1 /*
2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/slab.h>
40 #include <linux/prefetch.h>
41 #include <net/arp.h>
42 #include "common.h"
43 #include "regs.h"
44 #include "sge_defs.h"
45 #include "t3_cpl.h"
46 #include "firmware_exports.h"
47 #include "cxgb3_offload.h"
48
49 #define USE_GTS 0
50
51 #define SGE_RX_SM_BUF_SIZE 1536
52
53 #define SGE_RX_COPY_THRES 256
54 #define SGE_RX_PULL_LEN 128
55
56 #define SGE_PG_RSVD SMP_CACHE_BYTES
57 /*
58 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
59 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
60 * directly.
61 */
62 #define FL0_PG_CHUNK_SIZE 2048
63 #define FL0_PG_ORDER 0
64 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
65 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
66 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
67 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
68
69 #define SGE_RX_DROP_THRES 16
70 #define RX_RECLAIM_PERIOD (HZ/4)
71
72 /*
73 * Max number of Rx buffers we replenish at a time.
74 */
75 #define MAX_RX_REFILL 16U
76 /*
77 * Period of the Tx buffer reclaim timer. This timer does not need to run
78 * frequently as Tx buffers are usually reclaimed by new Tx packets.
79 */
80 #define TX_RECLAIM_PERIOD (HZ / 4)
81 #define TX_RECLAIM_TIMER_CHUNK 64U
82 #define TX_RECLAIM_CHUNK 16U
83
84 /* WR size in bytes */
85 #define WR_LEN (WR_FLITS * 8)
86
87 /*
88 * Types of Tx queues in each queue set. Order here matters, do not change.
89 */
90 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
91
92 /* Values for sge_txq.flags */
93 enum {
94 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
95 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
96 };
97
98 struct tx_desc {
99 __be64 flit[TX_DESC_FLITS];
100 };
101
102 struct rx_desc {
103 __be32 addr_lo;
104 __be32 len_gen;
105 __be32 gen2;
106 __be32 addr_hi;
107 };
108
109 struct tx_sw_desc { /* SW state per Tx descriptor */
110 struct sk_buff *skb;
111 u8 eop; /* set if last descriptor for packet */
112 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
113 u8 fragidx; /* first page fragment associated with descriptor */
114 s8 sflit; /* start flit of first SGL entry in descriptor */
115 };
116
117 struct rx_sw_desc { /* SW state per Rx descriptor */
118 union {
119 struct sk_buff *skb;
120 struct fl_pg_chunk pg_chunk;
121 };
122 DEFINE_DMA_UNMAP_ADDR(dma_addr);
123 };
124
125 struct rsp_desc { /* response queue descriptor */
126 struct rss_header rss_hdr;
127 __be32 flags;
128 __be32 len_cq;
129 struct_group(immediate,
130 u8 imm_data[47];
131 u8 intr_gen;
132 );
133 };
134
135 /*
136 * Holds unmapping information for Tx packets that need deferred unmapping.
137 * This structure lives at skb->head and must be allocated by callers.
138 */
139 struct deferred_unmap_info {
140 struct pci_dev *pdev;
141 dma_addr_t addr[MAX_SKB_FRAGS + 1];
142 };
143
144 /*
145 * Maps a number of flits to the number of Tx descriptors that can hold them.
146 * The formula is
147 *
148 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
149 *
150 * HW allows up to 4 descriptors to be combined into a WR.
151 */
152 static u8 flit_desc_map[] = {
153 0,
154 #if SGE_NUM_GENBITS == 1
155 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
156 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
157 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
158 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
159 #elif SGE_NUM_GENBITS == 2
160 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
161 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
162 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
163 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
164 #else
165 # error "SGE_NUM_GENBITS must be 1 or 2"
166 #endif
167 };
168
rspq_to_qset(const struct sge_rspq * q)169 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
170 {
171 return container_of(q, struct sge_qset, rspq);
172 }
173
txq_to_qset(const struct sge_txq * q,int qidx)174 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
175 {
176 return container_of(q, struct sge_qset, txq[qidx]);
177 }
178
179 /**
180 * refill_rspq - replenish an SGE response queue
181 * @adapter: the adapter
182 * @q: the response queue to replenish
183 * @credits: how many new responses to make available
184 *
185 * Replenishes a response queue by making the supplied number of responses
186 * available to HW.
187 */
refill_rspq(struct adapter * adapter,const struct sge_rspq * q,unsigned int credits)188 static inline void refill_rspq(struct adapter *adapter,
189 const struct sge_rspq *q, unsigned int credits)
190 {
191 rmb();
192 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
193 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
194 }
195
196 /**
197 * need_skb_unmap - does the platform need unmapping of sk_buffs?
198 *
199 * Returns true if the platform needs sk_buff unmapping. The compiler
200 * optimizes away unnecessary code if this returns true.
201 */
need_skb_unmap(void)202 static inline int need_skb_unmap(void)
203 {
204 #ifdef CONFIG_NEED_DMA_MAP_STATE
205 return 1;
206 #else
207 return 0;
208 #endif
209 }
210
211 /**
212 * unmap_skb - unmap a packet main body and its page fragments
213 * @skb: the packet
214 * @q: the Tx queue containing Tx descriptors for the packet
215 * @cidx: index of Tx descriptor
216 * @pdev: the PCI device
217 *
218 * Unmap the main body of an sk_buff and its page fragments, if any.
219 * Because of the fairly complicated structure of our SGLs and the desire
220 * to conserve space for metadata, the information necessary to unmap an
221 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
222 * descriptors (the physical addresses of the various data buffers), and
223 * the SW descriptor state (assorted indices). The send functions
224 * initialize the indices for the first packet descriptor so we can unmap
225 * the buffers held in the first Tx descriptor here, and we have enough
226 * information at this point to set the state for the next Tx descriptor.
227 *
228 * Note that it is possible to clean up the first descriptor of a packet
229 * before the send routines have written the next descriptors, but this
230 * race does not cause any problem. We just end up writing the unmapping
231 * info for the descriptor first.
232 */
unmap_skb(struct sk_buff * skb,struct sge_txq * q,unsigned int cidx,struct pci_dev * pdev)233 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
234 unsigned int cidx, struct pci_dev *pdev)
235 {
236 const struct sg_ent *sgp;
237 struct tx_sw_desc *d = &q->sdesc[cidx];
238 int nfrags, frag_idx, curflit, j = d->addr_idx;
239
240 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
241 frag_idx = d->fragidx;
242
243 if (frag_idx == 0 && skb_headlen(skb)) {
244 dma_unmap_single(&pdev->dev, be64_to_cpu(sgp->addr[0]),
245 skb_headlen(skb), DMA_TO_DEVICE);
246 j = 1;
247 }
248
249 curflit = d->sflit + 1 + j;
250 nfrags = skb_shinfo(skb)->nr_frags;
251
252 while (frag_idx < nfrags && curflit < WR_FLITS) {
253 dma_unmap_page(&pdev->dev, be64_to_cpu(sgp->addr[j]),
254 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]),
255 DMA_TO_DEVICE);
256 j ^= 1;
257 if (j == 0) {
258 sgp++;
259 curflit++;
260 }
261 curflit++;
262 frag_idx++;
263 }
264
265 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
266 d = cidx + 1 == q->size ? q->sdesc : d + 1;
267 d->fragidx = frag_idx;
268 d->addr_idx = j;
269 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
270 }
271 }
272
273 /**
274 * free_tx_desc - reclaims Tx descriptors and their buffers
275 * @adapter: the adapter
276 * @q: the Tx queue to reclaim descriptors from
277 * @n: the number of descriptors to reclaim
278 *
279 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
280 * Tx buffers. Called with the Tx queue lock held.
281 */
free_tx_desc(struct adapter * adapter,struct sge_txq * q,unsigned int n)282 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
283 unsigned int n)
284 {
285 struct tx_sw_desc *d;
286 struct pci_dev *pdev = adapter->pdev;
287 unsigned int cidx = q->cidx;
288
289 const int need_unmap = need_skb_unmap() &&
290 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
291
292 d = &q->sdesc[cidx];
293 while (n--) {
294 if (d->skb) { /* an SGL is present */
295 if (need_unmap)
296 unmap_skb(d->skb, q, cidx, pdev);
297 if (d->eop) {
298 dev_consume_skb_any(d->skb);
299 d->skb = NULL;
300 }
301 }
302 ++d;
303 if (++cidx == q->size) {
304 cidx = 0;
305 d = q->sdesc;
306 }
307 }
308 q->cidx = cidx;
309 }
310
311 /**
312 * reclaim_completed_tx - reclaims completed Tx descriptors
313 * @adapter: the adapter
314 * @q: the Tx queue to reclaim completed descriptors from
315 * @chunk: maximum number of descriptors to reclaim
316 *
317 * Reclaims Tx descriptors that the SGE has indicated it has processed,
318 * and frees the associated buffers if possible. Called with the Tx
319 * queue's lock held.
320 */
reclaim_completed_tx(struct adapter * adapter,struct sge_txq * q,unsigned int chunk)321 static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
322 struct sge_txq *q,
323 unsigned int chunk)
324 {
325 unsigned int reclaim = q->processed - q->cleaned;
326
327 reclaim = min(chunk, reclaim);
328 if (reclaim) {
329 free_tx_desc(adapter, q, reclaim);
330 q->cleaned += reclaim;
331 q->in_use -= reclaim;
332 }
333 return q->processed - q->cleaned;
334 }
335
336 /**
337 * should_restart_tx - are there enough resources to restart a Tx queue?
338 * @q: the Tx queue
339 *
340 * Checks if there are enough descriptors to restart a suspended Tx queue.
341 */
should_restart_tx(const struct sge_txq * q)342 static inline int should_restart_tx(const struct sge_txq *q)
343 {
344 unsigned int r = q->processed - q->cleaned;
345
346 return q->in_use - r < (q->size >> 1);
347 }
348
clear_rx_desc(struct pci_dev * pdev,const struct sge_fl * q,struct rx_sw_desc * d)349 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
350 struct rx_sw_desc *d)
351 {
352 if (q->use_pages && d->pg_chunk.page) {
353 (*d->pg_chunk.p_cnt)--;
354 if (!*d->pg_chunk.p_cnt)
355 dma_unmap_page(&pdev->dev, d->pg_chunk.mapping,
356 q->alloc_size, DMA_FROM_DEVICE);
357
358 put_page(d->pg_chunk.page);
359 d->pg_chunk.page = NULL;
360 } else {
361 dma_unmap_single(&pdev->dev, dma_unmap_addr(d, dma_addr),
362 q->buf_size, DMA_FROM_DEVICE);
363 kfree_skb(d->skb);
364 d->skb = NULL;
365 }
366 }
367
368 /**
369 * free_rx_bufs - free the Rx buffers on an SGE free list
370 * @pdev: the PCI device associated with the adapter
371 * @q: the SGE free list to clean up
372 *
373 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
374 * this queue should be stopped before calling this function.
375 */
free_rx_bufs(struct pci_dev * pdev,struct sge_fl * q)376 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
377 {
378 unsigned int cidx = q->cidx;
379
380 while (q->credits--) {
381 struct rx_sw_desc *d = &q->sdesc[cidx];
382
383
384 clear_rx_desc(pdev, q, d);
385 if (++cidx == q->size)
386 cidx = 0;
387 }
388
389 if (q->pg_chunk.page) {
390 __free_pages(q->pg_chunk.page, q->order);
391 q->pg_chunk.page = NULL;
392 }
393 }
394
395 /**
396 * add_one_rx_buf - add a packet buffer to a free-buffer list
397 * @va: buffer start VA
398 * @len: the buffer length
399 * @d: the HW Rx descriptor to write
400 * @sd: the SW Rx descriptor to write
401 * @gen: the generation bit value
402 * @pdev: the PCI device associated with the adapter
403 *
404 * Add a buffer of the given length to the supplied HW and SW Rx
405 * descriptors.
406 */
add_one_rx_buf(void * va,unsigned int len,struct rx_desc * d,struct rx_sw_desc * sd,unsigned int gen,struct pci_dev * pdev)407 static inline int add_one_rx_buf(void *va, unsigned int len,
408 struct rx_desc *d, struct rx_sw_desc *sd,
409 unsigned int gen, struct pci_dev *pdev)
410 {
411 dma_addr_t mapping;
412
413 mapping = dma_map_single(&pdev->dev, va, len, DMA_FROM_DEVICE);
414 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
415 return -ENOMEM;
416
417 dma_unmap_addr_set(sd, dma_addr, mapping);
418
419 d->addr_lo = cpu_to_be32(mapping);
420 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
421 dma_wmb();
422 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
423 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
424 return 0;
425 }
426
add_one_rx_chunk(dma_addr_t mapping,struct rx_desc * d,unsigned int gen)427 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
428 unsigned int gen)
429 {
430 d->addr_lo = cpu_to_be32(mapping);
431 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
432 dma_wmb();
433 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
434 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
435 return 0;
436 }
437
alloc_pg_chunk(struct adapter * adapter,struct sge_fl * q,struct rx_sw_desc * sd,gfp_t gfp,unsigned int order)438 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
439 struct rx_sw_desc *sd, gfp_t gfp,
440 unsigned int order)
441 {
442 if (!q->pg_chunk.page) {
443 dma_addr_t mapping;
444
445 q->pg_chunk.page = alloc_pages(gfp, order);
446 if (unlikely(!q->pg_chunk.page))
447 return -ENOMEM;
448 q->pg_chunk.va = page_address(q->pg_chunk.page);
449 q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
450 SGE_PG_RSVD;
451 q->pg_chunk.offset = 0;
452 mapping = dma_map_page(&adapter->pdev->dev, q->pg_chunk.page,
453 0, q->alloc_size, DMA_FROM_DEVICE);
454 if (unlikely(dma_mapping_error(&adapter->pdev->dev, mapping))) {
455 __free_pages(q->pg_chunk.page, order);
456 q->pg_chunk.page = NULL;
457 return -EIO;
458 }
459 q->pg_chunk.mapping = mapping;
460 }
461 sd->pg_chunk = q->pg_chunk;
462
463 prefetch(sd->pg_chunk.p_cnt);
464
465 q->pg_chunk.offset += q->buf_size;
466 if (q->pg_chunk.offset == (PAGE_SIZE << order))
467 q->pg_chunk.page = NULL;
468 else {
469 q->pg_chunk.va += q->buf_size;
470 get_page(q->pg_chunk.page);
471 }
472
473 if (sd->pg_chunk.offset == 0)
474 *sd->pg_chunk.p_cnt = 1;
475 else
476 *sd->pg_chunk.p_cnt += 1;
477
478 return 0;
479 }
480
ring_fl_db(struct adapter * adap,struct sge_fl * q)481 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
482 {
483 if (q->pend_cred >= q->credits / 4) {
484 q->pend_cred = 0;
485 wmb();
486 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
487 }
488 }
489
490 /**
491 * refill_fl - refill an SGE free-buffer list
492 * @adap: the adapter
493 * @q: the free-list to refill
494 * @n: the number of new buffers to allocate
495 * @gfp: the gfp flags for allocating new buffers
496 *
497 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
498 * allocated with the supplied gfp flags. The caller must assure that
499 * @n does not exceed the queue's capacity.
