xref: /linux/fs/jbd2/journal.c (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 static ushort jbd2_journal_enable_debug __read_mostly;
53 
54 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
55 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
56 #endif
57 
58 EXPORT_SYMBOL(jbd2_journal_extend);
59 EXPORT_SYMBOL(jbd2_journal_stop);
60 EXPORT_SYMBOL(jbd2_journal_lock_updates);
61 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
62 EXPORT_SYMBOL(jbd2_journal_get_write_access);
63 EXPORT_SYMBOL(jbd2_journal_get_create_access);
64 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
65 EXPORT_SYMBOL(jbd2_journal_set_triggers);
66 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
67 EXPORT_SYMBOL(jbd2_journal_forget);
68 EXPORT_SYMBOL(jbd2_journal_flush);
69 EXPORT_SYMBOL(jbd2_journal_revoke);
70 
71 EXPORT_SYMBOL(jbd2_journal_init_dev);
72 EXPORT_SYMBOL(jbd2_journal_init_inode);
73 EXPORT_SYMBOL(jbd2_journal_check_used_features);
74 EXPORT_SYMBOL(jbd2_journal_check_available_features);
75 EXPORT_SYMBOL(jbd2_journal_set_features);
76 EXPORT_SYMBOL(jbd2_journal_load);
77 EXPORT_SYMBOL(jbd2_journal_destroy);
78 EXPORT_SYMBOL(jbd2_journal_abort);
79 EXPORT_SYMBOL(jbd2_journal_errno);
80 EXPORT_SYMBOL(jbd2_journal_ack_err);
81 EXPORT_SYMBOL(jbd2_journal_clear_err);
82 EXPORT_SYMBOL(jbd2_log_wait_commit);
83 EXPORT_SYMBOL(jbd2_journal_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
85 EXPORT_SYMBOL(jbd2_journal_wipe);
86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
87 EXPORT_SYMBOL(jbd2_journal_invalidate_folio);
88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
89 EXPORT_SYMBOL(jbd2_journal_force_commit);
90 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
91 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
92 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
93 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
94 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
96 EXPORT_SYMBOL(jbd2_inode_cache);
97 
98 static int jbd2_journal_create_slab(size_t slab_size);
99 
100 #ifdef CONFIG_JBD2_DEBUG
__jbd2_debug(int level,const char * file,const char * func,unsigned int line,const char * fmt,...)101 void __jbd2_debug(int level, const char *file, const char *func,
102 		  unsigned int line, const char *fmt, ...)
103 {
104 	struct va_format vaf;
105 	va_list args;
106 
107 	if (level > jbd2_journal_enable_debug)
108 		return;
109 	va_start(args, fmt);
110 	vaf.fmt = fmt;
111 	vaf.va = &args;
112 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
113 	va_end(args);
114 }
115 #endif
116 
117 /* Checksumming functions */
jbd2_superblock_csum(journal_t * j,journal_superblock_t * sb)118 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
119 {
120 	__u32 csum;
121 	__be32 old_csum;
122 
123 	old_csum = sb->s_checksum;
124 	sb->s_checksum = 0;
125 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
126 	sb->s_checksum = old_csum;
127 
128 	return cpu_to_be32(csum);
129 }
130 
131 /*
132  * Helper function used to manage commit timeouts
133  */
134 
commit_timeout(struct timer_list * t)135 static void commit_timeout(struct timer_list *t)
136 {
137 	journal_t *journal = from_timer(journal, t, j_commit_timer);
138 
139 	wake_up_process(journal->j_task);
140 }
141 
142 /*
143  * kjournald2: The main thread function used to manage a logging device
144  * journal.
145  *
146  * This kernel thread is responsible for two things:
147  *
148  * 1) COMMIT:  Every so often we need to commit the current state of the
149  *    filesystem to disk.  The journal thread is responsible for writing
150  *    all of the metadata buffers to disk. If a fast commit is ongoing
151  *    journal thread waits until it's done and then continues from
152  *    there on.
153  *
154  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
155  *    of the data in that part of the log has been rewritten elsewhere on
156  *    the disk.  Flushing these old buffers to reclaim space in the log is
157  *    known as checkpointing, and this thread is responsible for that job.
158  */
159 
kjournald2(void * arg)160 static int kjournald2(void *arg)
161 {
162 	journal_t *journal = arg;
163 	transaction_t *transaction;
164 
165 	/*
166 	 * Set up an interval timer which can be used to trigger a commit wakeup
167 	 * after the commit interval expires
168 	 */
169 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
170 
171 	set_freezable();
172 
173 	/* Record that the journal thread is running */
174 	journal->j_task = current;
175 	wake_up(&journal->j_wait_done_commit);
176 
177 	/*
178 	 * Make sure that no allocations from this kernel thread will ever
179 	 * recurse to the fs layer because we are responsible for the
180 	 * transaction commit and any fs involvement might get stuck waiting for
181 	 * the trasn. commit.
182 	 */
183 	memalloc_nofs_save();
184 
185 	/*
186 	 * And now, wait forever for commit wakeup events.
187 	 */
188 	write_lock(&journal->j_state_lock);
189 
190 loop:
191 	if (journal->j_flags & JBD2_UNMOUNT)
192 		goto end_loop;
193 
194 	jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n",
195 		journal->j_commit_sequence, journal->j_commit_request);
196 
197 	if (journal->j_commit_sequence != journal->j_commit_request) {
198 		jbd2_debug(1, "OK, requests differ\n");
199 		write_unlock(&journal->j_state_lock);
200 		del_timer_sync(&journal->j_commit_timer);
201 		jbd2_journal_commit_transaction(journal);
202 		write_lock(&journal->j_state_lock);
203 		goto loop;
204 	}
205 
206 	wake_up(&journal->j_wait_done_commit);
207 	if (freezing(current)) {
208 		/*
209 		 * The simpler the better. Flushing journal isn't a
210 		 * good idea, because that depends on threads that may
211 		 * be already stopped.
212 		 */
213 		jbd2_debug(1, "Now suspending kjournald2\n");
214 		write_unlock(&journal->j_state_lock);
215 		try_to_freeze();
216 		write_lock(&journal->j_state_lock);
217 	} else {
218 		/*
219 		 * We assume on resume that commits are already there,
220 		 * so we don't sleep
221 		 */
222 		DEFINE_WAIT(wait);
223 
224 		prepare_to_wait(&journal->j_wait_commit, &wait,
225 				TASK_INTERRUPTIBLE);
226 		transaction = journal->j_running_transaction;
227 		if (transaction == NULL ||
228 		    time_before(jiffies, transaction->t_expires)) {
229 			write_unlock(&journal->j_state_lock);
230 			schedule();
231 			write_lock(&journal->j_state_lock);
232 		}
233 		finish_wait(&journal->j_wait_commit, &wait);
234 	}
235 
236 	jbd2_debug(1, "kjournald2 wakes\n");
237 
238 	/*
239 	 * Were we woken up by a commit wakeup event?
240 	 */
241 	transaction = journal->j_running_transaction;
242 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
243 		journal->j_commit_request = transaction->t_tid;
244 		jbd2_debug(1, "woke because of timeout\n");
245 	}
246 	goto loop;
247 
248 end_loop:
249 	del_timer_sync(&journal->j_commit_timer);
250 	journal->j_task = NULL;
251 	wake_up(&journal->j_wait_done_commit);
252 	jbd2_debug(1, "Journal thread exiting.\n");
253 	write_unlock(&journal->j_state_lock);
254 	return 0;
255 }
256 
jbd2_journal_start_thread(journal_t * journal)257 static int jbd2_journal_start_thread(journal_t *journal)
258 {
259 	struct task_struct *t;
260 
261 	t = kthread_run(kjournald2, journal, "jbd2/%s",
262 			journal->j_devname);
263 	if (IS_ERR(t))
264 		return PTR_ERR(t);
265 
266 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
267 	return 0;
268 }
269 
journal_kill_thread(journal_t * journal)270 static void journal_kill_thread(journal_t *journal)
271 {
272 	write_lock(&journal->j_state_lock);
273 	journal->j_flags |= JBD2_UNMOUNT;
274 
275 	while (journal->j_task) {
276 		write_unlock(&journal->j_state_lock);
277 		wake_up(&journal->j_wait_commit);
278 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
279 		write_lock(&journal->j_state_lock);
280 	}
281 	write_unlock(&journal->j_state_lock);
282 }
283 
jbd2_data_needs_escaping(char * data)284 static inline bool jbd2_data_needs_escaping(char *data)
285 {
286 	return *((__be32 *)data) == cpu_to_be32(JBD2_MAGIC_NUMBER);
287 }
288 
jbd2_data_do_escape(char * data)289 static inline void jbd2_data_do_escape(char *data)
290 {
291 	*((unsigned int *)data) = 0;
292 }
293 
294 /*
295  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
296  *
297  * Writes a metadata buffer to a given disk block.  The actual IO is not
298  * performed but a new buffer_head is constructed which labels the data
299  * to be written with the correct destination disk block.
300  *
301  * Any magic-number escaping which needs to be done will cause a
302  * copy-out here.  If the buffer happens to start with the
303  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
304  * magic number is only written to the log for descripter blocks.  In
305  * this case, we copy the data and replace the first word with 0, and we
306  * return a result code which indicates that this buffer needs to be
307  * marked as an escaped buffer in the corresponding log descriptor
308  * block.  The missing word can then be restored when the block is read
309  * during recovery.
310  *
311  * If the source buffer has already been modified by a new transaction
312  * since we took the last commit snapshot, we use the frozen copy of
313  * that data for IO. If we end up using the existing buffer_head's data
314  * for the write, then we have to make sure nobody modifies it while the
315  * IO is in progress. do_get_write_access() handles this.
316  *
317  * The function returns a pointer to the buffer_head to be used for IO.
318  *
319  *
320  * Return value:
321  *  =0: Finished OK without escape
322  *  =1: Finished OK with escape
323  */
324 
jbd2_journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct buffer_head ** bh_out,sector_t blocknr)325 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
326 				  struct journal_head  *jh_in,
327 				  struct buffer_head **bh_out,
328 				  sector_t blocknr)
329 {
330 	int do_escape = 0;
331 	struct buffer_head *new_bh;
332 	struct folio *new_folio;
333 	unsigned int new_offset;
334 	struct buffer_head *bh_in = jh2bh(jh_in);
335 	journal_t *journal = transaction->t_journal;
336 
337 	/*
338 	 * The buffer really shouldn't be locked: only the current committing
339 	 * transaction is allowed to write it, so nobody else is allowed
340 	 * to do any IO.
341 	 *
342 	 * akpm: except if we're journalling data, and write() output is
343 	 * also part of a shared mapping, and another thread has
344 	 * decided to launch a writepage() against this buffer.
345 	 */
346 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
347 
348 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
349 
350 	/* keep subsequent assertions sane */
351 	atomic_set(&new_bh->b_count, 1);
352 
353 	spin_lock(&jh_in->b_state_lock);
354 	/*
355 	 * If a new transaction has already done a buffer copy-out, then
356 	 * we use that version of the data for the commit.
357 	 */
358 	if (jh_in->b_frozen_data) {
359 		new_folio = virt_to_folio(jh_in->b_frozen_data);
360 		new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data);
361 		do_escape = jbd2_data_needs_escaping(jh_in->b_frozen_data);
362 		if (do_escape)
363 			jbd2_data_do_escape(jh_in->b_frozen_data);
364 	} else {
365 		char *tmp;
366 		char *mapped_data;
367 
368 		new_folio = bh_in->b_folio;
369 		new_offset = offset_in_folio(new_folio, bh_in->b_data);
370 		mapped_data = kmap_local_folio(new_folio, new_offset);
371 		/*
372 		 * Fire data frozen trigger if data already wasn't frozen. Do
373 		 * this before checking for escaping, as the trigger may modify
374 		 * the magic offset.  If a copy-out happens afterwards, it will
375 		 * have the correct data in the buffer.
376 		 */
377 		jbd2_buffer_frozen_trigger(jh_in, mapped_data,
378 					   jh_in->b_triggers);
379 		do_escape = jbd2_data_needs_escaping(mapped_data);
380 		kunmap_local(mapped_data);
381 		/*
382 		 * Do we need to do a data copy?
383 		 */
384 		if (!do_escape)
385 			goto escape_done;
386 
387 		spin_unlock(&jh_in->b_state_lock);
388 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS | __GFP_NOFAIL);
389 		spin_lock(&jh_in->b_state_lock);
390 		if (jh_in->b_frozen_data) {
391 			jbd2_free(tmp, bh_in->b_size);
392 			goto copy_done;
393 		}
394 
395 		jh_in->b_frozen_data = tmp;
396 		memcpy_from_folio(tmp, new_folio, new_offset, bh_in->b_size);
397 		/*
398 		 * This isn't strictly necessary, as we're using frozen
399 		 * data for the escaping, but it keeps consistency with
400 		 * b_frozen_data usage.
401 		 */
402 		jh_in->b_frozen_triggers = jh_in->b_triggers;
403 
404 copy_done:
405 		new_folio = virt_to_folio(jh_in->b_frozen_data);
406 		new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data);
407 		jbd2_data_do_escape(jh_in->b_frozen_data);
408 	}
409 
410 escape_done:
411 	folio_set_bh(new_bh, new_folio, new_offset);
412 	new_bh->b_size = bh_in->b_size;
413 	new_bh->b_bdev = journal->j_dev;
414 	new_bh->b_blocknr = blocknr;
415 	new_bh->b_private = bh_in;
416 	set_buffer_mapped(new_bh);
417 	set_buffer_dirty(new_bh);
418 
419 	*bh_out = new_bh;
420 
421 	/*
422 	 * The to-be-written buffer needs to get moved to the io queue,
423 	 * and the original buffer whose contents we are shadowing or
424 	 * copying is moved to the transaction's shadow queue.
