1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65
66 /* No special request */
67 #define FPI_NONE ((__force fpi_t)0)
68
69 /*
70 * Skip free page reporting notification for the (possibly merged) page.
71 * This does not hinder free page reporting from grabbing the page,
72 * reporting it and marking it "reported" - it only skips notifying
73 * the free page reporting infrastructure about a newly freed page. For
74 * example, used when temporarily pulling a page from a freelist and
75 * putting it back unmodified.
76 */
77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
78
79 /*
80 * Place the (possibly merged) page to the tail of the freelist. Will ignore
81 * page shuffling (relevant code - e.g., memory onlining - is expected to
82 * shuffle the whole zone).
83 *
84 * Note: No code should rely on this flag for correctness - it's purely
85 * to allow for optimizations when handing back either fresh pages
86 * (memory onlining) or untouched pages (page isolation, free page
87 * reporting).
88 */
89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
90
91 /* Free the page without taking locks. Rely on trylock only. */
92 #define FPI_TRYLOCK ((__force fpi_t)BIT(2))
93
94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
95 static DEFINE_MUTEX(pcp_batch_high_lock);
96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
97
98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
99 /*
100 * On SMP, spin_trylock is sufficient protection.
101 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
102 */
103 #define pcp_trylock_prepare(flags) do { } while (0)
104 #define pcp_trylock_finish(flag) do { } while (0)
105 #else
106
107 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
108 #define pcp_trylock_prepare(flags) local_irq_save(flags)
109 #define pcp_trylock_finish(flags) local_irq_restore(flags)
110 #endif
111
112 /*
113 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
114 * a migration causing the wrong PCP to be locked and remote memory being
115 * potentially allocated, pin the task to the CPU for the lookup+lock.
116 * preempt_disable is used on !RT because it is faster than migrate_disable.
117 * migrate_disable is used on RT because otherwise RT spinlock usage is
118 * interfered with and a high priority task cannot preempt the allocator.
119 */
120 #ifndef CONFIG_PREEMPT_RT
121 #define pcpu_task_pin() preempt_disable()
122 #define pcpu_task_unpin() preempt_enable()
123 #else
124 #define pcpu_task_pin() migrate_disable()
125 #define pcpu_task_unpin() migrate_enable()
126 #endif
127
128 /*
129 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
130 * Return value should be used with equivalent unlock helper.
131 */
132 #define pcpu_spin_lock(type, member, ptr) \
133 ({ \
134 type *_ret; \
135 pcpu_task_pin(); \
136 _ret = this_cpu_ptr(ptr); \
137 spin_lock(&_ret->member); \
138 _ret; \
139 })
140
141 #define pcpu_spin_trylock(type, member, ptr) \
142 ({ \
143 type *_ret; \
144 pcpu_task_pin(); \
145 _ret = this_cpu_ptr(ptr); \
146 if (!spin_trylock(&_ret->member)) { \
147 pcpu_task_unpin(); \
148 _ret = NULL; \
149 } \
150 _ret; \
151 })
152
153 #define pcpu_spin_unlock(member, ptr) \
154 ({ \
155 spin_unlock(&ptr->member); \
156 pcpu_task_unpin(); \
157 })
158
159 /* struct per_cpu_pages specific helpers. */
160 #define pcp_spin_lock(ptr) \
161 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
162
163 #define pcp_spin_trylock(ptr) \
164 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
165
166 #define pcp_spin_unlock(ptr) \
167 pcpu_spin_unlock(lock, ptr)
168
169 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
170 DEFINE_PER_CPU(int, numa_node);
171 EXPORT_PER_CPU_SYMBOL(numa_node);
172 #endif
173
174 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
175
176 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
177 /*
178 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
179 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
180 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
181 * defined in <linux/topology.h>.
182 */
183 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
184 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
185 #endif
186
187 static DEFINE_MUTEX(pcpu_drain_mutex);
188
189 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
190 volatile unsigned long latent_entropy __latent_entropy;
191 EXPORT_SYMBOL(latent_entropy);
192 #endif
193
194 /*
195 * Array of node states.
196 */
197 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
198 [N_POSSIBLE] = NODE_MASK_ALL,
199 [N_ONLINE] = { { [0] = 1UL } },
200 #ifndef CONFIG_NUMA
201 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
202 #ifdef CONFIG_HIGHMEM
203 [N_HIGH_MEMORY] = { { [0] = 1UL } },
204 #endif
205 [N_MEMORY] = { { [0] = 1UL } },
206 [N_CPU] = { { [0] = 1UL } },
207 #endif /* NUMA */
208 };
209 EXPORT_SYMBOL(node_states);
210
211 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
212
213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
214 unsigned int pageblock_order __read_mostly;
215 #endif
216
217 static void __free_pages_ok(struct page *page, unsigned int order,
218 fpi_t fpi_flags);
219
220 /*
221 * results with 256, 32 in the lowmem_reserve sysctl:
222 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
223 * 1G machine -> (16M dma, 784M normal, 224M high)
224 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
225 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
226 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
227 *
228 * TBD: should special case ZONE_DMA32 machines here - in those we normally
229 * don't need any ZONE_NORMAL reservation
230 */
231 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
232 #ifdef CONFIG_ZONE_DMA
233 [ZONE_DMA] = 256,
234 #endif
235 #ifdef CONFIG_ZONE_DMA32
236 [ZONE_DMA32] = 256,
237 #endif
238 [ZONE_NORMAL] = 32,
239 #ifdef CONFIG_HIGHMEM
240 [ZONE_HIGHMEM] = 0,
241 #endif
242 [ZONE_MOVABLE] = 0,
243 };
244
245 char * const zone_names[MAX_NR_ZONES] = {
246 #ifdef CONFIG_ZONE_DMA
247 "DMA",
248 #endif
249 #ifdef CONFIG_ZONE_DMA32
250 "DMA32",
251 #endif
252 "Normal",
253 #ifdef CONFIG_HIGHMEM
254 "HighMem",
255 #endif
256 "Movable",
257 #ifdef CONFIG_ZONE_DEVICE
258 "Device",
259 #endif
260 };
261
262 const char * const migratetype_names[MIGRATE_TYPES] = {
263 "Unmovable",
264 "Movable",
265 "Reclaimable",
266 "HighAtomic",
267 #ifdef CONFIG_CMA
268 "CMA",
269 #endif
270 #ifdef CONFIG_MEMORY_ISOLATION
271 "Isolate",
272 #endif
273 };
274
275 int min_free_kbytes = 1024;
276 int user_min_free_kbytes = -1;
277 static int watermark_boost_factor __read_mostly = 15000;
278 static int watermark_scale_factor = 10;
279 int defrag_mode;
280
281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
282 int movable_zone;
283 EXPORT_SYMBOL(movable_zone);
284
285 #if MAX_NUMNODES > 1
286 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
287 unsigned int nr_online_nodes __read_mostly = 1;
288 EXPORT_SYMBOL(nr_node_ids);
289 EXPORT_SYMBOL(nr_online_nodes);
290 #endif
291
292 static bool page_contains_unaccepted(struct page *page, unsigned int order);
293 static bool cond_accept_memory(struct zone *zone, unsigned int order);
294 static bool __free_unaccepted(struct page *page);
295
296 int page_group_by_mobility_disabled __read_mostly;
297
298 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
299 /*
300 * During boot we initialize deferred pages on-demand, as needed, but once
301 * page_alloc_init_late() has finished, the deferred pages are all initialized,
302 * and we can permanently disable that path.
303 */
304 DEFINE_STATIC_KEY_TRUE(deferred_pages);
305
deferred_pages_enabled(void)306 static inline bool deferred_pages_enabled(void)
307 {
308 return static_branch_unlikely(&deferred_pages);
309 }
310
311 /*
312 * deferred_grow_zone() is __init, but it is called from
313 * get_page_from_freelist() during early boot until deferred_pages permanently
314 * disables this call. This is why we have refdata wrapper to avoid warning,
315 * and to ensure that the function body gets unloaded.
316 */
317 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)318 _deferred_grow_zone(struct zone *zone, unsigned int order)
319 {
320 return deferred_grow_zone(zone, order);
321 }
322 #else
deferred_pages_enabled(void)323 static inline bool deferred_pages_enabled(void)
324 {
325 return false;
326 }
327
_deferred_grow_zone(struct zone * zone,unsigned int order)328 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
329 {
330 return false;
331 }
332 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
333
334 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)335 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
336 unsigned long pfn)
337 {
338 #ifdef CONFIG_SPARSEMEM
339 return section_to_usemap(__pfn_to_section(pfn));
340 #else
341 return page_zone(page)->pageblock_flags;
342 #endif /* CONFIG_SPARSEMEM */
343 }
344
pfn_to_bitidx(const struct page * page,unsigned long pfn)345 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
346 {
347 #ifdef CONFIG_SPARSEMEM
348 pfn &= (PAGES_PER_SECTION-1);
349 #else
350 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
351 #endif /* CONFIG_SPARSEMEM */
352 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
353 }
354
355 /**
356 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
357 * @page: The page within the block of interest
358 * @pfn: The target page frame number
359 * @mask: mask of bits that the caller is interested in
360 *
361 * Return: pageblock_bits flags
362 */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)363 unsigned long get_pfnblock_flags_mask(const struct page *page,
364 unsigned long pfn, unsigned long mask)
365 {
366 unsigned long *bitmap;
367 unsigned long bitidx, word_bitidx;
368 unsigned long word;
369
370 bitmap = get_pageblock_bitmap(page, pfn);
371 bitidx = pfn_to_bitidx(page, pfn);
372 word_bitidx = bitidx / BITS_PER_LONG;
373 bitidx &= (BITS_PER_LONG-1);
374 /*
375 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
376 * a consistent read of the memory array, so that results, even though
377 * racy, are not corrupted.
378 */
379 word = READ_ONCE(bitmap[word_bitidx]);
380 return (word >> bitidx) & mask;
381 }
382
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)383 static __always_inline int get_pfnblock_migratetype(const struct page *page,
384 unsigned long pfn)
385 {
386 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
387 }
388
389 /**
390 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
391 * @page: The page within the block of interest
392 * @flags: The flags to set
393 * @pfn: The target page frame number
394 * @mask: mask of bits that the caller is interested in
395 */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)396 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
397 unsigned long pfn,
398 unsigned long mask)
399 {
400 unsigned long *bitmap;
401 unsigned long bitidx, word_bitidx;
402 unsigned long word;
403
404 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
405 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
406
407 bitmap = get_pageblock_bitmap(page, pfn);
408 bitidx = pfn_to_bitidx(page, pfn);
409 word_bitidx = bitidx / BITS_PER_LONG;
410 bitidx &= (BITS_PER_LONG-1);
411
412 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
413
414 mask <<= bitidx;
415 flags <<= bitidx;
416
417 word = READ_ONCE(bitmap[word_bitidx]);
418 do {
419 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
420 }
421
set_pageblock_migratetype(struct page * page,int migratetype)422 void set_pageblock_migratetype(struct page *page, int migratetype)
423 {
424 if (unlikely(page_group_by_mobility_disabled &&
425 migratetype < MIGRATE_PCPTYPES))
426 migratetype = MIGRATE_UNMOVABLE;
427
428 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
429 page_to_pfn(page), MIGRATETYPE_MASK);
430 }
431
432 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)433 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
434 {
435 int ret;
436 unsigned seq;
437 unsigned long pfn = page_to_pfn(page);
438 unsigned long sp, start_pfn;
439
440 do {
441 seq = zone_span_seqbegin(zone);
442 start_pfn = zone->zone_start_pfn;
443 sp = zone->spanned_pages;
444 ret = !zone_spans_pfn(zone, pfn);
445 } while (zone_span_seqretry(zone, seq));
446
447 if (ret)
448 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
449 pfn, zone_to_nid(zone), zone->name,
450 start_pfn, start_pfn + sp);
451
452 return ret;
453 }
454
455 /*
456 * Temporary debugging check for pages not lying within a given zone.
457 */
bad_range(struct zone * zone,struct page * page)458 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
459 {
460 if (page_outside_zone_boundaries(zone, page))
461 return true;
462 if (zone != page_zone(page))
463 return true;
464
465 return false;
466 }
467 #else
bad_range(struct zone * zone,struct page * page)468 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
469 {
470 return false;
471 }
472 #endif
473
bad_page(struct page * page,const char * reason)474 static void bad_page(struct page *page, const char *reason)
475 {
476 static unsigned long resume;
477 static unsigned long nr_shown;
478 static unsigned long nr_unshown;
479
480 /*
481 * Allow a burst of 60 reports, then keep quiet for that minute;
482 * or allow a steady drip of one report per second.
483 */
484 if (nr_shown == 60) {
485 if (time_before(jiffies, resume)) {
486 nr_unshown++;
487 goto out;
488 }
489 if (nr_unshown) {
490 pr_alert(
491 "BUG: Bad page state: %lu messages suppressed\n",
492 nr_unshown);
493 nr_unshown = 0;
494 }
495 nr_shown = 0;
496 }
497 if (nr_shown++ == 0)
498 resume = jiffies + 60 * HZ;
499
500 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
501 current->comm, page_to_pfn(page));
502 dump_page(page, reason);
503
504 print_modules();
505 dump_stack();
506 out:
507 /* Leave bad fields for debug, except PageBuddy could make trouble */
508 if (PageBuddy(page))
509 __ClearPageBuddy(page);
510 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
511 }
512
order_to_pindex(int migratetype,int order)513 static inline unsigned int order_to_pindex(int migratetype, int order)
514 {
515
516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
517 bool movable;
518 if (order > PAGE_ALLOC_COSTLY_ORDER) {
519 VM_BUG_ON(order != HPAGE_PMD_ORDER);
520
521 movable = migratetype == MIGRATE_MOVABLE;
522
523 return NR_LOWORDER_PCP_LISTS + movable;
524 }
525 #else
526 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
527 #endif
528
529 return (MIGRATE_PCPTYPES * order) + migratetype;
530 }
531
pindex_to_order(unsigned int pindex)532 static inline int pindex_to_order(unsigned int pindex)
533 {
534 int order = pindex / MIGRATE_PCPTYPES;
535
536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
537 if (pindex >= NR_LOWORDER_PCP_LISTS)
538 order = HPAGE_PMD_ORDER;
539 #else
540 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
541 #endif
542
543 return order;
544 }
545
pcp_allowed_order(unsigned int order)546 static inline bool pcp_allowed_order(unsigned int order)
547 {
548 if (order <= PAGE_ALLOC_COSTLY_ORDER)
549 return true;
550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
551 if (order == HPAGE_PMD_ORDER)
552 return true;
553 #endif
554 return false;
555 }
556
557 /*
558 * Higher-order pages are called "compound pages". They are structured thusly:
559 *
560 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
561 *
562 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
563 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
564 *
565 * The first tail page's ->compound_order holds the order of allocation.
566 * This usage means that zero-order pages may not be compound.
567 */
568
prep_compound_page(struct page * page,unsigned int order)569 void prep_compound_page(struct page *page, unsigned int order)
570 {
571 int i;
572 int nr_pages = 1 << order;
573
574 __SetPageHead(page);
575 for (i = 1; i < nr_pages; i++)
576 prep_compound_tail(page, i);
577
578 prep_compound_head(page, order);
579 }
580
set_buddy_order(struct page * page,unsigned int order)581 static inline void set_buddy_order(struct page *page, unsigned int order)
582 {
583 set_page_private(page, order);
584 __SetPageBuddy(page);
585 }
586
587 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)588 static inline struct capture_control *task_capc(struct zone *zone)
589 {
590 struct capture_control *capc = current->capture_control;
591
592 return unlikely(capc) &&
593 !(current->flags & PF_KTHREAD) &&
594 !capc->page &&
595 capc->cc->zone == zone ? capc : NULL;
596 }
597
598 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)599 compaction_capture(struct capture_control *capc, struct page *page,
600 int order, int migratetype)
601 {
602 if (!capc || order != capc->cc->order)
603 return false;
604
605 /* Do not accidentally pollute CMA or isolated regions*/
606 if (is_migrate_cma(migratetype) ||
607 is_migrate_isolate(migratetype))
608 return false;
609
610 /*
611 * Do not let lower order allocations pollute a movable pageblock
612 * unless compaction is also requesting movable pages.
613 * This might let an unmovable request use a reclaimable pageblock
614 * and vice-versa but no more than normal fallback logic which can
615 * have trouble finding a high-order free page.
616 */
617 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
618 capc->cc->migratetype != MIGRATE_MOVABLE)
619 return false;
620
621 if (migratetype != capc->cc->migratetype)
622 trace_mm_page_alloc_extfrag(page, capc->cc->order, order,
623 capc->cc->migratetype, migratetype);
624
625 capc->page = page;
626 return true;
627 }
628
629 #else
task_capc(struct zone * zone)630 static inline struct capture_control *task_capc(struct zone *zone)
631 {
632 return NULL;
633 }
634
635 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)636 compaction_capture(struct capture_control *capc, struct page *page,
637 int order, int migratetype)
638 {
639 return false;
640 }
641 #endif /* CONFIG_COMPACTION */
642
account_freepages(struct zone * zone,int nr_pages,int migratetype)643 static inline void account_freepages(struct zone *zone, int nr_pages,
644 int migratetype)
645 {
646 lockdep_assert_held(&zone->lock);
647
648 if (is_migrate_isolate(migratetype))
649 return;
650
651 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
652
653 if (is_migrate_cma(migratetype))
654 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
655 else if (is_migrate_highatomic(migratetype))
656 WRITE_ONCE(zone->nr_free_highatomic,
657 zone->nr_free_highatomic + nr_pages);
658 }
659
660 /* Used for pages not on another list */
__add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)661 static inline void __add_to_free_list(struct page *page, struct zone *zone,
662 unsigned int order, int migratetype,
663 bool tail)
664 {
665 struct free_area *area = &zone->free_area[order];
666 int nr_pages = 1 << order;
667
668 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
669 "page type is %lu, passed migratetype is %d (nr=%d)\n",
670 get_pageblock_migratetype(page), migratetype, nr_pages);
671
672 if (tail)
673 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
674 else
675 list_add(&page->buddy_list, &area->free_list[migratetype]);
676 area->nr_free++;
677
678 if (order >= pageblock_order && !is_migrate_isolate(migratetype))
679 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
680 }
681
682 /*
683 * Used for pages which are on another list. Move the pages to the tail
684 * of the list - so the moved pages won't immediately be considered for
685 * allocation again (e.g., optimization for memory onlining).
686 */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int old_mt,int new_mt)687 static inline void move_to_free_list(struct page *page, struct zone *zone,
688 unsigned int order, int old_mt, int new_mt)
689 {
690 struct free_area *area = &zone->free_area[order];
691 int nr_pages = 1 << order;
692
693 /* Free page moving can fail, so it happens before the type update */
694 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
695 "page type is %lu, passed migratetype is %d (nr=%d)\n",
696 get_pageblock_migratetype(page), old_mt, nr_pages);
697
698 list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
699
700 account_freepages(zone, -nr_pages, old_mt);
701 account_freepages(zone, nr_pages, new_mt);
702
703 if (order >= pageblock_order &&
704 is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) {
705 if (!is_migrate_isolate(old_mt))
706 nr_pages = -nr_pages;
707 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
708 }
709 }
710
__del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)711 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
712 unsigned int order, int migratetype)
713 {
714 int nr_pages = 1 << order;
715
716 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
717 "page type is %lu, passed migratetype is %d (nr=%d)\n",
718 get_pageblock_migratetype(page), migratetype, nr_pages);
719
720 /* clear reported state and update reported page count */
721 if (page_reported(page))
722 __ClearPageReported(page);
723
724 list_del(&page->buddy_list);
725 __ClearPageBuddy(page);
726 set_page_private(page, 0);
727 zone->free_area[order].nr_free--;
728
729 if (order >= pageblock_order && !is_migrate_isolate(migratetype))
730 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages);
731 }
732
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)733 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
734 unsigned int order, int migratetype)
735 {
736 __del_page_from_free_list(page, zone, order, migratetype);
737 account_freepages(zone, -(1 << order), migratetype);
738 }
739
get_page_from_free_area(struct free_area * area,int migratetype)740 static inline struct page *get_page_from_free_area(struct free_area *area,
741 int migratetype)
742 {
743 return list_first_entry_or_null(&area->free_list[migratetype],
744 struct page, buddy_list);
745 }
746
747 /*
748 * If this is less than the 2nd largest possible page, check if the buddy
749 * of the next-higher order is free. If it is, it's possible
750 * that pages are being freed that will coalesce soon. In case,
751 * that is happening, add the free page to the tail of the list
752 * so it's less likely to be used soon and more likely to be merged
753 * as a 2-level higher order page
754 */
755 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)756 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
757 struct page *page, unsigned int order)
758 {
759 unsigned long higher_page_pfn;
760 struct page *higher_page;
761
762 if (order >= MAX_PAGE_ORDER - 1)
763 return false;
764
765 higher_page_pfn = buddy_pfn & pfn;
766 higher_page = page + (higher_page_pfn - pfn);
767
768 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
769 NULL) != NULL;
770 }
771
772 /*
773 * Freeing function for a buddy system allocator.
774 *
775 * The concept of a buddy system is to maintain direct-mapped table
776 * (containing bit values) for memory blocks of various "orders".
777 * The bottom level table contains the map for the smallest allocatable
778 * units of memory (here, pages), and each level above it describes
779 * pairs of units from the levels below, hence, "buddies".
780 * At a high level, all that happens here is marking the table entry
781 * at the bottom level available, and propagating the changes upward
782 * as necessary, plus some accounting needed to play nicely with other
783 * parts of the VM system.
784 * At each level, we keep a list of pages, which are heads of continuous
785 * free pages of length of (1 << order) and marked with PageBuddy.
786 * Page's order is recorded in page_private(page) field.
787 * So when we are allocating or freeing one, we can derive the state of the
788 * other. That is, if we allocate a small block, and both were
789 * free, the remainder of the region must be split into blocks.
790 * If a block is freed, and its buddy is also free, then this
791 * triggers coalescing into a block of larger size.
792 *
793 * -- nyc
794 */
795
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)796 static inline void __free_one_page(struct page *page,
797 unsigned long pfn,
798 struct zone *zone, unsigned int order,
799 int migratetype, fpi_t fpi_flags)
800 {
801 struct capture_control *capc = task_capc(zone);
802 unsigned long buddy_pfn = 0;
803 unsigned long combined_pfn;
804 struct page *buddy;
805 bool to_tail;
806
807 VM_BUG_ON(!zone_is_initialized(zone));
808 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
809
810 VM_BUG_ON(migratetype == -1);
811 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
812 VM_BUG_ON_PAGE(bad_range(zone, page), page);
813
814 account_freepages(zone, 1 << order, migratetype);
815
816 while (order < MAX_PAGE_ORDER) {
817 int buddy_mt = migratetype;
818
819 if (compaction_capture(capc, page, order, migratetype)) {
820 account_freepages(zone, -(1 << order), migratetype);
821 return;
822 }
823
824 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
825 if (!buddy)
826 goto done_merging;
827
828 if (unlikely(order >= pageblock_order)) {
829 /*
830 * We want to prevent merge between freepages on pageblock
831 * without fallbacks and normal pageblock. Without this,
832 * pageblock isolation could cause incorrect freepage or CMA
833 * accounting or HIGHATOMIC accounting.
834 */
835 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
836
837 if (migratetype != buddy_mt &&
838 (!migratetype_is_mergeable(migratetype) ||
839 !migratetype_is_mergeable(buddy_mt)))
840 goto done_merging;
841 }
842
843 /*
844 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
845 * merge with it and move up one order.
846 */
847 if (page_is_guard(buddy))
848 clear_page_guard(zone, buddy, order);
849 else
850 __del_page_from_free_list(buddy, zone, order, buddy_mt);
851
852 if (unlikely(buddy_mt != migratetype)) {
853 /*
854 * Match buddy type. This ensures that an
855 * expand() down the line puts the sub-blocks
856 * on the right freelists.
857 */
858 set_pageblock_migratetype(buddy, migratetype);
859 }
860
861 combined_pfn = buddy_pfn & pfn;
862 page = page + (combined_pfn - pfn);
863 pfn = combined_pfn;
864 order++;
865 }
866
867 done_merging:
868 set_buddy_order(page, order);
869
870 if (fpi_flags & FPI_TO_TAIL)
871 to_tail = true;
872 else if (is_shuffle_order(order))
873 to_tail = shuffle_pick_tail();
874 else
875 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
876
877 __add_to_free_list(page, zone, order, migratetype, to_tail);
878
879 /* Notify page reporting subsystem of freed page */
880 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
881 page_reporting_notify_free(order);
882 }
883
884 /*
885 * A bad page could be due to a number of fields. Instead of multiple branches,
886 * try and check multiple fields with one check. The caller must do a detailed
887 * check if necessary.
888 */
page_expected_state(struct page * page,unsigned long check_flags)889 static inline bool page_expected_state(struct page *page,
890 unsigned long check_flags)
891 {
892 if (unlikely(atomic_read(&page->_mapcount) != -1))
893 return false;
894
895 if (unlikely((unsigned long)page->mapping |
896 page_ref_count(page) |
897 #ifdef CONFIG_MEMCG
898 page->memcg_data |
899 #endif
900 #ifdef CONFIG_PAGE_POOL
901 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
902 #endif
903 (page->flags & check_flags)))
904 return false;
905
906 return true;
907 }
908
page_bad_reason(struct page * page,unsigned long flags)909 static const char *page_bad_reason(struct page *page, unsigned long flags)
910 {
911 const char *bad_reason = NULL;
912
913 if (unlikely(atomic_read(&page->_mapcount) != -1))
914 bad_reason = "nonzero mapcount";
915 if (unlikely(page->mapping != NULL))
916 bad_reason = "non-NULL mapping";
917 if (unlikely(page_ref_count(page) != 0))
918 bad_reason = "nonzero _refcount";
919 if (unlikely(page->flags & flags)) {
920 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
921 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
922 else
923 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
924 }
925 #ifdef CONFIG_MEMCG
926 if (unlikely(page->memcg_data))
927 bad_reason = "page still charged to cgroup";
928 #endif
929 #ifdef CONFIG_PAGE_POOL
930 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
931 bad_reason = "page_pool leak";
932 #endif
933 return bad_reason;
934 }
935
free_page_is_bad_report(struct page * page)936 static void free_page_is_bad_report(struct page *page)
937 {
938 bad_page(page,
939 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
940 }
941
free_page_is_bad(struct page * page)942 static inline bool free_page_is_bad(struct page *page)
943 {
944 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
945 return false;
946
947 /* Something has gone sideways, find it */
948 free_page_is_bad_report(page);
949 return true;
950 }
951
is_check_pages_enabled(void)952 static inline bool is_check_pages_enabled(void)
953 {
954 return static_branch_unlikely(&check_pages_enabled);
955 }
956
free_tail_page_prepare(struct page * head_page,struct page * page)957 static int free_tail_page_prepare(struct page *head_page, struct page *page)
958 {
959 struct folio *folio = (struct folio *)head_page;
960 int ret = 1;
961
962 /*
963 * We rely page->lru.next never has bit 0 set, unless the page
964 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
965 */
966 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
967
968 if (!is_check_pages_enabled()) {
969 ret = 0;
970 goto out;
971 }
972 switch (page - head_page) {
973 case 1:
974 /* the first tail page: these may be in place of ->mapping */
975 if (unlikely(folio_large_mapcount(folio))) {
976 bad_page(page, "nonzero large_mapcount");
977 goto out;
978 }
979 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) &&
980 unlikely(atomic_read(&folio->_nr_pages_mapped))) {
981 bad_page(page, "nonzero nr_pages_mapped");
982 goto out;
983 }
984 if (IS_ENABLED(CONFIG_MM_ID)) {
985 if (unlikely(folio->_mm_id_mapcount[0] != -1)) {
986 bad_page(page, "nonzero mm mapcount 0");
987 goto out;
988 }
989 if (unlikely(folio->_mm_id_mapcount[1] != -1)) {
990 bad_page(page, "nonzero mm mapcount 1");
991 goto out;
992 }
993 }
994 if (IS_ENABLED(CONFIG_64BIT)) {
995 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
996 bad_page(page, "nonzero entire_mapcount");
997 goto out;
998 }
999 if (unlikely(atomic_read(&folio->_pincount))) {
1000 bad_page(page, "nonzero pincount");
1001 goto out;
1002 }
1003 }
1004 break;
1005 case 2:
1006 /* the second tail page: deferred_list overlaps ->mapping */
1007 if (unlikely(!list_empty(&folio->_deferred_list))) {
1008 bad_page(page, "on deferred list");
1009 goto out;
1010 }
1011 if (!IS_ENABLED(CONFIG_64BIT)) {
1012 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
1013 bad_page(page, "nonzero entire_mapcount");
1014 goto out;
1015 }
1016 if (unlikely(atomic_read(&folio->_pincount))) {
1017 bad_page(page, "nonzero pincount");
1018 goto out;
1019 }
1020 }
1021 break;
1022 case 3:
1023 /* the third tail page: hugetlb specifics overlap ->mappings */
1024 if (IS_ENABLED(CONFIG_HUGETLB_PAGE))
1025 break;
1026 fallthrough;
1027 default:
1028 if (page->mapping != TAIL_MAPPING) {
1029 bad_page(page, "corrupted mapping in tail page");
1030 goto out;
1031 }
1032 break;
1033 }
1034 if (unlikely(!PageTail(page))) {
1035 bad_page(page, "PageTail not set");
1036 goto out;
1037 }
1038 if (unlikely(compound_head(page) != head_page)) {
1039 bad_page(page, "compound_head not consistent");
1040 goto out;
1041 }
1042 ret = 0;
1043 out:
1044 page->mapping = NULL;
1045 clear_compound_head(page);
1046 return ret;
1047 }
1048
1049 /*
1050 * Skip KASAN memory poisoning when either:
1051 *
1052 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1053 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1054 * using page tags instead (see below).
