157 		for (tc = 0; tc < num_tc; tc++)
158 			if (entry->gate_duration[tc] &&
159 			    sched->max_open_gate_duration[tc] < entry->gate_duration[tc])
160 				sched->max_open_gate_duration[tc] = entry->gate_duration[tc];
161 	}
162 }
163 
164 static bool taprio_entry_allows_tx(ktime_t skb_end_time,
165 				   struct sched_entry *entry, int tc)
166 {
167 	return ktime_before(skb_end_time, entry->gate_close_time[tc]);
168 }
169 
170 static ktime_t sched_base_time(const struct sched_gate_list *sched)
171 {
172 	if (!sched)
173 		return KTIME_MAX;
174 
175 	return ns_to_ktime(sched->base_time);
176 }
177 
178 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
179 {
180 	/* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
181 	enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
182 
183 	switch (tk_offset) {
184 	case TK_OFFS_MAX:
185 		return mono;
186 	default:
187 		return ktime_mono_to_any(mono, tk_offset);
188 	}
189 }
190 
191 static ktime_t taprio_get_time(const struct taprio_sched *q)
192 {
193 	return taprio_mono_to_any(q, ktime_get());
194 }
195 
196 static void taprio_free_sched_cb(struct rcu_head *head)
197 {
198 	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
199 	struct sched_entry *entry, *n;
200 
201 	list_for_each_entry_safe(entry, n, &sched->entries, list) {
202 		list_del(&entry->list);
203 		kfree(entry);
204 	}
205 
206 	kfree(sched);
207 }
208 
209 static void switch_schedules(struct taprio_sched *q,
210 			     struct sched_gate_list **admin,
211 			     struct sched_gate_list **oper)
212 {
213 	rcu_assign_pointer(q->oper_sched, *admin);
214 	rcu_assign_pointer(q->admin_sched, NULL);
215 
216 	if (*oper)
217 		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
218 
219 	*oper = *admin;
220 	*admin = NULL;
221 }
222 
223 /* Get how much time has been already elapsed in the current cycle. */
224 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
225 {
226 	ktime_t time_since_sched_start;
227 	s32 time_elapsed;
228 
229 	time_since_sched_start = ktime_sub(time, sched->base_time);
230 	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
231 
232 	return time_elapsed;
233 }
234 
235 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
236 				     struct sched_gate_list *admin,
237 				     struct sched_entry *entry,
238 				     ktime_t intv_start)
239 {
240 	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
241 	ktime_t intv_end, cycle_ext_end, cycle_end;
242 
243 	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
244 	intv_end = ktime_add_ns(intv_start, entry->interval);
245 	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
246 
247 	if (ktime_before(intv_end, cycle_end))
248 		return intv_end;
249 	else if (admin && admin != sched &&
250 		 ktime_after(admin->base_time, cycle_end) &&
251 		 ktime_before(admin->base_time, cycle_ext_end))
252 		return admin->base_time;
253 	else
254 		return cycle_end;
255 }
256 
257 static int length_to_duration(struct taprio_sched *q, int len)
258 {
259 	return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC);
260 }
261 
262 static int duration_to_length(struct taprio_sched *q, u64 duration)
263 {
264 	return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte));
265 }
266 
267 /* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the
268  * q->max_sdu[] requested by the user and the max_sdu dynamically determined by
269  * the maximum open gate durations at the given link speed.
270  */
271 static void taprio_update_queue_max_sdu(struct taprio_sched *q,
272 					struct sched_gate_list *sched,
273 					struct qdisc_size_table *stab)
274 {
275 	struct net_device *dev = qdisc_dev(q->root);
276 	int num_tc = netdev_get_num_tc(dev);
277 	u32 max_sdu_from_user;
278 	u32 max_sdu_dynamic;
279 	u32 max_sdu;
280 	int tc;
281 
282 	for (tc = 0; tc < num_tc; tc++) {
283 		max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX;
284 
285 		/* TC gate never closes => keep the queueMaxSDU
286 		 * selected by the user
287 		 */
288 		if (sched->max_open_gate_duration[tc] == sched->cycle_time) {
289 			max_sdu_dynamic = U32_MAX;
290 		} else {
291 			u32 max_frm_len;
292 
293 			max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]);
294 			/* Compensate for L1 overhead from size table,
295 			 * but don't let the frame size go negative
296 			 */
297 			if (stab) {
298 				max_frm_len -= stab->szopts.overhead;
299 				max_frm_len = max_t(int, max_frm_len,
300 						    dev->hard_header_len + 1);
301 			}
302 			max_sdu_dynamic = max_frm_len - dev->hard_header_len;
303 			if (max_sdu_dynamic > dev->max_mtu)
304 				max_sdu_dynamic = U32_MAX;
305 		}
306 
307 		max_sdu = min(max_sdu_dynamic, max_sdu_from_user);
308 
309 		if (max_sdu != U32_MAX) {
310 			sched->max_frm_len[tc] = max_sdu + dev->hard_header_len;
311 			sched->max_sdu[tc] = max_sdu;
312 		} else {
313 			sched->max_frm_len[tc] = U32_MAX; /* never oversized */
314 			sched->max_sdu[tc] = 0;
315 		}
316 	}
317 }
318 
319 /* Returns the entry corresponding to next available interval. If
320  * validate_interval is set, it only validates whether the timestamp occurs
321  * when the gate corresponding to the skb's traffic class is open.
322  */
323 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
324 						  struct Qdisc *sch,
325 						  struct sched_gate_list *sched,
326 						  struct sched_gate_list *admin,
327 						  ktime_t time,
328 						  ktime_t *interval_start,
329 						  ktime_t *interval_end,
330 						  bool validate_interval)
331 {
332 	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
333 	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
334 	struct sched_entry *entry = NULL, *entry_found = NULL;
335 	struct taprio_sched *q = qdisc_priv(sch);
336 	struct net_device *dev = qdisc_dev(sch);
337 	bool entry_available = false;
338 	s32 cycle_elapsed;
339 	int tc, n;
340 
341 	tc = netdev_get_prio_tc_map(dev, skb->priority);
342 	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
343 
344 	*interval_start = 0;
345 	*interval_end = 0;
346 
347 	if (!sched)
348 		return NULL;
349 
350 	cycle = sched->cycle_time;
351 	cycle_elapsed = get_cycle_time_elapsed(sched, time);
352 	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
353 	cycle_end = ktime_add_ns(curr_intv_end, cycle);
354 
355 	list_for_each_entry(entry, &sched->entries, list) {
356 		curr_intv_start = curr_intv_end;
357 		curr_intv_end = get_interval_end_time(sched, admin, entry,
358 						      curr_intv_start);
359 
360 		if (ktime_after(curr_intv_start, cycle_end))
361 			break;
362 
363 		if (!(entry->gate_mask & BIT(tc)) ||
364 		    packet_transmit_time > entry->interval)
365 			continue;
366 
367 		txtime = entry->next_txtime;
368 
369 		if (ktime_before(txtime, time) || validate_interval) {
370 			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
371 			if ((ktime_before(curr_intv_start, time) &&
372 			     ktime_before(transmit_end_time, curr_intv_end)) ||
373 			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
374 				entry_found = entry;
375 				*interval_start = curr_intv_start;
376 				*interval_end = curr_intv_end;
377 				break;
378 			} else if (!entry_available && !validate_interval) {
379 				/* Here, we are just trying to find out the
380 				 * first available interval in the next cycle.
381 				 */
382 				entry_available = true;
383 				entry_found = entry;
384 				*interval_start = ktime_add_ns(curr_intv_start, cycle);
385 				*interval_end = ktime_add_ns(curr_intv_end, cycle);
386 			}
387 		} else if (ktime_before(txtime, earliest_txtime) &&
388 			   !entry_available) {
389 			earliest_txtime = txtime;
390 			entry_found = entry;
391 			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
392 			*interval_start = ktime_add(curr_intv_start, n * cycle);
393 			*interval_end = ktime_add(curr_intv_end, n * cycle);
394 		}
395 	}
396 
397 	return entry_found;
398 }
399 
400 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
401 {
402 	struct taprio_sched *q = qdisc_priv(sch);
403 	struct sched_gate_list *sched, *admin;
404 	ktime_t interval_start, interval_end;
405 	struct sched_entry *entry;
406 
407 	rcu_read_lock();
408 	sched = rcu_dereference(q->oper_sched);
409 	admin = rcu_dereference(q->admin_sched);
410 
411 	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
412 				       &interval_start, &interval_end, true);
413 	rcu_read_unlock();
414 
415 	return entry;
416 }
417 
418 /* This returns the tstamp value set by TCP in terms of the set clock. */
419 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
420 {
421 	unsigned int offset = skb_network_offset(skb);
422 	const struct ipv6hdr *ipv6h;
423 	const struct iphdr *iph;
424 	struct ipv6hdr _ipv6h;
425 
426 	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
427 	if (!ipv6h)
428 		return 0;
429 
430 	if (ipv6h->version == 4) {
431 		iph = (struct iphdr *)ipv6h;
432 		offset += iph->ihl * 4;
433 
434 		/* special-case 6in4 tunnelling, as that is a common way to get
435 		 * v6 connectivity in the home
436 		 */
437 		if (iph->protocol == IPPROTO_IPV6) {
438 			ipv6h = skb_header_pointer(skb, offset,
439 						   sizeof(_ipv6h), &_ipv6h);
440 
441 			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
442 				return 0;
443 		} else if (iph->protocol != IPPROTO_TCP) {
444 			return 0;
445 		}
446 	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
447 		return 0;
448 	}
449 
450 	return taprio_mono_to_any(q, skb->skb_mstamp_ns);
451 }
452 
453 /* There are a few scenarios where we will have to modify the txtime from
454  * what is read from next_txtime in sched_entry. They are:
455  * 1. If txtime is in the past,
456  *    a. The gate for the traffic class is currently open and packet can be
457  *       transmitted before it closes, schedule the packet right away.
458  *    b. If the gate corresponding to the traffic class is going to open later
459  *       in the cycle, set the txtime of packet to the interval start.