425 	 */
426 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
427 	spin_lock(&journal->j_list_lock);
428 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
429 	spin_unlock(&journal->j_list_lock);
430 	set_buffer_shadow(bh_in);
431 	spin_unlock(&jh_in->b_state_lock);
432 
433 	return do_escape;
434 }
435 
436 /*
437  * Allocation code for the journal file.  Manage the space left in the
438  * journal, so that we can begin checkpointing when appropriate.
439  */
440 
441 /*
442  * Called with j_state_lock locked for writing.
443  * Returns true if a transaction commit was started.
444  */
__jbd2_log_start_commit(journal_t * journal,tid_t target)445 static int __jbd2_log_start_commit(journal_t *journal, tid_t target)
446 {
447 	/* Return if the txn has already requested to be committed */
448 	if (journal->j_commit_request == target)
449 		return 0;
450 
451 	/*
452 	 * The only transaction we can possibly wait upon is the
453 	 * currently running transaction (if it exists).  Otherwise,
454 	 * the target tid must be an old one.
455 	 */
456 	if (journal->j_running_transaction &&
457 	    journal->j_running_transaction->t_tid == target) {
458 		/*
459 		 * We want a new commit: OK, mark the request and wakeup the
460 		 * commit thread.  We do _not_ do the commit ourselves.
461 		 */
462 
463 		journal->j_commit_request = target;
464 		jbd2_debug(1, "JBD2: requesting commit %u/%u\n",
465 			  journal->j_commit_request,
466 			  journal->j_commit_sequence);
467 		journal->j_running_transaction->t_requested = jiffies;
468 		wake_up(&journal->j_wait_commit);
469 		return 1;
470 	} else if (!tid_geq(journal->j_commit_request, target))
471 		/* This should never happen, but if it does, preserve
472 		   the evidence before kjournald goes into a loop and
473 		   increments j_commit_sequence beyond all recognition. */
474 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
475 			  journal->j_commit_request,
476 			  journal->j_commit_sequence,
477 			  target, journal->j_running_transaction ?
478 			  journal->j_running_transaction->t_tid : 0);
479 	return 0;
480 }
481 
jbd2_log_start_commit(journal_t * journal,tid_t tid)482 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
483 {
484 	int ret;
485 
486 	write_lock(&journal->j_state_lock);
487 	ret = __jbd2_log_start_commit(journal, tid);
488 	write_unlock(&journal->j_state_lock);
489 	return ret;
490 }
491 
492 /*
493  * Force and wait any uncommitted transactions.  We can only force the running
494  * transaction if we don't have an active handle, otherwise, we will deadlock.
495  * Returns: <0 in case of error,
496  *           0 if nothing to commit,
497  *           1 if transaction was successfully committed.
498  */
__jbd2_journal_force_commit(journal_t * journal)499 static int __jbd2_journal_force_commit(journal_t *journal)
500 {
501 	transaction_t *transaction = NULL;
502 	tid_t tid;
503 	int need_to_start = 0, ret = 0;
504 
505 	read_lock(&journal->j_state_lock);
506 	if (journal->j_running_transaction && !current->journal_info) {
507 		transaction = journal->j_running_transaction;
508 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
509 			need_to_start = 1;
510 	} else if (journal->j_committing_transaction)
511 		transaction = journal->j_committing_transaction;
512 
513 	if (!transaction) {
514 		/* Nothing to commit */
515 		read_unlock(&journal->j_state_lock);
516 		return 0;
517 	}
518 	tid = transaction->t_tid;
519 	read_unlock(&journal->j_state_lock);
520 	if (need_to_start)
521 		jbd2_log_start_commit(journal, tid);
522 	ret = jbd2_log_wait_commit(journal, tid);
523 	if (!ret)
524 		ret = 1;
525 
526 	return ret;
527 }
528 
529 /**
530  * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
531  * calling process is not within transaction.
532  *
533  * @journal: journal to force
534  * Returns true if progress was made.
535  *
536  * This is used for forcing out undo-protected data which contains
537  * bitmaps, when the fs is running out of space.
538  */
jbd2_journal_force_commit_nested(journal_t * journal)539 int jbd2_journal_force_commit_nested(journal_t *journal)
540 {
541 	int ret;
542 
543 	ret = __jbd2_journal_force_commit(journal);
544 	return ret > 0;
545 }
546 
547 /**
548  * jbd2_journal_force_commit() - force any uncommitted transactions
549  * @journal: journal to force
550  *
551  * Caller want unconditional commit. We can only force the running transaction
552  * if we don't have an active handle, otherwise, we will deadlock.
553  */
jbd2_journal_force_commit(journal_t * journal)554 int jbd2_journal_force_commit(journal_t *journal)
555 {
556 	int ret;
557 
558 	J_ASSERT(!current->journal_info);
559 	ret = __jbd2_journal_force_commit(journal);
560 	if (ret > 0)
561 		ret = 0;
562 	return ret;
563 }
564 
565 /*
566  * Start a commit of the current running transaction (if any).  Returns true
567  * if a transaction is going to be committed (or is currently already
568  * committing), and fills its tid in at *ptid
569  */
jbd2_journal_start_commit(journal_t * journal,tid_t * ptid)570 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
571 {
572 	int ret = 0;
573 
574 	write_lock(&journal->j_state_lock);
575 	if (journal->j_running_transaction) {
576 		tid_t tid = journal->j_running_transaction->t_tid;
577 
578 		__jbd2_log_start_commit(journal, tid);
579 		/* There's a running transaction and we've just made sure
580 		 * it's commit has been scheduled. */
581 		if (ptid)
582 			*ptid = tid;
583 		ret = 1;
584 	} else if (journal->j_committing_transaction) {
585 		/*
586 		 * If commit has been started, then we have to wait for
587 		 * completion of that transaction.
588 		 */
589 		if (ptid)
590 			*ptid = journal->j_committing_transaction->t_tid;
591 		ret = 1;
592 	}
593 	write_unlock(&journal->j_state_lock);
594 	return ret;
595 }
596 
597 /*
598  * Return 1 if a given transaction has not yet sent barrier request
599  * connected with a transaction commit. If 0 is returned, transaction
600  * may or may not have sent the barrier. Used to avoid sending barrier
601  * twice in common cases.
602  */
jbd2_trans_will_send_data_barrier(journal_t * journal,tid_t tid)603 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
604 {
605 	int ret = 0;
606 	transaction_t *commit_trans;
607 
608 	if (!(journal->j_flags & JBD2_BARRIER))
609 		return 0;
610 	read_lock(&journal->j_state_lock);
611 	/* Transaction already committed? */
612 	if (tid_geq(journal->j_commit_sequence, tid))
613 		goto out;
614 	commit_trans = journal->j_committing_transaction;
615 	if (!commit_trans || commit_trans->t_tid != tid) {
616 		ret = 1;
617 		goto out;
618 	}
619 	/*
620 	 * Transaction is being committed and we already proceeded to
621 	 * submitting a flush to fs partition?
622 	 */
623 	if (journal->j_fs_dev != journal->j_dev) {
624 		if (!commit_trans->t_need_data_flush ||
625 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
626 			goto out;
627 	} else {
628 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
629 			goto out;
630 	}
631 	ret = 1;
632 out:
633 	read_unlock(&journal->j_state_lock);
634 	return ret;
635 }
636 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
637 
638 /*
639  * Wait for a specified commit to complete.
640  * The caller may not hold the journal lock.
641  */
jbd2_log_wait_commit(journal_t * journal,tid_t tid)642 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
643 {
644 	int err = 0;
645 
646 	read_lock(&journal->j_state_lock);
647 #ifdef CONFIG_PROVE_LOCKING
648 	/*
649 	 * Some callers make sure transaction is already committing and in that
650 	 * case we cannot block on open handles anymore. So don't warn in that
651 	 * case.
652 	 */
653 	if (tid_gt(tid, journal->j_commit_sequence) &&
654 	    (!journal->j_committing_transaction ||
655 	     journal->j_committing_transaction->t_tid != tid)) {
656 		read_unlock(&journal->j_state_lock);
657 		jbd2_might_wait_for_commit(journal);
658 		read_lock(&journal->j_state_lock);
659 	}
660 #endif
661 #ifdef CONFIG_JBD2_DEBUG
662 	if (!tid_geq(journal->j_commit_request, tid)) {
663 		printk(KERN_ERR
664 		       "%s: error: j_commit_request=%u, tid=%u\n",
665 		       __func__, journal->j_commit_request, tid);
666 	}
667 #endif
668 	while (tid_gt(tid, journal->j_commit_sequence)) {
669 		jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
670 				  tid, journal->j_commit_sequence);
671 		read_unlock(&journal->j_state_lock);
672 		wake_up(&journal->j_wait_commit);
673 		wait_event(journal->j_wait_done_commit,
674 				!tid_gt(tid, journal->j_commit_sequence));
675 		read_lock(&journal->j_state_lock);
676 	}
677 	read_unlock(&journal->j_state_lock);
678 
679 	if (unlikely(is_journal_aborted(journal)))
680 		err = -EIO;
681 	return err;
682 }
683 
684 /*
685  * Start a fast commit. If there's an ongoing fast or full commit wait for
686  * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
687  * if a fast commit is not needed, either because there's an already a commit
688  * going on or this tid has already been committed. Returns -EINVAL if no jbd2
689  * commit has yet been performed.
690  */
jbd2_fc_begin_commit(journal_t * journal,tid_t tid)691 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
692 {
693 	if (unlikely(is_journal_aborted(journal)))
694 		return -EIO;
695 	/*
696 	 * Fast commits only allowed if at least one full commit has
697 	 * been processed.
698 	 */
699 	if (!journal->j_stats.ts_tid)
700 		return -EINVAL;
701 
702 	write_lock(&journal->j_state_lock);
703 	if (tid_geq(journal->j_commit_sequence, tid)) {
704 		write_unlock(&journal->j_state_lock);
705 		return -EALREADY;
706 	}
707 
708 	if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
709 	    (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
710 		DEFINE_WAIT(wait);
711 
712 		prepare_to_wait(&journal->j_fc_wait, &wait,
713 				TASK_UNINTERRUPTIBLE);
714 		write_unlock(&journal->j_state_lock);
715 		schedule();
716 		finish_wait(&journal->j_fc_wait, &wait);
717 		return -EALREADY;
718 	}
719 	journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
720 	write_unlock(&journal->j_state_lock);
721 	jbd2_journal_lock_updates(journal);
722 
723 	return 0;
724 }
725 EXPORT_SYMBOL(jbd2_fc_begin_commit);
726 
727 /*
728  * Stop a fast commit. If fallback is set, this function starts commit of
729  * TID tid before any other fast commit can start.
730  */
__jbd2_fc_end_commit(journal_t * journal,tid_t tid,bool fallback)731 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
732 {
733 	if (journal->j_fc_cleanup_callback)
734 		journal->j_fc_cleanup_callback(journal, 0, tid);
735 	jbd2_journal_unlock_updates(journal);
736 	write_lock(&journal->j_state_lock);
737 	journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
738 	if (fallback)
739 		journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
740 	write_unlock(&journal->j_state_lock);
741 	wake_up(&journal->j_fc_wait);
742 	if (fallback)
743 		return jbd2_complete_transaction(journal, tid);
744 	return 0;
745 }
746 
jbd2_fc_end_commit(journal_t * journal)747 int jbd2_fc_end_commit(journal_t *journal)
748 {
749 	return __jbd2_fc_end_commit(journal, 0, false);
750 }
751 EXPORT_SYMBOL(jbd2_fc_end_commit);
752 
jbd2_fc_end_commit_fallback(journal_t * journal)753 int jbd2_fc_end_commit_fallback(journal_t *journal)
754 {
755 	tid_t tid;
756 
757 	read_lock(&journal->j_state_lock);
758 	tid = journal->j_running_transaction ?
759 		journal->j_running_transaction->t_tid : 0;
760 	read_unlock(&journal->j_state_lock);
761 	return __jbd2_fc_end_commit(journal, tid, true);
762 }
763 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
764 
765 /* Return 1 when transaction with given tid has already committed. */
jbd2_transaction_committed(journal_t * journal,tid_t tid)766 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
767 {
768 	return tid_geq(READ_ONCE(journal->j_commit_sequence), tid);
769 }
770 EXPORT_SYMBOL(jbd2_transaction_committed);
771 
772 /*
773  * When this function returns the transaction corresponding to tid
774  * will be completed.  If the transaction has currently running, start
775  * committing that transaction before waiting for it to complete.  If
776  * the transaction id is stale, it is by definition already completed,
777  * so just return SUCCESS.
778  */
jbd2_complete_transaction(journal_t * journal,tid_t tid)779 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
780 {
781 	int	need_to_wait = 1;
782 
783 	read_lock(&journal->j_state_lock);
784 	if (journal->j_running_transaction &&
785 	    journal->j_running_transaction->t_tid == tid) {
786 		if (journal->j_commit_request != tid) {
787 			/* transaction not yet started, so request it */
788 			read_unlock(&journal->j_state_lock);
789 			jbd2_log_start_commit(journal, tid);
790 			goto wait_commit;
791 		}
792 	} else if (!(journal->j_committing_transaction &&
793 		     journal->j_committing_transaction->t_tid == tid))
794 		need_to_wait = 0;
795 	read_unlock(&journal->j_state_lock);
796 	if (!need_to_wait)
797 		return 0;
798 wait_commit:
799 	return jbd2_log_wait_commit(journal, tid);
800 }
801 EXPORT_SYMBOL(jbd2_complete_transaction);
802 
803 /*
804  * Log buffer allocation routines:
805  */
806 
jbd2_journal_next_log_block(journal_t * journal,unsigned long long * retp)807 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
808 {
809 	unsigned long blocknr;
810 
811 	write_lock(&journal->j_state_lock);
812 	J_ASSERT(journal->j_free > 1);
813 
814 	blocknr = journal->j_head;
815 	journal->j_head++;
816 	journal->j_free--;
817 	if (journal->j_head == journal->j_last)
818 		journal->j_head = journal->j_first;
819 	write_unlock(&journal->j_state_lock);
820 	return jbd2_journal_bmap(journal, blocknr, retp);
821 }
822 
823 /* Map one fast commit buffer for use by the file system */
jbd2_fc_get_buf(journal_t * journal,struct buffer_head ** bh_out)824 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
825 {
826 	unsigned long long pblock;
827 	unsigned long blocknr;
828 	int ret = 0;
829 	struct buffer_head *bh;
830 	int fc_off;
831 
832 	*bh_out = NULL;
833 
834 	if (journal->j_fc_off + journal->j_fc_first >= journal->j_fc_last)
835 		return -EINVAL;
836 
837 	fc_off = journal->j_fc_off;
838 	blocknr = journal->j_fc_first + fc_off;
839 	journal->j_fc_off++;
840 	ret = jbd2_journal_bmap(journal, blocknr, &pblock);
841 	if (ret)
842 		return ret;
843 
844 	bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
845 	if (!bh)
846 		return -ENOMEM;
847 
848 	journal->j_fc_wbuf[fc_off] = bh;
849 
850 	*bh_out = bh;
851 
852 	return 0;
853 }
854 EXPORT_SYMBOL(jbd2_fc_get_buf);
855 
856 /*
857  * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
858  * for completion.
