1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/journal.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem journal-writing code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates. This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
15 *
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
20 */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 static ushort jbd2_journal_enable_debug __read_mostly;
53
54 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
55 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
56 #endif
57
58 EXPORT_SYMBOL(jbd2_journal_extend);
59 EXPORT_SYMBOL(jbd2_journal_stop);
60 EXPORT_SYMBOL(jbd2_journal_lock_updates);
61 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
62 EXPORT_SYMBOL(jbd2_journal_get_write_access);
63 EXPORT_SYMBOL(jbd2_journal_get_create_access);
64 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
65 EXPORT_SYMBOL(jbd2_journal_set_triggers);
66 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
67 EXPORT_SYMBOL(jbd2_journal_forget);
68 EXPORT_SYMBOL(jbd2_journal_flush);
69 EXPORT_SYMBOL(jbd2_journal_revoke);
70
71 EXPORT_SYMBOL(jbd2_journal_init_dev);
72 EXPORT_SYMBOL(jbd2_journal_init_inode);
73 EXPORT_SYMBOL(jbd2_journal_check_used_features);
74 EXPORT_SYMBOL(jbd2_journal_check_available_features);
75 EXPORT_SYMBOL(jbd2_journal_set_features);
76 EXPORT_SYMBOL(jbd2_journal_load);
77 EXPORT_SYMBOL(jbd2_journal_destroy);
78 EXPORT_SYMBOL(jbd2_journal_abort);
79 EXPORT_SYMBOL(jbd2_journal_errno);
80 EXPORT_SYMBOL(jbd2_journal_ack_err);
81 EXPORT_SYMBOL(jbd2_journal_clear_err);
82 EXPORT_SYMBOL(jbd2_log_wait_commit);
83 EXPORT_SYMBOL(jbd2_journal_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
85 EXPORT_SYMBOL(jbd2_journal_wipe);
86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
87 EXPORT_SYMBOL(jbd2_journal_invalidate_folio);
88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
89 EXPORT_SYMBOL(jbd2_journal_force_commit);
90 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
91 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
92 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
93 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
94 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
96 EXPORT_SYMBOL(jbd2_inode_cache);
97
98 static int jbd2_journal_create_slab(size_t slab_size);
99
100 #ifdef CONFIG_JBD2_DEBUG
__jbd2_debug(int level,const char * file,const char * func,unsigned int line,const char * fmt,...)101 void __jbd2_debug(int level, const char *file, const char *func,
102 unsigned int line, const char *fmt, ...)
103 {
104 struct va_format vaf;
105 va_list args;
106
107 if (level > jbd2_journal_enable_debug)
108 return;
109 va_start(args, fmt);
110 vaf.fmt = fmt;
111 vaf.va = &args;
112 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
113 va_end(args);
114 }
115 #endif
116
117 /* Checksumming functions */
jbd2_superblock_csum(journal_t * j,journal_superblock_t * sb)118 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
119 {
120 __u32 csum;
121 __be32 old_csum;
122
123 old_csum = sb->s_checksum;
124 sb->s_checksum = 0;
125 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
126 sb->s_checksum = old_csum;
127
128 return cpu_to_be32(csum);
129 }
130
131 /*
132 * Helper function used to manage commit timeouts
133 */
134
commit_timeout(struct timer_list * t)135 static void commit_timeout(struct timer_list *t)
136 {
137 journal_t *journal = from_timer(journal, t, j_commit_timer);
138
139 wake_up_process(journal->j_task);
140 }
141
142 /*
143 * kjournald2: The main thread function used to manage a logging device
144 * journal.
145 *
146 * This kernel thread is responsible for two things:
147 *
148 * 1) COMMIT: Every so often we need to commit the current state of the
149 * filesystem to disk. The journal thread is responsible for writing
150 * all of the metadata buffers to disk. If a fast commit is ongoing
151 * journal thread waits until it's done and then continues from
152 * there on.
153 *
154 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
155 * of the data in that part of the log has been rewritten elsewhere on
156 * the disk. Flushing these old buffers to reclaim space in the log is
157 * known as checkpointing, and this thread is responsible for that job.
158 */
159
kjournald2(void * arg)160 static int kjournald2(void *arg)
161 {
162 journal_t *journal = arg;
163 transaction_t *transaction;
164
165 /*
166 * Set up an interval timer which can be used to trigger a commit wakeup
167 * after the commit interval expires
168 */
169 timer_setup(&journal->j_commit_timer, commit_timeout, 0);
170
171 set_freezable();
172
173 /* Record that the journal thread is running */
174 journal->j_task = current;
175 wake_up(&journal->j_wait_done_commit);
176
177 /*
178 * Make sure that no allocations from this kernel thread will ever
179 * recurse to the fs layer because we are responsible for the
180 * transaction commit and any fs involvement might get stuck waiting for
181 * the trasn. commit.
182 */
183 memalloc_nofs_save();
184
185 /*
186 * And now, wait forever for commit wakeup events.
187 */
188 write_lock(&journal->j_state_lock);
189
190 loop:
191 if (journal->j_flags & JBD2_UNMOUNT)
192 goto end_loop;
193
194 jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n",
195 journal->j_commit_sequence, journal->j_commit_request);
196
197 if (journal->j_commit_sequence != journal->j_commit_request) {
198 jbd2_debug(1, "OK, requests differ\n");
199 write_unlock(&journal->j_state_lock);
200 del_timer_sync(&journal->j_commit_timer);
201 jbd2_journal_commit_transaction(journal);
202 write_lock(&journal->j_state_lock);
203 goto loop;
204 }
205
206 wake_up(&journal->j_wait_done_commit);
207 if (freezing(current)) {
208 /*
209 * The simpler the better. Flushing journal isn't a
210 * good idea, because that depends on threads that may
211 * be already stopped.
212 */
213 jbd2_debug(1, "Now suspending kjournald2\n");
214 write_unlock(&journal->j_state_lock);
215 try_to_freeze();
216 write_lock(&journal->j_state_lock);
217 } else {
218 /*
219 * We assume on resume that commits are already there,
220 * so we don't sleep
221 */
222 DEFINE_WAIT(wait);
223
224 prepare_to_wait(&journal->j_wait_commit, &wait,
225 TASK_INTERRUPTIBLE);
226 transaction = journal->j_running_transaction;
227 if (transaction == NULL ||
228 time_before(jiffies, transaction->t_expires)) {
229 write_unlock(&journal->j_state_lock);
230 schedule();
231 write_lock(&journal->j_state_lock);
232 }
233 finish_wait(&journal->j_wait_commit, &wait);
234 }
235
236 jbd2_debug(1, "kjournald2 wakes\n");
237
238 /*
239 * Were we woken up by a commit wakeup event?
240 */
241 transaction = journal->j_running_transaction;
242 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
243 journal->j_commit_request = transaction->t_tid;
244 jbd2_debug(1, "woke because of timeout\n");
245 }
246 goto loop;
247
248 end_loop:
249 del_timer_sync(&journal->j_commit_timer);
250 journal->j_task = NULL;
251 wake_up(&journal->j_wait_done_commit);
252 jbd2_debug(1, "Journal thread exiting.\n");
253 write_unlock(&journal->j_state_lock);
254 return 0;
255 }
256
jbd2_journal_start_thread(journal_t * journal)257 static int jbd2_journal_start_thread(journal_t *journal)
258 {
259 struct task_struct *t;
260
261 t = kthread_run(kjournald2, journal, "jbd2/%s",
262 journal->j_devname);
263 if (IS_ERR(t))
264 return PTR_ERR(t);
265
266 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
267 return 0;
268 }
269
journal_kill_thread(journal_t * journal)270 static void journal_kill_thread(journal_t *journal)
271 {
272 write_lock(&journal->j_state_lock);
273 journal->j_flags |= JBD2_UNMOUNT;
274
275 while (journal->j_task) {
276 write_unlock(&journal->j_state_lock);
277 wake_up(&journal->j_wait_commit);
278 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
279 write_lock(&journal->j_state_lock);
280 }
281 write_unlock(&journal->j_state_lock);
282 }
283
jbd2_data_needs_escaping(char * data)284 static inline bool jbd2_data_needs_escaping(char *data)
285 {
286 return *((__be32 *)data) == cpu_to_be32(JBD2_MAGIC_NUMBER);
287 }
288
jbd2_data_do_escape(char * data)289 static inline void jbd2_data_do_escape(char *data)
290 {
291 *((unsigned int *)data) = 0;
292 }
293
294 /*
295 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
296 *
297 * Writes a metadata buffer to a given disk block. The actual IO is not
298 * performed but a new buffer_head is constructed which labels the data
299 * to be written with the correct destination disk block.
300 *
301 * Any magic-number escaping which needs to be done will cause a
302 * copy-out here. If the buffer happens to start with the
303 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
304 * magic number is only written to the log for descripter blocks. In
305 * this case, we copy the data and replace the first word with 0, and we
306 * return a result code which indicates that this buffer needs to be
307 * marked as an escaped buffer in the corresponding log descriptor
308 * block. The missing word can then be restored when the block is read
309 * during recovery.
310 *
311 * If the source buffer has already been modified by a new transaction
312 * since we took the last commit snapshot, we use the frozen copy of
313 * that data for IO. If we end up using the existing buffer_head's data
314 * for the write, then we have to make sure nobody modifies it while the
315 * IO is in progress. do_get_write_access() handles this.
316 *
317 * The function returns a pointer to the buffer_head to be used for IO.
318 *
319 *
320 * Return value:
321 * =0: Finished OK without escape
322 * =1: Finished OK with escape
323 */
324
jbd2_journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct buffer_head ** bh_out,sector_t blocknr)325 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
326 struct journal_head *jh_in,
327 struct buffer_head **bh_out,
328 sector_t blocknr)
329 {
330 int do_escape = 0;
331 struct buffer_head *new_bh;
332 struct folio *new_folio;
333 unsigned int new_offset;
334 struct buffer_head *bh_in = jh2bh(jh_in);
335 journal_t *journal = transaction->t_journal;
336
337 /*
338 * The buffer really shouldn't be locked: only the current committing
339 * transaction is allowed to write it, so nobody else is allowed
340 * to do any IO.
341 *
342 * akpm: except if we're journalling data, and write() output is
343 * also part of a shared mapping, and another thread has
344 * decided to launch a writepage() against this buffer.
345 */
346 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
347
348 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
349
350 /* keep subsequent assertions sane */
351 atomic_set(&new_bh->b_count, 1);
352
353 spin_lock(&jh_in->b_state_lock);
354 /*
355 * If a new transaction has already done a buffer copy-out, then
356 * we use that version of the data for the commit.
357 */
358 if (jh_in->b_frozen_data) {
359 new_folio = virt_to_folio(jh_in->b_frozen_data);
360 new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data);
361 do_escape = jbd2_data_needs_escaping(jh_in->b_frozen_data);
362 if (do_escape)
363 jbd2_data_do_escape(jh_in->b_frozen_data);
364 } else {
365 char *tmp;
366 char *mapped_data;
367
368 new_folio = bh_in->b_folio;
369 new_offset = offset_in_folio(new_folio, bh_in->b_data);
370 mapped_data = kmap_local_folio(new_folio, new_offset);
371 /*
372 * Fire data frozen trigger if data already wasn't frozen. Do
373 * this before checking for escaping, as the trigger may modify
374 * the magic offset. If a copy-out happens afterwards, it will
375 * have the correct data in the buffer.
376 */
377 jbd2_buffer_frozen_trigger(jh_in, mapped_data,
378 jh_in->b_triggers);
379 do_escape = jbd2_data_needs_escaping(mapped_data);
380 kunmap_local(mapped_data);
381 /*
382 * Do we need to do a data copy?
383 */
384 if (!do_escape)
385 goto escape_done;
386
387 spin_unlock(&jh_in->b_state_lock);
388 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS | __GFP_NOFAIL);
389 spin_lock(&jh_in->b_state_lock);
390 if (jh_in->b_frozen_data) {
391 jbd2_free(tmp, bh_in->b_size);
392 goto copy_done;
393 }
394
395 jh_in->b_frozen_data = tmp;
396 memcpy_from_folio(tmp, new_folio, new_offset, bh_in->b_size);
397 /*
398 * This isn't strictly necessary, as we're using frozen
399 * data for the escaping, but it keeps consistency with
400 * b_frozen_data usage.
401 */
402 jh_in->b_frozen_triggers = jh_in->b_triggers;
403
404 copy_done:
405 new_folio = virt_to_folio(jh_in->b_frozen_data);
406 new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data);
407 jbd2_data_do_escape(jh_in->b_frozen_data);
408 }
409
410 escape_done:
411 folio_set_bh(new_bh, new_folio, new_offset);
412 new_bh->b_size = bh_in->b_size;
413 new_bh->b_bdev = journal->j_dev;
414 new_bh->b_blocknr = blocknr;
415 new_bh->b_private = bh_in;
416 set_buffer_mapped(new_bh);
417 set_buffer_dirty(new_bh);
418
419 *bh_out = new_bh;
420
421 /*
422 * The to-be-written buffer needs to get moved to the io queue,
423 * and the original buffer whose contents we are shadowing or
424 * copying is moved to the transaction's shadow queue.
425 */
426 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
427 spin_lock(&journal->j_list_lock);
428 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
429 spin_unlock(&journal->j_list_lock);
430 set_buffer_shadow(bh_in);
431 spin_unlock(&jh_in->b_state_lock);
432
433 return do_escape;
434 }
435
436 /*
437 * Allocation code for the journal file. Manage the space left in the
438 * journal, so that we can begin checkpointing when appropriate.
