1 // SPDX-License-Identifier: GPL-2.0 2 3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler 4 * 5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> 6 * 7 */ 8 9 #include <linux/ethtool.h> 10 #include <linux/ethtool_netlink.h> 11 #include <linux/types.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/string.h> 15 #include <linux/list.h> 16 #include <linux/errno.h> 17 #include <linux/skbuff.h> 18 #include <linux/math64.h> 19 #include <linux/module.h> 20 #include <linux/spinlock.h> 21 #include <linux/rcupdate.h> 22 #include <linux/time.h> 23 #include <net/gso.h> 24 #include <net/netlink.h> 25 #include <net/pkt_sched.h> 26 #include <net/pkt_cls.h> 27 #include <net/sch_generic.h> 28 #include <net/sock.h> 29 #include <net/tcp.h> 30 31 #define TAPRIO_STAT_NOT_SET (~0ULL) 32 33 #include "sch_mqprio_lib.h" 34 35 static LIST_HEAD(taprio_list); 36 static struct static_key_false taprio_have_broken_mqprio; 37 static struct static_key_false taprio_have_working_mqprio; 38 39 #define TAPRIO_ALL_GATES_OPEN -1 40 41 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) 42 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) 43 #define TAPRIO_SUPPORTED_FLAGS \ 44 (TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) 45 #define TAPRIO_FLAGS_INVALID U32_MAX 46 /* Minimum value for picos_per_byte to ensure non-zero duration 47 * for minimum-sized Ethernet frames (ETH_ZLEN = 60). 48 * 60 * 17 > PSEC_PER_NSEC (1000) 49 */ 50 #define TAPRIO_PICOS_PER_BYTE_MIN 17 51 52 struct sched_entry { 53 /* Durations between this GCL entry and the GCL entry where the 54 * respective traffic class gate closes 55 */ 56 u64 gate_duration[TC_MAX_QUEUE]; 57 atomic_t budget[TC_MAX_QUEUE]; 58 /* The qdisc makes some effort so that no packet leaves 59 * after this time 60 */ 61 ktime_t gate_close_time[TC_MAX_QUEUE]; 62 struct list_head list; 63 /* Used to calculate when to advance the schedule */ 64 ktime_t end_time; 65 ktime_t next_txtime; 66 int index; 67 u32 gate_mask; 68 u32 interval; 69 u8 command; 70 }; 71 72 struct sched_gate_list { 73 /* Longest non-zero contiguous gate durations per traffic class, 74 * or 0 if a traffic class gate never opens during the schedule. 75 */ 76 u64 max_open_gate_duration[TC_MAX_QUEUE]; 77 u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */ 78 u32 max_sdu[TC_MAX_QUEUE]; /* for dump */ 79 struct rcu_head rcu; 80 struct list_head entries; 81 size_t num_entries; 82 ktime_t cycle_end_time; 83 s64 cycle_time; 84 s64 cycle_time_extension; 85 s64 base_time; 86 }; 87 88 struct taprio_sched { 89 struct Qdisc **qdiscs; 90 struct Qdisc *root; 91 u32 flags; 92 enum tk_offsets tk_offset; 93 int clockid; 94 bool offloaded; 95 bool detected_mqprio; 96 bool broken_mqprio; 97 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ 98 * speeds it's sub-nanoseconds per byte 99 */ 100 101 /* Protects the update side of the RCU protected current_entry */ 102 spinlock_t current_entry_lock; 103 struct sched_entry __rcu *current_entry; 104 struct sched_gate_list __rcu *oper_sched; 105 struct sched_gate_list __rcu *admin_sched; 106 struct hrtimer advance_timer; 107 struct list_head taprio_list; 108 int cur_txq[TC_MAX_QUEUE]; 109 u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */ 110 u32 fp[TC_QOPT_MAX_QUEUE]; /* only for dump and offloading */ 111 u32 txtime_delay; 112 }; 113 114 struct __tc_taprio_qopt_offload { 115 refcount_t users; 116 struct tc_taprio_qopt_offload offload; 117 }; 118 119 static void taprio_calculate_gate_durations(struct taprio_sched *q, 120 struct sched_gate_list *sched) 121 { 122 struct net_device *dev = qdisc_dev(q->root); 123 int num_tc = netdev_get_num_tc(dev); 124 struct sched_entry *entry, *cur; 125 int tc; 126 127 list_for_each_entry(entry, &sched->entries, list) { 128 u32 gates_still_open = entry->gate_mask; 129 130 /* For each traffic class, calculate each open gate duration, 131 * starting at this schedule entry and ending at the schedule 132 * entry containing a gate close event for that TC. 133 */ 134 cur = entry; 135 136 do { 137 if (!gates_still_open) 138 break; 139 140 for (tc = 0; tc < num_tc; tc++) { 141 if (!(gates_still_open & BIT(tc))) 142 continue; 143 144 if (cur->gate_mask & BIT(tc)) 145 entry->gate_duration[tc] += cur->interval; 146 else 147 gates_still_open &= ~BIT(tc); 148 } 149 150 cur = list_next_entry_circular(cur, &sched->entries, list); 151 } while (cur != entry); 152 153 /* Keep track of the maximum gate duration for each traffic 154 * class, taking care to not confuse a traffic class which is 155 * temporarily closed with one that is always closed. 156 */ 157 for (tc = 0; tc < num_tc; tc++) 158 if (entry->gate_duration[tc] && 159 sched->max_open_gate_duration[tc] < entry->gate_duration[tc]) 160 sched->max_open_gate_duration[tc] = entry->gate_duration[tc]; 161 } 162 } 163 164 static bool taprio_entry_allows_tx(ktime_t skb_end_time, 165 struct sched_entry *entry, int tc) 166 { 167 return ktime_before(skb_end_time, entry->gate_close_time[tc]); 168 } 169 170 static ktime_t sched_base_time(const struct sched_gate_list *sched) 171 { 172 if (!sched) 173 return KTIME_MAX; 174 175 return ns_to_ktime(sched->base_time); 176 } 177 178 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono) 179 { 180 /* This pairs with WRITE_ONCE() in taprio_parse_clockid() */ 181 enum tk_offsets tk_offset = READ_ONCE(q->tk_offset); 182 183 switch (tk_offset) { 184 case TK_OFFS_MAX: 185 return mono; 186 default: 187 return ktime_mono_to_any(mono, tk_offset); 188 } 189 } 190 191 static ktime_t taprio_get_time(const struct taprio_sched *q) 192 { 193 return taprio_mono_to_any(q, ktime_get()); 194 } 195 196 static void taprio_free_sched_cb(struct rcu_head *head) 197 { 198 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); 199 struct sched_entry *entry, *n; 200 201 list_for_each_entry_safe(entry, n, &sched->entries, list) { 202 list_del(&entry->list); 203 kfree(entry); 204 } 205 206 kfree(sched); 207 } 208 209 static void switch_schedules(struct taprio_sched *q, 210 struct sched_gate_list **admin, 211 struct sched_gate_list **oper) 212 { 213 rcu_assign_pointer(q->oper_sched, *admin); 214 rcu_assign_pointer(q->admin_sched, NULL); 215 216 if (*oper) 217 call_rcu(&(*oper)->rcu, taprio_free_sched_cb); 218 219 *oper = *admin; 220 *admin = NULL; 221 } 222 223 /* Get how much time has been already elapsed in the current cycle. */ 224 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time) 225 { 226 ktime_t time_since_sched_start; 227 s32 time_elapsed; 228 229 time_since_sched_start = ktime_sub(time, sched->base_time); 230 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed); 231 232 return time_elapsed; 233 } 234 235 static ktime_t get_interval_end_time(struct sched_gate_list *sched, 236 struct sched_gate_list *admin, 237 struct sched_entry *entry, 238 ktime_t intv_start) 239 { 240 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start); 241 ktime_t intv_end, cycle_ext_end, cycle_end; 242 243 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed); 244 intv_end = ktime_add_ns(intv_start, entry->interval); 245 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension); 246 247 if (ktime_before(intv_end, cycle_end)) 248 return intv_end; 249 else if (admin && admin != sched && 250 ktime_after(admin->base_time, cycle_end) && 251 ktime_before(admin->base_time, cycle_ext_end)) 252 return admin->base_time; 253 else 254 return cycle_end; 255 } 256 257 static int length_to_duration(struct taprio_sched *q, int len) 258 { 259 return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC); 260 } 261 262 static int duration_to_length(struct taprio_sched *q, u64 duration) 263 { 264 return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte)); 265 } 266 267 /* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the 268 * q->max_sdu[] requested by the user and the max_sdu dynamically determined by 269 * the maximum open gate durations at the given link speed. 270 */ 271 static void taprio_update_queue_max_sdu(struct taprio_sched *q, 272 struct sched_gate_list *sched, 273 struct qdisc_size_table *stab) 274 { 275 struct net_device *dev = qdisc_dev(q->root); 276 int num_tc = netdev_get_num_tc(dev); 277 u32 max_sdu_from_user; 278 u32 max_sdu_dynamic; 279 u32 max_sdu; 280 int tc; 281 282 for (tc = 0; tc < num_tc; tc++) { 283 max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX; 284 285 /* TC gate never closes => keep the queueMaxSDU 286 * selected by the user 287 */ 288 if (sched->max_open_gate_duration[tc] == sched->cycle_time) { 289 max_sdu_dynamic = U32_MAX; 290 } else { 291 u32 max_frm_len; 292 293 max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]); 294 /* Compensate for L1 overhead from size table, 295 * but don't let the frame size go negative 296 */ 297 if (stab) { 298 max_frm_len -= stab->szopts.overhead; 299 max_frm_len = max_t(int, max_frm_len, 300 dev->hard_header_len + 1); 301 } 302 max_sdu_dynamic = max_frm_len - dev->hard_header_len; 303 if (max_sdu_dynamic > dev->max_mtu) 304 max_sdu_dynamic = U32_MAX; 305 } 306 307 max_sdu = min(max_sdu_dynamic, max_sdu_from_user); 308 309 if (max_sdu != U32_MAX) { 310 sched->max_frm_len[tc] = max_sdu + dev->hard_header_len; 311 sched->max_sdu[tc] = max_sdu; 312 } else { 313 sched->max_frm_len[tc] = U32_MAX; /* never oversized */ 314 sched->max_sdu[tc] = 0; 315 } 316 } 317 } 318 319 /* Returns the entry corresponding to next