859  */
jbd2_fc_wait_bufs(journal_t * journal,int num_blks)860 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
861 {
862 	struct buffer_head *bh;
863 	int i, j_fc_off;
864 
865 	j_fc_off = journal->j_fc_off;
866 
867 	/*
868 	 * Wait in reverse order to minimize chances of us being woken up before
869 	 * all IOs have completed
870 	 */
871 	for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
872 		bh = journal->j_fc_wbuf[i];
873 		wait_on_buffer(bh);
874 		/*
875 		 * Update j_fc_off so jbd2_fc_release_bufs can release remain
876 		 * buffer head.
877 		 */
878 		if (unlikely(!buffer_uptodate(bh))) {
879 			journal->j_fc_off = i + 1;
880 			return -EIO;
881 		}
882 		put_bh(bh);
883 		journal->j_fc_wbuf[i] = NULL;
884 	}
885 
886 	return 0;
887 }
888 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
889 
jbd2_fc_release_bufs(journal_t * journal)890 void jbd2_fc_release_bufs(journal_t *journal)
891 {
892 	struct buffer_head *bh;
893 	int i, j_fc_off;
894 
895 	j_fc_off = journal->j_fc_off;
896 
897 	for (i = j_fc_off - 1; i >= 0; i--) {
898 		bh = journal->j_fc_wbuf[i];
899 		if (!bh)
900 			break;
901 		put_bh(bh);
902 		journal->j_fc_wbuf[i] = NULL;
903 	}
904 }
905 EXPORT_SYMBOL(jbd2_fc_release_bufs);
906 
907 /*
908  * Conversion of logical to physical block numbers for the journal
909  *
910  * On external journals the journal blocks are identity-mapped, so
911  * this is a no-op.  If needed, we can use j_blk_offset - everything is
912  * ready.
913  */
jbd2_journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long long * retp)914 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
915 		 unsigned long long *retp)
916 {
917 	int err = 0;
918 	unsigned long long ret;
919 	sector_t block = blocknr;
920 
921 	if (journal->j_bmap) {
922 		err = journal->j_bmap(journal, &block);
923 		if (err == 0)
924 			*retp = block;
925 	} else if (journal->j_inode) {
926 		ret = bmap(journal->j_inode, &block);
927 
928 		if (ret || !block) {
929 			printk(KERN_ALERT "%s: journal block not found "
930 					"at offset %lu on %s\n",
931 			       __func__, blocknr, journal->j_devname);
932 			err = -EIO;
933 			jbd2_journal_abort(journal, err);
934 		} else {
935 			*retp = block;
936 		}
937 
938 	} else {
939 		*retp = blocknr; /* +journal->j_blk_offset */
940 	}
941 	return err;
942 }
943 
944 /*
945  * We play buffer_head aliasing tricks to write data/metadata blocks to
946  * the journal without copying their contents, but for journal
947  * descriptor blocks we do need to generate bona fide buffers.
948  *
949  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
950  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
951  * But we don't bother doing that, so there will be coherency problems with
952  * mmaps of blockdevs which hold live JBD-controlled filesystems.
953  */
954 struct buffer_head *
jbd2_journal_get_descriptor_buffer(transaction_t * transaction,int type)955 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
956 {
957 	journal_t *journal = transaction->t_journal;
958 	struct buffer_head *bh;
959 	unsigned long long blocknr;
960 	journal_header_t *header;
961 	int err;
962 
963 	err = jbd2_journal_next_log_block(journal, &blocknr);
964 
965 	if (err)
966 		return NULL;
967 
968 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
969 	if (!bh)
970 		return NULL;
971 	atomic_dec(&transaction->t_outstanding_credits);
972 	lock_buffer(bh);
973 	memset(bh->b_data, 0, journal->j_blocksize);
974 	header = (journal_header_t *)bh->b_data;
975 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
976 	header->h_blocktype = cpu_to_be32(type);
977 	header->h_sequence = cpu_to_be32(transaction->t_tid);
978 	set_buffer_uptodate(bh);
979 	unlock_buffer(bh);
980 	BUFFER_TRACE(bh, "return this buffer");
981 	return bh;
982 }
983 
jbd2_descriptor_block_csum_set(journal_t * j,struct buffer_head * bh)984 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
985 {
986 	struct jbd2_journal_block_tail *tail;
987 	__u32 csum;
988 
989 	if (!jbd2_journal_has_csum_v2or3(j))
990 		return;
991 
992 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
993 			sizeof(struct jbd2_journal_block_tail));
994 	tail->t_checksum = 0;
995 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
996 	tail->t_checksum = cpu_to_be32(csum);
997 }
998 
999 /*
1000  * Return tid of the oldest transaction in the journal and block in the journal
1001  * where the transaction starts.
1002  *
1003  * If the journal is now empty, return which will be the next transaction ID
1004  * we will write and where will that transaction start.
1005  *
1006  * The return value is 0 if journal tail cannot be pushed any further, 1 if
1007  * it can.
1008  */
jbd2_journal_get_log_tail(journal_t * journal,tid_t * tid,unsigned long * block)1009 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1010 			      unsigned long *block)
1011 {
1012 	transaction_t *transaction;
1013 	int ret;
1014 
1015 	read_lock(&journal->j_state_lock);
1016 	spin_lock(&journal->j_list_lock);
1017 	transaction = journal->j_checkpoint_transactions;
1018 	if (transaction) {
1019 		*tid = transaction->t_tid;
1020 		*block = transaction->t_log_start;
1021 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
1022 		*tid = transaction->t_tid;
1023 		*block = transaction->t_log_start;
1024 	} else if ((transaction = journal->j_running_transaction) != NULL) {
1025 		*tid = transaction->t_tid;
1026 		*block = journal->j_head;
1027 	} else {
1028 		*tid = journal->j_transaction_sequence;
1029 		*block = journal->j_head;
1030 	}
1031 	ret = tid_gt(*tid, journal->j_tail_sequence);
1032 	spin_unlock(&journal->j_list_lock);
1033 	read_unlock(&journal->j_state_lock);
1034 
1035 	return ret;
1036 }
1037 
1038 /*
1039  * Update information in journal structure and in on disk journal superblock
1040  * about log tail. This function does not check whether information passed in
1041  * really pushes log tail further. It's responsibility of the caller to make
1042  * sure provided log tail information is valid (e.g. by holding
1043  * j_checkpoint_mutex all the time between computing log tail and calling this
1044  * function as is the case with jbd2_cleanup_journal_tail()).
1045  *
1046  * Requires j_checkpoint_mutex
1047  */
__jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)1048 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1049 {
1050 	unsigned long freed;
1051 	int ret;
1052 
1053 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1054 
1055 	/*
1056 	 * We cannot afford for write to remain in drive's caches since as
1057 	 * soon as we update j_tail, next transaction can start reusing journal
1058 	 * space and if we lose sb update during power failure we'd replay
1059 	 * old transaction with possibly newly overwritten data.
1060 	 */
1061 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block, REQ_FUA);
1062 	if (ret)
1063 		goto out;
1064 
1065 	write_lock(&journal->j_state_lock);
1066 	freed = block - journal->j_tail;
1067 	if (block < journal->j_tail)
1068 		freed += journal->j_last - journal->j_first;
1069 
1070 	trace_jbd2_update_log_tail(journal, tid, block, freed);
1071 	jbd2_debug(1,
1072 		  "Cleaning journal tail from %u to %u (offset %lu), "
1073 		  "freeing %lu\n",
1074 		  journal->j_tail_sequence, tid, block, freed);
1075 
1076 	journal->j_free += freed;
1077 	journal->j_tail_sequence = tid;
1078 	journal->j_tail = block;
1079 	write_unlock(&journal->j_state_lock);
1080 
1081 out:
1082 	return ret;
1083 }
1084 
1085 /*
1086  * This is a variation of __jbd2_update_log_tail which checks for validity of
1087  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1088  * with other threads updating log tail.
1089  */
jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)1090 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1091 {
1092 	mutex_lock_io(&journal->j_checkpoint_mutex);
1093 	if (tid_gt(tid, journal->j_tail_sequence))
1094 		__jbd2_update_log_tail(journal, tid, block);
1095 	mutex_unlock(&journal->j_checkpoint_mutex);
1096 }
1097 
1098 struct jbd2_stats_proc_session {
1099 	journal_t *journal;
1100 	struct transaction_stats_s *stats;
1101 	int start;
1102 	int max;
1103 };
1104 
jbd2_seq_info_start(struct seq_file * seq,loff_t * pos)1105 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1106 {
1107 	return *pos ? NULL : SEQ_START_TOKEN;
1108 }
1109 
jbd2_seq_info_next(struct seq_file * seq,void * v,loff_t * pos)1110 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1111 {
1112 	(*pos)++;
1113 	return NULL;
1114 }
1115 
jbd2_seq_info_show(struct seq_file * seq,void * v)1116 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1117 {
1118 	struct jbd2_stats_proc_session *s = seq->private;
1119 
1120 	if (v != SEQ_START_TOKEN)
1121 		return 0;
1122 	seq_printf(seq, "%lu transactions (%lu requested), "
1123 		   "each up to %u blocks\n",
1124 		   s->stats->ts_tid, s->stats->ts_requested,
1125 		   s->journal->j_max_transaction_buffers);
1126 	if (s->stats->ts_tid == 0)
1127 		return 0;
1128 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1129 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1130 	seq_printf(seq, "  %ums request delay\n",
1131 	    (s->stats->ts_requested == 0) ? 0 :
1132 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1133 			     s->stats->ts_requested));
1134 	seq_printf(seq, "  %ums running transaction\n",
1135 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1136 	seq_printf(seq, "  %ums transaction was being locked\n",
1137 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1138 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1139 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1140 	seq_printf(seq, "  %ums logging transaction\n",
1141 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1142 	seq_printf(seq, "  %lluus average transaction commit time\n",
1143 		   div_u64(s->journal->j_average_commit_time, 1000));
1144 	seq_printf(seq, "  %lu handles per transaction\n",
1145 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1146 	seq_printf(seq, "  %lu blocks per transaction\n",
1147 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1148 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1149 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1150 	return 0;
1151 }
1152 
jbd2_seq_info_stop(struct seq_file * seq,void * v)1153 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1154 {
1155 }
1156 
1157 static const struct seq_operations jbd2_seq_info_ops = {
1158 	.start  = jbd2_seq_info_start,
1159 	.next   = jbd2_seq_info_next,
1160 	.stop   = jbd2_seq_info_stop,
1161 	.show   = jbd2_seq_info_show,
1162 };
1163 
jbd2_seq_info_open(struct inode * inode,struct file * file)1164 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1165 {
1166 	journal_t *journal = pde_data(inode);
1167 	struct jbd2_stats_proc_session *s;
1168 	int rc, size;
1169 
1170 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1171 	if (s == NULL)
1172 		return -ENOMEM;
1173 	size = sizeof(struct transaction_stats_s);
1174 	s->stats = kmalloc(size, GFP_KERNEL);
1175 	if (s->stats == NULL) {
1176 		kfree(s);
1177 		return -ENOMEM;
1178 	}
1179 	spin_lock(&journal->j_history_lock);
1180 	memcpy(s->stats, &journal->j_stats, size);
1181 	s->journal = journal;
1182 	spin_unlock(&journal->j_history_lock);
1183 
1184 	rc = seq_open(file, &jbd2_seq_info_ops);
1185 	if (rc == 0) {
1186 		struct seq_file *m = file->private_data;
1187 		m->private = s;
1188 	} else {
1189 		kfree(s->stats);
1190 		kfree(s);
1191 	}
1192 	return rc;
1193 
1194 }
1195 
jbd2_seq_info_release(struct inode * inode,struct file * file)1196 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1197 {
1198 	struct seq_file *seq = file->private_data;
1199 	struct jbd2_stats_proc_session *s = seq->private;
1200 	kfree(s->stats);
1201 	kfree(s);
1202 	return seq_release(inode, file);
1203 }
1204 
1205 static const struct proc_ops jbd2_info_proc_ops = {
1206 	.proc_open	= jbd2_seq_info_open,
1207 	.proc_read	= seq_read,
1208 	.proc_lseek	= seq_lseek,
1209 	.proc_release	= jbd2_seq_info_release,
1210 };
1211 
1212 static struct proc_dir_entry *proc_jbd2_stats;
1213 
jbd2_stats_proc_init(journal_t * journal)1214 static void jbd2_stats_proc_init(journal_t *journal)
1215 {
1216 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1217 	if (journal->j_proc_entry) {
1218 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1219 				 &jbd2_info_proc_ops, journal);
1220 	}
1221 }
1222 
jbd2_stats_proc_exit(journal_t * journal)1223 static void jbd2_stats_proc_exit(journal_t *journal)
1224 {
1225 	remove_proc_entry("info", journal->j_proc_entry);
1226 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1227 }
1228 
1229 /* Minimum size of descriptor tag */
jbd2_min_tag_size(void)1230 static int jbd2_min_tag_size(void)
1231 {
1232 	/*
1233 	 * Tag with 32-bit block numbers does not use last four bytes of the
1234 	 * structure
1235 	 */
1236 	return sizeof(journal_block_tag_t) - 4;
1237 }
1238 
1239 /**
1240  * jbd2_journal_shrink_scan()
1241  * @shrink: shrinker to work on
1242  * @sc: reclaim request to process
1243  *
1244  * Scan the checkpointed buffer on the checkpoint list and release the
1245  * journal_head.