500 */
refill_fl(struct adapter * adap,struct sge_fl * q,int n,gfp_t gfp)501 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
502 {
503 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
504 struct rx_desc *d = &q->desc[q->pidx];
505 unsigned int count = 0;
506
507 while (n--) {
508 dma_addr_t mapping;
509 int err;
510
511 if (q->use_pages) {
512 if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
513 q->order))) {
514 nomem: q->alloc_failed++;
515 break;
516 }
517 mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
518 dma_unmap_addr_set(sd, dma_addr, mapping);
519
520 add_one_rx_chunk(mapping, d, q->gen);
521 dma_sync_single_for_device(&adap->pdev->dev, mapping,
522 q->buf_size - SGE_PG_RSVD,
523 DMA_FROM_DEVICE);
524 } else {
525 void *buf_start;
526
527 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
528 if (!skb)
529 goto nomem;
530
531 sd->skb = skb;
532 buf_start = skb->data;
533 err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
534 q->gen, adap->pdev);
535 if (unlikely(err)) {
536 clear_rx_desc(adap->pdev, q, sd);
537 break;
538 }
539 }
540
541 d++;
542 sd++;
543 if (++q->pidx == q->size) {
544 q->pidx = 0;
545 q->gen ^= 1;
546 sd = q->sdesc;
547 d = q->desc;
548 }
549 count++;
550 }
551
552 q->credits += count;
553 q->pend_cred += count;
554 ring_fl_db(adap, q);
555
556 return count;
557 }
558
__refill_fl(struct adapter * adap,struct sge_fl * fl)559 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
560 {
561 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
562 GFP_ATOMIC | __GFP_COMP);
563 }
564
565 /**
566 * recycle_rx_buf - recycle a receive buffer
567 * @adap: the adapter
568 * @q: the SGE free list
569 * @idx: index of buffer to recycle
570 *
571 * Recycles the specified buffer on the given free list by adding it at
572 * the next available slot on the list.
573 */
recycle_rx_buf(struct adapter * adap,struct sge_fl * q,unsigned int idx)574 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
575 unsigned int idx)
576 {
577 struct rx_desc *from = &q->desc[idx];
578 struct rx_desc *to = &q->desc[q->pidx];
579
580 q->sdesc[q->pidx] = q->sdesc[idx];
581 to->addr_lo = from->addr_lo; /* already big endian */
582 to->addr_hi = from->addr_hi; /* likewise */
583 dma_wmb();
584 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
585 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
586
587 if (++q->pidx == q->size) {
588 q->pidx = 0;
589 q->gen ^= 1;
590 }
591
592 q->credits++;
593 q->pend_cred++;
594 ring_fl_db(adap, q);
595 }
596
597 /**
598 * alloc_ring - allocate resources for an SGE descriptor ring
599 * @pdev: the PCI device
600 * @nelem: the number of descriptors
601 * @elem_size: the size of each descriptor
602 * @sw_size: the size of the SW state associated with each ring element
603 * @phys: the physical address of the allocated ring
604 * @metadata: address of the array holding the SW state for the ring
605 *
606 * Allocates resources for an SGE descriptor ring, such as Tx queues,
607 * free buffer lists, or response queues. Each SGE ring requires
608 * space for its HW descriptors plus, optionally, space for the SW state
609 * associated with each HW entry (the metadata). The function returns
610 * three values: the virtual address for the HW ring (the return value
611 * of the function), the physical address of the HW ring, and the address
612 * of the SW ring.
613 */
alloc_ring(struct pci_dev * pdev,size_t nelem,size_t elem_size,size_t sw_size,dma_addr_t * phys,void * metadata)614 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
615 size_t sw_size, dma_addr_t * phys, void *metadata)
616 {
617 size_t len = nelem * elem_size;
618 void *s = NULL;
619 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
620
621 if (!p)
622 return NULL;
623 if (sw_size && metadata) {
624 s = kcalloc(nelem, sw_size, GFP_KERNEL);
625
626 if (!s) {
627 dma_free_coherent(&pdev->dev, len, p, *phys);
628 return NULL;
629 }
630 *(void **)metadata = s;
631 }
632 return p;
633 }
634
635 /**
636 * t3_reset_qset - reset a sge qset
637 * @q: the queue set
638 *
639 * Reset the qset structure.
640 * the NAPI structure is preserved in the event of
641 * the qset's reincarnation, for example during EEH recovery.
642 */
t3_reset_qset(struct sge_qset * q)643 static void t3_reset_qset(struct sge_qset *q)
644 {
645 if (q->adap &&
646 !(q->adap->flags & NAPI_INIT)) {
647 memset(q, 0, sizeof(*q));
648 return;
649 }
650
651 q->adap = NULL;
652 memset(&q->rspq, 0, sizeof(q->rspq));
653 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
654 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
655 q->txq_stopped = 0;
656 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
657 q->rx_reclaim_timer.function = NULL;
658 q->nomem = 0;
659 napi_free_frags(&q->napi);
660 }
661
662
663 /**
664 * t3_free_qset - free the resources of an SGE queue set
665 * @adapter: the adapter owning the queue set
666 * @q: the queue set
667 *
668 * Release the HW and SW resources associated with an SGE queue set, such
669 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
670 * queue set must be quiesced prior to calling this.
671 */
t3_free_qset(struct adapter * adapter,struct sge_qset * q)672 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
673 {
674 int i;
675 struct pci_dev *pdev = adapter->pdev;
676
677 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
678 if (q->fl[i].desc) {
679 spin_lock_irq(&adapter->sge.reg_lock);
680 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
681 spin_unlock_irq(&adapter->sge.reg_lock);
682 free_rx_bufs(pdev, &q->fl[i]);
683 kfree(q->fl[i].sdesc);
684 dma_free_coherent(&pdev->dev,
685 q->fl[i].size *
686 sizeof(struct rx_desc), q->fl[i].desc,
687 q->fl[i].phys_addr);
688 }
689
690 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
691 if (q->txq[i].desc) {
692 spin_lock_irq(&adapter->sge.reg_lock);
693 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
694 spin_unlock_irq(&adapter->sge.reg_lock);
695 if (q->txq[i].sdesc) {
696 free_tx_desc(adapter, &q->txq[i],
697 q->txq[i].in_use);
698 kfree(q->txq[i].sdesc);
699 }
700 dma_free_coherent(&pdev->dev,
701 q->txq[i].size *
702 sizeof(struct tx_desc),
703 q->txq[i].desc, q->txq[i].phys_addr);
704 __skb_queue_purge(&q->txq[i].sendq);
705 }
706
707 if (q->rspq.desc) {
708 spin_lock_irq(&adapter->sge.reg_lock);
709 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
710 spin_unlock_irq(&adapter->sge.reg_lock);
711 dma_free_coherent(&pdev->dev,
712 q->rspq.size * sizeof(struct rsp_desc),
713 q->rspq.desc, q->rspq.phys_addr);
714 }
715
716 t3_reset_qset(q);
717 }
718
719 /**
720 * init_qset_cntxt - initialize an SGE queue set context info
721 * @qs: the queue set
722 * @id: the queue set id
723 *
724 * Initializes the TIDs and context ids for the queues of a queue set.
725 */
init_qset_cntxt(struct sge_qset * qs,unsigned int id)726 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
727 {
728 qs->rspq.cntxt_id = id;
729 qs->fl[0].cntxt_id = 2 * id;
730 qs->fl[1].cntxt_id = 2 * id + 1;
731 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
732 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
733 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
734 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
735 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
736 }
737
738 /**
739 * sgl_len - calculates the size of an SGL of the given capacity
740 * @n: the number of SGL entries
741 *
742 * Calculates the number of flits needed for a scatter/gather list that
743 * can hold the given number of entries.
744 */
sgl_len(unsigned int n)745 static inline unsigned int sgl_len(unsigned int n)
746 {
747 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
748 return (3 * n) / 2 + (n & 1);
749 }
750
751 /**
752 * flits_to_desc - returns the num of Tx descriptors for the given flits
753 * @n: the number of flits
754 *
755 * Calculates the number of Tx descriptors needed for the supplied number
756 * of flits.
757 */
flits_to_desc(unsigned int n)758 static inline unsigned int flits_to_desc(unsigned int n)
759 {
760 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
761 return flit_desc_map[n];
762 }
763
764 /**
765 * get_packet - return the next ingress packet buffer from a free list
766 * @adap: the adapter that received the packet
767 * @fl: the SGE free list holding the packet
768 * @len: the packet length including any SGE padding
769 * @drop_thres: # of remaining buffers before we start dropping packets
770 *
771 * Get the next packet from a free list and complete setup of the
772 * sk_buff. If the packet is small we make a copy and recycle the
773 * original buffer, otherwise we use the original buffer itself. If a
774 * positive drop threshold is supplied packets are dropped and their
775 * buffers recycled if (a) the number of remaining buffers is under the
776 * threshold and the packet is too big to copy, or (b) the packet should
777 * be copied but there is no memory for the copy.
778 */
get_packet(struct adapter * adap,struct sge_fl * fl,unsigned int len,unsigned int drop_thres)779 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
780 unsigned int len, unsigned int drop_thres)
781 {
782 struct sk_buff *skb = NULL;
783 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
784
785 prefetch(sd->skb->data);
786 fl->credits--;
787
788 if (len <= SGE_RX_COPY_THRES) {
789 skb = alloc_skb(len, GFP_ATOMIC);
790 if (likely(skb != NULL)) {
791 __skb_put(skb, len);
792 dma_sync_single_for_cpu(&adap->pdev->dev,
793 dma_unmap_addr(sd, dma_addr),
794 len, DMA_FROM_DEVICE);
795 memcpy(skb->data, sd->skb->data, len);
796 dma_sync_single_for_device(&adap->pdev->dev,
797 dma_unmap_addr(sd, dma_addr),
798 len, DMA_FROM_DEVICE);
799 } else if (!drop_thres)
800 goto use_orig_buf;
801 recycle:
802 recycle_rx_buf(adap, fl, fl->cidx);
803 return skb;
804 }
805
806 if (unlikely(fl->credits < drop_thres) &&
807 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
808 GFP_ATOMIC | __GFP_COMP) == 0)
809 goto recycle;
810
811 use_orig_buf:
812 dma_unmap_single(&adap->pdev->dev, dma_unmap_addr(sd, dma_addr),
813 fl->buf_size, DMA_FROM_DEVICE);
814 skb = sd->skb;
815 skb_put(skb, len);
816 __refill_fl(adap, fl);
817 return skb;
818 }
819
820 /**
821 * get_packet_pg - return the next ingress packet buffer from a free list
822 * @adap: the adapter that received the packet
823 * @fl: the SGE free list holding the packet
824 * @q: the queue
825 * @len: the packet length including any SGE padding
826 * @drop_thres: # of remaining buffers before we start dropping packets
827 *
828 * Get the next packet from a free list populated with page chunks.
829 * If the packet is small we make a copy and recycle the original buffer,
830 * otherwise we attach the original buffer as a page fragment to a fresh
831 * sk_buff. If a positive drop threshold is supplied packets are dropped
832 * and their buffers recycled if (a) the number of remaining buffers is
833 * under the threshold and the packet is too big to copy, or (b) there's
834 * no system memory.
835 *
836 * Note: this function is similar to @get_packet but deals with Rx buffers
837 * that are page chunks rather than sk_buffs.
838 */
get_packet_pg(struct adapter * adap,struct sge_fl * fl,struct sge_rspq * q,unsigned int len,unsigned int drop_thres)839 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
840 struct sge_rspq *q, unsigned int len,
841 unsigned int drop_thres)
842 {
843 struct sk_buff *newskb, *skb;
844 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
845
846 dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr);
847
848 newskb = skb = q->pg_skb;
849 if (!skb && (len <= SGE_RX_COPY_THRES)) {
850 newskb = alloc_skb(len, GFP_ATOMIC);
851 if (likely(newskb != NULL)) {
852 __skb_put(newskb, len);
853 dma_sync_single_for_cpu(&adap->pdev->dev, dma_addr,
854 len, DMA_FROM_DEVICE);
855 memcpy(newskb->data, sd->pg_chunk.va, len);
856 dma_sync_single_for_device(&adap->pdev->dev, dma_addr,
857 len, DMA_FROM_DEVICE);
858 } else if (!drop_thres)
859 return NULL;
860 recycle:
861 fl->credits--;
862 recycle_rx_buf(adap, fl, fl->cidx);
863 q->rx_recycle_buf++;
864 return newskb;
865 }
866
867 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
868 goto recycle;
869
870 prefetch(sd->pg_chunk.p_cnt);
871
872 if (!skb)
873 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
874
875 if (unlikely(!newskb)) {
876 if (!drop_thres)
877 return NULL;
878 goto recycle;
879 }
880
881 dma_sync_single_for_cpu(&adap->pdev->dev, dma_addr, len,
882 DMA_FROM_DEVICE);
883 (*sd->pg_chunk.p_cnt)--;
884 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
885 dma_unmap_page(&adap->pdev->dev, sd->pg_chunk.mapping,
886 fl->alloc_size, DMA_FROM_DEVICE);
887 if (!skb) {
888 __skb_put(newskb, SGE_RX_PULL_LEN);
889 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
890 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
891 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
892 len - SGE_RX_PULL_LEN);
893 newskb->len = len;
894 newskb->data_len = len - SGE_RX_PULL_LEN;
895 newskb->truesize += newskb->data_len;
896 } else {
897 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
898 sd->pg_chunk.page,
899 sd->pg_chunk.offset, len);
900 newskb->len += len;
901 newskb->data_len += len;
902 newskb->truesize += len;
903 }
904
905 fl->credits--;
906 /*
907 * We do not refill FLs here, we let the caller do it to overlap a
908 * prefetch.