1055 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1056 * that error detection is disabled for accesses via the page address.
1057 *
1058 * Pages will have match-all tags in the following circumstances:
1059 *
1060 * 1. Pages are being initialized for the first time, including during deferred
1061 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1062 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1063 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1064 * 3. The allocation was excluded from being checked due to sampling,
1065 * see the call to kasan_unpoison_pages.
1066 *
1067 * Poisoning pages during deferred memory init will greatly lengthen the
1068 * process and cause problem in large memory systems as the deferred pages
1069 * initialization is done with interrupt disabled.
1070 *
1071 * Assuming that there will be no reference to those newly initialized
1072 * pages before they are ever allocated, this should have no effect on
1073 * KASAN memory tracking as the poison will be properly inserted at page
1074 * allocation time. The only corner case is when pages are allocated by
1075 * on-demand allocation and then freed again before the deferred pages
1076 * initialization is done, but this is not likely to happen.
1077 */
should_skip_kasan_poison(struct page * page)1078 static inline bool should_skip_kasan_poison(struct page *page)
1079 {
1080 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1081 return deferred_pages_enabled();
1082
1083 return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1084 }
1085
kernel_init_pages(struct page * page,int numpages)1086 static void kernel_init_pages(struct page *page, int numpages)
1087 {
1088 int i;
1089
1090 /* s390's use of memset() could override KASAN redzones. */
1091 kasan_disable_current();
1092 for (i = 0; i < numpages; i++)
1093 clear_highpage_kasan_tagged(page + i);
1094 kasan_enable_current();
1095 }
1096
1097 #ifdef CONFIG_MEM_ALLOC_PROFILING
1098
1099 /* Should be called only if mem_alloc_profiling_enabled() */
__clear_page_tag_ref(struct page * page)1100 void __clear_page_tag_ref(struct page *page)
1101 {
1102 union pgtag_ref_handle handle;
1103 union codetag_ref ref;
1104
1105 if (get_page_tag_ref(page, &ref, &handle)) {
1106 set_codetag_empty(&ref);
1107 update_page_tag_ref(handle, &ref);
1108 put_page_tag_ref(handle);
1109 }
1110 }
1111
1112 /* Should be called only if mem_alloc_profiling_enabled() */
1113 static noinline
__pgalloc_tag_add(struct page * page,struct task_struct * task,unsigned int nr)1114 void __pgalloc_tag_add(struct page *page, struct task_struct *task,
1115 unsigned int nr)
1116 {
1117 union pgtag_ref_handle handle;
1118 union codetag_ref ref;
1119
1120 if (get_page_tag_ref(page, &ref, &handle)) {
1121 alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr);
1122 update_page_tag_ref(handle, &ref);
1123 put_page_tag_ref(handle);
1124 }
1125 }
1126
pgalloc_tag_add(struct page * page,struct task_struct * task,unsigned int nr)1127 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1128 unsigned int nr)
1129 {
1130 if (mem_alloc_profiling_enabled())
1131 __pgalloc_tag_add(page, task, nr);
1132 }
1133
1134 /* Should be called only if mem_alloc_profiling_enabled() */
1135 static noinline
__pgalloc_tag_sub(struct page * page,unsigned int nr)1136 void __pgalloc_tag_sub(struct page *page, unsigned int nr)
1137 {
1138 union pgtag_ref_handle handle;
1139 union codetag_ref ref;
1140
1141 if (get_page_tag_ref(page, &ref, &handle)) {
1142 alloc_tag_sub(&ref, PAGE_SIZE * nr);
1143 update_page_tag_ref(handle, &ref);
1144 put_page_tag_ref(handle);
1145 }
1146 }
1147
pgalloc_tag_sub(struct page * page,unsigned int nr)1148 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr)
1149 {
1150 if (mem_alloc_profiling_enabled())
1151 __pgalloc_tag_sub(page, nr);
1152 }
1153
pgalloc_tag_sub_pages(struct page * page,unsigned int nr)1154 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr)
1155 {
1156 struct alloc_tag *tag;
1157
1158 if (!mem_alloc_profiling_enabled())
1159 return;
1160
1161 tag = __pgalloc_tag_get(page);
1162 if (tag)
1163 this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr);
1164 }
1165
1166 #else /* CONFIG_MEM_ALLOC_PROFILING */
1167
pgalloc_tag_add(struct page * page,struct task_struct * task,unsigned int nr)1168 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1169 unsigned int nr) {}
pgalloc_tag_sub(struct page * page,unsigned int nr)1170 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {}
pgalloc_tag_sub_pages(struct page * page,unsigned int nr)1171 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr) {}
1172
1173 #endif /* CONFIG_MEM_ALLOC_PROFILING */
1174
free_pages_prepare(struct page * page,unsigned int order)1175 __always_inline bool free_pages_prepare(struct page *page,
1176 unsigned int order)
1177 {
1178 int bad = 0;
1179 bool skip_kasan_poison = should_skip_kasan_poison(page);
1180 bool init = want_init_on_free();
1181 bool compound = PageCompound(page);
1182 struct folio *folio = page_folio(page);
1183
1184 VM_BUG_ON_PAGE(PageTail(page), page);
1185
1186 trace_mm_page_free(page, order);
1187 kmsan_free_page(page, order);
1188
1189 if (memcg_kmem_online() && PageMemcgKmem(page))
1190 __memcg_kmem_uncharge_page(page, order);
1191
1192 /*
1193 * In rare cases, when truncation or holepunching raced with
1194 * munlock after VM_LOCKED was cleared, Mlocked may still be
1195 * found set here. This does not indicate a problem, unless
1196 * "unevictable_pgs_cleared" appears worryingly large.
1197 */
1198 if (unlikely(folio_test_mlocked(folio))) {
1199 long nr_pages = folio_nr_pages(folio);
1200
1201 __folio_clear_mlocked(folio);
1202 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1203 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1204 }
1205
1206 if (unlikely(PageHWPoison(page)) && !order) {
1207 /* Do not let hwpoison pages hit pcplists/buddy */
1208 reset_page_owner(page, order);
1209 page_table_check_free(page, order);
1210 pgalloc_tag_sub(page, 1 << order);
1211
1212 /*
1213 * The page is isolated and accounted for.
1214 * Mark the codetag as empty to avoid accounting error
1215 * when the page is freed by unpoison_memory().
1216 */
1217 clear_page_tag_ref(page);
1218 return false;
1219 }
1220
1221 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1222
1223 /*
1224 * Check tail pages before head page information is cleared to
1225 * avoid checking PageCompound for order-0 pages.
1226 */
1227 if (unlikely(order)) {
1228 int i;
1229
1230 if (compound) {
1231 page[1].flags &= ~PAGE_FLAGS_SECOND;
1232 #ifdef NR_PAGES_IN_LARGE_FOLIO
1233 folio->_nr_pages = 0;
1234 #endif
1235 }
1236 for (i = 1; i < (1 << order); i++) {
1237 if (compound)
1238 bad += free_tail_page_prepare(page, page + i);
1239 if (is_check_pages_enabled()) {
1240 if (free_page_is_bad(page + i)) {
1241 bad++;
1242 continue;
1243 }
1244 }
1245 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1246 }
1247 }
1248 if (PageMappingFlags(page)) {
1249 if (PageAnon(page))
1250 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1251 page->mapping = NULL;
1252 }
1253 if (is_check_pages_enabled()) {
1254 if (free_page_is_bad(page))
1255 bad++;
1256 if (bad)
1257 return false;
1258 }
1259
1260 page_cpupid_reset_last(page);
1261 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1262 reset_page_owner(page, order);
1263 page_table_check_free(page, order);
1264 pgalloc_tag_sub(page, 1 << order);
1265
1266 if (!PageHighMem(page)) {
1267 debug_check_no_locks_freed(page_address(page),
1268 PAGE_SIZE << order);
1269 debug_check_no_obj_freed(page_address(page),
1270 PAGE_SIZE << order);
1271 }
1272
1273 kernel_poison_pages(page, 1 << order);
1274
1275 /*
1276 * As memory initialization might be integrated into KASAN,
1277 * KASAN poisoning and memory initialization code must be
1278 * kept together to avoid discrepancies in behavior.
1279 *
1280 * With hardware tag-based KASAN, memory tags must be set before the
1281 * page becomes unavailable via debug_pagealloc or arch_free_page.
1282 */
1283 if (!skip_kasan_poison) {
1284 kasan_poison_pages(page, order, init);
1285
1286 /* Memory is already initialized if KASAN did it internally. */
1287 if (kasan_has_integrated_init())
1288 init = false;
1289 }
1290 if (init)
1291 kernel_init_pages(page, 1 << order);
1292
1293 /*
1294 * arch_free_page() can make the page's contents inaccessible. s390
1295 * does this. So nothing which can access the page's contents should
1296 * happen after this.
1297 */
1298 arch_free_page(page, order);
1299
1300 debug_pagealloc_unmap_pages(page, 1 << order);
1301
1302 return true;
1303 }
1304
1305 /*
1306 * Frees a number of pages from the PCP lists
1307 * Assumes all pages on list are in same zone.
1308 * count is the number of pages to free.
1309 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1310 static void free_pcppages_bulk(struct zone *zone, int count,
1311 struct per_cpu_pages *pcp,
1312 int pindex)
1313 {
1314 unsigned long flags;
1315 unsigned int order;
1316 struct page *page;
1317
1318 /*
1319 * Ensure proper count is passed which otherwise would stuck in the
1320 * below while (list_empty(list)) loop.
1321 */
1322 count = min(pcp->count, count);
1323
1324 /* Ensure requested pindex is drained first. */
1325 pindex = pindex - 1;
1326
1327 spin_lock_irqsave(&zone->lock, flags);
1328
1329 while (count > 0) {
1330 struct list_head *list;
1331 int nr_pages;
1332
1333 /* Remove pages from lists in a round-robin fashion. */
1334 do {
1335 if (++pindex > NR_PCP_LISTS - 1)
1336 pindex = 0;
1337 list = &pcp->lists[pindex];
1338 } while (list_empty(list));
1339
1340 order = pindex_to_order(pindex);
1341 nr_pages = 1 << order;
1342 do {
1343 unsigned long pfn;
1344 int mt;
1345
1346 page = list_last_entry(list, struct page, pcp_list);
1347 pfn = page_to_pfn(page);
1348 mt = get_pfnblock_migratetype(page, pfn);
1349
1350 /* must delete to avoid corrupting pcp list */
1351 list_del(&page->pcp_list);
1352 count -= nr_pages;
1353 pcp->count -= nr_pages;
1354
1355 __free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1356 trace_mm_page_pcpu_drain(page, order, mt);
1357 } while (count > 0 && !list_empty(list));
1358 }
1359
1360 spin_unlock_irqrestore(&zone->lock, flags);
1361 }
1362
1363 /* Split a multi-block free page into its individual pageblocks. */
split_large_buddy(struct zone * zone,struct page * page,unsigned long pfn,int order,fpi_t fpi)1364 static void split_large_buddy(struct zone *zone, struct page *page,
1365 unsigned long pfn, int order, fpi_t fpi)
1366 {
1367 unsigned long end = pfn + (1 << order);
1368
1369 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1370 /* Caller removed page from freelist, buddy info cleared! */
1371 VM_WARN_ON_ONCE(PageBuddy(page));
1372
1373 if (order > pageblock_order)
1374 order = pageblock_order;
1375
1376 do {
1377 int mt = get_pfnblock_migratetype(page, pfn);
1378
1379 __free_one_page(page, pfn, zone, order, mt, fpi);
1380 pfn += 1 << order;
1381 if (pfn == end)
1382 break;
1383 page = pfn_to_page(pfn);
1384 } while (1);
1385 }
1386
add_page_to_zone_llist(struct zone * zone,struct page * page,unsigned int order)1387 static void add_page_to_zone_llist(struct zone *zone, struct page *page,
1388 unsigned int order)
1389 {
1390 /* Remember the order */
1391 page->order = order;
1392 /* Add the page to the free list */
1393 llist_add(&page->pcp_llist, &zone->trylock_free_pages);
1394 }
1395
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,fpi_t fpi_flags)1396 static void free_one_page(struct zone *zone, struct page *page,
1397 unsigned long pfn, unsigned int order,
1398 fpi_t fpi_flags)
1399 {
1400 struct llist_head *llhead;
1401 unsigned long flags;
1402
1403 if (!spin_trylock_irqsave(&zone->lock, flags)) {
1404 if (unlikely(fpi_flags & FPI_TRYLOCK)) {
1405 add_page_to_zone_llist(zone, page, order);
1406 return;
1407 }
1408 spin_lock_irqsave(&zone->lock, flags);
1409 }
1410
1411 /* The lock succeeded. Process deferred pages. */
1412 llhead = &zone->trylock_free_pages;
1413 if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) {
1414 struct llist_node *llnode;
1415 struct page *p, *tmp;
1416
1417 llnode = llist_del_all(llhead);
1418 llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) {
1419 unsigned int p_order = p->order;
1420
1421 split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags);
1422 __count_vm_events(PGFREE, 1 << p_order);
1423 }
1424 }
1425 split_large_buddy(zone, page, pfn, order, fpi_flags);
1426 spin_unlock_irqrestore(&zone->lock, flags);
1427
1428 __count_vm_events(PGFREE, 1 << order);
1429 }
1430
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1431 static void __free_pages_ok(struct page *page, unsigned int order,
1432 fpi_t fpi_flags)
1433 {
1434 unsigned long pfn = page_to_pfn(page);
1435 struct zone *zone = page_zone(page);
1436
1437 if (free_pages_prepare(page, order))
1438 free_one_page(zone, page, pfn, order, fpi_flags);
1439 }
1440
__free_pages_core(struct page * page,unsigned int order,enum meminit_context context)1441 void __meminit __free_pages_core(struct page *page, unsigned int order,
1442 enum meminit_context context)
1443 {
1444 unsigned int nr_pages = 1 << order;
1445 struct page *p = page;
1446 unsigned int loop;
1447
1448 /*
1449 * When initializing the memmap, __init_single_page() sets the refcount
1450 * of all pages to 1 ("allocated"/"not free"). We have to set the
1451 * refcount of all involved pages to 0.
1452 *
1453 * Note that hotplugged memory pages are initialized to PageOffline().
1454 * Pages freed from memblock might be marked as reserved.
1455 */
1456 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1457 unlikely(context == MEMINIT_HOTPLUG)) {
1458 for (loop = 0; loop < nr_pages; loop++, p++) {
1459 VM_WARN_ON_ONCE(PageReserved(p));
1460 __ClearPageOffline(p);
1461 set_page_count(p, 0);
1462 }
1463
1464 adjust_managed_page_count(page, nr_pages);
1465 } else {
1466 for (loop = 0; loop < nr_pages; loop++, p++) {
1467 __ClearPageReserved(p);
1468 set_page_count(p, 0);
1469 }
1470
1471 /* memblock adjusts totalram_pages() manually. */
1472 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1473 }
1474
1475 if (page_contains_unaccepted(page, order)) {
1476 if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1477 return;
1478
1479 accept_memory(page_to_phys(page), PAGE_SIZE << order);
1480 }
1481
1482 /*
1483 * Bypass PCP and place fresh pages right to the tail, primarily
1484 * relevant for memory onlining.
1485 */
1486 __free_pages_ok(page, order, FPI_TO_TAIL);
1487 }
1488
1489 /*
1490 * Check that the whole (or subset of) a pageblock given by the interval of
1491 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1492 * with the migration of free compaction scanner.
1493 *
1494 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1495 *
1496 * It's possible on some configurations to have a setup like node0 node1 node0
1497 * i.e. it's possible that all pages within a zones range of pages do not
1498 * belong to a single zone. We assume that a border between node0 and node1
1499 * can occur within a single pageblock, but not a node0 node1 node0
1500 * interleaving within a single pageblock. It is therefore sufficient to check
1501 * the first and last page of a pageblock and avoid checking each individual
1502 * page in a pageblock.
1503 *
1504 * Note: the function may return non-NULL struct page even for a page block
1505 * which contains a memory hole (i.e. there is no physical memory for a subset
1506 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1507 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1508 * even though the start pfn is online and valid. This should be safe most of
1509 * the time because struct pages are still initialized via init_unavailable_range()
1510 * and pfn walkers shouldn't touch any physical memory range for which they do
1511 * not recognize any specific metadata in struct pages.
1512 */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1513 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1514 unsigned long end_pfn, struct zone *zone)
1515 {
1516 struct page *start_page;
1517 struct page *end_page;
1518
1519 /* end_pfn is one past the range we are checking */
1520 end_pfn--;
1521
1522 if (!pfn_valid(end_pfn))
1523 return NULL;
1524
1525 start_page = pfn_to_online_page(start_pfn);
1526 if (!start_page)
1527 return NULL;
1528
1529 if (page_zone(start_page) != zone)
1530 return NULL;
1531
1532 end_page = pfn_to_page(end_pfn);
1533
1534 /* This gives a shorter code than deriving page_zone(end_page) */
1535 if (page_zone_id(start_page) != page_zone_id(end_page))
1536 return NULL;
1537
1538 return start_page;
1539 }
1540
1541 /*
1542 * The order of subdivision here is critical for the IO subsystem.
1543 * Please do not alter this order without good reasons and regression
1544 * testing. Specifically, as large blocks of memory are subdivided,
1545 * the order in which smaller blocks are delivered depends on the order
1546 * they're subdivided in this function. This is the primary factor
1547 * influencing the order in which pages are delivered to the IO
1548 * subsystem according to empirical testing, and this is also justified
1549 * by considering the behavior of a buddy system containing a single
1550 * large block of memory acted on by a series of small allocations.
1551 * This behavior is a critical factor in sglist merging's success.
1552 *
1553 * -- nyc
1554 */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1555 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1556 int high, int migratetype)
1557 {
1558 unsigned int size = 1 << high;
1559 unsigned int nr_added = 0;
1560
1561 while (high > low) {
1562 high--;
1563 size >>= 1;
1564 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1565
1566 /*
1567 * Mark as guard pages (or page), that will allow to
1568 * merge back to allocator when buddy will be freed.
1569 * Corresponding page table entries will not be touched,
1570 * pages will stay not present in virtual address space
1571 */
1572 if (set_page_guard(zone, &page[size], high))
1573 continue;
1574
1575 __add_to_free_list(&page[size], zone, high, migratetype, false);
1576 set_buddy_order(&page[size], high);
1577 nr_added += size;
1578 }
1579
1580 return nr_added;
1581 }
1582
page_del_and_expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1583 static __always_inline void page_del_and_expand(struct zone *zone,
1584 struct page *page, int low,
1585 int high, int migratetype)
1586 {
1587 int nr_pages = 1 << high;
1588
1589 __del_page_from_free_list(page, zone, high, migratetype);
1590 nr_pages -= expand(zone, page, low, high, migratetype);
1591 account_freepages(zone, -nr_pages, migratetype);
1592 }
1593
check_new_page_bad(struct page * page)1594 static void check_new_page_bad(struct page *page)
1595 {
1596 if (unlikely(PageHWPoison(page))) {
1597 /* Don't complain about hwpoisoned pages */
1598 if (PageBuddy(page))
1599 __ClearPageBuddy(page);
1600 return;
1601 }
1602
1603 bad_page(page,
1604 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1605 }
1606
1607 /*
1608 * This page is about to be returned from the page allocator
1609 */
check_new_page(struct page * page)1610 static bool check_new_page(struct page *page)
1611 {
1612 if (likely(page_expected_state(page,
1613 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1614 return false;
1615
1616 check_new_page_bad(page);
1617 return true;
1618 }
1619
check_new_pages(struct page * page,unsigned int order)1620 static inline bool check_new_pages(struct page *page, unsigned int order)
1621 {
1622 if (is_check_pages_enabled()) {
1623 for (int i = 0; i < (1 << order); i++) {
1624 struct page *p = page + i;
1625
1626 if (check_new_page(p))
1627 return true;
1628 }
1629 }
1630
1631 return false;
1632 }
1633
should_skip_kasan_unpoison(gfp_t flags)1634 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1635 {
1636 /* Don't skip if a software KASAN mode is enabled. */
1637 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1638 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1639 return false;
1640
1641 /* Skip, if hardware tag-based KASAN is not enabled. */
1642 if (!kasan_hw_tags_enabled())
1643 return true;
1644
1645 /*
1646 * With hardware tag-based KASAN enabled, skip if this has been
1647 * requested via __GFP_SKIP_KASAN.
1648 */
1649 return flags & __GFP_SKIP_KASAN;
1650 }
1651
should_skip_init(gfp_t flags)1652 static inline bool should_skip_init(gfp_t flags)
1653 {
1654 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1655 if (!kasan_hw_tags_enabled())
1656 return false;
1657
1658 /* For hardware tag-based KASAN, skip if requested. */
1659 return (flags & __GFP_SKIP_ZERO);
1660 }
1661
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1662 inline void post_alloc_hook(struct page *page, unsigned int order,
1663 gfp_t gfp_flags)
1664 {
1665 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1666 !should_skip_init(gfp_flags);
1667 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1668 int i;
1669
1670 set_page_private(page, 0);
1671
1672 arch_alloc_page(page, order);
1673 debug_pagealloc_map_pages(page, 1 << order);
1674
1675 /*
1676 * Page unpoisoning must happen before memory initialization.
1677 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1678 * allocations and the page unpoisoning code will complain.
1679 */
1680 kernel_unpoison_pages(page, 1 << order);
1681
1682 /*
1683 * As memory initialization might be integrated into KASAN,
1684 * KASAN unpoisoning and memory initializion code must be
1685 * kept together to avoid discrepancies in behavior.
1686 */
1687
1688 /*
1689 * If memory tags should be zeroed
1690 * (which happens only when memory should be initialized as well).
1691 */
1692 if (zero_tags) {
1693 /* Initialize both memory and memory tags. */
1694 for (i = 0; i != 1 << order; ++i)
1695 tag_clear_highpage(page + i);
1696
1697 /* Take note that memory was initialized by the loop above. */
1698 init = false;
1699 }
1700 if (!should_skip_kasan_unpoison(gfp_flags) &&
1701 kasan_unpoison_pages(page, order, init)) {
1702 /* Take note that memory was initialized by KASAN. */
1703 if (kasan_has_integrated_init())
1704 init = false;
1705 } else {
1706 /*
1707 * If memory tags have not been set by KASAN, reset the page
1708 * tags to ensure page_address() dereferencing does not fault.
1709 */
1710 for (i = 0; i != 1 << order; ++i)
1711 page_kasan_tag_reset(page + i);
1712 }
1713 /* If memory is still not initialized, initialize it now. */
1714 if (init)
1715 kernel_init_pages(page, 1 << order);
1716
1717 set_page_owner(page, order, gfp_flags);
1718 page_table_check_alloc(page, order);
1719 pgalloc_tag_add(page, current, 1 << order);
1720 }
1721
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1722 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1723 unsigned int alloc_flags)
1724 {
1725 post_alloc_hook(page, order, gfp_flags);
1726
1727 if (order && (gfp_flags & __GFP_COMP))
1728 prep_compound_page(page, order);
1729
1730 /*
1731 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1732 * allocate the page. The expectation is that the caller is taking
1733 * steps that will free more memory. The caller should avoid the page
1734 * being used for !PFMEMALLOC purposes.
1735 */
1736 if (alloc_flags & ALLOC_NO_WATERMARKS)
1737 set_page_pfmemalloc(page);
1738 else
1739 clear_page_pfmemalloc(page);
1740 }
1741
1742 /*
1743 * Go through the free lists for the given migratetype and remove
1744 * the smallest available page from the freelists
1745 */
1746 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1747 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1748 int migratetype)
1749 {
1750 unsigned int current_order;
1751 struct free_area *area;
1752 struct page *page;
1753
1754 /* Find a page of the appropriate size in the preferred list */
1755 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1756 area = &(zone->free_area[current_order]);
1757 page = get_page_from_free_area(area, migratetype);
1758 if (!page)
1759 continue;
1760
1761 page_del_and_expand(zone, page, order, current_order,
1762 migratetype);
1763 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1764 pcp_allowed_order(order) &&
1765 migratetype < MIGRATE_PCPTYPES);
1766 return page;
1767 }
1768
1769 return NULL;
1770 }
1771
1772
1773 /*
1774 * This array describes the order lists are fallen back to when
1775 * the free lists for the desirable migrate type are depleted
1776 *
1777 * The other migratetypes do not have fallbacks.
1778 */
1779 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1780 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1781 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1782 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1783 };
1784
1785 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1786 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1787 unsigned int order)
1788 {
1789 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1790 }
1791 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1792 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1793 unsigned int order) { return NULL; }
1794 #endif
1795
1796 /*
1797 * Change the type of a block and move all its free pages to that
1798 * type's freelist.
1799 */
__move_freepages_block(struct zone * zone,unsigned long start_pfn,int old_mt,int new_mt)1800 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1801 int old_mt, int new_mt)
1802 {
1803 struct page *page;
1804 unsigned long pfn, end_pfn;
1805 unsigned int order;
1806 int pages_moved = 0;
1807
1808 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1809 end_pfn = pageblock_end_pfn(start_pfn);
1810
1811 for (pfn = start_pfn; pfn < end_pfn;) {
1812 page = pfn_to_page(pfn);
1813 if (!PageBuddy(page)) {
1814 pfn++;
1815 continue;
1816 }
1817
1818 /* Make sure we are not inadvertently changing nodes */
1819 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1820 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1821
1822 order = buddy_order(page);
1823
1824 move_to_free_list(page, zone, order, old_mt, new_mt);
1825
1826 pfn += 1 << order;
1827 pages_moved += 1 << order;
1828 }
1829
1830 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1831
1832 return pages_moved;
1833 }
1834
prep_move_freepages_block(struct zone * zone,struct page * page,unsigned long * start_pfn,int * num_free,int * num_movable)1835 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1836 unsigned long *start_pfn,
1837 int *num_free, int *num_movable)
1838 {
1839 unsigned long pfn, start, end;
1840
1841 pfn = page_to_pfn(page);
1842 start = pageblock_start_pfn(pfn);
1843 end = pageblock_end_pfn(pfn);
1844
1845 /*
1846 * The caller only has the lock for @zone, don't touch ranges
1847 * that straddle into other zones. While we could move part of
1848 * the range that's inside the zone, this call is usually
1849 * accompanied by other operations such as migratetype updates
1850 * which also should be locked.
1851 */
1852 if (!zone_spans_pfn(zone, start))
1853 return false;
1854 if (!zone_spans_pfn(zone, end - 1))
1855 return false;
1856
1857 *start_pfn = start;
1858
1859 if (num_free) {
1860 *num_free = 0;
1861 *num_movable = 0;
1862 for (pfn = start; pfn < end;) {
1863 page = pfn_to_page(pfn);
1864 if (PageBuddy(page)) {
1865 int nr = 1 << buddy_order(page);
1866
1867 *num_free += nr;
1868 pfn += nr;
1869 continue;
1870 }
1871 /*
1872 * We assume that pages that could be isolated for
1873 * migration are movable. But we don't actually try
1874 * isolating, as that would be expensive.
1875 */
1876 if (PageLRU(page) || __PageMovable(page))
1877 (*num_movable)++;
1878 pfn++;
1879 }
1880 }
1881
1882 return true;
1883 }
1884
move_freepages_block(struct zone * zone,struct page * page,int old_mt,int new_mt)1885 static int move_freepages_block(struct zone *zone, struct page *page,
1886 int old_mt, int new_mt)
1887 {
1888 unsigned long start_pfn;
1889
1890 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1891 return -1;
1892
1893 return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1894 }
1895
1896 #ifdef CONFIG_MEMORY_ISOLATION
1897 /* Look for a buddy that straddles start_pfn */
find_large_buddy(unsigned long start_pfn)1898 static unsigned long find_large_buddy(unsigned long start_pfn)
1899 {
1900 int order = 0;
1901 struct page *page;
1902 unsigned long pfn = start_pfn;
1903
1904 while (!PageBuddy(page = pfn_to_page(pfn))) {
1905 /* Nothing found */
1906 if (++order > MAX_PAGE_ORDER)
1907 return start_pfn;
1908 pfn &= ~0UL << order;
1909 }
1910
1911 /*
1912 * Found a preceding buddy, but does it straddle?