1246  */
jbd2_journal_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1247 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1248 					      struct shrink_control *sc)
1249 {
1250 	journal_t *journal = shrink->private_data;
1251 	unsigned long nr_to_scan = sc->nr_to_scan;
1252 	unsigned long nr_shrunk;
1253 	unsigned long count;
1254 
1255 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1256 	trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1257 
1258 	nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1259 
1260 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1261 	trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1262 
1263 	return nr_shrunk;
1264 }
1265 
1266 /**
1267  * jbd2_journal_shrink_count()
1268  * @shrink: shrinker to work on
1269  * @sc: reclaim request to process
1270  *
1271  * Count the number of checkpoint buffers on the checkpoint list.
1272  */
jbd2_journal_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1273 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1274 					       struct shrink_control *sc)
1275 {
1276 	journal_t *journal = shrink->private_data;
1277 	unsigned long count;
1278 
1279 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1280 	trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1281 
1282 	return count;
1283 }
1284 
1285 /*
1286  * If the journal init or create aborts, we need to mark the journal
1287  * superblock as being NULL to prevent the journal destroy from writing
1288  * back a bogus superblock.
1289  */
journal_fail_superblock(journal_t * journal)1290 static void journal_fail_superblock(journal_t *journal)
1291 {
1292 	struct buffer_head *bh = journal->j_sb_buffer;
1293 	brelse(bh);
1294 	journal->j_sb_buffer = NULL;
1295 }
1296 
1297 /*
1298  * Check the superblock for a given journal, performing initial
1299  * validation of the format.
1300  */
journal_check_superblock(journal_t * journal)1301 static int journal_check_superblock(journal_t *journal)
1302 {
1303 	journal_superblock_t *sb = journal->j_superblock;
1304 	int num_fc_blks;
1305 	int err = -EINVAL;
1306 
1307 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1308 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1309 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1310 		return err;
1311 	}
1312 
1313 	if (be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V1 &&
1314 	    be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V2) {
1315 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1316 		return err;
1317 	}
1318 
1319 	if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1320 		printk(KERN_WARNING "JBD2: journal file too short\n");
1321 		return err;
1322 	}
1323 
1324 	if (be32_to_cpu(sb->s_first) == 0 ||
1325 	    be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1326 		printk(KERN_WARNING
1327 			"JBD2: Invalid start block of journal: %u\n",
1328 			be32_to_cpu(sb->s_first));
1329 		return err;
1330 	}
1331 
1332 	/*
1333 	 * If this is a V2 superblock, then we have to check the
1334 	 * features flags on it.
1335 	 */
1336 	if (!jbd2_format_support_feature(journal))
1337 		return 0;
1338 
1339 	if ((sb->s_feature_ro_compat &
1340 			~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1341 	    (sb->s_feature_incompat &
1342 			~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1343 		printk(KERN_WARNING "JBD2: Unrecognised features on journal\n");
1344 		return err;
1345 	}
1346 
1347 	num_fc_blks = jbd2_has_feature_fast_commit(journal) ?
1348 				jbd2_journal_get_num_fc_blks(sb) : 0;
1349 	if (be32_to_cpu(sb->s_maxlen) < JBD2_MIN_JOURNAL_BLOCKS ||
1350 	    be32_to_cpu(sb->s_maxlen) - JBD2_MIN_JOURNAL_BLOCKS < num_fc_blks) {
1351 		printk(KERN_ERR "JBD2: journal file too short %u,%d\n",
1352 		       be32_to_cpu(sb->s_maxlen), num_fc_blks);
1353 		return err;
1354 	}
1355 
1356 	if (jbd2_has_feature_csum2(journal) &&
1357 	    jbd2_has_feature_csum3(journal)) {
1358 		/* Can't have checksum v2 and v3 at the same time! */
1359 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1360 		       "at the same time!\n");
1361 		return err;
1362 	}
1363 
1364 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1365 	    jbd2_has_feature_checksum(journal)) {
1366 		/* Can't have checksum v1 and v2 on at the same time! */
1367 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1368 		       "at the same time!\n");
1369 		return err;
1370 	}
1371 
1372 	/* Load the checksum driver */
1373 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1374 		if (sb->s_checksum_type != JBD2_CRC32C_CHKSUM) {
1375 			printk(KERN_ERR "JBD2: Unknown checksum type\n");
1376 			return err;
1377 		}
1378 
1379 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1380 		if (IS_ERR(journal->j_chksum_driver)) {
1381 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1382 			err = PTR_ERR(journal->j_chksum_driver);
1383 			journal->j_chksum_driver = NULL;
1384 			return err;
1385 		}
1386 		/* Check superblock checksum */
1387 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1388 			printk(KERN_ERR "JBD2: journal checksum error\n");
1389 			err = -EFSBADCRC;
1390 			return err;
1391 		}
1392 	}
1393 
1394 	return 0;
1395 }
1396 
journal_revoke_records_per_block(journal_t * journal)1397 static int journal_revoke_records_per_block(journal_t *journal)
1398 {
1399 	int record_size;
1400 	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1401 
1402 	if (jbd2_has_feature_64bit(journal))
1403 		record_size = 8;
1404 	else
1405 		record_size = 4;
1406 
1407 	if (jbd2_journal_has_csum_v2or3(journal))
1408 		space -= sizeof(struct jbd2_journal_block_tail);
1409 	return space / record_size;
1410 }
1411 
jbd2_journal_get_max_txn_bufs(journal_t * journal)1412 static int jbd2_journal_get_max_txn_bufs(journal_t *journal)
1413 {
1414 	return (journal->j_total_len - journal->j_fc_wbufsize) / 3;
1415 }
1416 
1417 /*
1418  * Base amount of descriptor blocks we reserve for each transaction.
1419  */
jbd2_descriptor_blocks_per_trans(journal_t * journal)1420 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
1421 {
1422 	int tag_space = journal->j_blocksize - sizeof(journal_header_t);
1423 	int tags_per_block;
1424 
1425 	/* Subtract UUID */
1426 	tag_space -= 16;
1427 	if (jbd2_journal_has_csum_v2or3(journal))
1428 		tag_space -= sizeof(struct jbd2_journal_block_tail);
1429 	/* Commit code leaves a slack space of 16 bytes at the end of block */
1430 	tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
1431 	/*
1432 	 * Revoke descriptors are accounted separately so we need to reserve
1433 	 * space for commit block and normal transaction descriptor blocks.
1434 	 */
1435 	return 1 + DIV_ROUND_UP(jbd2_journal_get_max_txn_bufs(journal),
1436 				tags_per_block);
1437 }
1438 
1439 /*
1440  * Initialize number of blocks each transaction reserves for its bookkeeping
1441  * and maximum number of blocks a transaction can use. This needs to be called
1442  * after the journal size and the fastcommit area size are initialized.
1443  */
jbd2_journal_init_transaction_limits(journal_t * journal)1444 static void jbd2_journal_init_transaction_limits(journal_t *journal)
1445 {
1446 	journal->j_revoke_records_per_block =
1447 				journal_revoke_records_per_block(journal);
1448 	journal->j_transaction_overhead_buffers =
1449 				jbd2_descriptor_blocks_per_trans(journal);
1450 	journal->j_max_transaction_buffers =
1451 				jbd2_journal_get_max_txn_bufs(journal);
1452 }
1453 
1454 /*
1455  * Load the on-disk journal superblock and read the key fields into the
1456  * journal_t.
1457  */
journal_load_superblock(journal_t * journal)1458 static int journal_load_superblock(journal_t *journal)
1459 {
1460 	int err;
1461 	struct buffer_head *bh;
1462 	journal_superblock_t *sb;
1463 
1464 	bh = getblk_unmovable(journal->j_dev, journal->j_blk_offset,
1465 			      journal->j_blocksize);
1466 	if (bh)
1467 		err = bh_read(bh, 0);
1468 	if (!bh || err < 0) {
1469 		pr_err("%s: Cannot read journal superblock\n", __func__);
1470 		brelse(bh);
1471 		return -EIO;
1472 	}
1473 
1474 	journal->j_sb_buffer = bh;
1475 	sb = (journal_superblock_t *)bh->b_data;
1476 	journal->j_superblock = sb;
1477 	err = journal_check_superblock(journal);
1478 	if (err) {
1479 		journal_fail_superblock(journal);
1480 		return err;
1481 	}
1482 
1483 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1484 	journal->j_tail = be32_to_cpu(sb->s_start);
1485 	journal->j_first = be32_to_cpu(sb->s_first);
1486 	journal->j_errno = be32_to_cpu(sb->s_errno);
1487 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1488 
1489 	if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1490 		journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1491 	/* Precompute checksum seed for all metadata */
1492 	if (jbd2_journal_has_csum_v2or3(journal))
1493 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1494 						   sizeof(sb->s_uuid));
1495 	/* After journal features are set, we can compute transaction limits */
1496 	jbd2_journal_init_transaction_limits(journal);
1497 
1498 	if (jbd2_has_feature_fast_commit(journal)) {
1499 		journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1500 		journal->j_last = journal->j_fc_last -
1501 				  jbd2_journal_get_num_fc_blks(sb);
1502 		journal->j_fc_first = journal->j_last + 1;
1503 		journal->j_fc_off = 0;
1504 	}
1505 
1506 	return 0;
1507 }
1508 
1509 
1510 /*
1511  * Management for journal control blocks: functions to create and
1512  * destroy journal_t structures, and to initialise and read existing
1513  * journal blocks from disk.  */
1514 
1515 /* The journal_init_common() function creates and fills a journal_t object
1516  * in memory. It calls journal_load_superblock() to load the on-disk journal
1517  * superblock and initialize the journal_t object.
1518  */
1519 
journal_init_common(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1520 static journal_t *journal_init_common(struct block_device *bdev,
1521 			struct block_device *fs_dev,
1522 			unsigned long long start, int len, int blocksize)
1523 {
1524 	static struct lock_class_key jbd2_trans_commit_key;
1525 	journal_t *journal;
1526 	int err;
1527 	int n;
1528 
1529 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1530 	if (!journal)
1531 		return ERR_PTR(-ENOMEM);
1532 
1533 	journal->j_blocksize = blocksize;
1534 	journal->j_dev = bdev;
1535 	journal->j_fs_dev = fs_dev;
1536 	journal->j_blk_offset = start;
1537 	journal->j_total_len = len;
1538 	jbd2_init_fs_dev_write_error(journal);
1539 
1540 	err = journal_load_superblock(journal);
1541 	if (err)
1542 		goto err_cleanup;
1543 
1544 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1545 	init_waitqueue_head(&journal->j_wait_done_commit);
1546 	init_waitqueue_head(&journal->j_wait_commit);
1547 	init_waitqueue_head(&journal->j_wait_updates);
1548 	init_waitqueue_head(&journal->j_wait_reserved);
1549 	init_waitqueue_head(&journal->j_fc_wait);
1550 	mutex_init(&journal->j_abort_mutex);
1551 	mutex_init(&journal->j_barrier);
1552 	mutex_init(&journal->j_checkpoint_mutex);
1553 	spin_lock_init(&journal->j_revoke_lock);
1554 	spin_lock_init(&journal->j_list_lock);
1555 	spin_lock_init(&journal->j_history_lock);
1556 	rwlock_init(&journal->j_state_lock);
1557 
1558 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1559 	journal->j_min_batch_time = 0;
1560 	journal->j_max_batch_time = 15000; /* 15ms */
1561 	atomic_set(&journal->j_reserved_credits, 0);
1562 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1563 			 &jbd2_trans_commit_key, 0);
1564 
1565 	/* The journal is marked for error until we succeed with recovery! */
1566 	journal->j_flags = JBD2_ABORT;
1567 
1568 	/* Set up a default-sized revoke table for the new mount. */
1569 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1570 	if (err)
1571 		goto err_cleanup;
1572 
1573 	/*
1574 	 * journal descriptor can store up to n blocks, we need enough
1575 	 * buffers to write out full descriptor block.
1576 	 */
1577 	err = -ENOMEM;
1578 	n = journal->j_blocksize / jbd2_min_tag_size();
1579 	journal->j_wbufsize = n;
1580 	journal->j_fc_wbuf = NULL;
1581 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1582 					GFP_KERNEL);
1583 	if (!journal->j_wbuf)
1584 		goto err_cleanup;
1585 
1586 	err = percpu_counter_init(&journal->j_checkpoint_jh_count, 0,
1587 				  GFP_KERNEL);
1588 	if (err)
1589 		goto err_cleanup;
1590 
1591 	journal->j_shrink_transaction = NULL;
1592 
1593 	journal->j_shrinker = shrinker_alloc(0, "jbd2-journal:(%u:%u)",
1594 					     MAJOR(bdev->bd_dev),
1595 					     MINOR(bdev->bd_dev));
1596 	if (!journal->j_shrinker) {
1597 		err = -ENOMEM;
1598 		goto err_cleanup;
1599 	}
1600 
1601 	journal->j_shrinker->scan_objects = jbd2_journal_shrink_scan;
1602 	journal->j_shrinker->count_objects = jbd2_journal_shrink_count;
1603 	journal->j_shrinker->private_data = journal;
1604 
1605 	shrinker_register(journal->j_shrinker);
1606 
1607 	return journal;
1608 
1609 err_cleanup:
1610 	percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1611 	if (journal->j_chksum_driver)
1612 		crypto_free_shash(journal->j_chksum_driver);
1613 	kfree(journal->j_wbuf);
1614 	jbd2_journal_destroy_revoke(journal);
1615 	journal_fail_superblock(journal);
1616 	kfree(journal);
1617 	return ERR_PTR(err);
1618 }
1619 
1620 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1621  *
1622  * Create a journal structure assigned some fixed set of disk blocks to
1623  * the journal.  We don't actually touch those disk blocks yet, but we
1624  * need to set up all of the mapping information to tell the journaling
1625  * system where the journal blocks are.