available interval. If 320 * validate_interval is set, it only validates whether the timestamp occurs 321 * when the gate corresponding to the skb's traffic class is open. 322 */ 323 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb, 324 struct Qdisc *sch, 325 struct sched_gate_list *sched, 326 struct sched_gate_list *admin, 327 ktime_t time, 328 ktime_t *interval_start, 329 ktime_t *interval_end, 330 bool validate_interval) 331 { 332 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time; 333 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time; 334 struct sched_entry *entry = NULL, *entry_found = NULL; 335 struct taprio_sched *q = qdisc_priv(sch); 336 struct net_device *dev = qdisc_dev(sch); 337 bool entry_available = false; 338 s32 cycle_elapsed; 339 int tc, n; 340 341 tc = netdev_get_prio_tc_map(dev, skb->priority); 342 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb)); 343 344 *interval_start = 0; 345 *interval_end = 0; 346 347 if (!sched) 348 return NULL; 349 350 cycle = sched->cycle_time; 351 cycle_elapsed = get_cycle_time_elapsed(sched, time); 352 curr_intv_end = ktime_sub_ns(time, cycle_elapsed); 353 cycle_end = ktime_add_ns(curr_intv_end, cycle); 354 355 list_for_each_entry(entry, &sched->entries, list) { 356 curr_intv_start = curr_intv_end; 357 curr_intv_end = get_interval_end_time(sched, admin, entry, 358 curr_intv_start); 359 360 if (ktime_after(curr_intv_start, cycle_end)) 361 break; 362 363 if (!(entry->gate_mask & BIT(tc)) || 364 packet_transmit_time > entry->interval) 365 continue; 366 367 txtime = entry->next_txtime; 368 369 if (ktime_before(txtime, time) || validate_interval) { 370 transmit_end_time = ktime_add_ns(time, packet_transmit_time); 371 if ((ktime_before(curr_intv_start, time) && 372 ktime_before(transmit_end_time, curr_intv_end)) || 373 (ktime_after(curr_intv_start, time) && !validate_interval)) { 374 entry_found = entry; 375 *interval_start = curr_intv_start; 376 *interval_end = curr_intv_end; 377 break; 378 } else if (!entry_available && !validate_interval) { 379 /* Here, we are just trying to find out the 380 * first available interval in the next cycle. 381 */ 382 entry_available = true; 383 entry_found = entry; 384 *interval_start = ktime_add_ns(curr_intv_start, cycle); 385 *interval_end = ktime_add_ns(curr_intv_end, cycle); 386 } 387 } else if (ktime_before(txtime, earliest_txtime) && 388 !entry_available) { 389 earliest_txtime = txtime; 390 entry_found = entry; 391 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle); 392 *interval_start = ktime_add(curr_intv_start, n * cycle); 393 *interval_end = ktime_add(curr_intv_end, n * cycle); 394 } 395 } 396 397 return entry_found; 398 } 399 400 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch) 401 { 402 struct taprio_sched *q = qdisc_priv(sch); 403 struct sched_gate_list *sched, *admin; 404 ktime_t interval_start, interval_end; 405 struct sched_entry *entry; 406 407 rcu_read_lock(); 408 sched = rcu_dereference(q->oper_sched); 409 admin = rcu_dereference(q->admin_sched); 410 411 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp, 412 &interval_start, &interval_end, true); 413 rcu_read_unlock(); 414 415 return entry; 416 } 417 418 /* This returns the tstamp value set by TCP in terms of the set clock. */ 419 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb) 420 { 421 unsigned int offset = skb_network_offset(skb); 422 const struct ipv6hdr *ipv6h; 423 const struct iphdr *iph; 424 struct ipv6hdr _ipv6h; 425 426 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 427 if (!ipv6h) 428 return 0; 429 430 if (ipv6h->version == 4) { 431 iph = (struct iphdr *)ipv6h; 432 offset += iph->ihl * 4; 433 434 /* special-case 6in4 tunnelling, as that is a common way to get 435 * v6 connectivity in the home 436 */ 437 if (iph->protocol == IPPROTO_IPV6) { 438 ipv6h = skb_header_pointer(skb, offset, 439 sizeof(_ipv6h), &_ipv6h); 440 441 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) 442 return 0; 443 } else if (iph->protocol != IPPROTO_TCP) { 444 return 0; 445 } 446 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) { 447 return 0; 448 } 449 450 return taprio_mono_to_any(q, skb->skb_mstamp_ns); 451 } 452 453 /* There are a few scenarios where we will have to modify the txtime from 454 * what is read from next_txtime in sched_entry. They are: 455 * 1. If txtime is in the past, 456 * a. The gate for the traffic class is currently open and packet can be 457 * transmitted before it closes, schedule the packet right away. 458 * b. If the gate corresponding to the traffic class is going to open later 459 * in the cycle, set the txtime of packet to the interval start. 460 * 2. If txtime is in the future, there are packets corresponding to the 461 * current traffic class waiting to be transmitted. So, the following 462 * possibilities exist: 463 * a. We can transmit the packet before the window containing the txtime 464 * closes. 465 * b. The window might close before the transmission can be completed 466 * successfully. So, schedule the packet in the next open window. 467 */ 468 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch) 469 { 470 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp; 471 struct taprio_sched *q = qdisc_priv(sch); 472 struct sched_gate_list *sched, *admin; 473 ktime_t minimum_time, now, txtime; 474 int len, packet_transmit_time; 475 struct sched_entry *entry; 476 bool sched_changed; 477 478 now = taprio_get_time(q); 479 minimum_time = ktime_add_ns(now, q->txtime_delay); 480 481 tcp_tstamp = get_tcp_tstamp(q, skb); 482 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp); 483 484 rcu_read_lock(); 485 admin = rcu_dereference(q->admin_sched); 486 sched = rcu_dereference(q->oper_sched); 487 if (admin && ktime_after(minimum_time, admin->base_time)) 488 switch_schedules(q, &admin, &sched); 489 490 /* Until the schedule starts, all the queues are open */ 491 if (!sched || ktime_before(minimum_time, sched->base_time)) { 492 txtime = minimum_time; 493 goto done; 494 } 495 496 len = qdisc_pkt_len(skb); 497 packet_transmit_time = length_to_duration(q, len); 498 499 do { 500 sched_changed = false; 501 502 entry = find_entry_to_transmit(skb, sch, sched, admin, 503 minimum_time, 504 &interval_start, &interval_end, 505 false); 506 if (!entry) { 507 txtime = 0; 508 goto done; 509 } 510 511 txtime = entry->next_txtime; 512 txtime = max_t(ktime_t, txtime, minimum_time); 513 txtime = max_t(ktime_t, txtime, interval_start); 514 515 if (admin && admin != sched && 516 ktime_after(txtime, admin->base_time)) { 517 sched = admin; 518 sched_changed = true; 519 continue; 520 } 521 522 transmit_end_time = ktime_add(txtime, packet_transmit_time); 523 minimum_time = transmit_end_time; 524 525 /* Update the txtime of current entry to the next time it's 526 * interval starts. 527 */ 528 if (ktime_after(transmit_end_time, interval_end)) 529 entry->next_txtime = ktime_add(interval_start, sched->cycle_time); 530 } while (sched_changed || ktime_after(transmit_end_time, interval_end)); 531 532 entry->next_txtime = transmit_end_time; 533 534 done: 535 rcu_read_unlock(); 536 return txtime; 537 } 538 539 /* Devices with full offload are expected to honor this in hardware */ 540 static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch, 541 struct sk_buff *skb) 542 { 543 struct taprio_sched *q = qdisc_priv(sch); 544 struct net_device *dev = qdisc_dev(sch); 545 struct sched_gate_list *sched; 546 int prio = skb->priority; 547 bool exceeds = false; 548 u8 tc; 549 550 tc = netdev_get_prio_tc_map(dev, prio); 551 552 rcu_read_lock(); 553 sched = rcu_dereference(q->oper_sched); 554 if (sched && skb->len > sched->max_frm_len[tc]) 555 exceeds = true; 556 rcu_read_unlock(); 557 558 return exceeds; 559 } 560 561 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch, 562 struct Qdisc *child, struct sk_buff **to_free) 563 { 564 struct taprio_sched *q = qdisc_priv(sch); 565 566 /* sk_flags are only safe to use on full sockets. */ 567 if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) { 568 if (!is_valid_interval(skb, sch)) 569 return qdisc_drop(skb, sch, to_free); 570 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 571 skb->tstamp = get_packet_txtime(skb, sch); 572 if (!skb->tstamp) 573 return qdisc_drop(skb, sch, to_free); 574 } 575 576 qdisc_qstats_backlog_inc(sch, skb); 577 sch->q.qlen++; 578 579 return qdisc_enqueue(skb, child, to_free); 580 } 581 582 static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch, 583 struct Qdisc *child, 584 struct sk_buff **to_free) 585 { 586 unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb); 587 netdev_features_t features = netif_skb_features(skb); 588 struct sk_buff *segs, *nskb; 589 int ret; 590 591 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 592 if (IS_ERR_OR_NULL(segs)) 593 return qdisc_drop(skb, sch, to_free); 594 595 skb_list_walk_safe(segs, segs, nskb) { 596 skb_mark_not_on_list(segs); 597 qdisc_skb_cb(segs)->pkt_len = segs->len; 598 qdisc_skb_cb(segs)->pkt_segs = 1; 599 slen += segs->len; 600 601 /* FIXME: we should be segmenting to a smaller size 602 * rather than dropping these 603 */ 604 if (taprio_skb_exceeds_queue_max_sdu(sch, segs)) 605 ret = qdisc_drop(segs, sch, to_free); 606 else 607 ret = taprio_enqueue_one(segs, sch, child, to_free); 608 609 if (ret != NET_XMIT_SUCCESS) { 610 if (net_xmit_drop_count(ret)) 611 qdisc_qstats_drop(sch); 612 } else { 613 numsegs++; 614 } 615 } 616 617 if (numsegs > 1) 618 qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen); 619 consume_skb(skb); 620 621 return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP; 622 } 623 624 /* Will not be called in the full offload case, since the TX queues are 625 * attached to the Qdisc created using qdisc_create_dflt() 626 */ 627 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, 628 struct sk_buff **to_free) 629 { 630 struct taprio_sched *q = qdisc_priv(sch); 631 struct Qdisc *child; 632 int queue; 633 634 queue = skb_get_queue_mapping(skb); 635 636 child = q->qdiscs[queue]; 637 if (unlikely(!child)) 638 return qdisc_drop(skb, sch, to_free); 639 640 if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) { 641 /* Large packets might not be transmitted when the transmission 642 * duration exceeds any configured interval. Therefore, segment 643 * the skb into smaller chunks. Drivers with full offload are 644 * expected to handle this in hardware. 