1913 */
1914 if (pfn + (1 << buddy_order(page)) > start_pfn)
1915 return pfn;
1916
1917 /* Nothing found */
1918 return start_pfn;
1919 }
1920
1921 /**
1922 * move_freepages_block_isolate - move free pages in block for page isolation
1923 * @zone: the zone
1924 * @page: the pageblock page
1925 * @migratetype: migratetype to set on the pageblock
1926 *
1927 * This is similar to move_freepages_block(), but handles the special
1928 * case encountered in page isolation, where the block of interest
1929 * might be part of a larger buddy spanning multiple pageblocks.
1930 *
1931 * Unlike the regular page allocator path, which moves pages while
1932 * stealing buddies off the freelist, page isolation is interested in
1933 * arbitrary pfn ranges that may have overlapping buddies on both ends.
1934 *
1935 * This function handles that. Straddling buddies are split into
1936 * individual pageblocks. Only the block of interest is moved.
1937 *
1938 * Returns %true if pages could be moved, %false otherwise.
1939 */
move_freepages_block_isolate(struct zone * zone,struct page * page,int migratetype)1940 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1941 int migratetype)
1942 {
1943 unsigned long start_pfn, pfn;
1944
1945 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1946 return false;
1947
1948 /* No splits needed if buddies can't span multiple blocks */
1949 if (pageblock_order == MAX_PAGE_ORDER)
1950 goto move;
1951
1952 /* We're a tail block in a larger buddy */
1953 pfn = find_large_buddy(start_pfn);
1954 if (pfn != start_pfn) {
1955 struct page *buddy = pfn_to_page(pfn);
1956 int order = buddy_order(buddy);
1957
1958 del_page_from_free_list(buddy, zone, order,
1959 get_pfnblock_migratetype(buddy, pfn));
1960 set_pageblock_migratetype(page, migratetype);
1961 split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1962 return true;
1963 }
1964
1965 /* We're the starting block of a larger buddy */
1966 if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1967 int order = buddy_order(page);
1968
1969 del_page_from_free_list(page, zone, order,
1970 get_pfnblock_migratetype(page, pfn));
1971 set_pageblock_migratetype(page, migratetype);
1972 split_large_buddy(zone, page, pfn, order, FPI_NONE);
1973 return true;
1974 }
1975 move:
1976 __move_freepages_block(zone, start_pfn,
1977 get_pfnblock_migratetype(page, start_pfn),
1978 migratetype);
1979 return true;
1980 }
1981 #endif /* CONFIG_MEMORY_ISOLATION */
1982
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1983 static void change_pageblock_range(struct page *pageblock_page,
1984 int start_order, int migratetype)
1985 {
1986 int nr_pageblocks = 1 << (start_order - pageblock_order);
1987
1988 while (nr_pageblocks--) {
1989 set_pageblock_migratetype(pageblock_page, migratetype);
1990 pageblock_page += pageblock_nr_pages;
1991 }
1992 }
1993
boost_watermark(struct zone * zone)1994 static inline bool boost_watermark(struct zone *zone)
1995 {
1996 unsigned long max_boost;
1997
1998 if (!watermark_boost_factor)
1999 return false;
2000 /*
2001 * Don't bother in zones that are unlikely to produce results.
2002 * On small machines, including kdump capture kernels running
2003 * in a small area, boosting the watermark can cause an out of
2004 * memory situation immediately.
2005 */
2006 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2007 return false;
2008
2009 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2010 watermark_boost_factor, 10000);
2011
2012 /*
2013 * high watermark may be uninitialised if fragmentation occurs
2014 * very early in boot so do not boost. We do not fall
2015 * through and boost by pageblock_nr_pages as failing
2016 * allocations that early means that reclaim is not going
2017 * to help and it may even be impossible to reclaim the
2018 * boosted watermark resulting in a hang.
2019 */
2020 if (!max_boost)
2021 return false;
2022
2023 max_boost = max(pageblock_nr_pages, max_boost);
2024
2025 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2026 max_boost);
2027
2028 return true;
2029 }
2030
2031 /*
2032 * When we are falling back to another migratetype during allocation, should we
2033 * try to claim an entire block to satisfy further allocations, instead of
2034 * polluting multiple pageblocks?
2035 */
should_try_claim_block(unsigned int order,int start_mt)2036 static bool should_try_claim_block(unsigned int order, int start_mt)
2037 {
2038 /*
2039 * Leaving this order check is intended, although there is
2040 * relaxed order check in next check. The reason is that
2041 * we can actually claim the whole pageblock if this condition met,
2042 * but, below check doesn't guarantee it and that is just heuristic
2043 * so could be changed anytime.
2044 */
2045 if (order >= pageblock_order)
2046 return true;
2047
2048 /*
2049 * Above a certain threshold, always try to claim, as it's likely there
2050 * will be more free pages in the pageblock.
2051 */
2052 if (order >= pageblock_order / 2)
2053 return true;
2054
2055 /*
2056 * Unmovable/reclaimable allocations would cause permanent
2057 * fragmentations if they fell back to allocating from a movable block
2058 * (polluting it), so we try to claim the whole block regardless of the
2059 * allocation size. Later movable allocations can always steal from this
2060 * block, which is less problematic.
2061 */
2062 if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE)
2063 return true;
2064
2065 if (page_group_by_mobility_disabled)
2066 return true;
2067
2068 /*
2069 * Movable pages won't cause permanent fragmentation, so when you alloc
2070 * small pages, we just need to temporarily steal unmovable or
2071 * reclaimable pages that are closest to the request size. After a
2072 * while, memory compaction may occur to form large contiguous pages,
2073 * and the next movable allocation may not need to steal.
2074 */
2075 return false;
2076 }
2077
2078 /*
2079 * Check whether there is a suitable fallback freepage with requested order.
2080 * Sets *claim_block to instruct the caller whether it should convert a whole
2081 * pageblock to the returned migratetype.
2082 * If only_claim is true, this function returns fallback_mt only if
2083 * we would do this whole-block claiming. This would help to reduce
2084 * fragmentation due to mixed migratetype pages in one pageblock.
2085 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_claim,bool * claim_block)2086 int find_suitable_fallback(struct free_area *area, unsigned int order,
2087 int migratetype, bool only_claim, bool *claim_block)
2088 {
2089 int i;
2090 int fallback_mt;
2091
2092 if (area->nr_free == 0)
2093 return -1;
2094
2095 *claim_block = false;
2096 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2097 fallback_mt = fallbacks[migratetype][i];
2098 if (free_area_empty(area, fallback_mt))
2099 continue;
2100
2101 if (should_try_claim_block(order, migratetype))
2102 *claim_block = true;
2103
2104 if (*claim_block || !only_claim)
2105 return fallback_mt;
2106 }
2107
2108 return -1;
2109 }
2110
2111 /*
2112 * This function implements actual block claiming behaviour. If order is large
2113 * enough, we can claim the whole pageblock for the requested migratetype. If
2114 * not, we check the pageblock for constituent pages; if at least half of the
2115 * pages are free or compatible, we can still claim the whole block, so pages
2116 * freed in the future will be put on the correct free list.
2117 */
2118 static struct page *
try_to_claim_block(struct zone * zone,struct page * page,int current_order,int order,int start_type,int block_type,unsigned int alloc_flags)2119 try_to_claim_block(struct zone *zone, struct page *page,
2120 int current_order, int order, int start_type,
2121 int block_type, unsigned int alloc_flags)
2122 {
2123 int free_pages, movable_pages, alike_pages;
2124 unsigned long start_pfn;
2125
2126 /* Take ownership for orders >= pageblock_order */
2127 if (current_order >= pageblock_order) {
2128 unsigned int nr_added;
2129
2130 del_page_from_free_list(page, zone, current_order, block_type);
2131 change_pageblock_range(page, current_order, start_type);
2132 nr_added = expand(zone, page, order, current_order, start_type);
2133 account_freepages(zone, nr_added, start_type);
2134 return page;
2135 }
2136
2137 /*
2138 * Boost watermarks to increase reclaim pressure to reduce the
2139 * likelihood of future fallbacks. Wake kswapd now as the node
2140 * may be balanced overall and kswapd will not wake naturally.
2141 */
2142 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2143 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2144
2145 /* moving whole block can fail due to zone boundary conditions */
2146 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
2147 &movable_pages))
2148 return NULL;
2149
2150 /*
2151 * Determine how many pages are compatible with our allocation.
2152 * For movable allocation, it's the number of movable pages which
2153 * we just obtained. For other types it's a bit more tricky.
2154 */
2155 if (start_type == MIGRATE_MOVABLE) {
2156 alike_pages = movable_pages;
2157 } else {
2158 /*
2159 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2160 * to MOVABLE pageblock, consider all non-movable pages as
2161 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2162 * vice versa, be conservative since we can't distinguish the
2163 * exact migratetype of non-movable pages.
2164 */
2165 if (block_type == MIGRATE_MOVABLE)
2166 alike_pages = pageblock_nr_pages
2167 - (free_pages + movable_pages);
2168 else
2169 alike_pages = 0;
2170 }
2171 /*
2172 * If a sufficient number of pages in the block are either free or of
2173 * compatible migratability as our allocation, claim the whole block.
2174 */
2175 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2176 page_group_by_mobility_disabled) {
2177 __move_freepages_block(zone, start_pfn, block_type, start_type);
2178 return __rmqueue_smallest(zone, order, start_type);
2179 }
2180
2181 return NULL;
2182 }
2183
2184 /*
2185 * Try finding a free buddy page on the fallback list.
2186 *
2187 * This will attempt to claim a whole pageblock for the requested type
2188 * to ensure grouping of such requests in the future.
2189 *
2190 * If a whole block cannot be claimed, steal an individual page, regressing to
2191 * __rmqueue_smallest() logic to at least break up as little contiguity as
2192 * possible.
2193 *
2194 * The use of signed ints for order and current_order is a deliberate
2195 * deviation from the rest of this file, to make the for loop
2196 * condition simpler.
2197 *
2198 * Return the stolen page, or NULL if none can be found.
2199 */
2200 static __always_inline struct page *
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2201 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2202 unsigned int alloc_flags)
2203 {
2204 struct free_area *area;
2205 int current_order;
2206 int min_order = order;
2207 struct page *page;
2208 int fallback_mt;
2209 bool claim_block;
2210
2211 /*
2212 * Do not steal pages from freelists belonging to other pageblocks
2213 * i.e. orders < pageblock_order. If there are no local zones free,
2214 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2215 */
2216 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2217 min_order = pageblock_order;
2218
2219 /*
2220 * Find the largest available free page in the other list. This roughly
2221 * approximates finding the pageblock with the most free pages, which
2222 * would be too costly to do exactly.
2223 */
2224 for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2225 --current_order) {
2226 area = &(zone->free_area[current_order]);
2227 fallback_mt = find_suitable_fallback(area, current_order,
2228 start_migratetype, false, &claim_block);
2229 if (fallback_mt == -1)
2230 continue;
2231
2232 if (!claim_block)
2233 break;
2234
2235 page = get_page_from_free_area(area, fallback_mt);
2236 page = try_to_claim_block(zone, page, current_order, order,
2237 start_migratetype, fallback_mt,
2238 alloc_flags);
2239 if (page)
2240 goto got_one;
2241 }
2242
2243 if (alloc_flags & ALLOC_NOFRAGMENT)
2244 return NULL;
2245
2246 /* No luck claiming pageblock. Find the smallest fallback page */
2247 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2248 area = &(zone->free_area[current_order]);
2249 fallback_mt = find_suitable_fallback(area, current_order,
2250 start_migratetype, false, &claim_block);
2251 if (fallback_mt == -1)
2252 continue;
2253
2254 page = get_page_from_free_area(area, fallback_mt);
2255 page_del_and_expand(zone, page, order, current_order, fallback_mt);
2256 goto got_one;
2257 }
2258
2259 return NULL;
2260
2261 got_one:
2262 trace_mm_page_alloc_extfrag(page, order, current_order,
2263 start_migratetype, fallback_mt);
2264
2265 return page;
2266 }
2267
2268 /*
2269 * Do the hard work of removing an element from the buddy allocator.
2270 * Call me with the zone->lock already held.
2271 */
2272 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2273 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2274 unsigned int alloc_flags)
2275 {
2276 struct page *page;
2277
2278 if (IS_ENABLED(CONFIG_CMA)) {
2279 /*
2280 * Balance movable allocations between regular and CMA areas by
2281 * allocating from CMA when over half of the zone's free memory
2282 * is in the CMA area.
2283 */
2284 if (alloc_flags & ALLOC_CMA &&
2285 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2286 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2287 page = __rmqueue_cma_fallback(zone, order);
2288 if (page)
2289 return page;
2290 }
2291 }
2292
2293 page = __rmqueue_smallest(zone, order, migratetype);
2294 if (unlikely(!page)) {
2295 if (alloc_flags & ALLOC_CMA)
2296 page = __rmqueue_cma_fallback(zone, order);
2297
2298 if (!page)
2299 page = __rmqueue_fallback(zone, order, migratetype,
2300 alloc_flags);
2301 }
2302 return page;
2303 }
2304
2305 /*
2306 * Obtain a specified number of elements from the buddy allocator, all under
2307 * a single hold of the lock, for efficiency. Add them to the supplied list.
2308 * Returns the number of new pages which were placed at *list.
2309 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2310 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2311 unsigned long count, struct list_head *list,
2312 int migratetype, unsigned int alloc_flags)
2313 {
2314 unsigned long flags;
2315 int i;
2316
2317 if (!spin_trylock_irqsave(&zone->lock, flags)) {
2318 if (unlikely(alloc_flags & ALLOC_TRYLOCK))
2319 return 0;
2320 spin_lock_irqsave(&zone->lock, flags);
2321 }
2322 for (i = 0; i < count; ++i) {
2323 struct page *page = __rmqueue(zone, order, migratetype,
2324 alloc_flags);
2325 if (unlikely(page == NULL))
2326 break;
2327
2328 /*
2329 * Split buddy pages returned by expand() are received here in
2330 * physical page order. The page is added to the tail of
2331 * caller's list. From the callers perspective, the linked list
2332 * is ordered by page number under some conditions. This is
2333 * useful for IO devices that can forward direction from the
2334 * head, thus also in the physical page order. This is useful
2335 * for IO devices that can merge IO requests if the physical
2336 * pages are ordered properly.
2337 */
2338 list_add_tail(&page->pcp_list, list);
2339 }
2340 spin_unlock_irqrestore(&zone->lock, flags);
2341
2342 return i;
2343 }
2344
2345 /*
2346 * Called from the vmstat counter updater to decay the PCP high.
2347 * Return whether there are addition works to do.
2348 */
decay_pcp_high(struct zone * zone,struct per_cpu_pages * pcp)2349 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2350 {
2351 int high_min, to_drain, batch;
2352 int todo = 0;
2353
2354 high_min = READ_ONCE(pcp->high_min);
2355 batch = READ_ONCE(pcp->batch);
2356 /*
2357 * Decrease pcp->high periodically to try to free possible
2358 * idle PCP pages. And, avoid to free too many pages to
2359 * control latency. This caps pcp->high decrement too.
2360 */
2361 if (pcp->high > high_min) {
2362 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2363 pcp->high - (pcp->high >> 3), high_min);
2364 if (pcp->high > high_min)
2365 todo++;
2366 }
2367
2368 to_drain = pcp->count - pcp->high;
2369 if (to_drain > 0) {
2370 spin_lock(&pcp->lock);
2371 free_pcppages_bulk(zone, to_drain, pcp, 0);
2372 spin_unlock(&pcp->lock);
2373 todo++;
2374 }
2375
2376 return todo;
2377 }
2378
2379 #ifdef CONFIG_NUMA
2380 /*
2381 * Called from the vmstat counter updater to drain pagesets of this
2382 * currently executing processor on remote nodes after they have
2383 * expired.
2384 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2385 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2386 {
2387 int to_drain, batch;
2388
2389 batch = READ_ONCE(pcp->batch);
2390 to_drain = min(pcp->count, batch);
2391 if (to_drain > 0) {
2392 spin_lock(&pcp->lock);
2393 free_pcppages_bulk(zone, to_drain, pcp, 0);
2394 spin_unlock(&pcp->lock);
2395 }
2396 }
2397 #endif
2398
2399 /*
2400 * Drain pcplists of the indicated processor and zone.
2401 */
drain_pages_zone(unsigned int cpu,struct zone * zone)2402 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2403 {
2404 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2405 int count;
2406
2407 do {
2408 spin_lock(&pcp->lock);
2409 count = pcp->count;
2410 if (count) {
2411 int to_drain = min(count,
2412 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2413
2414 free_pcppages_bulk(zone, to_drain, pcp, 0);
2415 count -= to_drain;
2416 }
2417 spin_unlock(&pcp->lock);
2418 } while (count);
2419 }
2420
2421 /*
2422 * Drain pcplists of all zones on the indicated processor.
2423 */
drain_pages(unsigned int cpu)2424 static void drain_pages(unsigned int cpu)
2425 {
2426 struct zone *zone;
2427
2428 for_each_populated_zone(zone) {
2429 drain_pages_zone(cpu, zone);
2430 }
2431 }
2432
2433 /*
2434 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2435 */
drain_local_pages(struct zone * zone)2436 void drain_local_pages(struct zone *zone)
2437 {
2438 int cpu = smp_processor_id();
2439
2440 if (zone)
2441 drain_pages_zone(cpu, zone);
2442 else
2443 drain_pages(cpu);
2444 }
2445
2446 /*
2447 * The implementation of drain_all_pages(), exposing an extra parameter to
2448 * drain on all cpus.
2449 *
2450 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2451 * not empty. The check for non-emptiness can however race with a free to
2452 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2453 * that need the guarantee that every CPU has drained can disable the
2454 * optimizing racy check.
2455 */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2456 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2457 {
2458 int cpu;
2459
2460 /*
2461 * Allocate in the BSS so we won't require allocation in
2462 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2463 */
2464 static cpumask_t cpus_with_pcps;
2465
2466 /*
2467 * Do not drain if one is already in progress unless it's specific to
2468 * a zone. Such callers are primarily CMA and memory hotplug and need
2469 * the drain to be complete when the call returns.
2470 */
2471 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2472 if (!zone)
2473 return;
2474 mutex_lock(&pcpu_drain_mutex);
2475 }
2476
2477 /*
2478 * We don't care about racing with CPU hotplug event
2479 * as offline notification will cause the notified
2480 * cpu to drain that CPU pcps and on_each_cpu_mask
2481 * disables preemption as part of its processing
2482 */
2483 for_each_online_cpu(cpu) {
2484 struct per_cpu_pages *pcp;
2485 struct zone *z;
2486 bool has_pcps = false;
2487
2488 if (force_all_cpus) {
2489 /*
2490 * The pcp.count check is racy, some callers need a
2491 * guarantee that no cpu is missed.
2492 */
2493 has_pcps = true;
2494 } else if (zone) {
2495 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2496 if (pcp->count)
2497 has_pcps = true;
2498 } else {
2499 for_each_populated_zone(z) {
2500 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2501 if (pcp->count) {
2502 has_pcps = true;
2503 break;
2504 }
2505 }
2506 }
2507
2508 if (has_pcps)
2509 cpumask_set_cpu(cpu, &cpus_with_pcps);
2510 else
2511 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2512 }
2513
2514 for_each_cpu(cpu, &cpus_with_pcps) {
2515 if (zone)
2516 drain_pages_zone(cpu, zone);
2517 else
2518 drain_pages(cpu);
2519 }
2520
2521 mutex_unlock(&pcpu_drain_mutex);
2522 }
2523
2524 /*
2525 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2526 *
2527 * When zone parameter is non-NULL, spill just the single zone's pages.
2528 */
drain_all_pages(struct zone * zone)2529 void drain_all_pages(struct zone *zone)
2530 {
2531 __drain_all_pages(zone, false);
2532 }
2533
nr_pcp_free(struct per_cpu_pages * pcp,int batch,int high,bool free_high)2534 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2535 {
2536 int min_nr_free, max_nr_free;
2537
2538 /* Free as much as possible if batch freeing high-order pages. */
2539 if (unlikely(free_high))
2540 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2541
2542 /* Check for PCP disabled or boot pageset */
2543 if (unlikely(high < batch))
2544 return 1;
2545
2546 /* Leave at least pcp->batch pages on the list */
2547 min_nr_free = batch;
2548 max_nr_free = high - batch;
2549
2550 /*
2551 * Increase the batch number to the number of the consecutive
2552 * freed pages to reduce zone lock contention.
2553 */
2554 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2555
2556 return batch;
2557 }
2558
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,int batch,bool free_high)2559 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2560 int batch, bool free_high)
2561 {
2562 int high, high_min, high_max;
2563
2564 high_min = READ_ONCE(pcp->high_min);
2565 high_max = READ_ONCE(pcp->high_max);
2566 high = pcp->high = clamp(pcp->high, high_min, high_max);
2567
2568 if (unlikely(!high))
2569 return 0;
2570
2571 if (unlikely(free_high)) {
2572 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2573 high_min);
2574 return 0;
2575 }
2576
2577 /*
2578 * If reclaim is active, limit the number of pages that can be
2579 * stored on pcp lists
2580 */
2581 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2582 int free_count = max_t(int, pcp->free_count, batch);
2583
2584 pcp->high = max(high - free_count, high_min);
2585 return min(batch << 2, pcp->high);
2586 }
2587
2588 if (high_min == high_max)
2589 return high;
2590
2591 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2592 int free_count = max_t(int, pcp->free_count, batch);
2593
2594 pcp->high = max(high - free_count, high_min);
2595 high = max(pcp->count, high_min);
2596 } else if (pcp->count >= high) {
2597 int need_high = pcp->free_count + batch;
2598
2599 /* pcp->high should be large enough to hold batch freed pages */
2600 if (pcp->high < need_high)
2601 pcp->high = clamp(need_high, high_min, high_max);
2602 }
2603
2604 return high;
2605 }
2606
free_frozen_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order,fpi_t fpi_flags)2607 static void free_frozen_page_commit(struct zone *zone,
2608 struct per_cpu_pages *pcp, struct page *page, int migratetype,
2609 unsigned int order, fpi_t fpi_flags)
2610 {
2611 int high, batch;
2612 int pindex;
2613 bool free_high = false;
2614
2615 /*
2616 * On freeing, reduce the number of pages that are batch allocated.
2617 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2618 * allocations.
2619 */
2620 pcp->alloc_factor >>= 1;
2621 __count_vm_events(PGFREE, 1 << order);
2622 pindex = order_to_pindex(migratetype, order);
2623 list_add(&page->pcp_list, &pcp->lists[pindex]);
2624 pcp->count += 1 << order;
2625
2626 batch = READ_ONCE(pcp->batch);
2627 /*
2628 * As high-order pages other than THP's stored on PCP can contribute
2629 * to fragmentation, limit the number stored when PCP is heavily
2630 * freeing without allocation. The remainder after bulk freeing
2631 * stops will be drained from vmstat refresh context.
2632 */
2633 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2634 free_high = (pcp->free_count >= batch &&
2635 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2636 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2637 pcp->count >= READ_ONCE(batch)));
2638 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2639 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2640 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2641 }
2642 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2643 pcp->free_count += (1 << order);
2644
2645 if (unlikely(fpi_flags & FPI_TRYLOCK)) {
2646 /*
2647 * Do not attempt to take a zone lock. Let pcp->count get
2648 * over high mark temporarily.
2649 */
2650 return;
2651 }
2652 high = nr_pcp_high(pcp, zone, batch, free_high);
2653 if (pcp->count >= high) {
2654 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2655 pcp, pindex);
2656 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2657 zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2658 ZONE_MOVABLE, 0))
2659 clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2660 }
2661 }
2662
2663 /*
2664 * Free a pcp page
2665 */
__free_frozen_pages(struct page * page,unsigned int order,fpi_t fpi_flags)2666 static void __free_frozen_pages(struct page *page, unsigned int order,
2667 fpi_t fpi_flags)
2668 {
2669 unsigned long __maybe_unused UP_flags;
2670 struct per_cpu_pages *pcp;
2671 struct zone *zone;
2672 unsigned long pfn = page_to_pfn(page);
2673 int migratetype;
2674
2675 if (!pcp_allowed_order(order)) {
2676 __free_pages_ok(page, order, fpi_flags);
2677 return;
2678 }
2679
2680 if (!free_pages_prepare(page, order))
2681 return;
2682
2683 /*
2684 * We only track unmovable, reclaimable and movable on pcp lists.
2685 * Place ISOLATE pages on the isolated list because they are being
2686 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2687 * get those areas back if necessary. Otherwise, we may have to free
2688 * excessively into the page allocator
2689 */
2690 zone = page_zone(page);
2691 migratetype = get_pfnblock_migratetype(page, pfn);
2692 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2693 if (unlikely(is_migrate_isolate(migratetype))) {
2694 free_one_page(zone, page, pfn, order, fpi_flags);
2695 return;
2696 }
2697 migratetype = MIGRATE_MOVABLE;
2698 }
2699
2700 if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT)
2701 && (in_nmi() || in_hardirq()))) {
2702 add_page_to_zone_llist(zone, page, order);
2703 return;
2704 }
2705 pcp_trylock_prepare(UP_flags);
2706 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2707 if (pcp) {
2708 free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags);
2709 pcp_spin_unlock(pcp);
2710 } else {
2711 free_one_page(zone, page, pfn, order, fpi_flags);
2712 }
2713 pcp_trylock_finish(UP_flags);
2714 }
2715
free_frozen_pages(struct page * page,unsigned int order)2716 void free_frozen_pages(struct page *page, unsigned int order)
2717 {
2718 __free_frozen_pages(page, order, FPI_NONE);
2719 }
2720
2721 /*
2722 * Free a batch of folios
2723 */
free_unref_folios(struct folio_batch * folios)2724 void free_unref_folios(struct folio_batch *folios)
2725 {
2726 unsigned long __maybe_unused UP_flags;
2727 struct per_cpu_pages *pcp = NULL;
2728 struct zone *locked_zone = NULL;
2729 int i, j;
2730
2731 /* Prepare folios for freeing */
2732 for (i = 0, j = 0; i < folios->nr; i++) {
2733 struct folio *folio = folios->folios[i];
2734 unsigned long pfn = folio_pfn(folio);
2735 unsigned int order = folio_order(folio);
2736
2737 if (!free_pages_prepare(&folio->page, order))
2738 continue;
2739 /*
2740 * Free orders not handled on the PCP directly to the
2741 * allocator.
2742 */
2743 if (!pcp_allowed_order(order)) {
2744 free_one_page(folio_zone(folio), &folio->page,
2745 pfn, order, FPI_NONE);
2746 continue;
2747 }
2748 folio->private = (void *)(unsigned long)order;
2749 if (j != i)
2750 folios->folios[j] = folio;
2751 j++;
2752 }
2753 folios->nr = j;
2754
2755 for (i = 0; i < folios->nr; i++) {
2756 struct folio *folio = folios->folios[i];
2757 struct zone *zone = folio_zone(folio);
2758 unsigned long pfn = folio_pfn(folio);
2759 unsigned int order = (unsigned long)folio->private;
2760 int migratetype;
2761
2762 folio->private = NULL;
2763 migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2764
2765 /* Different zone requires a different pcp lock */
2766 if (zone != locked_zone ||
2767 is_migrate_isolate(migratetype)) {
2768 if (pcp) {
2769 pcp_spin_unlock(pcp);
2770 pcp_trylock_finish(UP_flags);
2771 locked_zone = NULL;
2772 pcp = NULL;
2773 }
2774
2775 /*
2776 * Free isolated pages directly to the
2777 * allocator, see comment in free_frozen_pages.
2778 */
2779 if (is_migrate_isolate(migratetype)) {
2780 free_one_page(zone, &folio->page, pfn,
2781 order, FPI_NONE);
2782 continue;
2783 }
2784
2785 /*
2786 * trylock is necessary as folios may be getting freed
2787 * from IRQ or SoftIRQ context after an IO completion.
2788 */
2789 pcp_trylock_prepare(UP_flags);
2790 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2791 if (unlikely(!pcp)) {
2792 pcp_trylock_finish(UP_flags);
2793 free_one_page(zone, &folio->page, pfn,
2794 order, FPI_NONE);
2795 continue;
2796 }
2797 locked_zone = zone;
2798 }
2799
2800 /*
2801 * Non-isolated types over MIGRATE_PCPTYPES get added
2802 * to the MIGRATE_MOVABLE pcp list.