1626  *
1627  */
1628 
1629 /**
1630  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1631  *  @bdev: Block device on which to create the journal
1632  *  @fs_dev: Device which hold journalled filesystem for this journal.
1633  *  @start: Block nr Start of journal.
1634  *  @len:  Length of the journal in blocks.
1635  *  @blocksize: blocksize of journalling device
1636  *
1637  *  Returns: a newly created journal_t *
1638  *
1639  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1640  *  range of blocks on an arbitrary block device.
1641  *
1642  */
jbd2_journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1643 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1644 			struct block_device *fs_dev,
1645 			unsigned long long start, int len, int blocksize)
1646 {
1647 	journal_t *journal;
1648 
1649 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1650 	if (IS_ERR(journal))
1651 		return ERR_CAST(journal);
1652 
1653 	snprintf(journal->j_devname, sizeof(journal->j_devname),
1654 		 "%pg", journal->j_dev);
1655 	strreplace(journal->j_devname, '/', '!');
1656 	jbd2_stats_proc_init(journal);
1657 
1658 	return journal;
1659 }
1660 
1661 /**
1662  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1663  *  @inode: An inode to create the journal in
1664  *
1665  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1666  * the journal.  The inode must exist already, must support bmap() and
1667  * must have all data blocks preallocated.
1668  */
jbd2_journal_init_inode(struct inode * inode)1669 journal_t *jbd2_journal_init_inode(struct inode *inode)
1670 {
1671 	journal_t *journal;
1672 	sector_t blocknr;
1673 	int err = 0;
1674 
1675 	blocknr = 0;
1676 	err = bmap(inode, &blocknr);
1677 	if (err || !blocknr) {
1678 		pr_err("%s: Cannot locate journal superblock\n", __func__);
1679 		return err ? ERR_PTR(err) : ERR_PTR(-EINVAL);
1680 	}
1681 
1682 	jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1683 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1684 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1685 
1686 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1687 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1688 			inode->i_sb->s_blocksize);
1689 	if (IS_ERR(journal))
1690 		return ERR_CAST(journal);
1691 
1692 	journal->j_inode = inode;
1693 	snprintf(journal->j_devname, sizeof(journal->j_devname),
1694 		 "%pg-%lu", journal->j_dev, journal->j_inode->i_ino);
1695 	strreplace(journal->j_devname, '/', '!');
1696 	jbd2_stats_proc_init(journal);
1697 
1698 	return journal;
1699 }
1700 
1701 /*
1702  * Given a journal_t structure, initialise the various fields for
1703  * startup of a new journaling session.  We use this both when creating
1704  * a journal, and after recovering an old journal to reset it for
1705  * subsequent use.
1706  */
1707 
journal_reset(journal_t * journal)1708 static int journal_reset(journal_t *journal)
1709 {
1710 	journal_superblock_t *sb = journal->j_superblock;
1711 	unsigned long long first, last;
1712 
1713 	first = be32_to_cpu(sb->s_first);
1714 	last = be32_to_cpu(sb->s_maxlen);
1715 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1716 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1717 		       first, last);
1718 		journal_fail_superblock(journal);
1719 		return -EINVAL;
1720 	}
1721 
1722 	journal->j_first = first;
1723 	journal->j_last = last;
1724 
1725 	if (journal->j_head != 0 && journal->j_flags & JBD2_CYCLE_RECORD) {
1726 		/*
1727 		 * Disable the cycled recording mode if the journal head block
1728 		 * number is not correct.
1729 		 */
1730 		if (journal->j_head < first || journal->j_head >= last) {
1731 			printk(KERN_WARNING "JBD2: Incorrect Journal head block %lu, "
1732 			       "disable journal_cycle_record\n",
1733 			       journal->j_head);
1734 			journal->j_head = journal->j_first;
1735 		}
1736 	} else {
1737 		journal->j_head = journal->j_first;
1738 	}
1739 	journal->j_tail = journal->j_head;
1740 	journal->j_free = journal->j_last - journal->j_first;
1741 
1742 	journal->j_tail_sequence = journal->j_transaction_sequence;
1743 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1744 	journal->j_commit_request = journal->j_commit_sequence;
1745 
1746 	/*
1747 	 * Now that journal recovery is done, turn fast commits off here. This
1748 	 * way, if fast commit was enabled before the crash but if now FS has
1749 	 * disabled it, we don't enable fast commits.
1750 	 */
1751 	jbd2_clear_feature_fast_commit(journal);
1752 
1753 	/*
1754 	 * As a special case, if the on-disk copy is already marked as needing
1755 	 * no recovery (s_start == 0), then we can safely defer the superblock
1756 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1757 	 * attempting a write to a potential-readonly device.
1758 	 */
1759 	if (sb->s_start == 0) {
1760 		jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb "
1761 			"(start %ld, seq %u, errno %d)\n",
1762 			journal->j_tail, journal->j_tail_sequence,
1763 			journal->j_errno);
1764 		journal->j_flags |= JBD2_FLUSHED;
1765 	} else {
1766 		/* Lock here to make assertions happy... */
1767 		mutex_lock_io(&journal->j_checkpoint_mutex);
1768 		/*
1769 		 * Update log tail information. We use REQ_FUA since new
1770 		 * transaction will start reusing journal space and so we
1771 		 * must make sure information about current log tail is on
1772 		 * disk before that.
1773 		 */
1774 		jbd2_journal_update_sb_log_tail(journal,
1775 						journal->j_tail_sequence,
1776 						journal->j_tail, REQ_FUA);
1777 		mutex_unlock(&journal->j_checkpoint_mutex);
1778 	}
1779 	return jbd2_journal_start_thread(journal);
1780 }
1781 
1782 /*
1783  * This function expects that the caller will have locked the journal
1784  * buffer head, and will return with it unlocked
1785  */
jbd2_write_superblock(journal_t * journal,blk_opf_t write_flags)1786 static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags)
1787 {
1788 	struct buffer_head *bh = journal->j_sb_buffer;
1789 	journal_superblock_t *sb = journal->j_superblock;
1790 	int ret = 0;
1791 
1792 	/* Buffer got discarded which means block device got invalidated */
1793 	if (!buffer_mapped(bh)) {
1794 		unlock_buffer(bh);
1795 		return -EIO;
1796 	}
1797 
1798 	/*
1799 	 * Always set high priority flags to exempt from block layer's
1800 	 * QOS policies, e.g. writeback throttle.
1801 	 */
1802 	write_flags |= JBD2_JOURNAL_REQ_FLAGS;
1803 	if (!(journal->j_flags & JBD2_BARRIER))
1804 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1805 
1806 	trace_jbd2_write_superblock(journal, write_flags);
1807 
1808 	if (buffer_write_io_error(bh)) {
1809 		/*
1810 		 * Oh, dear.  A previous attempt to write the journal
1811 		 * superblock failed.  This could happen because the
1812 		 * USB device was yanked out.  Or it could happen to
1813 		 * be a transient write error and maybe the block will
1814 		 * be remapped.  Nothing we can do but to retry the
1815 		 * write and hope for the best.
1816 		 */
1817 		printk(KERN_ERR "JBD2: previous I/O error detected "
1818 		       "for journal superblock update for %s.\n",
1819 		       journal->j_devname);
1820 		clear_buffer_write_io_error(bh);
1821 		set_buffer_uptodate(bh);
1822 	}
1823 	if (jbd2_journal_has_csum_v2or3(journal))
1824 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1825 	get_bh(bh);
1826 	bh->b_end_io = end_buffer_write_sync;
1827 	submit_bh(REQ_OP_WRITE | write_flags, bh);
1828 	wait_on_buffer(bh);
1829 	if (buffer_write_io_error(bh)) {
1830 		clear_buffer_write_io_error(bh);
1831 		set_buffer_uptodate(bh);
1832 		ret = -EIO;
1833 	}
1834 	if (ret) {
1835 		printk(KERN_ERR "JBD2: I/O error when updating journal superblock for %s.\n",
1836 				journal->j_devname);
1837 		if (!is_journal_aborted(journal))
1838 			jbd2_journal_abort(journal, ret);
1839 	}
1840 
1841 	return ret;
1842 }
1843 
1844 /**
1845  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1846  * @journal: The journal to update.
1847  * @tail_tid: TID of the new transaction at the tail of the log
1848  * @tail_block: The first block of the transaction at the tail of the log
1849  * @write_flags: Flags for the journal sb write operation
1850  *
1851  * Update a journal's superblock information about log tail and write it to
1852  * disk, waiting for the IO to complete.
1853  */
jbd2_journal_update_sb_log_tail(journal_t * journal,tid_t tail_tid,unsigned long tail_block,blk_opf_t write_flags)1854 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1855 				    unsigned long tail_block,
1856 				    blk_opf_t write_flags)
1857 {
1858 	journal_superblock_t *sb = journal->j_superblock;
1859 	int ret;
1860 
1861 	if (is_journal_aborted(journal))
1862 		return -EIO;
1863 	if (jbd2_check_fs_dev_write_error(journal)) {
1864 		jbd2_journal_abort(journal, -EIO);
1865 		return -EIO;
1866 	}
1867 
1868 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1869 	jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1870 		  tail_block, tail_tid);
1871 
1872 	lock_buffer(journal->j_sb_buffer);
1873 	sb->s_sequence = cpu_to_be32(tail_tid);
1874 	sb->s_start    = cpu_to_be32(tail_block);
1875 
1876 	ret = jbd2_write_superblock(journal, write_flags);
1877 	if (ret)
1878 		goto out;
1879 
1880 	/* Log is no longer empty */
1881 	write_lock(&journal->j_state_lock);
1882 	WARN_ON(!sb->s_sequence);
1883 	journal->j_flags &= ~JBD2_FLUSHED;
1884 	write_unlock(&journal->j_state_lock);
1885 
1886 out:
1887 	return ret;
1888 }
1889 
1890 /**
1891  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1892  * @journal: The journal to update.
1893  * @write_flags: Flags for the journal sb write operation
1894  *
1895  * Update a journal's dynamic superblock fields to show that journal is empty.
1896  * Write updated superblock to disk waiting for IO to complete.
1897  */
jbd2_mark_journal_empty(journal_t * journal,blk_opf_t write_flags)1898 static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags)
1899 {
1900 	journal_superblock_t *sb = journal->j_superblock;
1901 	bool had_fast_commit = false;
1902 
1903 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1904 	lock_buffer(journal->j_sb_buffer);
1905 	if (sb->s_start == 0) {		/* Is it already empty? */
1906 		unlock_buffer(journal->j_sb_buffer);
1907 		return;
1908 	}
1909 
1910 	jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1911 		  journal->j_tail_sequence);
1912 
1913 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1914 	sb->s_start    = cpu_to_be32(0);
1915 	sb->s_head     = cpu_to_be32(journal->j_head);
1916 	if (jbd2_has_feature_fast_commit(journal)) {
1917 		/*
1918 		 * When journal is clean, no need to commit fast commit flag and
1919 		 * make file system incompatible with older kernels.
1920 		 */
1921 		jbd2_clear_feature_fast_commit(journal);
1922 		had_fast_commit = true;
1923 	}
1924 
1925 	jbd2_write_superblock(journal, write_flags);
1926 
1927 	if (had_fast_commit)
1928 		jbd2_set_feature_fast_commit(journal);
1929 
1930 	/* Log is empty */
1931 	write_lock(&journal->j_state_lock);
1932 	journal->j_flags |= JBD2_FLUSHED;
1933 	write_unlock(&journal->j_state_lock);
1934 }
1935 
1936 /**
1937  * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock)
1938  * @journal: The journal to erase.
1939  * @flags: A discard/zeroout request is sent for each physically contigous
1940  *	region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or
1941  *	JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation
1942  *	to perform.
1943  *
1944  * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes
1945  * will be explicitly written if no hardware offload is available, see
1946  * blkdev_issue_zeroout for more details.
1947  */
__jbd2_journal_erase(journal_t * journal,unsigned int flags)1948 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags)
1949 {
1950 	int err = 0;
1951 	unsigned long block, log_offset; /* logical */
1952 	unsigned long long phys_block, block_start, block_stop; /* physical */
1953 	loff_t byte_start, byte_stop, byte_count;
1954 
1955 	/* flags must be set to either discard or zeroout */
1956 	if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags ||
1957 			((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1958 			(flags & JBD2_JOURNAL_FLUSH_ZEROOUT)))
1959 		return -EINVAL;
1960 
1961 	if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1962 	    !bdev_max_discard_sectors(journal->j_dev))
1963 		return -EOPNOTSUPP;
1964 
1965 	/*
1966 	 * lookup block mapping and issue discard/zeroout for each
1967 	 * contiguous region
1968 	 */
1969 	log_offset = be32_to_cpu(journal->j_superblock->s_first);
1970 	block_start =  ~0ULL;
1971 	for (block = log_offset; block < journal->j_total_len; block++) {
1972 		err = jbd2_journal_bmap(journal, block, &phys_block);
1973 		if (err) {
1974 			pr_err("JBD2: bad block at offset %lu", block);
1975 			return err;
1976 		}
1977 
1978 		if (block_start == ~0ULL) {
1979 			block_start = phys_block;
1980 			block_stop = block_start - 1;
1981 		}
1982 
1983 		/*
1984 		 * last block not contiguous with current block,
1985 		 * process last contiguous region and return to this block on
1986 		 * next loop
1987 		 */
1988 		if (phys_block != block_stop + 1) {
1989 			block--;
1990 		} else {
1991 			block_stop++;
1992 			/*
1993 			 * if this isn't the last block of journal,
1994 			 * no need to process now because next block may also
1995 			 * be part of this contiguous region
1996 			 */
1997 			if (block != journal->j_total_len - 1)
1998 				continue;
1999 		}
2000 
2001 		/*
2002 		 * end of contiguous region or this is last block of journal,
2003 		 * take care of the region
2004 		 */
2005 		byte_start = block_start * journal->j_blocksize;
2006 		byte_stop = block_stop * journal->j_blocksize;
2007 		byte_count = (block_stop - block_start + 1) *
2008 				journal->j_blocksize;
2009 
2010 		truncate_inode_pages_range(journal->j_dev->bd_mapping,
2011 				byte_start, byte_stop);
2012 
2013 		if (flags & JBD2_JOURNAL_FLUSH_DISCARD) {
2014 			err = blkdev_issue_discard(journal->j_dev,
2015 					byte_start >> SECTOR_SHIFT,
2016 					byte_count >> SECTOR_SHIFT,
2017 					GFP_NOFS);
2018 		} else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) {
2019 			err = blkdev_issue_zeroout(journal->j_dev,
2020 					byte_start >> SECTOR_SHIFT,
2021 					byte_count >> SECTOR_SHIFT,
2022 					GFP_NOFS, 0);
2023 		}
2024 
2025 		if (unlikely(err != 0)) {
2026 			pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu",
2027 					err, block_start, block_stop);
2028 			return err;
2029 		}
2030 
2031 		/* reset start and stop after processing a region */
2032 		block_start = ~0ULL;
2033 	}
2034 
2035 	return blkdev_issue_flush(journal->j_dev);
2036 }
2037 
2038 /**
2039  * jbd2_journal_update_sb_errno() - Update error in the journal.