909 */
910 return newskb;
911 }
912
913 /**
914 * get_imm_packet - return the next ingress packet buffer from a response
915 * @resp: the response descriptor containing the packet data
916 *
917 * Return a packet containing the immediate data of the given response.
918 */
get_imm_packet(const struct rsp_desc * resp)919 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
920 {
921 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
922
923 if (skb) {
924 __skb_put(skb, IMMED_PKT_SIZE);
925 BUILD_BUG_ON(IMMED_PKT_SIZE != sizeof(resp->immediate));
926 skb_copy_to_linear_data(skb, &resp->immediate, IMMED_PKT_SIZE);
927 }
928 return skb;
929 }
930
931 /**
932 * calc_tx_descs - calculate the number of Tx descriptors for a packet
933 * @skb: the packet
934 *
935 * Returns the number of Tx descriptors needed for the given Ethernet
936 * packet. Ethernet packets require addition of WR and CPL headers.
937 */
calc_tx_descs(const struct sk_buff * skb)938 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
939 {
940 unsigned int flits;
941
942 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
943 return 1;
944
945 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
946 if (skb_shinfo(skb)->gso_size)
947 flits++;
948 return flits_to_desc(flits);
949 }
950
951 /* map_skb - map a packet main body and its page fragments
952 * @pdev: the PCI device
953 * @skb: the packet
954 * @addr: placeholder to save the mapped addresses
955 *
956 * map the main body of an sk_buff and its page fragments, if any.
957 */
map_skb(struct pci_dev * pdev,const struct sk_buff * skb,dma_addr_t * addr)958 static int map_skb(struct pci_dev *pdev, const struct sk_buff *skb,
959 dma_addr_t *addr)
960 {
961 const skb_frag_t *fp, *end;
962 const struct skb_shared_info *si;
963
964 if (skb_headlen(skb)) {
965 *addr = dma_map_single(&pdev->dev, skb->data,
966 skb_headlen(skb), DMA_TO_DEVICE);
967 if (dma_mapping_error(&pdev->dev, *addr))
968 goto out_err;
969 addr++;
970 }
971
972 si = skb_shinfo(skb);
973 end = &si->frags[si->nr_frags];
974
975 for (fp = si->frags; fp < end; fp++) {
976 *addr = skb_frag_dma_map(&pdev->dev, fp, 0, skb_frag_size(fp),
977 DMA_TO_DEVICE);
978 if (dma_mapping_error(&pdev->dev, *addr))
979 goto unwind;
980 addr++;
981 }
982 return 0;
983
984 unwind:
985 while (fp-- > si->frags)
986 dma_unmap_page(&pdev->dev, *--addr, skb_frag_size(fp),
987 DMA_TO_DEVICE);
988
989 dma_unmap_single(&pdev->dev, addr[-1], skb_headlen(skb),
990 DMA_TO_DEVICE);
991 out_err:
992 return -ENOMEM;
993 }
994
995 /**
996 * write_sgl - populate a scatter/gather list for a packet
997 * @skb: the packet
998 * @sgp: the SGL to populate
999 * @start: start address of skb main body data to include in the SGL
1000 * @len: length of skb main body data to include in the SGL
1001 * @addr: the list of the mapped addresses
1002 *
1003 * Copies the scatter/gather list for the buffers that make up a packet
1004 * and returns the SGL size in 8-byte words. The caller must size the SGL
1005 * appropriately.
1006 */
write_sgl(const struct sk_buff * skb,struct sg_ent * sgp,unsigned char * start,unsigned int len,const dma_addr_t * addr)1007 static inline unsigned int write_sgl(const struct sk_buff *skb,
1008 struct sg_ent *sgp, unsigned char *start,
1009 unsigned int len, const dma_addr_t *addr)
1010 {
1011 unsigned int i, j = 0, k = 0, nfrags;
1012
1013 if (len) {
1014 sgp->len[0] = cpu_to_be32(len);
1015 sgp->addr[j++] = cpu_to_be64(addr[k++]);
1016 }
1017
1018 nfrags = skb_shinfo(skb)->nr_frags;
1019 for (i = 0; i < nfrags; i++) {
1020 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1021
1022 sgp->len[j] = cpu_to_be32(skb_frag_size(frag));
1023 sgp->addr[j] = cpu_to_be64(addr[k++]);
1024 j ^= 1;
1025 if (j == 0)
1026 ++sgp;
1027 }
1028 if (j)
1029 sgp->len[j] = 0;
1030 return ((nfrags + (len != 0)) * 3) / 2 + j;
1031 }
1032
1033 /**
1034 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
1035 * @adap: the adapter
1036 * @q: the Tx queue
1037 *
1038 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
1039 * where the HW is going to sleep just after we checked, however,
1040 * then the interrupt handler will detect the outstanding TX packet
1041 * and ring the doorbell for us.
1042 *
1043 * When GTS is disabled we unconditionally ring the doorbell.
1044 */
check_ring_tx_db(struct adapter * adap,struct sge_txq * q)1045 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1046 {
1047 #if USE_GTS
1048 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1049 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1050 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1051 t3_write_reg(adap, A_SG_KDOORBELL,
1052 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1053 }
1054 #else
1055 wmb(); /* write descriptors before telling HW */
1056 t3_write_reg(adap, A_SG_KDOORBELL,
1057 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1058 #endif
1059 }
1060
wr_gen2(struct tx_desc * d,unsigned int gen)1061 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1062 {
1063 #if SGE_NUM_GENBITS == 2
1064 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1065 #endif
1066 }
1067
1068 /**
1069 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
1070 * @ndesc: number of Tx descriptors spanned by the SGL
1071 * @skb: the packet corresponding to the WR
1072 * @d: first Tx descriptor to be written
1073 * @pidx: index of above descriptors
1074 * @q: the SGE Tx queue
1075 * @sgl: the SGL
1076 * @flits: number of flits to the start of the SGL in the first descriptor
1077 * @sgl_flits: the SGL size in flits
1078 * @gen: the Tx descriptor generation
1079 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
1080 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
1081 *
1082 * Write a work request header and an associated SGL. If the SGL is
1083 * small enough to fit into one Tx descriptor it has already been written
1084 * and we just need to write the WR header. Otherwise we distribute the
1085 * SGL across the number of descriptors it spans.
1086 */
write_wr_hdr_sgl(unsigned int ndesc,struct sk_buff * skb,struct tx_desc * d,unsigned int pidx,const struct sge_txq * q,const struct sg_ent * sgl,unsigned int flits,unsigned int sgl_flits,unsigned int gen,__be32 wr_hi,__be32 wr_lo)1087 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1088 struct tx_desc *d, unsigned int pidx,
1089 const struct sge_txq *q,
1090 const struct sg_ent *sgl,
1091 unsigned int flits, unsigned int sgl_flits,
1092 unsigned int gen, __be32 wr_hi,
1093 __be32 wr_lo)
1094 {
1095 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1096 struct tx_sw_desc *sd = &q->sdesc[pidx];
1097
1098 sd->skb = skb;
1099 if (need_skb_unmap()) {
1100 sd->fragidx = 0;
1101 sd->addr_idx = 0;
1102 sd->sflit = flits;
1103 }
1104
1105 if (likely(ndesc == 1)) {
1106 sd->eop = 1;
1107 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1108 V_WR_SGLSFLT(flits)) | wr_hi;
1109 dma_wmb();
1110 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1111 V_WR_GEN(gen)) | wr_lo;
1112 wr_gen2(d, gen);
1113 } else {
1114 unsigned int ogen = gen;
1115 const u64 *fp = (const u64 *)sgl;
1116 struct work_request_hdr *wp = wrp;
1117
1118 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1119 V_WR_SGLSFLT(flits)) | wr_hi;
1120
1121 while (sgl_flits) {
1122 unsigned int avail = WR_FLITS - flits;
1123
1124 if (avail > sgl_flits)
1125 avail = sgl_flits;
1126 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1127 sgl_flits -= avail;
1128 ndesc--;
1129 if (!sgl_flits)
1130 break;
1131
1132 fp += avail;
1133 d++;
1134 sd->eop = 0;
1135 sd++;
1136 if (++pidx == q->size) {
1137 pidx = 0;
1138 gen ^= 1;
1139 d = q->desc;
1140 sd = q->sdesc;
1141 }
1142
1143 sd->skb = skb;
1144 wrp = (struct work_request_hdr *)d;
1145 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1146 V_WR_SGLSFLT(1)) | wr_hi;
1147 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1148 sgl_flits + 1)) |
1149 V_WR_GEN(gen)) | wr_lo;
1150 wr_gen2(d, gen);
1151 flits = 1;
1152 }
1153 sd->eop = 1;
1154 wrp->wr_hi |= htonl(F_WR_EOP);
1155 dma_wmb();
1156 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1157 wr_gen2((struct tx_desc *)wp, ogen);
1158 WARN_ON(ndesc != 0);
1159 }
1160 }
1161
1162 /**
1163 * write_tx_pkt_wr - write a TX_PKT work request
1164 * @adap: the adapter
1165 * @skb: the packet to send
1166 * @pi: the egress interface
1167 * @pidx: index of the first Tx descriptor to write
1168 * @gen: the generation value to use
1169 * @q: the Tx queue
1170 * @ndesc: number of descriptors the packet will occupy
1171 * @compl: the value of the COMPL bit to use
1172 * @addr: address
1173 *
1174 * Generate a TX_PKT work request to send the supplied packet.
1175 */
write_tx_pkt_wr(struct adapter * adap,struct sk_buff * skb,const struct port_info * pi,unsigned int pidx,unsigned int gen,struct sge_txq * q,unsigned int ndesc,unsigned int compl,const dma_addr_t * addr)1176 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1177 const struct port_info *pi,
1178 unsigned int pidx, unsigned int gen,
1179 struct sge_txq *q, unsigned int ndesc,
1180 unsigned int compl, const dma_addr_t *addr)
1181 {
1182 unsigned int flits, sgl_flits, cntrl, tso_info;
1183 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1184 struct tx_desc *d = &q->desc[pidx];
1185 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1186
1187 cpl->len = htonl(skb->len);
1188 cntrl = V_TXPKT_INTF(pi->port_id);
1189
1190 if (skb_vlan_tag_present(skb))
1191 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(skb_vlan_tag_get(skb));
1192
1193 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1194 if (tso_info) {
1195 int eth_type;
1196 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1197
1198 d->flit[2] = 0;
1199 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1200 hdr->cntrl = htonl(cntrl);
1201 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1202 CPL_ETH_II : CPL_ETH_II_VLAN;
1203 tso_info |= V_LSO_ETH_TYPE(eth_type) |
1204 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1205 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1206 hdr->lso_info = htonl(tso_info);
1207 flits = 3;
1208 } else {
1209 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1210 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1211 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1212 cpl->cntrl = htonl(cntrl);
1213
1214 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1215 q->sdesc[pidx].skb = NULL;
1216 if (!skb->data_len)
1217 skb_copy_from_linear_data(skb, &d->flit[2],
1218 skb->len);
1219 else
1220 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1221
1222 flits = (skb->len + 7) / 8 + 2;
1223 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1224 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1225 | F_WR_SOP | F_WR_EOP | compl);
1226 dma_wmb();
1227 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1228 V_WR_TID(q->token));
1229 wr_gen2(d, gen);
1230 dev_consume_skb_any(skb);
1231 return;
1232 }
1233
1234 flits = 2;
1235 }
1236
1237 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1238 sgl_flits = write_sgl(skb, sgp, skb->data, skb_headlen(skb), addr);
1239
1240 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1241 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1242 htonl(V_WR_TID(q->token)));
1243 }
1244
t3_stop_tx_queue(struct netdev_queue * txq,struct sge_qset * qs,struct sge_txq * q)1245 static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1246 struct sge_qset *qs, struct sge_txq *q)
1247 {
1248 netif_tx_stop_queue(txq);
1249 set_bit(TXQ_ETH, &qs->txq_stopped);
1250 q->stops++;
1251 }
1252
1253 /**
1254 * t3_eth_xmit - add a packet to the Ethernet Tx queue
1255 * @skb: the packet
1256 * @dev: the egress net device
1257 *
1258 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1259 */
t3_eth_xmit(struct sk_buff * skb,struct net_device * dev)1260 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1261 {
1262 int qidx;
1263 unsigned int ndesc, pidx, credits, gen, compl;
1264 const struct port_info *pi = netdev_priv(dev);
1265 struct adapter *adap = pi->adapter;
1266 struct netdev_queue *txq;
1267 struct sge_qset *qs;
1268 struct sge_txq *q;
1269 dma_addr_t addr[MAX_SKB_FRAGS + 1];
1270
1271 /*
1272 * The chip min packet length is 9 octets but play safe and reject
1273 * anything shorter than an Ethernet header.