645 */ 646 if (skb_is_gso(skb)) 647 return taprio_enqueue_segmented(skb, sch, child, 648 to_free); 649 650 return qdisc_drop(skb, sch, to_free); 651 } 652 653 return taprio_enqueue_one(skb, sch, child, to_free); 654 } 655 656 static struct sk_buff *taprio_peek(struct Qdisc *sch) 657 { 658 WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented"); 659 return NULL; 660 } 661 662 static void taprio_set_budgets(struct taprio_sched *q, 663 struct sched_gate_list *sched, 664 struct sched_entry *entry) 665 { 666 struct net_device *dev = qdisc_dev(q->root); 667 int num_tc = netdev_get_num_tc(dev); 668 int tc, budget; 669 670 for (tc = 0; tc < num_tc; tc++) { 671 /* Traffic classes which never close have infinite budget */ 672 if (entry->gate_duration[tc] == sched->cycle_time) 673 budget = INT_MAX; 674 else 675 budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC, 676 atomic64_read(&q->picos_per_byte)); 677 678 atomic_set(&entry->budget[tc], budget); 679 } 680 } 681 682 /* When an skb is sent, it consumes from the budget of all traffic classes */ 683 static int taprio_update_budgets(struct sched_entry *entry, size_t len, 684 int tc_consumed, int num_tc) 685 { 686 int tc, budget, new_budget = 0; 687 688 for (tc = 0; tc < num_tc; tc++) { 689 budget = atomic_read(&entry->budget[tc]); 690 /* Don't consume from infinite budget */ 691 if (budget == INT_MAX) { 692 if (tc == tc_consumed) 693 new_budget = budget; 694 continue; 695 } 696 697 if (tc == tc_consumed) 698 new_budget = atomic_sub_return(len, &entry->budget[tc]); 699 else 700 atomic_sub(len, &entry->budget[tc]); 701 } 702 703 return new_budget; 704 } 705 706 static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq, 707 struct sched_entry *entry, 708 u32 gate_mask) 709 { 710 struct taprio_sched *q = qdisc_priv(sch); 711 struct net_device *dev = qdisc_dev(sch); 712 struct Qdisc *child = q->qdiscs[txq]; 713 int num_tc = netdev_get_num_tc(dev); 714 struct sk_buff *skb; 715 ktime_t guard; 716 int prio; 717 int len; 718 u8 tc; 719 720 if (unlikely(!child)) 721 return NULL; 722 723 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) 724 goto skip_peek_checks; 725 726 skb = child->ops->peek(child); 727 if (!skb) 728 return NULL; 729 730 prio = skb->priority; 731 tc = netdev_get_prio_tc_map(dev, prio); 732 733 if (!(gate_mask & BIT(tc))) 734 return NULL; 735 736 len = qdisc_pkt_len(skb); 737 guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len)); 738 739 /* In the case that there's no gate entry, there's no 740 * guard band ... 741 */ 742 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 743 !taprio_entry_allows_tx(guard, entry, tc)) 744 return NULL; 745 746 /* ... and no budget. */ 747 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 748 taprio_update_budgets(entry, len, tc, num_tc) < 0) 749 return NULL; 750 751 skip_peek_checks: 752 skb = child->ops->dequeue(child); 753 if (unlikely(!skb)) 754 return NULL; 755 756 qdisc_bstats_update(sch, skb); 757 qdisc_qstats_backlog_dec(sch, skb); 758 sch->q.qlen--; 759 760 return skb; 761 } 762 763 static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq) 764 { 765 int offset = dev->tc_to_txq[tc].offset; 766 int count = dev->tc_to_txq[tc].count; 767 768 (*txq)++; 769 if (*txq == offset + count) 770 *txq = offset; 771 } 772 773 /* Prioritize higher traffic classes, and select among TXQs belonging to the 774 * same TC using round robin 775 */ 776 static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch, 777 struct sched_entry *entry, 778 u32 gate_mask) 779 { 780 struct taprio_sched *q = qdisc_priv(sch); 781 struct net_device *dev = qdisc_dev(sch); 782 int num_tc = netdev_get_num_tc(dev); 783 struct sk_buff *skb; 784 int tc; 785 786 for (tc = num_tc - 1; tc >= 0; tc--) { 787 int first_txq = q->cur_txq[tc]; 788 789 if (!(gate_mask & BIT(tc))) 790 continue; 791 792 do { 793 skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc], 794 entry, gate_mask); 795 796 taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]); 797 798 if (q->cur_txq[tc] >= dev->num_tx_queues) 799 q->cur_txq[tc] = first_txq; 800 801 if (skb) 802 return skb; 803 } while (q->cur_txq[tc] != first_txq); 804 } 805 806 return NULL; 807 } 808 809 /* Broken way of prioritizing smaller TXQ indices and ignoring the traffic 810 * class other than to determine whether the gate is open or not 811 */ 812 static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch, 813 struct sched_entry *entry, 814 u32 gate_mask) 815 { 816 struct net_device *dev = qdisc_dev(sch); 817 struct sk_buff *skb; 818 int i; 819 820 for (i = 0; i < dev->num_tx_queues; i++) { 821 skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask); 822 if (skb) 823 return skb; 824 } 825 826 return NULL; 827 } 828 829 /* Will not be called in the full offload case, since the TX queues are 830 * attached to the Qdisc created using qdisc_create_dflt() 831 */ 832 static struct sk_buff *taprio_dequeue(struct Qdisc *sch) 833 { 834 struct taprio_sched *q = qdisc_priv(sch); 835 struct sk_buff *skb = NULL; 836 struct sched_entry *entry; 837 u32 gate_mask; 838 839 rcu_read_lock(); 840 entry = rcu_dereference(q->current_entry); 841 /* if there's no entry, it means that the schedule didn't 842 * start yet, so force all gates to be open, this is in 843 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 844 * "AdminGateStates" 845 */ 846 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 847 if (!gate_mask) 848 goto done; 849 850 if (static_branch_unlikely(&taprio_have_broken_mqprio) && 851 !static_branch_likely(&taprio_have_working_mqprio)) { 852 /* Single NIC kind which is broken */ 853 skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); 854 } else if (static_branch_likely(&taprio_have_working_mqprio) && 855 !static_branch_unlikely(&taprio_have_broken_mqprio)) { 856 /* Single NIC kind which prioritizes properly */ 857 skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); 858 } else { 859 /* Mixed NIC kinds present in system, need dynamic testing */ 860 if (q->broken_mqprio) 861 skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); 862 else 863 skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); 864 } 865 866 done: 867 rcu_read_unlock(); 868 869 return skb; 870 } 871 872 static bool should_restart_cycle(const struct sched_gate_list *oper, 873 const struct sched_entry *entry) 874 { 875 if (list_is_last(&entry->list, &oper->entries)) 876 return true; 877 878 if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0) 879 return true; 880 881 return false; 882 } 883 884 static bool should_change_schedules(const struct sched_gate_list *admin, 885 const struct sched_gate_list *oper, 886 ktime_t end_time) 887 { 888 ktime_t next_base_time, extension_time; 889 890 if (!admin) 891 return false; 892 893 next_base_time = sched_base_time(admin); 894 895 /* This is the simple case, the end_time would fall after 896 * the next schedule base_time. 897 */ 898 if (ktime_compare(next_base_time, end_time) <= 0) 899 return true; 900 901 /* This is the cycle_time_extension case, if the end_time 902 * plus the amount that can be extended would fall after the 903 * next schedule base_time, we can extend the current schedule 904 * for that amount. 905 */ 906 extension_time = ktime_add_ns(end_time, oper->cycle_time_extension); 907 908 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about 909 * how precisely the extension should be made. So after 910 * conformance testing, this logic may change. 911 */ 912 if (ktime_compare(next_base_time, extension_time) <= 0) 913 return true; 914 915 return false; 916 } 917 918 static enum hrtimer_restart advance_sched(struct hrtimer *timer) 919 { 920 struct taprio_sched *q = container_of(timer, struct taprio_sched, 921 advance_timer); 922 struct net_device *dev = qdisc_dev(q->root); 923 struct sched_gate_list *oper, *admin; 924 int num_tc = netdev_get_num_tc(dev); 925 struct sched_entry *entry, *next; 926 struct Qdisc *sch = q->root; 927 ktime_t end_time; 928 int tc; 929 930 spin_lock(&q->current_entry_lock); 931 entry = rcu_dereference_protected(q->current_entry, 932 lockdep_is_held(&q->current_entry_lock)); 933 oper = rcu_dereference_protected(q->oper_sched, 934 lockdep_is_held(&q->current_entry_lock)); 935 admin = rcu_dereference_protected(q->admin_sched, 936 lockdep_is_held(&q->current_entry_lock)); 937 938 if (!oper) 939 switch_schedules(q, &admin, &oper); 940 941 /* This can happen in two cases: 1. this is the very first run 942 * of this function (i.e. we weren't running any schedule 943 * previously); 2. The previous schedule just ended. The first 944 * entry of all schedules are pre-calculated during the 945 * schedule initialization. 