460  * 2. If txtime is in the future, there are packets corresponding to the
461  *    current traffic class waiting to be transmitted. So, the following
462  *    possibilities exist:
463  *    a. We can transmit the packet before the window containing the txtime
464  *       closes.
465  *    b. The window might close before the transmission can be completed
466  *       successfully. So, schedule the packet in the next open window.
467  */
468 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
469 {
470 	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
471 	struct taprio_sched *q = qdisc_priv(sch);
472 	struct sched_gate_list *sched, *admin;
473 	ktime_t minimum_time, now, txtime;
474 	int len, packet_transmit_time;
475 	struct sched_entry *entry;
476 	bool sched_changed;
477 
478 	now = taprio_get_time(q);
479 	minimum_time = ktime_add_ns(now, q->txtime_delay);
480 
481 	tcp_tstamp = get_tcp_tstamp(q, skb);
482 	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
483 
484 	rcu_read_lock();
485 	admin = rcu_dereference(q->admin_sched);
486 	sched = rcu_dereference(q->oper_sched);
487 	if (admin && ktime_after(minimum_time, admin->base_time))
488 		switch_schedules(q, &admin, &sched);
489 
490 	/* Until the schedule starts, all the queues are open */
491 	if (!sched || ktime_before(minimum_time, sched->base_time)) {
492 		txtime = minimum_time;
493 		goto done;
494 	}
495 
496 	len = qdisc_pkt_len(skb);
497 	packet_transmit_time = length_to_duration(q, len);
498 
499 	do {
500 		sched_changed = false;
501 
502 		entry = find_entry_to_transmit(skb, sch, sched, admin,
503 					       minimum_time,
504 					       &interval_start, &interval_end,
505 					       false);
506 		if (!entry) {
507 			txtime = 0;
508 			goto done;
509 		}
510 
511 		txtime = entry->next_txtime;
512 		txtime = max_t(ktime_t, txtime, minimum_time);
513 		txtime = max_t(ktime_t, txtime, interval_start);
514 
515 		if (admin && admin != sched &&
516 		    ktime_after(txtime, admin->base_time)) {
517 			sched = admin;
518 			sched_changed = true;
519 			continue;
520 		}
521 
522 		transmit_end_time = ktime_add(txtime, packet_transmit_time);
523 		minimum_time = transmit_end_time;
524 
525 		/* Update the txtime of current entry to the next time it's
526 		 * interval starts.
527 		 */
528 		if (ktime_after(transmit_end_time, interval_end))
529 			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
530 	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
531 
532 	entry->next_txtime = transmit_end_time;
533 
534 done:
535 	rcu_read_unlock();
536 	return txtime;
537 }
538 
539 /* Devices with full offload are expected to honor this in hardware */
540 static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch,
541 					     struct sk_buff *skb)
542 {
543 	struct taprio_sched *q = qdisc_priv(sch);
544 	struct net_device *dev = qdisc_dev(sch);
545 	struct sched_gate_list *sched;
546 	int prio = skb->priority;
547 	bool exceeds = false;
548 	u8 tc;
549 
550 	tc = netdev_get_prio_tc_map(dev, prio);
551 
552 	rcu_read_lock();
553 	sched = rcu_dereference(q->oper_sched);
554 	if (sched && skb->len > sched->max_frm_len[tc])
555 		exceeds = true;
556 	rcu_read_unlock();
557 
558 	return exceeds;
559 }
560 
561 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
562 			      struct Qdisc *child, struct sk_buff **to_free)
563 {
564 	struct taprio_sched *q = qdisc_priv(sch);
565 
566 	/* sk_flags are only safe to use on full sockets. */
567 	if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) {
568 		if (!is_valid_interval(skb, sch))
569 			return qdisc_drop(skb, sch, to_free);
570 	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
571 		skb->tstamp = get_packet_txtime(skb, sch);
572 		if (!skb->tstamp)
573 			return qdisc_drop(skb, sch, to_free);
574 	}
575 
576 	qdisc_qstats_backlog_inc(sch, skb);
577 	sch->q.qlen++;
578 
579 	return qdisc_enqueue(skb, child, to_free);
580 }
581 
582 static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch,
583 				    struct Qdisc *child,
584 				    struct sk_buff **to_free)
585 {
586 	unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
587 	netdev_features_t features = netif_skb_features(skb);
588 	struct sk_buff *segs, *nskb;
589 	int ret;
590 
591 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
592 	if (IS_ERR_OR_NULL(segs))
593 		return qdisc_drop(skb, sch, to_free);
594 
595 	skb_list_walk_safe(segs, segs, nskb) {
596 		skb_mark_not_on_list(segs);
597 		qdisc_skb_cb(segs)->pkt_len = segs->len;
598 		qdisc_skb_cb(segs)->pkt_segs = 1;
599 		slen += segs->len;
600 
601 		/* FIXME: we should be segmenting to a smaller size
602 		 * rather than dropping these
603 		 */
604 		if (taprio_skb_exceeds_queue_max_sdu(sch, segs))
605 			ret = qdisc_drop(segs, sch, to_free);
606 		else
607 			ret = taprio_enqueue_one(segs, sch, child, to_free);
608 
609 		if (ret != NET_XMIT_SUCCESS) {
610 			if (net_xmit_drop_count(ret))
611 				qdisc_qstats_drop(sch);
612 		} else {
613 			numsegs++;
614 		}
615 	}
616 
617 	if (numsegs > 1)
618 		qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
619 	consume_skb(skb);
620 
621 	return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
622 }
623 
624 /* Will not be called in the full offload case, since the TX queues are
625  * attached to the Qdisc created using qdisc_create_dflt()
626  */
627 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
628 			  struct sk_buff **to_free)
629 {
630 	struct taprio_sched *q = qdisc_priv(sch);
631 	struct Qdisc *child;
632 	int queue;
633 
634 	queue = skb_get_queue_mapping(skb);
635 
636 	child = q->qdiscs[queue];
637 	if (unlikely(!child))
638 		return qdisc_drop(skb, sch, to_free);
639 
640 	if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) {
641 		/* Large packets might not be transmitted when the transmission
642 		 * duration exceeds any configured interval. Therefore, segment
643 		 * the skb into smaller chunks. Drivers with full offload are
644 		 * expected to handle this in hardware.
645 		 */
646 		if (skb_is_gso(skb))
647 			return taprio_enqueue_segmented(skb, sch, child,
648 							to_free);
649 
650 		return qdisc_drop(skb, sch, to_free);
651 	}
652 
653 	return taprio_enqueue_one(skb, sch, child, to_free);
654 }
655 
656 static struct sk_buff *taprio_peek(struct Qdisc *sch)
657 {
658 	WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented");
659 	return NULL;
660 }
661 
662 static void taprio_set_budgets(struct taprio_sched *q,
663 			       struct sched_gate_list *sched,
664 			       struct sched_entry *entry)
665 {
666 	struct net_device *dev = qdisc_dev(q->root);
667 	int num_tc = netdev_get_num_tc(dev);
668 	int tc, budget;
669 
670 	for (tc = 0; tc < num_tc; tc++) {
671 		/* Traffic classes which never close have infinite budget */
672 		if (entry->gate_duration[tc] == sched->cycle_time)
673 			budget = INT_MAX;
674 		else
675 			budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC,
676 					   atomic64_read(&q->picos_per_byte));
677 
678 		atomic_set(&entry->budget[tc], budget);
679 	}
680 }
681 
682 /* When an skb is sent, it consumes from the budget of all traffic classes */
683 static int taprio_update_budgets(struct sched_entry *entry, size_t len,
684 				 int tc_consumed, int num_tc)
685 {
686 	int tc, budget, new_budget = 0;
687 
688 	for (tc = 0; tc < num_tc; tc++) {
689 		budget = atomic_read(&entry->budget[tc]);
690 		/* Don't consume from infinite budget */
691 		if (budget == INT_MAX) {
692 			if (tc == tc_consumed)
693 				new_budget = budget;
694 			continue;
695 		}
696 
697 		if (tc == tc_consumed)
698 			new_budget = atomic_sub_return(len, &entry->budget[tc]);
699 		else
700 			atomic_sub(len, &entry->budget[tc]);
701 	}
702 
703 	return new_budget;
704 }
705 
706 static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq,
707 					       struct sched_entry *entry,
708 					       u32 gate_mask)
709 {
710 	struct taprio_sched *q = qdisc_priv(sch);
711 	struct net_device *dev = qdisc_dev(sch);
712 	struct Qdisc *child = q->qdiscs[txq];
713 	int num_tc = netdev_get_num_tc(dev);
714 	struct sk_buff *skb;
715 	ktime_t guard;
716 	int prio;
717 	int len;
718 	u8 tc;
719 
720 	if (unlikely(!child))
721 		return NULL;
722 
723 	if (TXTIME_ASSIST_IS_ENABLED(q->flags))
724 		goto skip_peek_checks;
725 
726 	skb = child->ops->peek(child);
727 	if (!skb)
728 		return NULL;
729 
730 	prio = skb->priority;
731 	tc = netdev_get_prio_tc_map(dev, prio);
732 
733 	if (!(gate_mask & BIT(tc)))
734 		return NULL;
735 
736 	len = qdisc_pkt_len(skb);
737 	guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len));
738 
739 	/* In the case that there's no gate entry, there's no
740 	 * guard band ...