439 */
440
441 /*
442 * Called with j_state_lock locked for writing.
443 * Returns true if a transaction commit was started.
444 */
__jbd2_log_start_commit(journal_t * journal,tid_t target)445 static int __jbd2_log_start_commit(journal_t *journal, tid_t target)
446 {
447 /* Return if the txn has already requested to be committed */
448 if (journal->j_commit_request == target)
449 return 0;
450
451 /*
452 * The only transaction we can possibly wait upon is the
453 * currently running transaction (if it exists). Otherwise,
454 * the target tid must be an old one.
455 */
456 if (journal->j_running_transaction &&
457 journal->j_running_transaction->t_tid == target) {
458 /*
459 * We want a new commit: OK, mark the request and wakeup the
460 * commit thread. We do _not_ do the commit ourselves.
461 */
462
463 journal->j_commit_request = target;
464 jbd2_debug(1, "JBD2: requesting commit %u/%u\n",
465 journal->j_commit_request,
466 journal->j_commit_sequence);
467 journal->j_running_transaction->t_requested = jiffies;
468 wake_up(&journal->j_wait_commit);
469 return 1;
470 } else if (!tid_geq(journal->j_commit_request, target))
471 /* This should never happen, but if it does, preserve
472 the evidence before kjournald goes into a loop and
473 increments j_commit_sequence beyond all recognition. */
474 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
475 journal->j_commit_request,
476 journal->j_commit_sequence,
477 target, journal->j_running_transaction ?
478 journal->j_running_transaction->t_tid : 0);
479 return 0;
480 }
481
jbd2_log_start_commit(journal_t * journal,tid_t tid)482 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
483 {
484 int ret;
485
486 write_lock(&journal->j_state_lock);
487 ret = __jbd2_log_start_commit(journal, tid);
488 write_unlock(&journal->j_state_lock);
489 return ret;
490 }
491
492 /*
493 * Force and wait any uncommitted transactions. We can only force the running
494 * transaction if we don't have an active handle, otherwise, we will deadlock.
495 * Returns: <0 in case of error,
496 * 0 if nothing to commit,
497 * 1 if transaction was successfully committed.
498 */
__jbd2_journal_force_commit(journal_t * journal)499 static int __jbd2_journal_force_commit(journal_t *journal)
500 {
501 transaction_t *transaction = NULL;
502 tid_t tid;
503 int need_to_start = 0, ret = 0;
504
505 read_lock(&journal->j_state_lock);
506 if (journal->j_running_transaction && !current->journal_info) {
507 transaction = journal->j_running_transaction;
508 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
509 need_to_start = 1;
510 } else if (journal->j_committing_transaction)
511 transaction = journal->j_committing_transaction;
512
513 if (!transaction) {
514 /* Nothing to commit */
515 read_unlock(&journal->j_state_lock);
516 return 0;
517 }
518 tid = transaction->t_tid;
519 read_unlock(&journal->j_state_lock);
520 if (need_to_start)
521 jbd2_log_start_commit(journal, tid);
522 ret = jbd2_log_wait_commit(journal, tid);
523 if (!ret)
524 ret = 1;
525
526 return ret;
527 }
528
529 /**
530 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
531 * calling process is not within transaction.
532 *
533 * @journal: journal to force
534 * Returns true if progress was made.
535 *
536 * This is used for forcing out undo-protected data which contains
537 * bitmaps, when the fs is running out of space.
538 */
jbd2_journal_force_commit_nested(journal_t * journal)539 int jbd2_journal_force_commit_nested(journal_t *journal)
540 {
541 int ret;
542
543 ret = __jbd2_journal_force_commit(journal);
544 return ret > 0;
545 }
546
547 /**
548 * jbd2_journal_force_commit() - force any uncommitted transactions
549 * @journal: journal to force
550 *
551 * Caller want unconditional commit. We can only force the running transaction
552 * if we don't have an active handle, otherwise, we will deadlock.
553 */
jbd2_journal_force_commit(journal_t * journal)554 int jbd2_journal_force_commit(journal_t *journal)
555 {
556 int ret;
557
558 J_ASSERT(!current->journal_info);
559 ret = __jbd2_journal_force_commit(journal);
560 if (ret > 0)
561 ret = 0;
562 return ret;
563 }
564
565 /*
566 * Start a commit of the current running transaction (if any). Returns true
567 * if a transaction is going to be committed (or is currently already
568 * committing), and fills its tid in at *ptid
569 */
jbd2_journal_start_commit(journal_t * journal,tid_t * ptid)570 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
571 {
572 int ret = 0;
573
574 write_lock(&journal->j_state_lock);
575 if (journal->j_running_transaction) {
576 tid_t tid = journal->j_running_transaction->t_tid;
577
578 __jbd2_log_start_commit(journal, tid);
579 /* There's a running transaction and we've just made sure
580 * it's commit has been scheduled. */
581 if (ptid)
582 *ptid = tid;
583 ret = 1;
584 } else if (journal->j_committing_transaction) {
585 /*
586 * If commit has been started, then we have to wait for
587 * completion of that transaction.
588 */
589 if (ptid)
590 *ptid = journal->j_committing_transaction->t_tid;
591 ret = 1;
592 }
593 write_unlock(&journal->j_state_lock);
594 return ret;
595 }
596
597 /*
598 * Return 1 if a given transaction has not yet sent barrier request
599 * connected with a transaction commit. If 0 is returned, transaction
600 * may or may not have sent the barrier. Used to avoid sending barrier
601 * twice in common cases.
602 */
jbd2_trans_will_send_data_barrier(journal_t * journal,tid_t tid)603 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
604 {
605 int ret = 0;
606 transaction_t *commit_trans;
607
608 if (!(journal->j_flags & JBD2_BARRIER))
609 return 0;
610 read_lock(&journal->j_state_lock);
611 /* Transaction already committed? */
612 if (tid_geq(journal->j_commit_sequence, tid))
613 goto out;
614 commit_trans = journal->j_committing_transaction;
615 if (!commit_trans || commit_trans->t_tid != tid) {
616 ret = 1;
617 goto out;
618 }
619 /*
620 * Transaction is being committed and we already proceeded to
621 * submitting a flush to fs partition?
622 */
623 if (journal->j_fs_dev != journal->j_dev) {
624 if (!commit_trans->t_need_data_flush ||
625 commit_trans->t_state >= T_COMMIT_DFLUSH)
626 goto out;
627 } else {
628 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
629 goto out;
630 }
631 ret = 1;
632 out:
633 read_unlock(&journal->j_state_lock);
634 return ret;
635 }
636 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
637
638 /*
639 * Wait for a specified commit to complete.
640 * The caller may not hold the journal lock.
641 */
jbd2_log_wait_commit(journal_t * journal,tid_t tid)642 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
643 {
644 int err = 0;
645
646 read_lock(&journal->j_state_lock);
647 #ifdef CONFIG_PROVE_LOCKING
648 /*
649 * Some callers make sure transaction is already committing and in that
650 * case we cannot block on open handles anymore. So don't warn in that
651 * case.
652 */
653 if (tid_gt(tid, journal->j_commit_sequence) &&
654 (!journal->j_committing_transaction ||
655 journal->j_committing_transaction->t_tid != tid)) {
656 read_unlock(&journal->j_state_lock);
657 jbd2_might_wait_for_commit(journal);
658 read_lock(&journal->j_state_lock);
659 }
660 #endif
661 #ifdef CONFIG_JBD2_DEBUG
662 if (!tid_geq(journal->j_commit_request, tid)) {
663 printk(KERN_ERR
664 "%s: error: j_commit_request=%u, tid=%u\n",
665 __func__, journal->j_commit_request, tid);
666 }
667 #endif
668 while (tid_gt(tid, journal->j_commit_sequence)) {
669 jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
670 tid, journal->j_commit_sequence);
671 read_unlock(&journal->j_state_lock);
672 wake_up(&journal->j_wait_commit);
673 wait_event(journal->j_wait_done_commit,
674 !tid_gt(tid, journal->j_commit_sequence));
675 read_lock(&journal->j_state_lock);
676 }
677 read_unlock(&journal->j_state_lock);
678
679 if (unlikely(is_journal_aborted(journal)))
680 err = -EIO;
681 return err;
682 }
683
684 /*
685 * Start a fast commit. If there's an ongoing fast or full commit wait for
686 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
687 * if a fast commit is not needed, either because there's an already a commit
688 * going on or this tid has already been committed. Returns -EINVAL if no jbd2
689 * commit has yet been performed.
690 */
jbd2_fc_begin_commit(journal_t * journal,tid_t tid)691 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
692 {
693 if (unlikely(is_journal_aborted(journal)))
694 return -EIO;
695 /*
696 * Fast commits only allowed if at least one full commit has
697 * been processed.
698 */
699 if (!journal->j_stats.ts_tid)
700 return -EINVAL;
701
702 write_lock(&journal->j_state_lock);
703 if (tid_geq(journal->j_commit_sequence, tid)) {
704 write_unlock(&journal->j_state_lock);
705 return -EALREADY;
706 }
707
708 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
709 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
710 DEFINE_WAIT(wait);
711
712 prepare_to_wait(&journal->j_fc_wait, &wait,
713 TASK_UNINTERRUPTIBLE);
714 write_unlock(&journal->j_state_lock);
715 schedule();
716 finish_wait(&journal->j_fc_wait, &wait);
717 return -EALREADY;
718 }
719 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
720 write_unlock(&journal->j_state_lock);
721 jbd2_journal_lock_updates(journal);
722
723 return 0;
724 }
725 EXPORT_SYMBOL(jbd2_fc_begin_commit);
726
727 /*
728 * Stop a fast commit. If fallback is set, this function starts commit of
729 * TID tid before any other fast commit can start.
730 */
__jbd2_fc_end_commit(journal_t * journal,tid_t tid,bool fallback)731 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
732 {
733 if (journal->j_fc_cleanup_callback)
734 journal->j_fc_cleanup_callback(journal, 0, tid);
735 jbd2_journal_unlock_updates(journal);
736 write_lock(&journal->j_state_lock);
737 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
738 if (fallback)
739 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
740 write_unlock(&journal->j_state_lock);
741 wake_up(&journal->j_fc_wait);
742 if (fallback)
743 return jbd2_complete_transaction(journal, tid);
744 return 0;
745 }
746
jbd2_fc_end_commit(journal_t * journal)747 int jbd2_fc_end_commit(journal_t *journal)
748 {
749 return __jbd2_fc_end_commit(journal, 0, false);
750 }
751 EXPORT_SYMBOL(jbd2_fc_end_commit);
752
jbd2_fc_end_commit_fallback(journal_t * journal)753 int jbd2_fc_end_commit_fallback(journal_t *journal)
754 {
755 tid_t tid;
756
757 read_lock(&journal->j_state_lock);
758 tid = journal->j_running_transaction ?
759 journal->j_running_transaction->t_tid : 0;
760 read_unlock(&journal->j_state_lock);
761 return __jbd2_fc_end_commit(journal, tid, true);
762 }
763 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
764
765 /* Return 1 when transaction with given tid has already committed. */
jbd2_transaction_committed(journal_t * journal,tid_t tid)766 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
767 {
768 return tid_geq(READ_ONCE(journal->j_commit_sequence), tid);
769 }
770 EXPORT_SYMBOL(jbd2_transaction_committed);
771
772 /*
773 * When this function returns the transaction corresponding to tid
774 * will be completed. If the transaction has currently running, start
775 * committing that transaction before waiting for it to complete. If
776 * the transaction id is stale, it is by definition already completed,
777 * so just return SUCCESS.
778 */
jbd2_complete_transaction(journal_t * journal,tid_t tid)779 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
780 {
781 int need_to_wait = 1;
782
783 read_lock(&journal->j_state_lock);
784 if (journal->j_running_transaction &&
785 journal->j_running_transaction->t_tid == tid) {
786 if (journal->j_commit_request != tid) {
787 /* transaction not yet started, so request it */
788 read_unlock(&journal->j_state_lock);
789 jbd2_log_start_commit(journal, tid);
790 goto wait_commit;
791 }
792 } else if (!(journal->j_committing_transaction &&
793 journal->j_committing_transaction->t_tid == tid))
794 need_to_wait = 0;
795 read_unlock(&journal->j_state_lock);
796 if (!need_to_wait)
797 return 0;
798 wait_commit:
799 return jbd2_log_wait_commit(journal, tid);
800 }
801 EXPORT_SYMBOL(jbd2_complete_transaction);
802
803 /*
804 * Log buffer allocation routines:
805 */
806
jbd2_journal_next_log_block(journal_t * journal,unsigned long long * retp)807 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
808 {
809 unsigned long blocknr;
810
811 write_lock(&journal->j_state_lock);
812 J_ASSERT(journal->j_free > 1);
813
814 blocknr = journal->j_head;
815 journal->j_head++;
816 journal->j_free--;
817 if (journal->j_head == journal->j_last)
818 journal->j_head = journal->j_first;
819 write_unlock(&journal->j_state_lock);
820 return jbd2_journal_bmap(journal, blocknr, retp);
821 }
822
823 /* Map one fast commit buffer for use by the file system */
jbd2_fc_get_buf(journal_t * journal,struct buffer_head ** bh_out)824 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
825 {
826 unsigned long long pblock;
827 unsigned long blocknr;
828 int ret = 0;
829 struct buffer_head *bh;
830 int fc_off;
831
832 *bh_out = NULL;
833
834 if (journal->j_fc_off + journal->j_fc_first >= journal->j_fc_last)
835 return -EINVAL;
836
837 fc_off = journal->j_fc_off;
838 blocknr = journal->j_fc_first + fc_off;
839 journal->j_fc_off++;
840 ret = jbd2_journal_bmap(journal, blocknr, &pblock);
841 if (ret)
842 return ret;
843
844 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
845 if (!bh)
846 return -ENOMEM;
847
848 journal->j_fc_wbuf[fc_off] = bh;
849
850 *bh_out = bh;
851
852 return 0;
853 }
854 EXPORT_SYMBOL(jbd2_fc_get_buf);
855
856 /*
857 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
858 * for completion.