946 */ 947 if (unlikely(!entry || entry->end_time == oper->base_time)) { 948 next = list_first_entry(&oper->entries, struct sched_entry, 949 list); 950 end_time = next->end_time; 951 goto first_run; 952 } 953 954 if (should_restart_cycle(oper, entry)) { 955 next = list_first_entry(&oper->entries, struct sched_entry, 956 list); 957 oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time, 958 oper->cycle_time); 959 } else { 960 next = list_next_entry(entry, list); 961 } 962 963 end_time = ktime_add_ns(entry->end_time, next->interval); 964 end_time = min_t(ktime_t, end_time, oper->cycle_end_time); 965 966 for (tc = 0; tc < num_tc; tc++) { 967 if (next->gate_duration[tc] == oper->cycle_time) 968 next->gate_close_time[tc] = KTIME_MAX; 969 else 970 next->gate_close_time[tc] = ktime_add_ns(entry->end_time, 971 next->gate_duration[tc]); 972 } 973 974 if (should_change_schedules(admin, oper, end_time)) { 975 /* Set things so the next time this runs, the new 976 * schedule runs. 977 */ 978 end_time = sched_base_time(admin); 979 switch_schedules(q, &admin, &oper); 980 } 981 982 next->end_time = end_time; 983 taprio_set_budgets(q, oper, next); 984 985 first_run: 986 rcu_assign_pointer(q->current_entry, next); 987 spin_unlock(&q->current_entry_lock); 988 989 hrtimer_set_expires(&q->advance_timer, end_time); 990 991 rcu_read_lock(); 992 __netif_schedule(sch); 993 rcu_read_unlock(); 994 995 return HRTIMER_RESTART; 996 } 997 998 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { 999 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, 1000 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, 1001 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, 1002 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, 1003 }; 1004 1005 static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { 1006 [TCA_TAPRIO_TC_ENTRY_INDEX] = NLA_POLICY_MAX(NLA_U32, 1007 TC_QOPT_MAX_QUEUE - 1), 1008 [TCA_TAPRIO_TC_ENTRY_MAX_SDU] = { .type = NLA_U32 }, 1009 [TCA_TAPRIO_TC_ENTRY_FP] = NLA_POLICY_RANGE(NLA_U32, 1010 TC_FP_EXPRESS, 1011 TC_FP_PREEMPTIBLE), 1012 }; 1013 1014 static const struct netlink_range_validation_signed taprio_cycle_time_range = { 1015 .min = 0, 1016 .max = INT_MAX, 1017 }; 1018 1019 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { 1020 [TCA_TAPRIO_ATTR_PRIOMAP] = { 1021 .len = sizeof(struct tc_mqprio_qopt) 1022 }, 1023 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, 1024 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, 1025 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, 1026 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, 1027 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = 1028 NLA_POLICY_FULL_RANGE_SIGNED(NLA_S64, &taprio_cycle_time_range), 1029 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, 1030 [TCA_TAPRIO_ATTR_FLAGS] = 1031 NLA_POLICY_MASK(NLA_U32, TAPRIO_SUPPORTED_FLAGS), 1032 [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 }, 1033 [TCA_TAPRIO_ATTR_TC_ENTRY] = { .type = NLA_NESTED }, 1034 }; 1035 1036 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb, 1037 struct sched_entry *entry, 1038 struct netlink_ext_ack *extack) 1039 { 1040 int min_duration = length_to_duration(q, ETH_ZLEN); 1041 u32 interval = 0; 1042 1043 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) 1044 entry->command = nla_get_u8( 1045 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); 1046 1047 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) 1048 entry->gate_mask = nla_get_u32( 1049 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); 1050 1051 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) 1052 interval = nla_get_u32( 1053 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); 1054 1055 /* The interval should allow at least the minimum ethernet 1056 * frame to go out. 1057 */ 1058 if (interval < min_duration) { 1059 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); 1060 return -EINVAL; 1061 } 1062 1063 entry->interval = interval; 1064 1065 return 0; 1066 } 1067 1068 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n, 1069 struct sched_entry *entry, int index, 1070 struct netlink_ext_ack *extack) 1071 { 1072 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; 1073 int err; 1074 1075 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, 1076 entry_policy, NULL); 1077 if (err < 0) { 1078 NL_SET_ERR_MSG(extack, "Could not parse nested entry"); 1079 return -EINVAL; 1080 } 1081 1082 entry->index = index; 1083 1084 return fill_sched_entry(q, tb, entry, extack); 1085 } 1086 1087 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list, 1088 struct sched_gate_list *sched, 1089 struct netlink_ext_ack *extack) 1090 { 1091 struct nlattr *n; 1092 int err, rem; 1093 int i = 0; 1094 1095 if (!list) 1096 return -EINVAL; 1097 1098 nla_for_each_nested(n, list, rem) { 1099 struct sched_entry *entry; 1100 1101 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { 1102 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); 1103 continue; 1104 } 1105 1106 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 1107 if (!entry) { 1108 NL_SET_ERR_MSG(extack, "Not enough memory for entry"); 1109 return -ENOMEM; 1110 } 1111 1112 err = parse_sched_entry(q, n, entry, i, extack); 1113 if (err < 0) { 1114 kfree(entry); 1115 return err; 1116 } 1117 1118 list_add_tail(&entry->list, &sched->entries); 1119 i++; 1120 } 1121 1122 sched->num_entries = i; 1123 1124 return i; 1125 } 1126 1127 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb, 1128 struct sched_gate_list *new, 1129 struct netlink_ext_ack *extack) 1130 { 1131 int err = 0; 1132 1133 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { 1134 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); 1135 return -ENOTSUPP; 1136 } 1137 1138 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) 1139 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); 1140 1141 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) 1142 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); 1143 1144 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) 1145 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); 1146 1147 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) 1148 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], 1149 new, extack); 1150 if (err < 0) 1151 return err; 1152 1153 if (!new->cycle_time) { 1154 struct sched_entry *entry; 1155 ktime_t cycle = 0; 1156 1157 list_for_each_entry(entry, &new->entries, list) 1158 cycle = ktime_add_ns(cycle, entry->interval); 1159 1160 if (cycle < 0 || cycle > INT_MAX) { 1161 NL_SET_ERR_MSG(extack, "'cycle_time' is too big"); 1162 return -EINVAL; 1163 } 1164 1165 new->cycle_time = cycle; 1166 } 1167 1168 if (new->cycle_time < new->num_entries * length_to_duration(q, ETH_ZLEN)) { 1169 NL_SET_ERR_MSG(extack, "'cycle_time' is too small"); 1170 return -EINVAL; 1171 } 1172 1173 taprio_calculate_gate_durations(q, new); 1174 1175 return 0; 1176 } 1177 1178 static int taprio_parse_mqprio_opt(struct net_device *dev, 1179 struct tc_mqprio_qopt *qopt, 1180 struct netlink_ext_ack *extack, 1181 u32 taprio_flags) 1182 { 1183 bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags); 1184 1185 if (!qopt) { 1186 if (!dev->num_tc) { 1187 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); 1188 return -EINVAL; 1189 } 1190 return 0; 1191 } 1192 1193 /* taprio imposes that traffic classes map 1:n to tx queues */ 1194 if (qopt->num_tc > dev->num_tx_queues) { 1195 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); 1196 return -EINVAL; 1197 } 1198 1199 /* For some reason, in txtime-assist mode, we allow TXQ ranges for 1200 * different TCs to overlap, and just validate the TXQ ranges. 1201 */ 1202 return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs, 1203 extack); 1204 } 1205 1206 static int taprio_get_start_time(struct Qdisc *sch, 1207 struct sched_gate_list *sched, 1208 ktime_t *start) 1209 { 1210 struct taprio_sched *q = qdisc_priv(sch); 1211 ktime_t now, base, cycle; 1212 s64 n; 1213 1214 base = sched_base_time(sched); 1215 now = taprio_get_time(q); 1216 1217 if (ktime_after(base, now)) { 1218 *start = base; 1219 return 0; 1220 } 1221 1222 cycle = sched->cycle_time; 1223 1224 /* The qdisc is expected to have at least one sched_entry. Moreover, 1225 * any entry must have 'interval' > 0. Thus if the cycle time is zero, 1226 * something went really wrong. In that case, we should warn about this 1227 * inconsistent state and return error. 1228 */ 1229 if (WARN_ON(!cycle)) 1230 return -EFAULT; 1231 1232 /* Schedule the start time for the beginning of the next 1233 * cycle. 