741 	 */
742 	if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
743 	    !taprio_entry_allows_tx(guard, entry, tc))
744 		return NULL;
745 
746 	/* ... and no budget. */
747 	if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
748 	    taprio_update_budgets(entry, len, tc, num_tc) < 0)
749 		return NULL;
750 
751 skip_peek_checks:
752 	skb = child->ops->dequeue(child);
753 	if (unlikely(!skb))
754 		return NULL;
755 
756 	qdisc_bstats_update(sch, skb);
757 	qdisc_qstats_backlog_dec(sch, skb);
758 	sch->q.qlen--;
759 
760 	return skb;
761 }
762 
763 static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq)
764 {
765 	int offset = dev->tc_to_txq[tc].offset;
766 	int count = dev->tc_to_txq[tc].count;
767 
768 	(*txq)++;
769 	if (*txq == offset + count)
770 		*txq = offset;
771 }
772 
773 /* Prioritize higher traffic classes, and select among TXQs belonging to the
774  * same TC using round robin
775  */
776 static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch,
777 						  struct sched_entry *entry,
778 						  u32 gate_mask)
779 {
780 	struct taprio_sched *q = qdisc_priv(sch);
781 	struct net_device *dev = qdisc_dev(sch);
782 	int num_tc = netdev_get_num_tc(dev);
783 	struct sk_buff *skb;
784 	int tc;
785 
786 	for (tc = num_tc - 1; tc >= 0; tc--) {
787 		int first_txq = q->cur_txq[tc];
788 
789 		if (!(gate_mask & BIT(tc)))
790 			continue;
791 
792 		do {
793 			skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc],
794 						      entry, gate_mask);
795 
796 			taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]);
797 
798 			if (q->cur_txq[tc] >= dev->num_tx_queues)
799 				q->cur_txq[tc] = first_txq;
800 
801 			if (skb)
802 				return skb;
803 		} while (q->cur_txq[tc] != first_txq);
804 	}
805 
806 	return NULL;
807 }
808 
809 /* Broken way of prioritizing smaller TXQ indices and ignoring the traffic
810  * class other than to determine whether the gate is open or not
811  */
812 static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch,
813 						   struct sched_entry *entry,
814 						   u32 gate_mask)
815 {
816 	struct net_device *dev = qdisc_dev(sch);
817 	struct sk_buff *skb;
818 	int i;
819 
820 	for (i = 0; i < dev->num_tx_queues; i++) {
821 		skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask);
822 		if (skb)
823 			return skb;
824 	}
825 
826 	return NULL;
827 }
828 
829 /* Will not be called in the full offload case, since the TX queues are
830  * attached to the Qdisc created using qdisc_create_dflt()
831  */
832 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
833 {
834 	struct taprio_sched *q = qdisc_priv(sch);
835 	struct sk_buff *skb = NULL;
836 	struct sched_entry *entry;
837 	u32 gate_mask;
838 
839 	rcu_read_lock();
840 	entry = rcu_dereference(q->current_entry);
841 	/* if there's no entry, it means that the schedule didn't
842 	 * start yet, so force all gates to be open, this is in
843 	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
844 	 * "AdminGateStates"
845 	 */
846 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
847 	if (!gate_mask)
848 		goto done;
849 
850 	if (static_branch_unlikely(&taprio_have_broken_mqprio) &&
851 	    !static_branch_likely(&taprio_have_working_mqprio)) {
852 		/* Single NIC kind which is broken */
853 		skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
854 	} else if (static_branch_likely(&taprio_have_working_mqprio) &&
855 		   !static_branch_unlikely(&taprio_have_broken_mqprio)) {
856 		/* Single NIC kind which prioritizes properly */
857 		skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
858 	} else {
859 		/* Mixed NIC kinds present in system, need dynamic testing */
860 		if (q->broken_mqprio)
861 			skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
862 		else
863 			skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
864 	}
865 
866 done:
867 	rcu_read_unlock();
868 
869 	return skb;
870 }
871 
872 static bool should_restart_cycle(const struct sched_gate_list *oper,
873 				 const struct sched_entry *entry)
874 {
875 	if (list_is_last(&entry->list, &oper->entries))
876 		return true;
877 
878 	if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0)
879 		return true;
880 
881 	return false;
882 }
883 
884 static bool should_change_schedules(const struct sched_gate_list *admin,
885 				    const struct sched_gate_list *oper,
886 				    ktime_t end_time)
887 {
888 	ktime_t next_base_time, extension_time;
889 
890 	if (!admin)
891 		return false;
892 
893 	next_base_time = sched_base_time(admin);
894 
895 	/* This is the simple case, the end_time would fall after
896 	 * the next schedule base_time.
897 	 */
898 	if (ktime_compare(next_base_time, end_time) <= 0)
899 		return true;
900 
901 	/* This is the cycle_time_extension case, if the end_time
902 	 * plus the amount that can be extended would fall after the
903 	 * next schedule base_time, we can extend the current schedule
904 	 * for that amount.
905 	 */
906 	extension_time = ktime_add_ns(end_time, oper->cycle_time_extension);
907 
908 	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
909 	 * how precisely the extension should be made. So after
910 	 * conformance testing, this logic may change.
911 	 */
912 	if (ktime_compare(next_base_time, extension_time) <= 0)
913 		return true;
914 
915 	return false;
916 }
917 
918 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
919 {
920 	struct taprio_sched *q = container_of(timer, struct taprio_sched,
921 					      advance_timer);
922 	struct net_device *dev = qdisc_dev(q->root);
923 	struct sched_gate_list *oper, *admin;
924 	int num_tc = netdev_get_num_tc(dev);
925 	struct sched_entry *entry, *next;
926 	struct Qdisc *sch = q->root;
927 	ktime_t end_time;
928 	int tc;
929 
930 	spin_lock(&q->current_entry_lock);
931 	entry = rcu_dereference_protected(q->current_entry,
932 					  lockdep_is_held(&q->current_entry_lock));
933 	oper = rcu_dereference_protected(q->oper_sched,
934 					 lockdep_is_held(&q->current_entry_lock));
935 	admin = rcu_dereference_protected(q->admin_sched,
936 					  lockdep_is_held(&q->current_entry_lock));
937 
938 	if (!oper)
939 		switch_schedules(q, &admin, &oper);
940 
941 	/* This can happen in two cases: 1. this is the very first run
942 	 * of this function (i.e. we weren't running any schedule
943 	 * previously); 2. The previous schedule just ended. The first
944 	 * entry of all schedules are pre-calculated during the
945 	 * schedule initialization.
946 	 */
947 	if (unlikely(!entry || entry->end_time == oper->base_time)) {
948 		next = list_first_entry(&oper->entries, struct sched_entry,
949 					list);
950 		end_time = next->end_time;
951 		goto first_run;
952 	}
953 
954 	if (should_restart_cycle(oper, entry)) {
955 		next = list_first_entry(&oper->entries, struct sched_entry,
956 					list);
957 		oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time,
958 						    oper->cycle_time);
959 	} else {
960 		next = list_next_entry(entry, list);
961 	}
962 
963 	end_time = ktime_add_ns(entry->end_time, next->interval);
964 	end_time = min_t(ktime_t, end_time, oper->cycle_end_time);
965 
966 	for (tc = 0; tc < num_tc; tc++) {
967 		if (next->gate_duration[tc] == oper->cycle_time)
968 			next->gate_close_time[tc] = KTIME_MAX;
969 		else
970 			next->gate_close_time[tc] = ktime_add_ns(entry->end_time,
971 								 next->gate_duration[tc]);
972 	}
973 
974 	if (should_change_schedules(admin, oper, end_time)) {
975 		/* Set things so the next time this runs, the new
976 		 * schedule runs.
977 		 */
978 		end_time = sched_base_time(admin);
979 		switch_schedules(q, &admin, &oper);
980 	}
981 
982 	next->end_time = end_time;
983 	taprio_set_budgets(q, oper, next);
984 
985 first_run:
986 	rcu_assign_pointer(q->current_entry, next);
987 	spin_unlock(&q->current_entry_lock);
988 
989 	hrtimer_set_expires(&q->advance_timer, end_time);
990 
991 	rcu_read_lock();
992 	__netif_schedule(sch);
993 	rcu_read_unlock();
994 
995 	return HRTIMER_RESTART;
996 }
997 
998 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
999 	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
1000 	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
1001 	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
1002 	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
1003 };
1004 
1005 static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = {
1006 	[TCA_TAPRIO_TC_ENTRY_INDEX]	   = NLA_POLICY_MAX(NLA_U32,
1007 							    TC_QOPT_MAX_QUEUE - 1),
1008 	[TCA_TAPRIO_TC_ENTRY_MAX_SDU]	   = { .type = NLA_U32 },
1009 	[TCA_TAPRIO_TC_ENTRY_FP]	   = NLA_POLICY_RANGE(NLA_U32,
1010 							      TC_FP_EXPRESS,
1011 							      TC_FP_PREEMPTIBLE),
1012 };
1013 
1014 static const struct netlink_range_validation_signed taprio_cycle_time_range = {
1015 	.min = 0,
1016 	.max = INT_MAX,
1017 };
1018 
1019 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
1020 	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
1021 		.len = sizeof(struct tc_mqprio_qopt)
1022 	},
1023 	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
1024 	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
1025 	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
1026 	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
1027 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           =
1028 		NLA_POLICY_FULL_RANGE_SIGNED(NLA_S64, &taprio_cycle_time_range),
1029 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
1030 	[TCA_TAPRIO_ATTR_FLAGS]                      =
1031 		NLA_POLICY_MASK(NLA_U32, TAPRIO_SUPPORTED_FLAGS),
1032 	[TCA_TAPRIO_ATTR_TXTIME_DELAY]		     = { .type = NLA_U32 },
1033 	[TCA_TAPRIO_ATTR_TC_ENTRY]		     = { .type = NLA_NESTED },
1034 };
1035 
1036 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
1037 			    struct sched_entry *entry,
1038 			    struct netlink_ext_ack *extack)
1039 {
1040 	int min_duration = length_to_duration(q, ETH_ZLEN);
1041 	u32 interval = 0;
1042 
1043 	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
1044 		entry->command = nla_get_u8(
1045 			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
1046 
1047 	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
1048 		entry->gate_mask = nla_get_u32(
1049 			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
1050 
1051 	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
1052 		interval = nla_get_u32(
1053 			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
1054 
1055 	/* The interval should allow at least the minimum ethernet
1056 	 * frame to go out.