859 */
jbd2_fc_wait_bufs(journal_t * journal,int num_blks)860 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
861 {
862 struct buffer_head *bh;
863 int i, j_fc_off;
864
865 j_fc_off = journal->j_fc_off;
866
867 /*
868 * Wait in reverse order to minimize chances of us being woken up before
869 * all IOs have completed
870 */
871 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
872 bh = journal->j_fc_wbuf[i];
873 wait_on_buffer(bh);
874 /*
875 * Update j_fc_off so jbd2_fc_release_bufs can release remain
876 * buffer head.
877 */
878 if (unlikely(!buffer_uptodate(bh))) {
879 journal->j_fc_off = i + 1;
880 return -EIO;
881 }
882 put_bh(bh);
883 journal->j_fc_wbuf[i] = NULL;
884 }
885
886 return 0;
887 }
888 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
889
jbd2_fc_release_bufs(journal_t * journal)890 void jbd2_fc_release_bufs(journal_t *journal)
891 {
892 struct buffer_head *bh;
893 int i, j_fc_off;
894
895 j_fc_off = journal->j_fc_off;
896
897 for (i = j_fc_off - 1; i >= 0; i--) {
898 bh = journal->j_fc_wbuf[i];
899 if (!bh)
900 break;
901 put_bh(bh);
902 journal->j_fc_wbuf[i] = NULL;
903 }
904 }
905 EXPORT_SYMBOL(jbd2_fc_release_bufs);
906
907 /*
908 * Conversion of logical to physical block numbers for the journal
909 *
910 * On external journals the journal blocks are identity-mapped, so
911 * this is a no-op. If needed, we can use j_blk_offset - everything is
912 * ready.
913 */
jbd2_journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long long * retp)914 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
915 unsigned long long *retp)
916 {
917 int err = 0;
918 unsigned long long ret;
919 sector_t block = blocknr;
920
921 if (journal->j_bmap) {
922 err = journal->j_bmap(journal, &block);
923 if (err == 0)
924 *retp = block;
925 } else if (journal->j_inode) {
926 ret = bmap(journal->j_inode, &block);
927
928 if (ret || !block) {
929 printk(KERN_ALERT "%s: journal block not found "
930 "at offset %lu on %s\n",
931 __func__, blocknr, journal->j_devname);
932 err = -EIO;
933 jbd2_journal_abort(journal, err);
934 } else {
935 *retp = block;
936 }
937
938 } else {
939 *retp = blocknr; /* +journal->j_blk_offset */
940 }
941 return err;
942 }
943
944 /*
945 * We play buffer_head aliasing tricks to write data/metadata blocks to
946 * the journal without copying their contents, but for journal
947 * descriptor blocks we do need to generate bona fide buffers.
948 *
949 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
950 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
951 * But we don't bother doing that, so there will be coherency problems with
952 * mmaps of blockdevs which hold live JBD-controlled filesystems.
953 */
954 struct buffer_head *
jbd2_journal_get_descriptor_buffer(transaction_t * transaction,int type)955 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
956 {
957 journal_t *journal = transaction->t_journal;
958 struct buffer_head *bh;
959 unsigned long long blocknr;
960 journal_header_t *header;
961 int err;
962
963 err = jbd2_journal_next_log_block(journal, &blocknr);
964
965 if (err)
966 return NULL;
967
968 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
969 if (!bh)
970 return NULL;
971 atomic_dec(&transaction->t_outstanding_credits);
972 lock_buffer(bh);
973 memset(bh->b_data, 0, journal->j_blocksize);
974 header = (journal_header_t *)bh->b_data;
975 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
976 header->h_blocktype = cpu_to_be32(type);
977 header->h_sequence = cpu_to_be32(transaction->t_tid);
978 set_buffer_uptodate(bh);
979 unlock_buffer(bh);
980 BUFFER_TRACE(bh, "return this buffer");
981 return bh;
982 }
983
jbd2_descriptor_block_csum_set(journal_t * j,struct buffer_head * bh)984 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
985 {
986 struct jbd2_journal_block_tail *tail;
987 __u32 csum;
988
989 if (!jbd2_journal_has_csum_v2or3(j))
990 return;
991
992 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
993 sizeof(struct jbd2_journal_block_tail));
994 tail->t_checksum = 0;
995 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
996 tail->t_checksum = cpu_to_be32(csum);
997 }
998
999 /*
1000 * Return tid of the oldest transaction in the journal and block in the journal
1001 * where the transaction starts.
1002 *
1003 * If the journal is now empty, return which will be the next transaction ID
1004 * we will write and where will that transaction start.
1005 *
1006 * The return value is 0 if journal tail cannot be pushed any further, 1 if
1007 * it can.
1008 */
jbd2_journal_get_log_tail(journal_t * journal,tid_t * tid,unsigned long * block)1009 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1010 unsigned long *block)
1011 {
1012 transaction_t *transaction;
1013 int ret;
1014
1015 read_lock(&journal->j_state_lock);
1016 spin_lock(&journal->j_list_lock);
1017 transaction = journal->j_checkpoint_transactions;
1018 if (transaction) {
1019 *tid = transaction->t_tid;
1020 *block = transaction->t_log_start;
1021 } else if ((transaction = journal->j_committing_transaction) != NULL) {
1022 *tid = transaction->t_tid;
1023 *block = transaction->t_log_start;
1024 } else if ((transaction = journal->j_running_transaction) != NULL) {
1025 *tid = transaction->t_tid;
1026 *block = journal->j_head;
1027 } else {
1028 *tid = journal->j_transaction_sequence;
1029 *block = journal->j_head;
1030 }
1031 ret = tid_gt(*tid, journal->j_tail_sequence);
1032 spin_unlock(&journal->j_list_lock);
1033 read_unlock(&journal->j_state_lock);
1034
1035 return ret;
1036 }
1037
1038 /*
1039 * Update information in journal structure and in on disk journal superblock
1040 * about log tail. This function does not check whether information passed in
1041 * really pushes log tail further. It's responsibility of the caller to make
1042 * sure provided log tail information is valid (e.g. by holding
1043 * j_checkpoint_mutex all the time between computing log tail and calling this
1044 * function as is the case with jbd2_cleanup_journal_tail()).
1045 *
1046 * Requires j_checkpoint_mutex
1047 */
__jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)1048 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1049 {
1050 unsigned long freed;
1051 int ret;
1052
1053 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1054
1055 /*
1056 * We cannot afford for write to remain in drive's caches since as
1057 * soon as we update j_tail, next transaction can start reusing journal
1058 * space and if we lose sb update during power failure we'd replay
1059 * old transaction with possibly newly overwritten data.
1060 */
1061 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, REQ_FUA);
1062 if (ret)
1063 goto out;
1064
1065 write_lock(&journal->j_state_lock);
1066 freed = block - journal->j_tail;
1067 if (block < journal->j_tail)
1068 freed += journal->j_last - journal->j_first;
1069
1070 trace_jbd2_update_log_tail(journal, tid, block, freed);
1071 jbd2_debug(1,
1072 "Cleaning journal tail from %u to %u (offset %lu), "
1073 "freeing %lu\n",
1074 journal->j_tail_sequence, tid, block, freed);
1075
1076 journal->j_free += freed;
1077 journal->j_tail_sequence = tid;
1078 journal->j_tail = block;
1079 write_unlock(&journal->j_state_lock);
1080
1081 out:
1082 return ret;
1083 }
1084
1085 /*
1086 * This is a variation of __jbd2_update_log_tail which checks for validity of
1087 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1088 * with other threads updating log tail.
1089 */
jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)1090 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1091 {
1092 mutex_lock_io(&journal->j_checkpoint_mutex);
1093 if (tid_gt(tid, journal->j_tail_sequence))
1094 __jbd2_update_log_tail(journal, tid, block);
1095 mutex_unlock(&journal->j_checkpoint_mutex);
1096 }
1097
1098 struct jbd2_stats_proc_session {
1099 journal_t *journal;
1100 struct transaction_stats_s *stats;
1101 int start;
1102 int max;
1103 };
1104
jbd2_seq_info_start(struct seq_file * seq,loff_t * pos)1105 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1106 {
1107 return *pos ? NULL : SEQ_START_TOKEN;
1108 }
1109
jbd2_seq_info_next(struct seq_file * seq,void * v,loff_t * pos)1110 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1111 {
1112 (*pos)++;
1113 return NULL;
1114 }
1115
jbd2_seq_info_show(struct seq_file * seq,void * v)1116 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1117 {
1118 struct jbd2_stats_proc_session *s = seq->private;
1119
1120 if (v != SEQ_START_TOKEN)
1121 return 0;
1122 seq_printf(seq, "%lu transactions (%lu requested), "
1123 "each up to %u blocks\n",
1124 s->stats->ts_tid, s->stats->ts_requested,
1125 s->journal->j_max_transaction_buffers);
1126 if (s->stats->ts_tid == 0)
1127 return 0;
1128 seq_printf(seq, "average: \n %ums waiting for transaction\n",
1129 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1130 seq_printf(seq, " %ums request delay\n",
1131 (s->stats->ts_requested == 0) ? 0 :
1132 jiffies_to_msecs(s->stats->run.rs_request_delay /
1133 s->stats->ts_requested));
1134 seq_printf(seq, " %ums running transaction\n",
1135 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1136 seq_printf(seq, " %ums transaction was being locked\n",
1137 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1138 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1139 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1140 seq_printf(seq, " %ums logging transaction\n",
1141 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1142 seq_printf(seq, " %lluus average transaction commit time\n",
1143 div_u64(s->journal->j_average_commit_time, 1000));
1144 seq_printf(seq, " %lu handles per transaction\n",
1145 s->stats->run.rs_handle_count / s->stats->ts_tid);
1146 seq_printf(seq, " %lu blocks per transaction\n",
1147 s->stats->run.rs_blocks / s->stats->ts_tid);
1148 seq_printf(seq, " %lu logged blocks per transaction\n",
1149 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1150 return 0;
1151 }
1152
jbd2_seq_info_stop(struct seq_file * seq,void * v)1153 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1154 {
1155 }
1156
1157 static const struct seq_operations jbd2_seq_info_ops = {
1158 .start = jbd2_seq_info_start,
1159 .next = jbd2_seq_info_next,
1160 .stop = jbd2_seq_info_stop,
1161 .show = jbd2_seq_info_show,
1162 };
1163
jbd2_seq_info_open(struct inode * inode,struct file * file)1164 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1165 {
1166 journal_t *journal = pde_data(inode);
1167 struct jbd2_stats_proc_session *s;
1168 int rc, size;
1169
1170 s = kmalloc(sizeof(*s), GFP_KERNEL);
1171 if (s == NULL)
1172 return -ENOMEM;
1173 size = sizeof(struct transaction_stats_s);
1174 s->stats = kmalloc(size, GFP_KERNEL);
1175 if (s->stats == NULL) {
1176 kfree(s);
1177 return -ENOMEM;
1178 }
1179 spin_lock(&journal->j_history_lock);
1180 memcpy(s->stats, &journal->j_stats, size);
1181 s->journal = journal;
1182 spin_unlock(&journal->j_history_lock);
1183
1184 rc = seq_open(file, &jbd2_seq_info_ops);
1185 if (rc == 0) {
1186 struct seq_file *m = file->private_data;
1187 m->private = s;
1188 } else {
1189 kfree(s->stats);
1190 kfree(s);
1191 }
1192 return rc;
1193
1194 }
1195
jbd2_seq_info_release(struct inode * inode,struct file * file)1196 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1197 {
1198 struct seq_file *seq = file->private_data;
1199 struct jbd2_stats_proc_session *s = seq->private;
1200 kfree(s->stats);
1201 kfree(s);
1202 return seq_release(inode, file);
1203 }
1204
1205 static const struct proc_ops jbd2_info_proc_ops = {
1206 .proc_open = jbd2_seq_info_open,
1207 .proc_read = seq_read,
1208 .proc_lseek = seq_lseek,
1209 .proc_release = jbd2_seq_info_release,
1210 };
1211
1212 static struct proc_dir_entry *proc_jbd2_stats;
1213
jbd2_stats_proc_init(journal_t * journal)1214 static void jbd2_stats_proc_init(journal_t *journal)
1215 {
1216 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1217 if (journal->j_proc_entry) {
1218 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1219 &jbd2_info_proc_ops, journal);
1220 }
1221 }
1222
jbd2_stats_proc_exit(journal_t * journal)1223 static void jbd2_stats_proc_exit(journal_t *journal)
1224 {
1225 remove_proc_entry("info", journal->j_proc_entry);
1226 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1227 }
1228
1229 /* Minimum size of descriptor tag */
jbd2_min_tag_size(void)1230 static int jbd2_min_tag_size(void)
1231 {
1232 /*
1233 * Tag with 32-bit block numbers does not use last four bytes of the
1234 * structure
1235 */
1236 return sizeof(journal_block_tag_t) - 4;
1237 }
1238
1239 /**
1240 * jbd2_journal_shrink_scan()
1241 * @shrink: shrinker to work on
1242 * @sc: reclaim request to process
1243 *
1244 * Scan the checkpointed buffer on the checkpoint list and release the
1245 * journal_head.