1234 */ 1235 n = div64_s64(ktime_sub_ns(now, base), cycle); 1236 *start = ktime_add_ns(base, (n + 1) * cycle); 1237 return 0; 1238 } 1239 1240 static void setup_first_end_time(struct taprio_sched *q, 1241 struct sched_gate_list *sched, ktime_t base) 1242 { 1243 struct net_device *dev = qdisc_dev(q->root); 1244 int num_tc = netdev_get_num_tc(dev); 1245 struct sched_entry *first; 1246 ktime_t cycle; 1247 int tc; 1248 1249 first = list_first_entry(&sched->entries, 1250 struct sched_entry, list); 1251 1252 cycle = sched->cycle_time; 1253 1254 /* FIXME: find a better place to do this */ 1255 sched->cycle_end_time = ktime_add_ns(base, cycle); 1256 1257 first->end_time = ktime_add_ns(base, first->interval); 1258 taprio_set_budgets(q, sched, first); 1259 1260 for (tc = 0; tc < num_tc; tc++) { 1261 if (first->gate_duration[tc] == sched->cycle_time) 1262 first->gate_close_time[tc] = KTIME_MAX; 1263 else 1264 first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]); 1265 } 1266 1267 rcu_assign_pointer(q->current_entry, NULL); 1268 } 1269 1270 static void taprio_start_sched(struct Qdisc *sch, 1271 ktime_t start, struct sched_gate_list *new) 1272 { 1273 struct taprio_sched *q = qdisc_priv(sch); 1274 ktime_t expires; 1275 1276 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1277 return; 1278 1279 expires = hrtimer_get_expires(&q->advance_timer); 1280 if (expires == 0) 1281 expires = KTIME_MAX; 1282 1283 /* If the new schedule starts before the next expiration, we 1284 * reprogram it to the earliest one, so we change the admin 1285 * schedule to the operational one at the right time. 1286 */ 1287 start = min_t(ktime_t, start, expires); 1288 1289 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); 1290 } 1291 1292 static void taprio_set_picos_per_byte(struct net_device *dev, 1293 struct taprio_sched *q, 1294 struct netlink_ext_ack *extack) 1295 { 1296 struct ethtool_link_ksettings ecmd; 1297 int speed = SPEED_10; 1298 int picos_per_byte; 1299 int err; 1300 1301 err = __ethtool_get_link_ksettings(dev, &ecmd); 1302 if (err < 0) 1303 goto skip; 1304 1305 if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN) 1306 speed = ecmd.base.speed; 1307 1308 skip: 1309 picos_per_byte = (USEC_PER_SEC * 8) / speed; 1310 if (picos_per_byte < TAPRIO_PICOS_PER_BYTE_MIN) { 1311 if (!extack) 1312 pr_warn("Link speed %d is too high. Schedule may be inaccurate.\n", 1313 speed); 1314 NL_SET_ERR_MSG_FMT_MOD(extack, 1315 "Link speed %d is too high. Schedule may be inaccurate.", 1316 speed); 1317 picos_per_byte = TAPRIO_PICOS_PER_BYTE_MIN; 1318 } 1319 1320 atomic64_set(&q->picos_per_byte, picos_per_byte); 1321 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", 1322 dev->name, (long long)atomic64_read(&q->picos_per_byte), 1323 ecmd.base.speed); 1324 } 1325 1326 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, 1327 void *ptr) 1328 { 1329 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1330 struct sched_gate_list *oper, *admin; 1331 struct qdisc_size_table *stab; 1332 struct taprio_sched *q; 1333 1334 ASSERT_RTNL(); 1335 1336 if (event != NETDEV_UP && event != NETDEV_CHANGE) 1337 return NOTIFY_DONE; 1338 1339 list_for_each_entry(q, &taprio_list, taprio_list) { 1340 if (dev != qdisc_dev(q->root)) 1341 continue; 1342 1343 taprio_set_picos_per_byte(dev, q, NULL); 1344 1345 stab = rtnl_dereference(q->root->stab); 1346 1347 rcu_read_lock(); 1348 oper = rcu_dereference(q->oper_sched); 1349 if (oper) 1350 taprio_update_queue_max_sdu(q, oper, stab); 1351 1352 admin = rcu_dereference(q->admin_sched); 1353 if (admin) 1354 taprio_update_queue_max_sdu(q, admin, stab); 1355 rcu_read_unlock(); 1356 1357 break; 1358 } 1359 1360 return NOTIFY_DONE; 1361 } 1362 1363 static void setup_txtime(struct taprio_sched *q, 1364 struct sched_gate_list *sched, ktime_t base) 1365 { 1366 struct sched_entry *entry; 1367 u64 interval = 0; 1368 1369 list_for_each_entry(entry, &sched->entries, list) { 1370 entry->next_txtime = ktime_add_ns(base, interval); 1371 interval += entry->interval; 1372 } 1373 } 1374 1375 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries) 1376 { 1377 struct __tc_taprio_qopt_offload *__offload; 1378 1379 __offload = kzalloc(struct_size(__offload, offload.entries, num_entries), 1380 GFP_KERNEL); 1381 if (!__offload) 1382 return NULL; 1383 1384 refcount_set(&__offload->users, 1); 1385 1386 return &__offload->offload; 1387 } 1388 1389 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload 1390 *offload) 1391 { 1392 struct __tc_taprio_qopt_offload *__offload; 1393 1394 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1395 offload); 1396 1397 refcount_inc(&__offload->users); 1398 1399 return offload; 1400 } 1401 EXPORT_SYMBOL_GPL(taprio_offload_get); 1402 1403 void taprio_offload_free(struct tc_taprio_qopt_offload *offload) 1404 { 1405 struct __tc_taprio_qopt_offload *__offload; 1406 1407 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1408 offload); 1409 1410 if (!refcount_dec_and_test(&__offload->users)) 1411 return; 1412 1413 kfree(__offload); 1414 } 1415 EXPORT_SYMBOL_GPL(taprio_offload_free); 1416 1417 /* The function will only serve to keep the pointers to the "oper" and "admin" 1418 * schedules valid in relation to their base times, so when calling dump() the 1419 * users looks at the right schedules. 1420 * When using full offload, the admin configuration is promoted to oper at the 1421 * base_time in the PHC time domain. But because the system time is not 1422 * necessarily in sync with that, we can't just trigger a hrtimer to call 1423 * switch_schedules at the right hardware time. 1424 * At the moment we call this by hand right away from taprio, but in the future 1425 * it will be useful to create a mechanism for drivers to notify taprio of the 1426 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump(). 1427 * This is left as TODO. 1428 */ 1429 static void taprio_offload_config_changed(struct taprio_sched *q) 1430 { 1431 struct sched_gate_list *oper, *admin; 1432 1433 oper = rtnl_dereference(q->oper_sched); 1434 admin = rtnl_dereference(q->admin_sched); 1435 1436 switch_schedules(q, &admin, &oper); 1437 } 1438 1439 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask) 1440 { 1441 u32 i, queue_mask = 0; 1442 1443 for (i = 0; i < dev->num_tc; i++) { 1444 u32 offset, count; 1445 1446 if (!(tc_mask & BIT(i))) 1447 continue; 1448 1449 offset = dev->tc_to_txq[i].offset; 1450 count = dev->tc_to_txq[i].count; 1451 1452 queue_mask |= GENMASK(offset + count - 1, offset); 1453 } 1454 1455 return queue_mask; 1456 } 1457 1458 static void taprio_sched_to_offload(struct net_device *dev, 1459 struct sched_gate_list *sched, 1460 struct tc_taprio_qopt_offload *offload, 1461 const struct tc_taprio_caps *caps) 1462 { 1463 struct sched_entry *entry; 1464 int i = 0; 1465 1466 offload->base_time = sched->base_time; 1467 offload->cycle_time = sched->cycle_time; 1468 offload->cycle_time_extension = sched->cycle_time_extension; 1469 1470 list_for_each_entry(entry, &sched->entries, list) { 1471 struct tc_taprio_sched_entry *e = &offload->entries[i]; 1472 1473 e->command = entry->command; 1474 e->interval = entry->interval; 1475 if (caps->gate_mask_per_txq) 1476 e->gate_mask = tc_map_to_queue_mask(dev, 1477 entry->gate_mask); 1478 else 1479 e->gate_mask = entry->gate_mask; 1480 1481 i++; 1482 } 1483 1484 offload->num_entries = i; 1485 } 1486 1487 static void taprio_detect_broken_mqprio(struct taprio_sched *q) 1488 { 1489 struct net_device *dev = qdisc_dev(q->root); 1490 struct tc_taprio_caps caps; 1491 1492 qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, 1493 &caps, sizeof(caps)); 1494 1495 q->broken_mqprio = caps.broken_mqprio; 1496 if (q->broken_mqprio) 1497 static_branch_inc(&taprio_have_broken_mqprio); 1498 else 1499 static_branch_inc(&taprio_have_working_mqprio); 1500 1501 q->detected_mqprio = true; 1502 } 1503 1504 static void taprio_cleanup_broken_mqprio(struct taprio_sched *q) 1505 { 1506 if (!q->detected_mqprio) 1507 return; 1508 1509 if (q->broken_mqprio) 1510 static_branch_dec(&taprio_have_broken_mqprio); 1511 else 1512 static_branch_dec(&taprio_have_working_mqprio); 1513 } 1514 1515 static int taprio_enable_offload(struct net_device *dev, 1516 struct taprio_sched *q, 1517 struct sched_gate_list *sched, 1518 struct netlink_ext_ack *extack) 1519 { 1520 const struct net_device_ops *ops = dev->netdev_ops; 1521 struct tc_taprio_qopt_offload *offload; 1522 struct tc_taprio_caps caps; 1523 int tc, err = 0; 1524 1525 if (!ops->ndo_setup_tc) { 1526 NL_SET_ERR_MSG(extack, 1527 "Device does not support taprio offload"); 1528 return -EOPNOTSUPP; 1529 } 1530 1531 qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, 1532 &caps, sizeof(caps)); 1533 1534 if (!caps.supports_queue_max_sdu) { 1535 for (tc = 0; tc < TC_MAX_QUEUE; tc++) { 1536 if (q->max_sdu[tc]) { 1537 NL_SET_ERR_MSG_MOD(extack, 1538 "Device does not handle queueMaxSDU"); 1539 return -EOPNOTSUPP; 1540 } 1541 } 1542 } 1543 1544 offload = taprio_offload_alloc(sched->num_entries); 1545 if (!offload) { 1546 NL_SET_ERR_MSG(extack, 1547 "Not enough memory for enabling offload mode"); 1548 return -ENOMEM; 1549 } 1550 offload->cmd = TAPRIO_CMD_REPLACE; 1551 offload->extack = extack; 1552 mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt); 1553 offload->mqprio.extack = extack; 1554 taprio_sched_to_offload(dev, sched, offload, &caps); 1555 mqprio_fp_to_offload(q->fp, &offload->mqprio); 1556 1557 for (tc = 0; tc < TC_MAX_QUEUE; tc++) 1558 offload->max_sdu[tc] = q->max_sdu[tc]; 1559 1560 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1561 if (err < 0) { 1562 NL_SET_ERR_MSG_WEAK(extack, 1563 "Device failed to setup taprio offload"); 1564 goto done; 1565 } 1566 1567 q->offloaded = true; 1568 1569 done: 1570 /* The offload structure may linger around via a reference taken by the 1571 * device driver, so clear up the netlink extack pointer so that the 1572 * driver isn't tempted to dereference data which stopped being valid 1573 */ 1574 offload->extack = NULL; 1575 offload->mqprio.extack = NULL; 1576 taprio_offload_free(offload); 1577 1578 return err; 1579 } 1580 1581 static int taprio_disable_offload(struct net_device *dev, 1582 struct taprio_sched *q, 1583 struct netlink_ext_ack *extack) 1584 { 1585 const struct net_device_ops *ops = dev->netdev_ops; 1586 struct tc_taprio_qopt_offload *offload; 1587 int err; 1588 1589 if (!q->offloaded) 1590 return 0; 1591 1592 offload = taprio_offload_alloc(0); 1593 if (!offload) { 1594 NL_SET_ERR_MSG(extack, 1595 "Not enough memory to disable offload mode"); 1596 return -ENOMEM; 1597 } 1598 offload->cmd = TAPRIO_CMD_DESTROY; 1599 1600 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1601 if (err < 0) { 1602 NL_SET_ERR_MSG(extack, 1603 "Device failed to disable offload"); 1604 goto out; 1605 } 1606 1607 q->offloaded = false; 1608 1609 out: 1610 taprio_offload_free(offload); 1611 1612 return err; 1613 } 1614 1615 /* If full offload is enabled, the only possible clockid is the net device's 1616 * PHC. For that reason, specifying a clockid through netlink is incorrect. 