xref: /linux/drivers/firmware/efi/efi.c (revision b63f4a4e95d61bc7fc3db074f3689c849f27f046)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * efi.c - EFI subsystem
4  *
5  * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
6  * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
7  * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
8  *
9  * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
10  * allowing the efivarfs to be mounted or the efivars module to be loaded.
11  * The existance of /sys/firmware/efi may also be used by userspace to
12  * determine that the system supports EFI.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/kobject.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/efi.h>
23 #include <linux/of.h>
24 #include <linux/initrd.h>
25 #include <linux/io.h>
26 #include <linux/kexec.h>
27 #include <linux/platform_device.h>
28 #include <linux/random.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/ucs2_string.h>
33 #include <linux/memblock.h>
34 #include <linux/security.h>
35 #include <linux/notifier.h>
36 
37 #include <asm/early_ioremap.h>
38 
39 struct efi __read_mostly efi = {
40 	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
41 	.acpi			= EFI_INVALID_TABLE_ADDR,
42 	.acpi20			= EFI_INVALID_TABLE_ADDR,
43 	.smbios			= EFI_INVALID_TABLE_ADDR,
44 	.smbios3		= EFI_INVALID_TABLE_ADDR,
45 	.esrt			= EFI_INVALID_TABLE_ADDR,
46 	.tpm_log		= EFI_INVALID_TABLE_ADDR,
47 	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
48 	.ovmf_debug_log         = EFI_INVALID_TABLE_ADDR,
49 #ifdef CONFIG_LOAD_UEFI_KEYS
50 	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
51 #endif
52 #ifdef CONFIG_EFI_COCO_SECRET
53 	.coco_secret		= EFI_INVALID_TABLE_ADDR,
54 #endif
55 #ifdef CONFIG_UNACCEPTED_MEMORY
56 	.unaccepted		= EFI_INVALID_TABLE_ADDR,
57 #endif
58 };
59 EXPORT_SYMBOL(efi);
60 
61 unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
62 static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
63 static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
64 static unsigned long __initdata initrd = EFI_INVALID_TABLE_ADDR;
65 
66 extern unsigned long screen_info_table;
67 
68 struct mm_struct efi_mm = {
69 	.mm_mt			= MTREE_INIT_EXT(mm_mt, MM_MT_FLAGS, efi_mm.mmap_lock),
70 	.mm_users		= ATOMIC_INIT(2),
71 	.mm_count		= ATOMIC_INIT(1),
72 	.write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
73 	MMAP_LOCK_INITIALIZER(efi_mm)
74 	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
75 	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
76 	.user_ns		= &init_user_ns,
77 	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
78 #ifdef CONFIG_SCHED_MM_CID
79 	.mm_cid.lock		= __RAW_SPIN_LOCK_UNLOCKED(efi_mm.mm_cid.lock),
80 #endif
81 };
82 
83 struct workqueue_struct *efi_rts_wq;
84 
85 static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME);
setup_noefi(char * arg)86 static int __init setup_noefi(char *arg)
87 {
88 	disable_runtime = true;
89 	return 0;
90 }
91 early_param("noefi", setup_noefi);
92 
efi_runtime_disabled(void)93 bool efi_runtime_disabled(void)
94 {
95 	return disable_runtime;
96 }
97 
__efi_soft_reserve_enabled(void)98 bool __pure __efi_soft_reserve_enabled(void)
99 {
100 	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
101 }
102 
parse_efi_cmdline(char * str)103 static int __init parse_efi_cmdline(char *str)
104 {
105 	if (!str) {
106 		pr_warn("need at least one option\n");
107 		return -EINVAL;
108 	}
109 
110 	if (parse_option_str(str, "debug"))
111 		set_bit(EFI_DBG, &efi.flags);
112 
113 	if (parse_option_str(str, "noruntime"))
114 		disable_runtime = true;
115 
116 	if (parse_option_str(str, "runtime"))
117 		disable_runtime = false;
118 
119 	if (parse_option_str(str, "nosoftreserve"))
120 		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
121 
122 	return 0;
123 }
124 early_param("efi", parse_efi_cmdline);
125 
126 struct kobject *efi_kobj;
127 
128 /*
129  * Let's not leave out systab information that snuck into
130  * the efivars driver
131  * Note, do not add more fields in systab sysfs file as it breaks sysfs
132  * one value per file rule!
133  */
systab_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)134 static ssize_t systab_show(struct kobject *kobj,
135 			   struct kobj_attribute *attr, char *buf)
136 {
137 	char *str = buf;
138 
139 	if (!kobj || !buf)
140 		return -EINVAL;
141 
142 	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
143 		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
144 	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
145 		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
146 	/*
147 	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
148 	 * SMBIOS3 entry point shall be preferred, so we list it first to
149 	 * let applications stop parsing after the first match.