1057 	 */
1058 	if (interval < min_duration) {
1059 		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
1060 		return -EINVAL;
1061 	}
1062 
1063 	entry->interval = interval;
1064 
1065 	return 0;
1066 }
1067 
1068 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
1069 			     struct sched_entry *entry, int index,
1070 			     struct netlink_ext_ack *extack)
1071 {
1072 	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
1073 	int err;
1074 
1075 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
1076 					  entry_policy, NULL);
1077 	if (err < 0) {
1078 		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
1079 		return -EINVAL;
1080 	}
1081 
1082 	entry->index = index;
1083 
1084 	return fill_sched_entry(q, tb, entry, extack);
1085 }
1086 
1087 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
1088 			    struct sched_gate_list *sched,
1089 			    struct netlink_ext_ack *extack)
1090 {
1091 	struct nlattr *n;
1092 	int err, rem;
1093 	int i = 0;
1094 
1095 	if (!list)
1096 		return -EINVAL;
1097 
1098 	nla_for_each_nested(n, list, rem) {
1099 		struct sched_entry *entry;
1100 
1101 		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
1102 			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
1103 			continue;
1104 		}
1105 
1106 		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1107 		if (!entry) {
1108 			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
1109 			return -ENOMEM;
1110 		}
1111 
1112 		err = parse_sched_entry(q, n, entry, i, extack);
1113 		if (err < 0) {
1114 			kfree(entry);
1115 			return err;
1116 		}
1117 
1118 		list_add_tail(&entry->list, &sched->entries);
1119 		i++;
1120 	}
1121 
1122 	sched->num_entries = i;
1123 
1124 	return i;
1125 }
1126 
1127 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
1128 				 struct sched_gate_list *new,
1129 				 struct netlink_ext_ack *extack)
1130 {
1131 	int err = 0;
1132 
1133 	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
1134 		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
1135 		return -ENOTSUPP;
1136 	}
1137 
1138 	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
1139 		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
1140 
1141 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
1142 		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
1143 
1144 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
1145 		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
1146 
1147 	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
1148 		err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
1149 				       new, extack);
1150 	if (err < 0)
1151 		return err;
1152 
1153 	if (!new->cycle_time) {
1154 		struct sched_entry *entry;
1155 		ktime_t cycle = 0;
1156 
1157 		list_for_each_entry(entry, &new->entries, list)
1158 			cycle = ktime_add_ns(cycle, entry->interval);
1159 
1160 		if (cycle < 0 || cycle > INT_MAX) {
1161 			NL_SET_ERR_MSG(extack, "'cycle_time' is too big");
1162 			return -EINVAL;
1163 		}
1164 
1165 		new->cycle_time = cycle;
1166 	}
1167 
1168 	if (new->cycle_time < new->num_entries * length_to_duration(q, ETH_ZLEN)) {
1169 		NL_SET_ERR_MSG(extack, "'cycle_time' is too small");
1170 		return -EINVAL;
1171 	}
1172 
1173 	taprio_calculate_gate_durations(q, new);
1174 
1175 	return 0;
1176 }
1177 
1178 static int taprio_parse_mqprio_opt(struct net_device *dev,
1179 				   struct tc_mqprio_qopt *qopt,
1180 				   struct netlink_ext_ack *extack,
1181 				   u32 taprio_flags)
1182 {
1183 	bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags);
1184 
1185 	if (!qopt) {
1186 		if (!dev->num_tc) {
1187 			NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
1188 			return -EINVAL;
1189 		}
1190 		return 0;
1191 	}
1192 
1193 	/* taprio imposes that traffic classes map 1:n to tx queues */
1194 	if (qopt->num_tc > dev->num_tx_queues) {
1195 		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
1196 		return -EINVAL;
1197 	}
1198 
1199 	/* For some reason, in txtime-assist mode, we allow TXQ ranges for
1200 	 * different TCs to overlap, and just validate the TXQ ranges.
1201 	 */
1202 	return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs,
1203 				    extack);
1204 }
1205 
1206 static int taprio_get_start_time(struct Qdisc *sch,
1207 				 struct sched_gate_list *sched,
1208 				 ktime_t *start)
1209 {
1210 	struct taprio_sched *q = qdisc_priv(sch);
1211 	ktime_t now, base, cycle;
1212 	s64 n;
1213 
1214 	base = sched_base_time(sched);
1215 	now = taprio_get_time(q);
1216 
1217 	if (ktime_after(base, now)) {
1218 		*start = base;
1219 		return 0;
1220 	}
1221 
1222 	cycle = sched->cycle_time;
1223 
1224 	/* The qdisc is expected to have at least one sched_entry.  Moreover,
1225 	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1226 	 * something went really wrong. In that case, we should warn about this
1227 	 * inconsistent state and return error.
1228 	 */
1229 	if (WARN_ON(!cycle))
1230 		return -EFAULT;
1231 
1232 	/* Schedule the start time for the beginning of the next
1233 	 * cycle.
1234 	 */
1235 	n = div64_s64(ktime_sub_ns(now, base), cycle);
1236 	*start = ktime_add_ns(base, (n + 1) * cycle);
1237 	return 0;
1238 }
1239 
1240 static void setup_first_end_time(struct taprio_sched *q,
1241 				 struct sched_gate_list *sched, ktime_t base)
1242 {
1243 	struct net_device *dev = qdisc_dev(q->root);
1244 	int num_tc = netdev_get_num_tc(dev);
1245 	struct sched_entry *first;
1246 	ktime_t cycle;
1247 	int tc;
1248 
1249 	first = list_first_entry(&sched->entries,
1250 				 struct sched_entry, list);
1251 
1252 	cycle = sched->cycle_time;
1253 
1254 	/* FIXME: find a better place to do this */
1255 	sched->cycle_end_time = ktime_add_ns(base, cycle);
1256 
1257 	first->end_time = ktime_add_ns(base, first->interval);
1258 	taprio_set_budgets(q, sched, first);
1259 
1260 	for (tc = 0; tc < num_tc; tc++) {
1261 		if (first->gate_duration[tc] == sched->cycle_time)
1262 			first->gate_close_time[tc] = KTIME_MAX;
1263 		else
1264 			first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]);
1265 	}
1266 
1267 	rcu_assign_pointer(q->current_entry, NULL);
1268 }
1269 
1270 static void taprio_start_sched(struct Qdisc *sch,
1271 			       ktime_t start, struct sched_gate_list *new)
1272 {
1273 	struct taprio_sched *q = qdisc_priv(sch);
1274 	ktime_t expires;
1275 
1276 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1277 		return;
1278 
1279 	expires = hrtimer_get_expires(&q->advance_timer);
1280 	if (expires == 0)
1281 		expires = KTIME_MAX;
1282 
1283 	/* If the new schedule starts before the next expiration, we
1284 	 * reprogram it to the earliest one, so we change the admin
1285 	 * schedule to the operational one at the right time.
1286 	 */
1287 	start = min_t(ktime_t, start, expires);
1288 
1289 	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1290 }
1291 
1292 static void taprio_set_picos_per_byte(struct net_device *dev,
1293 				      struct taprio_sched *q,
1294 				      struct netlink_ext_ack *extack)
1295 {
1296 	struct ethtool_link_ksettings ecmd;
1297 	int speed = SPEED_10;
1298 	int picos_per_byte;
1299 	int err;
1300 
1301 	err = __ethtool_get_link_ksettings(dev, &ecmd);
1302 	if (err < 0)
1303 		goto skip;
1304 
1305 	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1306 		speed = ecmd.base.speed;
1307 
1308 skip:
1309 	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1310 	if (picos_per_byte < TAPRIO_PICOS_PER_BYTE_MIN) {
1311 		if (!extack)
1312 			pr_warn("Link speed %d is too high. Schedule may be inaccurate.\n",
1313 				speed);
1314 		NL_SET_ERR_MSG_FMT_MOD(extack,
1315 				       "Link speed %d is too high. Schedule may be inaccurate.",
1316 				       speed);
1317 		picos_per_byte = TAPRIO_PICOS_PER_BYTE_MIN;
1318 	}
1319 
1320 	atomic64_set(&q->picos_per_byte, picos_per_byte);
1321 	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1322 		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1323 		   ecmd.base.speed);
1324 }
1325 
1326 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1327 			       void *ptr)
1328 {
1329 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1330 	struct sched_gate_list *oper, *admin;
1331 	struct qdisc_size_table *stab;
1332 	struct taprio_sched *q;
1333 
1334 	ASSERT_RTNL();
1335 
1336 	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1337 		return NOTIFY_DONE;
1338 
1339 	list_for_each_entry(q, &taprio_list, taprio_list) {
1340 		if (dev != qdisc_dev(q->root))
1341 			continue;
1342 
1343 		taprio_set_picos_per_byte(dev, q, NULL);
1344 
1345 		stab = rtnl_dereference(q->root->stab);
1346 
1347 		rcu_read_lock();
1348 		oper = rcu_dereference(q->oper_sched);
1349 		if (oper)
1350 			taprio_update_queue_max_sdu(q, oper, stab);
1351 
1352 		admin = rcu_dereference(q->admin_sched);
1353 		if (admin)
1354 			taprio_update_queue_max_sdu(q, admin, stab);
1355 		rcu_read_unlock();
1356 
1357 		break;
1358 	}
1359 
1360 	return NOTIFY_DONE;
1361 }
1362 
1363 static void setup_txtime(struct taprio_sched *q,
1364 			 struct sched_gate_list *sched, ktime_t base)
1365 {
1366 	struct sched_entry *entry;
1367 	u64 interval = 0;
1368 
1369 	list_for_each_entry(entry, &sched->entries, list) {
1370 		entry->next_txtime = ktime_add_ns(base, interval);
1371 		interval += entry->interval;
1372 	}
1373 }
1374 
1375 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1376 {
1377 	struct __tc_taprio_qopt_offload *__offload;
1378 
1379 	__offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1380 			    GFP_KERNEL);
1381 	if (!__offload)
1382 		return NULL;
1383 
1384 	refcount_set(&__offload->users, 1);
1385 
1386 	return &__offload->offload;
1387 }
1388 
1389 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1390 						  *offload)
1391 {
1392 	struct __tc_taprio_qopt_offload *__offload;
1393 
1394 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1395 				 offload);
1396 
1397 	refcount_inc(&__offload->users);
1398 
1399 	return offload;
1400 }
1401 EXPORT_SYMBOL_GPL(taprio_offload_get);
1402 
1403 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1404 {
1405 	struct __tc_taprio_qopt_offload *__offload;
1406 
1407 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1408 				 offload);
1409 
1410 	if (!refcount_dec_and_test(&__offload->users))
1411 		return;
1412 
1413 	kfree(__offload);
1414 }
1415 EXPORT_SYMBOL_GPL(taprio_offload_free);
1416 
1417 /* The function will only serve to keep the pointers to the "oper" and "admin"
1418  * schedules valid in relation to their base times, so when calling dump() the
1419  * users looks at the right schedules.