1617 * For txtime-assist, it is implicitly assumed that the device's PHC is kept 1618 * in sync with the specified clockid via a user space daemon such as phc2sys. 1619 * For both software taprio and txtime-assist, the clockid is used for the 1620 * hrtimer that advances the schedule and hence mandatory. 1621 */ 1622 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb, 1623 struct netlink_ext_ack *extack) 1624 { 1625 struct taprio_sched *q = qdisc_priv(sch); 1626 struct net_device *dev = qdisc_dev(sch); 1627 int err = -EINVAL; 1628 1629 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1630 const struct ethtool_ops *ops = dev->ethtool_ops; 1631 struct kernel_ethtool_ts_info info = { 1632 .cmd = ETHTOOL_GET_TS_INFO, 1633 .phc_index = -1, 1634 }; 1635 1636 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1637 NL_SET_ERR_MSG(extack, 1638 "The 'clockid' cannot be specified for full offload"); 1639 goto out; 1640 } 1641 1642 if (ops && ops->get_ts_info) 1643 err = ops->get_ts_info(dev, &info); 1644 1645 if (err || info.phc_index < 0) { 1646 NL_SET_ERR_MSG(extack, 1647 "Device does not have a PTP clock"); 1648 err = -ENOTSUPP; 1649 goto out; 1650 } 1651 } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1652 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); 1653 enum tk_offsets tk_offset; 1654 1655 /* We only support static clockids and we don't allow 1656 * for it to be modified after the first init. 1657 */ 1658 if (clockid < 0 || 1659 (q->clockid != -1 && q->clockid != clockid)) { 1660 NL_SET_ERR_MSG(extack, 1661 "Changing the 'clockid' of a running schedule is not supported"); 1662 err = -ENOTSUPP; 1663 goto out; 1664 } 1665 1666 switch (clockid) { 1667 case CLOCK_REALTIME: 1668 tk_offset = TK_OFFS_REAL; 1669 break; 1670 case CLOCK_MONOTONIC: 1671 tk_offset = TK_OFFS_MAX; 1672 break; 1673 case CLOCK_BOOTTIME: 1674 tk_offset = TK_OFFS_BOOT; 1675 break; 1676 case CLOCK_TAI: 1677 tk_offset = TK_OFFS_TAI; 1678 break; 1679 default: 1680 NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); 1681 err = -EINVAL; 1682 goto out; 1683 } 1684 /* This pairs with READ_ONCE() in taprio_mono_to_any */ 1685 WRITE_ONCE(q->tk_offset, tk_offset); 1686 1687 q->clockid = clockid; 1688 } else { 1689 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); 1690 goto out; 1691 } 1692 1693 /* Everything went ok, return success. */ 1694 err = 0; 1695 1696 out: 1697 return err; 1698 } 1699 1700 static int taprio_parse_tc_entry(struct Qdisc *sch, 1701 struct nlattr *opt, 1702 u32 max_sdu[TC_QOPT_MAX_QUEUE], 1703 u32 fp[TC_QOPT_MAX_QUEUE], 1704 unsigned long *seen_tcs, 1705 struct netlink_ext_ack *extack) 1706 { 1707 struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { }; 1708 struct net_device *dev = qdisc_dev(sch); 1709 int err, tc; 1710 u32 val; 1711 1712 err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt, 1713 taprio_tc_policy, extack); 1714 if (err < 0) 1715 return err; 1716 1717 if (NL_REQ_ATTR_CHECK(extack, opt, tb, TCA_TAPRIO_TC_ENTRY_INDEX)) { 1718 NL_SET_ERR_MSG_MOD(extack, "TC entry index missing"); 1719 return -EINVAL; 1720 } 1721 1722 tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]); 1723 if (*seen_tcs & BIT(tc)) { 1724 NL_SET_ERR_MSG_ATTR(extack, tb[TCA_TAPRIO_TC_ENTRY_INDEX], 1725 "Duplicate tc entry"); 1726 return -EINVAL; 1727 } 1728 1729 *seen_tcs |= BIT(tc); 1730 1731 if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) { 1732 val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]); 1733 if (val > dev->max_mtu) { 1734 NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU"); 1735 return -ERANGE; 1736 } 1737 1738 max_sdu[tc] = val; 1739 } 1740 1741 if (tb[TCA_TAPRIO_TC_ENTRY_FP]) 1742 fp[tc] = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]); 1743 1744 return 0; 1745 } 1746 1747 static int taprio_parse_tc_entries(struct Qdisc *sch, 1748 struct nlattr *opt, 1749 struct netlink_ext_ack *extack) 1750 { 1751 struct taprio_sched *q = qdisc_priv(sch); 1752 struct net_device *dev = qdisc_dev(sch); 1753 u32 max_sdu[TC_QOPT_MAX_QUEUE]; 1754 bool have_preemption = false; 1755 unsigned long seen_tcs = 0; 1756 u32 fp[TC_QOPT_MAX_QUEUE]; 1757 struct nlattr *n; 1758 int tc, rem; 1759 int err = 0; 1760 1761 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { 1762 max_sdu[tc] = q->max_sdu[tc]; 1763 fp[tc] = q->fp[tc]; 1764 } 1765 1766 nla_for_each_nested_type(n, TCA_TAPRIO_ATTR_TC_ENTRY, opt, rem) { 1767 err = taprio_parse_tc_entry(sch, n, max_sdu, fp, &seen_tcs, 1768 extack); 1769 if (err) 1770 return err; 1771 } 1772 1773 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { 1774 q->max_sdu[tc] = max_sdu[tc]; 1775 q->fp[tc] = fp[tc]; 1776 if (fp[tc] != TC_FP_EXPRESS) 1777 have_preemption = true; 1778 } 1779 1780 if (have_preemption) { 1781 if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1782 NL_SET_ERR_MSG(extack, 1783 "Preemption only supported with full offload"); 1784 return -EOPNOTSUPP; 1785 } 1786 1787 if (!ethtool_dev_mm_supported(dev)) { 1788 NL_SET_ERR_MSG(extack, 1789 "Device does not support preemption"); 1790 return -EOPNOTSUPP; 1791 } 1792 } 1793 1794 return err; 1795 } 1796 1797 static int taprio_mqprio_cmp(const struct net_device *dev, 1798 const struct tc_mqprio_qopt *mqprio) 1799 { 1800 int i; 1801 1802 if (!mqprio || mqprio->num_tc != dev->num_tc) 1803 return -1; 1804 1805 for (i = 0; i < mqprio->num_tc; i++) 1806 if (dev->tc_to_txq[i].count != mqprio->count[i] || 1807 dev->tc_to_txq[i].offset != mqprio->offset[i]) 1808 return -1; 1809 1810 for (i = 0; i <= TC_BITMASK; i++) 1811 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i]) 1812 return -1; 1813 1814 return 0; 1815 } 1816 1817 static int taprio_change(struct Qdisc *sch, struct nlattr *opt, 1818 struct netlink_ext_ack *extack) 1819 { 1820 struct qdisc_size_table *stab = rtnl_dereference(sch->stab); 1821 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; 1822 struct sched_gate_list *oper, *admin, *new_admin; 1823 struct taprio_sched *q = qdisc_priv(sch); 1824 struct net_device *dev = qdisc_dev(sch); 1825 struct tc_mqprio_qopt *mqprio = NULL; 1826 unsigned long flags; 1827 u32 taprio_flags; 1828 ktime_t start; 1829 int i, err; 1830 1831 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, 1832 taprio_policy, extack); 1833 if (err < 0) 1834 return err; 1835 1836 if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) 1837 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); 1838 1839 /* The semantics of the 'flags' argument in relation to 'change()' 1840 * requests, are interpreted following two rules (which are applied in 1841 * this order): (1) an omitted 'flags' argument is interpreted as 1842 * zero; (2) the 'flags' of a "running" taprio instance cannot be 1843 * changed. 1844 */ 1845 taprio_flags = nla_get_u32_default(tb[TCA_TAPRIO_ATTR_FLAGS], 0); 1846 1847 /* txtime-assist and full offload are mutually exclusive */ 1848 if ((taprio_flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) && 1849 (taprio_flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) { 1850 NL_SET_ERR_MSG_ATTR(extack, tb[TCA_TAPRIO_ATTR_FLAGS], 1851 "TXTIME_ASSIST and FULL_OFFLOAD are mutually exclusive"); 1852 return -EINVAL; 1853 } 1854 1855 if (q->flags != TAPRIO_FLAGS_INVALID && q->flags != taprio_flags) { 1856 NL_SET_ERR_MSG_MOD(extack, 1857 "Changing 'flags' of a running schedule is not supported"); 1858 return -EOPNOTSUPP; 1859 } 1860 q->flags = taprio_flags; 1861 1862 /* Needed for length_to_duration() during netlink attribute parsing */ 1863 taprio_set_picos_per_byte(dev, q, extack); 1864 1865 err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags); 1866 if (err < 0) 1867 return err; 1868 1869 err = taprio_parse_tc_entries(sch, opt, extack); 1870 if (err) 1871 return err; 1872 1873 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); 1874 if (!new_admin) { 1875 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); 1876 return -ENOMEM; 1877 } 1878 INIT_LIST_HEAD(&new_admin->entries); 1879 1880 oper = rtnl_dereference(q->oper_sched); 1881 admin = rtnl_dereference(q->admin_sched); 1882 1883 /* no changes - no new mqprio settings */ 1884 if (!taprio_mqprio_cmp(dev, mqprio)) 1885 mqprio = NULL; 