1246 */
jbd2_journal_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1247 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1248 struct shrink_control *sc)
1249 {
1250 journal_t *journal = shrink->private_data;
1251 unsigned long nr_to_scan = sc->nr_to_scan;
1252 unsigned long nr_shrunk;
1253 unsigned long count;
1254
1255 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1256 trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1257
1258 nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1259
1260 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1261 trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1262
1263 return nr_shrunk;
1264 }
1265
1266 /**
1267 * jbd2_journal_shrink_count()
1268 * @shrink: shrinker to work on
1269 * @sc: reclaim request to process
1270 *
1271 * Count the number of checkpoint buffers on the checkpoint list.
1272 */
jbd2_journal_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1273 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1274 struct shrink_control *sc)
1275 {
1276 journal_t *journal = shrink->private_data;
1277 unsigned long count;
1278
1279 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1280 trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1281
1282 return count;
1283 }
1284
1285 /*
1286 * If the journal init or create aborts, we need to mark the journal
1287 * superblock as being NULL to prevent the journal destroy from writing
1288 * back a bogus superblock.
1289 */
journal_fail_superblock(journal_t * journal)1290 static void journal_fail_superblock(journal_t *journal)
1291 {
1292 struct buffer_head *bh = journal->j_sb_buffer;
1293 brelse(bh);
1294 journal->j_sb_buffer = NULL;
1295 }
1296
1297 /*
1298 * Check the superblock for a given journal, performing initial
1299 * validation of the format.
1300 */
journal_check_superblock(journal_t * journal)1301 static int journal_check_superblock(journal_t *journal)
1302 {
1303 journal_superblock_t *sb = journal->j_superblock;
1304 int num_fc_blks;
1305 int err = -EINVAL;
1306
1307 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1308 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1309 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1310 return err;
1311 }
1312
1313 if (be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V1 &&
1314 be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V2) {
1315 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1316 return err;
1317 }
1318
1319 if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1320 printk(KERN_WARNING "JBD2: journal file too short\n");
1321 return err;
1322 }
1323
1324 if (be32_to_cpu(sb->s_first) == 0 ||
1325 be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1326 printk(KERN_WARNING
1327 "JBD2: Invalid start block of journal: %u\n",
1328 be32_to_cpu(sb->s_first));
1329 return err;
1330 }
1331
1332 /*
1333 * If this is a V2 superblock, then we have to check the
1334 * features flags on it.
1335 */
1336 if (!jbd2_format_support_feature(journal))
1337 return 0;
1338
1339 if ((sb->s_feature_ro_compat &
1340 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1341 (sb->s_feature_incompat &
1342 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1343 printk(KERN_WARNING "JBD2: Unrecognised features on journal\n");
1344 return err;
1345 }
1346
1347 num_fc_blks = jbd2_has_feature_fast_commit(journal) ?
1348 jbd2_journal_get_num_fc_blks(sb) : 0;
1349 if (be32_to_cpu(sb->s_maxlen) < JBD2_MIN_JOURNAL_BLOCKS ||
1350 be32_to_cpu(sb->s_maxlen) - JBD2_MIN_JOURNAL_BLOCKS < num_fc_blks) {
1351 printk(KERN_ERR "JBD2: journal file too short %u,%d\n",
1352 be32_to_cpu(sb->s_maxlen), num_fc_blks);
1353 return err;
1354 }
1355
1356 if (jbd2_has_feature_csum2(journal) &&
1357 jbd2_has_feature_csum3(journal)) {
1358 /* Can't have checksum v2 and v3 at the same time! */
1359 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1360 "at the same time!\n");
1361 return err;
1362 }
1363
1364 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1365 jbd2_has_feature_checksum(journal)) {
1366 /* Can't have checksum v1 and v2 on at the same time! */
1367 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1368 "at the same time!\n");
1369 return err;
1370 }
1371
1372 /* Load the checksum driver */
1373 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1374 if (sb->s_checksum_type != JBD2_CRC32C_CHKSUM) {
1375 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1376 return err;
1377 }
1378
1379 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1380 if (IS_ERR(journal->j_chksum_driver)) {
1381 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1382 err = PTR_ERR(journal->j_chksum_driver);
1383 journal->j_chksum_driver = NULL;
1384 return err;
1385 }
1386 /* Check superblock checksum */
1387 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1388 printk(KERN_ERR "JBD2: journal checksum error\n");
1389 err = -EFSBADCRC;
1390 return err;
1391 }
1392 }
1393
1394 return 0;
1395 }
1396
journal_revoke_records_per_block(journal_t * journal)1397 static int journal_revoke_records_per_block(journal_t *journal)
1398 {
1399 int record_size;
1400 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1401
1402 if (jbd2_has_feature_64bit(journal))
1403 record_size = 8;
1404 else
1405 record_size = 4;
1406
1407 if (jbd2_journal_has_csum_v2or3(journal))
1408 space -= sizeof(struct jbd2_journal_block_tail);
1409 return space / record_size;
1410 }
1411
jbd2_journal_get_max_txn_bufs(journal_t * journal)1412 static int jbd2_journal_get_max_txn_bufs(journal_t *journal)
1413 {
1414 return (journal->j_total_len - journal->j_fc_wbufsize) / 3;
1415 }
1416
1417 /*
1418 * Base amount of descriptor blocks we reserve for each transaction.
1419 */
jbd2_descriptor_blocks_per_trans(journal_t * journal)1420 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
1421 {
1422 int tag_space = journal->j_blocksize - sizeof(journal_header_t);
1423 int tags_per_block;
1424
1425 /* Subtract UUID */
1426 tag_space -= 16;
1427 if (jbd2_journal_has_csum_v2or3(journal))
1428 tag_space -= sizeof(struct jbd2_journal_block_tail);
1429 /* Commit code leaves a slack space of 16 bytes at the end of block */
1430 tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
1431 /*
1432 * Revoke descriptors are accounted separately so we need to reserve
1433 * space for commit block and normal transaction descriptor blocks.
1434 */
1435 return 1 + DIV_ROUND_UP(jbd2_journal_get_max_txn_bufs(journal),
1436 tags_per_block);
1437 }
1438
1439 /*
1440 * Initialize number of blocks each transaction reserves for its bookkeeping
1441 * and maximum number of blocks a transaction can use. This needs to be called
1442 * after the journal size and the fastcommit area size are initialized.
1443 */
jbd2_journal_init_transaction_limits(journal_t * journal)1444 static void jbd2_journal_init_transaction_limits(journal_t *journal)
1445 {
1446 journal->j_revoke_records_per_block =
1447 journal_revoke_records_per_block(journal);
1448 journal->j_transaction_overhead_buffers =
1449 jbd2_descriptor_blocks_per_trans(journal);
1450 journal->j_max_transaction_buffers =
1451 jbd2_journal_get_max_txn_bufs(journal);
1452 }
1453
1454 /*
1455 * Load the on-disk journal superblock and read the key fields into the
1456 * journal_t.
1457 */
journal_load_superblock(journal_t * journal)1458 static int journal_load_superblock(journal_t *journal)
1459 {
1460 int err;
1461 struct buffer_head *bh;
1462 journal_superblock_t *sb;
1463
1464 bh = getblk_unmovable(journal->j_dev, journal->j_blk_offset,
1465 journal->j_blocksize);
1466 if (bh)
1467 err = bh_read(bh, 0);
1468 if (!bh || err < 0) {
1469 pr_err("%s: Cannot read journal superblock\n", __func__);
1470 brelse(bh);
1471 return -EIO;
1472 }
1473
1474 journal->j_sb_buffer = bh;
1475 sb = (journal_superblock_t *)bh->b_data;
1476 journal->j_superblock = sb;
1477 err = journal_check_superblock(journal);
1478 if (err) {
1479 journal_fail_superblock(journal);
1480 return err;
1481 }
1482
1483 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1484 journal->j_tail = be32_to_cpu(sb->s_start);
1485 journal->j_first = be32_to_cpu(sb->s_first);
1486 journal->j_errno = be32_to_cpu(sb->s_errno);
1487 journal->j_last = be32_to_cpu(sb->s_maxlen);
1488
1489 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1490 journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1491 /* Precompute checksum seed for all metadata */
1492 if (jbd2_journal_has_csum_v2or3(journal))
1493 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1494 sizeof(sb->s_uuid));
1495 /* After journal features are set, we can compute transaction limits */
1496 jbd2_journal_init_transaction_limits(journal);
1497
1498 if (jbd2_has_feature_fast_commit(journal)) {
1499 journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1500 journal->j_last = journal->j_fc_last -
1501 jbd2_journal_get_num_fc_blks(sb);
1502 journal->j_fc_first = journal->j_last + 1;
1503 journal->j_fc_off = 0;
1504 }
1505
1506 return 0;
1507 }
1508
1509
1510 /*
1511 * Management for journal control blocks: functions to create and
1512 * destroy journal_t structures, and to initialise and read existing
1513 * journal blocks from disk. */
1514
1515 /* The journal_init_common() function creates and fills a journal_t object
1516 * in memory. It calls journal_load_superblock() to load the on-disk journal
1517 * superblock and initialize the journal_t object.
1518 */
1519
journal_init_common(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1520 static journal_t *journal_init_common(struct block_device *bdev,
1521 struct block_device *fs_dev,
1522 unsigned long long start, int len, int blocksize)
1523 {
1524 static struct lock_class_key jbd2_trans_commit_key;
1525 journal_t *journal;
1526 int err;
1527 int n;
1528
1529 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1530 if (!journal)
1531 return ERR_PTR(-ENOMEM);
1532
1533 journal->j_blocksize = blocksize;
1534 journal->j_dev = bdev;
1535 journal->j_fs_dev = fs_dev;
1536 journal->j_blk_offset = start;
1537 journal->j_total_len = len;
1538 jbd2_init_fs_dev_write_error(journal);
1539
1540 err = journal_load_superblock(journal);
1541 if (err)
1542 goto err_cleanup;
1543
1544 init_waitqueue_head(&journal->j_wait_transaction_locked);
1545 init_waitqueue_head(&journal->j_wait_done_commit);
1546 init_waitqueue_head(&journal->j_wait_commit);
1547 init_waitqueue_head(&journal->j_wait_updates);
1548 init_waitqueue_head(&journal->j_wait_reserved);
1549 init_waitqueue_head(&journal->j_fc_wait);
1550 mutex_init(&journal->j_abort_mutex);
1551 mutex_init(&journal->j_barrier);
1552 mutex_init(&journal->j_checkpoint_mutex);
1553 spin_lock_init(&journal->j_revoke_lock);
1554 spin_lock_init(&journal->j_list_lock);
1555 spin_lock_init(&journal->j_history_lock);
1556 rwlock_init(&journal->j_state_lock);
1557
1558 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1559 journal->j_min_batch_time = 0;
1560 journal->j_max_batch_time = 15000; /* 15ms */
1561 atomic_set(&journal->j_reserved_credits, 0);
1562 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1563 &jbd2_trans_commit_key, 0);
1564
1565 /* The journal is marked for error until we succeed with recovery! */
1566 journal->j_flags = JBD2_ABORT;
1567
1568 /* Set up a default-sized revoke table for the new mount. */
1569 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1570 if (err)
1571 goto err_cleanup;
1572
1573 /*
1574 * journal descriptor can store up to n blocks, we need enough
1575 * buffers to write out full descriptor block.
1576 */
1577 err = -ENOMEM;
1578 n = journal->j_blocksize / jbd2_min_tag_size();
1579 journal->j_wbufsize = n;
1580 journal->j_fc_wbuf = NULL;
1581 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1582 GFP_KERNEL);
1583 if (!journal->j_wbuf)
1584 goto err_cleanup;
1585
1586 err = percpu_counter_init(&journal->j_checkpoint_jh_count, 0,
1587 GFP_KERNEL);
1588 if (err)
1589 goto err_cleanup;
1590
1591 journal->j_shrink_transaction = NULL;
1592
1593 journal->j_shrinker = shrinker_alloc(0, "jbd2-journal:(%u:%u)",
1594 MAJOR(bdev->bd_dev),
1595 MINOR(bdev->bd_dev));
1596 if (!journal->j_shrinker) {
1597 err = -ENOMEM;
1598 goto err_cleanup;
1599 }
1600
1601 journal->j_shrinker->scan_objects = jbd2_journal_shrink_scan;
1602 journal->j_shrinker->count_objects = jbd2_journal_shrink_count;
1603 journal->j_shrinker->private_data = journal;
1604
1605 shrinker_register(journal->j_shrinker);
1606
1607 return journal;
1608
1609 err_cleanup:
1610 percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1611 if (journal->j_chksum_driver)
1612 crypto_free_shash(journal->j_chksum_driver);
1613 kfree(journal->j_wbuf);
1614 jbd2_journal_destroy_revoke(journal);
1615 journal_fail_superblock(journal);
1616 kfree(journal);
1617 return ERR_PTR(err);
1618 }
1619
1620 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1621 *
1622 * Create a journal structure assigned some fixed set of disk blocks to
1623 * the journal. We don't actually touch those disk blocks yet, but we
1624 * need to set up all of the mapping information to tell the journaling
1625 * system where the journal blocks are.