1420  * When using full offload, the admin configuration is promoted to oper at the
1421  * base_time in the PHC time domain.  But because the system time is not
1422  * necessarily in sync with that, we can't just trigger a hrtimer to call
1423  * switch_schedules at the right hardware time.
1424  * At the moment we call this by hand right away from taprio, but in the future
1425  * it will be useful to create a mechanism for drivers to notify taprio of the
1426  * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1427  * This is left as TODO.
1428  */
1429 static void taprio_offload_config_changed(struct taprio_sched *q)
1430 {
1431 	struct sched_gate_list *oper, *admin;
1432 
1433 	oper = rtnl_dereference(q->oper_sched);
1434 	admin = rtnl_dereference(q->admin_sched);
1435 
1436 	switch_schedules(q, &admin, &oper);
1437 }
1438 
1439 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1440 {
1441 	u32 i, queue_mask = 0;
1442 
1443 	for (i = 0; i < dev->num_tc; i++) {
1444 		u32 offset, count;
1445 
1446 		if (!(tc_mask & BIT(i)))
1447 			continue;
1448 
1449 		offset = dev->tc_to_txq[i].offset;
1450 		count = dev->tc_to_txq[i].count;
1451 
1452 		queue_mask |= GENMASK(offset + count - 1, offset);
1453 	}
1454 
1455 	return queue_mask;
1456 }
1457 
1458 static void taprio_sched_to_offload(struct net_device *dev,
1459 				    struct sched_gate_list *sched,
1460 				    struct tc_taprio_qopt_offload *offload,
1461 				    const struct tc_taprio_caps *caps)
1462 {
1463 	struct sched_entry *entry;
1464 	int i = 0;
1465 
1466 	offload->base_time = sched->base_time;
1467 	offload->cycle_time = sched->cycle_time;
1468 	offload->cycle_time_extension = sched->cycle_time_extension;
1469 
1470 	list_for_each_entry(entry, &sched->entries, list) {
1471 		struct tc_taprio_sched_entry *e = &offload->entries[i];
1472 
1473 		e->command = entry->command;
1474 		e->interval = entry->interval;
1475 		if (caps->gate_mask_per_txq)
1476 			e->gate_mask = tc_map_to_queue_mask(dev,
1477 							    entry->gate_mask);
1478 		else
1479 			e->gate_mask = entry->gate_mask;
1480 
1481 		i++;
1482 	}
1483 
1484 	offload->num_entries = i;
1485 }
1486 
1487 static void taprio_detect_broken_mqprio(struct taprio_sched *q)
1488 {
1489 	struct net_device *dev = qdisc_dev(q->root);
1490 	struct tc_taprio_caps caps;
1491 
1492 	qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
1493 				 &caps, sizeof(caps));
1494 
1495 	q->broken_mqprio = caps.broken_mqprio;
1496 	if (q->broken_mqprio)
1497 		static_branch_inc(&taprio_have_broken_mqprio);
1498 	else
1499 		static_branch_inc(&taprio_have_working_mqprio);
1500 
1501 	q->detected_mqprio = true;
1502 }
1503 
1504 static void taprio_cleanup_broken_mqprio(struct taprio_sched *q)
1505 {
1506 	if (!q->detected_mqprio)
1507 		return;
1508 
1509 	if (q->broken_mqprio)
1510 		static_branch_dec(&taprio_have_broken_mqprio);
1511 	else
1512 		static_branch_dec(&taprio_have_working_mqprio);
1513 }
1514 
1515 static int taprio_enable_offload(struct net_device *dev,
1516 				 struct taprio_sched *q,
1517 				 struct sched_gate_list *sched,
1518 				 struct netlink_ext_ack *extack)
1519 {
1520 	const struct net_device_ops *ops = dev->netdev_ops;
1521 	struct tc_taprio_qopt_offload *offload;
1522 	struct tc_taprio_caps caps;
1523 	int tc, err = 0;
1524 
1525 	if (!ops->ndo_setup_tc) {
1526 		NL_SET_ERR_MSG(extack,
1527 			       "Device does not support taprio offload");
1528 		return -EOPNOTSUPP;
1529 	}
1530 
1531 	qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
1532 				 &caps, sizeof(caps));
1533 
1534 	if (!caps.supports_queue_max_sdu) {
1535 		for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
1536 			if (q->max_sdu[tc]) {
1537 				NL_SET_ERR_MSG_MOD(extack,
1538 						   "Device does not handle queueMaxSDU");
1539 				return -EOPNOTSUPP;
1540 			}
1541 		}
1542 	}
1543 
1544 	offload = taprio_offload_alloc(sched->num_entries);
1545 	if (!offload) {
1546 		NL_SET_ERR_MSG(extack,
1547 			       "Not enough memory for enabling offload mode");
1548 		return -ENOMEM;
1549 	}
1550 	offload->cmd = TAPRIO_CMD_REPLACE;
1551 	offload->extack = extack;
1552 	mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt);
1553 	offload->mqprio.extack = extack;
1554 	taprio_sched_to_offload(dev, sched, offload, &caps);
1555 	mqprio_fp_to_offload(q->fp, &offload->mqprio);
1556 
1557 	for (tc = 0; tc < TC_MAX_QUEUE; tc++)
1558 		offload->max_sdu[tc] = q->max_sdu[tc];
1559 
1560 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1561 	if (err < 0) {
1562 		NL_SET_ERR_MSG_WEAK(extack,
1563 				    "Device failed to setup taprio offload");
1564 		goto done;
1565 	}
1566 
1567 	q->offloaded = true;
1568 
1569 done:
1570 	/* The offload structure may linger around via a reference taken by the
1571 	 * device driver, so clear up the netlink extack pointer so that the
1572 	 * driver isn't tempted to dereference data which stopped being valid
1573 	 */
1574 	offload->extack = NULL;
1575 	offload->mqprio.extack = NULL;
1576 	taprio_offload_free(offload);
1577 
1578 	return err;
1579 }
1580 
1581 static int taprio_disable_offload(struct net_device *dev,
1582 				  struct taprio_sched *q,
1583 				  struct netlink_ext_ack *extack)
1584 {
1585 	const struct net_device_ops *ops = dev->netdev_ops;
1586 	struct tc_taprio_qopt_offload *offload;
1587 	int err;
1588 
1589 	if (!q->offloaded)
1590 		return 0;
1591 
1592 	offload = taprio_offload_alloc(0);
1593 	if (!offload) {
1594 		NL_SET_ERR_MSG(extack,
1595 			       "Not enough memory to disable offload mode");
1596 		return -ENOMEM;
1597 	}
1598 	offload->cmd = TAPRIO_CMD_DESTROY;
1599 
1600 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1601 	if (err < 0) {
1602 		NL_SET_ERR_MSG(extack,
1603 			       "Device failed to disable offload");
1604 		goto out;
1605 	}
1606 
1607 	q->offloaded = false;
1608 
1609 out:
1610 	taprio_offload_free(offload);
1611 
1612 	return err;
1613 }
1614 
1615 /* If full offload is enabled, the only possible clockid is the net device's
1616  * PHC. For that reason, specifying a clockid through netlink is incorrect.
1617  * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1618  * in sync with the specified clockid via a user space daemon such as phc2sys.
1619  * For both software taprio and txtime-assist, the clockid is used for the
1620  * hrtimer that advances the schedule and hence mandatory.
1621  */
1622 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1623 				struct netlink_ext_ack *extack)
1624 {
1625 	struct taprio_sched *q = qdisc_priv(sch);
1626 	struct net_device *dev = qdisc_dev(sch);
1627 	int err = -EINVAL;
1628 
1629 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1630 		const struct ethtool_ops *ops = dev->ethtool_ops;
1631 		struct kernel_ethtool_ts_info info = {
1632 			.cmd = ETHTOOL_GET_TS_INFO,
1633 			.phc_index = -1,
1634 		};
1635 
1636 		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1637 			NL_SET_ERR_MSG(extack,
1638 				       "The 'clockid' cannot be specified for full offload");
1639 			goto out;
1640 		}
1641 
1642 		if (ops && ops->get_ts_info)
1643 			err = ops->get_ts_info(dev, &info);
1644 
1645 		if (err || info.phc_index < 0) {
1646 			NL_SET_ERR_MSG(extack,
1647 				       "Device does not have a PTP clock");
1648 			err = -ENOTSUPP;
1649 			goto out;
1650 		}
1651 	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1652 		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1653 		enum tk_offsets tk_offset;
1654 
1655 		/* We only support static clockids and we don't allow
1656 		 * for it to be modified after the first init.