150 	 */
151 	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
152 		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
153 	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
154 		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
155 
156 	return str - buf;
157 }
158 
159 static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
160 
fw_platform_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)161 static ssize_t fw_platform_size_show(struct kobject *kobj,
162 				     struct kobj_attribute *attr, char *buf)
163 {
164 	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
165 }
166 
167 extern __weak struct kobj_attribute efi_attr_fw_vendor;
168 extern __weak struct kobj_attribute efi_attr_runtime;
169 extern __weak struct kobj_attribute efi_attr_config_table;
170 static struct kobj_attribute efi_attr_fw_platform_size =
171 	__ATTR_RO(fw_platform_size);
172 
173 static struct attribute *efi_subsys_attrs[] = {
174 	&efi_attr_systab.attr,
175 	&efi_attr_fw_platform_size.attr,
176 	&efi_attr_fw_vendor.attr,
177 	&efi_attr_runtime.attr,
178 	&efi_attr_config_table.attr,
179 	NULL,
180 };
181 
efi_attr_is_visible(struct kobject * kobj,struct attribute * attr,int n)182 umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
183 				   int n)
184 {
185 	return attr->mode;
186 }
187 
188 static const struct attribute_group efi_subsys_attr_group = {
189 	.attrs = efi_subsys_attrs,
190 	.is_visible = efi_attr_is_visible,
191 };
192 
193 struct blocking_notifier_head efivar_ops_nh;
194 EXPORT_SYMBOL_GPL(efivar_ops_nh);
195 
196 static struct efivars generic_efivars;
197 static struct efivar_operations generic_ops;
198 
generic_ops_supported(void)199 static bool generic_ops_supported(void)
200 {
201 	unsigned long name_size;
202 	efi_status_t status;
203 	efi_char16_t name;
204 	efi_guid_t guid;
205 
206 	name_size = sizeof(name);
207 
208 	if (!efi.get_next_variable)
209 		return false;
210 	status = efi.get_next_variable(&name_size, &name, &guid);
211 	if (status == EFI_UNSUPPORTED)
212 		return false;
213 
214 	return true;
215 }
216 
generic_ops_register(void)217 static int generic_ops_register(void)
218 {
219 	if (!generic_ops_supported())
220 		return 0;
221 
222 	generic_ops.get_variable = efi.get_variable;
223 	generic_ops.get_next_variable = efi.get_next_variable;
224 	generic_ops.query_variable_store = efi_query_variable_store;
225 	generic_ops.query_variable_info = efi.query_variable_info;
226 
227 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
228 		generic_ops.set_variable = efi.set_variable;
229 		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
230 	}
231 	return efivars_register(&generic_efivars, &generic_ops);
232 }
233 
generic_ops_unregister(void)234 static void generic_ops_unregister(void)
235 {
236 	if (!generic_ops.get_variable)
237 		return;
238 
239 	efivars_unregister(&generic_efivars);
240 }
241 
efivars_generic_ops_register(void)242 void efivars_generic_ops_register(void)
243 {
244 	generic_ops_register();
245 }
246 EXPORT_SYMBOL_GPL(efivars_generic_ops_register);
247 
efivars_generic_ops_unregister(void)248 void efivars_generic_ops_unregister(void)
249 {
250 	generic_ops_unregister();
251 }
252 EXPORT_SYMBOL_GPL(efivars_generic_ops_unregister);
253 
254 #ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
255 #define EFIVAR_SSDT_NAME_MAX	16UL
256 static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
efivar_ssdt_setup(char * str)257 static int __init efivar_ssdt_setup(char *str)
258 {
259 	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
260 
261 	if (ret)
262 		return ret;
263 
264 	if (strlen(str) < sizeof(efivar_ssdt))
265 		memcpy(efivar_ssdt, str, strlen(str));
266 	else
267 		pr_warn("efivar_ssdt: name too long: %s\n", str);
268 	return 1;
269 }
270 __setup("efivar_ssdt=", efivar_ssdt_setup);
271 
efivar_ssdt_load(void)272 static __init int efivar_ssdt_load(void)
273 {
274 	unsigned long name_size = 256;
275 	efi_char16_t *name = NULL;
276 	efi_status_t status;
277 	efi_guid_t guid;
278 	int ret = 0;
279 
280 	if (!efivar_ssdt[0])
281 		return 0;
282 
283 	name = kzalloc(name_size, GFP_KERNEL);
284 	if (!name)
285 		return -ENOMEM;
286 
287 	for (;;) {
288 		char utf8_name[EFIVAR_SSDT_NAME_MAX];
289 		unsigned long data_size = 0;
290 		void *data;
291 		int limit;
292 
293 		status = efi.get_next_variable(&name_size, name, &guid);
294 		if (status == EFI_NOT_FOUND) {
295 			break;
296 		} else if (status == EFI_BUFFER_TOO_SMALL) {
297 			efi_char16_t *name_tmp =
298 				krealloc(name, name_size, GFP_KERNEL);
299 			if (!name_tmp) {
300 				ret = -ENOMEM;
301 				goto out;
302 			}
303 			name = name_tmp;
304 			continue;
305 		}
306 
307 		limit = min(EFIVAR_SSDT_NAME_MAX, name_size);
308 		ucs2_as_utf8(utf8_name, name, limit - 1);
309 		if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
310 			continue;
311 
312 		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, &guid);
313 
314 		status = efi.get_variable(name, &guid, NULL, &data_size, NULL);
315 		if (status != EFI_BUFFER_TOO_SMALL || !data_size) {
316 			ret = -EIO;
317 			goto out;
318 		}
319 
320 		data = kmalloc(data_size, GFP_KERNEL);
321 		if (!data) {
322 			ret = -ENOMEM;
323 			goto out;
324 		}
325 
326 		status = efi.get_variable(name, &guid, NULL, &data_size, data);
327 		if (status == EFI_SUCCESS) {
328 			acpi_status acpi_ret = acpi_load_table(data, NULL);
329 			if (ACPI_FAILURE(acpi_ret)) {
330 				pr_err("efivar_ssdt: failed to load table: %u\n",
331 				       acpi_ret);
332 			} else {
333 				/*
334 				 * The @data will be in use by ACPI engine,
335 				 * do not free it!