1274 */
1275 if (unlikely(skb->len < ETH_HLEN)) {
1276 dev_kfree_skb_any(skb);
1277 return NETDEV_TX_OK;
1278 }
1279
1280 qidx = skb_get_queue_mapping(skb);
1281 qs = &pi->qs[qidx];
1282 q = &qs->txq[TXQ_ETH];
1283 txq = netdev_get_tx_queue(dev, qidx);
1284
1285 reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1286
1287 credits = q->size - q->in_use;
1288 ndesc = calc_tx_descs(skb);
1289
1290 if (unlikely(credits < ndesc)) {
1291 t3_stop_tx_queue(txq, qs, q);
1292 dev_err(&adap->pdev->dev,
1293 "%s: Tx ring %u full while queue awake!\n",
1294 dev->name, q->cntxt_id & 7);
1295 return NETDEV_TX_BUSY;
1296 }
1297
1298 /* Check if ethernet packet can't be sent as immediate data */
1299 if (skb->len > (WR_LEN - sizeof(struct cpl_tx_pkt))) {
1300 if (unlikely(map_skb(adap->pdev, skb, addr) < 0)) {
1301 dev_kfree_skb(skb);
1302 return NETDEV_TX_OK;
1303 }
1304 }
1305
1306 q->in_use += ndesc;
1307 if (unlikely(credits - ndesc < q->stop_thres)) {
1308 t3_stop_tx_queue(txq, qs, q);
1309
1310 if (should_restart_tx(q) &&
1311 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1312 q->restarts++;
1313 netif_tx_start_queue(txq);
1314 }
1315 }
1316
1317 gen = q->gen;
1318 q->unacked += ndesc;
1319 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1320 q->unacked &= 7;
1321 pidx = q->pidx;
1322 q->pidx += ndesc;
1323 if (q->pidx >= q->size) {
1324 q->pidx -= q->size;
1325 q->gen ^= 1;
1326 }
1327
1328 /* update port statistics */
1329 if (skb->ip_summed == CHECKSUM_PARTIAL)
1330 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1331 if (skb_shinfo(skb)->gso_size)
1332 qs->port_stats[SGE_PSTAT_TSO]++;
1333 if (skb_vlan_tag_present(skb))
1334 qs->port_stats[SGE_PSTAT_VLANINS]++;
1335
1336 /*
1337 * We do not use Tx completion interrupts to free DMAd Tx packets.
1338 * This is good for performance but means that we rely on new Tx
1339 * packets arriving to run the destructors of completed packets,
1340 * which open up space in their sockets' send queues. Sometimes
1341 * we do not get such new packets causing Tx to stall. A single
1342 * UDP transmitter is a good example of this situation. We have
1343 * a clean up timer that periodically reclaims completed packets
1344 * but it doesn't run often enough (nor do we want it to) to prevent
1345 * lengthy stalls. A solution to this problem is to run the
1346 * destructor early, after the packet is queued but before it's DMAd.
1347 * A cons is that we lie to socket memory accounting, but the amount
1348 * of extra memory is reasonable (limited by the number of Tx
1349 * descriptors), the packets do actually get freed quickly by new
1350 * packets almost always, and for protocols like TCP that wait for
1351 * acks to really free up the data the extra memory is even less.
1352 * On the positive side we run the destructors on the sending CPU
1353 * rather than on a potentially different completing CPU, usually a
1354 * good thing. We also run them without holding our Tx queue lock,
1355 * unlike what reclaim_completed_tx() would otherwise do.
1356 *
1357 * Run the destructor before telling the DMA engine about the packet
1358 * to make sure it doesn't complete and get freed prematurely.
1359 */
1360 if (likely(!skb_shared(skb)))
1361 skb_orphan(skb);
1362
1363 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl, addr);
1364 check_ring_tx_db(adap, q);
1365 return NETDEV_TX_OK;
1366 }
1367
1368 /**
1369 * write_imm - write a packet into a Tx descriptor as immediate data
1370 * @d: the Tx descriptor to write
1371 * @skb: the packet
1372 * @len: the length of packet data to write as immediate data
1373 * @gen: the generation bit value to write
1374 *
1375 * Writes a packet as immediate data into a Tx descriptor. The packet
1376 * contains a work request at its beginning. We must write the packet
1377 * carefully so the SGE doesn't read it accidentally before it's written
1378 * in its entirety.
1379 */
write_imm(struct tx_desc * d,struct sk_buff * skb,unsigned int len,unsigned int gen)1380 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1381 unsigned int len, unsigned int gen)
1382 {
1383 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1384 struct work_request_hdr *to = (struct work_request_hdr *)d;
1385
1386 if (likely(!skb->data_len))
1387 memcpy(&to[1], &from[1], len - sizeof(*from));
1388 else
1389 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1390
1391 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1392 V_WR_BCNTLFLT(len & 7));
1393 dma_wmb();
1394 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1395 V_WR_LEN((len + 7) / 8));
1396 wr_gen2(d, gen);
1397 kfree_skb(skb);
1398 }
1399
1400 /**
1401 * check_desc_avail - check descriptor availability on a send queue
1402 * @adap: the adapter
1403 * @q: the send queue
1404 * @skb: the packet needing the descriptors
1405 * @ndesc: the number of Tx descriptors needed
1406 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1407 *
1408 * Checks if the requested number of Tx descriptors is available on an
1409 * SGE send queue. If the queue is already suspended or not enough
1410 * descriptors are available the packet is queued for later transmission.
1411 * Must be called with the Tx queue locked.
1412 *
1413 * Returns 0 if enough descriptors are available, 1 if there aren't
1414 * enough descriptors and the packet has been queued, and 2 if the caller
1415 * needs to retry because there weren't enough descriptors at the
1416 * beginning of the call but some freed up in the mean time.
1417 */
check_desc_avail(struct adapter * adap,struct sge_txq * q,struct sk_buff * skb,unsigned int ndesc,unsigned int qid)1418 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1419 struct sk_buff *skb, unsigned int ndesc,
1420 unsigned int qid)
1421 {
1422 if (unlikely(!skb_queue_empty(&q->sendq))) {
1423 addq_exit:__skb_queue_tail(&q->sendq, skb);
1424 return 1;
1425 }
1426 if (unlikely(q->size - q->in_use < ndesc)) {
1427 struct sge_qset *qs = txq_to_qset(q, qid);
1428
1429 set_bit(qid, &qs->txq_stopped);
1430 smp_mb__after_atomic();
1431
1432 if (should_restart_tx(q) &&
1433 test_and_clear_bit(qid, &qs->txq_stopped))
1434 return 2;
1435
1436 q->stops++;
1437 goto addq_exit;
1438 }
1439 return 0;
1440 }
1441
1442 /**
1443 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1444 * @q: the SGE control Tx queue
1445 *
1446 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1447 * that send only immediate data (presently just the control queues) and
1448 * thus do not have any sk_buffs to release.
1449 */
reclaim_completed_tx_imm(struct sge_txq * q)1450 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1451 {
1452 unsigned int reclaim = q->processed - q->cleaned;
1453
1454 q->in_use -= reclaim;
1455 q->cleaned += reclaim;
1456 }
1457
immediate(const struct sk_buff * skb)1458 static inline int immediate(const struct sk_buff *skb)
1459 {
1460 return skb->len <= WR_LEN;
1461 }
1462
1463 /**
1464 * ctrl_xmit - send a packet through an SGE control Tx queue
1465 * @adap: the adapter
1466 * @q: the control queue
1467 * @skb: the packet
1468 *
1469 * Send a packet through an SGE control Tx queue. Packets sent through
1470 * a control queue must fit entirely as immediate data in a single Tx
1471 * descriptor and have no page fragments.
1472 */
ctrl_xmit(struct adapter * adap,struct sge_txq * q,struct sk_buff * skb)1473 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1474 struct sk_buff *skb)
1475 {
1476 int ret;
1477 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1478
1479 if (unlikely(!immediate(skb))) {
1480 WARN_ON(1);
1481 dev_kfree_skb(skb);
1482 return NET_XMIT_SUCCESS;
1483 }
1484
1485 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1486 wrp->wr_lo = htonl(V_WR_TID(q->token));
1487
1488 spin_lock(&q->lock);
1489 again:reclaim_completed_tx_imm(q);
1490
1491 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1492 if (unlikely(ret)) {
1493 if (ret == 1) {
1494 spin_unlock(&q->lock);
1495 return NET_XMIT_CN;
1496 }
1497 goto again;
1498 }
1499
1500 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1501
1502 q->in_use++;
1503 if (++q->pidx >= q->size) {
1504 q->pidx = 0;
1505 q->gen ^= 1;
1506 }
1507 spin_unlock(&q->lock);
1508 wmb();
1509 t3_write_reg(adap, A_SG_KDOORBELL,
1510 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1511 return NET_XMIT_SUCCESS;
1512 }
1513
1514 /**
1515 * restart_ctrlq - restart a suspended control queue
1516 * @w: pointer to the work associated with this handler
1517 *
1518 * Resumes transmission on a suspended Tx control queue.
1519 */
restart_ctrlq(struct work_struct * w)1520 static void restart_ctrlq(struct work_struct *w)
1521 {
1522 struct sk_buff *skb;
1523 struct sge_qset *qs = container_of(w, struct sge_qset,
1524 txq[TXQ_CTRL].qresume_task);
1525 struct sge_txq *q = &qs->txq[TXQ_CTRL];
1526
1527 spin_lock(&q->lock);
1528 again:reclaim_completed_tx_imm(q);
1529
1530 while (q->in_use < q->size &&
1531 (skb = __skb_dequeue(&q->sendq)) != NULL) {
1532
1533 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1534
1535 if (++q->pidx >= q->size) {
1536 q->pidx = 0;
1537 q->gen ^= 1;
1538 }
1539 q->in_use++;
1540 }
1541
1542 if (!skb_queue_empty(&q->sendq)) {
1543 set_bit(TXQ_CTRL, &qs->txq_stopped);
1544 smp_mb__after_atomic();
1545
1546 if (should_restart_tx(q) &&
1547 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1548 goto again;
1549 q->stops++;
1550 }
1551
1552 spin_unlock(&q->lock);
1553 wmb();
1554 t3_write_reg(qs->adap, A_SG_KDOORBELL,
1555 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1556 }
1557
1558 /*
1559 * Send a management message through control queue 0
1560 */
t3_mgmt_tx(struct adapter * adap,struct sk_buff * skb)1561 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1562 {
1563 int ret;
1564 local_bh_disable();
1565 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1566 local_bh_enable();
1567
1568 return ret;
1569 }
1570
1571 /**
1572 * deferred_unmap_destructor - unmap a packet when it is freed
1573 * @skb: the packet
1574 *
1575 * This is the packet destructor used for Tx packets that need to remain
1576 * mapped until they are freed rather than until their Tx descriptors are
1577 * freed.
1578 */
deferred_unmap_destructor(struct sk_buff * skb)1579 static void deferred_unmap_destructor(struct sk_buff *skb)
1580 {
1581 int i;
1582 const dma_addr_t *p;
1583 const struct skb_shared_info *si;
1584 const struct deferred_unmap_info *dui;
1585
1586 dui = (struct deferred_unmap_info *)skb->head;
1587 p = dui->addr;
1588
1589 if (skb_tail_pointer(skb) - skb_transport_header(skb))
1590 dma_unmap_single(&dui->pdev->dev, *p++,
1591 skb_tail_pointer(skb) - skb_transport_header(skb),
1592 DMA_TO_DEVICE);
1593
1594 si = skb_shinfo(skb);
1595 for (i = 0; i < si->nr_frags; i++)
1596 dma_unmap_page(&dui->pdev->dev, *p++,
1597 skb_frag_size(&si->frags[i]), DMA_TO_DEVICE);
1598 }
1599
setup_deferred_unmapping(struct sk_buff * skb,struct pci_dev * pdev,const struct sg_ent * sgl,int sgl_flits)1600 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1601 const struct sg_ent *sgl, int sgl_flits)
1602 {
1603 dma_addr_t *p;
1604 struct deferred_unmap_info *dui;
1605
1606 dui = (struct deferred_unmap_info *)skb->head;
1607 dui->pdev = pdev;
1608 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1609 *p++ = be64_to_cpu(sgl->addr[0]);
1610 *p++ = be64_to_cpu(sgl->addr[1]);
1611 }
1612 if (sgl_flits)
1613 *p = be64_to_cpu(sgl->addr[0]);
1614 }
1615
1616 /**
1617 * write_ofld_wr - write an offload work request
1618 * @adap: the adapter
1619 * @skb: the packet to send
1620 * @q: the Tx queue
1621 * @pidx: index of the first Tx descriptor to write
1622 * @gen: the generation value to use
1623 * @ndesc: number of descriptors the packet will occupy
1624 * @addr: the address
1625 *
1626 * Write an offload work request to send the supplied packet. The packet
1627 * data already carry the work request with most fields populated.
1628 */
write_ofld_wr(struct adapter * adap,struct sk_buff * skb,struct sge_txq * q,unsigned int pidx,unsigned int gen,unsigned int ndesc,const dma_addr_t * addr)1629 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1630 struct sge_txq *q, unsigned int pidx,
1631 unsigned int gen, unsigned int ndesc,
1632 const dma_addr_t *addr)
1633 {
1634 unsigned int sgl_flits, flits;
1635 struct work_request_hdr *from;
1636 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1637 struct tx_desc *d = &q->desc[pidx];
1638
1639 if (immediate(skb)) {
1640 q->sdesc[pidx].skb = NULL;
1641 write_imm(d, skb, skb->len, gen);
1642 return;
1643 }
1644
1645 /* Only TX_DATA builds SGLs */
1646
1647 from = (struct work_request_hdr *)skb->data;
1648 memcpy(&d->flit[1], &from[1],
1649 skb_transport_offset(skb) - sizeof(*from));
1650
1651 flits = skb_transport_offset(skb) / 8;
1652 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1653 sgl_flits = write_sgl(skb, sgp, skb_transport_header(skb),
1654 skb_tail_pointer(skb) - skb_transport_header(skb),
1655 addr);
1656 if (need_skb_unmap()) {
1657 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1658 skb->destructor = deferred_unmap_destructor;
1659 }
1660
1661 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1662 gen, from->wr_hi, from->wr_lo);
1663 }
1664
1665 /**
1666 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1667 * @skb: the packet
1668 *
1669 * Returns the number of Tx descriptors needed for the given offload
1670 * packet. These packets are already fully constructed.
1671 */
calc_tx_descs_ofld(const struct sk_buff * skb)1672 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1673 {
1674 unsigned int flits, cnt;
1675
1676 if (skb->len <= WR_LEN)
1677 return 1; /* packet fits as immediate data */
1678
1679 flits = skb_transport_offset(skb) / 8; /* headers */
1680 cnt = skb_shinfo(skb)->nr_frags;
1681 if (skb_tail_pointer(skb) != skb_transport_header(skb))
1682 cnt++;
1683 return flits_to_desc(flits + sgl_len(cnt));
1684 }
1685
1686 /**
1687 * ofld_xmit - send a packet through an offload queue
1688 * @adap: the adapter
1689 * @q: the Tx offload queue
1690 * @skb: the packet
1691 *
1692 * Send an offload packet through an SGE offload queue.