2040  * @journal: The journal to update.
2041  *
2042  * Update a journal's errno.  Write updated superblock to disk waiting for IO
2043  * to complete.
2044  */
jbd2_journal_update_sb_errno(journal_t * journal)2045 void jbd2_journal_update_sb_errno(journal_t *journal)
2046 {
2047 	journal_superblock_t *sb = journal->j_superblock;
2048 	int errcode;
2049 
2050 	lock_buffer(journal->j_sb_buffer);
2051 	errcode = journal->j_errno;
2052 	if (errcode == -ESHUTDOWN)
2053 		errcode = 0;
2054 	jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
2055 	sb->s_errno    = cpu_to_be32(errcode);
2056 
2057 	jbd2_write_superblock(journal, REQ_FUA);
2058 }
2059 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
2060 
2061 /**
2062  * jbd2_journal_load() - Read journal from disk.
2063  * @journal: Journal to act on.
2064  *
2065  * Given a journal_t structure which tells us which disk blocks contain
2066  * a journal, read the journal from disk to initialise the in-memory
2067  * structures.
2068  */
jbd2_journal_load(journal_t * journal)2069 int jbd2_journal_load(journal_t *journal)
2070 {
2071 	int err;
2072 	journal_superblock_t *sb = journal->j_superblock;
2073 
2074 	/*
2075 	 * Create a slab for this blocksize
2076 	 */
2077 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
2078 	if (err)
2079 		return err;
2080 
2081 	/* Let the recovery code check whether it needs to recover any
2082 	 * data from the journal. */
2083 	err = jbd2_journal_recover(journal);
2084 	if (err) {
2085 		pr_warn("JBD2: journal recovery failed\n");
2086 		return err;
2087 	}
2088 
2089 	if (journal->j_failed_commit) {
2090 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
2091 		       "is corrupt.\n", journal->j_failed_commit,
2092 		       journal->j_devname);
2093 		return -EFSCORRUPTED;
2094 	}
2095 	/*
2096 	 * clear JBD2_ABORT flag initialized in journal_init_common
2097 	 * here to update log tail information with the newest seq.
2098 	 */
2099 	journal->j_flags &= ~JBD2_ABORT;
2100 
2101 	/* OK, we've finished with the dynamic journal bits:
2102 	 * reinitialise the dynamic contents of the superblock in memory
2103 	 * and reset them on disk. */
2104 	err = journal_reset(journal);
2105 	if (err) {
2106 		pr_warn("JBD2: journal reset failed\n");
2107 		return err;
2108 	}
2109 
2110 	journal->j_flags |= JBD2_LOADED;
2111 	return 0;
2112 }
2113 
2114 /**
2115  * jbd2_journal_destroy() - Release a journal_t structure.
2116  * @journal: Journal to act on.
2117  *
2118  * Release a journal_t structure once it is no longer in use by the
2119  * journaled object.
2120  * Return <0 if we couldn't clean up the journal.
2121  */
jbd2_journal_destroy(journal_t * journal)2122 int jbd2_journal_destroy(journal_t *journal)
2123 {
2124 	int err = 0;
2125 
2126 	/* Wait for the commit thread to wake up and die. */
2127 	journal_kill_thread(journal);
2128 
2129 	/* Force a final log commit */
2130 	if (journal->j_running_transaction)
2131 		jbd2_journal_commit_transaction(journal);
2132 
2133 	/* Force any old transactions to disk */
2134 
2135 	/* Totally anal locking here... */
2136 	spin_lock(&journal->j_list_lock);
2137 	while (journal->j_checkpoint_transactions != NULL) {
2138 		spin_unlock(&journal->j_list_lock);
2139 		mutex_lock_io(&journal->j_checkpoint_mutex);
2140 		err = jbd2_log_do_checkpoint(journal);
2141 		mutex_unlock(&journal->j_checkpoint_mutex);
2142 		/*
2143 		 * If checkpointing failed, just free the buffers to avoid
2144 		 * looping forever
2145 		 */
2146 		if (err) {
2147 			jbd2_journal_destroy_checkpoint(journal);
2148 			spin_lock(&journal->j_list_lock);
2149 			break;
2150 		}
2151 		spin_lock(&journal->j_list_lock);
2152 	}
2153 
2154 	J_ASSERT(journal->j_running_transaction == NULL);
2155 	J_ASSERT(journal->j_committing_transaction == NULL);
2156 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
2157 	spin_unlock(&journal->j_list_lock);
2158 
2159 	/*
2160 	 * OK, all checkpoint transactions have been checked, now check the
2161 	 * writeback errseq of fs dev and abort the journal if some buffer
2162 	 * failed to write back to the original location, otherwise the
2163 	 * filesystem may become inconsistent.
2164 	 */
2165 	if (!is_journal_aborted(journal) &&
2166 	    jbd2_check_fs_dev_write_error(journal))
2167 		jbd2_journal_abort(journal, -EIO);
2168 
2169 	if (journal->j_sb_buffer) {
2170 		if (!is_journal_aborted(journal)) {
2171 			mutex_lock_io(&journal->j_checkpoint_mutex);
2172 
2173 			write_lock(&journal->j_state_lock);
2174 			journal->j_tail_sequence =
2175 				++journal->j_transaction_sequence;
2176 			write_unlock(&journal->j_state_lock);
2177 
2178 			jbd2_mark_journal_empty(journal, REQ_PREFLUSH | REQ_FUA);
2179 			mutex_unlock(&journal->j_checkpoint_mutex);
2180 		} else
2181 			err = -EIO;
2182 		brelse(journal->j_sb_buffer);
2183 	}
2184 
2185 	if (journal->j_shrinker) {
2186 		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2187 		shrinker_free(journal->j_shrinker);
2188 	}
2189 	if (journal->j_proc_entry)
2190 		jbd2_stats_proc_exit(journal);
2191 	iput(journal->j_inode);
2192 	if (journal->j_revoke)
2193 		jbd2_journal_destroy_revoke(journal);
2194 	if (journal->j_chksum_driver)
2195 		crypto_free_shash(journal->j_chksum_driver);
2196 	kfree(journal->j_fc_wbuf);
2197 	kfree(journal->j_wbuf);
2198 	kfree(journal);
2199 
2200 	return err;
2201 }
2202 
2203 
2204 /**
2205  * jbd2_journal_check_used_features() - Check if features specified are used.
2206  * @journal: Journal to check.
2207  * @compat: bitmask of compatible features
2208  * @ro: bitmask of features that force read-only mount
2209  * @incompat: bitmask of incompatible features
2210  *
2211  * Check whether the journal uses all of a given set of
2212  * features.  Return true (non-zero) if it does.
2213  **/
2214 
jbd2_journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2215 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2216 				 unsigned long ro, unsigned long incompat)
2217 {
2218 	journal_superblock_t *sb;
2219 
2220 	if (!compat && !ro && !incompat)
2221 		return 1;
2222 	if (!jbd2_format_support_feature(journal))
2223 		return 0;
2224 
2225 	sb = journal->j_superblock;
2226 
2227 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2228 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2229 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2230 		return 1;
2231 
2232 	return 0;
2233 }
2234 
2235 /**
2236  * jbd2_journal_check_available_features() - Check feature set in journalling layer
2237  * @journal: Journal to check.
2238  * @compat: bitmask of compatible features
2239  * @ro: bitmask of features that force read-only mount
2240  * @incompat: bitmask of incompatible features
2241  *
2242  * Check whether the journaling code supports the use of
2243  * all of a given set of features on this journal.  Return true
2244  * (non-zero) if it can. */
2245 
jbd2_journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2246 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2247 				      unsigned long ro, unsigned long incompat)
2248 {
2249 	if (!compat && !ro && !incompat)
2250 		return 1;
2251 
2252 	if (!jbd2_format_support_feature(journal))
2253 		return 0;
2254 
2255 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2256 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2257 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2258 		return 1;
2259 
2260 	return 0;
2261 }
2262 
2263 static int
jbd2_journal_initialize_fast_commit(journal_t * journal)2264 jbd2_journal_initialize_fast_commit(journal_t *journal)
2265 {
2266 	journal_superblock_t *sb = journal->j_superblock;
2267 	unsigned long long num_fc_blks;
2268 
2269 	num_fc_blks = jbd2_journal_get_num_fc_blks(sb);
2270 	if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2271 		return -ENOSPC;
2272 
2273 	/* Are we called twice? */
2274 	WARN_ON(journal->j_fc_wbuf != NULL);
2275 	journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2276 				sizeof(struct buffer_head *), GFP_KERNEL);
2277 	if (!journal->j_fc_wbuf)
2278 		return -ENOMEM;
2279 
2280 	journal->j_fc_wbufsize = num_fc_blks;
2281 	journal->j_fc_last = journal->j_last;
2282 	journal->j_last = journal->j_fc_last - num_fc_blks;
2283 	journal->j_fc_first = journal->j_last + 1;
2284 	journal->j_fc_off = 0;
2285 	journal->j_free = journal->j_last - journal->j_first;
2286 
2287 	return 0;
2288 }
2289 
2290 /**
2291  * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2292  * @journal: Journal to act on.
2293  * @compat: bitmask of compatible features
2294  * @ro: bitmask of features that force read-only mount
2295  * @incompat: bitmask of incompatible features
2296  *
2297  * Mark a given journal feature as present on the
2298  * superblock.  Returns true if the requested features could be set.
2299  *
2300  */
2301 
jbd2_journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2302 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2303 			  unsigned long ro, unsigned long incompat)
2304 {
2305 #define INCOMPAT_FEATURE_ON(f) \
2306 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2307 #define COMPAT_FEATURE_ON(f) \
2308 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2309 	journal_superblock_t *sb;
2310 
2311 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2312 		return 1;
2313 
2314 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2315 		return 0;
2316 
2317 	/* If enabling v2 checksums, turn on v3 instead */
2318 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2319 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2320 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2321 	}
2322 
2323 	/* Asking for checksumming v3 and v1?  Only give them v3. */
2324 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2325 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2326 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2327 
2328 	jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2329 		  compat, ro, incompat);
2330 
2331 	sb = journal->j_superblock;
2332 
2333 	if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2334 		if (jbd2_journal_initialize_fast_commit(journal)) {
2335 			pr_err("JBD2: Cannot enable fast commits.\n");
2336 			return 0;
2337 		}
2338 	}
2339 
2340 	/* Load the checksum driver if necessary */
2341 	if ((journal->j_chksum_driver == NULL) &&
2342 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2343 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2344 		if (IS_ERR(journal->j_chksum_driver)) {
2345 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2346 			journal->j_chksum_driver = NULL;
2347 			return 0;
2348 		}
2349 		/* Precompute checksum seed for all metadata */
2350 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2351 						   sizeof(sb->s_uuid));
2352 	}
2353 
2354 	lock_buffer(journal->j_sb_buffer);
2355 
2356 	/* If enabling v3 checksums, update superblock */
2357 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2358 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2359 		sb->s_feature_compat &=
2360 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2361 	}
2362 
2363 	/* If enabling v1 checksums, downgrade superblock */
2364 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2365 		sb->s_feature_incompat &=
2366 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2367 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
2368 
2369 	sb->s_feature_compat    |= cpu_to_be32(compat);
2370 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
2371 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
2372 	unlock_buffer(journal->j_sb_buffer);
2373 	jbd2_journal_init_transaction_limits(journal);
2374 
2375 	return 1;
2376 #undef COMPAT_FEATURE_ON
2377 #undef INCOMPAT_FEATURE_ON
2378 }
2379 
2380 /*
2381  * jbd2_journal_clear_features() - Clear a given journal feature in the
2382  * 				    superblock
2383  * @journal: Journal to act on.
2384  * @compat: bitmask of compatible features
2385  * @ro: bitmask of features that force read-only mount
2386  * @incompat: bitmask of incompatible features
2387  *
2388  * Clear a given journal feature as present on the
2389  * superblock.
2390  */
jbd2_journal_clear_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2391 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2392 				unsigned long ro, unsigned long incompat)
2393 {
2394 	journal_superblock_t *sb;
2395 
2396 	jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2397 		  compat, ro, incompat);
2398 
2399 	sb = journal->j_superblock;
2400 
2401 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
2402 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2403 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
2404 	jbd2_journal_init_transaction_limits(journal);
2405 }
2406 EXPORT_SYMBOL(jbd2_journal_clear_features);
2407 
2408 /**
2409  * jbd2_journal_flush() - Flush journal
2410  * @journal: Journal to act on.
