xref: /linux/mm/page_alloc.c (revision 8c7c1b5506e593ce00c42214b4fcafd640ceeb42)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* Free the page without taking locks. Rely on trylock only. */
92 #define FPI_TRYLOCK		((__force fpi_t)BIT(2))
93 
94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
95 static DEFINE_MUTEX(pcp_batch_high_lock);
96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
97 
98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
99 /*
100  * On SMP, spin_trylock is sufficient protection.
101  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
102  */
103 #define pcp_trylock_prepare(flags)	do { } while (0)
104 #define pcp_trylock_finish(flag)	do { } while (0)
105 #else
106 
107 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
108 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
109 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
110 #endif
111 
112 /*
113  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
114  * a migration causing the wrong PCP to be locked and remote memory being
115  * potentially allocated, pin the task to the CPU for the lookup+lock.
116  * preempt_disable is used on !RT because it is faster than migrate_disable.
117  * migrate_disable is used on RT because otherwise RT spinlock usage is
118  * interfered with and a high priority task cannot preempt the allocator.
119  */
120 #ifndef CONFIG_PREEMPT_RT
121 #define pcpu_task_pin()		preempt_disable()
122 #define pcpu_task_unpin()	preempt_enable()
123 #else
124 #define pcpu_task_pin()		migrate_disable()
125 #define pcpu_task_unpin()	migrate_enable()
126 #endif
127 
128 /*
129  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
130  * Return value should be used with equivalent unlock helper.
131  */
132 #define pcpu_spin_lock(type, member, ptr)				\
133 ({									\
134 	type *_ret;							\
135 	pcpu_task_pin();						\
136 	_ret = this_cpu_ptr(ptr);					\
137 	spin_lock(&_ret->member);					\
138 	_ret;								\
139 })
140 
141 #define pcpu_spin_trylock(type, member, ptr)				\
142 ({									\
143 	type *_ret;							\
144 	pcpu_task_pin();						\
145 	_ret = this_cpu_ptr(ptr);					\
146 	if (!spin_trylock(&_ret->member)) {				\
147 		pcpu_task_unpin();					\
148 		_ret = NULL;						\
149 	}								\
150 	_ret;								\
151 })
152 
153 #define pcpu_spin_unlock(member, ptr)					\
154 ({									\
155 	spin_unlock(&ptr->member);					\
156 	pcpu_task_unpin();						\
157 })
158 
159 /* struct per_cpu_pages specific helpers. */
160 #define pcp_spin_lock(ptr)						\
161 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_trylock(ptr)						\
164 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
165 
166 #define pcp_spin_unlock(ptr)						\
167 	pcpu_spin_unlock(lock, ptr)
168 
169 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
170 DEFINE_PER_CPU(int, numa_node);
171 EXPORT_PER_CPU_SYMBOL(numa_node);
172 #endif
173 
174 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
175 
176 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
177 /*
178  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
179  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
180  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
181  * defined in <linux/topology.h>.
182  */
183 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
184 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
185 #endif
186 
187 static DEFINE_MUTEX(pcpu_drain_mutex);
188 
189 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
190 volatile unsigned long latent_entropy __latent_entropy;
191 EXPORT_SYMBOL(latent_entropy);
192 #endif
193 
194 /*
195  * Array of node states.