1693 */
ofld_xmit(struct adapter * adap,struct sge_txq * q,struct sk_buff * skb)1694 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1695 struct sk_buff *skb)
1696 {
1697 int ret;
1698 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1699
1700 spin_lock(&q->lock);
1701 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1702
1703 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1704 if (unlikely(ret)) {
1705 if (ret == 1) {
1706 skb->priority = ndesc; /* save for restart */
1707 spin_unlock(&q->lock);
1708 return NET_XMIT_CN;
1709 }
1710 goto again;
1711 }
1712
1713 if (!immediate(skb) &&
1714 map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) {
1715 spin_unlock(&q->lock);
1716 return NET_XMIT_SUCCESS;
1717 }
1718
1719 gen = q->gen;
1720 q->in_use += ndesc;
1721 pidx = q->pidx;
1722 q->pidx += ndesc;
1723 if (q->pidx >= q->size) {
1724 q->pidx -= q->size;
1725 q->gen ^= 1;
1726 }
1727 spin_unlock(&q->lock);
1728
1729 write_ofld_wr(adap, skb, q, pidx, gen, ndesc, (dma_addr_t *)skb->head);
1730 check_ring_tx_db(adap, q);
1731 return NET_XMIT_SUCCESS;
1732 }
1733
1734 /**
1735 * restart_offloadq - restart a suspended offload queue
1736 * @w: pointer to the work associated with this handler
1737 *
1738 * Resumes transmission on a suspended Tx offload queue.
1739 */
restart_offloadq(struct work_struct * w)1740 static void restart_offloadq(struct work_struct *w)
1741 {
1742 struct sk_buff *skb;
1743 struct sge_qset *qs = container_of(w, struct sge_qset,
1744 txq[TXQ_OFLD].qresume_task);
1745 struct sge_txq *q = &qs->txq[TXQ_OFLD];
1746 const struct port_info *pi = netdev_priv(qs->netdev);
1747 struct adapter *adap = pi->adapter;
1748 unsigned int written = 0;
1749
1750 spin_lock(&q->lock);
1751 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1752
1753 while ((skb = skb_peek(&q->sendq)) != NULL) {
1754 unsigned int gen, pidx;
1755 unsigned int ndesc = skb->priority;
1756
1757 if (unlikely(q->size - q->in_use < ndesc)) {
1758 set_bit(TXQ_OFLD, &qs->txq_stopped);
1759 smp_mb__after_atomic();
1760
1761 if (should_restart_tx(q) &&
1762 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1763 goto again;
1764 q->stops++;
1765 break;
1766 }
1767
1768 if (!immediate(skb) &&
1769 map_skb(adap->pdev, skb, (dma_addr_t *)skb->head))
1770 break;
1771
1772 gen = q->gen;
1773 q->in_use += ndesc;
1774 pidx = q->pidx;
1775 q->pidx += ndesc;
1776 written += ndesc;
1777 if (q->pidx >= q->size) {
1778 q->pidx -= q->size;
1779 q->gen ^= 1;
1780 }
1781 __skb_unlink(skb, &q->sendq);
1782 spin_unlock(&q->lock);
1783
1784 write_ofld_wr(adap, skb, q, pidx, gen, ndesc,
1785 (dma_addr_t *)skb->head);
1786 spin_lock(&q->lock);
1787 }
1788 spin_unlock(&q->lock);
1789
1790 #if USE_GTS
1791 set_bit(TXQ_RUNNING, &q->flags);
1792 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1793 #endif
1794 wmb();
1795 if (likely(written))
1796 t3_write_reg(adap, A_SG_KDOORBELL,
1797 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1798 }
1799
1800 /**
1801 * queue_set - return the queue set a packet should use
1802 * @skb: the packet
1803 *
1804 * Maps a packet to the SGE queue set it should use. The desired queue
1805 * set is carried in bits 1-3 in the packet's priority.
1806 */
queue_set(const struct sk_buff * skb)1807 static inline int queue_set(const struct sk_buff *skb)
1808 {
1809 return skb->priority >> 1;
1810 }
1811
1812 /**
1813 * is_ctrl_pkt - return whether an offload packet is a control packet
1814 * @skb: the packet
1815 *
1816 * Determines whether an offload packet should use an OFLD or a CTRL
1817 * Tx queue. This is indicated by bit 0 in the packet's priority.
1818 */
is_ctrl_pkt(const struct sk_buff * skb)1819 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1820 {
1821 return skb->priority & 1;
1822 }
1823
1824 /**
1825 * t3_offload_tx - send an offload packet
1826 * @tdev: the offload device to send to
1827 * @skb: the packet
1828 *
1829 * Sends an offload packet. We use the packet priority to select the
1830 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1831 * should be sent as regular or control, bits 1-3 select the queue set.
1832 */
t3_offload_tx(struct t3cdev * tdev,struct sk_buff * skb)1833 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1834 {
1835 struct adapter *adap = tdev2adap(tdev);
1836 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1837
1838 if (unlikely(is_ctrl_pkt(skb)))
1839 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1840
1841 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1842 }
1843
1844 /**
1845 * offload_enqueue - add an offload packet to an SGE offload receive queue
1846 * @q: the SGE response queue
1847 * @skb: the packet
1848 *
1849 * Add a new offload packet to an SGE response queue's offload packet
1850 * queue. If the packet is the first on the queue it schedules the RX
1851 * softirq to process the queue.
1852 */
offload_enqueue(struct sge_rspq * q,struct sk_buff * skb)1853 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1854 {
1855 int was_empty = skb_queue_empty(&q->rx_queue);
1856
1857 __skb_queue_tail(&q->rx_queue, skb);
1858
1859 if (was_empty) {
1860 struct sge_qset *qs = rspq_to_qset(q);
1861
1862 napi_schedule(&qs->napi);
1863 }
1864 }
1865
1866 /**
1867 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1868 * @tdev: the offload device that will be receiving the packets
1869 * @q: the SGE response queue that assembled the bundle
1870 * @skbs: the partial bundle
1871 * @n: the number of packets in the bundle
1872 *
1873 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1874 */
deliver_partial_bundle(struct t3cdev * tdev,struct sge_rspq * q,struct sk_buff * skbs[],int n)1875 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1876 struct sge_rspq *q,
1877 struct sk_buff *skbs[], int n)
1878 {
1879 if (n) {
1880 q->offload_bundles++;
1881 tdev->recv(tdev, skbs, n);
1882 }
1883 }
1884
1885 /**
1886 * ofld_poll - NAPI handler for offload packets in interrupt mode
1887 * @napi: the network device doing the polling
1888 * @budget: polling budget
1889 *
1890 * The NAPI handler for offload packets when a response queue is serviced
1891 * by the hard interrupt handler, i.e., when it's operating in non-polling
1892 * mode. Creates small packet batches and sends them through the offload
1893 * receive handler. Batches need to be of modest size as we do prefetches
1894 * on the packets in each.
1895 */
ofld_poll(struct napi_struct * napi,int budget)1896 static int ofld_poll(struct napi_struct *napi, int budget)
1897 {
1898 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1899 struct sge_rspq *q = &qs->rspq;
1900 struct adapter *adapter = qs->adap;
1901 int work_done = 0;
1902
1903 while (work_done < budget) {
1904 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1905 struct sk_buff_head queue;
1906 int ngathered;
1907
1908 spin_lock_irq(&q->lock);
1909 __skb_queue_head_init(&queue);
1910 skb_queue_splice_init(&q->rx_queue, &queue);
1911 if (skb_queue_empty(&queue)) {
1912 napi_complete_done(napi, work_done);
1913 spin_unlock_irq(&q->lock);
1914 return work_done;
1915 }
1916 spin_unlock_irq(&q->lock);
1917
1918 ngathered = 0;
1919 skb_queue_walk_safe(&queue, skb, tmp) {
1920 if (work_done >= budget)
1921 break;
1922 work_done++;
1923
1924 __skb_unlink(skb, &queue);
1925 prefetch(skb->data);
1926 skbs[ngathered] = skb;
1927 if (++ngathered == RX_BUNDLE_SIZE) {
1928 q->offload_bundles++;
1929 adapter->tdev.recv(&adapter->tdev, skbs,
1930 ngathered);
1931 ngathered = 0;
1932 }
1933 }
1934 if (!skb_queue_empty(&queue)) {
1935 /* splice remaining packets back onto Rx queue */
1936 spin_lock_irq(&q->lock);
1937 skb_queue_splice(&queue, &q->rx_queue);
1938 spin_unlock_irq(&q->lock);
1939 }
1940 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1941 }
1942
1943 return work_done;
1944 }
1945
1946 /**
1947 * rx_offload - process a received offload packet
1948 * @tdev: the offload device receiving the packet
1949 * @rq: the response queue that received the packet
1950 * @skb: the packet
1951 * @rx_gather: a gather list of packets if we are building a bundle
1952 * @gather_idx: index of the next available slot in the bundle
1953 *
1954 * Process an ingress offload packet and add it to the offload ingress
1955 * queue. Returns the index of the next available slot in the bundle.
1956 */
rx_offload(struct t3cdev * tdev,struct sge_rspq * rq,struct sk_buff * skb,struct sk_buff * rx_gather[],unsigned int gather_idx)1957 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1958 struct sk_buff *skb, struct sk_buff *rx_gather[],
1959 unsigned int gather_idx)
1960 {
1961 skb_reset_mac_header(skb);
1962 skb_reset_network_header(skb);
1963 skb_reset_transport_header(skb);
1964
1965 if (rq->polling) {
1966 rx_gather[gather_idx++] = skb;
1967 if (gather_idx == RX_BUNDLE_SIZE) {
1968 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1969 gather_idx = 0;
1970 rq->offload_bundles++;
1971 }
1972 } else
1973 offload_enqueue(rq, skb);
1974
1975 return gather_idx;
1976 }
1977
1978 /**
1979 * restart_tx - check whether to restart suspended Tx queues
1980 * @qs: the queue set to resume
1981 *
1982 * Restarts suspended Tx queues of an SGE queue set if they have enough
1983 * free resources to resume operation.
1984 */
restart_tx(struct sge_qset * qs)1985 static void restart_tx(struct sge_qset *qs)
1986 {
1987 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1988 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1989 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1990 qs->txq[TXQ_ETH].restarts++;
1991 if (netif_running(qs->netdev))
1992 netif_tx_wake_queue(qs->tx_q);
1993 }
1994
1995 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1996 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1997 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1998 qs->txq[TXQ_OFLD].restarts++;
1999
2000 /* The work can be quite lengthy so we use driver's own queue */
2001 queue_work(cxgb3_wq, &qs->txq[TXQ_OFLD].qresume_task);
2002 }
2003 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
2004 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
2005 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
2006 qs->txq[TXQ_CTRL].restarts++;
2007
2008 /* The work can be quite lengthy so we use driver's own queue */
2009 queue_work(cxgb3_wq, &qs->txq[TXQ_CTRL].qresume_task);
2010 }
2011 }
2012
2013 /**
2014 * cxgb3_arp_process - process an ARP request probing a private IP address
2015 * @pi: the port info
2016 * @skb: the skbuff containing the ARP request
2017 *
2018 * Check if the ARP request is probing the private IP address
2019 * dedicated to iSCSI, generate an ARP reply if so.
2020 */
cxgb3_arp_process(struct port_info * pi,struct sk_buff * skb)2021 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
2022 {
2023 struct net_device *dev = skb->dev;
2024 struct arphdr *arp;
2025 unsigned char *arp_ptr;
2026 unsigned char *sha;
2027 __be32 sip, tip;
2028
2029 if (!dev)
2030 return;
2031
2032 skb_reset_network_header(skb);
2033 arp = arp_hdr(skb);
2034
2035 if (arp->ar_op != htons(ARPOP_REQUEST))
2036 return;
2037
2038 arp_ptr = (unsigned char *)(arp + 1);
2039 sha = arp_ptr;
2040 arp_ptr += dev->addr_len;
2041 memcpy(&sip, arp_ptr, sizeof(sip));
2042 arp_ptr += sizeof(sip);
2043 arp_ptr += dev->addr_len;
2044 memcpy(&tip, arp_ptr, sizeof(tip));
2045
2046 if (tip != pi->iscsi_ipv4addr)
2047 return;
2048
2049 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
2050 pi->iscsic.mac_addr, sha);
2051
2052 }
2053
is_arp(struct sk_buff * skb)2054 static inline int is_arp(struct sk_buff *skb)
2055 {
2056 return skb->protocol == htons(ETH_P_ARP);
2057 }
2058
cxgb3_process_iscsi_prov_pack(struct port_info * pi,struct sk_buff * skb)2059 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
2060 struct sk_buff *skb)
2061 {
2062 if (is_arp(skb)) {
2063 cxgb3_arp_process(pi, skb);
2064 return;
2065 }
2066
2067 if (pi->iscsic.recv)
2068 pi->iscsic.recv(pi, skb);
2069
2070 }
2071
2072 /**
2073 * rx_eth - process an ingress ethernet packet
2074 * @adap: the adapter
2075 * @rq: the response queue that received the packet
2076 * @skb: the packet
2077 * @pad: padding
2078 * @lro: large receive offload
2079 *
2080 * Process an ingress ethernet packet and deliver it to the stack.
2081 * The padding is 2 if the packet was delivered in an Rx buffer and 0
2082 * if it was immediate data in a response.