2411  * @flags: optional operation on the journal blocks after the flush (see below)
2412  *
2413  * Flush all data for a given journal to disk and empty the journal.
2414  * Filesystems can use this when remounting readonly to ensure that
2415  * recovery does not need to happen on remount. Optionally, a discard or zeroout
2416  * can be issued on the journal blocks after flushing.
2417  *
2418  * flags:
2419  *	JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks
2420  *	JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks
2421  */
jbd2_journal_flush(journal_t * journal,unsigned int flags)2422 int jbd2_journal_flush(journal_t *journal, unsigned int flags)
2423 {
2424 	int err = 0;
2425 	transaction_t *transaction = NULL;
2426 
2427 	write_lock(&journal->j_state_lock);
2428 
2429 	/* Force everything buffered to the log... */
2430 	if (journal->j_running_transaction) {
2431 		transaction = journal->j_running_transaction;
2432 		__jbd2_log_start_commit(journal, transaction->t_tid);
2433 	} else if (journal->j_committing_transaction)
2434 		transaction = journal->j_committing_transaction;
2435 
2436 	/* Wait for the log commit to complete... */
2437 	if (transaction) {
2438 		tid_t tid = transaction->t_tid;
2439 
2440 		write_unlock(&journal->j_state_lock);
2441 		jbd2_log_wait_commit(journal, tid);
2442 	} else {
2443 		write_unlock(&journal->j_state_lock);
2444 	}
2445 
2446 	/* ...and flush everything in the log out to disk. */
2447 	spin_lock(&journal->j_list_lock);
2448 	while (!err && journal->j_checkpoint_transactions != NULL) {
2449 		spin_unlock(&journal->j_list_lock);
2450 		mutex_lock_io(&journal->j_checkpoint_mutex);
2451 		err = jbd2_log_do_checkpoint(journal);
2452 		mutex_unlock(&journal->j_checkpoint_mutex);
2453 		spin_lock(&journal->j_list_lock);
2454 	}
2455 	spin_unlock(&journal->j_list_lock);
2456 
2457 	if (is_journal_aborted(journal))
2458 		return -EIO;
2459 
2460 	mutex_lock_io(&journal->j_checkpoint_mutex);
2461 	if (!err) {
2462 		err = jbd2_cleanup_journal_tail(journal);
2463 		if (err < 0) {
2464 			mutex_unlock(&journal->j_checkpoint_mutex);
2465 			goto out;
2466 		}
2467 		err = 0;
2468 	}
2469 
2470 	/* Finally, mark the journal as really needing no recovery.
2471 	 * This sets s_start==0 in the underlying superblock, which is
2472 	 * the magic code for a fully-recovered superblock.  Any future
2473 	 * commits of data to the journal will restore the current
2474 	 * s_start value. */
2475 	jbd2_mark_journal_empty(journal, REQ_FUA);
2476 
2477 	if (flags)
2478 		err = __jbd2_journal_erase(journal, flags);
2479 
2480 	mutex_unlock(&journal->j_checkpoint_mutex);
2481 	write_lock(&journal->j_state_lock);
2482 	J_ASSERT(!journal->j_running_transaction);
2483 	J_ASSERT(!journal->j_committing_transaction);
2484 	J_ASSERT(!journal->j_checkpoint_transactions);
2485 	J_ASSERT(journal->j_head == journal->j_tail);
2486 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2487 	write_unlock(&journal->j_state_lock);
2488 out:
2489 	return err;
2490 }
2491 
2492 /**
2493  * jbd2_journal_wipe() - Wipe journal contents
2494  * @journal: Journal to act on.
2495  * @write: flag (see below)
2496  *
2497  * Wipe out all of the contents of a journal, safely.  This will produce
2498  * a warning if the journal contains any valid recovery information.
2499  * Must be called between journal_init_*() and jbd2_journal_load().
2500  *
2501  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2502  * we merely suppress recovery.
2503  */
2504 
jbd2_journal_wipe(journal_t * journal,int write)2505 int jbd2_journal_wipe(journal_t *journal, int write)
2506 {
2507 	int err;
2508 
2509 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2510 
2511 	if (!journal->j_tail)
2512 		return 0;
2513 
2514 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2515 		write ? "Clearing" : "Ignoring");
2516 
2517 	err = jbd2_journal_skip_recovery(journal);
2518 	if (write) {
2519 		/* Lock to make assertions happy... */
2520 		mutex_lock_io(&journal->j_checkpoint_mutex);
2521 		jbd2_mark_journal_empty(journal, REQ_FUA);
2522 		mutex_unlock(&journal->j_checkpoint_mutex);
2523 	}
2524 
2525 	return err;
2526 }
2527 
2528 /**
2529  * jbd2_journal_abort () - Shutdown the journal immediately.
2530  * @journal: the journal to shutdown.
2531  * @errno:   an error number to record in the journal indicating
2532  *           the reason for the shutdown.
2533  *
2534  * Perform a complete, immediate shutdown of the ENTIRE
2535  * journal (not of a single transaction).  This operation cannot be
2536  * undone without closing and reopening the journal.
2537  *
2538  * The jbd2_journal_abort function is intended to support higher level error
2539  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2540  * mode.
2541  *
2542  * Journal abort has very specific semantics.  Any existing dirty,
2543  * unjournaled buffers in the main filesystem will still be written to
2544  * disk by bdflush, but the journaling mechanism will be suspended
2545  * immediately and no further transaction commits will be honoured.
2546  *
2547  * Any dirty, journaled buffers will be written back to disk without
2548  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2549  * filesystem, but we _do_ attempt to leave as much data as possible
2550  * behind for fsck to use for cleanup.
2551  *
2552  * Any attempt to get a new transaction handle on a journal which is in
2553  * ABORT state will just result in an -EROFS error return.  A
2554  * jbd2_journal_stop on an existing handle will return -EIO if we have
2555  * entered abort state during the update.
2556  *
2557  * Recursive transactions are not disturbed by journal abort until the
2558  * final jbd2_journal_stop, which will receive the -EIO error.
2559  *
2560  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2561  * which will be recorded (if possible) in the journal superblock.  This
2562  * allows a client to record failure conditions in the middle of a
2563  * transaction without having to complete the transaction to record the
2564  * failure to disk.  ext3_error, for example, now uses this
2565  * functionality.
2566  *
2567  */
2568 
jbd2_journal_abort(journal_t * journal,int errno)2569 void jbd2_journal_abort(journal_t *journal, int errno)
2570 {
2571 	transaction_t *transaction;
2572 
2573 	/*
2574 	 * Lock the aborting procedure until everything is done, this avoid
2575 	 * races between filesystem's error handling flow (e.g. ext4_abort()),
2576 	 * ensure panic after the error info is written into journal's
2577 	 * superblock.
2578 	 */
2579 	mutex_lock(&journal->j_abort_mutex);
2580 	/*
2581 	 * ESHUTDOWN always takes precedence because a file system check
2582 	 * caused by any other journal abort error is not required after
2583 	 * a shutdown triggered.
2584 	 */
2585 	write_lock(&journal->j_state_lock);
2586 	if (journal->j_flags & JBD2_ABORT) {
2587 		int old_errno = journal->j_errno;
2588 
2589 		write_unlock(&journal->j_state_lock);
2590 		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2591 			journal->j_errno = errno;
2592 			jbd2_journal_update_sb_errno(journal);
2593 		}
2594 		mutex_unlock(&journal->j_abort_mutex);
2595 		return;
2596 	}
2597 
2598 	/*
2599 	 * Mark the abort as occurred and start current running transaction
2600 	 * to release all journaled buffer.
2601 	 */
2602 	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2603 
2604 	journal->j_flags |= JBD2_ABORT;
2605 	journal->j_errno = errno;
2606 	transaction = journal->j_running_transaction;
2607 	if (transaction)
2608 		__jbd2_log_start_commit(journal, transaction->t_tid);
2609 	write_unlock(&journal->j_state_lock);
2610 
2611 	/*
2612 	 * Record errno to the journal super block, so that fsck and jbd2
2613 	 * layer could realise that a filesystem check is needed.
2614 	 */
2615 	jbd2_journal_update_sb_errno(journal);
2616 	mutex_unlock(&journal->j_abort_mutex);
2617 }
2618 
2619 /**
2620  * jbd2_journal_errno() - returns the journal's error state.
2621  * @journal: journal to examine.
2622  *
2623  * This is the errno number set with jbd2_journal_abort(), the last
2624  * time the journal was mounted - if the journal was stopped
2625  * without calling abort this will be 0.
2626  *
2627  * If the journal has been aborted on this mount time -EROFS will
2628  * be returned.
2629  */
jbd2_journal_errno(journal_t * journal)2630 int jbd2_journal_errno(journal_t *journal)
2631 {
2632 	int err;
2633 
2634 	read_lock(&journal->j_state_lock);
2635 	if (journal->j_flags & JBD2_ABORT)
2636 		err = -EROFS;
2637 	else
2638 		err = journal->j_errno;
2639 	read_unlock(&journal->j_state_lock);
2640 	return err;
2641 }
2642 
2643 /**
2644  * jbd2_journal_clear_err() - clears the journal's error state
2645  * @journal: journal to act on.
2646  *
2647  * An error must be cleared or acked to take a FS out of readonly
2648  * mode.
2649  */
jbd2_journal_clear_err(journal_t * journal)2650 int jbd2_journal_clear_err(journal_t *journal)
2651 {
2652 	int err = 0;
2653 
2654 	write_lock(&journal->j_state_lock);
2655 	if (journal->j_flags & JBD2_ABORT)
2656 		err = -EROFS;
2657 	else
2658 		journal->j_errno = 0;
2659 	write_unlock(&journal->j_state_lock);
2660 	return err;
2661 }
2662 
2663 /**
2664  * jbd2_journal_ack_err() - Ack journal err.
2665  * @journal: journal to act on.
2666  *
2667  * An error must be cleared or acked to take a FS out of readonly
2668  * mode.
2669  */
jbd2_journal_ack_err(journal_t * journal)2670 void jbd2_journal_ack_err(journal_t *journal)
2671 {
2672 	write_lock(&journal->j_state_lock);
2673 	if (journal->j_errno)
2674 		journal->j_flags |= JBD2_ACK_ERR;
2675 	write_unlock(&journal->j_state_lock);
2676 }
2677 
jbd2_journal_blocks_per_page(struct inode * inode)2678 int jbd2_journal_blocks_per_page(struct inode *inode)
2679 {
2680 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2681 }
2682 
2683 /*
2684  * helper functions to deal with 32 or 64bit block numbers.
2685  */
journal_tag_bytes(journal_t * journal)2686 size_t journal_tag_bytes(journal_t *journal)
2687 {
2688 	size_t sz;
2689 
2690 	if (jbd2_has_feature_csum3(journal))
2691 		return sizeof(journal_block_tag3_t);
2692 
2693 	sz = sizeof(journal_block_tag_t);
2694 
2695 	if (jbd2_has_feature_csum2(journal))
2696 		sz += sizeof(__u16);
2697 
2698 	if (jbd2_has_feature_64bit(journal))
2699 		return sz;
2700 	else
2701 		return sz - sizeof(__u32);
2702 }
2703 
2704 /*
2705  * JBD memory management
2706  *
2707  * These functions are used to allocate block-sized chunks of memory
2708  * used for making copies of buffer_head data.  Very often it will be
2709  * page-sized chunks of data, but sometimes it will be in
2710  * sub-page-size chunks.  (For example, 16k pages on Power systems
2711  * with a 4k block file system.)  For blocks smaller than a page, we
2712  * use a SLAB allocator.  There are slab caches for each block size,
2713  * which are allocated at mount time, if necessary, and we only free
2714  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2715  * this reason we don't need to a mutex to protect access to
2716  * jbd2_slab[] allocating or releasing memory; only in
2717  * jbd2_journal_create_slab().