2803 */
2804 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2805 migratetype = MIGRATE_MOVABLE;
2806
2807 trace_mm_page_free_batched(&folio->page);
2808 free_frozen_page_commit(zone, pcp, &folio->page, migratetype,
2809 order, FPI_NONE);
2810 }
2811
2812 if (pcp) {
2813 pcp_spin_unlock(pcp);
2814 pcp_trylock_finish(UP_flags);
2815 }
2816 folio_batch_reinit(folios);
2817 }
2818
2819 /*
2820 * split_page takes a non-compound higher-order page, and splits it into
2821 * n (1<<order) sub-pages: page[0..n]
2822 * Each sub-page must be freed individually.
2823 *
2824 * Note: this is probably too low level an operation for use in drivers.
2825 * Please consult with lkml before using this in your driver.
2826 */
split_page(struct page * page,unsigned int order)2827 void split_page(struct page *page, unsigned int order)
2828 {
2829 int i;
2830
2831 VM_BUG_ON_PAGE(PageCompound(page), page);
2832 VM_BUG_ON_PAGE(!page_count(page), page);
2833
2834 for (i = 1; i < (1 << order); i++)
2835 set_page_refcounted(page + i);
2836 split_page_owner(page, order, 0);
2837 pgalloc_tag_split(page_folio(page), order, 0);
2838 split_page_memcg(page, order);
2839 }
2840 EXPORT_SYMBOL_GPL(split_page);
2841
__isolate_free_page(struct page * page,unsigned int order)2842 int __isolate_free_page(struct page *page, unsigned int order)
2843 {
2844 struct zone *zone = page_zone(page);
2845 int mt = get_pageblock_migratetype(page);
2846
2847 if (!is_migrate_isolate(mt)) {
2848 unsigned long watermark;
2849 /*
2850 * Obey watermarks as if the page was being allocated. We can
2851 * emulate a high-order watermark check with a raised order-0
2852 * watermark, because we already know our high-order page
2853 * exists.
2854 */
2855 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2856 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2857 return 0;
2858 }
2859
2860 del_page_from_free_list(page, zone, order, mt);
2861
2862 /*
2863 * Set the pageblock if the isolated page is at least half of a
2864 * pageblock
2865 */
2866 if (order >= pageblock_order - 1) {
2867 struct page *endpage = page + (1 << order) - 1;
2868 for (; page < endpage; page += pageblock_nr_pages) {
2869 int mt = get_pageblock_migratetype(page);
2870 /*
2871 * Only change normal pageblocks (i.e., they can merge
2872 * with others)
2873 */
2874 if (migratetype_is_mergeable(mt))
2875 move_freepages_block(zone, page, mt,
2876 MIGRATE_MOVABLE);
2877 }
2878 }
2879
2880 return 1UL << order;
2881 }
2882
2883 /**
2884 * __putback_isolated_page - Return a now-isolated page back where we got it
2885 * @page: Page that was isolated
2886 * @order: Order of the isolated page
2887 * @mt: The page's pageblock's migratetype
2888 *
2889 * This function is meant to return a page pulled from the free lists via
2890 * __isolate_free_page back to the free lists they were pulled from.
2891 */
__putback_isolated_page(struct page * page,unsigned int order,int mt)2892 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2893 {
2894 struct zone *zone = page_zone(page);
2895
2896 /* zone lock should be held when this function is called */
2897 lockdep_assert_held(&zone->lock);
2898
2899 /* Return isolated page to tail of freelist. */
2900 __free_one_page(page, page_to_pfn(page), zone, order, mt,
2901 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2902 }
2903
2904 /*
2905 * Update NUMA hit/miss statistics
2906 */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)2907 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2908 long nr_account)
2909 {
2910 #ifdef CONFIG_NUMA
2911 enum numa_stat_item local_stat = NUMA_LOCAL;
2912
2913 /* skip numa counters update if numa stats is disabled */
2914 if (!static_branch_likely(&vm_numa_stat_key))
2915 return;
2916
2917 if (zone_to_nid(z) != numa_node_id())
2918 local_stat = NUMA_OTHER;
2919
2920 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2921 __count_numa_events(z, NUMA_HIT, nr_account);
2922 else {
2923 __count_numa_events(z, NUMA_MISS, nr_account);
2924 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2925 }
2926 __count_numa_events(z, local_stat, nr_account);
2927 #endif
2928 }
2929
2930 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)2931 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2932 unsigned int order, unsigned int alloc_flags,
2933 int migratetype)
2934 {
2935 struct page *page;
2936 unsigned long flags;
2937
2938 do {
2939 page = NULL;
2940 if (!spin_trylock_irqsave(&zone->lock, flags)) {
2941 if (unlikely(alloc_flags & ALLOC_TRYLOCK))
2942 return NULL;
2943 spin_lock_irqsave(&zone->lock, flags);
2944 }
2945 if (alloc_flags & ALLOC_HIGHATOMIC)
2946 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2947 if (!page) {
2948 page = __rmqueue(zone, order, migratetype, alloc_flags);
2949
2950 /*
2951 * If the allocation fails, allow OOM handling and
2952 * order-0 (atomic) allocs access to HIGHATOMIC
2953 * reserves as failing now is worse than failing a
2954 * high-order atomic allocation in the future.
2955 */
2956 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2957 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2958
2959 if (!page) {
2960 spin_unlock_irqrestore(&zone->lock, flags);
2961 return NULL;
2962 }
2963 }
2964 spin_unlock_irqrestore(&zone->lock, flags);
2965 } while (check_new_pages(page, order));
2966
2967 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2968 zone_statistics(preferred_zone, zone, 1);
2969
2970 return page;
2971 }
2972
nr_pcp_alloc(struct per_cpu_pages * pcp,struct zone * zone,int order)2973 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2974 {
2975 int high, base_batch, batch, max_nr_alloc;
2976 int high_max, high_min;
2977
2978 base_batch = READ_ONCE(pcp->batch);
2979 high_min = READ_ONCE(pcp->high_min);
2980 high_max = READ_ONCE(pcp->high_max);
2981 high = pcp->high = clamp(pcp->high, high_min, high_max);
2982
2983 /* Check for PCP disabled or boot pageset */
2984 if (unlikely(high < base_batch))
2985 return 1;
2986
2987 if (order)
2988 batch = base_batch;
2989 else
2990 batch = (base_batch << pcp->alloc_factor);
2991
2992 /*
2993 * If we had larger pcp->high, we could avoid to allocate from
2994 * zone.
2995 */
2996 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2997 high = pcp->high = min(high + batch, high_max);
2998
2999 if (!order) {
3000 max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
3001 /*
3002 * Double the number of pages allocated each time there is
3003 * subsequent allocation of order-0 pages without any freeing.
3004 */
3005 if (batch <= max_nr_alloc &&
3006 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
3007 pcp->alloc_factor++;
3008 batch = min(batch, max_nr_alloc);
3009 }
3010
3011 /*
3012 * Scale batch relative to order if batch implies free pages
3013 * can be stored on the PCP. Batch can be 1 for small zones or
3014 * for boot pagesets which should never store free pages as
3015 * the pages may belong to arbitrary zones.
3016 */
3017 if (batch > 1)
3018 batch = max(batch >> order, 2);
3019
3020 return batch;
3021 }
3022
3023 /* Remove page from the per-cpu list, caller must protect the list */
3024 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)3025 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3026 int migratetype,
3027 unsigned int alloc_flags,
3028 struct per_cpu_pages *pcp,
3029 struct list_head *list)
3030 {
3031 struct page *page;
3032
3033 do {
3034 if (list_empty(list)) {
3035 int batch = nr_pcp_alloc(pcp, zone, order);
3036 int alloced;
3037
3038 alloced = rmqueue_bulk(zone, order,
3039 batch, list,
3040 migratetype, alloc_flags);
3041
3042 pcp->count += alloced << order;
3043 if (unlikely(list_empty(list)))
3044 return NULL;
3045 }
3046
3047 page = list_first_entry(list, struct page, pcp_list);
3048 list_del(&page->pcp_list);
3049 pcp->count -= 1 << order;
3050 } while (check_new_pages(page, order));
3051
3052 return page;
3053 }
3054
3055 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3056 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3057 struct zone *zone, unsigned int order,
3058 int migratetype, unsigned int alloc_flags)
3059 {
3060 struct per_cpu_pages *pcp;
3061 struct list_head *list;
3062 struct page *page;
3063 unsigned long __maybe_unused UP_flags;
3064
3065 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3066 pcp_trylock_prepare(UP_flags);
3067 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3068 if (!pcp) {
3069 pcp_trylock_finish(UP_flags);
3070 return NULL;
3071 }
3072
3073 /*
3074 * On allocation, reduce the number of pages that are batch freed.
3075 * See nr_pcp_free() where free_factor is increased for subsequent
3076 * frees.
3077 */
3078 pcp->free_count >>= 1;
3079 list = &pcp->lists[order_to_pindex(migratetype, order)];
3080 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3081 pcp_spin_unlock(pcp);
3082 pcp_trylock_finish(UP_flags);
3083 if (page) {
3084 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3085 zone_statistics(preferred_zone, zone, 1);
3086 }
3087 return page;
3088 }
3089
3090 /*
3091 * Allocate a page from the given zone.
3092 * Use pcplists for THP or "cheap" high-order allocations.
3093 */
3094
3095 /*
3096 * Do not instrument rmqueue() with KMSAN. This function may call
3097 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3098 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3099 * may call rmqueue() again, which will result in a deadlock.
3100 */
3101 __no_sanitize_memory
3102 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3103 struct page *rmqueue(struct zone *preferred_zone,
3104 struct zone *zone, unsigned int order,
3105 gfp_t gfp_flags, unsigned int alloc_flags,
3106 int migratetype)
3107 {
3108 struct page *page;
3109
3110 if (likely(pcp_allowed_order(order))) {
3111 page = rmqueue_pcplist(preferred_zone, zone, order,
3112 migratetype, alloc_flags);
3113 if (likely(page))
3114 goto out;
3115 }
3116
3117 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3118 migratetype);
3119
3120 out:
3121 /* Separate test+clear to avoid unnecessary atomics */
3122 if ((alloc_flags & ALLOC_KSWAPD) &&
3123 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3124 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3125 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3126 }
3127
3128 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3129 return page;
3130 }
3131
3132 /*
3133 * Reserve the pageblock(s) surrounding an allocation request for
3134 * exclusive use of high-order atomic allocations if there are no
3135 * empty page blocks that contain a page with a suitable order
3136 */
reserve_highatomic_pageblock(struct page * page,int order,struct zone * zone)3137 static void reserve_highatomic_pageblock(struct page *page, int order,
3138 struct zone *zone)
3139 {
3140 int mt;
3141 unsigned long max_managed, flags;
3142
3143 /*
3144 * The number reserved as: minimum is 1 pageblock, maximum is
3145 * roughly 1% of a zone. But if 1% of a zone falls below a
3146 * pageblock size, then don't reserve any pageblocks.
3147 * Check is race-prone but harmless.
3148 */
3149 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
3150 return;
3151 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
3152 if (zone->nr_reserved_highatomic >= max_managed)
3153 return;
3154
3155 spin_lock_irqsave(&zone->lock, flags);
3156
3157 /* Recheck the nr_reserved_highatomic limit under the lock */
3158 if (zone->nr_reserved_highatomic >= max_managed)
3159 goto out_unlock;
3160
3161 /* Yoink! */
3162 mt = get_pageblock_migratetype(page);
3163 /* Only reserve normal pageblocks (i.e., they can merge with others) */
3164 if (!migratetype_is_mergeable(mt))
3165 goto out_unlock;
3166
3167 if (order < pageblock_order) {
3168 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
3169 goto out_unlock;
3170 zone->nr_reserved_highatomic += pageblock_nr_pages;
3171 } else {
3172 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
3173 zone->nr_reserved_highatomic += 1 << order;
3174 }
3175
3176 out_unlock:
3177 spin_unlock_irqrestore(&zone->lock, flags);
3178 }
3179
3180 /*
3181 * Used when an allocation is about to fail under memory pressure. This
3182 * potentially hurts the reliability of high-order allocations when under
3183 * intense memory pressure but failed atomic allocations should be easier
3184 * to recover from than an OOM.
3185 *
3186 * If @force is true, try to unreserve pageblocks even though highatomic
3187 * pageblock is exhausted.
3188 */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)3189 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
3190 bool force)
3191 {
3192 struct zonelist *zonelist = ac->zonelist;
3193 unsigned long flags;
3194 struct zoneref *z;
3195 struct zone *zone;
3196 struct page *page;
3197 int order;
3198 int ret;
3199
3200 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
3201 ac->nodemask) {
3202 /*
3203 * Preserve at least one pageblock unless memory pressure
3204 * is really high.
3205 */
3206 if (!force && zone->nr_reserved_highatomic <=
3207 pageblock_nr_pages)
3208 continue;
3209
3210 spin_lock_irqsave(&zone->lock, flags);
3211 for (order = 0; order < NR_PAGE_ORDERS; order++) {
3212 struct free_area *area = &(zone->free_area[order]);
3213 unsigned long size;
3214
3215 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
3216 if (!page)
3217 continue;
3218
3219 size = max(pageblock_nr_pages, 1UL << order);
3220 /*
3221 * It should never happen but changes to
3222 * locking could inadvertently allow a per-cpu
3223 * drain to add pages to MIGRATE_HIGHATOMIC
3224 * while unreserving so be safe and watch for
3225 * underflows.
3226 */
3227 if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic))
3228 size = zone->nr_reserved_highatomic;
3229 zone->nr_reserved_highatomic -= size;
3230
3231 /*
3232 * Convert to ac->migratetype and avoid the normal
3233 * pageblock stealing heuristics. Minimally, the caller
3234 * is doing the work and needs the pages. More
3235 * importantly, if the block was always converted to
3236 * MIGRATE_UNMOVABLE or another type then the number
3237 * of pageblocks that cannot be completely freed
3238 * may increase.
3239 */
3240 if (order < pageblock_order)
3241 ret = move_freepages_block(zone, page,
3242 MIGRATE_HIGHATOMIC,
3243 ac->migratetype);
3244 else {
3245 move_to_free_list(page, zone, order,
3246 MIGRATE_HIGHATOMIC,
3247 ac->migratetype);
3248 change_pageblock_range(page, order,
3249 ac->migratetype);
3250 ret = 1;
3251 }
3252 /*
3253 * Reserving the block(s) already succeeded,
3254 * so this should not fail on zone boundaries.
3255 */
3256 WARN_ON_ONCE(ret == -1);
3257 if (ret > 0) {
3258 spin_unlock_irqrestore(&zone->lock, flags);
3259 return ret;
3260 }
3261 }
3262 spin_unlock_irqrestore(&zone->lock, flags);
3263 }
3264
3265 return false;
3266 }
3267
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)3268 static inline long __zone_watermark_unusable_free(struct zone *z,
3269 unsigned int order, unsigned int alloc_flags)
3270 {
3271 long unusable_free = (1 << order) - 1;
3272
3273 /*
3274 * If the caller does not have rights to reserves below the min
3275 * watermark then subtract the free pages reserved for highatomic.
3276 */
3277 if (likely(!(alloc_flags & ALLOC_RESERVES)))
3278 unusable_free += READ_ONCE(z->nr_free_highatomic);
3279
3280 #ifdef CONFIG_CMA
3281 /* If allocation can't use CMA areas don't use free CMA pages */
3282 if (!(alloc_flags & ALLOC_CMA))
3283 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3284 #endif
3285
3286 return unusable_free;
3287 }
3288
3289 /*
3290 * Return true if free base pages are above 'mark'. For high-order checks it
3291 * will return true of the order-0 watermark is reached and there is at least
3292 * one free page of a suitable size. Checking now avoids taking the zone lock
3293 * to check in the allocation paths if no pages are free.
3294 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)3295 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3296 int highest_zoneidx, unsigned int alloc_flags,
3297 long free_pages)
3298 {
3299 long min = mark;
3300 int o;
3301
3302 /* free_pages may go negative - that's OK */
3303 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3304
3305 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3306 /*
3307 * __GFP_HIGH allows access to 50% of the min reserve as well
3308 * as OOM.
3309 */
3310 if (alloc_flags & ALLOC_MIN_RESERVE) {
3311 min -= min / 2;
3312
3313 /*
3314 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3315 * access more reserves than just __GFP_HIGH. Other
3316 * non-blocking allocations requests such as GFP_NOWAIT
3317 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3318 * access to the min reserve.
3319 */
3320 if (alloc_flags & ALLOC_NON_BLOCK)
3321 min -= min / 4;
3322 }
3323
3324 /*
3325 * OOM victims can try even harder than the normal reserve
3326 * users on the grounds that it's definitely going to be in
3327 * the exit path shortly and free memory. Any allocation it
3328 * makes during the free path will be small and short-lived.
3329 */
3330 if (alloc_flags & ALLOC_OOM)
3331 min -= min / 2;
3332 }
3333
3334 /*
3335 * Check watermarks for an order-0 allocation request. If these
3336 * are not met, then a high-order request also cannot go ahead
3337 * even if a suitable page happened to be free.
3338 */
3339 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3340 return false;
3341
3342 /* If this is an order-0 request then the watermark is fine */
3343 if (!order)
3344 return true;
3345
3346 /* For a high-order request, check at least one suitable page is free */
3347 for (o = order; o < NR_PAGE_ORDERS; o++) {
3348 struct free_area *area = &z->free_area[o];
3349 int mt;
3350
3351 if (!area->nr_free)
3352 continue;
3353
3354 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3355 if (!free_area_empty(area, mt))
3356 return true;
3357 }
3358
3359 #ifdef CONFIG_CMA
3360 if ((alloc_flags & ALLOC_CMA) &&
3361 !free_area_empty(area, MIGRATE_CMA)) {
3362 return true;
3363 }
3364 #endif
3365 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3366 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3367 return true;
3368 }
3369 }
3370 return false;
3371 }
3372
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)3373 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3374 int highest_zoneidx, unsigned int alloc_flags)
3375 {
3376 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3377 zone_page_state(z, NR_FREE_PAGES));
3378 }
3379
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)3380 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3381 unsigned long mark, int highest_zoneidx,
3382 unsigned int alloc_flags, gfp_t gfp_mask)
3383 {
3384 long free_pages;
3385
3386 free_pages = zone_page_state(z, NR_FREE_PAGES);
3387
3388 /*
3389 * Fast check for order-0 only. If this fails then the reserves
3390 * need to be calculated.
3391 */
3392 if (!order) {
3393 long usable_free;
3394 long reserved;
3395
3396 usable_free = free_pages;
3397 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3398
3399 /* reserved may over estimate high-atomic reserves. */
3400 usable_free -= min(usable_free, reserved);
3401 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3402 return true;
3403 }
3404
3405 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3406 free_pages))
3407 return true;
3408
3409 /*
3410 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3411 * when checking the min watermark. The min watermark is the
3412 * point where boosting is ignored so that kswapd is woken up
3413 * when below the low watermark.
3414 */
3415 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3416 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3417 mark = z->_watermark[WMARK_MIN];
3418 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3419 alloc_flags, free_pages);
3420 }
3421
3422 return false;
3423 }
3424
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)3425 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3426 unsigned long mark, int highest_zoneidx)
3427 {
3428 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3429
3430 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3431 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3432
3433 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3434 free_pages);
3435 }
3436
3437 #ifdef CONFIG_NUMA
3438 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3439
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3440 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3441 {
3442 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3443 node_reclaim_distance;
3444 }
3445 #else /* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3446 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3447 {
3448 return true;
3449 }
3450 #endif /* CONFIG_NUMA */
3451
3452 /*
3453 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3454 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3455 * premature use of a lower zone may cause lowmem pressure problems that
3456 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3457 * probably too small. It only makes sense to spread allocations to avoid
3458 * fragmentation between the Normal and DMA32 zones.
3459 */
3460 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3461 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3462 {
3463 unsigned int alloc_flags;
3464
3465 /*
3466 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3467 * to save a branch.
3468 */
3469 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3470
3471 if (defrag_mode) {
3472 alloc_flags |= ALLOC_NOFRAGMENT;
3473 return alloc_flags;
3474 }
3475
3476 #ifdef CONFIG_ZONE_DMA32
3477 if (!zone)
3478 return alloc_flags;
3479
3480 if (zone_idx(zone) != ZONE_NORMAL)
3481 return alloc_flags;
3482
3483 /*
3484 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3485 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3486 * on UMA that if Normal is populated then so is DMA32.
3487 */
3488 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3489 if (nr_online_nodes > 1 && !populated_zone(--zone))
3490 return alloc_flags;
3491
3492 alloc_flags |= ALLOC_NOFRAGMENT;
3493 #endif /* CONFIG_ZONE_DMA32 */
3494 return alloc_flags;
3495 }
3496
3497 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3498 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3499 unsigned int alloc_flags)
3500 {
3501 #ifdef CONFIG_CMA
3502 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3503 alloc_flags |= ALLOC_CMA;
3504 #endif
3505 return alloc_flags;
3506 }
3507
3508 /*
3509 * get_page_from_freelist goes through the zonelist trying to allocate
3510 * a page.
3511 */
3512 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3513 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3514 const struct alloc_context *ac)
3515 {
3516 struct zoneref *z;
3517 struct zone *zone;
3518 struct pglist_data *last_pgdat = NULL;
3519 bool last_pgdat_dirty_ok = false;
3520 bool no_fallback;
3521
3522 retry:
3523 /*
3524 * Scan zonelist, looking for a zone with enough free.
3525 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3526 */
3527 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3528 z = ac->preferred_zoneref;
3529 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3530 ac->nodemask) {
3531 struct page *page;
3532 unsigned long mark;
3533
3534 if (cpusets_enabled() &&
3535 (alloc_flags & ALLOC_CPUSET) &&
3536 !__cpuset_zone_allowed(zone, gfp_mask))
3537 continue;
3538 /*
3539 * When allocating a page cache page for writing, we
3540 * want to get it from a node that is within its dirty
3541 * limit, such that no single node holds more than its
3542 * proportional share of globally allowed dirty pages.
3543 * The dirty limits take into account the node's
3544 * lowmem reserves and high watermark so that kswapd
3545 * should be able to balance it without having to
3546 * write pages from its LRU list.
3547 *
3548 * XXX: For now, allow allocations to potentially
3549 * exceed the per-node dirty limit in the slowpath
3550 * (spread_dirty_pages unset) before going into reclaim,
3551 * which is important when on a NUMA setup the allowed
3552 * nodes are together not big enough to reach the
3553 * global limit. The proper fix for these situations
3554 * will require awareness of nodes in the
3555 * dirty-throttling and the flusher threads.
3556 */
3557 if (ac->spread_dirty_pages) {
3558 if (last_pgdat != zone->zone_pgdat) {
3559 last_pgdat = zone->zone_pgdat;
3560 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3561 }
3562
3563 if (!last_pgdat_dirty_ok)
3564 continue;
3565 }
3566
3567 if (no_fallback && !defrag_mode && nr_online_nodes > 1 &&
3568 zone != zonelist_zone(ac->preferred_zoneref)) {
3569 int local_nid;
3570
3571 /*
3572 * If moving to a remote node, retry but allow
3573 * fragmenting fallbacks. Locality is more important
3574 * than fragmentation avoidance.
3575 */
3576 local_nid = zonelist_node_idx(ac->preferred_zoneref);
3577 if (zone_to_nid(zone) != local_nid) {
3578 alloc_flags &= ~ALLOC_NOFRAGMENT;
3579 goto retry;
3580 }
3581 }
3582
3583 cond_accept_memory(zone, order);
3584
3585 /*
3586 * Detect whether the number of free pages is below high
3587 * watermark. If so, we will decrease pcp->high and free
3588 * PCP pages in free path to reduce the possibility of
3589 * premature page reclaiming. Detection is done here to
3590 * avoid to do that in hotter free path.
3591 */
3592 if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3593 goto check_alloc_wmark;
3594
3595 mark = high_wmark_pages(zone);
3596 if (zone_watermark_fast(zone, order, mark,
3597 ac->highest_zoneidx, alloc_flags,
3598 gfp_mask))
3599 goto try_this_zone;
3600 else
3601 set_bit(ZONE_BELOW_HIGH, &zone->flags);
3602
3603 check_alloc_wmark:
3604 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3605 if (!zone_watermark_fast(zone, order, mark,
3606 ac->highest_zoneidx, alloc_flags,
3607 gfp_mask)) {
3608 int ret;
3609
3610 if (cond_accept_memory(zone, order))
3611 goto try_this_zone;
3612
3613 /*
3614 * Watermark failed for this zone, but see if we can
3615 * grow this zone if it contains deferred pages.
3616 */
3617 if (deferred_pages_enabled()) {
3618 if (_deferred_grow_zone(zone, order))
3619 goto try_this_zone;
3620 }
3621 /* Checked here to keep the fast path fast */
3622 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3623 if (alloc_flags & ALLOC_NO_WATERMARKS)
3624 goto try_this_zone;
3625
3626 if (!node_reclaim_enabled() ||
3627 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3628 continue;
3629
3630 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3631 switch (ret) {
3632 case NODE_RECLAIM_NOSCAN:
3633 /* did not scan */
3634 continue;
3635 case NODE_RECLAIM_FULL:
3636 /* scanned but unreclaimable */
3637 continue;
3638 default:
3639 /* did we reclaim enough */
3640 if (zone_watermark_ok(zone, order, mark,
3641 ac->highest_zoneidx, alloc_flags))
3642 goto try_this_zone;
3643
3644 continue;
3645 }
3646 }
3647
3648 try_this_zone:
3649 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3650 gfp_mask, alloc_flags, ac->migratetype);
3651 if (page) {
3652 prep_new_page(page, order, gfp_mask, alloc_flags);
3653
3654 /*
3655 * If this is a high-order atomic allocation then check
3656 * if the pageblock should be reserved for the future
3657 */
3658 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3659 reserve_highatomic_pageblock(page, order, zone);
3660
3661 return page;
3662 } else {
3663 if (cond_accept_memory(zone, order))
3664 goto try_this_zone;
3665
3666 /* Try again if zone has deferred pages */
3667 if (deferred_pages_enabled()) {
3668 if (_deferred_grow_zone(zone, order))
3669 goto try_this_zone;
3670 }
3671 }
3672 }
3673
3674 /*
3675 * It's possible on a UMA machine to get through all zones that are
3676 * fragmented. If avoiding fragmentation, reset and try again.
3677 */
3678 if (no_fallback && !defrag_mode) {
3679 alloc_flags &= ~ALLOC_NOFRAGMENT;
3680 goto retry;
3681 }
3682
3683 return NULL;
3684 }
3685
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3686 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3687 {
3688 unsigned int filter = SHOW_MEM_FILTER_NODES;
3689
3690 /*
3691 * This documents exceptions given to allocations in certain
3692 * contexts that are allowed to allocate outside current's set
3693 * of allowed nodes.
3694 */
3695 if (!(gfp_mask & __GFP_NOMEMALLOC))
3696 if (tsk_is_oom_victim(current) ||
3697 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3698 filter &= ~SHOW_MEM_FILTER_NODES;
3699 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3700 filter &= ~SHOW_MEM_FILTER_NODES;
3701
3702 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3703 }
3704
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3705 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3706 {
3707 struct va_format vaf;
3708 va_list args;
3709 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3710
3711 if ((gfp_mask & __GFP_NOWARN) ||
3712 !__ratelimit(&nopage_rs) ||
3713 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3714 return;
3715
3716 va_start(args, fmt);
3717 vaf.fmt = fmt;
3718 vaf.va = &args;
3719 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3720 current->comm, &vaf, gfp_mask, &gfp_mask,
3721 nodemask_pr_args(nodemask));
3722 va_end(args);
3723
3724 cpuset_print_current_mems_allowed();
3725 pr_cont("\n");
3726 dump_stack();
3727 warn_alloc_show_mem(gfp_mask, nodemask);
3728 }
3729
3730 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3731 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3732 unsigned int alloc_flags,
3733 const struct alloc_context *ac)
3734 {
3735 struct page *page;
3736
3737 page = get_page_from_freelist(gfp_mask, order,
3738 alloc_flags|ALLOC_CPUSET, ac);
3739 /*
3740 * fallback to ignore cpuset restriction if our nodes
3741 * are depleted
3742 */
3743 if (!page)
3744 page = get_page_from_freelist(gfp_mask, order,
3745 alloc_flags, ac);
3746 return page;
3747 }
3748
3749 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3750 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3751 const struct alloc_context *ac, unsigned long *did_some_progress)
3752 {
3753 struct oom_control oc = {
3754 .zonelist = ac->zonelist,
3755 .nodemask = ac->nodemask,
3756 .memcg = NULL,
3757 .gfp_mask = gfp_mask,
3758 .order = order,
3759 };
3760 struct page *page;
3761
3762 *did_some_progress = 0;
3763
3764 /*
3765 * Acquire the oom lock. If that fails, somebody else is
3766 * making progress for us.