2083 */
rx_eth(struct adapter * adap,struct sge_rspq * rq,struct sk_buff * skb,int pad,int lro)2084 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2085 struct sk_buff *skb, int pad, int lro)
2086 {
2087 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2088 struct sge_qset *qs = rspq_to_qset(rq);
2089 struct port_info *pi;
2090
2091 skb_pull(skb, sizeof(*p) + pad);
2092 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2093 pi = netdev_priv(skb->dev);
2094 if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid &&
2095 p->csum == htons(0xffff) && !p->fragment) {
2096 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2097 skb->ip_summed = CHECKSUM_UNNECESSARY;
2098 } else
2099 skb_checksum_none_assert(skb);
2100 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2101
2102 if (p->vlan_valid) {
2103 qs->port_stats[SGE_PSTAT_VLANEX]++;
2104 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
2105 }
2106 if (rq->polling) {
2107 if (lro)
2108 napi_gro_receive(&qs->napi, skb);
2109 else {
2110 if (unlikely(pi->iscsic.flags))
2111 cxgb3_process_iscsi_prov_pack(pi, skb);
2112 netif_receive_skb(skb);
2113 }
2114 } else
2115 netif_rx(skb);
2116 }
2117
is_eth_tcp(u32 rss)2118 static inline int is_eth_tcp(u32 rss)
2119 {
2120 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2121 }
2122
2123 /**
2124 * lro_add_page - add a page chunk to an LRO session
2125 * @adap: the adapter
2126 * @qs: the associated queue set
2127 * @fl: the free list containing the page chunk to add
2128 * @len: packet length
2129 * @complete: Indicates the last fragment of a frame
2130 *
2131 * Add a received packet contained in a page chunk to an existing LRO
2132 * session.
2133 */
lro_add_page(struct adapter * adap,struct sge_qset * qs,struct sge_fl * fl,int len,int complete)2134 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2135 struct sge_fl *fl, int len, int complete)
2136 {
2137 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2138 struct port_info *pi = netdev_priv(qs->netdev);
2139 struct sk_buff *skb = NULL;
2140 struct cpl_rx_pkt *cpl;
2141 skb_frag_t *rx_frag;
2142 int nr_frags;
2143 int offset = 0;
2144
2145 if (!qs->nomem) {
2146 skb = napi_get_frags(&qs->napi);
2147 qs->nomem = !skb;
2148 }
2149
2150 fl->credits--;
2151
2152 dma_sync_single_for_cpu(&adap->pdev->dev,
2153 dma_unmap_addr(sd, dma_addr),
2154 fl->buf_size - SGE_PG_RSVD, DMA_FROM_DEVICE);
2155
2156 (*sd->pg_chunk.p_cnt)--;
2157 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
2158 dma_unmap_page(&adap->pdev->dev, sd->pg_chunk.mapping,
2159 fl->alloc_size, DMA_FROM_DEVICE);
2160
2161 if (!skb) {
2162 put_page(sd->pg_chunk.page);
2163 if (complete)
2164 qs->nomem = 0;
2165 return;
2166 }
2167
2168 rx_frag = skb_shinfo(skb)->frags;
2169 nr_frags = skb_shinfo(skb)->nr_frags;
2170
2171 if (!nr_frags) {
2172 offset = 2 + sizeof(struct cpl_rx_pkt);
2173 cpl = qs->lro_va = sd->pg_chunk.va + 2;
2174
2175 if ((qs->netdev->features & NETIF_F_RXCSUM) &&
2176 cpl->csum_valid && cpl->csum == htons(0xffff)) {
2177 skb->ip_summed = CHECKSUM_UNNECESSARY;
2178 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2179 } else
2180 skb->ip_summed = CHECKSUM_NONE;
2181 } else
2182 cpl = qs->lro_va;
2183
2184 len -= offset;
2185
2186 rx_frag += nr_frags;
2187 skb_frag_fill_page_desc(rx_frag, sd->pg_chunk.page,
2188 sd->pg_chunk.offset + offset, len);
2189
2190 skb->len += len;
2191 skb->data_len += len;
2192 skb->truesize += len;
2193 skb_shinfo(skb)->nr_frags++;
2194
2195 if (!complete)
2196 return;
2197
2198 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2199
2200 if (cpl->vlan_valid) {
2201 qs->port_stats[SGE_PSTAT_VLANEX]++;
2202 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan));
2203 }
2204 napi_gro_frags(&qs->napi);
2205 }
2206
2207 /**
2208 * handle_rsp_cntrl_info - handles control information in a response
2209 * @qs: the queue set corresponding to the response
2210 * @flags: the response control flags
2211 *
2212 * Handles the control information of an SGE response, such as GTS
2213 * indications and completion credits for the queue set's Tx queues.
2214 * HW coalesces credits, we don't do any extra SW coalescing.
2215 */
handle_rsp_cntrl_info(struct sge_qset * qs,u32 flags)2216 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2217 {
2218 unsigned int credits;
2219
2220 #if USE_GTS
2221 if (flags & F_RSPD_TXQ0_GTS)
2222 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2223 #endif
2224
2225 credits = G_RSPD_TXQ0_CR(flags);
2226 if (credits)
2227 qs->txq[TXQ_ETH].processed += credits;
2228
2229 credits = G_RSPD_TXQ2_CR(flags);
2230 if (credits)
2231 qs->txq[TXQ_CTRL].processed += credits;
2232
2233 # if USE_GTS
2234 if (flags & F_RSPD_TXQ1_GTS)
2235 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2236 # endif
2237 credits = G_RSPD_TXQ1_CR(flags);
2238 if (credits)
2239 qs->txq[TXQ_OFLD].processed += credits;
2240 }
2241
2242 /**
2243 * check_ring_db - check if we need to ring any doorbells
2244 * @adap: the adapter
2245 * @qs: the queue set whose Tx queues are to be examined
2246 * @sleeping: indicates which Tx queue sent GTS
2247 *
2248 * Checks if some of a queue set's Tx queues need to ring their doorbells
2249 * to resume transmission after idling while they still have unprocessed
2250 * descriptors.
2251 */
check_ring_db(struct adapter * adap,struct sge_qset * qs,unsigned int sleeping)2252 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2253 unsigned int sleeping)
2254 {
2255 if (sleeping & F_RSPD_TXQ0_GTS) {
2256 struct sge_txq *txq = &qs->txq[TXQ_ETH];
2257
2258 if (txq->cleaned + txq->in_use != txq->processed &&
2259 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2260 set_bit(TXQ_RUNNING, &txq->flags);
2261 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2262 V_EGRCNTX(txq->cntxt_id));
2263 }
2264 }
2265
2266 if (sleeping & F_RSPD_TXQ1_GTS) {
2267 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2268
2269 if (txq->cleaned + txq->in_use != txq->processed &&
2270 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2271 set_bit(TXQ_RUNNING, &txq->flags);
2272 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2273 V_EGRCNTX(txq->cntxt_id));
2274 }
2275 }
2276 }
2277
2278 /**
2279 * is_new_response - check if a response is newly written
2280 * @r: the response descriptor
2281 * @q: the response queue
2282 *
2283 * Returns true if a response descriptor contains a yet unprocessed
2284 * response.
2285 */
is_new_response(const struct rsp_desc * r,const struct sge_rspq * q)2286 static inline int is_new_response(const struct rsp_desc *r,
2287 const struct sge_rspq *q)
2288 {
2289 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2290 }
2291
clear_rspq_bufstate(struct sge_rspq * const q)2292 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2293 {
2294 q->pg_skb = NULL;
2295 q->rx_recycle_buf = 0;
2296 }
2297
2298 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2299 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2300 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2301 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2302 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2303
2304 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2305 #define NOMEM_INTR_DELAY 2500
2306
2307 /**
2308 * process_responses - process responses from an SGE response queue
2309 * @adap: the adapter
2310 * @qs: the queue set to which the response queue belongs
2311 * @budget: how many responses can be processed in this round
2312 *
2313 * Process responses from an SGE response queue up to the supplied budget.
2314 * Responses include received packets as well as credits and other events
2315 * for the queues that belong to the response queue's queue set.
2316 * A negative budget is effectively unlimited.
2317 *
2318 * Additionally choose the interrupt holdoff time for the next interrupt
2319 * on this queue. If the system is under memory shortage use a fairly
2320 * long delay to help recovery.
2321 */
process_responses(struct adapter * adap,struct sge_qset * qs,int budget)2322 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2323 int budget)
2324 {
2325 struct sge_rspq *q = &qs->rspq;
2326 struct rsp_desc *r = &q->desc[q->cidx];
2327 int budget_left = budget;
2328 unsigned int sleeping = 0;
2329 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2330 int ngathered = 0;
2331
2332 q->next_holdoff = q->holdoff_tmr;
2333
2334 while (likely(budget_left && is_new_response(r, q))) {
2335 int packet_complete, eth, ethpad = 2;
2336 int lro = !!(qs->netdev->features & NETIF_F_GRO);
2337 struct sk_buff *skb = NULL;
2338 u32 len, flags;
2339 __be32 rss_hi, rss_lo;
2340
2341 dma_rmb();
2342 eth = r->rss_hdr.opcode == CPL_RX_PKT;
2343 rss_hi = *(const __be32 *)r;
2344 rss_lo = r->rss_hdr.rss_hash_val;
2345 flags = ntohl(r->flags);
2346
2347 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2348 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2349 if (!skb)
2350 goto no_mem;
2351
2352 __skb_put_data(skb, r, AN_PKT_SIZE);
2353 skb->data[0] = CPL_ASYNC_NOTIF;
2354 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2355 q->async_notif++;
2356 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2357 skb = get_imm_packet(r);
2358 if (unlikely(!skb)) {
2359 no_mem:
2360 q->next_holdoff = NOMEM_INTR_DELAY;
2361 q->nomem++;
2362 /* consume one credit since we tried */
2363 budget_left--;
2364 break;
2365 }
2366 q->imm_data++;
2367 ethpad = 0;
2368 } else if ((len = ntohl(r->len_cq)) != 0) {
2369 struct sge_fl *fl;
2370
2371 lro &= eth && is_eth_tcp(rss_hi);
2372
2373 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2374 if (fl->use_pages) {
2375 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2376
2377 net_prefetch(addr);
2378 __refill_fl(adap, fl);
2379 if (lro > 0) {
2380 lro_add_page(adap, qs, fl,
2381 G_RSPD_LEN(len),
2382 flags & F_RSPD_EOP);
2383 goto next_fl;
2384 }
2385
2386 skb = get_packet_pg(adap, fl, q,
2387 G_RSPD_LEN(len),
2388 eth ?
2389 SGE_RX_DROP_THRES : 0);
2390 q->pg_skb = skb;
2391 } else
2392 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2393 eth ? SGE_RX_DROP_THRES : 0);
2394 if (unlikely(!skb)) {
2395 if (!eth)
2396 goto no_mem;
2397 q->rx_drops++;
2398 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2399 __skb_pull(skb, 2);
2400 next_fl:
2401 if (++fl->cidx == fl->size)
2402 fl->cidx = 0;
2403 } else
2404 q->pure_rsps++;
2405
2406 if (flags & RSPD_CTRL_MASK) {
2407 sleeping |= flags & RSPD_GTS_MASK;
2408 handle_rsp_cntrl_info(qs, flags);
2409 }
2410
2411 r++;
2412 if (unlikely(++q->cidx == q->size)) {
2413 q->cidx = 0;
2414 q->gen ^= 1;
2415 r = q->desc;
2416 }
2417 prefetch(r);
2418
2419 if (++q->credits >= (q->size / 4)) {
2420 refill_rspq(adap, q, q->credits);
2421 q->credits = 0;
2422 }
2423
2424 packet_complete = flags &
2425 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2426 F_RSPD_ASYNC_NOTIF);
2427
2428 if (skb != NULL && packet_complete) {
2429 if (eth)
2430 rx_eth(adap, q, skb, ethpad, lro);
2431 else {
2432 q->offload_pkts++;
2433 /* Preserve the RSS info in csum & priority */
2434 skb->csum = rss_hi;
2435 skb->priority = rss_lo;
2436 ngathered = rx_offload(&adap->tdev, q, skb,
2437 offload_skbs,
2438 ngathered);
2439 }
2440
2441 if (flags & F_RSPD_EOP)
2442 clear_rspq_bufstate(q);
2443 }
2444 --budget_left;
2445 }
2446
2447 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2448
2449 if (sleeping)
2450 check_ring_db(adap, qs, sleeping);
2451
2452 smp_mb(); /* commit Tx queue .processed updates */
2453 if (unlikely(qs->txq_stopped != 0))
2454 restart_tx(qs);
2455
2456 budget -= budget_left;
2457 return budget;
2458 }
2459
is_pure_response(const struct rsp_desc * r)2460 static inline int is_pure_response(const struct rsp_desc *r)
2461 {
2462 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2463
2464 return (n | r->len_cq) == 0;
2465 }
2466
2467 /**
2468 * napi_rx_handler - the NAPI handler for Rx processing
2469 * @napi: the napi instance
2470 * @budget: how many packets we can process in this round
2471 *
2472 * Handler for new data events when using NAPI.
2473 */
napi_rx_handler(struct napi_struct * napi,int budget)2474 static int napi_rx_handler(struct napi_struct *napi, int budget)
2475 {
2476 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2477 struct adapter *adap = qs->adap;
2478 int work_done = process_responses(adap, qs, budget);
2479
2480 if (likely(work_done < budget)) {
2481 napi_complete_done(napi, work_done);
2482
2483 /*
2484 * Because we don't atomically flush the following
2485 * write it is possible that in very rare cases it can
2486 * reach the device in a way that races with a new
2487 * response being written plus an error interrupt
2488 * causing the NAPI interrupt handler below to return
2489 * unhandled status to the OS. To protect against
2490 * this would require flushing the write and doing
2491 * both the write and the flush with interrupts off.
2492 * Way too expensive and unjustifiable given the
2493 * rarity of the race.
2494 *
2495 * The race cannot happen at all with MSI-X.
2496 */
2497 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2498 V_NEWTIMER(qs->rspq.next_holdoff) |
2499 V_NEWINDEX(qs->rspq.cidx));
2500 }
2501 return work_done;
2502 }
2503
2504 /**
2505 * process_pure_responses - process pure responses from a response queue
2506 * @adap: the adapter
2507 * @qs: the queue set owning the response queue
2508 * @r: the first pure response to process
2509 *
2510 * A simpler version of process_responses() that handles only pure (i.e.,
2511 * non data-carrying) responses. Such respones are too light-weight to
2512 * justify calling a softirq under NAPI, so we handle them specially in
2513 * the interrupt handler. The function is called with a pointer to a
2514 * response, which the caller must ensure is a valid pure response.