196  */
197 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
198 	[N_POSSIBLE] = NODE_MASK_ALL,
199 	[N_ONLINE] = { { [0] = 1UL } },
200 #ifndef CONFIG_NUMA
201 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
202 #ifdef CONFIG_HIGHMEM
203 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
204 #endif
205 	[N_MEMORY] = { { [0] = 1UL } },
206 	[N_CPU] = { { [0] = 1UL } },
207 #endif	/* NUMA */
208 };
209 EXPORT_SYMBOL(node_states);
210 
211 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
212 
213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
214 unsigned int pageblock_order __read_mostly;
215 #endif
216 
217 static void __free_pages_ok(struct page *page, unsigned int order,
218 			    fpi_t fpi_flags);
219 
220 /*
221  * results with 256, 32 in the lowmem_reserve sysctl:
222  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
223  *	1G machine -> (16M dma, 784M normal, 224M high)
224  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
225  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
226  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
227  *
228  * TBD: should special case ZONE_DMA32 machines here - in those we normally
229  * don't need any ZONE_NORMAL reservation
230  */
231 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
232 #ifdef CONFIG_ZONE_DMA
233 	[ZONE_DMA] = 256,
234 #endif
235 #ifdef CONFIG_ZONE_DMA32
236 	[ZONE_DMA32] = 256,
237 #endif
238 	[ZONE_NORMAL] = 32,
239 #ifdef CONFIG_HIGHMEM
240 	[ZONE_HIGHMEM] = 0,
241 #endif
242 	[ZONE_MOVABLE] = 0,
243 };
244 
245 char * const zone_names[MAX_NR_ZONES] = {
246 #ifdef CONFIG_ZONE_DMA
247 	 "DMA",
248 #endif
249 #ifdef CONFIG_ZONE_DMA32
250 	 "DMA32",
251 #endif
252 	 "Normal",
253 #ifdef CONFIG_HIGHMEM
254 	 "HighMem",
255 #endif
256 	 "Movable",
257 #ifdef CONFIG_ZONE_DEVICE
258 	 "Device",
259 #endif
260 };
261 
262 const char * const migratetype_names[MIGRATE_TYPES] = {
263 	"Unmovable",
264 	"Movable",
265 	"Reclaimable",
266 	"HighAtomic",
267 #ifdef CONFIG_CMA
268 	"CMA",
269 #endif
270 #ifdef CONFIG_MEMORY_ISOLATION
271 	"Isolate",
272 #endif
273 };
274 
275 int min_free_kbytes = 1024;
276 int user_min_free_kbytes = -1;
277 static int watermark_boost_factor __read_mostly = 15000;
278 static int watermark_scale_factor = 10;
279 int defrag_mode;
280 
281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
282 int movable_zone;
283 EXPORT_SYMBOL(movable_zone);
284 
285 #if MAX_NUMNODES > 1
286 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
287 unsigned int nr_online_nodes __read_mostly = 1;
288 EXPORT_SYMBOL(nr_node_ids);
289 EXPORT_SYMBOL(nr_online_nodes);
290 #endif
291 
292 static bool page_contains_unaccepted(struct page *page, unsigned int order);
293 static bool cond_accept_memory(struct zone *zone, unsigned int order);
294 static bool __free_unaccepted(struct page *page);
295 
296 int page_group_by_mobility_disabled __read_mostly;
297 
298 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
299 /*
300  * During boot we initialize deferred pages on-demand, as needed, but once
301  * page_alloc_init_late() has finished, the deferred pages are all initialized,
302  * and we can permanently disable that path.
303  */
304 DEFINE_STATIC_KEY_TRUE(deferred_pages);
305 
deferred_pages_enabled(void)306 static inline bool deferred_pages_enabled(void)
307 {
308 	return static_branch_unlikely(&deferred_pages);
309 }
310 
311 /*
312  * deferred_grow_zone() is __init, but it is called from
313  * get_page_from_freelist() during early boot until deferred_pages permanently
314  * disables this call. This is why we have refdata wrapper to avoid warning,
315  * and to ensure that the function body gets unloaded.