1886 1887 if (mqprio && (oper || admin)) { 1888 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); 1889 err = -ENOTSUPP; 1890 goto free_sched; 1891 } 1892 1893 if (mqprio) { 1894 err = netdev_set_num_tc(dev, mqprio->num_tc); 1895 if (err) 1896 goto free_sched; 1897 for (i = 0; i < mqprio->num_tc; i++) { 1898 netdev_set_tc_queue(dev, i, 1899 mqprio->count[i], 1900 mqprio->offset[i]); 1901 q->cur_txq[i] = mqprio->offset[i]; 1902 } 1903 1904 /* Always use supplied priority mappings */ 1905 for (i = 0; i <= TC_BITMASK; i++) 1906 netdev_set_prio_tc_map(dev, i, 1907 mqprio->prio_tc_map[i]); 1908 } 1909 1910 err = parse_taprio_schedule(q, tb, new_admin, extack); 1911 if (err < 0) 1912 goto free_sched; 1913 1914 if (new_admin->num_entries == 0) { 1915 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); 1916 err = -EINVAL; 1917 goto free_sched; 1918 } 1919 1920 err = taprio_parse_clockid(sch, tb, extack); 1921 if (err < 0) 1922 goto free_sched; 1923 1924 taprio_update_queue_max_sdu(q, new_admin, stab); 1925 1926 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1927 err = taprio_enable_offload(dev, q, new_admin, extack); 1928 else 1929 err = taprio_disable_offload(dev, q, extack); 1930 if (err) 1931 goto free_sched; 1932 1933 /* Protects against enqueue()/dequeue() */ 1934 spin_lock_bh(qdisc_lock(sch)); 1935 1936 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { 1937 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1938 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled"); 1939 err = -EINVAL; 1940 goto unlock; 1941 } 1942 1943 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); 1944 } 1945 1946 if (!TXTIME_ASSIST_IS_ENABLED(q->flags) && 1947 !FULL_OFFLOAD_IS_ENABLED(q->flags) && 1948 !hrtimer_active(&q->advance_timer)) { 1949 hrtimer_setup(&q->advance_timer, advance_sched, q->clockid, HRTIMER_MODE_ABS); 1950 } 1951 1952 err = taprio_get_start_time(sch, new_admin, &start); 1953 if (err < 0) { 1954 NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); 1955 goto unlock; 1956 } 1957 1958 setup_txtime(q, new_admin, start); 1959 1960 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1961 if (!oper) { 1962 rcu_assign_pointer(q->oper_sched, new_admin); 1963 err = 0; 1964 new_admin = NULL; 1965 goto unlock; 1966 } 1967 1968 /* Not going to race against advance_sched(), but still */ 1969 admin = rcu_replace_pointer(q->admin_sched, new_admin, 1970 lockdep_rtnl_is_held()); 1971 if (admin) 1972 call_rcu(&admin->rcu, taprio_free_sched_cb); 1973 } else { 1974 setup_first_end_time(q, new_admin, start); 1975 1976 /* Protects against advance_sched() */ 1977 spin_lock_irqsave(&q->current_entry_lock, flags); 1978 1979 taprio_start_sched(sch, start, new_admin); 1980 1981 admin = rcu_replace_pointer(q->admin_sched, new_admin, 1982 lockdep_rtnl_is_held()); 1983 if (admin) 1984 call_rcu(&admin->rcu, taprio_free_sched_cb); 1985 1986 spin_unlock_irqrestore(&q->current_entry_lock, flags); 1987 1988 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1989 taprio_offload_config_changed(q); 1990 } 1991 1992 new_admin = NULL; 1993 err = 0; 1994 1995 if (!stab) 1996 NL_SET_ERR_MSG_MOD(extack, 1997 "Size table not specified, frame length estimations may be inaccurate"); 1998 1999 unlock: 2000 spin_unlock_bh(qdisc_lock(sch)); 2001 2002 free_sched: 2003 if (new_admin) 2004 call_rcu(&new_admin->rcu, taprio_free_sched_cb); 2005 2006 return err; 2007 } 2008 2009 static void taprio_reset(struct Qdisc *sch) 2010 { 2011 struct taprio_sched *q = qdisc_priv(sch); 2012 struct net_device *dev = qdisc_dev(sch); 2013 int i; 2014 2015 hrtimer_cancel(&q->advance_timer); 2016 2017 if (q->qdiscs) { 2018 for (i = 0; i < dev->num_tx_queues; i++) 2019 if (q->qdiscs[i]) 2020 qdisc_reset(q->qdiscs[i]); 2021 } 2022 } 2023 2024 static void taprio_destroy(struct Qdisc *sch) 2025 { 2026 struct taprio_sched *q = qdisc_priv(sch); 2027 struct net_device *dev = qdisc_dev(sch); 2028 struct sched_gate_list *oper, *admin; 2029 unsigned int i; 2030 2031 list_del(&q->taprio_list); 2032 2033 /* Note that taprio_reset() might not be called if an error 2034 * happens in qdisc_create(), after taprio_init() has been called. 2035 */ 2036 hrtimer_cancel(&q->advance_timer); 2037 qdisc_synchronize(sch); 2038 2039 taprio_disable_offload(dev, q, NULL); 2040 2041 if (q->qdiscs) { 2042 for (i = 0; i < dev->num_tx_queues; i++) 2043 qdisc_put(q->qdiscs[i]); 2044 2045 kfree(q->qdiscs); 2046 } 2047 q->qdiscs = NULL; 2048 2049 netdev_reset_tc(dev); 2050 2051 oper = rtnl_dereference(q->oper_sched); 2052 admin = rtnl_dereference(q->admin_sched); 2053 2054 if (oper) 2055 call_rcu(&oper->rcu, taprio_free_sched_cb); 2056 2057 if (admin) 2058 call_rcu(&admin->rcu, taprio_free_sched_cb); 2059 2060 taprio_cleanup_broken_mqprio(q); 2061 } 2062 2063 static int taprio_init(struct Qdisc *sch, struct nlattr *opt, 2064 struct netlink_ext_ack *extack) 2065 { 2066 struct taprio_sched *q = qdisc_priv(sch); 2067 struct net_device *dev = qdisc_dev(sch); 2068 int i, tc; 2069 2070 spin_lock_init(&q->current_entry_lock); 2071 2072 hrtimer_setup(&q->advance_timer, advance_sched, CLOCK_TAI, HRTIMER_MODE_ABS); 2073 2074 q->root = sch; 2075 2076 /* We only support static clockids. Use an invalid value as default 2077 * and get the valid one on taprio_change(). 2078 */ 2079 q->clockid = -1; 2080 q->flags = TAPRIO_FLAGS_INVALID; 2081 2082 list_add(&q->taprio_list, &taprio_list); 2083 2084 if (sch->parent != TC_H_ROOT) { 2085 NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc"); 2086 return -EOPNOTSUPP; 2087 } 2088 2089 if (!netif_is_multiqueue(dev)) { 2090 NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required"); 2091 return -EOPNOTSUPP; 2092 } 2093 2094 q->qdiscs = kcalloc(dev->num_tx_queues, sizeof(q->qdiscs[0]), 2095 GFP_KERNEL); 2096 if (!q->qdiscs) 2097 return -ENOMEM; 2098 2099 if (!opt) 2100 return -EINVAL; 2101 2102 for (i = 0; i < dev->num_tx_queues; i++) { 2103 struct netdev_queue *dev_queue; 2104 struct Qdisc *qdisc; 2105 2106 dev_queue = netdev_get_tx_queue(dev, i); 2107 qdisc = qdisc_create_dflt(dev_queue, 2108 &pfifo_qdisc_ops, 2109 TC_H_MAKE(TC_H_MAJ(sch->handle), 2110 TC_H_MIN(i + 1)), 2111 extack); 2112 if (!qdisc) 2113 return -ENOMEM; 2114 2115 if (i < dev->real_num_tx_queues) 2116 qdisc_hash_add(qdisc, false); 2117 2118 q->qdiscs[i] = qdisc; 2119 } 2120 2121 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) 2122 q->fp[tc] = TC_FP_EXPRESS; 2123 2124 taprio_detect_broken_mqprio(q); 2125 2126 return taprio_change(sch, opt, extack); 2127 } 2128 2129 static void taprio_attach(struct Qdisc *sch) 2130 { 2131 struct taprio_sched *q = qdisc_priv(sch); 2132 struct net_device *dev = qdisc_dev(sch); 2133 unsigned int ntx; 2134 2135 /* Attach underlying qdisc */ 2136 for (ntx = 0; ntx < dev->num_tx_queues; ntx++) { 2137 struct netdev_queue *dev_queue = netdev_get_tx_queue(dev, ntx); 2138 struct Qdisc *old, *dev_queue_qdisc; 2139 2140 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 2141 struct Qdisc *qdisc = q->qdiscs[ntx]; 2142 2143 /* In offload mode, the root taprio qdisc is bypassed 2144 * and the netdev TX queues see the children directly 2145 */ 2146 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 2147 dev_queue_qdisc = qdisc; 2148 } else { 2149 /* In software mode, attach the root taprio qdisc 2150 * to all netdev TX queues, so that dev_qdisc_enqueue() 2151 * goes through taprio_enqueue(). 2152 */ 2153 dev_queue_qdisc = sch; 2154 } 2155 old = dev_graft_qdisc(dev_queue, dev_queue_qdisc); 2156 /* The qdisc's refcount requires to be elevated once 2157 * for each netdev TX queue it is grafted onto 2158 */ 2159 qdisc_refcount_inc(dev_queue_qdisc); 2160 if (old) 2161 qdisc_put(old); 2162 } 2163 } 2164 2165 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, 2166 unsigned long cl) 2167 { 2168 struct net_device *dev = qdisc_dev(sch); 2169 unsigned long ntx = cl - 1; 2170 2171 if (ntx >= dev->num_tx_queues) 2172 return NULL; 2173 2174 return netdev_get_tx_queue(dev, ntx); 2175 } 2176 2177 static int taprio_graft(struct Qdisc *sch, unsigned long cl, 2178 struct Qdisc *new, struct Qdisc **old, 2179 struct netlink_ext_ack *extack) 2180 { 2181 struct taprio_sched *q = qdisc_priv(sch); 2182 struct net_device *dev = qdisc_dev(sch); 2183 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 2184 2185 if (!dev_queue) 2186 return -EINVAL; 2187 2188 if (dev->flags & IFF_UP) 2189 dev_deactivate(dev); 2190 2191 /* In offload mode, the child Qdisc is directly attached to the netdev 2192 * TX queue, and thus, we need to keep its refcount elevated in order 2193 * to counteract qdisc_graft()'s call to qdisc_put() once per TX queue. 2194 * However, save the reference to the new qdisc in the private array in 2195 * both software and offload cases, to have an up-to-date reference to 2196 * our children. 