2515 *
2516 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2517 */
process_pure_responses(struct adapter * adap,struct sge_qset * qs,struct rsp_desc * r)2518 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2519 struct rsp_desc *r)
2520 {
2521 struct sge_rspq *q = &qs->rspq;
2522 unsigned int sleeping = 0;
2523
2524 do {
2525 u32 flags = ntohl(r->flags);
2526
2527 r++;
2528 if (unlikely(++q->cidx == q->size)) {
2529 q->cidx = 0;
2530 q->gen ^= 1;
2531 r = q->desc;
2532 }
2533 prefetch(r);
2534
2535 if (flags & RSPD_CTRL_MASK) {
2536 sleeping |= flags & RSPD_GTS_MASK;
2537 handle_rsp_cntrl_info(qs, flags);
2538 }
2539
2540 q->pure_rsps++;
2541 if (++q->credits >= (q->size / 4)) {
2542 refill_rspq(adap, q, q->credits);
2543 q->credits = 0;
2544 }
2545 if (!is_new_response(r, q))
2546 break;
2547 dma_rmb();
2548 } while (is_pure_response(r));
2549
2550 if (sleeping)
2551 check_ring_db(adap, qs, sleeping);
2552
2553 smp_mb(); /* commit Tx queue .processed updates */
2554 if (unlikely(qs->txq_stopped != 0))
2555 restart_tx(qs);
2556
2557 return is_new_response(r, q);
2558 }
2559
2560 /**
2561 * handle_responses - decide what to do with new responses in NAPI mode
2562 * @adap: the adapter
2563 * @q: the response queue
2564 *
2565 * This is used by the NAPI interrupt handlers to decide what to do with
2566 * new SGE responses. If there are no new responses it returns -1. If
2567 * there are new responses and they are pure (i.e., non-data carrying)
2568 * it handles them straight in hard interrupt context as they are very
2569 * cheap and don't deliver any packets. Finally, if there are any data
2570 * signaling responses it schedules the NAPI handler. Returns 1 if it
2571 * schedules NAPI, 0 if all new responses were pure.
2572 *
2573 * The caller must ascertain NAPI is not already running.
2574 */
handle_responses(struct adapter * adap,struct sge_rspq * q)2575 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2576 {
2577 struct sge_qset *qs = rspq_to_qset(q);
2578 struct rsp_desc *r = &q->desc[q->cidx];
2579
2580 if (!is_new_response(r, q))
2581 return -1;
2582 dma_rmb();
2583 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2584 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2585 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2586 return 0;
2587 }
2588 napi_schedule(&qs->napi);
2589 return 1;
2590 }
2591
2592 /*
2593 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2594 * (i.e., response queue serviced in hard interrupt).
2595 */
t3_sge_intr_msix(int irq,void * cookie)2596 static irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2597 {
2598 struct sge_qset *qs = cookie;
2599 struct adapter *adap = qs->adap;
2600 struct sge_rspq *q = &qs->rspq;
2601
2602 spin_lock(&q->lock);
2603 if (process_responses(adap, qs, -1) == 0)
2604 q->unhandled_irqs++;
2605 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2606 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2607 spin_unlock(&q->lock);
2608 return IRQ_HANDLED;
2609 }
2610
2611 /*
2612 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2613 * (i.e., response queue serviced by NAPI polling).
2614 */
t3_sge_intr_msix_napi(int irq,void * cookie)2615 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2616 {
2617 struct sge_qset *qs = cookie;
2618 struct sge_rspq *q = &qs->rspq;
2619
2620 spin_lock(&q->lock);
2621
2622 if (handle_responses(qs->adap, q) < 0)
2623 q->unhandled_irqs++;
2624 spin_unlock(&q->lock);
2625 return IRQ_HANDLED;
2626 }
2627
2628 /*
2629 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2630 * SGE response queues as well as error and other async events as they all use
2631 * the same MSI vector. We use one SGE response queue per port in this mode
2632 * and protect all response queues with queue 0's lock.
2633 */
t3_intr_msi(int irq,void * cookie)2634 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2635 {
2636 int new_packets = 0;
2637 struct adapter *adap = cookie;
2638 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2639
2640 spin_lock(&q->lock);
2641
2642 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2643 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2644 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2645 new_packets = 1;
2646 }
2647
2648 if (adap->params.nports == 2 &&
2649 process_responses(adap, &adap->sge.qs[1], -1)) {
2650 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2651
2652 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2653 V_NEWTIMER(q1->next_holdoff) |
2654 V_NEWINDEX(q1->cidx));
2655 new_packets = 1;
2656 }
2657
2658 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2659 q->unhandled_irqs++;
2660
2661 spin_unlock(&q->lock);
2662 return IRQ_HANDLED;
2663 }
2664
rspq_check_napi(struct sge_qset * qs)2665 static int rspq_check_napi(struct sge_qset *qs)
2666 {
2667 struct sge_rspq *q = &qs->rspq;
2668
2669 return is_new_response(&q->desc[q->cidx], q) && napi_schedule(&qs->napi);
2670 }
2671
2672 /*
2673 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2674 * by NAPI polling). Handles data events from SGE response queues as well as
2675 * error and other async events as they all use the same MSI vector. We use
2676 * one SGE response queue per port in this mode and protect all response
2677 * queues with queue 0's lock.
2678 */
t3_intr_msi_napi(int irq,void * cookie)2679 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2680 {
2681 int new_packets;
2682 struct adapter *adap = cookie;
2683 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2684
2685 spin_lock(&q->lock);
2686
2687 new_packets = rspq_check_napi(&adap->sge.qs[0]);
2688 if (adap->params.nports == 2)
2689 new_packets += rspq_check_napi(&adap->sge.qs[1]);
2690 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2691 q->unhandled_irqs++;
2692
2693 spin_unlock(&q->lock);
2694 return IRQ_HANDLED;
2695 }
2696
2697 /*
2698 * A helper function that processes responses and issues GTS.
2699 */
process_responses_gts(struct adapter * adap,struct sge_rspq * rq)2700 static inline int process_responses_gts(struct adapter *adap,
2701 struct sge_rspq *rq)
2702 {
2703 int work;
2704
2705 work = process_responses(adap, rspq_to_qset(rq), -1);
2706 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2707 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2708 return work;
2709 }
2710
2711 /*
2712 * The legacy INTx interrupt handler. This needs to handle data events from
2713 * SGE response queues as well as error and other async events as they all use
2714 * the same interrupt pin. We use one SGE response queue per port in this mode
2715 * and protect all response queues with queue 0's lock.
2716 */
t3_intr(int irq,void * cookie)2717 static irqreturn_t t3_intr(int irq, void *cookie)
2718 {
2719 int work_done, w0, w1;
2720 struct adapter *adap = cookie;
2721 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2722 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2723
2724 spin_lock(&q0->lock);
2725
2726 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2727 w1 = adap->params.nports == 2 &&
2728 is_new_response(&q1->desc[q1->cidx], q1);
2729
2730 if (likely(w0 | w1)) {
2731 t3_write_reg(adap, A_PL_CLI, 0);
2732 t3_read_reg(adap, A_PL_CLI); /* flush */
2733
2734 if (likely(w0))
2735 process_responses_gts(adap, q0);
2736
2737 if (w1)
2738 process_responses_gts(adap, q1);
2739
2740 work_done = w0 | w1;
2741 } else
2742 work_done = t3_slow_intr_handler(adap);
2743
2744 spin_unlock(&q0->lock);
2745 return IRQ_RETVAL(work_done != 0);
2746 }
2747
2748 /*
2749 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2750 * Handles data events from SGE response queues as well as error and other
2751 * async events as they all use the same interrupt pin. We use one SGE
2752 * response queue per port in this mode and protect all response queues with
2753 * queue 0's lock.
2754 */
t3b_intr(int irq,void * cookie)2755 static irqreturn_t t3b_intr(int irq, void *cookie)
2756 {
2757 u32 map;
2758 struct adapter *adap = cookie;
2759 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2760
2761 t3_write_reg(adap, A_PL_CLI, 0);
2762 map = t3_read_reg(adap, A_SG_DATA_INTR);
2763
2764 if (unlikely(!map)) /* shared interrupt, most likely */
2765 return IRQ_NONE;
2766
2767 spin_lock(&q0->lock);
2768
2769 if (unlikely(map & F_ERRINTR))
2770 t3_slow_intr_handler(adap);
2771
2772 if (likely(map & 1))
2773 process_responses_gts(adap, q0);
2774
2775 if (map & 2)
2776 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2777
2778 spin_unlock(&q0->lock);
2779 return IRQ_HANDLED;
2780 }
2781
2782 /*
2783 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2784 * Handles data events from SGE response queues as well as error and other
2785 * async events as they all use the same interrupt pin. We use one SGE
2786 * response queue per port in this mode and protect all response queues with
2787 * queue 0's lock.
2788 */
t3b_intr_napi(int irq,void * cookie)2789 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2790 {
2791 u32 map;
2792 struct adapter *adap = cookie;
2793 struct sge_qset *qs0 = &adap->sge.qs[0];
2794 struct sge_rspq *q0 = &qs0->rspq;
2795
2796 t3_write_reg(adap, A_PL_CLI, 0);
2797 map = t3_read_reg(adap, A_SG_DATA_INTR);
2798
2799 if (unlikely(!map)) /* shared interrupt, most likely */
2800 return IRQ_NONE;
2801
2802 spin_lock(&q0->lock);
2803
2804 if (unlikely(map & F_ERRINTR))
2805 t3_slow_intr_handler(adap);
2806
2807 if (likely(map & 1))
2808 napi_schedule(&qs0->napi);
2809
2810 if (map & 2)
2811 napi_schedule(&adap->sge.qs[1].napi);
2812
2813 spin_unlock(&q0->lock);
2814 return IRQ_HANDLED;
2815 }
2816
2817 /**
2818 * t3_intr_handler - select the top-level interrupt handler
2819 * @adap: the adapter
2820 * @polling: whether using NAPI to service response queues
2821 *
2822 * Selects the top-level interrupt handler based on the type of interrupts
2823 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2824 * response queues.
2825 */
t3_intr_handler(struct adapter * adap,int polling)2826 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2827 {
2828 if (adap->flags & USING_MSIX)
2829 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2830 if (adap->flags & USING_MSI)
2831 return polling ? t3_intr_msi_napi : t3_intr_msi;
2832 if (adap->params.rev > 0)
2833 return polling ? t3b_intr_napi : t3b_intr;
2834 return t3_intr;
2835 }
2836
2837 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2838 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2839 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2840 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2841 F_HIRCQPARITYERROR)
2842 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2843 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2844 F_RSPQDISABLED)
2845
2846 /**
2847 * t3_sge_err_intr_handler - SGE async event interrupt handler
2848 * @adapter: the adapter
2849 *
2850 * Interrupt handler for SGE asynchronous (non-data) events.
2851 */
t3_sge_err_intr_handler(struct adapter * adapter)2852 void t3_sge_err_intr_handler(struct adapter *adapter)
2853 {
2854 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2855 ~F_FLEMPTY;
2856
2857 if (status & SGE_PARERR)
2858 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2859 status & SGE_PARERR);
2860 if (status & SGE_FRAMINGERR)
2861 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2862 status & SGE_FRAMINGERR);
2863
2864 if (status & F_RSPQCREDITOVERFOW)
2865 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2866
2867 if (status & F_RSPQDISABLED) {
2868 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2869
2870 CH_ALERT(adapter,
2871 "packet delivered to disabled response queue "
2872 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2873 }
2874
2875 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2876 queue_work(cxgb3_wq, &adapter->db_drop_task);
2877
2878 if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
2879 queue_work(cxgb3_wq, &adapter->db_full_task);
2880
2881 if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
2882 queue_work(cxgb3_wq, &adapter->db_empty_task);
2883
2884 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2885 if (status & SGE_FATALERR)
2886 t3_fatal_err(adapter);
2887 }
2888
2889 /**
2890 * sge_timer_tx - perform periodic maintenance of an SGE qset
2891 * @t: a timer list containing the SGE queue set to maintain
2892 *
2893 * Runs periodically from a timer to perform maintenance of an SGE queue
2894 * set. It performs two tasks:
2895 *
2896 * Cleans up any completed Tx descriptors that may still be pending.
2897 * Normal descriptor cleanup happens when new packets are added to a Tx
2898 * queue so this timer is relatively infrequent and does any cleanup only
2899 * if the Tx queue has not seen any new packets in a while. We make a
2900 * best effort attempt to reclaim descriptors, in that we don't wait
2901 * around if we cannot get a queue's lock (which most likely is because
2902 * someone else is queueing new packets and so will also handle the clean
2903 * up). Since control queues use immediate data exclusively we don't
2904 * bother cleaning them up here.
2905 *
2906 */
sge_timer_tx(struct timer_list * t)2907 static void sge_timer_tx(struct timer_list *t)
2908 {
2909 struct sge_qset *qs = from_timer(qs, t, tx_reclaim_timer);
2910 struct port_info *pi = netdev_priv(qs->netdev);
2911 struct adapter *adap = pi->adapter;
2912 unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2913 unsigned long next_period;
2914
2915 if (__netif_tx_trylock(qs->tx_q)) {
2916 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2917 TX_RECLAIM_TIMER_CHUNK);
2918 __netif_tx_unlock(qs->tx_q);
2919 }
2920
2921 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2922 tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2923 TX_RECLAIM_TIMER_CHUNK);
2924 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2925 }
2926
2927 next_period = TX_RECLAIM_PERIOD >>
2928 (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2929 TX_RECLAIM_TIMER_CHUNK);
2930 mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2931 }
2932
2933 /**
2934 * sge_timer_rx - perform periodic maintenance of an SGE qset
2935 * @t: the timer list containing the SGE queue set to maintain
2936 *
2937 * a) Replenishes Rx queues that have run out due to memory shortage.
2938 * Normally new Rx buffers are added when existing ones are consumed but
2939 * when out of memory a queue can become empty. We try to add only a few
2940 * buffers here, the queue will be replenished fully as these new buffers
2941 * are used up if memory shortage has subsided.
2942 *
2943 * b) Return coalesced response queue credits in case a response queue is
2944 * starved.