1657 		 */
1658 		if (clockid < 0 ||
1659 		    (q->clockid != -1 && q->clockid != clockid)) {
1660 			NL_SET_ERR_MSG(extack,
1661 				       "Changing the 'clockid' of a running schedule is not supported");
1662 			err = -ENOTSUPP;
1663 			goto out;
1664 		}
1665 
1666 		switch (clockid) {
1667 		case CLOCK_REALTIME:
1668 			tk_offset = TK_OFFS_REAL;
1669 			break;
1670 		case CLOCK_MONOTONIC:
1671 			tk_offset = TK_OFFS_MAX;
1672 			break;
1673 		case CLOCK_BOOTTIME:
1674 			tk_offset = TK_OFFS_BOOT;
1675 			break;
1676 		case CLOCK_TAI:
1677 			tk_offset = TK_OFFS_TAI;
1678 			break;
1679 		default:
1680 			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1681 			err = -EINVAL;
1682 			goto out;
1683 		}
1684 		/* This pairs with READ_ONCE() in taprio_mono_to_any */
1685 		WRITE_ONCE(q->tk_offset, tk_offset);
1686 
1687 		q->clockid = clockid;
1688 	} else {
1689 		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1690 		goto out;
1691 	}
1692 
1693 	/* Everything went ok, return success. */
1694 	err = 0;
1695 
1696 out:
1697 	return err;
1698 }
1699 
1700 static int taprio_parse_tc_entry(struct Qdisc *sch,
1701 				 struct nlattr *opt,
1702 				 u32 max_sdu[TC_QOPT_MAX_QUEUE],
1703 				 u32 fp[TC_QOPT_MAX_QUEUE],
1704 				 unsigned long *seen_tcs,
1705 				 struct netlink_ext_ack *extack)
1706 {
1707 	struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { };
1708 	struct net_device *dev = qdisc_dev(sch);
1709 	int err, tc;
1710 	u32 val;
1711 
1712 	err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt,
1713 			       taprio_tc_policy, extack);
1714 	if (err < 0)
1715 		return err;
1716 
1717 	if (NL_REQ_ATTR_CHECK(extack, opt, tb, TCA_TAPRIO_TC_ENTRY_INDEX)) {
1718 		NL_SET_ERR_MSG_MOD(extack, "TC entry index missing");
1719 		return -EINVAL;
1720 	}
1721 
1722 	tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]);
1723 	if (*seen_tcs & BIT(tc)) {
1724 		NL_SET_ERR_MSG_ATTR(extack, tb[TCA_TAPRIO_TC_ENTRY_INDEX],
1725 				    "Duplicate tc entry");
1726 		return -EINVAL;
1727 	}
1728 
1729 	*seen_tcs |= BIT(tc);
1730 
1731 	if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) {
1732 		val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]);
1733 		if (val > dev->max_mtu) {
1734 			NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU");
1735 			return -ERANGE;
1736 		}
1737 
1738 		max_sdu[tc] = val;
1739 	}
1740 
1741 	if (tb[TCA_TAPRIO_TC_ENTRY_FP])
1742 		fp[tc] = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]);
1743 
1744 	return 0;
1745 }
1746 
1747 static int taprio_parse_tc_entries(struct Qdisc *sch,
1748 				   struct nlattr *opt,
1749 				   struct netlink_ext_ack *extack)
1750 {
1751 	struct taprio_sched *q = qdisc_priv(sch);
1752 	struct net_device *dev = qdisc_dev(sch);
1753 	u32 max_sdu[TC_QOPT_MAX_QUEUE];
1754 	bool have_preemption = false;
1755 	unsigned long seen_tcs = 0;
1756 	u32 fp[TC_QOPT_MAX_QUEUE];
1757 	struct nlattr *n;
1758 	int tc, rem;
1759 	int err = 0;
1760 
1761 	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
1762 		max_sdu[tc] = q->max_sdu[tc];
1763 		fp[tc] = q->fp[tc];
1764 	}
1765 
1766 	nla_for_each_nested_type(n, TCA_TAPRIO_ATTR_TC_ENTRY, opt, rem) {
1767 		err = taprio_parse_tc_entry(sch, n, max_sdu, fp, &seen_tcs,
1768 					    extack);
1769 		if (err)
1770 			return err;
1771 	}
1772 
1773 	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
1774 		q->max_sdu[tc] = max_sdu[tc];
1775 		q->fp[tc] = fp[tc];
1776 		if (fp[tc] != TC_FP_EXPRESS)
1777 			have_preemption = true;
1778 	}
1779 
1780 	if (have_preemption) {
1781 		if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1782 			NL_SET_ERR_MSG(extack,
1783 				       "Preemption only supported with full offload");
1784 			return -EOPNOTSUPP;
1785 		}
1786 
1787 		if (!ethtool_dev_mm_supported(dev)) {
1788 			NL_SET_ERR_MSG(extack,
1789 				       "Device does not support preemption");
1790 			return -EOPNOTSUPP;
1791 		}
1792 	}
1793 
1794 	return err;
1795 }
1796 
1797 static int taprio_mqprio_cmp(const struct net_device *dev,
1798 			     const struct tc_mqprio_qopt *mqprio)
1799 {
1800 	int i;
1801 
1802 	if (!mqprio || mqprio->num_tc != dev->num_tc)
1803 		return -1;
1804 
1805 	for (i = 0; i < mqprio->num_tc; i++)
1806 		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1807 		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1808 			return -1;
1809 
1810 	for (i = 0; i <= TC_BITMASK; i++)
1811 		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1812 			return -1;
1813 
1814 	return 0;
1815 }
1816 
1817 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1818 			 struct netlink_ext_ack *extack)
1819 {
1820 	struct qdisc_size_table *stab = rtnl_dereference(sch->stab);
1821 	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1822 	struct sched_gate_list *oper, *admin, *new_admin;
1823 	struct taprio_sched *q = qdisc_priv(sch);
1824 	struct net_device *dev = qdisc_dev(sch);
1825 	struct tc_mqprio_qopt *mqprio = NULL;
1826 	unsigned long flags;
1827 	u32 taprio_flags;
1828 	ktime_t start;
1829 	int i, err;
1830 
1831 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1832 					  taprio_policy, extack);
1833 	if (err < 0)
1834 		return err;
1835 
1836 	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1837 		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1838 
1839 	/* The semantics of the 'flags' argument in relation to 'change()'
1840 	 * requests, are interpreted following two rules (which are applied in
1841 	 * this order): (1) an omitted 'flags' argument is interpreted as
1842 	 * zero; (2) the 'flags' of a "running" taprio instance cannot be
1843 	 * changed.
1844 	 */
1845 	taprio_flags = nla_get_u32_default(tb[TCA_TAPRIO_ATTR_FLAGS], 0);
1846 
1847 	/* txtime-assist and full offload are mutually exclusive */
1848 	if ((taprio_flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
1849 	    (taprio_flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) {
1850 		NL_SET_ERR_MSG_ATTR(extack, tb[TCA_TAPRIO_ATTR_FLAGS],
1851 				    "TXTIME_ASSIST and FULL_OFFLOAD are mutually exclusive");
1852 		return -EINVAL;
1853 	}
1854 
1855 	if (q->flags != TAPRIO_FLAGS_INVALID && q->flags != taprio_flags) {
1856 		NL_SET_ERR_MSG_MOD(extack,
1857 				   "Changing 'flags' of a running schedule is not supported");
1858 		return -EOPNOTSUPP;
1859 	}
1860 	q->flags = taprio_flags;
1861 
1862 	/* Needed for length_to_duration() during netlink attribute parsing */
1863 	taprio_set_picos_per_byte(dev, q, extack);
1864 
1865 	err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1866 	if (err < 0)
1867 		return err;
1868 
1869 	err = taprio_parse_tc_entries(sch, opt, extack);
1870 	if (err)
1871 		return err;
1872 
1873 	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1874 	if (!new_admin) {
1875 		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1876 		return -ENOMEM;
1877 	}
1878 	INIT_LIST_HEAD(&new_admin->entries);
1879 
1880 	oper = rtnl_dereference(q->oper_sched);
1881 	admin = rtnl_dereference(q->admin_sched);
1882 
1883 	/* no changes - no new mqprio settings */
1884 	if (!taprio_mqprio_cmp(dev, mqprio))
1885 		mqprio = NULL;
1886 
1887 	if (mqprio && (oper || admin)) {
1888 		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1889 		err = -ENOTSUPP;
1890 		goto free_sched;
1891 	}
1892 
1893 	if (mqprio) {
1894 		err = netdev_set_num_tc(dev, mqprio->num_tc);
1895 		if (err)
1896 			goto free_sched;
1897 		for (i = 0; i < mqprio->num_tc; i++) {
1898 			netdev_set_tc_queue(dev, i,
1899 					    mqprio->count[i],
1900 					    mqprio->offset[i]);
1901 			q->cur_txq[i] = mqprio->offset[i];
1902 		}
1903 
1904 		/* Always use supplied priority mappings */
1905 		for (i = 0; i <= TC_BITMASK; i++)
1906 			netdev_set_prio_tc_map(dev, i,
1907 					       mqprio->prio_tc_map[i]);
1908 	}
1909 
1910 	err = parse_taprio_schedule(q, tb, new_admin, extack);
1911 	if (err < 0)
1912 		goto free_sched;
1913 
1914 	if (new_admin->num_entries == 0) {
1915 		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1916 		err = -EINVAL;
1917 		goto free_sched;
1918 	}
1919 
1920 	err = taprio_parse_clockid(sch, tb, extack);
1921 	if (err < 0)
1922 		goto free_sched;
1923 
1924 	taprio_update_queue_max_sdu(q, new_admin, stab);
1925 
1926 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1927 		err = taprio_enable_offload(dev, q, new_admin, extack);
1928 	else
1929 		err = taprio_disable_offload(dev, q, extack);
1930 	if (err)
1931 		goto free_sched;
1932 
1933 	/* Protects against enqueue()/dequeue() */
1934 	spin_lock_bh(qdisc_lock(sch));
1935 
1936 	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1937 		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1938 			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1939 			err = -EINVAL;
1940 			goto unlock;
1941 		}
1942 
1943 		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1944 	}
1945 
1946 	if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1947 	    !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1948 	    !hrtimer_active(&q->advance_timer)) {
1949 		hrtimer_setup(&q->advance_timer, advance_sched, q->clockid, HRTIMER_MODE_ABS);
1950 	}
1951 
1952 	err = taprio_get_start_time(sch, new_admin, &start);
1953 	if (err < 0) {
1954 		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1955 		goto unlock;
1956 	}
1957 
1958 	setup_txtime(q, new_admin, start);
1959 
1960 	if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1961 		if (!oper) {
1962 			rcu_assign_pointer(q->oper_sched, new_admin);
1963 			err = 0;
1964 			new_admin = NULL;
1965 			goto unlock;
1966 		}
1967 
1968 		/* Not going to race against advance_sched(), but still */
1969 		admin = rcu_replace_pointer(q->admin_sched, new_admin,
1970 					    lockdep_rtnl_is_held());
1971 		if (admin)
1972 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1973 	} else {
1974 		setup_first_end_time(q, new_admin, start);
1975 
1976 		/* Protects against advance_sched() */
1977 		spin_lock_irqsave(&q->current_entry_lock, flags);
1978 
1979 		taprio_start_sched(sch, start, new_admin);
1980 
1981 		admin = rcu_replace_pointer(q->admin_sched, new_admin,
1982 					    lockdep_rtnl_is_held());
1983 		if (admin)
1984 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1985 
1986 		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1987 
1988 		if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1989 			taprio_offload_config_changed(q);
1990 	}
1991 
1992 	new_admin = NULL;
1993 	err = 0;
1994 
1995 	if (!stab)
1996 		NL_SET_ERR_MSG_MOD(extack,
1997 				   "Size table not specified, frame length estimations may be inaccurate");
1998 
1999 unlock:
2000 	spin_unlock_bh(qdisc_lock(sch));
2001 
2002 free_sched:
2003 	if (new_admin)
2004 		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
2005 
2006 	return err;
2007 }
2008 
2009 static void taprio_reset(struct Qdisc *sch)
2010 {
2011 	struct taprio_sched *q = qdisc_priv(sch);
2012 	struct net_device *dev = qdisc_dev(sch);
2013 	int i;
2014 
2015 	hrtimer_cancel(&q->advance_timer);
2016 
2017 	if (q->qdiscs) {
2018 		for (i = 0; i < dev->num_tx_queues; i++)
2019 			if (q->qdiscs[i])
2020 				qdisc_reset(q->qdiscs[i]);
2021 	}
2022 }
2023 
2024 static void taprio_destroy(struct Qdisc *sch)
2025 {
2026 	struct taprio_sched *q = qdisc_priv(sch);
2027 	struct net_device *dev = qdisc_dev(sch);
2028 	struct sched_gate_list *oper, *admin;
2029 	unsigned int i;
2030 
2031 	list_del(&q->taprio_list);
2032 
2033 	/* Note that taprio_reset() might not be called if an error
2034 	 * happens in qdisc_create(), after taprio_init() has been called.
