xref: /linux/drivers/dma-buf/heaps/system_heap.c (revision 3c227be9065902f496a748068e0b2b6bd6f3f0a6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * DMABUF System heap exporter
4  *
5  * Copyright (C) 2011 Google, Inc.
6  * Copyright (C) 2019, 2020 Linaro Ltd.
7  *
8  * Portions based off of Andrew Davis' SRAM heap:
9  * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
10  *	Andrew F. Davis <afd@ti.com>
11  */
12 
13 #include <linux/dma-buf.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dma-heap.h>
16 #include <linux/err.h>
17 #include <linux/highmem.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/scatterlist.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 
24 struct system_heap_buffer {
25 	struct dma_heap *heap;
26 	struct list_head attachments;
27 	struct mutex lock;
28 	unsigned long len;
29 	struct sg_table sg_table;
30 	int vmap_cnt;
31 	void *vaddr;
32 };
33 
34 struct dma_heap_attachment {
35 	struct device *dev;
36 	struct sg_table table;
37 	struct list_head list;
38 	bool mapped;
39 };
40 
41 #define LOW_ORDER_GFP (GFP_HIGHUSER | __GFP_ZERO)
42 #define HIGH_ORDER_GFP  (((GFP_HIGHUSER | __GFP_ZERO | __GFP_NOWARN \
43 				| __GFP_NORETRY) & ~__GFP_RECLAIM) \
44 				| __GFP_COMP)
45 static gfp_t order_flags[] = {HIGH_ORDER_GFP, HIGH_ORDER_GFP, LOW_ORDER_GFP};
46 /*
47  * The selection of the orders used for allocation (1MB, 64K, 4K) is designed
48  * to match with the sizes often found in IOMMUs. Using order 4 pages instead
49  * of order 0 pages can significantly improve the performance of many IOMMUs
50  * by reducing TLB pressure and time spent updating page tables.
51  */
52 static const unsigned int orders[] = {8, 4, 0};
53 #define NUM_ORDERS ARRAY_SIZE(orders)
54 
55 static int dup_sg_table(struct sg_table *from, struct sg_table *to)
56 {
57 	struct scatterlist *sg, *new_sg;
58 	int ret, i;
59 
60 	ret = sg_alloc_table(to, from->orig_nents, GFP_KERNEL);
61 	if (ret)
62 		return ret;
63 
64 	new_sg = to->sgl;
65 	for_each_sgtable_sg(from, sg, i) {
66 		sg_set_page(new_sg, sg_page(sg), sg->length, sg->offset);
67 		new_sg = sg_next(new_sg);
68 	}
69 
70 	return 0;
71 }
72 
73 static int system_heap_attach(struct dma_buf *dmabuf,
74 			      struct dma_buf_attachment *attachment)
75 {
76 	struct system_heap_buffer *buffer = dmabuf->priv;
77 	struct dma_heap_attachment *a;
78 	int ret;
79 
80 	a = kzalloc(sizeof(*a), GFP_KERNEL);
81 	if (!a)
82 		return -ENOMEM;
83 
84 	ret = dup_sg_table(&buffer->sg_table, &a->table);
85 	if (ret) {
86 		kfree(a);
87 		return ret;
88 	}
89 
90 	a->dev = attachment->dev;
91 	INIT_LIST_HEAD(&a->list);
92 	a->mapped = false;
93 
94 	attachment->priv = a;
95 
96 	mutex_lock(&buffer->lock);
97 	list_add(&a->list, &buffer->attachments);
98 	mutex_unlock(&buffer->lock);
99 
100 	return 0;
101 }
102 
103 static void system_heap_detach(struct dma_buf *dmabuf,
104 			       struct dma_buf_attachment *attachment)
105 {
106 	struct system_heap_buffer *buffer = dmabuf->priv;
107 	struct dma_heap_attachment *a = attachment->priv;