2945 *
2946 */
sge_timer_rx(struct timer_list * t)2947 static void sge_timer_rx(struct timer_list *t)
2948 {
2949 spinlock_t *lock;
2950 struct sge_qset *qs = from_timer(qs, t, rx_reclaim_timer);
2951 struct port_info *pi = netdev_priv(qs->netdev);
2952 struct adapter *adap = pi->adapter;
2953 u32 status;
2954
2955 lock = adap->params.rev > 0 ?
2956 &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2957
2958 if (!spin_trylock_irq(lock))
2959 goto out;
2960
2961 if (napi_is_scheduled(&qs->napi))
2962 goto unlock;
2963
2964 if (adap->params.rev < 4) {
2965 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2966
2967 if (status & (1 << qs->rspq.cntxt_id)) {
2968 qs->rspq.starved++;
2969 if (qs->rspq.credits) {
2970 qs->rspq.credits--;
2971 refill_rspq(adap, &qs->rspq, 1);
2972 qs->rspq.restarted++;
2973 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2974 1 << qs->rspq.cntxt_id);
2975 }
2976 }
2977 }
2978
2979 if (qs->fl[0].credits < qs->fl[0].size)
2980 __refill_fl(adap, &qs->fl[0]);
2981 if (qs->fl[1].credits < qs->fl[1].size)
2982 __refill_fl(adap, &qs->fl[1]);
2983
2984 unlock:
2985 spin_unlock_irq(lock);
2986 out:
2987 mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
2988 }
2989
2990 /**
2991 * t3_update_qset_coalesce - update coalescing settings for a queue set
2992 * @qs: the SGE queue set
2993 * @p: new queue set parameters
2994 *
2995 * Update the coalescing settings for an SGE queue set. Nothing is done
2996 * if the queue set is not initialized yet.
2997 */
t3_update_qset_coalesce(struct sge_qset * qs,const struct qset_params * p)2998 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2999 {
3000 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
3001 qs->rspq.polling = p->polling;
3002 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
3003 }
3004
3005 /**
3006 * t3_sge_alloc_qset - initialize an SGE queue set
3007 * @adapter: the adapter
3008 * @id: the queue set id
3009 * @nports: how many Ethernet ports will be using this queue set
3010 * @irq_vec_idx: the IRQ vector index for response queue interrupts
3011 * @p: configuration parameters for this queue set
3012 * @ntxq: number of Tx queues for the queue set
3013 * @dev: net device associated with this queue set
3014 * @netdevq: net device TX queue associated with this queue set
3015 *
3016 * Allocate resources and initialize an SGE queue set. A queue set
3017 * comprises a response queue, two Rx free-buffer queues, and up to 3
3018 * Tx queues. The Tx queues are assigned roles in the order Ethernet
3019 * queue, offload queue, and control queue.
3020 */
t3_sge_alloc_qset(struct adapter * adapter,unsigned int id,int nports,int irq_vec_idx,const struct qset_params * p,int ntxq,struct net_device * dev,struct netdev_queue * netdevq)3021 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
3022 int irq_vec_idx, const struct qset_params *p,
3023 int ntxq, struct net_device *dev,
3024 struct netdev_queue *netdevq)
3025 {
3026 int i, avail, ret = -ENOMEM;
3027 struct sge_qset *q = &adapter->sge.qs[id];
3028
3029 init_qset_cntxt(q, id);
3030 timer_setup(&q->tx_reclaim_timer, sge_timer_tx, 0);
3031 timer_setup(&q->rx_reclaim_timer, sge_timer_rx, 0);
3032
3033 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
3034 sizeof(struct rx_desc),
3035 sizeof(struct rx_sw_desc),
3036 &q->fl[0].phys_addr, &q->fl[0].sdesc);
3037 if (!q->fl[0].desc)
3038 goto err;
3039
3040 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
3041 sizeof(struct rx_desc),
3042 sizeof(struct rx_sw_desc),
3043 &q->fl[1].phys_addr, &q->fl[1].sdesc);
3044 if (!q->fl[1].desc)
3045 goto err;
3046
3047 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
3048 sizeof(struct rsp_desc), 0,
3049 &q->rspq.phys_addr, NULL);
3050 if (!q->rspq.desc)
3051 goto err;
3052
3053 for (i = 0; i < ntxq; ++i) {
3054 /*
3055 * The control queue always uses immediate data so does not
3056 * need to keep track of any sk_buffs.
3057 */
3058 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3059
3060 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3061 sizeof(struct tx_desc), sz,
3062 &q->txq[i].phys_addr,
3063 &q->txq[i].sdesc);
3064 if (!q->txq[i].desc)
3065 goto err;
3066
3067 q->txq[i].gen = 1;
3068 q->txq[i].size = p->txq_size[i];
3069 spin_lock_init(&q->txq[i].lock);
3070 skb_queue_head_init(&q->txq[i].sendq);
3071 }
3072
3073 INIT_WORK(&q->txq[TXQ_OFLD].qresume_task, restart_offloadq);
3074 INIT_WORK(&q->txq[TXQ_CTRL].qresume_task, restart_ctrlq);
3075
3076 q->fl[0].gen = q->fl[1].gen = 1;
3077 q->fl[0].size = p->fl_size;
3078 q->fl[1].size = p->jumbo_size;
3079
3080 q->rspq.gen = 1;
3081 q->rspq.size = p->rspq_size;
3082 spin_lock_init(&q->rspq.lock);
3083 skb_queue_head_init(&q->rspq.rx_queue);
3084
3085 q->txq[TXQ_ETH].stop_thres = nports *
3086 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3087
3088 #if FL0_PG_CHUNK_SIZE > 0
3089 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3090 #else
3091 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3092 #endif
3093 #if FL1_PG_CHUNK_SIZE > 0
3094 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3095 #else
3096 q->fl[1].buf_size = is_offload(adapter) ?
3097 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3098 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3099 #endif
3100
3101 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3102 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3103 q->fl[0].order = FL0_PG_ORDER;
3104 q->fl[1].order = FL1_PG_ORDER;
3105 q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3106 q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3107
3108 spin_lock_irq(&adapter->sge.reg_lock);
3109
3110 /* FL threshold comparison uses < */
3111 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3112 q->rspq.phys_addr, q->rspq.size,
3113 q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3114 if (ret)
3115 goto err_unlock;
3116
3117 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3118 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3119 q->fl[i].phys_addr, q->fl[i].size,
3120 q->fl[i].buf_size - SGE_PG_RSVD,
3121 p->cong_thres, 1, 0);
3122 if (ret)
3123 goto err_unlock;
3124 }
3125
3126 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3127 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3128 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3129 1, 0);
3130 if (ret)
3131 goto err_unlock;
3132
3133 if (ntxq > 1) {
3134 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3135 USE_GTS, SGE_CNTXT_OFLD, id,
3136 q->txq[TXQ_OFLD].phys_addr,
3137 q->txq[TXQ_OFLD].size, 0, 1, 0);
3138 if (ret)
3139 goto err_unlock;
3140 }
3141
3142 if (ntxq > 2) {
3143 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3144 SGE_CNTXT_CTRL, id,
3145 q->txq[TXQ_CTRL].phys_addr,
3146 q->txq[TXQ_CTRL].size,
3147 q->txq[TXQ_CTRL].token, 1, 0);
3148 if (ret)
3149 goto err_unlock;
3150 }
3151
3152 spin_unlock_irq(&adapter->sge.reg_lock);
3153
3154 q->adap = adapter;
3155 q->netdev = dev;
3156 q->tx_q = netdevq;
3157 t3_update_qset_coalesce(q, p);
3158
3159 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3160 GFP_KERNEL | __GFP_COMP);
3161 if (!avail) {
3162 CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3163 ret = -ENOMEM;
3164 goto err;
3165 }
3166 if (avail < q->fl[0].size)
3167 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3168 avail);
3169
3170 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3171 GFP_KERNEL | __GFP_COMP);
3172 if (avail < q->fl[1].size)
3173 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3174 avail);
3175 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3176
3177 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3178 V_NEWTIMER(q->rspq.holdoff_tmr));
3179
3180 return 0;
3181
3182 err_unlock:
3183 spin_unlock_irq(&adapter->sge.reg_lock);
3184 err:
3185 t3_free_qset(adapter, q);
3186 return ret;
3187 }
3188
3189 /**
3190 * t3_start_sge_timers - start SGE timer call backs
3191 * @adap: the adapter
3192 *
3193 * Starts each SGE queue set's timer call back
3194 */
t3_start_sge_timers(struct adapter * adap)3195 void t3_start_sge_timers(struct adapter *adap)
3196 {
3197 int i;
3198
3199 for (i = 0; i < SGE_QSETS; ++i) {
3200 struct sge_qset *q = &adap->sge.qs[i];
3201
3202 if (q->tx_reclaim_timer.function)
3203 mod_timer(&q->tx_reclaim_timer,
3204 jiffies + TX_RECLAIM_PERIOD);
3205
3206 if (q->rx_reclaim_timer.function)
3207 mod_timer(&q->rx_reclaim_timer,
3208 jiffies + RX_RECLAIM_PERIOD);
3209 }
3210 }
3211
3212 /**
3213 * t3_stop_sge_timers - stop SGE timer call backs
3214 * @adap: the adapter
3215 *
3216 * Stops each SGE queue set's timer call back
3217 */
t3_stop_sge_timers(struct adapter * adap)3218 void t3_stop_sge_timers(struct adapter *adap)
3219 {
3220 int i;
3221
3222 for (i = 0; i < SGE_QSETS; ++i) {
3223 struct sge_qset *q = &adap->sge.qs[i];
3224
3225 if (q->tx_reclaim_timer.function)
3226 del_timer_sync(&q->tx_reclaim_timer);
3227 if (q->rx_reclaim_timer.function)
3228 del_timer_sync(&q->rx_reclaim_timer);
3229 }
3230 }
3231
3232 /**
3233 * t3_free_sge_resources - free SGE resources
3234 * @adap: the adapter
3235 *
3236 * Frees resources used by the SGE queue sets.
3237 */
t3_free_sge_resources(struct adapter * adap)3238 void t3_free_sge_resources(struct adapter *adap)
3239 {
3240 int i;
3241
3242 for (i = 0; i < SGE_QSETS; ++i)
3243 t3_free_qset(adap, &adap->sge.qs[i]);
3244 }
3245
3246 /**
3247 * t3_sge_start - enable SGE
3248 * @adap: the adapter
3249 *
3250 * Enables the SGE for DMAs. This is the last step in starting packet
3251 * transfers.
3252 */
t3_sge_start(struct adapter * adap)3253 void t3_sge_start(struct adapter *adap)
3254 {
3255 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3256 }
3257
3258 /**
3259 * t3_sge_stop_dma - Disable SGE DMA engine operation
3260 * @adap: the adapter
3261 *
3262 * Can be invoked from interrupt context e.g. error handler.
3263 *
3264 * Note that this function cannot disable the restart of works as
3265 * it cannot wait if called from interrupt context, however the
3266 * works will have no effect since the doorbells are disabled. The
3267 * driver will call tg3_sge_stop() later from process context, at
3268 * which time the works will be stopped if they are still running.
3269 */
t3_sge_stop_dma(struct adapter * adap)3270 void t3_sge_stop_dma(struct adapter *adap)
3271 {
3272 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3273 }
3274
3275 /**
3276 * t3_sge_stop - disable SGE operation completly
3277 * @adap: the adapter
3278 *
3279 * Called from process context. Disables the DMA engine and any
3280 * pending queue restart works.
3281 */
t3_sge_stop(struct adapter * adap)3282 void t3_sge_stop(struct adapter *adap)
3283 {
3284 int i;
3285
3286 t3_sge_stop_dma(adap);
3287
3288 /* workqueues aren't initialized otherwise */
3289 if (!(adap->flags & FULL_INIT_DONE))
3290 return;
3291 for (i = 0; i < SGE_QSETS; ++i) {
3292 struct sge_qset *qs = &adap->sge.qs[i];
3293
3294 cancel_work_sync(&qs->txq[TXQ_OFLD].qresume_task);
3295 cancel_work_sync(&qs->txq[TXQ_CTRL].qresume_task);
3296 }
3297 }
3298
3299 /**
3300 * t3_sge_init - initialize SGE
3301 * @adap: the adapter
3302 * @p: the SGE parameters
3303 *
3304 * Performs SGE initialization needed every time after a chip reset.
3305 * We do not initialize any of the queue sets here, instead the driver
3306 * top-level must request those individually. We also do not enable DMA
3307 * here, that should be done after the queues have been set up.
3308 */
t3_sge_init(struct adapter * adap,struct sge_params * p)3309 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3310 {
3311 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3312
3313 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3314 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3315 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3316 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3317 #if SGE_NUM_GENBITS == 1
3318 ctrl |= F_EGRGENCTRL;
3319 #endif
3320 if (adap->params.rev > 0) {
3321 if (!(adap->flags & (USING_MSIX | USING_MSI)))
3322 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3323 }
3324 t3_write_reg(adap, A_SG_CONTROL, ctrl);
3325 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3326 V_LORCQDRBTHRSH(512));
3327 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3328 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3329 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3330 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3331 adap->params.rev < T3_REV_C ? 1000 : 500);
3332 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3333 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3334 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3335 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3336 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3337 }
3338
3339 /**
3340 * t3_sge_prep - one-time SGE initialization
3341 * @adap: the associated adapter
3342 * @p: SGE parameters
3343 *
3344 * Performs one-time initialization of SGE SW state. Includes determining
3345 * defaults for the assorted SGE parameters, which admins can change until
3346 * they are used to initialize the SGE.
3347 */
t3_sge_prep(struct adapter * adap,struct sge_params * p)3348 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3349 {
3350 int i;
3351
3352 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3353 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3354
3355 for (i = 0; i < SGE_QSETS; ++i) {
3356 struct qset_params *q = p->qset + i;
3357
3358 q->polling = adap->params.rev > 0;
3359 q->coalesce_usecs = 5;
3360 q->rspq_size = 1024;
3361 q->fl_size = 1024;
3362 q->jumbo_size = 512;
3363 q->txq_size[TXQ_ETH] = 1024;
3364 q->txq_size[TXQ_OFLD] = 1024;
3365 q->txq_size[TXQ_CTRL] = 256;
3366 q->cong_thres = 0;
3367 }
3368
3369 spin_lock_init(&adap->sge.reg_lock);
3370 }
3371