2035 	 */
2036 	hrtimer_cancel(&q->advance_timer);
2037 	qdisc_synchronize(sch);
2038 
2039 	taprio_disable_offload(dev, q, NULL);
2040 
2041 	if (q->qdiscs) {
2042 		for (i = 0; i < dev->num_tx_queues; i++)
2043 			qdisc_put(q->qdiscs[i]);
2044 
2045 		kfree(q->qdiscs);
2046 	}
2047 	q->qdiscs = NULL;
2048 
2049 	netdev_reset_tc(dev);
2050 
2051 	oper = rtnl_dereference(q->oper_sched);
2052 	admin = rtnl_dereference(q->admin_sched);
2053 
2054 	if (oper)
2055 		call_rcu(&oper->rcu, taprio_free_sched_cb);
2056 
2057 	if (admin)
2058 		call_rcu(&admin->rcu, taprio_free_sched_cb);
2059 
2060 	taprio_cleanup_broken_mqprio(q);
2061 }
2062 
2063 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
2064 		       struct netlink_ext_ack *extack)
2065 {
2066 	struct taprio_sched *q = qdisc_priv(sch);
2067 	struct net_device *dev = qdisc_dev(sch);
2068 	int i, tc;
2069 
2070 	spin_lock_init(&q->current_entry_lock);
2071 
2072 	hrtimer_setup(&q->advance_timer, advance_sched, CLOCK_TAI, HRTIMER_MODE_ABS);
2073 
2074 	q->root = sch;
2075 
2076 	/* We only support static clockids. Use an invalid value as default
2077 	 * and get the valid one on taprio_change().
2078 	 */
2079 	q->clockid = -1;
2080 	q->flags = TAPRIO_FLAGS_INVALID;
2081 
2082 	list_add(&q->taprio_list, &taprio_list);
2083 
2084 	if (sch->parent != TC_H_ROOT) {
2085 		NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc");
2086 		return -EOPNOTSUPP;
2087 	}
2088 
2089 	if (!netif_is_multiqueue(dev)) {
2090 		NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required");
2091 		return -EOPNOTSUPP;
2092 	}
2093 
2094 	q->qdiscs = kcalloc(dev->num_tx_queues, sizeof(q->qdiscs[0]),
2095 			    GFP_KERNEL);
2096 	if (!q->qdiscs)
2097 		return -ENOMEM;
2098 
2099 	if (!opt)
2100 		return -EINVAL;
2101 
2102 	for (i = 0; i < dev->num_tx_queues; i++) {
2103 		struct netdev_queue *dev_queue;
2104 		struct Qdisc *qdisc;
2105 
2106 		dev_queue = netdev_get_tx_queue(dev, i);
2107 		qdisc = qdisc_create_dflt(dev_queue,
2108 					  &pfifo_qdisc_ops,
2109 					  TC_H_MAKE(TC_H_MAJ(sch->handle),
2110 						    TC_H_MIN(i + 1)),
2111 					  extack);
2112 		if (!qdisc)
2113 			return -ENOMEM;
2114 
2115 		if (i < dev->real_num_tx_queues)
2116 			qdisc_hash_add(qdisc, false);
2117 
2118 		q->qdiscs[i] = qdisc;
2119 	}
2120 
2121 	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++)
2122 		q->fp[tc] = TC_FP_EXPRESS;
2123 
2124 	taprio_detect_broken_mqprio(q);
2125 
2126 	return taprio_change(sch, opt, extack);
2127 }
2128 
2129 static void taprio_attach(struct Qdisc *sch)
2130 {
2131 	struct taprio_sched *q = qdisc_priv(sch);
2132 	struct net_device *dev = qdisc_dev(sch);
2133 	unsigned int ntx;
2134 
2135 	/* Attach underlying qdisc */
2136 	for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
2137 		struct netdev_queue *dev_queue = netdev_get_tx_queue(dev, ntx);
2138 		struct Qdisc *old, *dev_queue_qdisc;
2139 
2140 		if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
2141 			struct Qdisc *qdisc = q->qdiscs[ntx];
2142 
2143 			/* In offload mode, the root taprio qdisc is bypassed
2144 			 * and the netdev TX queues see the children directly
2145 			 */
2146 			qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
2147 			dev_queue_qdisc = qdisc;
2148 		} else {
2149 			/* In software mode, attach the root taprio qdisc
2150 			 * to all netdev TX queues, so that dev_qdisc_enqueue()
2151 			 * goes through taprio_enqueue().
2152 			 */
2153 			dev_queue_qdisc = sch;
2154 		}
2155 		old = dev_graft_qdisc(dev_queue, dev_queue_qdisc);
2156 		/* The qdisc's refcount requires to be elevated once
2157 		 * for each netdev TX queue it is grafted onto
2158 		 */
2159 		qdisc_refcount_inc(dev_queue_qdisc);
2160 		if (old)
2161 			qdisc_put(old);
2162 	}
2163 }
2164 
2165 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
2166 					     unsigned long cl)
2167 {
2168 	struct net_device *dev = qdisc_dev(sch);
2169 	unsigned long ntx = cl - 1;
2170 
2171 	if (ntx >= dev->num_tx_queues)
2172 		return NULL;
2173 
2174 	return netdev_get_tx_queue(dev, ntx);
2175 }
2176 
2177 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
2178 			struct Qdisc *new, struct Qdisc **old,
2179 			struct netlink_ext_ack *extack)
2180 {
2181 	struct taprio_sched *q = qdisc_priv(sch);
2182 	struct net_device *dev = qdisc_dev(sch);
2183 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2184 
2185 	if (!dev_queue)
2186 		return -EINVAL;
2187 
2188 	if (dev->flags & IFF_UP)
2189 		dev_deactivate(dev);
2190 
2191 	/* In offload mode, the child Qdisc is directly attached to the netdev
2192 	 * TX queue, and thus, we need to keep its refcount elevated in order
2193 	 * to counteract qdisc_graft()'s call to qdisc_put() once per TX queue.
2194 	 * However, save the reference to the new qdisc in the private array in
2195 	 * both software and offload cases, to have an up-to-date reference to
2196 	 * our children.