1626 *
1627 */
1628
1629 /**
1630 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1631 * @bdev: Block device on which to create the journal
1632 * @fs_dev: Device which hold journalled filesystem for this journal.
1633 * @start: Block nr Start of journal.
1634 * @len: Length of the journal in blocks.
1635 * @blocksize: blocksize of journalling device
1636 *
1637 * Returns: a newly created journal_t *
1638 *
1639 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1640 * range of blocks on an arbitrary block device.
1641 *
1642 */
jbd2_journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1643 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1644 struct block_device *fs_dev,
1645 unsigned long long start, int len, int blocksize)
1646 {
1647 journal_t *journal;
1648
1649 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1650 if (IS_ERR(journal))
1651 return ERR_CAST(journal);
1652
1653 snprintf(journal->j_devname, sizeof(journal->j_devname),
1654 "%pg", journal->j_dev);
1655 strreplace(journal->j_devname, '/', '!');
1656 jbd2_stats_proc_init(journal);
1657
1658 return journal;
1659 }
1660
1661 /**
1662 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1663 * @inode: An inode to create the journal in
1664 *
1665 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1666 * the journal. The inode must exist already, must support bmap() and
1667 * must have all data blocks preallocated.
1668 */
jbd2_journal_init_inode(struct inode * inode)1669 journal_t *jbd2_journal_init_inode(struct inode *inode)
1670 {
1671 journal_t *journal;
1672 sector_t blocknr;
1673 int err = 0;
1674
1675 blocknr = 0;
1676 err = bmap(inode, &blocknr);
1677 if (err || !blocknr) {
1678 pr_err("%s: Cannot locate journal superblock\n", __func__);
1679 return err ? ERR_PTR(err) : ERR_PTR(-EINVAL);
1680 }
1681
1682 jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1683 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1684 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1685
1686 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1687 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1688 inode->i_sb->s_blocksize);
1689 if (IS_ERR(journal))
1690 return ERR_CAST(journal);
1691
1692 journal->j_inode = inode;
1693 snprintf(journal->j_devname, sizeof(journal->j_devname),
1694 "%pg-%lu", journal->j_dev, journal->j_inode->i_ino);
1695 strreplace(journal->j_devname, '/', '!');
1696 jbd2_stats_proc_init(journal);
1697
1698 return journal;
1699 }
1700
1701 /*
1702 * Given a journal_t structure, initialise the various fields for
1703 * startup of a new journaling session. We use this both when creating
1704 * a journal, and after recovering an old journal to reset it for
1705 * subsequent use.
1706 */
1707
journal_reset(journal_t * journal)1708 static int journal_reset(journal_t *journal)
1709 {
1710 journal_superblock_t *sb = journal->j_superblock;
1711 unsigned long long first, last;
1712
1713 first = be32_to_cpu(sb->s_first);
1714 last = be32_to_cpu(sb->s_maxlen);
1715 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1716 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1717 first, last);
1718 journal_fail_superblock(journal);
1719 return -EINVAL;
1720 }
1721
1722 journal->j_first = first;
1723 journal->j_last = last;
1724
1725 if (journal->j_head != 0 && journal->j_flags & JBD2_CYCLE_RECORD) {
1726 /*
1727 * Disable the cycled recording mode if the journal head block
1728 * number is not correct.
1729 */
1730 if (journal->j_head < first || journal->j_head >= last) {
1731 printk(KERN_WARNING "JBD2: Incorrect Journal head block %lu, "
1732 "disable journal_cycle_record\n",
1733 journal->j_head);
1734 journal->j_head = journal->j_first;
1735 }
1736 } else {
1737 journal->j_head = journal->j_first;
1738 }
1739 journal->j_tail = journal->j_head;
1740 journal->j_free = journal->j_last - journal->j_first;
1741
1742 journal->j_tail_sequence = journal->j_transaction_sequence;
1743 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1744 journal->j_commit_request = journal->j_commit_sequence;
1745
1746 /*
1747 * Now that journal recovery is done, turn fast commits off here. This
1748 * way, if fast commit was enabled before the crash but if now FS has
1749 * disabled it, we don't enable fast commits.
1750 */
1751 jbd2_clear_feature_fast_commit(journal);
1752
1753 /*
1754 * As a special case, if the on-disk copy is already marked as needing
1755 * no recovery (s_start == 0), then we can safely defer the superblock
1756 * update until the next commit by setting JBD2_FLUSHED. This avoids
1757 * attempting a write to a potential-readonly device.
1758 */
1759 if (sb->s_start == 0) {
1760 jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb "
1761 "(start %ld, seq %u, errno %d)\n",
1762 journal->j_tail, journal->j_tail_sequence,
1763 journal->j_errno);
1764 journal->j_flags |= JBD2_FLUSHED;
1765 } else {
1766 /* Lock here to make assertions happy... */
1767 mutex_lock_io(&journal->j_checkpoint_mutex);
1768 /*
1769 * Update log tail information. We use REQ_FUA since new
1770 * transaction will start reusing journal space and so we
1771 * must make sure information about current log tail is on
1772 * disk before that.
1773 */
1774 jbd2_journal_update_sb_log_tail(journal,
1775 journal->j_tail_sequence,
1776 journal->j_tail, REQ_FUA);
1777 mutex_unlock(&journal->j_checkpoint_mutex);
1778 }
1779 return jbd2_journal_start_thread(journal);
1780 }
1781
1782 /*
1783 * This function expects that the caller will have locked the journal
1784 * buffer head, and will return with it unlocked
1785 */
jbd2_write_superblock(journal_t * journal,blk_opf_t write_flags)1786 static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags)
1787 {
1788 struct buffer_head *bh = journal->j_sb_buffer;
1789 journal_superblock_t *sb = journal->j_superblock;
1790 int ret = 0;
1791
1792 /* Buffer got discarded which means block device got invalidated */
1793 if (!buffer_mapped(bh)) {
1794 unlock_buffer(bh);
1795 return -EIO;
1796 }
1797
1798 /*
1799 * Always set high priority flags to exempt from block layer's
1800 * QOS policies, e.g. writeback throttle.
1801 */
1802 write_flags |= JBD2_JOURNAL_REQ_FLAGS;
1803 if (!(journal->j_flags & JBD2_BARRIER))
1804 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1805
1806 trace_jbd2_write_superblock(journal, write_flags);
1807
1808 if (buffer_write_io_error(bh)) {
1809 /*
1810 * Oh, dear. A previous attempt to write the journal
1811 * superblock failed. This could happen because the
1812 * USB device was yanked out. Or it could happen to
1813 * be a transient write error and maybe the block will
1814 * be remapped. Nothing we can do but to retry the
1815 * write and hope for the best.
1816 */
1817 printk(KERN_ERR "JBD2: previous I/O error detected "
1818 "for journal superblock update for %s.\n",
1819 journal->j_devname);
1820 clear_buffer_write_io_error(bh);
1821 set_buffer_uptodate(bh);
1822 }
1823 if (jbd2_journal_has_csum_v2or3(journal))
1824 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1825 get_bh(bh);
1826 bh->b_end_io = end_buffer_write_sync;
1827 submit_bh(REQ_OP_WRITE | write_flags, bh);
1828 wait_on_buffer(bh);
1829 if (buffer_write_io_error(bh)) {
1830 clear_buffer_write_io_error(bh);
1831 set_buffer_uptodate(bh);
1832 ret = -EIO;
1833 }
1834 if (ret) {
1835 printk(KERN_ERR "JBD2: I/O error when updating journal superblock for %s.\n",
1836 journal->j_devname);
1837 if (!is_journal_aborted(journal))
1838 jbd2_journal_abort(journal, ret);
1839 }
1840
1841 return ret;
1842 }
1843
1844 /**
1845 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1846 * @journal: The journal to update.
1847 * @tail_tid: TID of the new transaction at the tail of the log
1848 * @tail_block: The first block of the transaction at the tail of the log
1849 * @write_flags: Flags for the journal sb write operation
1850 *
1851 * Update a journal's superblock information about log tail and write it to
1852 * disk, waiting for the IO to complete.
1853 */
jbd2_journal_update_sb_log_tail(journal_t * journal,tid_t tail_tid,unsigned long tail_block,blk_opf_t write_flags)1854 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1855 unsigned long tail_block,
1856 blk_opf_t write_flags)
1857 {
1858 journal_superblock_t *sb = journal->j_superblock;
1859 int ret;
1860
1861 if (is_journal_aborted(journal))
1862 return -EIO;
1863 if (jbd2_check_fs_dev_write_error(journal)) {
1864 jbd2_journal_abort(journal, -EIO);
1865 return -EIO;
1866 }
1867
1868 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1869 jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1870 tail_block, tail_tid);
1871
1872 lock_buffer(journal->j_sb_buffer);
1873 sb->s_sequence = cpu_to_be32(tail_tid);
1874 sb->s_start = cpu_to_be32(tail_block);
1875
1876 ret = jbd2_write_superblock(journal, write_flags);
1877 if (ret)
1878 goto out;
1879
1880 /* Log is no longer empty */
1881 write_lock(&journal->j_state_lock);
1882 WARN_ON(!sb->s_sequence);
1883 journal->j_flags &= ~JBD2_FLUSHED;
1884 write_unlock(&journal->j_state_lock);
1885
1886 out:
1887 return ret;
1888 }
1889
1890 /**
1891 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1892 * @journal: The journal to update.
1893 * @write_flags: Flags for the journal sb write operation
1894 *
1895 * Update a journal's dynamic superblock fields to show that journal is empty.
1896 * Write updated superblock to disk waiting for IO to complete.
1897 */
jbd2_mark_journal_empty(journal_t * journal,blk_opf_t write_flags)1898 static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags)
1899 {
1900 journal_superblock_t *sb = journal->j_superblock;
1901 bool had_fast_commit = false;
1902
1903 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1904 lock_buffer(journal->j_sb_buffer);
1905 if (sb->s_start == 0) { /* Is it already empty? */
1906 unlock_buffer(journal->j_sb_buffer);
1907 return;
1908 }
1909
1910 jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1911 journal->j_tail_sequence);
1912
1913 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1914 sb->s_start = cpu_to_be32(0);
1915 sb->s_head = cpu_to_be32(journal->j_head);
1916 if (jbd2_has_feature_fast_commit(journal)) {
1917 /*
1918 * When journal is clean, no need to commit fast commit flag and
1919 * make file system incompatible with older kernels.
1920 */
1921 jbd2_clear_feature_fast_commit(journal);
1922 had_fast_commit = true;
1923 }
1924
1925 jbd2_write_superblock(journal, write_flags);
1926
1927 if (had_fast_commit)
1928 jbd2_set_feature_fast_commit(journal);
1929
1930 /* Log is empty */
1931 write_lock(&journal->j_state_lock);
1932 journal->j_flags |= JBD2_FLUSHED;
1933 write_unlock(&journal->j_state_lock);
1934 }
1935
1936 /**
1937 * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock)
1938 * @journal: The journal to erase.
1939 * @flags: A discard/zeroout request is sent for each physically contigous
1940 * region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or
1941 * JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation
1942 * to perform.
1943 *
1944 * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes
1945 * will be explicitly written if no hardware offload is available, see
1946 * blkdev_issue_zeroout for more details.
1947 */
__jbd2_journal_erase(journal_t * journal,unsigned int flags)1948 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags)
1949 {
1950 int err = 0;
1951 unsigned long block, log_offset; /* logical */
1952 unsigned long long phys_block, block_start, block_stop; /* physical */
1953 loff_t byte_start, byte_stop, byte_count;
1954
1955 /* flags must be set to either discard or zeroout */
1956 if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags ||
1957 ((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1958 (flags & JBD2_JOURNAL_FLUSH_ZEROOUT)))
1959 return -EINVAL;
1960
1961 if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1962 !bdev_max_discard_sectors(journal->j_dev))
1963 return -EOPNOTSUPP;
1964
1965 /*
1966 * lookup block mapping and issue discard/zeroout for each
1967 * contiguous region
1968 */
1969 log_offset = be32_to_cpu(journal->j_superblock->s_first);
1970 block_start = ~0ULL;
1971 for (block = log_offset; block < journal->j_total_len; block++) {
1972 err = jbd2_journal_bmap(journal, block, &phys_block);
1973 if (err) {
1974 pr_err("JBD2: bad block at offset %lu", block);
1975 return err;
1976 }
1977
1978 if (block_start == ~0ULL) {
1979 block_start = phys_block;
1980 block_stop = block_start - 1;
1981 }
1982
1983 /*
1984 * last block not contiguous with current block,
1985 * process last contiguous region and return to this block on
1986 * next loop
1987 */
1988 if (phys_block != block_stop + 1) {
1989 block--;
1990 } else {
1991 block_stop++;
1992 /*
1993 * if this isn't the last block of journal,
1994 * no need to process now because next block may also
1995 * be part of this contiguous region
1996 */
1997 if (block != journal->j_total_len - 1)
1998 continue;
1999 }
2000
2001 /*
2002 * end of contiguous region or this is last block of journal,
2003 * take care of the region
2004 */
2005 byte_start = block_start * journal->j_blocksize;
2006 byte_stop = block_stop * journal->j_blocksize;
2007 byte_count = (block_stop - block_start + 1) *
2008 journal->j_blocksize;
2009
2010 truncate_inode_pages_range(journal->j_dev->bd_mapping,
2011 byte_start, byte_stop);
2012
2013 if (flags & JBD2_JOURNAL_FLUSH_DISCARD) {
2014 err = blkdev_issue_discard(journal->j_dev,
2015 byte_start >> SECTOR_SHIFT,
2016 byte_count >> SECTOR_SHIFT,
2017 GFP_NOFS);
2018 } else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) {
2019 err = blkdev_issue_zeroout(journal->j_dev,
2020 byte_start >> SECTOR_SHIFT,
2021 byte_count >> SECTOR_SHIFT,
2022 GFP_NOFS, 0);
2023 }
2024
2025 if (unlikely(err != 0)) {
2026 pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu",
2027 err, block_start, block_stop);
2028 return err;
2029 }
2030
2031 /* reset start and stop after processing a region */
2032 block_start = ~0ULL;
2033 }
2034
2035 return blkdev_issue_flush(journal->j_dev);
2036 }
2037
2038 /**
2039 * jbd2_journal_update_sb_errno() - Update error in the journal.