336 				 */
337 				continue;
338 			}
339 		} else {
340 			pr_err("efivar_ssdt: failed to get var data: 0x%lx\n", status);
341 		}
342 		kfree(data);
343 	}
344 out:
345 	kfree(name);
346 	return ret;
347 }
348 #else
efivar_ssdt_load(void)349 static inline int efivar_ssdt_load(void) { return 0; }
350 #endif
351 
352 #ifdef CONFIG_DEBUG_FS
353 
354 #define EFI_DEBUGFS_MAX_BLOBS 32
355 
356 static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
357 
efi_debugfs_init(void)358 static void __init efi_debugfs_init(void)
359 {
360 	struct dentry *efi_debugfs;
361 	efi_memory_desc_t *md;
362 	char name[32];
363 	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
364 	int i = 0;
365 
366 	efi_debugfs = debugfs_create_dir("efi", NULL);
367 	if (IS_ERR(efi_debugfs))
368 		return;
369 
370 	for_each_efi_memory_desc(md) {
371 		switch (md->type) {
372 		case EFI_BOOT_SERVICES_CODE:
373 			snprintf(name, sizeof(name), "boot_services_code%d",
374 				 type_count[md->type]++);
375 			break;
376 		case EFI_BOOT_SERVICES_DATA:
377 			snprintf(name, sizeof(name), "boot_services_data%d",
378 				 type_count[md->type]++);
379 			break;
380 		default:
381 			continue;
382 		}
383 
384 		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
385 			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
386 				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
387 			break;
388 		}
389 
390 		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
391 		debugfs_blob[i].data = memremap(md->phys_addr,
392 						debugfs_blob[i].size,
393 						MEMREMAP_WB);
394 		if (!debugfs_blob[i].data)
395 			continue;
396 
397 		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
398 		i++;
399 	}
400 }
401 #else
efi_debugfs_init(void)402 static inline void efi_debugfs_init(void) {}
403 #endif
404 
405 /*
406  * We register the efi subsystem with the firmware subsystem and the
407  * efivars subsystem with the efi subsystem, if the system was booted with
408  * EFI.
409  */
efisubsys_init(void)410 static int __init efisubsys_init(void)
411 {
412 	int error;
413 
414 	if (!efi_enabled(EFI_RUNTIME_SERVICES))
415 		efi.runtime_supported_mask = 0;
416 
417 	if (!efi_enabled(EFI_BOOT))
418 		return 0;
419 
420 	if (efi.runtime_supported_mask) {
421 		/*
422 		 * Since we process only one efi_runtime_service() at a time, an
423 		 * ordered workqueue (which creates only one execution context)
424 		 * should suffice for all our needs.
425 		 */
426 		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
427 		if (!efi_rts_wq) {
428 			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
429 			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
430 			efi.runtime_supported_mask = 0;
431 			return 0;
432 		}
433 	}
434 
435 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
436 		platform_device_register_simple("rtc-efi", 0, NULL, 0);
437 
438 	/* We register the efi directory at /sys/firmware/efi */
439 	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
440 	if (!efi_kobj) {
441 		pr_err("efi: Firmware registration failed.\n");
442 		error = -ENOMEM;
443 		goto err_destroy_wq;
444 	}
445 
446 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
447 				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
448 		error = generic_ops_register();
449 		if (error)
450 			goto err_put;
451 		error = efivar_ssdt_load();
452 		if (error)
453 			pr_err("efi: failed to load SSDT, error %d.\n", error);
454 		platform_device_register_simple("efivars", 0, NULL, 0);
455 	}
456 
457 	BLOCKING_INIT_NOTIFIER_HEAD(&efivar_ops_nh);
458 
459 	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
460 	if (error) {
461 		pr_err("efi: Sysfs attribute export failed with error %d.\n",
462 		       error);
463 		goto err_unregister;
464 	}
465 
466 	/* and the standard mountpoint for efivarfs */
467 	error = sysfs_create_mount_point(efi_kobj, "efivars");
468 	if (error) {
469 		pr_err("efivars: Subsystem registration failed.\n");
470 		goto err_remove_group;
471 	}
472 
473 	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
474 		efi_debugfs_init();
475 
476 #ifdef CONFIG_EFI_COCO_SECRET
477 	if (efi.coco_secret != EFI_INVALID_TABLE_ADDR)
478 		platform_device_register_simple("efi_secret", 0, NULL, 0);
479 #endif
480 
481 	if (IS_ENABLED(CONFIG_OVMF_DEBUG_LOG) &&
482 	    efi.ovmf_debug_log != EFI_INVALID_TABLE_ADDR)
483 		ovmf_log_probe(efi.ovmf_debug_log);
484 
485 	return 0;
486 
487 err_remove_group:
488 	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
489 err_unregister:
490 	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
491 				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
492 		generic_ops_unregister();
493 err_put:
494 	kobject_put(efi_kobj);
495 	efi_kobj = NULL;
496 err_destroy_wq:
497 	if (efi_rts_wq)
498 		destroy_workqueue(efi_rts_wq);
499 
500 	return error;
501 }
502 
503 subsys_initcall(efisubsys_init);
504 
efi_find_mirror(void)505 void __init efi_find_mirror(void)
506 {
507 	efi_memory_desc_t *md;
508 	u64 mirror_size = 0, total_size = 0;
509 
510 	if (!efi_enabled(EFI_MEMMAP))
511 		return;
512 
513 	for_each_efi_memory_desc(md) {
514 		unsigned long long start = md->phys_addr;
515 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
516 
517 		total_size += size;
518 		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
519 			memblock_mark_mirror(start, size);
520 			mirror_size += size;
521 		}
522 	}
523 	if (mirror_size)
524 		pr_info("Memory: %lldM/%lldM mirrored memory\n",
525 			mirror_size>>20, total_size>>20);
526 }
527 
528 /*
529  * Find the efi memory descriptor for a given physical address.  Given a
530  * physical address, determine if it exists within an EFI Memory Map entry,
531  * and if so, populate the supplied memory descriptor with the appropriate
532  * data.