108 
109 	mutex_lock(&buffer->lock);
110 	list_del(&a->list);
111 	mutex_unlock(&buffer->lock);
112 
113 	sg_free_table(&a->table);
114 	kfree(a);
115 }
116 
117 static struct sg_table *system_heap_map_dma_buf(struct dma_buf_attachment *attachment,
118 						enum dma_data_direction direction)
119 {
120 	struct dma_heap_attachment *a = attachment->priv;
121 	struct sg_table *table = &a->table;
122 	int ret;
123 
124 	ret = dma_map_sgtable(attachment->dev, table, direction, 0);
125 	if (ret)
126 		return ERR_PTR(ret);
127 
128 	a->mapped = true;
129 	return table;
130 }
131 
132 static void system_heap_unmap_dma_buf(struct dma_buf_attachment *attachment,
133 				      struct sg_table *table,
134 				      enum dma_data_direction direction)
135 {
136 	struct dma_heap_attachment *a = attachment->priv;
137 
138 	a->mapped = false;
139 	dma_unmap_sgtable(attachment->dev, table, direction, 0);
140 }
141 
142 static int system_heap_dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
143 						enum dma_data_direction direction)
144 {
145 	struct system_heap_buffer *buffer = dmabuf->priv;
146 	struct dma_heap_attachment *a;
147 
148 	mutex_lock(&buffer->lock);
149 
150 	if (buffer->vmap_cnt)
151 		invalidate_kernel_vmap_range(buffer->vaddr, buffer->len);
152 
153 	list_for_each_entry(a, &buffer->attachments, list) {
154 		if (!a->mapped)
155 			continue;
156 		dma_sync_sgtable_for_cpu(a->dev, &a->table, direction);
157 	}
158 	mutex_unlock(&buffer->lock);
159 
160 	return 0;
161 }
162 
163 static int system_heap_dma_buf_end_cpu_access(struct dma_buf *dmabuf,
164 					      enum dma_data_direction direction)
165 {
166 	struct system_heap_buffer *buffer = dmabuf->priv;
167 	struct dma_heap_attachment *a;
168 
169 	mutex_lock(&buffer->lock);
170 
171 	if (buffer->vmap_cnt)
172 		flush_kernel_vmap_range(buffer->vaddr, buffer->len);
173 
174 	list_for_each_entry(a, &buffer->attachments, list) {
175 		if (!a->mapped)
176 			continue;
177 		dma_sync_sgtable_for_device(a->dev, &a->table, direction);
178 	}
179 	mutex_unlock(&buffer->lock);
180 
181 	return 0;
182 }
183 
184 static int system_heap_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
185 {
186 	struct system_heap_buffer *buffer = dmabuf->priv;
187 	struct sg_table *table = &buffer->sg_table;
188 	unsigned long addr = vma->vm_start;
189 	unsigned long pgoff = vma->vm_pgoff;
190 	struct scatterlist *sg;
191 	int i, ret;
192 
193 	for_each_sgtable_sg(table, sg, i) {
194 		unsigned long n = sg->length >> PAGE_SHIFT;
195 
196 		if (pgoff < n)
197 			break;
198 		pgoff -= n;
199 	}
200 
201 	for (; sg && addr < vma->vm_end; sg = sg_next(sg)) {
202 		unsigned long n = (sg->length >> PAGE_SHIFT) - pgoff;
203 		struct page *page = sg_page(sg) + pgoff;
204 		unsigned long size = n << PAGE_SHIFT;
205 
206 		if (addr + size > vma->vm_end)
207 			size = vma->vm_end - addr;
208 
209 		ret = remap_pfn_range(vma, addr, page_to_pfn(page),
210 				size, vma->vm_page_prot);
211 		if (ret)
212 			return ret;
213 
214 		addr += size;