2197 */ 2198 *old = q->qdiscs[cl - 1]; 2199 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 2200 WARN_ON_ONCE(dev_graft_qdisc(dev_queue, new) != *old); 2201 if (new) 2202 qdisc_refcount_inc(new); 2203 if (*old) 2204 qdisc_put(*old); 2205 } 2206 2207 q->qdiscs[cl - 1] = new; 2208 if (new) 2209 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 2210 2211 if (dev->flags & IFF_UP) 2212 dev_activate(dev); 2213 2214 return 0; 2215 } 2216 2217 static int dump_entry(struct sk_buff *msg, 2218 const struct sched_entry *entry) 2219 { 2220 struct nlattr *item; 2221 2222 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); 2223 if (!item) 2224 return -ENOSPC; 2225 2226 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) 2227 goto nla_put_failure; 2228 2229 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) 2230 goto nla_put_failure; 2231 2232 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, 2233 entry->gate_mask)) 2234 goto nla_put_failure; 2235 2236 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, 2237 entry->interval)) 2238 goto nla_put_failure; 2239 2240 return nla_nest_end(msg, item); 2241 2242 nla_put_failure: 2243 nla_nest_cancel(msg, item); 2244 return -1; 2245 } 2246 2247 static int dump_schedule(struct sk_buff *msg, 2248 const struct sched_gate_list *root) 2249 { 2250 struct nlattr *entry_list; 2251 struct sched_entry *entry; 2252 2253 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, 2254 root->base_time, TCA_TAPRIO_PAD)) 2255 return -1; 2256 2257 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, 2258 root->cycle_time, TCA_TAPRIO_PAD)) 2259 return -1; 2260 2261 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, 2262 root->cycle_time_extension, TCA_TAPRIO_PAD)) 2263 return -1; 2264 2265 entry_list = nla_nest_start_noflag(msg, 2266 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); 2267 if (!entry_list) 2268 goto error_nest; 2269 2270 list_for_each_entry(entry, &root->entries, list) { 2271 if (dump_entry(msg, entry) < 0) 2272 goto error_nest; 2273 } 2274 2275 nla_nest_end(msg, entry_list); 2276 return 0; 2277 2278 error_nest: 2279 nla_nest_cancel(msg, entry_list); 2280 return -1; 2281 } 2282 2283 static int taprio_dump_tc_entries(struct sk_buff *skb, 2284 struct taprio_sched *q, 2285 struct sched_gate_list *sched) 2286 { 2287 struct nlattr *n; 2288 int tc; 2289 2290 for (tc = 0; tc < TC_MAX_QUEUE; tc++) { 2291 n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY); 2292 if (!n) 2293 return -EMSGSIZE; 2294 2295 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc)) 2296 goto nla_put_failure; 2297 2298 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU, 2299 sched->max_sdu[tc])) 2300 goto nla_put_failure; 2301 2302 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_FP, q->fp[tc])) 2303 goto nla_put_failure; 2304 2305 nla_nest_end(skb, n); 2306 } 2307 2308 return 0; 2309 2310 nla_put_failure: 2311 nla_nest_cancel(skb, n); 2312 return -EMSGSIZE; 2313 } 2314 2315 static int taprio_put_stat(struct sk_buff *skb, u64 val, u16 attrtype) 2316 { 2317 if (val == TAPRIO_STAT_NOT_SET) 2318 return 0; 2319 if (nla_put_u64_64bit(skb, attrtype, val, TCA_TAPRIO_OFFLOAD_STATS_PAD)) 2320 return -EMSGSIZE; 2321 return 0; 2322 } 2323 2324 static int taprio_dump_xstats(struct Qdisc *sch, struct gnet_dump *d, 2325 struct tc_taprio_qopt_offload *offload, 2326 struct tc_taprio_qopt_stats *stats) 2327 { 2328 struct net_device *dev = qdisc_dev(sch); 2329 const struct net_device_ops *ops; 2330 struct sk_buff *skb = d->skb; 2331 struct nlattr *xstats; 2332 int err; 2333 2334 ops = qdisc_dev(sch)->netdev_ops; 2335 2336 /* FIXME I could use qdisc_offload_dump_helper(), but that messes 2337 * with sch->flags depending on whether the device reports taprio 2338 * stats, and I'm not sure whether that's a good idea, considering 2339 * that stats are optional to the offload itself 2340 */ 2341 if (!ops->ndo_setup_tc) 2342 return 0; 2343 2344 memset(stats, 0xff, sizeof(*stats)); 2345 2346 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 2347 if (err == -EOPNOTSUPP) 2348 return 0; 2349 if (err) 2350 return err; 2351 2352 xstats = nla_nest_start(skb, TCA_STATS_APP); 2353 if (!xstats) 2354 goto err; 2355 2356 if (taprio_put_stat(skb, stats->window_drops, 2357 TCA_TAPRIO_OFFLOAD_STATS_WINDOW_DROPS) || 2358 taprio_put_stat(skb, stats->tx_overruns, 2359 TCA_TAPRIO_OFFLOAD_STATS_TX_OVERRUNS)) 2360 goto err_cancel; 2361 2362 nla_nest_end(skb, xstats); 2363 2364 return 0; 2365 2366 err_cancel: 2367 nla_nest_cancel(skb, xstats); 2368 err: 2369 return -EMSGSIZE; 2370 } 2371 2372 static int taprio_dump_stats(struct Qdisc *sch, struct gnet_dump *d) 2373 { 2374 struct tc_taprio_qopt_offload offload = { 2375 .cmd = TAPRIO_CMD_STATS, 2376 }; 2377 2378 return taprio_dump_xstats(sch, d, &offload, &offload.stats); 2379 } 2380 2381 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) 2382 { 2383 struct taprio_sched *q = qdisc_priv(sch); 2384 struct net_device *dev = qdisc_dev(sch); 2385 struct sched_gate_list *oper, *admin; 2386 struct tc_mqprio_qopt opt = { 0 }; 2387 struct nlattr *nest, *sched_nest; 2388 2389 mqprio_qopt_reconstruct(dev, &opt); 2390 2391 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 2392 if (!nest) 2393 goto start_error; 2394 2395 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) 2396 goto options_error; 2397 2398 if (!FULL_OFFLOAD_IS_ENABLED(q->flags) && 2399 nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) 2400 goto options_error; 2401 2402 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags)) 2403 goto options_error; 2404 2405 if (q->txtime_delay && 2406 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay)) 2407 goto options_error; 2408 2409 rcu_read_lock(); 2410 2411 oper = rtnl_dereference(q->oper_sched); 2412 admin = rtnl_dereference(q->admin_sched); 2413 2414 if (oper && taprio_dump_tc_entries(skb, q, oper)) 2415 goto options_error_rcu; 2416 2417 if (oper && dump_schedule(skb, oper)) 2418 goto options_error_rcu; 2419 2420 if (!admin) 2421 goto done; 2422 2423 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); 2424 if (!sched_nest) 2425 goto options_error_rcu; 2426 2427 if (dump_schedule(skb, admin)) 2428 goto admin_error; 2429 2430 nla_nest_end(skb, sched_nest); 2431 2432 done: 2433 rcu_read_unlock(); 2434 return nla_nest_end(skb, nest); 2435 2436 admin_error: 2437 nla_nest_cancel(skb, sched_nest); 2438 2439 options_error_rcu: 2440 rcu_read_unlock(); 2441 2442 options_error: 2443 nla_nest_cancel(skb, nest); 2444 2445 start_error: 2446 return -ENOSPC; 2447 } 2448 2449 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) 2450 { 2451 struct taprio_sched *q = qdisc_priv(sch); 2452 struct net_device *dev = qdisc_dev(sch); 2453 unsigned int ntx = cl - 1; 2454 2455 if (ntx >= dev->num_tx_queues) 2456 return NULL; 2457 2458 return q->qdiscs[ntx]; 2459 } 2460 2461 static unsigned long taprio_find(struct Qdisc *sch, u32 classid) 2462 { 2463 unsigned int ntx = TC_H_MIN(classid); 2464 2465 if (!taprio_queue_get(sch, ntx)) 2466 return 0; 2467 return ntx; 2468 } 2469 2470 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, 2471 struct sk_buff *skb, struct tcmsg *tcm) 2472 { 2473 struct Qdisc *child = taprio_leaf(sch, cl); 2474 2475 tcm->tcm_parent = TC_H_ROOT; 2476 tcm->tcm_handle |= TC_H_MIN(cl); 2477 tcm->tcm_info = child->handle; 2478 2479 return 0; 2480 } 2481 2482 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, 2483 struct gnet_dump *d) 2484 __releases(d->lock) 2485 __acquires(d->lock) 2486 { 2487 struct Qdisc *child = taprio_leaf(sch, cl); 2488 struct tc_taprio_qopt_offload offload = { 2489 .cmd = TAPRIO_CMD_QUEUE_STATS, 2490 .queue_stats = { 2491 .queue = cl - 1, 2492 }, 2493 }; 2494 2495 if (gnet_stats_copy_basic(d, NULL, &child->bstats, true) < 0 || 2496 qdisc_qstats_copy(d, child) < 0) 2497 return -1; 2498 2499 return taprio_dump_xstats(sch, d, &offload, &offload.queue_stats.stats); 2500 } 2501 2502 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) 2503 { 2504 struct net_device *dev = qdisc_dev(sch); 2505 unsigned long ntx; 2506 2507 if (arg->stop) 2508 return; 2509 2510 arg->count = arg->skip; 2511 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { 2512 if (!tc_qdisc_stats_dump(sch, ntx + 1, arg)) 2513 break; 2514 } 2515 } 2516 2517 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, 2518 struct tcmsg *tcm) 2519 { 2520 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); 2521 } 2522 2523 static const struct Qdisc_class_ops taprio_class_ops = { 2524 .graft = taprio_graft, 2525 .leaf = taprio_leaf, 2526 .find = taprio_find, 2527 .walk = taprio_walk, 2528 .dump = taprio_dump_class, 2529 .dump_stats = taprio_dump_class_stats, 2530 .select_queue = taprio_select_queue, 2531 }; 2532 2533 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { 2534 .cl_ops = &taprio_class_ops, 2535 .id = "taprio", 2536 .priv_size = sizeof(struct taprio_sched), 2537 .init = taprio_init, 2538 .change = taprio_change, 2539 .destroy = taprio_destroy, 2540 .reset = taprio_reset, 2541 .attach = taprio_attach, 2542 .peek = taprio_peek, 2543 .dequeue = taprio_dequeue, 2544 .enqueue = taprio_enqueue, 2545 .dump = taprio_dump, 2546 .dump_stats = taprio_dump_stats, 2547 .owner = THIS_MODULE, 2548 }; 2549 MODULE_ALIAS_NET_SCH("taprio"); 2550 2551 static struct notifier_block taprio_device_notifier = { 2552 .notifier_call = taprio_dev_notifier, 2553 }; 2554 2555 static int __init taprio_module_init(void) 2556 { 2557 int err = register_netdevice_notifier(&taprio_device_notifier); 2558 2559 if (err) 2560 return err; 2561 2562 return register_qdisc(&taprio_qdisc_ops); 2563 } 2564 2565 static void __exit taprio_module_exit(void) 2566 { 2567 unregister_qdisc(&taprio_qdisc_ops); 2568 unregister_netdevice_notifier(&taprio_device_notifier); 2569 } 2570 2571 module_init(taprio_module_init); 2572 module_exit(taprio_module_exit); 2573 MODULE_LICENSE("GPL"); 2574 MODULE_DESCRIPTION("Time Aware Priority qdisc"); 2575