533  */
__efi_mem_desc_lookup(u64 phys_addr,efi_memory_desc_t * out_md)534 int __efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
535 {
536 	efi_memory_desc_t *md;
537 
538 	if (!efi_enabled(EFI_MEMMAP)) {
539 		pr_err_once("EFI_MEMMAP is not enabled.\n");
540 		return -EINVAL;
541 	}
542 
543 	if (!out_md) {
544 		pr_err_once("out_md is null.\n");
545 		return -EINVAL;
546         }
547 
548 	for_each_efi_memory_desc(md) {
549 		u64 size;
550 		u64 end;
551 
552 		/* skip bogus entries (including empty ones) */
553 		if ((md->phys_addr & (EFI_PAGE_SIZE - 1)) ||
554 		    (md->num_pages <= 0) ||
555 		    (md->num_pages > (U64_MAX - md->phys_addr) >> EFI_PAGE_SHIFT))
556 			continue;
557 
558 		size = md->num_pages << EFI_PAGE_SHIFT;
559 		end = md->phys_addr + size;
560 		if (phys_addr >= md->phys_addr && phys_addr < end) {
561 			memcpy(out_md, md, sizeof(*out_md));
562 			return 0;
563 		}
564 	}
565 	return -ENOENT;
566 }
567 
568 extern int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
569 	__weak __alias(__efi_mem_desc_lookup);
570 EXPORT_SYMBOL_GPL(efi_mem_desc_lookup);
571 
572 /*
573  * Calculate the highest address of an efi memory descriptor.
574  */
efi_mem_desc_end(efi_memory_desc_t * md)575 u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
576 {
577 	u64 size = md->num_pages << EFI_PAGE_SHIFT;
578 	u64 end = md->phys_addr + size;
579 	return end;
580 }
581 
efi_arch_mem_reserve(phys_addr_t addr,u64 size)582 void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
583 
584 /**
585  * efi_mem_reserve - Reserve an EFI memory region
586  * @addr: Physical address to reserve
587  * @size: Size of reservation
588  *
589  * Mark a region as reserved from general kernel allocation and
590  * prevent it being released by efi_free_boot_services().
591  *
592  * This function should be called drivers once they've parsed EFI
593  * configuration tables to figure out where their data lives, e.g.
594  * efi_esrt_init().
595  */
efi_mem_reserve(phys_addr_t addr,u64 size)596 void __init efi_mem_reserve(phys_addr_t addr, u64 size)
597 {
598 	/* efi_mem_reserve() does not work under Xen */
599 	if (WARN_ON_ONCE(efi_enabled(EFI_PARAVIRT)))
600 		return;
601 
602 	if (!memblock_is_region_reserved(addr, size))
603 		memblock_reserve(addr, size);
604 
605 	/*
606 	 * Some architectures (x86) reserve all boot services ranges
607 	 * until efi_free_boot_services() because of buggy firmware
608 	 * implementations. This means the above memblock_reserve() is
609 	 * superfluous on x86 and instead what it needs to do is
610 	 * ensure the @start, @size is not freed.