215 		pgoff = 0;
216 	}
217 
218 	return 0;
219 }
220 
221 static void *system_heap_do_vmap(struct system_heap_buffer *buffer)
222 {
223 	struct sg_table *table = &buffer->sg_table;
224 	int npages = PAGE_ALIGN(buffer->len) / PAGE_SIZE;
225 	struct page **pages = vmalloc(sizeof(struct page *) * npages);
226 	struct page **tmp = pages;
227 	struct sg_page_iter piter;
228 	void *vaddr;
229 
230 	if (!pages)
231 		return ERR_PTR(-ENOMEM);
232 
233 	for_each_sgtable_page(table, &piter, 0) {
234 		WARN_ON(tmp - pages >= npages);
235 		*tmp++ = sg_page_iter_page(&piter);
236 	}
237 
238 	vaddr = vmap(pages, npages, VM_MAP, PAGE_KERNEL);
239 	vfree(pages);
240 
241 	if (!vaddr)
242 		return ERR_PTR(-ENOMEM);
243 
244 	return vaddr;
245 }
246 
247 static int system_heap_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
248 {
249 	struct system_heap_buffer *buffer = dmabuf->priv;
250 	void *vaddr;
251 	int ret = 0;
252 
253 	mutex_lock(&buffer->lock);
254 	if (buffer->vmap_cnt) {
255 		buffer->vmap_cnt++;
256 		iosys_map_set_vaddr(map, buffer->vaddr);
257 		goto out;
258 	}
259 
260 	vaddr = system_heap_do_vmap(buffer);
261 	if (IS_ERR(vaddr)) {
262 		ret = PTR_ERR(vaddr);
263 		goto out;
264 	}
265 
266 	buffer->vaddr = vaddr;
267 	buffer->vmap_cnt++;
268 	iosys_map_set_vaddr(map, buffer->vaddr);
269 out:
270 	mutex_unlock(&buffer->lock);
271 
272 	return ret;
273 }
274 
275 static void system_heap_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
276 {
277 	struct system_heap_buffer *buffer = dmabuf->priv;
278 
279 	mutex_lock(&buffer->lock);
280 	if (!--buffer->vmap_cnt) {
281 		vunmap(buffer->vaddr);
282 		buffer->vaddr = NULL;
283 	}
284 	mutex_unlock(&buffer->lock);
285 	iosys_map_clear(map);
286 }
287 
288 static void system_heap_dma_buf_release(struct dma_buf *dmabuf)
289 {
290 	struct system_heap_buffer *buffer = dmabuf->priv;
291 	struct sg_table *table;
292 	struct scatterlist *sg;
293 	int i;
294 
295 	table = &buffer->sg_table;
296 	for_each_sgtable_sg(table, sg, i) {
297 		struct page *page = sg_page(sg);
298 
299 		__free_pages(page, compound_order(page));
300 	}
301 	sg_free_table(table);
302 	kfree(buffer);
303 }
304 
305 static const struct dma_buf_ops system_heap_buf_ops = {
306 	.attach = system_heap_attach,
307 	.detach = system_heap_detach,
308 	.map_dma_buf = system_heap_map_dma_buf,
309 	.unmap_dma_buf = system_heap_unmap_dma_buf,
310 	.begin_cpu_access = system_heap_dma_buf_begin_cpu_access,
311 	.end_cpu_access = system_heap_dma_buf_end_cpu_access,
312 	.mmap = system_heap_mmap,
313 	.vmap = system_heap_vmap,
314 	.vunmap = system_heap_vunmap,
315 	.release = system_heap_dma_buf_release,
316 };
317 
318 static struct page *alloc_largest_available(unsigned long size,
319 					    unsigned int max_order)
320 {
321 	struct page *page;
322 	int i;
323 	gfp_t flags;
324 
325 	for (i = 0; i < NUM_ORDERS; i++) {
326 		if (size <  (PAGE_SIZE << orders[i]))
327 			continue;
328 		if (max_order < orders[i])
329 			continue;
330 		flags = order_flags[i];
331 		if (mem_accounting)