3767 */
3768 if (!mutex_trylock(&oom_lock)) {
3769 *did_some_progress = 1;
3770 schedule_timeout_uninterruptible(1);
3771 return NULL;
3772 }
3773
3774 /*
3775 * Go through the zonelist yet one more time, keep very high watermark
3776 * here, this is only to catch a parallel oom killing, we must fail if
3777 * we're still under heavy pressure. But make sure that this reclaim
3778 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3779 * allocation which will never fail due to oom_lock already held.
3780 */
3781 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3782 ~__GFP_DIRECT_RECLAIM, order,
3783 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3784 if (page)
3785 goto out;
3786
3787 /* Coredumps can quickly deplete all memory reserves */
3788 if (current->flags & PF_DUMPCORE)
3789 goto out;
3790 /* The OOM killer will not help higher order allocs */
3791 if (order > PAGE_ALLOC_COSTLY_ORDER)
3792 goto out;
3793 /*
3794 * We have already exhausted all our reclaim opportunities without any
3795 * success so it is time to admit defeat. We will skip the OOM killer
3796 * because it is very likely that the caller has a more reasonable
3797 * fallback than shooting a random task.
3798 *
3799 * The OOM killer may not free memory on a specific node.
3800 */
3801 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3802 goto out;
3803 /* The OOM killer does not needlessly kill tasks for lowmem */
3804 if (ac->highest_zoneidx < ZONE_NORMAL)
3805 goto out;
3806 if (pm_suspended_storage())
3807 goto out;
3808 /*
3809 * XXX: GFP_NOFS allocations should rather fail than rely on
3810 * other request to make a forward progress.
3811 * We are in an unfortunate situation where out_of_memory cannot
3812 * do much for this context but let's try it to at least get
3813 * access to memory reserved if the current task is killed (see
3814 * out_of_memory). Once filesystems are ready to handle allocation
3815 * failures more gracefully we should just bail out here.
3816 */
3817
3818 /* Exhausted what can be done so it's blame time */
3819 if (out_of_memory(&oc) ||
3820 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3821 *did_some_progress = 1;
3822
3823 /*
3824 * Help non-failing allocations by giving them access to memory
3825 * reserves
3826 */
3827 if (gfp_mask & __GFP_NOFAIL)
3828 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3829 ALLOC_NO_WATERMARKS, ac);
3830 }
3831 out:
3832 mutex_unlock(&oom_lock);
3833 return page;
3834 }
3835
3836 /*
3837 * Maximum number of compaction retries with a progress before OOM
3838 * killer is consider as the only way to move forward.
3839 */
3840 #define MAX_COMPACT_RETRIES 16
3841
3842 #ifdef CONFIG_COMPACTION
3843 /* Try memory compaction for high-order allocations before reclaim */
3844 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3845 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3846 unsigned int alloc_flags, const struct alloc_context *ac,
3847 enum compact_priority prio, enum compact_result *compact_result)
3848 {
3849 struct page *page = NULL;
3850 unsigned long pflags;
3851 unsigned int noreclaim_flag;
3852
3853 if (!order)
3854 return NULL;
3855
3856 psi_memstall_enter(&pflags);
3857 delayacct_compact_start();
3858 noreclaim_flag = memalloc_noreclaim_save();
3859
3860 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3861 prio, &page);
3862
3863 memalloc_noreclaim_restore(noreclaim_flag);
3864 psi_memstall_leave(&pflags);
3865 delayacct_compact_end();
3866
3867 if (*compact_result == COMPACT_SKIPPED)
3868 return NULL;
3869 /*
3870 * At least in one zone compaction wasn't deferred or skipped, so let's
3871 * count a compaction stall
3872 */
3873 count_vm_event(COMPACTSTALL);
3874
3875 /* Prep a captured page if available */
3876 if (page)
3877 prep_new_page(page, order, gfp_mask, alloc_flags);
3878
3879 /* Try get a page from the freelist if available */
3880 if (!page)
3881 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3882
3883 if (page) {
3884 struct zone *zone = page_zone(page);
3885
3886 zone->compact_blockskip_flush = false;
3887 compaction_defer_reset(zone, order, true);
3888 count_vm_event(COMPACTSUCCESS);
3889 return page;
3890 }
3891
3892 /*
3893 * It's bad if compaction run occurs and fails. The most likely reason
3894 * is that pages exist, but not enough to satisfy watermarks.
3895 */
3896 count_vm_event(COMPACTFAIL);
3897
3898 cond_resched();
3899
3900 return NULL;
3901 }
3902
3903 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3904 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3905 enum compact_result compact_result,
3906 enum compact_priority *compact_priority,
3907 int *compaction_retries)
3908 {
3909 int max_retries = MAX_COMPACT_RETRIES;
3910 int min_priority;
3911 bool ret = false;
3912 int retries = *compaction_retries;
3913 enum compact_priority priority = *compact_priority;
3914
3915 if (!order)
3916 return false;
3917
3918 if (fatal_signal_pending(current))
3919 return false;
3920
3921 /*
3922 * Compaction was skipped due to a lack of free order-0
3923 * migration targets. Continue if reclaim can help.
3924 */
3925 if (compact_result == COMPACT_SKIPPED) {
3926 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3927 goto out;
3928 }
3929
3930 /*
3931 * Compaction managed to coalesce some page blocks, but the
3932 * allocation failed presumably due to a race. Retry some.
3933 */
3934 if (compact_result == COMPACT_SUCCESS) {
3935 /*
3936 * !costly requests are much more important than
3937 * __GFP_RETRY_MAYFAIL costly ones because they are de
3938 * facto nofail and invoke OOM killer to move on while
3939 * costly can fail and users are ready to cope with
3940 * that. 1/4 retries is rather arbitrary but we would
3941 * need much more detailed feedback from compaction to
3942 * make a better decision.
3943 */
3944 if (order > PAGE_ALLOC_COSTLY_ORDER)
3945 max_retries /= 4;
3946
3947 if (++(*compaction_retries) <= max_retries) {
3948 ret = true;
3949 goto out;
3950 }
3951 }
3952
3953 /*
3954 * Compaction failed. Retry with increasing priority.
3955 */
3956 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3957 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3958
3959 if (*compact_priority > min_priority) {
3960 (*compact_priority)--;
3961 *compaction_retries = 0;
3962 ret = true;
3963 }
3964 out:
3965 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3966 return ret;
3967 }
3968 #else
3969 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3970 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3971 unsigned int alloc_flags, const struct alloc_context *ac,
3972 enum compact_priority prio, enum compact_result *compact_result)
3973 {
3974 *compact_result = COMPACT_SKIPPED;
3975 return NULL;
3976 }
3977
3978 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3979 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3980 enum compact_result compact_result,
3981 enum compact_priority *compact_priority,
3982 int *compaction_retries)
3983 {
3984 struct zone *zone;
3985 struct zoneref *z;
3986
3987 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3988 return false;
3989
3990 /*
3991 * There are setups with compaction disabled which would prefer to loop
3992 * inside the allocator rather than hit the oom killer prematurely.
3993 * Let's give them a good hope and keep retrying while the order-0
3994 * watermarks are OK.
3995 */
3996 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3997 ac->highest_zoneidx, ac->nodemask) {
3998 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3999 ac->highest_zoneidx, alloc_flags))
4000 return true;
4001 }
4002 return false;
4003 }
4004 #endif /* CONFIG_COMPACTION */
4005
4006 #ifdef CONFIG_LOCKDEP
4007 static struct lockdep_map __fs_reclaim_map =
4008 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4009
__need_reclaim(gfp_t gfp_mask)4010 static bool __need_reclaim(gfp_t gfp_mask)
4011 {
4012 /* no reclaim without waiting on it */
4013 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4014 return false;
4015
4016 /* this guy won't enter reclaim */
4017 if (current->flags & PF_MEMALLOC)
4018 return false;
4019
4020 if (gfp_mask & __GFP_NOLOCKDEP)
4021 return false;
4022
4023 return true;
4024 }
4025
__fs_reclaim_acquire(unsigned long ip)4026 void __fs_reclaim_acquire(unsigned long ip)
4027 {
4028 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4029 }
4030
__fs_reclaim_release(unsigned long ip)4031 void __fs_reclaim_release(unsigned long ip)
4032 {
4033 lock_release(&__fs_reclaim_map, ip);
4034 }
4035
fs_reclaim_acquire(gfp_t gfp_mask)4036 void fs_reclaim_acquire(gfp_t gfp_mask)
4037 {
4038 gfp_mask = current_gfp_context(gfp_mask);
4039
4040 if (__need_reclaim(gfp_mask)) {
4041 if (gfp_mask & __GFP_FS)
4042 __fs_reclaim_acquire(_RET_IP_);
4043
4044 #ifdef CONFIG_MMU_NOTIFIER
4045 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4046 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4047 #endif
4048
4049 }
4050 }
4051 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4052
fs_reclaim_release(gfp_t gfp_mask)4053 void fs_reclaim_release(gfp_t gfp_mask)
4054 {
4055 gfp_mask = current_gfp_context(gfp_mask);
4056
4057 if (__need_reclaim(gfp_mask)) {
4058 if (gfp_mask & __GFP_FS)
4059 __fs_reclaim_release(_RET_IP_);
4060 }
4061 }
4062 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4063 #endif
4064
4065 /*
4066 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4067 * have been rebuilt so allocation retries. Reader side does not lock and
4068 * retries the allocation if zonelist changes. Writer side is protected by the
4069 * embedded spin_lock.
4070 */
4071 static DEFINE_SEQLOCK(zonelist_update_seq);
4072
zonelist_iter_begin(void)4073 static unsigned int zonelist_iter_begin(void)
4074 {
4075 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4076 return read_seqbegin(&zonelist_update_seq);
4077
4078 return 0;
4079 }
4080
check_retry_zonelist(unsigned int seq)4081 static unsigned int check_retry_zonelist(unsigned int seq)
4082 {
4083 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4084 return read_seqretry(&zonelist_update_seq, seq);
4085
4086 return seq;
4087 }
4088
4089 /* Perform direct synchronous page reclaim */
4090 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)4091 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4092 const struct alloc_context *ac)
4093 {
4094 unsigned int noreclaim_flag;
4095 unsigned long progress;
4096
4097 cond_resched();
4098
4099 /* We now go into synchronous reclaim */
4100 cpuset_memory_pressure_bump();
4101 fs_reclaim_acquire(gfp_mask);
4102 noreclaim_flag = memalloc_noreclaim_save();
4103
4104 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4105 ac->nodemask);
4106
4107 memalloc_noreclaim_restore(noreclaim_flag);
4108 fs_reclaim_release(gfp_mask);
4109
4110 cond_resched();
4111
4112 return progress;
4113 }
4114
4115 /* The really slow allocator path where we enter direct reclaim */
4116 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)4117 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4118 unsigned int alloc_flags, const struct alloc_context *ac,
4119 unsigned long *did_some_progress)
4120 {
4121 struct page *page = NULL;
4122 unsigned long pflags;
4123 bool drained = false;
4124
4125 psi_memstall_enter(&pflags);
4126 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4127 if (unlikely(!(*did_some_progress)))
4128 goto out;
4129
4130 retry:
4131 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4132
4133 /*
4134 * If an allocation failed after direct reclaim, it could be because
4135 * pages are pinned on the per-cpu lists or in high alloc reserves.
4136 * Shrink them and try again
4137 */
4138 if (!page && !drained) {
4139 unreserve_highatomic_pageblock(ac, false);
4140 drain_all_pages(NULL);
4141 drained = true;
4142 goto retry;
4143 }
4144 out:
4145 psi_memstall_leave(&pflags);
4146
4147 return page;
4148 }
4149
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)4150 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4151 const struct alloc_context *ac)
4152 {
4153 struct zoneref *z;
4154 struct zone *zone;
4155 pg_data_t *last_pgdat = NULL;
4156 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4157 unsigned int reclaim_order;
4158
4159 if (defrag_mode)
4160 reclaim_order = max(order, pageblock_order);
4161 else
4162 reclaim_order = order;
4163
4164 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4165 ac->nodemask) {
4166 if (!managed_zone(zone))
4167 continue;
4168 if (last_pgdat == zone->zone_pgdat)
4169 continue;
4170 wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx);
4171 last_pgdat = zone->zone_pgdat;
4172 }
4173 }
4174
4175 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)4176 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4177 {
4178 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4179
4180 /*
4181 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4182 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4183 * to save two branches.
4184 */
4185 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4186 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4187
4188 /*
4189 * The caller may dip into page reserves a bit more if the caller
4190 * cannot run direct reclaim, or if the caller has realtime scheduling
4191 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4192 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4193 */
4194 alloc_flags |= (__force int)
4195 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4196
4197 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4198 /*
4199 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4200 * if it can't schedule.
4201 */
4202 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4203 alloc_flags |= ALLOC_NON_BLOCK;
4204
4205 if (order > 0)
4206 alloc_flags |= ALLOC_HIGHATOMIC;
4207 }
4208
4209 /*
4210 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4211 * GFP_ATOMIC) rather than fail, see the comment for
4212 * cpuset_node_allowed().
4213 */
4214 if (alloc_flags & ALLOC_MIN_RESERVE)
4215 alloc_flags &= ~ALLOC_CPUSET;
4216 } else if (unlikely(rt_or_dl_task(current)) && in_task())
4217 alloc_flags |= ALLOC_MIN_RESERVE;
4218
4219 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4220
4221 if (defrag_mode)
4222 alloc_flags |= ALLOC_NOFRAGMENT;
4223
4224 return alloc_flags;
4225 }
4226
oom_reserves_allowed(struct task_struct * tsk)4227 static bool oom_reserves_allowed(struct task_struct *tsk)
4228 {
4229 if (!tsk_is_oom_victim(tsk))
4230 return false;
4231
4232 /*
4233 * !MMU doesn't have oom reaper so give access to memory reserves
4234 * only to the thread with TIF_MEMDIE set
4235 */
4236 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4237 return false;
4238
4239 return true;
4240 }
4241
4242 /*
4243 * Distinguish requests which really need access to full memory
4244 * reserves from oom victims which can live with a portion of it
4245 */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4246 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4247 {
4248 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4249 return 0;
4250 if (gfp_mask & __GFP_MEMALLOC)
4251 return ALLOC_NO_WATERMARKS;
4252 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4253 return ALLOC_NO_WATERMARKS;
4254 if (!in_interrupt()) {
4255 if (current->flags & PF_MEMALLOC)
4256 return ALLOC_NO_WATERMARKS;
4257 else if (oom_reserves_allowed(current))
4258 return ALLOC_OOM;
4259 }
4260
4261 return 0;
4262 }
4263
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4264 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4265 {
4266 return !!__gfp_pfmemalloc_flags(gfp_mask);
4267 }
4268
4269 /*
4270 * Checks whether it makes sense to retry the reclaim to make a forward progress
4271 * for the given allocation request.
4272 *
4273 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4274 * without success, or when we couldn't even meet the watermark if we
4275 * reclaimed all remaining pages on the LRU lists.
4276 *
4277 * Returns true if a retry is viable or false to enter the oom path.
4278 */
4279 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4280 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4281 struct alloc_context *ac, int alloc_flags,
4282 bool did_some_progress, int *no_progress_loops)
4283 {
4284 struct zone *zone;
4285 struct zoneref *z;
4286 bool ret = false;
4287
4288 /*
4289 * Costly allocations might have made a progress but this doesn't mean
4290 * their order will become available due to high fragmentation so
4291 * always increment the no progress counter for them
4292 */
4293 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4294 *no_progress_loops = 0;
4295 else
4296 (*no_progress_loops)++;
4297
4298 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4299 goto out;
4300
4301
4302 /*
4303 * Keep reclaiming pages while there is a chance this will lead
4304 * somewhere. If none of the target zones can satisfy our allocation
4305 * request even if all reclaimable pages are considered then we are
4306 * screwed and have to go OOM.
4307 */
4308 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4309 ac->highest_zoneidx, ac->nodemask) {
4310 unsigned long available;
4311 unsigned long reclaimable;
4312 unsigned long min_wmark = min_wmark_pages(zone);
4313 bool wmark;
4314
4315 if (cpusets_enabled() &&
4316 (alloc_flags & ALLOC_CPUSET) &&
4317 !__cpuset_zone_allowed(zone, gfp_mask))
4318 continue;
4319
4320 available = reclaimable = zone_reclaimable_pages(zone);
4321 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4322
4323 /*
4324 * Would the allocation succeed if we reclaimed all
4325 * reclaimable pages?
4326 */
4327 wmark = __zone_watermark_ok(zone, order, min_wmark,
4328 ac->highest_zoneidx, alloc_flags, available);
4329 trace_reclaim_retry_zone(z, order, reclaimable,
4330 available, min_wmark, *no_progress_loops, wmark);
4331 if (wmark) {
4332 ret = true;
4333 break;
4334 }
4335 }
4336
4337 /*
4338 * Memory allocation/reclaim might be called from a WQ context and the
4339 * current implementation of the WQ concurrency control doesn't
4340 * recognize that a particular WQ is congested if the worker thread is
4341 * looping without ever sleeping. Therefore we have to do a short sleep
4342 * here rather than calling cond_resched().
4343 */
4344 if (current->flags & PF_WQ_WORKER)
4345 schedule_timeout_uninterruptible(1);
4346 else
4347 cond_resched();
4348 out:
4349 /* Before OOM, exhaust highatomic_reserve */
4350 if (!ret)
4351 return unreserve_highatomic_pageblock(ac, true);
4352
4353 return ret;
4354 }
4355
4356 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4357 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4358 {
4359 /*
4360 * It's possible that cpuset's mems_allowed and the nodemask from
4361 * mempolicy don't intersect. This should be normally dealt with by
4362 * policy_nodemask(), but it's possible to race with cpuset update in
4363 * such a way the check therein was true, and then it became false
4364 * before we got our cpuset_mems_cookie here.
4365 * This assumes that for all allocations, ac->nodemask can come only
4366 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4367 * when it does not intersect with the cpuset restrictions) or the
4368 * caller can deal with a violated nodemask.
4369 */
4370 if (cpusets_enabled() && ac->nodemask &&
4371 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4372 ac->nodemask = NULL;
4373 return true;
4374 }
4375
4376 /*
4377 * When updating a task's mems_allowed or mempolicy nodemask, it is
4378 * possible to race with parallel threads in such a way that our
4379 * allocation can fail while the mask is being updated. If we are about
4380 * to fail, check if the cpuset changed during allocation and if so,
4381 * retry.
4382 */
4383 if (read_mems_allowed_retry(cpuset_mems_cookie))
4384 return true;
4385
4386 return false;
4387 }
4388
4389 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4390 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4391 struct alloc_context *ac)
4392 {
4393 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4394 bool can_compact = gfp_compaction_allowed(gfp_mask);
4395 bool nofail = gfp_mask & __GFP_NOFAIL;
4396 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4397 struct page *page = NULL;
4398 unsigned int alloc_flags;
4399 unsigned long did_some_progress;
4400 enum compact_priority compact_priority;
4401 enum compact_result compact_result;
4402 int compaction_retries;
4403 int no_progress_loops;
4404 unsigned int cpuset_mems_cookie;
4405 unsigned int zonelist_iter_cookie;
4406 int reserve_flags;
4407
4408 if (unlikely(nofail)) {
4409 /*
4410 * We most definitely don't want callers attempting to
4411 * allocate greater than order-1 page units with __GFP_NOFAIL.
4412 */
4413 WARN_ON_ONCE(order > 1);
4414 /*
4415 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4416 * otherwise, we may result in lockup.
4417 */
4418 WARN_ON_ONCE(!can_direct_reclaim);
4419 /*
4420 * PF_MEMALLOC request from this context is rather bizarre
4421 * because we cannot reclaim anything and only can loop waiting
4422 * for somebody to do a work for us.
4423 */
4424 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4425 }
4426
4427 restart:
4428 compaction_retries = 0;
4429 no_progress_loops = 0;
4430 compact_result = COMPACT_SKIPPED;
4431 compact_priority = DEF_COMPACT_PRIORITY;
4432 cpuset_mems_cookie = read_mems_allowed_begin();
4433 zonelist_iter_cookie = zonelist_iter_begin();
4434
4435 /*
4436 * The fast path uses conservative alloc_flags to succeed only until
4437 * kswapd needs to be woken up, and to avoid the cost of setting up
4438 * alloc_flags precisely. So we do that now.
4439 */
4440 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4441
4442 /*
4443 * We need to recalculate the starting point for the zonelist iterator
4444 * because we might have used different nodemask in the fast path, or
4445 * there was a cpuset modification and we are retrying - otherwise we
4446 * could end up iterating over non-eligible zones endlessly.
4447 */
4448 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4449 ac->highest_zoneidx, ac->nodemask);
4450 if (!zonelist_zone(ac->preferred_zoneref))
4451 goto nopage;
4452
4453 /*
4454 * Check for insane configurations where the cpuset doesn't contain
4455 * any suitable zone to satisfy the request - e.g. non-movable
4456 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4457 */
4458 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4459 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4460 ac->highest_zoneidx,
4461 &cpuset_current_mems_allowed);
4462 if (!zonelist_zone(z))
4463 goto nopage;
4464 }
4465
4466 if (alloc_flags & ALLOC_KSWAPD)
4467 wake_all_kswapds(order, gfp_mask, ac);
4468
4469 /*
4470 * The adjusted alloc_flags might result in immediate success, so try
4471 * that first
4472 */
4473 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4474 if (page)
4475 goto got_pg;
4476
4477 /*
4478 * For costly allocations, try direct compaction first, as it's likely
4479 * that we have enough base pages and don't need to reclaim. For non-
4480 * movable high-order allocations, do that as well, as compaction will
4481 * try prevent permanent fragmentation by migrating from blocks of the
4482 * same migratetype.
4483 * Don't try this for allocations that are allowed to ignore
4484 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4485 */
4486 if (can_direct_reclaim && can_compact &&
4487 (costly_order ||
4488 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4489 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4490 page = __alloc_pages_direct_compact(gfp_mask, order,
4491 alloc_flags, ac,
4492 INIT_COMPACT_PRIORITY,
4493 &compact_result);
4494 if (page)
4495 goto got_pg;
4496
4497 /*
4498 * Checks for costly allocations with __GFP_NORETRY, which
4499 * includes some THP page fault allocations
4500 */
4501 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4502 /*
4503 * If allocating entire pageblock(s) and compaction
4504 * failed because all zones are below low watermarks
4505 * or is prohibited because it recently failed at this
4506 * order, fail immediately unless the allocator has
4507 * requested compaction and reclaim retry.
4508 *
4509 * Reclaim is
4510 * - potentially very expensive because zones are far
4511 * below their low watermarks or this is part of very
4512 * bursty high order allocations,
4513 * - not guaranteed to help because isolate_freepages()
4514 * may not iterate over freed pages as part of its
4515 * linear scan, and
4516 * - unlikely to make entire pageblocks free on its
4517 * own.
4518 */
4519 if (compact_result == COMPACT_SKIPPED ||
4520 compact_result == COMPACT_DEFERRED)
4521 goto nopage;
4522
4523 /*
4524 * Looks like reclaim/compaction is worth trying, but
4525 * sync compaction could be very expensive, so keep
4526 * using async compaction.
4527 */
4528 compact_priority = INIT_COMPACT_PRIORITY;
4529 }
4530 }
4531
4532 retry:
4533 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4534 if (alloc_flags & ALLOC_KSWAPD)
4535 wake_all_kswapds(order, gfp_mask, ac);
4536
4537 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4538 if (reserve_flags)
4539 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4540 (alloc_flags & ALLOC_KSWAPD);
4541
4542 /*
4543 * Reset the nodemask and zonelist iterators if memory policies can be
4544 * ignored. These allocations are high priority and system rather than
4545 * user oriented.
4546 */
4547 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4548 ac->nodemask = NULL;
4549 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4550 ac->highest_zoneidx, ac->nodemask);
4551 }
4552
4553 /* Attempt with potentially adjusted zonelist and alloc_flags */
4554 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4555 if (page)
4556 goto got_pg;
4557
4558 /* Caller is not willing to reclaim, we can't balance anything */
4559 if (!can_direct_reclaim)
4560 goto nopage;
4561
4562 /* Avoid recursion of direct reclaim */
4563 if (current->flags & PF_MEMALLOC)
4564 goto nopage;
4565
4566 /* Try direct reclaim and then allocating */
4567 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4568 &did_some_progress);
4569 if (page)
4570 goto got_pg;
4571
4572 /* Try direct compaction and then allocating */
4573 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4574 compact_priority, &compact_result);
4575 if (page)
4576 goto got_pg;
4577
4578 /* Do not loop if specifically requested */
4579 if (gfp_mask & __GFP_NORETRY)
4580 goto nopage;
4581
4582 /*
4583 * Do not retry costly high order allocations unless they are
4584 * __GFP_RETRY_MAYFAIL and we can compact
4585 */
4586 if (costly_order && (!can_compact ||
4587 !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4588 goto nopage;
4589
4590 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4591 did_some_progress > 0, &no_progress_loops))
4592 goto retry;
4593
4594 /*
4595 * It doesn't make any sense to retry for the compaction if the order-0
4596 * reclaim is not able to make any progress because the current
4597 * implementation of the compaction depends on the sufficient amount
4598 * of free memory (see __compaction_suitable)
4599 */
4600 if (did_some_progress > 0 && can_compact &&
4601 should_compact_retry(ac, order, alloc_flags,
4602 compact_result, &compact_priority,
4603 &compaction_retries))
4604 goto retry;
4605
4606 /* Reclaim/compaction failed to prevent the fallback */
4607 if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) {
4608 alloc_flags &= ~ALLOC_NOFRAGMENT;
4609 goto retry;
4610 }
4611
4612 /*
4613 * Deal with possible cpuset update races or zonelist updates to avoid
4614 * a unnecessary OOM kill.
4615 */
4616 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4617 check_retry_zonelist(zonelist_iter_cookie))
4618 goto restart;
4619
4620 /* Reclaim has failed us, start killing things */
4621 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4622 if (page)
4623 goto got_pg;
4624
4625 /* Avoid allocations with no watermarks from looping endlessly */
4626 if (tsk_is_oom_victim(current) &&
4627 (alloc_flags & ALLOC_OOM ||
4628 (gfp_mask & __GFP_NOMEMALLOC)))
4629 goto nopage;
4630
4631 /* Retry as long as the OOM killer is making progress */
4632 if (did_some_progress) {
4633 no_progress_loops = 0;
4634 goto retry;
4635 }
4636
4637 nopage:
4638 /*
4639 * Deal with possible cpuset update races or zonelist updates to avoid
4640 * a unnecessary OOM kill.
4641 */
4642 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4643 check_retry_zonelist(zonelist_iter_cookie))
4644 goto restart;
4645
4646 /*
4647 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4648 * we always retry
4649 */
4650 if (unlikely(nofail)) {
4651 /*
4652 * Lacking direct_reclaim we can't do anything to reclaim memory,
4653 * we disregard these unreasonable nofail requests and still
4654 * return NULL
4655 */
4656 if (!can_direct_reclaim)
4657 goto fail;
4658
4659 /*
4660 * Help non-failing allocations by giving some access to memory
4661 * reserves normally used for high priority non-blocking
4662 * allocations but do not use ALLOC_NO_WATERMARKS because this
4663 * could deplete whole memory reserves which would just make
4664 * the situation worse.
4665 */
4666 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4667 if (page)
4668 goto got_pg;
4669
4670 cond_resched();
4671 goto retry;
4672 }
4673 fail:
4674 warn_alloc(gfp_mask, ac->nodemask,
4675 "page allocation failure: order:%u", order);
4676 got_pg:
4677 return page;
4678 }
4679
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4680 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4681 int preferred_nid, nodemask_t *nodemask,
4682 struct alloc_context *ac, gfp_t *alloc_gfp,
4683 unsigned int *alloc_flags)
4684 {
4685 ac->highest_zoneidx = gfp_zone(gfp_mask);
4686 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4687 ac->nodemask = nodemask;
4688 ac->migratetype = gfp_migratetype(gfp_mask);
4689
4690 if (cpusets_enabled()) {
4691 *alloc_gfp |= __GFP_HARDWALL;
4692 /*
4693 * When we are in the interrupt context, it is irrelevant
4694 * to the current task context. It means that any node ok.
4695 */
4696 if (in_task() && !ac->nodemask)
4697 ac->nodemask = &cpuset_current_mems_allowed;
4698 else
4699 *alloc_flags |= ALLOC_CPUSET;
4700 }
4701
4702 might_alloc(gfp_mask);
4703
4704 /*
4705 * Don't invoke should_fail logic, since it may call
4706 * get_random_u32() and printk() which need to spin_lock.