611 	 */
612 	efi_arch_mem_reserve(addr, size);
613 }
614 
615 static const efi_config_table_type_t common_tables[] __initconst = {
616 	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
617 	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
618 	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
619 	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
620 	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
621 	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
622 	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
623 	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
624 	{EFI_TCG2_FINAL_EVENTS_TABLE_GUID,	&efi.tpm_final_log,	"TPMFinalLog"	},
625 	{EFI_CC_FINAL_EVENTS_TABLE_GUID,	&efi.tpm_final_log,	"CCFinalLog"	},
626 	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
627 	{LINUX_EFI_INITRD_MEDIA_GUID,		&initrd,		"INITRD"	},
628 	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
629 #ifdef CONFIG_OVMF_DEBUG_LOG
630 	{OVMF_MEMORY_LOG_TABLE_GUID,		&efi.ovmf_debug_log,	"OvmfDebugLog"	},
631 #endif
632 #ifdef CONFIG_EFI_RCI2_TABLE
633 	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
634 #endif
635 #ifdef CONFIG_LOAD_UEFI_KEYS
636 	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
637 #endif
638 #ifdef CONFIG_EFI_COCO_SECRET
639 	{LINUX_EFI_COCO_SECRET_AREA_GUID,	&efi.coco_secret,	"CocoSecret"	},
640 #endif
641 #ifdef CONFIG_UNACCEPTED_MEMORY
642 	{LINUX_EFI_UNACCEPTED_MEM_TABLE_GUID,	&efi.unaccepted,	"Unaccepted"	},
643 #endif
644 #ifdef CONFIG_EFI_GENERIC_STUB
645 	{LINUX_EFI_SCREEN_INFO_TABLE_GUID,	&screen_info_table			},
646 #endif
647 	{},
648 };
649 
match_config_table(const efi_guid_t * guid,unsigned long table,const efi_config_table_type_t * table_types)650 static __init int match_config_table(const efi_guid_t *guid,
651 				     unsigned long table,
652 				     const efi_config_table_type_t *table_types)
653 {
654 	int i;
655 
656 	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
657 		if (efi_guidcmp(*guid, table_types[i].guid))
658 			continue;
659 
660 		if (!efi_config_table_is_usable(guid, table)) {
661 			if (table_types[i].name[0])
662 				pr_cont("(%s=0x%lx unusable) ",
663 					table_types[i].name, table);
664 			return 1;
665 		}
666 
667 		*(table_types[i].ptr) = table;
668 		if (table_types[i].name[0])
669 			pr_cont("%s=0x%lx ", table_types[i].name, table);
670 		return 1;
671 	}
672 
673 	return 0;
674 }
675 
676 /**
677  * reserve_unaccepted - Map and reserve unaccepted configuration table
678  * @unaccepted: Pointer to unaccepted memory table
679  *
680  * memblock_add() makes sure that the table is mapped in direct mapping. During
681  * normal boot it happens automatically because the table is allocated from
682  * usable memory. But during crashkernel boot only memory specifically reserved
683  * for crash scenario is mapped. memblock_add() forces the table to be mapped
684  * in crashkernel case.
685  *
686  * Align the range to the nearest page borders. Ranges smaller than page size
687  * are not going to be mapped.
688  *
689  * memblock_reserve() makes sure that future allocations will not touch the
690  * table.
691  */
692 
reserve_unaccepted(struct efi_unaccepted_memory * unaccepted)693 static __init void reserve_unaccepted(struct efi_unaccepted_memory *unaccepted)
694 {
695 	phys_addr_t start, size;
696 
697 	start = PAGE_ALIGN_DOWN(efi.unaccepted);
698 	size = PAGE_ALIGN(sizeof(*unaccepted) + unaccepted->size);
699 
700 	memblock_add(start, size);
701 	memblock_reserve(start, size);
702 }
703 
efi_config_parse_tables(const efi_config_table_t * config_tables,int count,const efi_config_table_type_t * arch_tables)704 int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
705 				   int count,
706 				   const efi_config_table_type_t *arch_tables)
707 {
708 	const efi_config_table_64_t *tbl64 = (void *)config_tables;
709 	const efi_config_table_32_t *tbl32 = (void *)config_tables;
710 	const efi_guid_t *guid;
711 	unsigned long table;
712 	int i;
713 
714 	pr_info("");
715 	for (i = 0; i < count; i++) {
716 		if (!IS_ENABLED(CONFIG_X86)) {
717 			guid = &config_tables[i].guid;
718 			table = (unsigned long)config_tables[i].table;
719 		} else if (efi_enabled(EFI_64BIT)) {
720 			guid = &tbl64[i].guid;
721 			table = tbl64[i].table;
722 
723 			if (IS_ENABLED(CONFIG_X86_32) &&
724 			    tbl64[i].table > U32_MAX) {
725 				pr_cont("\n");
726 				pr_err("Table located above 4GB, disabling EFI.\n");
727 				return -EINVAL;
728 			}
729 		} else {
730 			guid = &tbl32[i].guid;
731 			table = tbl32[i].table;
732 		}
733 
734 		if (!match_config_table(guid, table, common_tables) && arch_tables)
735 			match_config_table(guid, table, arch_tables);
736 	}
737 	pr_cont("\n");
738 	set_bit(EFI_CONFIG_TABLES, &efi.flags);
739 
740 	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
741 		struct linux_efi_random_seed *seed;
742 		u32 size = 0;
743 
744 		seed = early_memremap(efi_rng_seed, sizeof(*seed));
745 		if (seed != NULL) {
746 			size = min_t(u32, seed->size, SZ_1K); // sanity check
747 			early_memunmap(seed, sizeof(*seed));
748 		} else {
749 			pr_err("Could not map UEFI random seed!\n");
750 		}
751 		if (size > 0) {
752 			seed = early_memremap(efi_rng_seed,
753 					      sizeof(*seed) + size);
754 			if (seed != NULL) {
755 				add_bootloader_randomness(seed->bits, size);
756 				memzero_explicit(seed->bits, size);
757 				early_memunmap(seed, sizeof(*seed) + size);
758 			} else {
759 				pr_err("Could not map UEFI random seed!\n");
760 			}
761 		}
762 	}
763 
764 	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
765 		efi_memattr_init();
766 
767 	efi_tpm_eventlog_init();
768 
769 	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
770 		unsigned long prsv = mem_reserve;
771 
772 		while (prsv) {
773 			struct linux_efi_memreserve *rsv;
774 			u8 *p;
775 
776 			/*
777 			 * Just map a full page: that is what we will get
778 			 * anyway, and it permits us to map the entire entry
779 			 * before knowing its size.