332 			flags |= __GFP_ACCOUNT;
333 		page = alloc_pages(flags, orders[i]);
334 		if (!page)
335 			continue;
336 		return page;
337 	}
338 	return NULL;
339 }
340 
341 static struct dma_buf *system_heap_allocate(struct dma_heap *heap,
342 					    unsigned long len,
343 					    u32 fd_flags,
344 					    u64 heap_flags)
345 {
346 	struct system_heap_buffer *buffer;
347 	DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
348 	unsigned long size_remaining = len;
349 	unsigned int max_order = orders[0];
350 	struct dma_buf *dmabuf;
351 	struct sg_table *table;
352 	struct scatterlist *sg;
353 	struct list_head pages;
354 	struct page *page, *tmp_page;
355 	int i, ret = -ENOMEM;
356 
357 	buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
358 	if (!buffer)
359 		return ERR_PTR(-ENOMEM);
360 
361 	INIT_LIST_HEAD(&buffer->attachments);
362 	mutex_init(&buffer->lock);
363 	buffer->heap = heap;
364 	buffer->len = len;
365 
366 	INIT_LIST_HEAD(&pages);
367 	i = 0;
368 	while (size_remaining > 0) {
369 		/*
370 		 * Avoid trying to allocate memory if the process
371 		 * has been killed by SIGKILL
372 		 */
373 		if (fatal_signal_pending(current)) {
374 			ret = -EINTR;
375 			goto free_buffer;
376 		}
377 
378 		page = alloc_largest_available(size_remaining, max_order);
379 		if (!page)
380 			goto free_buffer;
381 
382 		list_add_tail(&page->lru, &pages);
383 		size_remaining -= page_size(page);
384 		max_order = compound_order(page);
385 		i++;
386 	}
387 
388 	table = &buffer->sg_table;
389 	if (sg_alloc_table(table, i, GFP_KERNEL))
390 		goto free_buffer;
391 
392 	sg = table->sgl;
393 	list_for_each_entry_safe(page, tmp_page, &pages, lru) {
394 		sg_set_page(sg, page, page_size(page), 0);
395 		sg = sg_next(sg);
396 		list_del(&page->lru);
397 	}
398 
399 	/* create the dmabuf */
400 	exp_info.exp_name = dma_heap_get_name(heap);
401 	exp_info.ops = &system_heap_buf_ops;
402 	exp_info.size = buffer->len;
403 	exp_info.flags = fd_flags;
404 	exp_info.priv = buffer;
405 	dmabuf = dma_buf_export(&exp_info);
406 	if (IS_ERR(dmabuf)) {
407 		ret = PTR_ERR(dmabuf);
408 		goto free_pages;
409 	}
410 	return dmabuf;
411 
412 free_pages:
413 	for_each_sgtable_sg(table, sg, i) {
414 		struct page *p = sg_page(sg);
415 
416 		__free_pages(p, compound_order(p));
417 	}
418 	sg_free_table(table);
419 free_buffer:
420 	list_for_each_entry_safe(page, tmp_page, &pages, lru)
421 		__free_pages(page, compound_order(page));
422 	kfree(buffer);
423 
424 	return ERR_PTR(ret);
425 }
426 
427 static const struct dma_heap_ops system_heap_ops = {
428 	.allocate = system_heap_allocate,
429 };
430 
431 static int __init system_heap_create(void)
432 {
433 	struct dma_heap_export_info exp_info;
434 	struct dma_heap *sys_heap;
435 
436 	exp_info.name = "system";
437 	exp_info.ops = &system_heap_ops;
438 	exp_info.priv = NULL;
439 
440 	sys_heap = dma_heap_add(&exp_info);
441 	if (IS_ERR(sys_heap))
442 		return PTR_ERR(sys_heap);
443 
444 	return 0;
445 }
446 module_init(system_heap_create);
447