4707 */
4708 if (!(*alloc_flags & ALLOC_TRYLOCK) &&
4709 should_fail_alloc_page(gfp_mask, order))
4710 return false;
4711
4712 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4713
4714 /* Dirty zone balancing only done in the fast path */
4715 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4716
4717 /*
4718 * The preferred zone is used for statistics but crucially it is
4719 * also used as the starting point for the zonelist iterator. It
4720 * may get reset for allocations that ignore memory policies.
4721 */
4722 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4723 ac->highest_zoneidx, ac->nodemask);
4724
4725 return true;
4726 }
4727
4728 /*
4729 * __alloc_pages_bulk - Allocate a number of order-0 pages to an array
4730 * @gfp: GFP flags for the allocation
4731 * @preferred_nid: The preferred NUMA node ID to allocate from
4732 * @nodemask: Set of nodes to allocate from, may be NULL
4733 * @nr_pages: The number of pages desired in the array
4734 * @page_array: Array to store the pages
4735 *
4736 * This is a batched version of the page allocator that attempts to
4737 * allocate nr_pages quickly. Pages are added to the page_array.
4738 *
4739 * Note that only NULL elements are populated with pages and nr_pages
4740 * is the maximum number of pages that will be stored in the array.
4741 *
4742 * Returns the number of pages in the array.
4743 */
alloc_pages_bulk_noprof(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct page ** page_array)4744 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4745 nodemask_t *nodemask, int nr_pages,
4746 struct page **page_array)
4747 {
4748 struct page *page;
4749 unsigned long __maybe_unused UP_flags;
4750 struct zone *zone;
4751 struct zoneref *z;
4752 struct per_cpu_pages *pcp;
4753 struct list_head *pcp_list;
4754 struct alloc_context ac;
4755 gfp_t alloc_gfp;
4756 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4757 int nr_populated = 0, nr_account = 0;
4758
4759 /*
4760 * Skip populated array elements to determine if any pages need
4761 * to be allocated before disabling IRQs.
4762 */
4763 while (nr_populated < nr_pages && page_array[nr_populated])
4764 nr_populated++;
4765
4766 /* No pages requested? */
4767 if (unlikely(nr_pages <= 0))
4768 goto out;
4769
4770 /* Already populated array? */
4771 if (unlikely(nr_pages - nr_populated == 0))
4772 goto out;
4773
4774 /* Bulk allocator does not support memcg accounting. */
4775 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4776 goto failed;
4777
4778 /* Use the single page allocator for one page. */
4779 if (nr_pages - nr_populated == 1)
4780 goto failed;
4781
4782 #ifdef CONFIG_PAGE_OWNER
4783 /*
4784 * PAGE_OWNER may recurse into the allocator to allocate space to
4785 * save the stack with pagesets.lock held. Releasing/reacquiring
4786 * removes much of the performance benefit of bulk allocation so
4787 * force the caller to allocate one page at a time as it'll have
4788 * similar performance to added complexity to the bulk allocator.
4789 */
4790 if (static_branch_unlikely(&page_owner_inited))
4791 goto failed;
4792 #endif
4793
4794 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4795 gfp &= gfp_allowed_mask;
4796 alloc_gfp = gfp;
4797 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4798 goto out;
4799 gfp = alloc_gfp;
4800
4801 /* Find an allowed local zone that meets the low watermark. */
4802 z = ac.preferred_zoneref;
4803 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4804 unsigned long mark;
4805
4806 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4807 !__cpuset_zone_allowed(zone, gfp)) {
4808 continue;
4809 }
4810
4811 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4812 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4813 goto failed;
4814 }
4815
4816 cond_accept_memory(zone, 0);
4817 retry_this_zone:
4818 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4819 if (zone_watermark_fast(zone, 0, mark,
4820 zonelist_zone_idx(ac.preferred_zoneref),
4821 alloc_flags, gfp)) {
4822 break;
4823 }
4824
4825 if (cond_accept_memory(zone, 0))
4826 goto retry_this_zone;
4827
4828 /* Try again if zone has deferred pages */
4829 if (deferred_pages_enabled()) {
4830 if (_deferred_grow_zone(zone, 0))
4831 goto retry_this_zone;
4832 }
4833 }
4834
4835 /*
4836 * If there are no allowed local zones that meets the watermarks then
4837 * try to allocate a single page and reclaim if necessary.
4838 */
4839 if (unlikely(!zone))
4840 goto failed;
4841
4842 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4843 pcp_trylock_prepare(UP_flags);
4844 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4845 if (!pcp)
4846 goto failed_irq;
4847
4848 /* Attempt the batch allocation */
4849 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4850 while (nr_populated < nr_pages) {
4851
4852 /* Skip existing pages */
4853 if (page_array[nr_populated]) {
4854 nr_populated++;
4855 continue;
4856 }
4857
4858 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4859 pcp, pcp_list);
4860 if (unlikely(!page)) {
4861 /* Try and allocate at least one page */
4862 if (!nr_account) {
4863 pcp_spin_unlock(pcp);
4864 goto failed_irq;
4865 }
4866 break;
4867 }
4868 nr_account++;
4869
4870 prep_new_page(page, 0, gfp, 0);
4871 set_page_refcounted(page);
4872 page_array[nr_populated++] = page;
4873 }
4874
4875 pcp_spin_unlock(pcp);
4876 pcp_trylock_finish(UP_flags);
4877
4878 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4879 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4880
4881 out:
4882 return nr_populated;
4883
4884 failed_irq:
4885 pcp_trylock_finish(UP_flags);
4886
4887 failed:
4888 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4889 if (page)
4890 page_array[nr_populated++] = page;
4891 goto out;
4892 }
4893 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4894
4895 /*
4896 * This is the 'heart' of the zoned buddy allocator.
4897 */
__alloc_frozen_pages_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4898 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order,
4899 int preferred_nid, nodemask_t *nodemask)
4900 {
4901 struct page *page;
4902 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4903 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4904 struct alloc_context ac = { };
4905
4906 /*
4907 * There are several places where we assume that the order value is sane
4908 * so bail out early if the request is out of bound.
4909 */
4910 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4911 return NULL;
4912
4913 gfp &= gfp_allowed_mask;
4914 /*
4915 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4916 * resp. GFP_NOIO which has to be inherited for all allocation requests
4917 * from a particular context which has been marked by
4918 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4919 * movable zones are not used during allocation.
4920 */
4921 gfp = current_gfp_context(gfp);
4922 alloc_gfp = gfp;
4923 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4924 &alloc_gfp, &alloc_flags))
4925 return NULL;
4926
4927 /*
4928 * Forbid the first pass from falling back to types that fragment
4929 * memory until all local zones are considered.
4930 */
4931 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4932
4933 /* First allocation attempt */
4934 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4935 if (likely(page))
4936 goto out;
4937
4938 alloc_gfp = gfp;
4939 ac.spread_dirty_pages = false;
4940
4941 /*
4942 * Restore the original nodemask if it was potentially replaced with
4943 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4944 */
4945 ac.nodemask = nodemask;
4946
4947 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4948
4949 out:
4950 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4951 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4952 free_frozen_pages(page, order);
4953 page = NULL;
4954 }
4955
4956 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4957 kmsan_alloc_page(page, order, alloc_gfp);
4958
4959 return page;
4960 }
4961 EXPORT_SYMBOL(__alloc_frozen_pages_noprof);
4962
__alloc_pages_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4963 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4964 int preferred_nid, nodemask_t *nodemask)
4965 {
4966 struct page *page;
4967
4968 page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask);
4969 if (page)
4970 set_page_refcounted(page);
4971 return page;
4972 }
4973 EXPORT_SYMBOL(__alloc_pages_noprof);
4974
__folio_alloc_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4975 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4976 nodemask_t *nodemask)
4977 {
4978 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4979 preferred_nid, nodemask);
4980 return page_rmappable_folio(page);
4981 }
4982 EXPORT_SYMBOL(__folio_alloc_noprof);
4983
4984 /*
4985 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4986 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4987 * you need to access high mem.
4988 */
get_free_pages_noprof(gfp_t gfp_mask,unsigned int order)4989 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4990 {
4991 struct page *page;
4992
4993 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4994 if (!page)
4995 return 0;
4996 return (unsigned long) page_address(page);
4997 }
4998 EXPORT_SYMBOL(get_free_pages_noprof);
4999
get_zeroed_page_noprof(gfp_t gfp_mask)5000 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
5001 {
5002 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
5003 }
5004 EXPORT_SYMBOL(get_zeroed_page_noprof);
5005
5006 /**
5007 * ___free_pages - Free pages allocated with alloc_pages().
5008 * @page: The page pointer returned from alloc_pages().
5009 * @order: The order of the allocation.
5010 * @fpi_flags: Free Page Internal flags.
5011 *
5012 * This function can free multi-page allocations that are not compound
5013 * pages. It does not check that the @order passed in matches that of
5014 * the allocation, so it is easy to leak memory. Freeing more memory
5015 * than was allocated will probably emit a warning.
5016 *
5017 * If the last reference to this page is speculative, it will be released
5018 * by put_page() which only frees the first page of a non-compound
5019 * allocation. To prevent the remaining pages from being leaked, we free
5020 * the subsequent pages here. If you want to use the page's reference
5021 * count to decide when to free the allocation, you should allocate a
5022 * compound page, and use put_page() instead of __free_pages().
5023 *
5024 * Context: May be called in interrupt context or while holding a normal
5025 * spinlock, but not in NMI context or while holding a raw spinlock.
5026 */
___free_pages(struct page * page,unsigned int order,fpi_t fpi_flags)5027 static void ___free_pages(struct page *page, unsigned int order,
5028 fpi_t fpi_flags)
5029 {
5030 /* get PageHead before we drop reference */
5031 int head = PageHead(page);
5032
5033 if (put_page_testzero(page))
5034 __free_frozen_pages(page, order, fpi_flags);
5035 else if (!head) {
5036 pgalloc_tag_sub_pages(page, (1 << order) - 1);
5037 while (order-- > 0)
5038 __free_frozen_pages(page + (1 << order), order,
5039 fpi_flags);
5040 }
5041 }
__free_pages(struct page * page,unsigned int order)5042 void __free_pages(struct page *page, unsigned int order)
5043 {
5044 ___free_pages(page, order, FPI_NONE);
5045 }
5046 EXPORT_SYMBOL(__free_pages);
5047
5048 /*
5049 * Can be called while holding raw_spin_lock or from IRQ and NMI for any
5050 * page type (not only those that came from try_alloc_pages)
5051 */
free_pages_nolock(struct page * page,unsigned int order)5052 void free_pages_nolock(struct page *page, unsigned int order)
5053 {
5054 ___free_pages(page, order, FPI_TRYLOCK);
5055 }
5056
free_pages(unsigned long addr,unsigned int order)5057 void free_pages(unsigned long addr, unsigned int order)
5058 {
5059 if (addr != 0) {
5060 VM_BUG_ON(!virt_addr_valid((void *)addr));
5061 __free_pages(virt_to_page((void *)addr), order);
5062 }
5063 }
5064
5065 EXPORT_SYMBOL(free_pages);
5066
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)5067 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5068 size_t size)
5069 {
5070 if (addr) {
5071 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5072 struct page *page = virt_to_page((void *)addr);
5073 struct page *last = page + nr;
5074
5075 split_page_owner(page, order, 0);
5076 pgalloc_tag_split(page_folio(page), order, 0);
5077 split_page_memcg(page, order);
5078 while (page < --last)
5079 set_page_refcounted(last);
5080
5081 last = page + (1UL << order);
5082 for (page += nr; page < last; page++)
5083 __free_pages_ok(page, 0, FPI_TO_TAIL);
5084 }
5085 return (void *)addr;
5086 }
5087
5088 /**
5089 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5090 * @size: the number of bytes to allocate
5091 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5092 *
5093 * This function is similar to alloc_pages(), except that it allocates the
5094 * minimum number of pages to satisfy the request. alloc_pages() can only
5095 * allocate memory in power-of-two pages.
5096 *
5097 * This function is also limited by MAX_PAGE_ORDER.
5098 *
5099 * Memory allocated by this function must be released by free_pages_exact().
5100 *
5101 * Return: pointer to the allocated area or %NULL in case of error.
5102 */
alloc_pages_exact_noprof(size_t size,gfp_t gfp_mask)5103 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
5104 {
5105 unsigned int order = get_order(size);
5106 unsigned long addr;
5107
5108 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5109 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5110
5111 addr = get_free_pages_noprof(gfp_mask, order);
5112 return make_alloc_exact(addr, order, size);
5113 }
5114 EXPORT_SYMBOL(alloc_pages_exact_noprof);
5115
5116 /**
5117 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5118 * pages on a node.
5119 * @nid: the preferred node ID where memory should be allocated
5120 * @size: the number of bytes to allocate
5121 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5122 *
5123 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5124 * back.
5125 *
5126 * Return: pointer to the allocated area or %NULL in case of error.
5127 */
alloc_pages_exact_nid_noprof(int nid,size_t size,gfp_t gfp_mask)5128 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5129 {
5130 unsigned int order = get_order(size);
5131 struct page *p;
5132
5133 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5134 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5135
5136 p = alloc_pages_node_noprof(nid, gfp_mask, order);
5137 if (!p)
5138 return NULL;
5139 return make_alloc_exact((unsigned long)page_address(p), order, size);
5140 }
5141
5142 /**
5143 * free_pages_exact - release memory allocated via alloc_pages_exact()
5144 * @virt: the value returned by alloc_pages_exact.
5145 * @size: size of allocation, same value as passed to alloc_pages_exact().
5146 *
5147 * Release the memory allocated by a previous call to alloc_pages_exact.
5148 */
free_pages_exact(void * virt,size_t size)5149 void free_pages_exact(void *virt, size_t size)
5150 {
5151 unsigned long addr = (unsigned long)virt;
5152 unsigned long end = addr + PAGE_ALIGN(size);
5153
5154 while (addr < end) {
5155 free_page(addr);
5156 addr += PAGE_SIZE;
5157 }
5158 }
5159 EXPORT_SYMBOL(free_pages_exact);
5160
5161 /**
5162 * nr_free_zone_pages - count number of pages beyond high watermark
5163 * @offset: The zone index of the highest zone
5164 *
5165 * nr_free_zone_pages() counts the number of pages which are beyond the
5166 * high watermark within all zones at or below a given zone index. For each
5167 * zone, the number of pages is calculated as:
5168 *
5169 * nr_free_zone_pages = managed_pages - high_pages
5170 *
5171 * Return: number of pages beyond high watermark.
5172 */
nr_free_zone_pages(int offset)5173 static unsigned long nr_free_zone_pages(int offset)
5174 {
5175 struct zoneref *z;
5176 struct zone *zone;
5177
5178 /* Just pick one node, since fallback list is circular */
5179 unsigned long sum = 0;
5180
5181 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5182
5183 for_each_zone_zonelist(zone, z, zonelist, offset) {
5184 unsigned long size = zone_managed_pages(zone);
5185 unsigned long high = high_wmark_pages(zone);
5186 if (size > high)
5187 sum += size - high;
5188 }
5189
5190 return sum;
5191 }
5192
5193 /**
5194 * nr_free_buffer_pages - count number of pages beyond high watermark
5195 *
5196 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5197 * watermark within ZONE_DMA and ZONE_NORMAL.
5198 *
5199 * Return: number of pages beyond high watermark within ZONE_DMA and
5200 * ZONE_NORMAL.
5201 */
nr_free_buffer_pages(void)5202 unsigned long nr_free_buffer_pages(void)
5203 {
5204 return nr_free_zone_pages(gfp_zone(GFP_USER));
5205 }
5206 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5207
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)5208 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5209 {
5210 zoneref->zone = zone;
5211 zoneref->zone_idx = zone_idx(zone);
5212 }
5213
5214 /*
5215 * Builds allocation fallback zone lists.
5216 *
5217 * Add all populated zones of a node to the zonelist.
5218 */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5219 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5220 {
5221 struct zone *zone;
5222 enum zone_type zone_type = MAX_NR_ZONES;
5223 int nr_zones = 0;
5224
5225 do {
5226 zone_type--;
5227 zone = pgdat->node_zones + zone_type;
5228 if (populated_zone(zone)) {
5229 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5230 check_highest_zone(zone_type);
5231 }
5232 } while (zone_type);
5233
5234 return nr_zones;
5235 }
5236
5237 #ifdef CONFIG_NUMA
5238
__parse_numa_zonelist_order(char * s)5239 static int __parse_numa_zonelist_order(char *s)
5240 {
5241 /*
5242 * We used to support different zonelists modes but they turned
5243 * out to be just not useful. Let's keep the warning in place
5244 * if somebody still use the cmd line parameter so that we do
5245 * not fail it silently
5246 */
5247 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5248 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5249 return -EINVAL;
5250 }
5251 return 0;
5252 }
5253
5254 static char numa_zonelist_order[] = "Node";
5255 #define NUMA_ZONELIST_ORDER_LEN 16
5256 /*
5257 * sysctl handler for numa_zonelist_order
5258 */
numa_zonelist_order_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5259 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5260 void *buffer, size_t *length, loff_t *ppos)
5261 {
5262 if (write)
5263 return __parse_numa_zonelist_order(buffer);
5264 return proc_dostring(table, write, buffer, length, ppos);
5265 }
5266
5267 static int node_load[MAX_NUMNODES];
5268
5269 /**
5270 * find_next_best_node - find the next node that should appear in a given node's fallback list
5271 * @node: node whose fallback list we're appending
5272 * @used_node_mask: nodemask_t of already used nodes
5273 *
5274 * We use a number of factors to determine which is the next node that should
5275 * appear on a given node's fallback list. The node should not have appeared
5276 * already in @node's fallback list, and it should be the next closest node
5277 * according to the distance array (which contains arbitrary distance values
5278 * from each node to each node in the system), and should also prefer nodes
5279 * with no CPUs, since presumably they'll have very little allocation pressure
5280 * on them otherwise.
5281 *
5282 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5283 */
find_next_best_node(int node,nodemask_t * used_node_mask)5284 int find_next_best_node(int node, nodemask_t *used_node_mask)
5285 {
5286 int n, val;
5287 int min_val = INT_MAX;
5288 int best_node = NUMA_NO_NODE;
5289
5290 /*
5291 * Use the local node if we haven't already, but for memoryless local
5292 * node, we should skip it and fall back to other nodes.
5293 */
5294 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5295 node_set(node, *used_node_mask);
5296 return node;
5297 }
5298
5299 for_each_node_state(n, N_MEMORY) {
5300
5301 /* Don't want a node to appear more than once */
5302 if (node_isset(n, *used_node_mask))
5303 continue;
5304
5305 /* Use the distance array to find the distance */
5306 val = node_distance(node, n);
5307
5308 /* Penalize nodes under us ("prefer the next node") */
5309 val += (n < node);
5310
5311 /* Give preference to headless and unused nodes */
5312 if (!cpumask_empty(cpumask_of_node(n)))
5313 val += PENALTY_FOR_NODE_WITH_CPUS;
5314
5315 /* Slight preference for less loaded node */
5316 val *= MAX_NUMNODES;
5317 val += node_load[n];
5318
5319 if (val < min_val) {
5320 min_val = val;
5321 best_node = n;
5322 }
5323 }
5324
5325 if (best_node >= 0)
5326 node_set(best_node, *used_node_mask);
5327
5328 return best_node;
5329 }
5330
5331
5332 /*
5333 * Build zonelists ordered by node and zones within node.
5334 * This results in maximum locality--normal zone overflows into local
5335 * DMA zone, if any--but risks exhausting DMA zone.
5336 */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5337 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5338 unsigned nr_nodes)
5339 {
5340 struct zoneref *zonerefs;
5341 int i;
5342
5343 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5344
5345 for (i = 0; i < nr_nodes; i++) {
5346 int nr_zones;
5347
5348 pg_data_t *node = NODE_DATA(node_order[i]);
5349
5350 nr_zones = build_zonerefs_node(node, zonerefs);
5351 zonerefs += nr_zones;
5352 }
5353 zonerefs->zone = NULL;
5354 zonerefs->zone_idx = 0;
5355 }
5356
5357 /*
5358 * Build __GFP_THISNODE zonelists
5359 */
build_thisnode_zonelists(pg_data_t * pgdat)5360 static void build_thisnode_zonelists(pg_data_t *pgdat)
5361 {
5362 struct zoneref *zonerefs;
5363 int nr_zones;
5364
5365 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5366 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5367 zonerefs += nr_zones;
5368 zonerefs->zone = NULL;
5369 zonerefs->zone_idx = 0;
5370 }
5371
build_zonelists(pg_data_t * pgdat)5372 static void build_zonelists(pg_data_t *pgdat)
5373 {
5374 static int node_order[MAX_NUMNODES];
5375 int node, nr_nodes = 0;
5376 nodemask_t used_mask = NODE_MASK_NONE;
5377 int local_node, prev_node;
5378
5379 /* NUMA-aware ordering of nodes */
5380 local_node = pgdat->node_id;
5381 prev_node = local_node;
5382
5383 memset(node_order, 0, sizeof(node_order));
5384 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5385 /*
5386 * We don't want to pressure a particular node.
5387 * So adding penalty to the first node in same
5388 * distance group to make it round-robin.
5389 */
5390 if (node_distance(local_node, node) !=
5391 node_distance(local_node, prev_node))
5392 node_load[node] += 1;
5393
5394 node_order[nr_nodes++] = node;
5395 prev_node = node;
5396 }
5397
5398 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5399 build_thisnode_zonelists(pgdat);
5400 pr_info("Fallback order for Node %d: ", local_node);
5401 for (node = 0; node < nr_nodes; node++)
5402 pr_cont("%d ", node_order[node]);
5403 pr_cont("\n");
5404 }
5405
5406 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5407 /*
5408 * Return node id of node used for "local" allocations.
5409 * I.e., first node id of first zone in arg node's generic zonelist.
5410 * Used for initializing percpu 'numa_mem', which is used primarily
5411 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5412 */
local_memory_node(int node)5413 int local_memory_node(int node)
5414 {
5415 struct zoneref *z;
5416
5417 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5418 gfp_zone(GFP_KERNEL),
5419 NULL);
5420 return zonelist_node_idx(z);
5421 }
5422 #endif
5423
5424 static void setup_min_unmapped_ratio(void);
5425 static void setup_min_slab_ratio(void);
5426 #else /* CONFIG_NUMA */
5427
build_zonelists(pg_data_t * pgdat)5428 static void build_zonelists(pg_data_t *pgdat)
5429 {
5430 struct zoneref *zonerefs;
5431 int nr_zones;
5432
5433 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5434 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5435 zonerefs += nr_zones;
5436
5437 zonerefs->zone = NULL;
5438 zonerefs->zone_idx = 0;
5439 }
5440
5441 #endif /* CONFIG_NUMA */
5442
5443 /*
5444 * Boot pageset table. One per cpu which is going to be used for all
5445 * zones and all nodes. The parameters will be set in such a way
5446 * that an item put on a list will immediately be handed over to
5447 * the buddy list. This is safe since pageset manipulation is done
5448 * with interrupts disabled.
5449 *
5450 * The boot_pagesets must be kept even after bootup is complete for
5451 * unused processors and/or zones. They do play a role for bootstrapping
5452 * hotplugged processors.
5453 *
5454 * zoneinfo_show() and maybe other functions do
5455 * not check if the processor is online before following the pageset pointer.
5456 * Other parts of the kernel may not check if the zone is available.
5457 */
5458 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5459 /* These effectively disable the pcplists in the boot pageset completely */
5460 #define BOOT_PAGESET_HIGH 0
5461 #define BOOT_PAGESET_BATCH 1
5462 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5463 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5464
__build_all_zonelists(void * data)5465 static void __build_all_zonelists(void *data)
5466 {
5467 int nid;
5468 int __maybe_unused cpu;
5469 pg_data_t *self = data;
5470 unsigned long flags;
5471
5472 /*
5473 * The zonelist_update_seq must be acquired with irqsave because the
5474 * reader can be invoked from IRQ with GFP_ATOMIC.
5475 */
5476 write_seqlock_irqsave(&zonelist_update_seq, flags);
5477 /*
5478 * Also disable synchronous printk() to prevent any printk() from
5479 * trying to hold port->lock, for
5480 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5481 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5482 */
5483 printk_deferred_enter();
5484
5485 #ifdef CONFIG_NUMA
5486 memset(node_load, 0, sizeof(node_load));
5487 #endif
5488
5489 /*
5490 * This node is hotadded and no memory is yet present. So just
5491 * building zonelists is fine - no need to touch other nodes.
5492 */
5493 if (self && !node_online(self->node_id)) {
5494 build_zonelists(self);
5495 } else {
5496 /*
5497 * All possible nodes have pgdat preallocated
5498 * in free_area_init
5499 */
5500 for_each_node(nid) {
5501 pg_data_t *pgdat = NODE_DATA(nid);
5502
5503 build_zonelists(pgdat);
5504 }
5505
5506 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5507 /*
5508 * We now know the "local memory node" for each node--
5509 * i.e., the node of the first zone in the generic zonelist.
5510 * Set up numa_mem percpu variable for on-line cpus. During
5511 * boot, only the boot cpu should be on-line; we'll init the
5512 * secondary cpus' numa_mem as they come on-line. During
5513 * node/memory hotplug, we'll fixup all on-line cpus.
5514 */
5515 for_each_online_cpu(cpu)
5516 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5517 #endif
5518 }
5519
5520 printk_deferred_exit();
5521 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5522 }
5523
5524 static noinline void __init
build_all_zonelists_init(void)5525 build_all_zonelists_init(void)
5526 {
5527 int cpu;
5528
5529 __build_all_zonelists(NULL);
5530
5531 /*
5532 * Initialize the boot_pagesets that are going to be used
5533 * for bootstrapping processors. The real pagesets for
5534 * each zone will be allocated later when the per cpu
5535 * allocator is available.
5536 *
5537 * boot_pagesets are used also for bootstrapping offline
5538 * cpus if the system is already booted because the pagesets
5539 * are needed to initialize allocators on a specific cpu too.
5540 * F.e. the percpu allocator needs the page allocator which
5541 * needs the percpu allocator in order to allocate its pagesets
5542 * (a chicken-egg dilemma).
5543 */
5544 for_each_possible_cpu(cpu)
5545 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5546
5547 mminit_verify_zonelist();
5548 cpuset_init_current_mems_allowed();
5549 }
5550
5551 /*
5552 * unless system_state == SYSTEM_BOOTING.
5553 *
5554 * __ref due to call of __init annotated helper build_all_zonelists_init
5555 * [protected by SYSTEM_BOOTING].
5556 */
build_all_zonelists(pg_data_t * pgdat)5557 void __ref build_all_zonelists(pg_data_t *pgdat)
5558 {
5559 unsigned long vm_total_pages;
5560
5561 if (system_state == SYSTEM_BOOTING) {
5562 build_all_zonelists_init();
5563 } else {
5564 __build_all_zonelists(pgdat);
5565 /* cpuset refresh routine should be here */
5566 }
5567 /* Get the number of free pages beyond high watermark in all zones. */
5568 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5569 /*
5570 * Disable grouping by mobility if the number of pages in the
5571 * system is too low to allow the mechanism to work. It would be
5572 * more accurate, but expensive to check per-zone. This check is
5573 * made on memory-hotadd so a system can start with mobility
5574 * disabled and enable it later
5575 */
5576 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5577 page_group_by_mobility_disabled = 1;
5578 else
5579 page_group_by_mobility_disabled = 0;
5580
5581 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5582 nr_online_nodes,
5583 str_off_on(page_group_by_mobility_disabled),
5584 vm_total_pages);
5585 #ifdef CONFIG_NUMA
5586 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5587 #endif
5588 }
5589
zone_batchsize(struct zone * zone)5590 static int zone_batchsize(struct zone *zone)
5591 {
5592 #ifdef CONFIG_MMU
5593 int batch;
5594
5595 /*
5596 * The number of pages to batch allocate is either ~0.1%
5597 * of the zone or 1MB, whichever is smaller. The batch
5598 * size is striking a balance between allocation latency
5599 * and zone lock contention.
5600 */
5601 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5602 batch /= 4; /* We effectively *= 4 below */
5603 if (batch < 1)
5604 batch = 1;
5605
5606 /*
5607 * Clamp the batch to a 2^n - 1 value. Having a power
5608 * of 2 value was found to be more likely to have
5609 * suboptimal cache aliasing properties in some cases.
5610 *
5611 * For example if 2 tasks are alternately allocating
5612 * batches of pages, one task can end up with a lot
5613 * of pages of one half of the possible page colors
5614 * and the other with pages of the other colors.