780 			 */
781 			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
782 					   PAGE_SIZE);
783 			if (p == NULL) {
784 				pr_err("Could not map UEFI memreserve entry!\n");
785 				return -ENOMEM;
786 			}
787 
788 			rsv = (void *)(p + prsv % PAGE_SIZE);
789 
790 			/* reserve the entry itself */
791 			memblock_reserve(prsv,
792 					 struct_size(rsv, entry, rsv->size));
793 
794 			for (i = 0; i < atomic_read(&rsv->count); i++) {
795 				memblock_reserve(rsv->entry[i].base,
796 						 rsv->entry[i].size);
797 			}
798 
799 			prsv = rsv->next;
800 			early_memunmap(p, PAGE_SIZE);
801 		}
802 	}
803 
804 	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
805 		efi_rt_properties_table_t *tbl;
806 
807 		tbl = early_memremap(rt_prop, sizeof(*tbl));
808 		if (tbl) {
809 			efi.runtime_supported_mask &= tbl->runtime_services_supported;
810 			early_memunmap(tbl, sizeof(*tbl));
811 		}
812 	}
813 
814 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) &&
815 	    initrd != EFI_INVALID_TABLE_ADDR && phys_initrd_size == 0) {
816 		struct linux_efi_initrd *tbl;
817 
818 		tbl = early_memremap(initrd, sizeof(*tbl));
819 		if (tbl) {
820 			phys_initrd_start = tbl->base;
821 			phys_initrd_size = tbl->size;
822 			early_memunmap(tbl, sizeof(*tbl));
823 		}
824 	}
825 
826 	if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) &&
827 	    efi.unaccepted != EFI_INVALID_TABLE_ADDR) {
828 		struct efi_unaccepted_memory *unaccepted;
829 
830 		unaccepted = early_memremap(efi.unaccepted, sizeof(*unaccepted));
831 		if (unaccepted) {
832 
833 			if (unaccepted->version == 1) {
834 				reserve_unaccepted(unaccepted);
835 			} else {
836 				efi.unaccepted = EFI_INVALID_TABLE_ADDR;
837 			}
838 
839 			early_memunmap(unaccepted, sizeof(*unaccepted));
840 		}
841 	}
842 
843 	return 0;
844 }
845 
efi_systab_check_header(const efi_table_hdr_t * systab_hdr)846 int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr)
847 {
848 	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
849 		pr_err("System table signature incorrect!\n");
850 		return -EINVAL;
851 	}
852 
853 	return 0;
854 }
855 
map_fw_vendor(unsigned long fw_vendor,size_t size)856 static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
857 						size_t size)
858 {
859 	const efi_char16_t *ret;
860 
861 	ret = early_memremap_ro(fw_vendor, size);
862 	if (!ret)
863 		pr_err("Could not map the firmware vendor!\n");
864 	return ret;
865 }
866 
unmap_fw_vendor(const void * fw_vendor,size_t size)867 static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
868 {
869 	early_memunmap((void *)fw_vendor, size);
870 }
871 
efi_systab_report_header(const efi_table_hdr_t * systab_hdr,unsigned long fw_vendor)872 void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
873 				     unsigned long fw_vendor)
874 {
875 	char vendor[100] = "unknown";
876 	const efi_char16_t *c16;
877 	size_t i;
878 	u16 rev;
879 
880 	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
881 	if (c16) {
882 		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
883 			vendor[i] = c16[i];
884 		vendor[i] = '\0';
885 
886 		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
887 	}
888 
889 	rev = (u16)systab_hdr->revision;
890 	pr_info("EFI v%u.%u", systab_hdr->revision >> 16, rev / 10);
891 
892 	rev %= 10;
893 	if (rev)
894 		pr_cont(".%u", rev);
895 
896 	pr_cont(" by %s\n", vendor);
897 
898 	if (IS_ENABLED(CONFIG_X86_64) &&
899 	    systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION &&
900 	    !strcmp(vendor, "Apple")) {
901 		pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n");
902 		efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION;
903 	}
904 }
905 
906 static __initdata char memory_type_name[][13] = {
907 	"Reserved",
908 	"Loader Code",
909 	"Loader Data",
910 	"Boot Code",
911 	"Boot Data",
912 	"Runtime Code",
913 	"Runtime Data",
914 	"Conventional",
915 	"Unusable",
916 	"ACPI Reclaim",
917 	"ACPI Mem NVS",
918 	"MMIO",
919 	"MMIO Port",
920 	"PAL Code",
921 	"Persistent",
922 	"Unaccepted",
923 };
924 
efi_md_typeattr_format(char * buf,size_t size,const efi_memory_desc_t * md)925 char * __init efi_md_typeattr_format(char *buf, size_t size,
926 				     const efi_memory_desc_t *md)
927 {
928 	char *pos;
929 	int type_len;
930 	u64 attr;
931 
932 	pos = buf;
933 	if (md->type >= ARRAY_SIZE(memory_type_name))
934 		type_len = snprintf(pos, size, "[type=%u", md->type);
935 	else
936 		type_len = snprintf(pos, size, "[%-*s",
937 				    (int)(sizeof(memory_type_name[0]) - 1),
938 				    memory_type_name[md->type]);
939 	if (type_len >= size)
940 		return buf;
941 
942 	pos += type_len;
943 	size -= type_len;
944 
945 	attr = md->attribute;
946 	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