2040 * @journal: The journal to update.
2041 *
2042 * Update a journal's errno. Write updated superblock to disk waiting for IO
2043 * to complete.
2044 */
jbd2_journal_update_sb_errno(journal_t * journal)2045 void jbd2_journal_update_sb_errno(journal_t *journal)
2046 {
2047 journal_superblock_t *sb = journal->j_superblock;
2048 int errcode;
2049
2050 lock_buffer(journal->j_sb_buffer);
2051 errcode = journal->j_errno;
2052 if (errcode == -ESHUTDOWN)
2053 errcode = 0;
2054 jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
2055 sb->s_errno = cpu_to_be32(errcode);
2056
2057 jbd2_write_superblock(journal, REQ_FUA);
2058 }
2059 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
2060
2061 /**
2062 * jbd2_journal_load() - Read journal from disk.
2063 * @journal: Journal to act on.
2064 *
2065 * Given a journal_t structure which tells us which disk blocks contain
2066 * a journal, read the journal from disk to initialise the in-memory
2067 * structures.
2068 */
jbd2_journal_load(journal_t * journal)2069 int jbd2_journal_load(journal_t *journal)
2070 {
2071 int err;
2072 journal_superblock_t *sb = journal->j_superblock;
2073
2074 /*
2075 * Create a slab for this blocksize
2076 */
2077 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
2078 if (err)
2079 return err;
2080
2081 /* Let the recovery code check whether it needs to recover any
2082 * data from the journal. */
2083 err = jbd2_journal_recover(journal);
2084 if (err) {
2085 pr_warn("JBD2: journal recovery failed\n");
2086 return err;
2087 }
2088
2089 if (journal->j_failed_commit) {
2090 printk(KERN_ERR "JBD2: journal transaction %u on %s "
2091 "is corrupt.\n", journal->j_failed_commit,
2092 journal->j_devname);
2093 return -EFSCORRUPTED;
2094 }
2095 /*
2096 * clear JBD2_ABORT flag initialized in journal_init_common
2097 * here to update log tail information with the newest seq.
2098 */
2099 journal->j_flags &= ~JBD2_ABORT;
2100
2101 /* OK, we've finished with the dynamic journal bits:
2102 * reinitialise the dynamic contents of the superblock in memory
2103 * and reset them on disk. */
2104 err = journal_reset(journal);
2105 if (err) {
2106 pr_warn("JBD2: journal reset failed\n");
2107 return err;
2108 }
2109
2110 journal->j_flags |= JBD2_LOADED;
2111 return 0;
2112 }
2113
2114 /**
2115 * jbd2_journal_destroy() - Release a journal_t structure.
2116 * @journal: Journal to act on.
2117 *
2118 * Release a journal_t structure once it is no longer in use by the
2119 * journaled object.
2120 * Return <0 if we couldn't clean up the journal.
2121 */
jbd2_journal_destroy(journal_t * journal)2122 int jbd2_journal_destroy(journal_t *journal)
2123 {
2124 int err = 0;
2125
2126 /* Wait for the commit thread to wake up and die. */
2127 journal_kill_thread(journal);
2128
2129 /* Force a final log commit */
2130 if (journal->j_running_transaction)
2131 jbd2_journal_commit_transaction(journal);
2132
2133 /* Force any old transactions to disk */
2134
2135 /* Totally anal locking here... */
2136 spin_lock(&journal->j_list_lock);
2137 while (journal->j_checkpoint_transactions != NULL) {
2138 spin_unlock(&journal->j_list_lock);
2139 mutex_lock_io(&journal->j_checkpoint_mutex);
2140 err = jbd2_log_do_checkpoint(journal);
2141 mutex_unlock(&journal->j_checkpoint_mutex);
2142 /*
2143 * If checkpointing failed, just free the buffers to avoid
2144 * looping forever
2145 */
2146 if (err) {
2147 jbd2_journal_destroy_checkpoint(journal);
2148 spin_lock(&journal->j_list_lock);
2149 break;
2150 }
2151 spin_lock(&journal->j_list_lock);
2152 }
2153
2154 J_ASSERT(journal->j_running_transaction == NULL);
2155 J_ASSERT(journal->j_committing_transaction == NULL);
2156 J_ASSERT(journal->j_checkpoint_transactions == NULL);
2157 spin_unlock(&journal->j_list_lock);
2158
2159 /*
2160 * OK, all checkpoint transactions have been checked, now check the
2161 * writeback errseq of fs dev and abort the journal if some buffer
2162 * failed to write back to the original location, otherwise the
2163 * filesystem may become inconsistent.
2164 */
2165 if (!is_journal_aborted(journal) &&
2166 jbd2_check_fs_dev_write_error(journal))
2167 jbd2_journal_abort(journal, -EIO);
2168
2169 if (journal->j_sb_buffer) {
2170 if (!is_journal_aborted(journal)) {
2171 mutex_lock_io(&journal->j_checkpoint_mutex);
2172
2173 write_lock(&journal->j_state_lock);
2174 journal->j_tail_sequence =
2175 ++journal->j_transaction_sequence;
2176 write_unlock(&journal->j_state_lock);
2177
2178 jbd2_mark_journal_empty(journal, REQ_PREFLUSH | REQ_FUA);
2179 mutex_unlock(&journal->j_checkpoint_mutex);
2180 } else
2181 err = -EIO;
2182 brelse(journal->j_sb_buffer);
2183 }
2184
2185 if (journal->j_shrinker) {
2186 percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2187 shrinker_free(journal->j_shrinker);
2188 }
2189 if (journal->j_proc_entry)
2190 jbd2_stats_proc_exit(journal);
2191 iput(journal->j_inode);
2192 if (journal->j_revoke)
2193 jbd2_journal_destroy_revoke(journal);
2194 if (journal->j_chksum_driver)
2195 crypto_free_shash(journal->j_chksum_driver);
2196 kfree(journal->j_fc_wbuf);
2197 kfree(journal->j_wbuf);
2198 kfree(journal);
2199
2200 return err;
2201 }
2202
2203
2204 /**
2205 * jbd2_journal_check_used_features() - Check if features specified are used.
2206 * @journal: Journal to check.
2207 * @compat: bitmask of compatible features
2208 * @ro: bitmask of features that force read-only mount
2209 * @incompat: bitmask of incompatible features
2210 *
2211 * Check whether the journal uses all of a given set of
2212 * features. Return true (non-zero) if it does.
2213 **/
2214
jbd2_journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2215 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2216 unsigned long ro, unsigned long incompat)
2217 {
2218 journal_superblock_t *sb;
2219
2220 if (!compat && !ro && !incompat)
2221 return 1;
2222 if (!jbd2_format_support_feature(journal))
2223 return 0;
2224
2225 sb = journal->j_superblock;
2226
2227 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2228 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2229 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2230 return 1;
2231
2232 return 0;
2233 }
2234
2235 /**
2236 * jbd2_journal_check_available_features() - Check feature set in journalling layer
2237 * @journal: Journal to check.
2238 * @compat: bitmask of compatible features
2239 * @ro: bitmask of features that force read-only mount
2240 * @incompat: bitmask of incompatible features
2241 *
2242 * Check whether the journaling code supports the use of
2243 * all of a given set of features on this journal. Return true
2244 * (non-zero) if it can. */
2245
jbd2_journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2246 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2247 unsigned long ro, unsigned long incompat)
2248 {
2249 if (!compat && !ro && !incompat)
2250 return 1;
2251
2252 if (!jbd2_format_support_feature(journal))
2253 return 0;
2254
2255 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2256 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2257 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2258 return 1;
2259
2260 return 0;
2261 }
2262
2263 static int
jbd2_journal_initialize_fast_commit(journal_t * journal)2264 jbd2_journal_initialize_fast_commit(journal_t *journal)
2265 {
2266 journal_superblock_t *sb = journal->j_superblock;
2267 unsigned long long num_fc_blks;
2268
2269 num_fc_blks = jbd2_journal_get_num_fc_blks(sb);
2270 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2271 return -ENOSPC;
2272
2273 /* Are we called twice? */
2274 WARN_ON(journal->j_fc_wbuf != NULL);
2275 journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2276 sizeof(struct buffer_head *), GFP_KERNEL);
2277 if (!journal->j_fc_wbuf)
2278 return -ENOMEM;
2279
2280 journal->j_fc_wbufsize = num_fc_blks;
2281 journal->j_fc_last = journal->j_last;
2282 journal->j_last = journal->j_fc_last - num_fc_blks;
2283 journal->j_fc_first = journal->j_last + 1;
2284 journal->j_fc_off = 0;
2285 journal->j_free = journal->j_last - journal->j_first;
2286
2287 return 0;
2288 }
2289
2290 /**
2291 * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2292 * @journal: Journal to act on.
2293 * @compat: bitmask of compatible features
2294 * @ro: bitmask of features that force read-only mount
2295 * @incompat: bitmask of incompatible features
2296 *
2297 * Mark a given journal feature as present on the
2298 * superblock. Returns true if the requested features could be set.
2299 *
2300 */
2301
jbd2_journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2302 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2303 unsigned long ro, unsigned long incompat)
2304 {
2305 #define INCOMPAT_FEATURE_ON(f) \
2306 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2307 #define COMPAT_FEATURE_ON(f) \
2308 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2309 journal_superblock_t *sb;
2310
2311 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2312 return 1;
2313
2314 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2315 return 0;
2316
2317 /* If enabling v2 checksums, turn on v3 instead */
2318 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2319 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2320 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2321 }
2322
2323 /* Asking for checksumming v3 and v1? Only give them v3. */
2324 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2325 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2326 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2327
2328 jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2329 compat, ro, incompat);
2330
2331 sb = journal->j_superblock;
2332
2333 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2334 if (jbd2_journal_initialize_fast_commit(journal)) {
2335 pr_err("JBD2: Cannot enable fast commits.\n");
2336 return 0;
2337 }
2338 }
2339
2340 /* Load the checksum driver if necessary */
2341 if ((journal->j_chksum_driver == NULL) &&
2342 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2343 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2344 if (IS_ERR(journal->j_chksum_driver)) {
2345 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2346 journal->j_chksum_driver = NULL;
2347 return 0;
2348 }
2349 /* Precompute checksum seed for all metadata */
2350 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2351 sizeof(sb->s_uuid));
2352 }
2353
2354 lock_buffer(journal->j_sb_buffer);
2355
2356 /* If enabling v3 checksums, update superblock */
2357 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2358 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2359 sb->s_feature_compat &=
2360 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2361 }
2362
2363 /* If enabling v1 checksums, downgrade superblock */
2364 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2365 sb->s_feature_incompat &=
2366 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2367 JBD2_FEATURE_INCOMPAT_CSUM_V3);
2368
2369 sb->s_feature_compat |= cpu_to_be32(compat);
2370 sb->s_feature_ro_compat |= cpu_to_be32(ro);
2371 sb->s_feature_incompat |= cpu_to_be32(incompat);
2372 unlock_buffer(journal->j_sb_buffer);
2373 jbd2_journal_init_transaction_limits(journal);
2374
2375 return 1;
2376 #undef COMPAT_FEATURE_ON
2377 #undef INCOMPAT_FEATURE_ON
2378 }
2379
2380 /*
2381 * jbd2_journal_clear_features() - Clear a given journal feature in the
2382 * superblock
2383 * @journal: Journal to act on.
2384 * @compat: bitmask of compatible features
2385 * @ro: bitmask of features that force read-only mount
2386 * @incompat: bitmask of incompatible features
2387 *
2388 * Clear a given journal feature as present on the
2389 * superblock.
2390 */
jbd2_journal_clear_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2391 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2392 unsigned long ro, unsigned long incompat)
2393 {
2394 journal_superblock_t *sb;
2395
2396 jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2397 compat, ro, incompat);
2398
2399 sb = journal->j_superblock;
2400
2401 sb->s_feature_compat &= ~cpu_to_be32(compat);
2402 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2403 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
2404 jbd2_journal_init_transaction_limits(journal);
2405 }
2406 EXPORT_SYMBOL(jbd2_journal_clear_features);
2407
2408 /**
2409 * jbd2_journal_flush() - Flush journal
2410 * @journal: Journal to act on.