5615 */
5616 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5617
5618 return batch;
5619
5620 #else
5621 /* The deferral and batching of frees should be suppressed under NOMMU
5622 * conditions.
5623 *
5624 * The problem is that NOMMU needs to be able to allocate large chunks
5625 * of contiguous memory as there's no hardware page translation to
5626 * assemble apparent contiguous memory from discontiguous pages.
5627 *
5628 * Queueing large contiguous runs of pages for batching, however,
5629 * causes the pages to actually be freed in smaller chunks. As there
5630 * can be a significant delay between the individual batches being
5631 * recycled, this leads to the once large chunks of space being
5632 * fragmented and becoming unavailable for high-order allocations.
5633 */
5634 return 0;
5635 #endif
5636 }
5637
5638 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online,int high_fraction)5639 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5640 int high_fraction)
5641 {
5642 #ifdef CONFIG_MMU
5643 int high;
5644 int nr_split_cpus;
5645 unsigned long total_pages;
5646
5647 if (!high_fraction) {
5648 /*
5649 * By default, the high value of the pcp is based on the zone
5650 * low watermark so that if they are full then background
5651 * reclaim will not be started prematurely.
5652 */
5653 total_pages = low_wmark_pages(zone);
5654 } else {
5655 /*
5656 * If percpu_pagelist_high_fraction is configured, the high
5657 * value is based on a fraction of the managed pages in the
5658 * zone.
5659 */
5660 total_pages = zone_managed_pages(zone) / high_fraction;
5661 }
5662
5663 /*
5664 * Split the high value across all online CPUs local to the zone. Note
5665 * that early in boot that CPUs may not be online yet and that during
5666 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5667 * onlined. For memory nodes that have no CPUs, split the high value
5668 * across all online CPUs to mitigate the risk that reclaim is triggered
5669 * prematurely due to pages stored on pcp lists.
5670 */
5671 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5672 if (!nr_split_cpus)
5673 nr_split_cpus = num_online_cpus();
5674 high = total_pages / nr_split_cpus;
5675
5676 /*
5677 * Ensure high is at least batch*4. The multiple is based on the
5678 * historical relationship between high and batch.
5679 */
5680 high = max(high, batch << 2);
5681
5682 return high;
5683 #else
5684 return 0;
5685 #endif
5686 }
5687
5688 /*
5689 * pcp->high and pcp->batch values are related and generally batch is lower
5690 * than high. They are also related to pcp->count such that count is lower
5691 * than high, and as soon as it reaches high, the pcplist is flushed.
5692 *
5693 * However, guaranteeing these relations at all times would require e.g. write
5694 * barriers here but also careful usage of read barriers at the read side, and
5695 * thus be prone to error and bad for performance. Thus the update only prevents
5696 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5697 * should ensure they can cope with those fields changing asynchronously, and
5698 * fully trust only the pcp->count field on the local CPU with interrupts
5699 * disabled.
5700 *
5701 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5702 * outside of boot time (or some other assurance that no concurrent updaters
5703 * exist).
5704 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high_min,unsigned long high_max,unsigned long batch)5705 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5706 unsigned long high_max, unsigned long batch)
5707 {
5708 WRITE_ONCE(pcp->batch, batch);
5709 WRITE_ONCE(pcp->high_min, high_min);
5710 WRITE_ONCE(pcp->high_max, high_max);
5711 }
5712
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5713 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5714 {
5715 int pindex;
5716
5717 memset(pcp, 0, sizeof(*pcp));
5718 memset(pzstats, 0, sizeof(*pzstats));
5719
5720 spin_lock_init(&pcp->lock);
5721 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5722 INIT_LIST_HEAD(&pcp->lists[pindex]);
5723
5724 /*
5725 * Set batch and high values safe for a boot pageset. A true percpu
5726 * pageset's initialization will update them subsequently. Here we don't
5727 * need to be as careful as pageset_update() as nobody can access the
5728 * pageset yet.
5729 */
5730 pcp->high_min = BOOT_PAGESET_HIGH;
5731 pcp->high_max = BOOT_PAGESET_HIGH;
5732 pcp->batch = BOOT_PAGESET_BATCH;
5733 pcp->free_count = 0;
5734 }
5735
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high_min,unsigned long high_max,unsigned long batch)5736 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5737 unsigned long high_max, unsigned long batch)
5738 {
5739 struct per_cpu_pages *pcp;
5740 int cpu;
5741
5742 for_each_possible_cpu(cpu) {
5743 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5744 pageset_update(pcp, high_min, high_max, batch);
5745 }
5746 }
5747
5748 /*
5749 * Calculate and set new high and batch values for all per-cpu pagesets of a
5750 * zone based on the zone's size.
5751 */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5752 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5753 {
5754 int new_high_min, new_high_max, new_batch;
5755
5756 new_batch = max(1, zone_batchsize(zone));
5757 if (percpu_pagelist_high_fraction) {
5758 new_high_min = zone_highsize(zone, new_batch, cpu_online,
5759 percpu_pagelist_high_fraction);
5760 /*
5761 * PCP high is tuned manually, disable auto-tuning via
5762 * setting high_min and high_max to the manual value.
5763 */
5764 new_high_max = new_high_min;
5765 } else {
5766 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5767 new_high_max = zone_highsize(zone, new_batch, cpu_online,
5768 MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5769 }
5770
5771 if (zone->pageset_high_min == new_high_min &&
5772 zone->pageset_high_max == new_high_max &&
5773 zone->pageset_batch == new_batch)
5774 return;
5775
5776 zone->pageset_high_min = new_high_min;
5777 zone->pageset_high_max = new_high_max;
5778 zone->pageset_batch = new_batch;
5779
5780 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5781 new_batch);
5782 }
5783
setup_zone_pageset(struct zone * zone)5784 void __meminit setup_zone_pageset(struct zone *zone)
5785 {
5786 int cpu;
5787
5788 /* Size may be 0 on !SMP && !NUMA */
5789 if (sizeof(struct per_cpu_zonestat) > 0)
5790 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5791
5792 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5793 for_each_possible_cpu(cpu) {
5794 struct per_cpu_pages *pcp;
5795 struct per_cpu_zonestat *pzstats;
5796
5797 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5798 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5799 per_cpu_pages_init(pcp, pzstats);
5800 }
5801
5802 zone_set_pageset_high_and_batch(zone, 0);
5803 }
5804
5805 /*
5806 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5807 * page high values need to be recalculated.
5808 */
zone_pcp_update(struct zone * zone,int cpu_online)5809 static void zone_pcp_update(struct zone *zone, int cpu_online)
5810 {
5811 mutex_lock(&pcp_batch_high_lock);
5812 zone_set_pageset_high_and_batch(zone, cpu_online);
5813 mutex_unlock(&pcp_batch_high_lock);
5814 }
5815
zone_pcp_update_cacheinfo(struct zone * zone,unsigned int cpu)5816 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5817 {
5818 struct per_cpu_pages *pcp;
5819 struct cpu_cacheinfo *cci;
5820
5821 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5822 cci = get_cpu_cacheinfo(cpu);
5823 /*
5824 * If data cache slice of CPU is large enough, "pcp->batch"
5825 * pages can be preserved in PCP before draining PCP for
5826 * consecutive high-order pages freeing without allocation.
5827 * This can reduce zone lock contention without hurting
5828 * cache-hot pages sharing.
5829 */
5830 spin_lock(&pcp->lock);
5831 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5832 pcp->flags |= PCPF_FREE_HIGH_BATCH;
5833 else
5834 pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5835 spin_unlock(&pcp->lock);
5836 }
5837
setup_pcp_cacheinfo(unsigned int cpu)5838 void setup_pcp_cacheinfo(unsigned int cpu)
5839 {
5840 struct zone *zone;
5841
5842 for_each_populated_zone(zone)
5843 zone_pcp_update_cacheinfo(zone, cpu);
5844 }
5845
5846 /*
5847 * Allocate per cpu pagesets and initialize them.
5848 * Before this call only boot pagesets were available.
5849 */
setup_per_cpu_pageset(void)5850 void __init setup_per_cpu_pageset(void)
5851 {
5852 struct pglist_data *pgdat;
5853 struct zone *zone;
5854 int __maybe_unused cpu;
5855
5856 for_each_populated_zone(zone)
5857 setup_zone_pageset(zone);
5858
5859 #ifdef CONFIG_NUMA
5860 /*
5861 * Unpopulated zones continue using the boot pagesets.
5862 * The numa stats for these pagesets need to be reset.
5863 * Otherwise, they will end up skewing the stats of
5864 * the nodes these zones are associated with.
5865 */
5866 for_each_possible_cpu(cpu) {
5867 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5868 memset(pzstats->vm_numa_event, 0,
5869 sizeof(pzstats->vm_numa_event));
5870 }
5871 #endif
5872
5873 for_each_online_pgdat(pgdat)
5874 pgdat->per_cpu_nodestats =
5875 alloc_percpu(struct per_cpu_nodestat);
5876 }
5877
zone_pcp_init(struct zone * zone)5878 __meminit void zone_pcp_init(struct zone *zone)
5879 {
5880 /*
5881 * per cpu subsystem is not up at this point. The following code
5882 * relies on the ability of the linker to provide the
5883 * offset of a (static) per cpu variable into the per cpu area.
5884 */
5885 zone->per_cpu_pageset = &boot_pageset;
5886 zone->per_cpu_zonestats = &boot_zonestats;
5887 zone->pageset_high_min = BOOT_PAGESET_HIGH;
5888 zone->pageset_high_max = BOOT_PAGESET_HIGH;
5889 zone->pageset_batch = BOOT_PAGESET_BATCH;
5890
5891 if (populated_zone(zone))
5892 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5893 zone->present_pages, zone_batchsize(zone));
5894 }
5895
5896 static void setup_per_zone_lowmem_reserve(void);
5897
adjust_managed_page_count(struct page * page,long count)5898 void adjust_managed_page_count(struct page *page, long count)
5899 {
5900 atomic_long_add(count, &page_zone(page)->managed_pages);
5901 totalram_pages_add(count);
5902 setup_per_zone_lowmem_reserve();
5903 }
5904 EXPORT_SYMBOL(adjust_managed_page_count);
5905
free_reserved_area(void * start,void * end,int poison,const char * s)5906 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5907 {
5908 void *pos;
5909 unsigned long pages = 0;
5910
5911 start = (void *)PAGE_ALIGN((unsigned long)start);
5912 end = (void *)((unsigned long)end & PAGE_MASK);
5913 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5914 struct page *page = virt_to_page(pos);
5915 void *direct_map_addr;
5916
5917 /*
5918 * 'direct_map_addr' might be different from 'pos'
5919 * because some architectures' virt_to_page()
5920 * work with aliases. Getting the direct map
5921 * address ensures that we get a _writeable_
5922 * alias for the memset().
5923 */
5924 direct_map_addr = page_address(page);
5925 /*
5926 * Perform a kasan-unchecked memset() since this memory
5927 * has not been initialized.
5928 */
5929 direct_map_addr = kasan_reset_tag(direct_map_addr);
5930 if ((unsigned int)poison <= 0xFF)
5931 memset(direct_map_addr, poison, PAGE_SIZE);
5932
5933 free_reserved_page(page);
5934 }
5935
5936 if (pages && s)
5937 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5938
5939 return pages;
5940 }
5941
free_reserved_page(struct page * page)5942 void free_reserved_page(struct page *page)
5943 {
5944 clear_page_tag_ref(page);
5945 ClearPageReserved(page);
5946 init_page_count(page);
5947 __free_page(page);
5948 adjust_managed_page_count(page, 1);
5949 }
5950 EXPORT_SYMBOL(free_reserved_page);
5951
page_alloc_cpu_dead(unsigned int cpu)5952 static int page_alloc_cpu_dead(unsigned int cpu)
5953 {
5954 struct zone *zone;
5955
5956 lru_add_drain_cpu(cpu);
5957 mlock_drain_remote(cpu);
5958 drain_pages(cpu);
5959
5960 /*
5961 * Spill the event counters of the dead processor
5962 * into the current processors event counters.
5963 * This artificially elevates the count of the current
5964 * processor.
5965 */
5966 vm_events_fold_cpu(cpu);
5967
5968 /*
5969 * Zero the differential counters of the dead processor
5970 * so that the vm statistics are consistent.
5971 *
5972 * This is only okay since the processor is dead and cannot
5973 * race with what we are doing.
5974 */
5975 cpu_vm_stats_fold(cpu);
5976
5977 for_each_populated_zone(zone)
5978 zone_pcp_update(zone, 0);
5979
5980 return 0;
5981 }
5982
page_alloc_cpu_online(unsigned int cpu)5983 static int page_alloc_cpu_online(unsigned int cpu)
5984 {
5985 struct zone *zone;
5986
5987 for_each_populated_zone(zone)
5988 zone_pcp_update(zone, 1);
5989 return 0;
5990 }
5991
page_alloc_init_cpuhp(void)5992 void __init page_alloc_init_cpuhp(void)
5993 {
5994 int ret;
5995
5996 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5997 "mm/page_alloc:pcp",
5998 page_alloc_cpu_online,
5999 page_alloc_cpu_dead);
6000 WARN_ON(ret < 0);
6001 }
6002
6003 /*
6004 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6005 * or min_free_kbytes changes.
6006 */
calculate_totalreserve_pages(void)6007 static void calculate_totalreserve_pages(void)
6008 {
6009 struct pglist_data *pgdat;
6010 unsigned long reserve_pages = 0;
6011 enum zone_type i, j;
6012
6013 for_each_online_pgdat(pgdat) {
6014
6015 pgdat->totalreserve_pages = 0;
6016
6017 for (i = 0; i < MAX_NR_ZONES; i++) {
6018 struct zone *zone = pgdat->node_zones + i;
6019 long max = 0;
6020 unsigned long managed_pages = zone_managed_pages(zone);
6021
6022 /* Find valid and maximum lowmem_reserve in the zone */
6023 for (j = i; j < MAX_NR_ZONES; j++) {
6024 if (zone->lowmem_reserve[j] > max)
6025 max = zone->lowmem_reserve[j];
6026 }
6027
6028 /* we treat the high watermark as reserved pages. */
6029 max += high_wmark_pages(zone);
6030
6031 if (max > managed_pages)
6032 max = managed_pages;
6033
6034 pgdat->totalreserve_pages += max;
6035
6036 reserve_pages += max;
6037 }
6038 }
6039 totalreserve_pages = reserve_pages;
6040 trace_mm_calculate_totalreserve_pages(totalreserve_pages);
6041 }
6042
6043 /*
6044 * setup_per_zone_lowmem_reserve - called whenever
6045 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6046 * has a correct pages reserved value, so an adequate number of
6047 * pages are left in the zone after a successful __alloc_pages().
6048 */
setup_per_zone_lowmem_reserve(void)6049 static void setup_per_zone_lowmem_reserve(void)
6050 {
6051 struct pglist_data *pgdat;
6052 enum zone_type i, j;
6053
6054 for_each_online_pgdat(pgdat) {
6055 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
6056 struct zone *zone = &pgdat->node_zones[i];
6057 int ratio = sysctl_lowmem_reserve_ratio[i];
6058 bool clear = !ratio || !zone_managed_pages(zone);
6059 unsigned long managed_pages = 0;
6060
6061 for (j = i + 1; j < MAX_NR_ZONES; j++) {
6062 struct zone *upper_zone = &pgdat->node_zones[j];
6063
6064 managed_pages += zone_managed_pages(upper_zone);
6065
6066 if (clear)
6067 zone->lowmem_reserve[j] = 0;
6068 else
6069 zone->lowmem_reserve[j] = managed_pages / ratio;
6070 trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone,
6071 zone->lowmem_reserve[j]);
6072 }
6073 }
6074 }
6075
6076 /* update totalreserve_pages */
6077 calculate_totalreserve_pages();
6078 }
6079
__setup_per_zone_wmarks(void)6080 static void __setup_per_zone_wmarks(void)
6081 {
6082 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6083 unsigned long lowmem_pages = 0;
6084 struct zone *zone;
6085 unsigned long flags;
6086
6087 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
6088 for_each_zone(zone) {
6089 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
6090 lowmem_pages += zone_managed_pages(zone);
6091 }
6092
6093 for_each_zone(zone) {
6094 u64 tmp;
6095
6096 spin_lock_irqsave(&zone->lock, flags);
6097 tmp = (u64)pages_min * zone_managed_pages(zone);
6098 tmp = div64_ul(tmp, lowmem_pages);
6099 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
6100 /*
6101 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6102 * need highmem and movable zones pages, so cap pages_min
6103 * to a small value here.
6104 *
6105 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6106 * deltas control async page reclaim, and so should
6107 * not be capped for highmem and movable zones.
6108 */
6109 unsigned long min_pages;
6110
6111 min_pages = zone_managed_pages(zone) / 1024;
6112 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6113 zone->_watermark[WMARK_MIN] = min_pages;
6114 } else {
6115 /*
6116 * If it's a lowmem zone, reserve a number of pages
6117 * proportionate to the zone's size.
6118 */
6119 zone->_watermark[WMARK_MIN] = tmp;
6120 }
6121
6122 /*
6123 * Set the kswapd watermarks distance according to the
6124 * scale factor in proportion to available memory, but
6125 * ensure a minimum size on small systems.
6126 */
6127 tmp = max_t(u64, tmp >> 2,
6128 mult_frac(zone_managed_pages(zone),
6129 watermark_scale_factor, 10000));
6130
6131 zone->watermark_boost = 0;
6132 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6133 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6134 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6135 trace_mm_setup_per_zone_wmarks(zone);
6136
6137 spin_unlock_irqrestore(&zone->lock, flags);
6138 }
6139
6140 /* update totalreserve_pages */
6141 calculate_totalreserve_pages();
6142 }
6143
6144 /**
6145 * setup_per_zone_wmarks - called when min_free_kbytes changes
6146 * or when memory is hot-{added|removed}
6147 *
6148 * Ensures that the watermark[min,low,high] values for each zone are set
6149 * correctly with respect to min_free_kbytes.
6150 */
setup_per_zone_wmarks(void)6151 void setup_per_zone_wmarks(void)
6152 {
6153 struct zone *zone;
6154 static DEFINE_SPINLOCK(lock);
6155
6156 spin_lock(&lock);
6157 __setup_per_zone_wmarks();
6158 spin_unlock(&lock);
6159
6160 /*
6161 * The watermark size have changed so update the pcpu batch
6162 * and high limits or the limits may be inappropriate.
6163 */
6164 for_each_zone(zone)
6165 zone_pcp_update(zone, 0);
6166 }
6167
6168 /*
6169 * Initialise min_free_kbytes.
6170 *
6171 * For small machines we want it small (128k min). For large machines
6172 * we want it large (256MB max). But it is not linear, because network
6173 * bandwidth does not increase linearly with machine size. We use
6174 *
6175 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6176 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6177 *
6178 * which yields
6179 *
6180 * 16MB: 512k
6181 * 32MB: 724k
6182 * 64MB: 1024k
6183 * 128MB: 1448k
6184 * 256MB: 2048k
6185 * 512MB: 2896k
6186 * 1024MB: 4096k
6187 * 2048MB: 5792k
6188 * 4096MB: 8192k
6189 * 8192MB: 11584k
6190 * 16384MB: 16384k
6191 */
calculate_min_free_kbytes(void)6192 void calculate_min_free_kbytes(void)
6193 {
6194 unsigned long lowmem_kbytes;
6195 int new_min_free_kbytes;
6196
6197 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6198 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6199
6200 if (new_min_free_kbytes > user_min_free_kbytes)
6201 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6202 else
6203 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6204 new_min_free_kbytes, user_min_free_kbytes);
6205
6206 }
6207
init_per_zone_wmark_min(void)6208 int __meminit init_per_zone_wmark_min(void)
6209 {
6210 calculate_min_free_kbytes();
6211 setup_per_zone_wmarks();
6212 refresh_zone_stat_thresholds();
6213 setup_per_zone_lowmem_reserve();
6214
6215 #ifdef CONFIG_NUMA
6216 setup_min_unmapped_ratio();
6217 setup_min_slab_ratio();
6218 #endif
6219
6220 khugepaged_min_free_kbytes_update();
6221
6222 return 0;
6223 }
postcore_initcall(init_per_zone_wmark_min)6224 postcore_initcall(init_per_zone_wmark_min)
6225
6226 /*
6227 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6228 * that we can call two helper functions whenever min_free_kbytes
6229 * changes.
6230 */
6231 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6232 void *buffer, size_t *length, loff_t *ppos)
6233 {
6234 int rc;
6235
6236 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6237 if (rc)
6238 return rc;
6239
6240 if (write) {
6241 user_min_free_kbytes = min_free_kbytes;
6242 setup_per_zone_wmarks();
6243 }
6244 return 0;
6245 }
6246
watermark_scale_factor_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6247 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6248 void *buffer, size_t *length, loff_t *ppos)
6249 {
6250 int rc;
6251
6252 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6253 if (rc)
6254 return rc;
6255
6256 if (write)
6257 setup_per_zone_wmarks();
6258
6259 return 0;
6260 }
6261
6262 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)6263 static void setup_min_unmapped_ratio(void)
6264 {
6265 pg_data_t *pgdat;
6266 struct zone *zone;
6267
6268 for_each_online_pgdat(pgdat)
6269 pgdat->min_unmapped_pages = 0;
6270
6271 for_each_zone(zone)
6272 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6273 sysctl_min_unmapped_ratio) / 100;
6274 }
6275
6276
sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6277 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6278 void *buffer, size_t *length, loff_t *ppos)
6279 {
6280 int rc;
6281
6282 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6283 if (rc)
6284 return rc;
6285
6286 setup_min_unmapped_ratio();
6287
6288 return 0;
6289 }
6290
setup_min_slab_ratio(void)6291 static void setup_min_slab_ratio(void)
6292 {
6293 pg_data_t *pgdat;
6294 struct zone *zone;
6295
6296 for_each_online_pgdat(pgdat)
6297 pgdat->min_slab_pages = 0;
6298
6299 for_each_zone(zone)
6300 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6301 sysctl_min_slab_ratio) / 100;
6302 }
6303
sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6304 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6305 void *buffer, size_t *length, loff_t *ppos)
6306 {
6307 int rc;
6308
6309 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6310 if (rc)
6311 return rc;
6312
6313 setup_min_slab_ratio();
6314
6315 return 0;
6316 }
6317 #endif
6318
6319 /*
6320 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6321 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6322 * whenever sysctl_lowmem_reserve_ratio changes.
6323 *
6324 * The reserve ratio obviously has absolutely no relation with the
6325 * minimum watermarks. The lowmem reserve ratio can only make sense
6326 * if in function of the boot time zone sizes.
6327 */
lowmem_reserve_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6328 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6329 int write, void *buffer, size_t *length, loff_t *ppos)
6330 {
6331 int i;
6332
6333 proc_dointvec_minmax(table, write, buffer, length, ppos);
6334
6335 for (i = 0; i < MAX_NR_ZONES; i++) {
6336 if (sysctl_lowmem_reserve_ratio[i] < 1)
6337 sysctl_lowmem_reserve_ratio[i] = 0;
6338 }
6339
6340 setup_per_zone_lowmem_reserve();
6341 return 0;
6342 }
6343
6344 /*
6345 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6346 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6347 * pagelist can have before it gets flushed back to buddy allocator.
6348 */
percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6349 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6350 int write, void *buffer, size_t *length, loff_t *ppos)
6351 {
6352 struct zone *zone;
6353 int old_percpu_pagelist_high_fraction;
6354 int ret;
6355
6356 mutex_lock(&pcp_batch_high_lock);
6357 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6358
6359 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6360 if (!write || ret < 0)
6361 goto out;
6362
6363 /* Sanity checking to avoid pcp imbalance */
6364 if (percpu_pagelist_high_fraction &&
6365 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6366 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6367 ret = -EINVAL;
6368 goto out;
6369 }
6370
6371 /* No change? */
6372 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6373 goto out;
6374
6375 for_each_populated_zone(zone)
6376 zone_set_pageset_high_and_batch(zone, 0);
6377 out:
6378 mutex_unlock(&pcp_batch_high_lock);
6379 return ret;
6380 }
6381
6382 static const struct ctl_table page_alloc_sysctl_table[] = {
6383 {
6384 .procname = "min_free_kbytes",
6385 .data = &min_free_kbytes,
6386 .maxlen = sizeof(min_free_kbytes),
6387 .mode = 0644,
6388 .proc_handler = min_free_kbytes_sysctl_handler,
6389 .extra1 = SYSCTL_ZERO,
6390 },
6391 {
6392 .procname = "watermark_boost_factor",
6393 .data = &watermark_boost_factor,
6394 .maxlen = sizeof(watermark_boost_factor),
6395 .mode = 0644,
6396 .proc_handler = proc_dointvec_minmax,
6397 .extra1 = SYSCTL_ZERO,
6398 },
6399 {
6400 .procname = "watermark_scale_factor",
6401 .data = &watermark_scale_factor,
6402 .maxlen = sizeof(watermark_scale_factor),
6403 .mode = 0644,
6404 .proc_handler = watermark_scale_factor_sysctl_handler,
6405 .extra1 = SYSCTL_ONE,
6406 .extra2 = SYSCTL_THREE_THOUSAND,
6407 },
6408 {
6409 .procname = "defrag_mode",
6410 .data = &defrag_mode,
6411 .maxlen = sizeof(defrag_mode),
6412 .mode = 0644,
6413 .proc_handler = proc_dointvec_minmax,
6414 .extra1 = SYSCTL_ZERO,
6415 .extra2 = SYSCTL_ONE,
6416 },
6417 {
6418 .procname = "percpu_pagelist_high_fraction",
6419 .data = &percpu_pagelist_high_fraction,
6420 .maxlen = sizeof(percpu_pagelist_high_fraction),
6421 .mode = 0644,
6422 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
6423 .extra1 = SYSCTL_ZERO,
6424 },
6425 {
6426 .procname = "lowmem_reserve_ratio",
6427 .data = &sysctl_lowmem_reserve_ratio,
6428 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6429 .mode = 0644,
6430 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6431 },
6432 #ifdef CONFIG_NUMA
6433 {
6434 .procname = "numa_zonelist_order",
6435 .data = &numa_zonelist_order,
6436 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6437 .mode = 0644,
6438 .proc_handler = numa_zonelist_order_handler,
6439 },
6440 {
6441 .procname = "min_unmapped_ratio",
6442 .data = &sysctl_min_unmapped_ratio,
6443 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6444 .mode = 0644,
6445 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6446 .extra1 = SYSCTL_ZERO,
6447 .extra2 = SYSCTL_ONE_HUNDRED,
6448 },
6449 {
6450 .procname = "min_slab_ratio",
6451 .data = &sysctl_min_slab_ratio,
6452 .maxlen = sizeof(sysctl_min_slab_ratio),
6453 .mode = 0644,
6454 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6455 .extra1 = SYSCTL_ZERO,
6456 .extra2 = SYSCTL_ONE_HUNDRED,
6457 },
6458 #endif
6459 };
6460
page_alloc_sysctl_init(void)6461 void __init page_alloc_sysctl_init(void)
6462 {
6463 register_sysctl_init("vm", page_alloc_sysctl_table);
6464 }
6465
6466 #ifdef CONFIG_CONTIG_ALLOC
6467 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6468 static void alloc_contig_dump_pages(struct list_head *page_list)
6469 {
6470 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6471
6472 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6473 struct page *page;
6474
6475 dump_stack();
6476 list_for_each_entry(page, page_list, lru)
6477 dump_page(page, "migration failure");
6478 }
6479 }
6480
6481 /*
6482 * [start, end) must belong to a single zone.
6483 * @migratetype: using migratetype to filter the type of migration in
6484 * trace_mm_alloc_contig_migrate_range_info.
6485 */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end,int migratetype)6486 static int __alloc_contig_migrate_range(struct compact_control *cc,
6487 unsigned long start, unsigned long end, int migratetype)
6488 {
6489 /* This function is based on compact_zone() from compaction.c. */
6490 unsigned int nr_reclaimed;
6491 unsigned long pfn = start;
6492 unsigned int tries = 0;
6493 int ret = 0;
6494 struct migration_target_control mtc = {
6495 .nid = zone_to_nid(cc->zone),
6496 .gfp_mask = cc->gfp_mask,
6497 .reason = MR_CONTIG_RANGE,
6498 };
6499 struct page *page;
6500 unsigned long total_mapped = 0;
6501 unsigned long total_migrated = 0;
6502 unsigned long total_reclaimed = 0;
6503
6504 lru_cache_disable();
6505
6506 while (pfn < end || !list_empty(&cc->migratepages)) {
6507 if (fatal_signal_pending(current)) {
6508 ret = -EINTR;
6509 break;
6510 }
6511
6512 if (list_empty(&cc->migratepages)) {
6513 cc->nr_migratepages = 0;
6514 ret = isolate_migratepages_range(cc, pfn, end);
6515 if (ret && ret != -EAGAIN)
6516 break;
6517 pfn = cc->migrate_pfn;
6518 tries = 0;
6519 } else if (++tries == 5) {
6520 ret = -EBUSY;
6521 break;
6522 }
6523
6524 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6525 &cc->migratepages);
6526 cc->nr_migratepages -= nr_reclaimed;
6527
6528 if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6529 total_reclaimed += nr_reclaimed;
6530 list_for_each_entry(page, &cc->migratepages, lru) {
6531 struct folio *folio = page_folio(page);
6532
6533 total_mapped += folio_mapped(folio) *
6534 folio_nr_pages(folio);
6535 }
6536 }
6537
6538 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6539 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6540
6541 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6542 total_migrated += cc->nr_migratepages;
6543
6544 /*
6545 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6546 * to retry again over this error, so do the same here.