2718  */
2719 #define JBD2_MAX_SLABS 8
2720 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2721 
2722 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2723 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2724 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2725 };
2726 
2727 
jbd2_journal_destroy_slabs(void)2728 static void jbd2_journal_destroy_slabs(void)
2729 {
2730 	int i;
2731 
2732 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2733 		kmem_cache_destroy(jbd2_slab[i]);
2734 		jbd2_slab[i] = NULL;
2735 	}
2736 }
2737 
jbd2_journal_create_slab(size_t size)2738 static int jbd2_journal_create_slab(size_t size)
2739 {
2740 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2741 	int i = order_base_2(size) - 10;
2742 	size_t slab_size;
2743 
2744 	if (size == PAGE_SIZE)
2745 		return 0;
2746 
2747 	if (i >= JBD2_MAX_SLABS)
2748 		return -EINVAL;
2749 
2750 	if (unlikely(i < 0))
2751 		i = 0;
2752 	mutex_lock(&jbd2_slab_create_mutex);
2753 	if (jbd2_slab[i]) {
2754 		mutex_unlock(&jbd2_slab_create_mutex);
2755 		return 0;	/* Already created */
2756 	}
2757 
2758 	slab_size = 1 << (i+10);
2759 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2760 					 slab_size, 0, NULL);
2761 	mutex_unlock(&jbd2_slab_create_mutex);
2762 	if (!jbd2_slab[i]) {
2763 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2764 		return -ENOMEM;
2765 	}
2766 	return 0;
2767 }
2768 
get_slab(size_t size)2769 static struct kmem_cache *get_slab(size_t size)
2770 {
2771 	int i = order_base_2(size) - 10;
2772 
2773 	BUG_ON(i >= JBD2_MAX_SLABS);
2774 	if (unlikely(i < 0))
2775 		i = 0;
2776 	BUG_ON(jbd2_slab[i] == NULL);
2777 	return jbd2_slab[i];
2778 }
2779 
jbd2_alloc(size_t size,gfp_t flags)2780 void *jbd2_alloc(size_t size, gfp_t flags)
2781 {
2782 	void *ptr;
2783 
2784 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2785 
2786 	if (size < PAGE_SIZE)
2787 		ptr = kmem_cache_alloc(get_slab(size), flags);
2788 	else
2789 		ptr = (void *)__get_free_pages(flags, get_order(size));
2790 
2791 	/* Check alignment; SLUB has gotten this wrong in the past,
2792 	 * and this can lead to user data corruption! */
2793 	BUG_ON(((unsigned long) ptr) & (size-1));
2794 
2795 	return ptr;
2796 }
2797 
jbd2_free(void * ptr,size_t size)2798 void jbd2_free(void *ptr, size_t size)
2799 {
2800 	if (size < PAGE_SIZE)
2801 		kmem_cache_free(get_slab(size), ptr);
2802 	else
2803 		free_pages((unsigned long)ptr, get_order(size));
2804 };
2805 
2806 /*
2807  * Journal_head storage management
2808  */
2809 static struct kmem_cache *jbd2_journal_head_cache;
2810 #ifdef CONFIG_JBD2_DEBUG
2811 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2812 #endif
2813 
jbd2_journal_init_journal_head_cache(void)2814 static int __init jbd2_journal_init_journal_head_cache(void)
2815 {
2816 	J_ASSERT(!jbd2_journal_head_cache);
2817 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2818 				sizeof(struct journal_head),
2819 				0,		/* offset */
2820 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2821 				NULL);		/* ctor */
2822 	if (!jbd2_journal_head_cache) {
2823 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2824 		return -ENOMEM;
2825 	}
2826 	return 0;
2827 }
2828 
jbd2_journal_destroy_journal_head_cache(void)2829 static void jbd2_journal_destroy_journal_head_cache(void)
2830 {
2831 	kmem_cache_destroy(jbd2_journal_head_cache);
2832 	jbd2_journal_head_cache = NULL;
2833 }
2834 
2835 /*
2836  * journal_head splicing and dicing
2837  */
journal_alloc_journal_head(void)2838 static struct journal_head *journal_alloc_journal_head(void)
2839 {
2840 	struct journal_head *ret;
2841 
2842 #ifdef CONFIG_JBD2_DEBUG
2843 	atomic_inc(&nr_journal_heads);
2844 #endif
2845 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2846 	if (!ret) {
2847 		jbd2_debug(1, "out of memory for journal_head\n");
2848 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2849 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2850 				GFP_NOFS | __GFP_NOFAIL);
2851 	}
2852 	spin_lock_init(&ret->b_state_lock);
2853 	return ret;
2854 }
2855 
journal_free_journal_head(struct journal_head * jh)2856 static void journal_free_journal_head(struct journal_head *jh)
2857 {
2858 #ifdef CONFIG_JBD2_DEBUG
2859 	atomic_dec(&nr_journal_heads);
2860 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2861 #endif
2862 	kmem_cache_free(jbd2_journal_head_cache, jh);
2863 }
2864 
2865 /*
2866  * A journal_head is attached to a buffer_head whenever JBD has an
2867  * interest in the buffer.
2868  *
2869  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2870  * is set.  This bit is tested in core kernel code where we need to take
2871  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2872  * there.
2873  *
2874  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2875  *
2876  * When a buffer has its BH_JBD bit set it is immune from being released by
2877  * core kernel code, mainly via ->b_count.
2878  *
2879  * A journal_head is detached from its buffer_head when the journal_head's
2880  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2881  * transaction (b_cp_transaction) hold their references to b_jcount.
2882  *
2883  * Various places in the kernel want to attach a journal_head to a buffer_head
2884  * _before_ attaching the journal_head to a transaction.  To protect the
2885  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2886  * journal_head's b_jcount refcount by one.  The caller must call
2887  * jbd2_journal_put_journal_head() to undo this.
2888  *
2889  * So the typical usage would be:
2890  *
2891  *	(Attach a journal_head if needed.  Increments b_jcount)
2892  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2893  *	...
2894  *      (Get another reference for transaction)
2895  *	jbd2_journal_grab_journal_head(bh);
2896  *	jh->b_transaction = xxx;
2897  *	(Put original reference)
2898  *	jbd2_journal_put_journal_head(jh);
2899  */
2900 
2901 /*
2902  * Give a buffer_head a journal_head.
2903  *
2904  * May sleep.
2905  */
jbd2_journal_add_journal_head(struct buffer_head * bh)2906 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2907 {
2908 	struct journal_head *jh;
2909 	struct journal_head *new_jh = NULL;
2910 
2911 repeat:
2912 	if (!buffer_jbd(bh))
2913 		new_jh = journal_alloc_journal_head();
2914 
2915 	jbd_lock_bh_journal_head(bh);
2916 	if (buffer_jbd(bh)) {
2917 		jh = bh2jh(bh);
2918 	} else {
2919 		J_ASSERT_BH(bh,
2920 			(atomic_read(&bh->b_count) > 0) ||
2921 			(bh->b_folio && bh->b_folio->mapping));
2922 
2923 		if (!new_jh) {
2924 			jbd_unlock_bh_journal_head(bh);
2925 			goto repeat;
2926 		}
2927 
2928 		jh = new_jh;
2929 		new_jh = NULL;		/* We consumed it */
2930 		set_buffer_jbd(bh);
2931 		bh->b_private = jh;
2932 		jh->b_bh = bh;
2933 		get_bh(bh);
2934 		BUFFER_TRACE(bh, "added journal_head");
2935 	}
2936 	jh->b_jcount++;
2937 	jbd_unlock_bh_journal_head(bh);
2938 	if (new_jh)
2939 		journal_free_journal_head(new_jh);
2940 	return bh->b_private;
2941 }
2942 
2943 /*
2944  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2945  * having a journal_head, return NULL
2946  */
jbd2_journal_grab_journal_head(struct buffer_head * bh)2947 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2948 {
2949 	struct journal_head *jh = NULL;
2950 
2951 	jbd_lock_bh_journal_head(bh);
2952 	if (buffer_jbd(bh)) {
2953 		jh = bh2jh(bh);
2954 		jh->b_jcount++;
2955 	}
2956 	jbd_unlock_bh_journal_head(bh);
2957 	return jh;
2958 }
2959 EXPORT_SYMBOL(jbd2_journal_grab_journal_head);
2960 
__journal_remove_journal_head(struct buffer_head * bh)2961 static void __journal_remove_journal_head(struct buffer_head *bh)
2962 {
2963 	struct journal_head *jh = bh2jh(bh);
2964 
2965 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2966 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2967 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2968 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2969 	J_ASSERT_BH(bh, buffer_jbd(bh));
2970 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2971 	BUFFER_TRACE(bh, "remove journal_head");
2972 
2973 	/* Unlink before dropping the lock */
2974 	bh->b_private = NULL;
2975 	jh->b_bh = NULL;	/* debug, really */
2976 	clear_buffer_jbd(bh);
2977 }
2978 
journal_release_journal_head(struct journal_head * jh,size_t b_size)2979 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2980 {
2981 	if (jh->b_frozen_data) {
2982 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2983 		jbd2_free(jh->b_frozen_data, b_size);
2984 	}
2985 	if (jh->b_committed_data) {
2986 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2987 		jbd2_free(jh->b_committed_data, b_size);
2988 	}
2989 	journal_free_journal_head(jh);
2990 }
2991 
2992 /*
2993  * Drop a reference on the passed journal_head.  If it fell to zero then
2994  * release the journal_head from the buffer_head.
2995  */
jbd2_journal_put_journal_head(struct journal_head * jh)2996 void jbd2_journal_put_journal_head(struct journal_head *jh)
2997 {
2998 	struct buffer_head *bh = jh2bh(jh);
2999 
3000 	jbd_lock_bh_journal_head(bh);
3001 	J_ASSERT_JH(jh, jh->b_jcount > 0);
3002 	--jh->b_jcount;
3003 	if (!jh->b_jcount) {
3004 		__journal_remove_journal_head(bh);
3005 		jbd_unlock_bh_journal_head(bh);
3006 		journal_release_journal_head(jh, bh->b_size);
3007 		__brelse(bh);
3008 	} else {
3009 		jbd_unlock_bh_journal_head(bh);
3010 	}
3011 }
3012 EXPORT_SYMBOL(jbd2_journal_put_journal_head);
3013 
3014 /*
3015  * Initialize jbd inode head
3016  */
jbd2_journal_init_jbd_inode(struct jbd2_inode * jinode,struct inode * inode)3017 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
3018 {
3019 	jinode->i_transaction = NULL;
3020 	jinode->i_next_transaction = NULL;
3021 	jinode->i_vfs_inode = inode;
3022 	jinode->i_flags = 0;
3023 	jinode->i_dirty_start = 0;
3024 	jinode->i_dirty_end = 0;
3025 	INIT_LIST_HEAD(&jinode->i_list);
3026 }
3027 
3028 /*
3029  * Function to be called before we start removing inode from memory (i.e.,
3030  * clear_inode() is a fine place to be called from). It removes inode from
3031  * transaction's lists.
3032  */
jbd2_journal_release_jbd_inode(journal_t * journal,struct jbd2_inode * jinode)3033 void jbd2_journal_release_jbd_inode(journal_t *journal,
3034 				    struct jbd2_inode *jinode)
3035 {
3036 	if (!journal)
3037 		return;
3038 restart:
3039 	spin_lock(&journal->j_list_lock);
3040 	/* Is commit writing out inode - we have to wait */
3041 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
3042 		wait_queue_head_t *wq;
3043 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
3044 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
3045 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
3046 		spin_unlock(&journal->j_list_lock);
3047 		schedule();
3048 		finish_wait(wq, &wait.wq_entry);
3049 		goto restart;
3050 	}
3051 
3052 	if (jinode->i_transaction) {
3053 		list_del(&jinode->i_list);
3054 		jinode->i_transaction = NULL;
3055 	}
3056 	spin_unlock(&journal->j_list_lock);
3057 }
3058 
3059 
3060 #ifdef CONFIG_PROC_FS
3061 
3062 #define JBD2_STATS_PROC_NAME "fs/jbd2"
3063 
jbd2_create_jbd_stats_proc_entry(void)3064 static void __init jbd2_create_jbd_stats_proc_entry(void)
3065 {
3066 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
3067 }
3068 
jbd2_remove_jbd_stats_proc_entry(void)3069 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
3070 {
3071 	if (proc_jbd2_stats)
3072 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
3073 }
3074 
3075 #else
3076 
3077 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
3078 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
3079 
3080 #endif
3081 
3082 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3083 
jbd2_journal_init_inode_cache(void)3084 static int __init jbd2_journal_init_inode_cache(void)
3085 {
3086 	J_ASSERT(!jbd2_inode_cache);
3087 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3088 	if (!jbd2_inode_cache) {
3089 		pr_emerg("JBD2: failed to create inode cache\n");
3090 		return -ENOMEM;
3091 	}
3092 	return 0;
3093 }
3094 
jbd2_journal_init_handle_cache(void)3095 static int __init jbd2_journal_init_handle_cache(void)
3096 {
3097 	J_ASSERT(!jbd2_handle_cache);
3098 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3099 	if (!jbd2_handle_cache) {
3100 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3101 		return -ENOMEM;
3102 	}
3103 	return 0;
3104 }
3105 
jbd2_journal_destroy_inode_cache(void)3106 static void jbd2_journal_destroy_inode_cache(void)
3107 {
3108 	kmem_cache_destroy(jbd2_inode_cache);
3109 	jbd2_inode_cache = NULL;
3110 }
3111 
jbd2_journal_destroy_handle_cache(void)3112 static void jbd2_journal_destroy_handle_cache(void)
3113 {
3114 	kmem_cache_destroy(jbd2_handle_cache);
3115 	jbd2_handle_cache = NULL;
3116 }
3117 
3118 /*
3119  * Module startup and shutdown
3120  */
3121 
journal_init_caches(void)3122 static int __init journal_init_caches(void)
3123 {
3124 	int ret;
3125 
3126 	ret = jbd2_journal_init_revoke_record_cache();
3127 	if (ret == 0)
3128 		ret = jbd2_journal_init_revoke_table_cache();
3129 	if (ret == 0)
3130 		ret = jbd2_journal_init_journal_head_cache();
3131 	if (ret == 0)
3132 		ret = jbd2_journal_init_handle_cache();
3133 	if (ret == 0)
3134 		ret = jbd2_journal_init_inode_cache();
3135 	if (ret == 0)
3136 		ret = jbd2_journal_init_transaction_cache();
3137 	return ret;
3138 }
3139 
jbd2_journal_destroy_caches(void)3140 static void jbd2_journal_destroy_caches(void)
3141 {
3142 	jbd2_journal_destroy_revoke_record_cache();
3143 	jbd2_journal_destroy_revoke_table_cache();
3144 	jbd2_journal_destroy_journal_head_cache();
3145 	jbd2_journal_destroy_handle_cache();
3146 	jbd2_journal_destroy_inode_cache();
3147 	jbd2_journal_destroy_transaction_cache();
3148 	jbd2_journal_destroy_slabs();
3149 }
3150 
journal_init(void)3151 static int __init journal_init(void)
3152 {
3153 	int ret;
3154 
3155 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3156 
3157 	ret = journal_init_caches();
3158 	if (ret == 0) {
3159 		jbd2_create_jbd_stats_proc_entry();
3160 	} else {
3161 		jbd2_journal_destroy_caches();
3162 	}
3163 	return ret;
3164 }
3165 
journal_exit(void)3166 static void __exit journal_exit(void)
3167 {
3168 #ifdef CONFIG_JBD2_DEBUG
3169 	int n = atomic_read(&nr_journal_heads);
3170 	if (n)
3171 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3172 #endif
3173 	jbd2_remove_jbd_stats_proc_entry();
3174 	jbd2_journal_destroy_caches();
3175 }
3176 
3177 MODULE_DESCRIPTION("Generic filesystem journal-writing module");
3178 MODULE_LICENSE("GPL");
3179 module_init(journal_init);
3180 module_exit(journal_exit);
3181 
3182