2411 * @flags: optional operation on the journal blocks after the flush (see below)
2412 *
2413 * Flush all data for a given journal to disk and empty the journal.
2414 * Filesystems can use this when remounting readonly to ensure that
2415 * recovery does not need to happen on remount. Optionally, a discard or zeroout
2416 * can be issued on the journal blocks after flushing.
2417 *
2418 * flags:
2419 * JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks
2420 * JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks
2421 */
jbd2_journal_flush(journal_t * journal,unsigned int flags)2422 int jbd2_journal_flush(journal_t *journal, unsigned int flags)
2423 {
2424 int err = 0;
2425 transaction_t *transaction = NULL;
2426
2427 write_lock(&journal->j_state_lock);
2428
2429 /* Force everything buffered to the log... */
2430 if (journal->j_running_transaction) {
2431 transaction = journal->j_running_transaction;
2432 __jbd2_log_start_commit(journal, transaction->t_tid);
2433 } else if (journal->j_committing_transaction)
2434 transaction = journal->j_committing_transaction;
2435
2436 /* Wait for the log commit to complete... */
2437 if (transaction) {
2438 tid_t tid = transaction->t_tid;
2439
2440 write_unlock(&journal->j_state_lock);
2441 jbd2_log_wait_commit(journal, tid);
2442 } else {
2443 write_unlock(&journal->j_state_lock);
2444 }
2445
2446 /* ...and flush everything in the log out to disk. */
2447 spin_lock(&journal->j_list_lock);
2448 while (!err && journal->j_checkpoint_transactions != NULL) {
2449 spin_unlock(&journal->j_list_lock);
2450 mutex_lock_io(&journal->j_checkpoint_mutex);
2451 err = jbd2_log_do_checkpoint(journal);
2452 mutex_unlock(&journal->j_checkpoint_mutex);
2453 spin_lock(&journal->j_list_lock);
2454 }
2455 spin_unlock(&journal->j_list_lock);
2456
2457 if (is_journal_aborted(journal))
2458 return -EIO;
2459
2460 mutex_lock_io(&journal->j_checkpoint_mutex);
2461 if (!err) {
2462 err = jbd2_cleanup_journal_tail(journal);
2463 if (err < 0) {
2464 mutex_unlock(&journal->j_checkpoint_mutex);
2465 goto out;
2466 }
2467 err = 0;
2468 }
2469
2470 /* Finally, mark the journal as really needing no recovery.
2471 * This sets s_start==0 in the underlying superblock, which is
2472 * the magic code for a fully-recovered superblock. Any future
2473 * commits of data to the journal will restore the current
2474 * s_start value. */
2475 jbd2_mark_journal_empty(journal, REQ_FUA);
2476
2477 if (flags)
2478 err = __jbd2_journal_erase(journal, flags);
2479
2480 mutex_unlock(&journal->j_checkpoint_mutex);
2481 write_lock(&journal->j_state_lock);
2482 J_ASSERT(!journal->j_running_transaction);
2483 J_ASSERT(!journal->j_committing_transaction);
2484 J_ASSERT(!journal->j_checkpoint_transactions);
2485 J_ASSERT(journal->j_head == journal->j_tail);
2486 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2487 write_unlock(&journal->j_state_lock);
2488 out:
2489 return err;
2490 }
2491
2492 /**
2493 * jbd2_journal_wipe() - Wipe journal contents
2494 * @journal: Journal to act on.
2495 * @write: flag (see below)
2496 *
2497 * Wipe out all of the contents of a journal, safely. This will produce
2498 * a warning if the journal contains any valid recovery information.
2499 * Must be called between journal_init_*() and jbd2_journal_load().
2500 *
2501 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2502 * we merely suppress recovery.
2503 */
2504
jbd2_journal_wipe(journal_t * journal,int write)2505 int jbd2_journal_wipe(journal_t *journal, int write)
2506 {
2507 int err;
2508
2509 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2510
2511 if (!journal->j_tail)
2512 return 0;
2513
2514 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2515 write ? "Clearing" : "Ignoring");
2516
2517 err = jbd2_journal_skip_recovery(journal);
2518 if (write) {
2519 /* Lock to make assertions happy... */
2520 mutex_lock_io(&journal->j_checkpoint_mutex);
2521 jbd2_mark_journal_empty(journal, REQ_FUA);
2522 mutex_unlock(&journal->j_checkpoint_mutex);
2523 }
2524
2525 return err;
2526 }
2527
2528 /**
2529 * jbd2_journal_abort () - Shutdown the journal immediately.
2530 * @journal: the journal to shutdown.
2531 * @errno: an error number to record in the journal indicating
2532 * the reason for the shutdown.
2533 *
2534 * Perform a complete, immediate shutdown of the ENTIRE
2535 * journal (not of a single transaction). This operation cannot be
2536 * undone without closing and reopening the journal.
2537 *
2538 * The jbd2_journal_abort function is intended to support higher level error
2539 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2540 * mode.
2541 *
2542 * Journal abort has very specific semantics. Any existing dirty,
2543 * unjournaled buffers in the main filesystem will still be written to
2544 * disk by bdflush, but the journaling mechanism will be suspended
2545 * immediately and no further transaction commits will be honoured.
2546 *
2547 * Any dirty, journaled buffers will be written back to disk without
2548 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2549 * filesystem, but we _do_ attempt to leave as much data as possible
2550 * behind for fsck to use for cleanup.
2551 *
2552 * Any attempt to get a new transaction handle on a journal which is in
2553 * ABORT state will just result in an -EROFS error return. A
2554 * jbd2_journal_stop on an existing handle will return -EIO if we have
2555 * entered abort state during the update.
2556 *
2557 * Recursive transactions are not disturbed by journal abort until the
2558 * final jbd2_journal_stop, which will receive the -EIO error.
2559 *
2560 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2561 * which will be recorded (if possible) in the journal superblock. This
2562 * allows a client to record failure conditions in the middle of a
2563 * transaction without having to complete the transaction to record the
2564 * failure to disk. ext3_error, for example, now uses this
2565 * functionality.
2566 *
2567 */
2568
jbd2_journal_abort(journal_t * journal,int errno)2569 void jbd2_journal_abort(journal_t *journal, int errno)
2570 {
2571 transaction_t *transaction;
2572
2573 /*
2574 * Lock the aborting procedure until everything is done, this avoid
2575 * races between filesystem's error handling flow (e.g. ext4_abort()),
2576 * ensure panic after the error info is written into journal's
2577 * superblock.
2578 */
2579 mutex_lock(&journal->j_abort_mutex);
2580 /*
2581 * ESHUTDOWN always takes precedence because a file system check
2582 * caused by any other journal abort error is not required after
2583 * a shutdown triggered.
2584 */
2585 write_lock(&journal->j_state_lock);
2586 if (journal->j_flags & JBD2_ABORT) {
2587 int old_errno = journal->j_errno;
2588
2589 write_unlock(&journal->j_state_lock);
2590 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2591 journal->j_errno = errno;
2592 jbd2_journal_update_sb_errno(journal);
2593 }
2594 mutex_unlock(&journal->j_abort_mutex);
2595 return;
2596 }
2597
2598 /*
2599 * Mark the abort as occurred and start current running transaction
2600 * to release all journaled buffer.
2601 */
2602 pr_err("Aborting journal on device %s.\n", journal->j_devname);
2603
2604 journal->j_flags |= JBD2_ABORT;
2605 journal->j_errno = errno;
2606 transaction = journal->j_running_transaction;
2607 if (transaction)
2608 __jbd2_log_start_commit(journal, transaction->t_tid);
2609 write_unlock(&journal->j_state_lock);
2610
2611 /*
2612 * Record errno to the journal super block, so that fsck and jbd2
2613 * layer could realise that a filesystem check is needed.
2614 */
2615 jbd2_journal_update_sb_errno(journal);
2616 mutex_unlock(&journal->j_abort_mutex);
2617 }
2618
2619 /**
2620 * jbd2_journal_errno() - returns the journal's error state.
2621 * @journal: journal to examine.
2622 *
2623 * This is the errno number set with jbd2_journal_abort(), the last
2624 * time the journal was mounted - if the journal was stopped
2625 * without calling abort this will be 0.
2626 *
2627 * If the journal has been aborted on this mount time -EROFS will
2628 * be returned.
2629 */
jbd2_journal_errno(journal_t * journal)2630 int jbd2_journal_errno(journal_t *journal)
2631 {
2632 int err;
2633
2634 read_lock(&journal->j_state_lock);
2635 if (journal->j_flags & JBD2_ABORT)
2636 err = -EROFS;
2637 else
2638 err = journal->j_errno;
2639 read_unlock(&journal->j_state_lock);
2640 return err;
2641 }
2642
2643 /**
2644 * jbd2_journal_clear_err() - clears the journal's error state
2645 * @journal: journal to act on.
2646 *
2647 * An error must be cleared or acked to take a FS out of readonly
2648 * mode.
2649 */
jbd2_journal_clear_err(journal_t * journal)2650 int jbd2_journal_clear_err(journal_t *journal)
2651 {
2652 int err = 0;
2653
2654 write_lock(&journal->j_state_lock);
2655 if (journal->j_flags & JBD2_ABORT)
2656 err = -EROFS;
2657 else
2658 journal->j_errno = 0;
2659 write_unlock(&journal->j_state_lock);
2660 return err;
2661 }
2662
2663 /**
2664 * jbd2_journal_ack_err() - Ack journal err.
2665 * @journal: journal to act on.
2666 *
2667 * An error must be cleared or acked to take a FS out of readonly
2668 * mode.
2669 */
jbd2_journal_ack_err(journal_t * journal)2670 void jbd2_journal_ack_err(journal_t *journal)
2671 {
2672 write_lock(&journal->j_state_lock);
2673 if (journal->j_errno)
2674 journal->j_flags |= JBD2_ACK_ERR;
2675 write_unlock(&journal->j_state_lock);
2676 }
2677
jbd2_journal_blocks_per_page(struct inode * inode)2678 int jbd2_journal_blocks_per_page(struct inode *inode)
2679 {
2680 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2681 }
2682
2683 /*
2684 * helper functions to deal with 32 or 64bit block numbers.
2685 */
journal_tag_bytes(journal_t * journal)2686 size_t journal_tag_bytes(journal_t *journal)
2687 {
2688 size_t sz;
2689
2690 if (jbd2_has_feature_csum3(journal))
2691 return sizeof(journal_block_tag3_t);
2692
2693 sz = sizeof(journal_block_tag_t);
2694
2695 if (jbd2_has_feature_csum2(journal))
2696 sz += sizeof(__u16);
2697
2698 if (jbd2_has_feature_64bit(journal))
2699 return sz;
2700 else
2701 return sz - sizeof(__u32);
2702 }
2703
2704 /*
2705 * JBD memory management
2706 *
2707 * These functions are used to allocate block-sized chunks of memory
2708 * used for making copies of buffer_head data. Very often it will be
2709 * page-sized chunks of data, but sometimes it will be in
2710 * sub-page-size chunks. (For example, 16k pages on Power systems
2711 * with a 4k block file system.) For blocks smaller than a page, we
2712 * use a SLAB allocator. There are slab caches for each block size,
2713 * which are allocated at mount time, if necessary, and we only free
2714 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2715 * this reason we don't need to a mutex to protect access to
2716 * jbd2_slab[] allocating or releasing memory; only in
2717 * jbd2_journal_create_slab().