6547 */
6548 if (ret == -ENOMEM)
6549 break;
6550 }
6551
6552 lru_cache_enable();
6553 if (ret < 0) {
6554 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6555 alloc_contig_dump_pages(&cc->migratepages);
6556 putback_movable_pages(&cc->migratepages);
6557 }
6558
6559 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6560 total_migrated,
6561 total_reclaimed,
6562 total_mapped);
6563 return (ret < 0) ? ret : 0;
6564 }
6565
split_free_pages(struct list_head * list,gfp_t gfp_mask)6566 static void split_free_pages(struct list_head *list, gfp_t gfp_mask)
6567 {
6568 int order;
6569
6570 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6571 struct page *page, *next;
6572 int nr_pages = 1 << order;
6573
6574 list_for_each_entry_safe(page, next, &list[order], lru) {
6575 int i;
6576
6577 post_alloc_hook(page, order, gfp_mask);
6578 set_page_refcounted(page);
6579 if (!order)
6580 continue;
6581
6582 split_page(page, order);
6583
6584 /* Add all subpages to the order-0 head, in sequence. */
6585 list_del(&page->lru);
6586 for (i = 0; i < nr_pages; i++)
6587 list_add_tail(&page[i].lru, &list[0]);
6588 }
6589 }
6590 }
6591
__alloc_contig_verify_gfp_mask(gfp_t gfp_mask,gfp_t * gfp_cc_mask)6592 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask)
6593 {
6594 const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
6595 const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
6596 __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO;
6597 const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
6598
6599 /*
6600 * We are given the range to allocate; node, mobility and placement
6601 * hints are irrelevant at this point. We'll simply ignore them.
6602 */
6603 gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE |
6604 __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE);
6605
6606 /*
6607 * We only support most reclaim flags (but not NOFAIL/NORETRY), and
6608 * selected action flags.
6609 */
6610 if (gfp_mask & ~(reclaim_mask | action_mask))
6611 return -EINVAL;
6612
6613 /*
6614 * Flags to control page compaction/migration/reclaim, to free up our
6615 * page range. Migratable pages are movable, __GFP_MOVABLE is implied
6616 * for them.
6617 *
6618 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that
6619 * to not degrade callers.
6620 */
6621 *gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) |
6622 __GFP_MOVABLE | __GFP_RETRY_MAYFAIL;
6623 return 0;
6624 }
6625
6626 /**
6627 * alloc_contig_range() -- tries to allocate given range of pages
6628 * @start: start PFN to allocate
6629 * @end: one-past-the-last PFN to allocate
6630 * @migratetype: migratetype of the underlying pageblocks (either
6631 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6632 * in range must have the same migratetype and it must
6633 * be either of the two.
6634 * @gfp_mask: GFP mask. Node/zone/placement hints are ignored; only some
6635 * action and reclaim modifiers are supported. Reclaim modifiers
6636 * control allocation behavior during compaction/migration/reclaim.
6637 *
6638 * The PFN range does not have to be pageblock aligned. The PFN range must
6639 * belong to a single zone.
6640 *
6641 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6642 * pageblocks in the range. Once isolated, the pageblocks should not
6643 * be modified by others.
6644 *
6645 * Return: zero on success or negative error code. On success all
6646 * pages which PFN is in [start, end) are allocated for the caller and
6647 * need to be freed with free_contig_range().
6648 */
alloc_contig_range_noprof(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)6649 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6650 unsigned migratetype, gfp_t gfp_mask)
6651 {
6652 unsigned long outer_start, outer_end;
6653 int ret = 0;
6654
6655 struct compact_control cc = {
6656 .nr_migratepages = 0,
6657 .order = -1,
6658 .zone = page_zone(pfn_to_page(start)),
6659 .mode = MIGRATE_SYNC,
6660 .ignore_skip_hint = true,
6661 .no_set_skip_hint = true,
6662 .alloc_contig = true,
6663 };
6664 INIT_LIST_HEAD(&cc.migratepages);
6665
6666 gfp_mask = current_gfp_context(gfp_mask);
6667 if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask))
6668 return -EINVAL;
6669
6670 /*
6671 * What we do here is we mark all pageblocks in range as
6672 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6673 * have different sizes, and due to the way page allocator
6674 * work, start_isolate_page_range() has special handlings for this.
6675 *
6676 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6677 * migrate the pages from an unaligned range (ie. pages that
6678 * we are interested in). This will put all the pages in
6679 * range back to page allocator as MIGRATE_ISOLATE.
6680 *
6681 * When this is done, we take the pages in range from page
6682 * allocator removing them from the buddy system. This way
6683 * page allocator will never consider using them.
6684 *
6685 * This lets us mark the pageblocks back as
6686 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6687 * aligned range but not in the unaligned, original range are
6688 * put back to page allocator so that buddy can use them.
6689 */
6690
6691 ret = start_isolate_page_range(start, end, migratetype, 0);
6692 if (ret)
6693 goto done;
6694
6695 drain_all_pages(cc.zone);
6696
6697 /*
6698 * In case of -EBUSY, we'd like to know which page causes problem.
6699 * So, just fall through. test_pages_isolated() has a tracepoint
6700 * which will report the busy page.
6701 *
6702 * It is possible that busy pages could become available before
6703 * the call to test_pages_isolated, and the range will actually be
6704 * allocated. So, if we fall through be sure to clear ret so that
6705 * -EBUSY is not accidentally used or returned to caller.
6706 */
6707 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6708 if (ret && ret != -EBUSY)
6709 goto done;
6710
6711 /*
6712 * When in-use hugetlb pages are migrated, they may simply be released
6713 * back into the free hugepage pool instead of being returned to the
6714 * buddy system. After the migration of in-use huge pages is completed,
6715 * we will invoke replace_free_hugepage_folios() to ensure that these
6716 * hugepages are properly released to the buddy system.
6717 */
6718 ret = replace_free_hugepage_folios(start, end);
6719 if (ret)
6720 goto done;
6721
6722 /*
6723 * Pages from [start, end) are within a pageblock_nr_pages
6724 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6725 * more, all pages in [start, end) are free in page allocator.
6726 * What we are going to do is to allocate all pages from
6727 * [start, end) (that is remove them from page allocator).
6728 *
6729 * The only problem is that pages at the beginning and at the
6730 * end of interesting range may be not aligned with pages that
6731 * page allocator holds, ie. they can be part of higher order
6732 * pages. Because of this, we reserve the bigger range and
6733 * once this is done free the pages we are not interested in.
6734 *
6735 * We don't have to hold zone->lock here because the pages are
6736 * isolated thus they won't get removed from buddy.
6737 */
6738 outer_start = find_large_buddy(start);
6739
6740 /* Make sure the range is really isolated. */
6741 if (test_pages_isolated(outer_start, end, 0)) {
6742 ret = -EBUSY;
6743 goto done;
6744 }
6745
6746 /* Grab isolated pages from freelists. */
6747 outer_end = isolate_freepages_range(&cc, outer_start, end);
6748 if (!outer_end) {
6749 ret = -EBUSY;
6750 goto done;
6751 }
6752
6753 if (!(gfp_mask & __GFP_COMP)) {
6754 split_free_pages(cc.freepages, gfp_mask);
6755
6756 /* Free head and tail (if any) */
6757 if (start != outer_start)
6758 free_contig_range(outer_start, start - outer_start);
6759 if (end != outer_end)
6760 free_contig_range(end, outer_end - end);
6761 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6762 struct page *head = pfn_to_page(start);
6763 int order = ilog2(end - start);
6764
6765 check_new_pages(head, order);
6766 prep_new_page(head, order, gfp_mask, 0);
6767 set_page_refcounted(head);
6768 } else {
6769 ret = -EINVAL;
6770 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6771 start, end, outer_start, outer_end);
6772 }
6773 done:
6774 undo_isolate_page_range(start, end, migratetype);
6775 return ret;
6776 }
6777 EXPORT_SYMBOL(alloc_contig_range_noprof);
6778
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6779 static int __alloc_contig_pages(unsigned long start_pfn,
6780 unsigned long nr_pages, gfp_t gfp_mask)
6781 {
6782 unsigned long end_pfn = start_pfn + nr_pages;
6783
6784 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6785 gfp_mask);
6786 }
6787
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6788 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6789 unsigned long nr_pages)
6790 {
6791 unsigned long i, end_pfn = start_pfn + nr_pages;
6792 struct page *page;
6793
6794 for (i = start_pfn; i < end_pfn; i++) {
6795 page = pfn_to_online_page(i);
6796 if (!page)
6797 return false;
6798
6799 if (page_zone(page) != z)
6800 return false;
6801
6802 if (PageReserved(page))
6803 return false;
6804
6805 if (PageHuge(page))
6806 return false;
6807 }
6808 return true;
6809 }
6810
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)6811 static bool zone_spans_last_pfn(const struct zone *zone,
6812 unsigned long start_pfn, unsigned long nr_pages)
6813 {
6814 unsigned long last_pfn = start_pfn + nr_pages - 1;
6815
6816 return zone_spans_pfn(zone, last_pfn);
6817 }
6818
6819 /**
6820 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6821 * @nr_pages: Number of contiguous pages to allocate
6822 * @gfp_mask: GFP mask. Node/zone/placement hints limit the search; only some
6823 * action and reclaim modifiers are supported. Reclaim modifiers
6824 * control allocation behavior during compaction/migration/reclaim.
6825 * @nid: Target node
6826 * @nodemask: Mask for other possible nodes
6827 *
6828 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6829 * on an applicable zonelist to find a contiguous pfn range which can then be
6830 * tried for allocation with alloc_contig_range(). This routine is intended
6831 * for allocation requests which can not be fulfilled with the buddy allocator.
6832 *
6833 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6834 * power of two, then allocated range is also guaranteed to be aligned to same
6835 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6836 *
6837 * Allocated pages can be freed with free_contig_range() or by manually calling
6838 * __free_page() on each allocated page.
6839 *
6840 * Return: pointer to contiguous pages on success, or NULL if not successful.
6841 */
alloc_contig_pages_noprof(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)6842 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6843 int nid, nodemask_t *nodemask)
6844 {
6845 unsigned long ret, pfn, flags;
6846 struct zonelist *zonelist;
6847 struct zone *zone;
6848 struct zoneref *z;
6849
6850 zonelist = node_zonelist(nid, gfp_mask);
6851 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6852 gfp_zone(gfp_mask), nodemask) {
6853 spin_lock_irqsave(&zone->lock, flags);
6854
6855 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6856 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6857 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6858 /*
6859 * We release the zone lock here because
6860 * alloc_contig_range() will also lock the zone
6861 * at some point. If there's an allocation
6862 * spinning on this lock, it may win the race
6863 * and cause alloc_contig_range() to fail...
6864 */
6865 spin_unlock_irqrestore(&zone->lock, flags);
6866 ret = __alloc_contig_pages(pfn, nr_pages,
6867 gfp_mask);
6868 if (!ret)
6869 return pfn_to_page(pfn);
6870 spin_lock_irqsave(&zone->lock, flags);
6871 }
6872 pfn += nr_pages;
6873 }
6874 spin_unlock_irqrestore(&zone->lock, flags);
6875 }
6876 return NULL;
6877 }
6878 #endif /* CONFIG_CONTIG_ALLOC */
6879
free_contig_range(unsigned long pfn,unsigned long nr_pages)6880 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6881 {
6882 unsigned long count = 0;
6883 struct folio *folio = pfn_folio(pfn);
6884
6885 if (folio_test_large(folio)) {
6886 int expected = folio_nr_pages(folio);
6887
6888 if (nr_pages == expected)
6889 folio_put(folio);
6890 else
6891 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6892 pfn, nr_pages, expected);
6893 return;
6894 }
6895
6896 for (; nr_pages--; pfn++) {
6897 struct page *page = pfn_to_page(pfn);
6898
6899 count += page_count(page) != 1;
6900 __free_page(page);
6901 }
6902 WARN(count != 0, "%lu pages are still in use!\n", count);
6903 }
6904 EXPORT_SYMBOL(free_contig_range);
6905
6906 /*
6907 * Effectively disable pcplists for the zone by setting the high limit to 0
6908 * and draining all cpus. A concurrent page freeing on another CPU that's about
6909 * to put the page on pcplist will either finish before the drain and the page
6910 * will be drained, or observe the new high limit and skip the pcplist.
6911 *
6912 * Must be paired with a call to zone_pcp_enable().
6913 */
zone_pcp_disable(struct zone * zone)6914 void zone_pcp_disable(struct zone *zone)
6915 {
6916 mutex_lock(&pcp_batch_high_lock);
6917 __zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6918 __drain_all_pages(zone, true);
6919 }
6920
zone_pcp_enable(struct zone * zone)6921 void zone_pcp_enable(struct zone *zone)
6922 {
6923 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6924 zone->pageset_high_max, zone->pageset_batch);
6925 mutex_unlock(&pcp_batch_high_lock);
6926 }
6927
zone_pcp_reset(struct zone * zone)6928 void zone_pcp_reset(struct zone *zone)
6929 {
6930 int cpu;
6931 struct per_cpu_zonestat *pzstats;
6932
6933 if (zone->per_cpu_pageset != &boot_pageset) {
6934 for_each_online_cpu(cpu) {
6935 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6936 drain_zonestat(zone, pzstats);
6937 }
6938 free_percpu(zone->per_cpu_pageset);
6939 zone->per_cpu_pageset = &boot_pageset;
6940 if (zone->per_cpu_zonestats != &boot_zonestats) {
6941 free_percpu(zone->per_cpu_zonestats);
6942 zone->per_cpu_zonestats = &boot_zonestats;
6943 }
6944 }
6945 }
6946
6947 #ifdef CONFIG_MEMORY_HOTREMOVE
6948 /*
6949 * All pages in the range must be in a single zone, must not contain holes,
6950 * must span full sections, and must be isolated before calling this function.
6951 *
6952 * Returns the number of managed (non-PageOffline()) pages in the range: the
6953 * number of pages for which memory offlining code must adjust managed page
6954 * counters using adjust_managed_page_count().
6955 */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6956 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6957 unsigned long end_pfn)
6958 {
6959 unsigned long already_offline = 0, flags;
6960 unsigned long pfn = start_pfn;
6961 struct page *page;
6962 struct zone *zone;
6963 unsigned int order;
6964
6965 offline_mem_sections(pfn, end_pfn);
6966 zone = page_zone(pfn_to_page(pfn));
6967 spin_lock_irqsave(&zone->lock, flags);
6968 while (pfn < end_pfn) {
6969 page = pfn_to_page(pfn);
6970 /*
6971 * The HWPoisoned page may be not in buddy system, and
6972 * page_count() is not 0.
6973 */
6974 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6975 pfn++;
6976 continue;
6977 }
6978 /*
6979 * At this point all remaining PageOffline() pages have a
6980 * reference count of 0 and can simply be skipped.
6981 */
6982 if (PageOffline(page)) {
6983 BUG_ON(page_count(page));
6984 BUG_ON(PageBuddy(page));
6985 already_offline++;
6986 pfn++;
6987 continue;
6988 }
6989
6990 BUG_ON(page_count(page));
6991 BUG_ON(!PageBuddy(page));
6992 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6993 order = buddy_order(page);
6994 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6995 pfn += (1 << order);
6996 }
6997 spin_unlock_irqrestore(&zone->lock, flags);
6998
6999 return end_pfn - start_pfn - already_offline;
7000 }
7001 #endif
7002
7003 /*
7004 * This function returns a stable result only if called under zone lock.
7005 */
is_free_buddy_page(const struct page * page)7006 bool is_free_buddy_page(const struct page *page)
7007 {
7008 unsigned long pfn = page_to_pfn(page);
7009 unsigned int order;
7010
7011 for (order = 0; order < NR_PAGE_ORDERS; order++) {
7012 const struct page *head = page - (pfn & ((1 << order) - 1));
7013
7014 if (PageBuddy(head) &&
7015 buddy_order_unsafe(head) >= order)
7016 break;
7017 }
7018
7019 return order <= MAX_PAGE_ORDER;
7020 }
7021 EXPORT_SYMBOL(is_free_buddy_page);
7022
7023 #ifdef CONFIG_MEMORY_FAILURE
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)7024 static inline void add_to_free_list(struct page *page, struct zone *zone,
7025 unsigned int order, int migratetype,
7026 bool tail)
7027 {
7028 __add_to_free_list(page, zone, order, migratetype, tail);
7029 account_freepages(zone, 1 << order, migratetype);
7030 }
7031
7032 /*
7033 * Break down a higher-order page in sub-pages, and keep our target out of
7034 * buddy allocator.
7035 */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)7036 static void break_down_buddy_pages(struct zone *zone, struct page *page,
7037 struct page *target, int low, int high,
7038 int migratetype)
7039 {
7040 unsigned long size = 1 << high;
7041 struct page *current_buddy;
7042
7043 while (high > low) {
7044 high--;
7045 size >>= 1;
7046
7047 if (target >= &page[size]) {
7048 current_buddy = page;
7049 page = page + size;
7050 } else {
7051 current_buddy = page + size;
7052 }
7053
7054 if (set_page_guard(zone, current_buddy, high))
7055 continue;
7056
7057 add_to_free_list(current_buddy, zone, high, migratetype, false);
7058 set_buddy_order(current_buddy, high);
7059 }
7060 }
7061
7062 /*
7063 * Take a page that will be marked as poisoned off the buddy allocator.
7064 */
take_page_off_buddy(struct page * page)7065 bool take_page_off_buddy(struct page *page)
7066 {
7067 struct zone *zone = page_zone(page);
7068 unsigned long pfn = page_to_pfn(page);
7069 unsigned long flags;
7070 unsigned int order;
7071 bool ret = false;
7072
7073 spin_lock_irqsave(&zone->lock, flags);
7074 for (order = 0; order < NR_PAGE_ORDERS; order++) {
7075 struct page *page_head = page - (pfn & ((1 << order) - 1));
7076 int page_order = buddy_order(page_head);
7077
7078 if (PageBuddy(page_head) && page_order >= order) {
7079 unsigned long pfn_head = page_to_pfn(page_head);
7080 int migratetype = get_pfnblock_migratetype(page_head,
7081 pfn_head);
7082
7083 del_page_from_free_list(page_head, zone, page_order,
7084 migratetype);
7085 break_down_buddy_pages(zone, page_head, page, 0,
7086 page_order, migratetype);
7087 SetPageHWPoisonTakenOff(page);
7088 ret = true;
7089 break;
7090 }
7091 if (page_count(page_head) > 0)
7092 break;
7093 }
7094 spin_unlock_irqrestore(&zone->lock, flags);
7095 return ret;
7096 }
7097
7098 /*
7099 * Cancel takeoff done by take_page_off_buddy().
7100 */
put_page_back_buddy(struct page * page)7101 bool put_page_back_buddy(struct page *page)
7102 {
7103 struct zone *zone = page_zone(page);
7104 unsigned long flags;
7105 bool ret = false;
7106
7107 spin_lock_irqsave(&zone->lock, flags);
7108 if (put_page_testzero(page)) {
7109 unsigned long pfn = page_to_pfn(page);
7110 int migratetype = get_pfnblock_migratetype(page, pfn);
7111
7112 ClearPageHWPoisonTakenOff(page);
7113 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
7114 if (TestClearPageHWPoison(page)) {
7115 ret = true;
7116 }
7117 }
7118 spin_unlock_irqrestore(&zone->lock, flags);
7119
7120 return ret;
7121 }
7122 #endif
7123
7124 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)7125 bool has_managed_dma(void)
7126 {
7127 struct pglist_data *pgdat;
7128
7129 for_each_online_pgdat(pgdat) {
7130 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
7131
7132 if (managed_zone(zone))
7133 return true;
7134 }
7135 return false;
7136 }
7137 #endif /* CONFIG_ZONE_DMA */
7138
7139 #ifdef CONFIG_UNACCEPTED_MEMORY
7140
7141 /* Counts number of zones with unaccepted pages. */
7142 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
7143
7144 static bool lazy_accept = true;
7145
accept_memory_parse(char * p)7146 static int __init accept_memory_parse(char *p)
7147 {
7148 if (!strcmp(p, "lazy")) {
7149 lazy_accept = true;
7150 return 0;
7151 } else if (!strcmp(p, "eager")) {
7152 lazy_accept = false;
7153 return 0;
7154 } else {
7155 return -EINVAL;
7156 }
7157 }
7158 early_param("accept_memory", accept_memory_parse);
7159
page_contains_unaccepted(struct page * page,unsigned int order)7160 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7161 {
7162 phys_addr_t start = page_to_phys(page);
7163
7164 return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7165 }
7166
__accept_page(struct zone * zone,unsigned long * flags,struct page * page)7167 static void __accept_page(struct zone *zone, unsigned long *flags,
7168 struct page *page)
7169 {
7170 bool last;
7171
7172 list_del(&page->lru);
7173 last = list_empty(&zone->unaccepted_pages);
7174
7175 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7176 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7177 __ClearPageUnaccepted(page);
7178 spin_unlock_irqrestore(&zone->lock, *flags);
7179
7180 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7181
7182 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7183
7184 if (last)
7185 static_branch_dec(&zones_with_unaccepted_pages);
7186 }
7187
accept_page(struct page * page)7188 void accept_page(struct page *page)
7189 {
7190 struct zone *zone = page_zone(page);
7191 unsigned long flags;
7192
7193 spin_lock_irqsave(&zone->lock, flags);
7194 if (!PageUnaccepted(page)) {
7195 spin_unlock_irqrestore(&zone->lock, flags);
7196 return;
7197 }
7198
7199 /* Unlocks zone->lock */
7200 __accept_page(zone, &flags, page);
7201 }
7202
try_to_accept_memory_one(struct zone * zone)7203 static bool try_to_accept_memory_one(struct zone *zone)
7204 {
7205 unsigned long flags;
7206 struct page *page;
7207
7208 spin_lock_irqsave(&zone->lock, flags);
7209 page = list_first_entry_or_null(&zone->unaccepted_pages,
7210 struct page, lru);
7211 if (!page) {
7212 spin_unlock_irqrestore(&zone->lock, flags);
7213 return false;
7214 }
7215
7216 /* Unlocks zone->lock */
7217 __accept_page(zone, &flags, page);
7218
7219 return true;
7220 }
7221
has_unaccepted_memory(void)7222 static inline bool has_unaccepted_memory(void)
7223 {
7224 return static_branch_unlikely(&zones_with_unaccepted_pages);
7225 }
7226
cond_accept_memory(struct zone * zone,unsigned int order)7227 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7228 {
7229 long to_accept, wmark;
7230 bool ret = false;
7231
7232 if (!has_unaccepted_memory())
7233 return false;
7234
7235 if (list_empty(&zone->unaccepted_pages))
7236 return false;
7237
7238 wmark = promo_wmark_pages(zone);
7239
7240 /*
7241 * Watermarks have not been initialized yet.
7242 *
7243 * Accepting one MAX_ORDER page to ensure progress.
7244 */
7245 if (!wmark)
7246 return try_to_accept_memory_one(zone);
7247
7248 /* How much to accept to get to promo watermark? */
7249 to_accept = wmark -
7250 (zone_page_state(zone, NR_FREE_PAGES) -
7251 __zone_watermark_unusable_free(zone, order, 0) -
7252 zone_page_state(zone, NR_UNACCEPTED));
7253
7254 while (to_accept > 0) {
7255 if (!try_to_accept_memory_one(zone))
7256 break;
7257 ret = true;
7258 to_accept -= MAX_ORDER_NR_PAGES;
7259 }
7260
7261 return ret;
7262 }
7263
__free_unaccepted(struct page * page)7264 static bool __free_unaccepted(struct page *page)
7265 {
7266 struct zone *zone = page_zone(page);
7267 unsigned long flags;
7268 bool first = false;
7269
7270 if (!lazy_accept)
7271 return false;
7272
7273 spin_lock_irqsave(&zone->lock, flags);
7274 first = list_empty(&zone->unaccepted_pages);
7275 list_add_tail(&page->lru, &zone->unaccepted_pages);
7276 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7277 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7278 __SetPageUnaccepted(page);
7279 spin_unlock_irqrestore(&zone->lock, flags);
7280
7281 if (first)
7282 static_branch_inc(&zones_with_unaccepted_pages);
7283
7284 return true;
7285 }
7286
7287 #else
7288
page_contains_unaccepted(struct page * page,unsigned int order)7289 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7290 {
7291 return false;
7292 }
7293
cond_accept_memory(struct zone * zone,unsigned int order)7294 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7295 {
7296 return false;
7297 }
7298
__free_unaccepted(struct page * page)7299 static bool __free_unaccepted(struct page *page)
7300 {
7301 BUILD_BUG();
7302 return false;
7303 }
7304
7305 #endif /* CONFIG_UNACCEPTED_MEMORY */
7306
7307 /**
7308 * try_alloc_pages - opportunistic reentrant allocation from any context
7309 * @nid: node to allocate from
7310 * @order: allocation order size
7311 *
7312 * Allocates pages of a given order from the given node. This is safe to
7313 * call from any context (from atomic, NMI, and also reentrant
7314 * allocator -> tracepoint -> try_alloc_pages_noprof).
7315 * Allocation is best effort and to be expected to fail easily so nobody should
7316 * rely on the success. Failures are not reported via warn_alloc().
7317 * See always fail conditions below.
7318 *
7319 * Return: allocated page or NULL on failure.
7320 */
try_alloc_pages_noprof(int nid,unsigned int order)7321 struct page *try_alloc_pages_noprof(int nid, unsigned int order)
7322 {
7323 /*
7324 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed.
7325 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd
7326 * is not safe in arbitrary context.
7327 *
7328 * These two are the conditions for gfpflags_allow_spinning() being true.
7329 *
7330 * Specify __GFP_NOWARN since failing try_alloc_pages() is not a reason
7331 * to warn. Also warn would trigger printk() which is unsafe from
7332 * various contexts. We cannot use printk_deferred_enter() to mitigate,
7333 * since the running context is unknown.
7334 *
7335 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below
7336 * is safe in any context. Also zeroing the page is mandatory for
7337 * BPF use cases.
7338 *
7339 * Though __GFP_NOMEMALLOC is not checked in the code path below,
7340 * specify it here to highlight that try_alloc_pages()
7341 * doesn't want to deplete reserves.
7342 */
7343 gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC
7344 | __GFP_ACCOUNT;
7345 unsigned int alloc_flags = ALLOC_TRYLOCK;
7346 struct alloc_context ac = { };
7347 struct page *page;
7348
7349 /*
7350 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is
7351 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current
7352 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will
7353 * mark the task as the owner of another rt_spin_lock which will
7354 * confuse PI logic, so return immediately if called form hard IRQ or
7355 * NMI.
7356 *
7357 * Note, irqs_disabled() case is ok. This function can be called
7358 * from raw_spin_lock_irqsave region.
7359 */
7360 if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
7361 return NULL;
7362 if (!pcp_allowed_order(order))
7363 return NULL;
7364
7365 #ifdef CONFIG_UNACCEPTED_MEMORY
7366 /* Bailout, since try_to_accept_memory_one() needs to take a lock */
7367 if (has_unaccepted_memory())
7368 return NULL;
7369 #endif
7370 /* Bailout, since _deferred_grow_zone() needs to take a lock */
7371 if (deferred_pages_enabled())
7372 return NULL;
7373
7374 if (nid == NUMA_NO_NODE)
7375 nid = numa_node_id();
7376
7377 prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac,
7378 &alloc_gfp, &alloc_flags);
7379
7380 /*
7381 * Best effort allocation from percpu free list.
7382 * If it's empty attempt to spin_trylock zone->lock.
7383 */
7384 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
7385
7386 /* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */
7387
7388 if (page)
7389 set_page_refcounted(page);
7390
7391 if (memcg_kmem_online() && page &&
7392 unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) {
7393 free_pages_nolock(page, order);
7394 page = NULL;
7395 }
7396 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
7397 kmsan_alloc_page(page, order, alloc_gfp);
7398 return page;
7399 }
7400