947 		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
948 		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
949 		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
950 		     EFI_MEMORY_MORE_RELIABLE | EFI_MEMORY_HOT_PLUGGABLE |
951 		     EFI_MEMORY_RUNTIME))
952 		snprintf(pos, size, "|attr=0x%016llx]",
953 			 (unsigned long long)attr);
954 	else
955 		snprintf(pos, size,
956 			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
957 			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
958 			 attr & EFI_MEMORY_HOT_PLUGGABLE	? "HP"  : "",
959 			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
960 			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
961 			 attr & EFI_MEMORY_SP			? "SP"  : "",
962 			 attr & EFI_MEMORY_NV			? "NV"  : "",
963 			 attr & EFI_MEMORY_XP			? "XP"  : "",
964 			 attr & EFI_MEMORY_RP			? "RP"  : "",
965 			 attr & EFI_MEMORY_WP			? "WP"  : "",
966 			 attr & EFI_MEMORY_RO			? "RO"  : "",
967 			 attr & EFI_MEMORY_UCE			? "UCE" : "",
968 			 attr & EFI_MEMORY_WB			? "WB"  : "",
969 			 attr & EFI_MEMORY_WT			? "WT"  : "",
970 			 attr & EFI_MEMORY_WC			? "WC"  : "",
971 			 attr & EFI_MEMORY_UC			? "UC"  : "");
972 	return buf;
973 }
974 
975 /*
976  * efi_mem_attributes - lookup memmap attributes for physical address
977  * @phys_addr: the physical address to lookup
978  *
979  * Search in the EFI memory map for the region covering
980  * @phys_addr. Returns the EFI memory attributes if the region
981  * was found in the memory map, 0 otherwise.
982  */
efi_mem_attributes(unsigned long phys_addr)983 u64 efi_mem_attributes(unsigned long phys_addr)
984 {
985 	efi_memory_desc_t *md;
986 
987 	if (!efi_enabled(EFI_MEMMAP))
988 		return 0;
989 
990 	for_each_efi_memory_desc(md) {
991 		if ((md->phys_addr <= phys_addr) &&
992 		    (phys_addr < (md->phys_addr +
993 		    (md->num_pages << EFI_PAGE_SHIFT))))
994 			return md->attribute;
995 	}
996 	return 0;
997 }
998 
999 /*
1000  * efi_mem_type - lookup memmap type for physical address
1001  * @phys_addr: the physical address to lookup
1002  *
1003  * Search in the EFI memory map for the region covering @phys_addr.
1004  * Returns the EFI memory type if the region was found in the memory
1005  * map, -EINVAL otherwise.
1006  */
efi_mem_type(unsigned long phys_addr)1007 int efi_mem_type(unsigned long phys_addr)
1008 {
1009 	const efi_memory_desc_t *md;
1010 
1011 	if (!efi_enabled(EFI_MEMMAP))
1012 		return -ENOTSUPP;
1013 
1014 	for_each_efi_memory_desc(md) {
1015 		if ((md->phys_addr <= phys_addr) &&
1016 		    (phys_addr < (md->phys_addr +
1017 				  (md->num_pages << EFI_PAGE_SHIFT))))
1018 			return md->type;
1019 	}
1020 	return -EINVAL;
1021 }
1022 
efi_status_to_err(efi_status_t status)1023 int efi_status_to_err(efi_status_t status)
1024 {
1025 	int err;
1026 
1027 	switch (status) {
1028 	case EFI_SUCCESS:
1029 		err = 0;
1030 		break;
1031 	case EFI_INVALID_PARAMETER:
1032 		err = -EINVAL;
1033 		break;
1034 	case EFI_OUT_OF_RESOURCES:
1035 		err = -ENOSPC;
1036 		break;
1037 	case EFI_DEVICE_ERROR:
1038 		err = -EIO;
1039 		break;
1040 	case EFI_WRITE_PROTECTED:
1041 		err = -EROFS;
1042 		break;
1043 	case EFI_SECURITY_VIOLATION:
1044 		err = -EACCES;
1045 		break;
1046 	case EFI_NOT_FOUND:
1047 		err = -ENOENT;
1048 		break;
1049 	case EFI_ABORTED:
1050 		err = -EINTR;
1051 		break;
1052 	default:
1053 		err = -EINVAL;
1054 	}
1055 
1056 	return err;
1057 }
1058 EXPORT_SYMBOL_GPL(efi_status_to_err);
1059 
1060 static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
1061 static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
1062 
efi_memreserve_map_root(void)1063 static int __init efi_memreserve_map_root(void)
1064 {
1065 	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
1066 		return -ENODEV;
1067 
1068 	efi_memreserve_root = memremap(mem_reserve,
1069 				       sizeof(*efi_memreserve_root),
1070 				       MEMREMAP_WB);
1071 	if (WARN_ON_ONCE(!efi_memreserve_root))
1072 		return -ENOMEM;
1073 	return 0;
1074 }
1075 
efi_mem_reserve_iomem(phys_addr_t addr,u64 size)1076 static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
1077 {
1078 	struct resource *res, *parent;
1079 	int ret;
1080 
1081 	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
1082 	if (!res)
1083 		return -ENOMEM;
1084 
1085 	res->name	= "reserved";
1086 	res->flags	= IORESOURCE_MEM;
1087 	res->start	= addr;
1088 	res->end	= addr + size - 1;
1089 
1090 	/* we expect a conflict with a 'System RAM' region */
1091 	parent = request_resource_conflict(&iomem_resource, res);
1092 	ret = parent ? request_resource(parent, res) : 0;
1093 
1094 	/*
1095 	 * Given that efi_mem_reserve_iomem() can be called at any
1096 	 * time, only call memblock_reserve() if the architecture
1097 	 * keeps the infrastructure around.