2718 */
2719 #define JBD2_MAX_SLABS 8
2720 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2721
2722 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2723 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2724 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2725 };
2726
2727
jbd2_journal_destroy_slabs(void)2728 static void jbd2_journal_destroy_slabs(void)
2729 {
2730 int i;
2731
2732 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2733 kmem_cache_destroy(jbd2_slab[i]);
2734 jbd2_slab[i] = NULL;
2735 }
2736 }
2737
jbd2_journal_create_slab(size_t size)2738 static int jbd2_journal_create_slab(size_t size)
2739 {
2740 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2741 int i = order_base_2(size) - 10;
2742 size_t slab_size;
2743
2744 if (size == PAGE_SIZE)
2745 return 0;
2746
2747 if (i >= JBD2_MAX_SLABS)
2748 return -EINVAL;
2749
2750 if (unlikely(i < 0))
2751 i = 0;
2752 mutex_lock(&jbd2_slab_create_mutex);
2753 if (jbd2_slab[i]) {
2754 mutex_unlock(&jbd2_slab_create_mutex);
2755 return 0; /* Already created */
2756 }
2757
2758 slab_size = 1 << (i+10);
2759 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2760 slab_size, 0, NULL);
2761 mutex_unlock(&jbd2_slab_create_mutex);
2762 if (!jbd2_slab[i]) {
2763 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2764 return -ENOMEM;
2765 }
2766 return 0;
2767 }
2768
get_slab(size_t size)2769 static struct kmem_cache *get_slab(size_t size)
2770 {
2771 int i = order_base_2(size) - 10;
2772
2773 BUG_ON(i >= JBD2_MAX_SLABS);
2774 if (unlikely(i < 0))
2775 i = 0;
2776 BUG_ON(jbd2_slab[i] == NULL);
2777 return jbd2_slab[i];
2778 }
2779
jbd2_alloc(size_t size,gfp_t flags)2780 void *jbd2_alloc(size_t size, gfp_t flags)
2781 {
2782 void *ptr;
2783
2784 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2785
2786 if (size < PAGE_SIZE)
2787 ptr = kmem_cache_alloc(get_slab(size), flags);
2788 else
2789 ptr = (void *)__get_free_pages(flags, get_order(size));
2790
2791 /* Check alignment; SLUB has gotten this wrong in the past,
2792 * and this can lead to user data corruption! */
2793 BUG_ON(((unsigned long) ptr) & (size-1));
2794
2795 return ptr;
2796 }
2797
jbd2_free(void * ptr,size_t size)2798 void jbd2_free(void *ptr, size_t size)
2799 {
2800 if (size < PAGE_SIZE)
2801 kmem_cache_free(get_slab(size), ptr);
2802 else
2803 free_pages((unsigned long)ptr, get_order(size));
2804 };
2805
2806 /*
2807 * Journal_head storage management
2808 */
2809 static struct kmem_cache *jbd2_journal_head_cache;
2810 #ifdef CONFIG_JBD2_DEBUG
2811 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2812 #endif
2813
jbd2_journal_init_journal_head_cache(void)2814 static int __init jbd2_journal_init_journal_head_cache(void)
2815 {
2816 J_ASSERT(!jbd2_journal_head_cache);
2817 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2818 sizeof(struct journal_head),
2819 0, /* offset */
2820 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2821 NULL); /* ctor */
2822 if (!jbd2_journal_head_cache) {
2823 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2824 return -ENOMEM;
2825 }
2826 return 0;
2827 }
2828
jbd2_journal_destroy_journal_head_cache(void)2829 static void jbd2_journal_destroy_journal_head_cache(void)
2830 {
2831 kmem_cache_destroy(jbd2_journal_head_cache);
2832 jbd2_journal_head_cache = NULL;
2833 }
2834
2835 /*
2836 * journal_head splicing and dicing
2837 */
journal_alloc_journal_head(void)2838 static struct journal_head *journal_alloc_journal_head(void)
2839 {
2840 struct journal_head *ret;
2841
2842 #ifdef CONFIG_JBD2_DEBUG
2843 atomic_inc(&nr_journal_heads);
2844 #endif
2845 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2846 if (!ret) {
2847 jbd2_debug(1, "out of memory for journal_head\n");
2848 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2849 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2850 GFP_NOFS | __GFP_NOFAIL);
2851 }
2852 spin_lock_init(&ret->b_state_lock);
2853 return ret;
2854 }
2855
journal_free_journal_head(struct journal_head * jh)2856 static void journal_free_journal_head(struct journal_head *jh)
2857 {
2858 #ifdef CONFIG_JBD2_DEBUG
2859 atomic_dec(&nr_journal_heads);
2860 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2861 #endif
2862 kmem_cache_free(jbd2_journal_head_cache, jh);
2863 }
2864
2865 /*
2866 * A journal_head is attached to a buffer_head whenever JBD has an
2867 * interest in the buffer.
2868 *
2869 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2870 * is set. This bit is tested in core kernel code where we need to take
2871 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2872 * there.
2873 *
2874 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2875 *
2876 * When a buffer has its BH_JBD bit set it is immune from being released by
2877 * core kernel code, mainly via ->b_count.
2878 *
2879 * A journal_head is detached from its buffer_head when the journal_head's
2880 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2881 * transaction (b_cp_transaction) hold their references to b_jcount.
2882 *
2883 * Various places in the kernel want to attach a journal_head to a buffer_head
2884 * _before_ attaching the journal_head to a transaction. To protect the
2885 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2886 * journal_head's b_jcount refcount by one. The caller must call
2887 * jbd2_journal_put_journal_head() to undo this.
2888 *
2889 * So the typical usage would be:
2890 *
2891 * (Attach a journal_head if needed. Increments b_jcount)
2892 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2893 * ...
2894 * (Get another reference for transaction)
2895 * jbd2_journal_grab_journal_head(bh);
2896 * jh->b_transaction = xxx;
2897 * (Put original reference)
2898 * jbd2_journal_put_journal_head(jh);
2899 */
2900
2901 /*
2902 * Give a buffer_head a journal_head.
2903 *
2904 * May sleep.
2905 */
jbd2_journal_add_journal_head(struct buffer_head * bh)2906 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2907 {
2908 struct journal_head *jh;
2909 struct journal_head *new_jh = NULL;
2910
2911 repeat:
2912 if (!buffer_jbd(bh))
2913 new_jh = journal_alloc_journal_head();
2914
2915 jbd_lock_bh_journal_head(bh);
2916 if (buffer_jbd(bh)) {
2917 jh = bh2jh(bh);
2918 } else {
2919 J_ASSERT_BH(bh,
2920 (atomic_read(&bh->b_count) > 0) ||
2921 (bh->b_folio && bh->b_folio->mapping));
2922
2923 if (!new_jh) {
2924 jbd_unlock_bh_journal_head(bh);
2925 goto repeat;
2926 }
2927
2928 jh = new_jh;
2929 new_jh = NULL; /* We consumed it */
2930 set_buffer_jbd(bh);
2931 bh->b_private = jh;
2932 jh->b_bh = bh;
2933 get_bh(bh);
2934 BUFFER_TRACE(bh, "added journal_head");
2935 }
2936 jh->b_jcount++;
2937 jbd_unlock_bh_journal_head(bh);
2938 if (new_jh)
2939 journal_free_journal_head(new_jh);
2940 return bh->b_private;
2941 }
2942
2943 /*
2944 * Grab a ref against this buffer_head's journal_head. If it ended up not
2945 * having a journal_head, return NULL
2946 */
jbd2_journal_grab_journal_head(struct buffer_head * bh)2947 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2948 {
2949 struct journal_head *jh = NULL;
2950
2951 jbd_lock_bh_journal_head(bh);
2952 if (buffer_jbd(bh)) {
2953 jh = bh2jh(bh);
2954 jh->b_jcount++;
2955 }
2956 jbd_unlock_bh_journal_head(bh);
2957 return jh;
2958 }
2959 EXPORT_SYMBOL(jbd2_journal_grab_journal_head);
2960
__journal_remove_journal_head(struct buffer_head * bh)2961 static void __journal_remove_journal_head(struct buffer_head *bh)
2962 {
2963 struct journal_head *jh = bh2jh(bh);
2964
2965 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2966 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2967 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2968 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2969 J_ASSERT_BH(bh, buffer_jbd(bh));
2970 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2971 BUFFER_TRACE(bh, "remove journal_head");
2972
2973 /* Unlink before dropping the lock */
2974 bh->b_private = NULL;
2975 jh->b_bh = NULL; /* debug, really */
2976 clear_buffer_jbd(bh);
2977 }
2978
journal_release_journal_head(struct journal_head * jh,size_t b_size)2979 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2980 {
2981 if (jh->b_frozen_data) {
2982 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2983 jbd2_free(jh->b_frozen_data, b_size);
2984 }
2985 if (jh->b_committed_data) {
2986 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2987 jbd2_free(jh->b_committed_data, b_size);
2988 }
2989 journal_free_journal_head(jh);
2990 }
2991
2992 /*
2993 * Drop a reference on the passed journal_head. If it fell to zero then
2994 * release the journal_head from the buffer_head.
2995 */
jbd2_journal_put_journal_head(struct journal_head * jh)2996 void jbd2_journal_put_journal_head(struct journal_head *jh)
2997 {
2998 struct buffer_head *bh = jh2bh(jh);
2999
3000 jbd_lock_bh_journal_head(bh);
3001 J_ASSERT_JH(jh, jh->b_jcount > 0);
3002 --jh->b_jcount;
3003 if (!jh->b_jcount) {
3004 __journal_remove_journal_head(bh);
3005 jbd_unlock_bh_journal_head(bh);
3006 journal_release_journal_head(jh, bh->b_size);
3007 __brelse(bh);
3008 } else {
3009 jbd_unlock_bh_journal_head(bh);
3010 }
3011 }
3012 EXPORT_SYMBOL(jbd2_journal_put_journal_head);
3013
3014 /*
3015 * Initialize jbd inode head
3016 */
jbd2_journal_init_jbd_inode(struct jbd2_inode * jinode,struct inode * inode)3017 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
3018 {
3019 jinode->i_transaction = NULL;
3020 jinode->i_next_transaction = NULL;
3021 jinode->i_vfs_inode = inode;
3022 jinode->i_flags = 0;
3023 jinode->i_dirty_start = 0;
3024 jinode->i_dirty_end = 0;
3025 INIT_LIST_HEAD(&jinode->i_list);
3026 }
3027
3028 /*
3029 * Function to be called before we start removing inode from memory (i.e.,
3030 * clear_inode() is a fine place to be called from). It removes inode from
3031 * transaction's lists.
3032 */
jbd2_journal_release_jbd_inode(journal_t * journal,struct jbd2_inode * jinode)3033 void jbd2_journal_release_jbd_inode(journal_t *journal,
3034 struct jbd2_inode *jinode)
3035 {
3036 if (!journal)
3037 return;
3038 restart:
3039 spin_lock(&journal->j_list_lock);
3040 /* Is commit writing out inode - we have to wait */
3041 if (jinode->i_flags & JI_COMMIT_RUNNING) {
3042 wait_queue_head_t *wq;
3043 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
3044 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
3045 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
3046 spin_unlock(&journal->j_list_lock);
3047 schedule();
3048 finish_wait(wq, &wait.wq_entry);
3049 goto restart;
3050 }
3051
3052 if (jinode->i_transaction) {
3053 list_del(&jinode->i_list);
3054 jinode->i_transaction = NULL;
3055 }
3056 spin_unlock(&journal->j_list_lock);
3057 }
3058
3059
3060 #ifdef CONFIG_PROC_FS
3061
3062 #define JBD2_STATS_PROC_NAME "fs/jbd2"
3063
jbd2_create_jbd_stats_proc_entry(void)3064 static void __init jbd2_create_jbd_stats_proc_entry(void)
3065 {
3066 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
3067 }
3068
jbd2_remove_jbd_stats_proc_entry(void)3069 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
3070 {
3071 if (proc_jbd2_stats)
3072 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
3073 }
3074
3075 #else
3076
3077 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
3078 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
3079
3080 #endif
3081
3082 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3083
jbd2_journal_init_inode_cache(void)3084 static int __init jbd2_journal_init_inode_cache(void)
3085 {
3086 J_ASSERT(!jbd2_inode_cache);
3087 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3088 if (!jbd2_inode_cache) {
3089 pr_emerg("JBD2: failed to create inode cache\n");
3090 return -ENOMEM;
3091 }
3092 return 0;
3093 }
3094
jbd2_journal_init_handle_cache(void)3095 static int __init jbd2_journal_init_handle_cache(void)
3096 {
3097 J_ASSERT(!jbd2_handle_cache);
3098 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3099 if (!jbd2_handle_cache) {
3100 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3101 return -ENOMEM;
3102 }
3103 return 0;
3104 }
3105
jbd2_journal_destroy_inode_cache(void)3106 static void jbd2_journal_destroy_inode_cache(void)
3107 {
3108 kmem_cache_destroy(jbd2_inode_cache);
3109 jbd2_inode_cache = NULL;
3110 }
3111
jbd2_journal_destroy_handle_cache(void)3112 static void jbd2_journal_destroy_handle_cache(void)
3113 {
3114 kmem_cache_destroy(jbd2_handle_cache);
3115 jbd2_handle_cache = NULL;
3116 }
3117
3118 /*
3119 * Module startup and shutdown
3120 */
3121
journal_init_caches(void)3122 static int __init journal_init_caches(void)
3123 {
3124 int ret;
3125
3126 ret = jbd2_journal_init_revoke_record_cache();
3127 if (ret == 0)
3128 ret = jbd2_journal_init_revoke_table_cache();
3129 if (ret == 0)
3130 ret = jbd2_journal_init_journal_head_cache();
3131 if (ret == 0)
3132 ret = jbd2_journal_init_handle_cache();
3133 if (ret == 0)
3134 ret = jbd2_journal_init_inode_cache();
3135 if (ret == 0)
3136 ret = jbd2_journal_init_transaction_cache();
3137 return ret;
3138 }
3139
jbd2_journal_destroy_caches(void)3140 static void jbd2_journal_destroy_caches(void)
3141 {
3142 jbd2_journal_destroy_revoke_record_cache();
3143 jbd2_journal_destroy_revoke_table_cache();
3144 jbd2_journal_destroy_journal_head_cache();
3145 jbd2_journal_destroy_handle_cache();
3146 jbd2_journal_destroy_inode_cache();
3147 jbd2_journal_destroy_transaction_cache();
3148 jbd2_journal_destroy_slabs();
3149 }
3150
journal_init(void)3151 static int __init journal_init(void)
3152 {
3153 int ret;
3154
3155 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3156
3157 ret = journal_init_caches();
3158 if (ret == 0) {
3159 jbd2_create_jbd_stats_proc_entry();
3160 } else {
3161 jbd2_journal_destroy_caches();
3162 }
3163 return ret;
3164 }
3165
journal_exit(void)3166 static void __exit journal_exit(void)
3167 {
3168 #ifdef CONFIG_JBD2_DEBUG
3169 int n = atomic_read(&nr_journal_heads);
3170 if (n)
3171 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3172 #endif
3173 jbd2_remove_jbd_stats_proc_entry();
3174 jbd2_journal_destroy_caches();
3175 }
3176
3177 MODULE_DESCRIPTION("Generic filesystem journal-writing module");
3178 MODULE_LICENSE("GPL");
3179 module_init(journal_init);
3180 module_exit(journal_exit);
3181
3182