2197 	 */
2198 	*old = q->qdiscs[cl - 1];
2199 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
2200 		WARN_ON_ONCE(dev_graft_qdisc(dev_queue, new) != *old);
2201 		if (new)
2202 			qdisc_refcount_inc(new);
2203 		if (*old)
2204 			qdisc_put(*old);
2205 	}
2206 
2207 	q->qdiscs[cl - 1] = new;
2208 	if (new)
2209 		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
2210 
2211 	if (dev->flags & IFF_UP)
2212 		dev_activate(dev);
2213 
2214 	return 0;
2215 }
2216 
2217 static int dump_entry(struct sk_buff *msg,
2218 		      const struct sched_entry *entry)
2219 {
2220 	struct nlattr *item;
2221 
2222 	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
2223 	if (!item)
2224 		return -ENOSPC;
2225 
2226 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
2227 		goto nla_put_failure;
2228 
2229 	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
2230 		goto nla_put_failure;
2231 
2232 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
2233 			entry->gate_mask))
2234 		goto nla_put_failure;
2235 
2236 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
2237 			entry->interval))
2238 		goto nla_put_failure;
2239 
2240 	return nla_nest_end(msg, item);
2241 
2242 nla_put_failure:
2243 	nla_nest_cancel(msg, item);
2244 	return -1;
2245 }
2246 
2247 static int dump_schedule(struct sk_buff *msg,
2248 			 const struct sched_gate_list *root)
2249 {
2250 	struct nlattr *entry_list;
2251 	struct sched_entry *entry;
2252 
2253 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
2254 			root->base_time, TCA_TAPRIO_PAD))
2255 		return -1;
2256 
2257 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
2258 			root->cycle_time, TCA_TAPRIO_PAD))
2259 		return -1;
2260 
2261 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
2262 			root->cycle_time_extension, TCA_TAPRIO_PAD))
2263 		return -1;
2264 
2265 	entry_list = nla_nest_start_noflag(msg,
2266 					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
2267 	if (!entry_list)
2268 		goto error_nest;
2269 
2270 	list_for_each_entry(entry, &root->entries, list) {
2271 		if (dump_entry(msg, entry) < 0)
2272 			goto error_nest;
2273 	}
2274 
2275 	nla_nest_end(msg, entry_list);
2276 	return 0;
2277 
2278 error_nest:
2279 	nla_nest_cancel(msg, entry_list);
2280 	return -1;
2281 }
2282 
2283 static int taprio_dump_tc_entries(struct sk_buff *skb,
2284 				  struct taprio_sched *q,
2285 				  struct sched_gate_list *sched)
2286 {
2287 	struct nlattr *n;
2288 	int tc;
2289 
2290 	for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
2291 		n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY);
2292 		if (!n)
2293 			return -EMSGSIZE;
2294 
2295 		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc))
2296 			goto nla_put_failure;
2297 
2298 		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU,
2299 				sched->max_sdu[tc]))
2300 			goto nla_put_failure;
2301 
2302 		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_FP, q->fp[tc]))
2303 			goto nla_put_failure;
2304 
2305 		nla_nest_end(skb, n);
2306 	}
2307 
2308 	return 0;
2309 
2310 nla_put_failure:
2311 	nla_nest_cancel(skb, n);
2312 	return -EMSGSIZE;
2313 }
2314 
2315 static int taprio_put_stat(struct sk_buff *skb, u64 val, u16 attrtype)
2316 {
2317 	if (val == TAPRIO_STAT_NOT_SET)
2318 		return 0;
2319 	if (nla_put_u64_64bit(skb, attrtype, val, TCA_TAPRIO_OFFLOAD_STATS_PAD))
2320 		return -EMSGSIZE;
2321 	return 0;
2322 }
2323 
2324 static int taprio_dump_xstats(struct Qdisc *sch, struct gnet_dump *d,
2325 			      struct tc_taprio_qopt_offload *offload,
2326 			      struct tc_taprio_qopt_stats *stats)
2327 {
2328 	struct net_device *dev = qdisc_dev(sch);
2329 	const struct net_device_ops *ops;
2330 	struct sk_buff *skb = d->skb;
2331 	struct nlattr *xstats;
2332 	int err;
2333 
2334 	ops = qdisc_dev(sch)->netdev_ops;
2335 
2336 	/* FIXME I could use qdisc_offload_dump_helper(), but that messes
2337 	 * with sch->flags depending on whether the device reports taprio
2338 	 * stats, and I'm not sure whether that's a good idea, considering
2339 	 * that stats are optional to the offload itself
2340 	 */
2341 	if (!ops->ndo_setup_tc)
2342 		return 0;
2343 
2344 	memset(stats, 0xff, sizeof(*stats));
2345 
2346 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
2347 	if (err == -EOPNOTSUPP)
2348 		return 0;
2349 	if (err)
2350 		return err;
2351 
2352 	xstats = nla_nest_start(skb, TCA_STATS_APP);
2353 	if (!xstats)
2354 		goto err;
2355 
2356 	if (taprio_put_stat(skb, stats->window_drops,
2357 			    TCA_TAPRIO_OFFLOAD_STATS_WINDOW_DROPS) ||
2358 	    taprio_put_stat(skb, stats->tx_overruns,
2359 			    TCA_TAPRIO_OFFLOAD_STATS_TX_OVERRUNS))
2360 		goto err_cancel;
2361 
2362 	nla_nest_end(skb, xstats);
2363 
2364 	return 0;
2365 
2366 err_cancel:
2367 	nla_nest_cancel(skb, xstats);
2368 err:
2369 	return -EMSGSIZE;
2370 }
2371 
2372 static int taprio_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2373 {
2374 	struct tc_taprio_qopt_offload offload = {
2375 		.cmd = TAPRIO_CMD_STATS,
2376 	};
2377 
2378 	return taprio_dump_xstats(sch, d, &offload, &offload.stats);
2379 }
2380 
2381 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
2382 {
2383 	struct taprio_sched *q = qdisc_priv(sch);
2384 	struct net_device *dev = qdisc_dev(sch);
2385 	struct sched_gate_list *oper, *admin;
2386 	struct tc_mqprio_qopt opt = { 0 };
2387 	struct nlattr *nest, *sched_nest;
2388 
2389 	mqprio_qopt_reconstruct(dev, &opt);
2390 
2391 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
2392 	if (!nest)
2393 		goto start_error;
2394 
2395 	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
2396 		goto options_error;
2397 
2398 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
2399 	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
2400 		goto options_error;
2401 
2402 	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
2403 		goto options_error;
2404 
2405 	if (q->txtime_delay &&
2406 	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
2407 		goto options_error;
2408 
2409 	rcu_read_lock();
2410 
2411 	oper = rtnl_dereference(q->oper_sched);
2412 	admin = rtnl_dereference(q->admin_sched);
2413 
2414 	if (oper && taprio_dump_tc_entries(skb, q, oper))
2415 		goto options_error_rcu;
2416 
2417 	if (oper && dump_schedule(skb, oper))
2418 		goto options_error_rcu;
2419 
2420 	if (!admin)
2421 		goto done;
2422 
2423 	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
2424 	if (!sched_nest)
2425 		goto options_error_rcu;
2426 
2427 	if (dump_schedule(skb, admin))
2428 		goto admin_error;
2429 
2430 	nla_nest_end(skb, sched_nest);
2431 
2432 done:
2433 	rcu_read_unlock();
2434 	return nla_nest_end(skb, nest);
2435 
2436 admin_error:
2437 	nla_nest_cancel(skb, sched_nest);
2438 
2439 options_error_rcu:
2440 	rcu_read_unlock();
2441 
2442 options_error:
2443 	nla_nest_cancel(skb, nest);
2444 
2445 start_error:
2446 	return -ENOSPC;
2447 }
2448 
2449 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
2450 {
2451 	struct taprio_sched *q = qdisc_priv(sch);
2452 	struct net_device *dev = qdisc_dev(sch);
2453 	unsigned int ntx = cl - 1;
2454 
2455 	if (ntx >= dev->num_tx_queues)
2456 		return NULL;
2457 
2458 	return q->qdiscs[ntx];
2459 }
2460 
2461 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
2462 {
2463 	unsigned int ntx = TC_H_MIN(classid);
2464 
2465 	if (!taprio_queue_get(sch, ntx))
2466 		return 0;
2467 	return ntx;
2468 }
2469 
2470 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
2471 			     struct sk_buff *skb, struct tcmsg *tcm)
2472 {
2473 	struct Qdisc *child = taprio_leaf(sch, cl);
2474 
2475 	tcm->tcm_parent = TC_H_ROOT;
2476 	tcm->tcm_handle |= TC_H_MIN(cl);
2477 	tcm->tcm_info = child->handle;
2478 
2479 	return 0;
2480 }
2481 
2482 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2483 				   struct gnet_dump *d)
2484 	__releases(d->lock)
2485 	__acquires(d->lock)
2486 {
2487 	struct Qdisc *child = taprio_leaf(sch, cl);
2488 	struct tc_taprio_qopt_offload offload = {
2489 		.cmd = TAPRIO_CMD_QUEUE_STATS,
2490 		.queue_stats = {
2491 			.queue = cl - 1,
2492 		},
2493 	};
2494 
2495 	if (gnet_stats_copy_basic(d, NULL, &child->bstats, true) < 0 ||
2496 	    qdisc_qstats_copy(d, child) < 0)
2497 		return -1;
2498 
2499 	return taprio_dump_xstats(sch, d, &offload, &offload.queue_stats.stats);
2500 }
2501 
2502 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
2503 {
2504 	struct net_device *dev = qdisc_dev(sch);
2505 	unsigned long ntx;
2506 
2507 	if (arg->stop)
2508 		return;
2509 
2510 	arg->count = arg->skip;
2511 	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
2512 		if (!tc_qdisc_stats_dump(sch, ntx + 1, arg))
2513 			break;
2514 	}
2515 }
2516 
2517 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
2518 						struct tcmsg *tcm)
2519 {
2520 	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2521 }
2522 
2523 static const struct Qdisc_class_ops taprio_class_ops = {
2524 	.graft		= taprio_graft,
2525 	.leaf		= taprio_leaf,
2526 	.find		= taprio_find,
2527 	.walk		= taprio_walk,
2528 	.dump		= taprio_dump_class,
2529 	.dump_stats	= taprio_dump_class_stats,
2530 	.select_queue	= taprio_select_queue,
2531 };
2532 
2533 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2534 	.cl_ops		= &taprio_class_ops,
2535 	.id		= "taprio",
2536 	.priv_size	= sizeof(struct taprio_sched),
2537 	.init		= taprio_init,
2538 	.change		= taprio_change,
2539 	.destroy	= taprio_destroy,
2540 	.reset		= taprio_reset,
2541 	.attach		= taprio_attach,
2542 	.peek		= taprio_peek,
2543 	.dequeue	= taprio_dequeue,
2544 	.enqueue	= taprio_enqueue,
2545 	.dump		= taprio_dump,
2546 	.dump_stats	= taprio_dump_stats,
2547 	.owner		= THIS_MODULE,
2548 };
2549 MODULE_ALIAS_NET_SCH("taprio");
2550 
2551 static struct notifier_block taprio_device_notifier = {
2552 	.notifier_call = taprio_dev_notifier,
2553 };
2554 
2555 static int __init taprio_module_init(void)
2556 {
2557 	int err = register_netdevice_notifier(&taprio_device_notifier);
2558 
2559 	if (err)
2560 		return err;
2561 
2562 	return register_qdisc(&taprio_qdisc_ops);
2563 }
2564 
2565 static void __exit taprio_module_exit(void)
2566 {
2567 	unregister_qdisc(&taprio_qdisc_ops);
2568 	unregister_netdevice_notifier(&taprio_device_notifier);
2569 }
2570 
2571 module_init(taprio_module_init);
2572 module_exit(taprio_module_exit);
2573 MODULE_LICENSE("GPL");
2574 MODULE_DESCRIPTION("Time Aware Priority qdisc");
2575