1098 	 */
1099 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
1100 		memblock_reserve(addr, size);
1101 
1102 	return ret;
1103 }
1104 
efi_mem_reserve_persistent(phys_addr_t addr,u64 size)1105 int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
1106 {
1107 	struct linux_efi_memreserve *rsv;
1108 	unsigned long prsv;
1109 	int rc, index;
1110 
1111 	if (efi_memreserve_root == (void *)ULONG_MAX)
1112 		return -ENODEV;
1113 
1114 	if (!efi_memreserve_root) {
1115 		rc = efi_memreserve_map_root();
1116 		if (rc)
1117 			return rc;
1118 	}
1119 
1120 	/* first try to find a slot in an existing linked list entry */
1121 	for (prsv = efi_memreserve_root->next; prsv; ) {
1122 		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
1123 		if (!rsv)
1124 			return -ENOMEM;
1125 		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
1126 		if (index < rsv->size) {
1127 			rsv->entry[index].base = addr;
1128 			rsv->entry[index].size = size;
1129 
1130 			memunmap(rsv);
1131 			return efi_mem_reserve_iomem(addr, size);
1132 		}
1133 		prsv = rsv->next;
1134 		memunmap(rsv);
1135 	}
1136 
1137 	/* no slot found - allocate a new linked list entry */
1138 	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
1139 	if (!rsv)
1140 		return -ENOMEM;
1141 
1142 	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
1143 	if (rc) {
1144 		free_page((unsigned long)rsv);
1145 		return rc;
1146 	}
1147 
1148 	/*
1149 	 * The memremap() call above assumes that a linux_efi_memreserve entry
1150 	 * never crosses a page boundary, so let's ensure that this remains true
1151 	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
1152 	 * using SZ_4K explicitly in the size calculation below.
1153 	 */
1154 	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
1155 	atomic_set(&rsv->count, 1);
1156 	rsv->entry[0].base = addr;
1157 	rsv->entry[0].size = size;
1158 
1159 	spin_lock(&efi_mem_reserve_persistent_lock);
1160 	rsv->next = efi_memreserve_root->next;
1161 	efi_memreserve_root->next = __pa(rsv);
1162 	spin_unlock(&efi_mem_reserve_persistent_lock);
1163 
1164 	return efi_mem_reserve_iomem(addr, size);
1165 }
1166 
efi_memreserve_root_init(void)1167 static int __init efi_memreserve_root_init(void)
1168 {
1169 	if (efi_memreserve_root)
1170 		return 0;
1171 	if (efi_memreserve_map_root())
1172 		efi_memreserve_root = (void *)ULONG_MAX;
1173 	return 0;
1174 }
1175 early_initcall(efi_memreserve_root_init);
1176 
1177 #ifdef CONFIG_KEXEC
update_efi_random_seed(struct notifier_block * nb,unsigned long code,void * unused)1178 static int update_efi_random_seed(struct notifier_block *nb,
1179 				  unsigned long code, void *unused)
1180 {
1181 	struct linux_efi_random_seed *seed;
1182 	u32 size = 0;
1183 
1184 	if (!kexec_in_progress)
1185 		return NOTIFY_DONE;
1186 
1187 	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1188 	if (seed != NULL) {
1189 		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1190 		memunmap(seed);
1191 	} else {
1192 		pr_err("Could not map UEFI random seed!\n");
1193 	}
1194 	if (size > 0) {
1195 		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
1196 				MEMREMAP_WB);
1197 		if (seed != NULL) {
1198 			seed->size = size;
1199 			get_random_bytes(seed->bits, seed->size);
1200 			memunmap(seed);
1201 		} else {
1202 			pr_err("Could not map UEFI random seed!\n");
1203 		}
1204 	}
1205 	return NOTIFY_DONE;
1206 }
1207 
1208 static struct notifier_block efi_random_seed_nb = {
1209 	.notifier_call = update_efi_random_seed,
1210 };
1211 
register_update_efi_random_seed(void)1212 static int __init register_update_efi_random_seed(void)
1213 {
1214 	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1215 		return 0;
1216 	return register_reboot_notifier(&efi_random_seed_nb);
1217 }
1218 late_initcall(register_update_efi_random_seed);
1219 #endif
1220