316  */
317 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)318 _deferred_grow_zone(struct zone *zone, unsigned int order)
319 {
320 	return deferred_grow_zone(zone, order);
321 }
322 #else
deferred_pages_enabled(void)323 static inline bool deferred_pages_enabled(void)
324 {
325 	return false;
326 }
327 
_deferred_grow_zone(struct zone * zone,unsigned int order)328 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
329 {
330 	return false;
331 }
332 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
333 
334 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)335 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
336 							unsigned long pfn)
337 {
338 #ifdef CONFIG_SPARSEMEM
339 	return section_to_usemap(__pfn_to_section(pfn));
340 #else
341 	return page_zone(page)->pageblock_flags;
342 #endif /* CONFIG_SPARSEMEM */
343 }
344 
pfn_to_bitidx(const struct page * page,unsigned long pfn)345 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
346 {
347 #ifdef CONFIG_SPARSEMEM
348 	pfn &= (PAGES_PER_SECTION-1);
349 #else
350 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
351 #endif /* CONFIG_SPARSEMEM */
352 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
353 }
354 
355 /**
356  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
357  * @page: The page within the block of interest
358  * @pfn: The target page frame number
359  * @mask: mask of bits that the caller is interested in
360  *
361  * Return: pageblock_bits flags
362  */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)363 unsigned long get_pfnblock_flags_mask(const struct page *page,
364 					unsigned long pfn, unsigned long mask)
365 {
366 	unsigned long *bitmap;
367 	unsigned long bitidx, word_bitidx;
368 	unsigned long word;
369 
370 	bitmap = get_pageblock_bitmap(page, pfn);
371 	bitidx = pfn_to_bitidx(page, pfn);
372 	word_bitidx = bitidx / BITS_PER_LONG;
373 	bitidx &= (BITS_PER_LONG-1);
374 	/*
375 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
376 	 * a consistent read of the memory array, so that results, even though
377 	 * racy, are not corrupted.
378 	 */
379 	word = READ_ONCE(bitmap[word_bitidx]);
380 	return (word >> bitidx) & mask;
381 }
382 
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)383 static __always_inline int get_pfnblock_migratetype(const struct page *page,
384 					unsigned long pfn)
385 {
386 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
387 }
388 
389 /**
390  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
391  * @page: The page within the block of interest
392  * @flags: The flags to set
393  * @pfn: The target page frame number
394  * @mask: mask of bits that the caller is interested in
395  */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)396 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
397 					unsigned long pfn,
398 					unsigned long mask)
399 {
400 	unsigned long *bitmap;
401 	unsigned long bitidx, word_bitidx;
402 	unsigned long word;
403 
404 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
405 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
406 
407 	bitmap = get_pageblock_bitmap(page, pfn);
408 	bitidx = pfn_to_bitidx(page, pfn);
409 	word_bitidx = bitidx / BITS_PER_LONG;
410 	bitidx &= (BITS_PER_LONG-1);
411 
412 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
413 
414 	mask <<= bitidx;
415 	flags <<= bitidx;
416 
417 	word = READ_ONCE(bitmap[word_bitidx]);
418 	do {
419 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
420 }
421 
set_pageblock_migratetype(struct page * page,int migratetype)422 void set_pageblock_migratetype(struct page *page, int migratetype)
423 {
424 	if (unlikely(page_group_by_mobility_disabled &&
425 		     migratetype < MIGRATE_PCPTYPES))
426 		migratetype = MIGRATE_UNMOVABLE;
427 
428 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
429 				page_to_pfn(page), MIGRATETYPE_MASK);
430 }
431 
432 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)433 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
434 {
435 	int ret;
436 	unsigned seq;
437 	unsigned long pfn = page_to_pfn(page);
438 	unsigned long sp, start_pfn;
439 
440 	do {
441 		seq = zone_span_seqbegin(zone);
442 		start_pfn = zone->zone_start_pfn;
443 		sp = zone->spanned_pages;
444 		ret = !zone_spans_pfn(zone, pfn);
445 	} while (zone_span_seqretry(zone, seq));
446 
447 	if (ret)
448 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
449 			pfn, zone_to_nid(zone), zone->name,
450 			start_pfn, start_pfn + sp);
451 
452 	return ret;
453 }
454 
455 /*
456  * Temporary debugging check for pages not lying within a given zone.
457  */
bad_range(struct zone * zone,struct page * page)458 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
459 {
460 	if (page_outside_zone_boundaries(zone, page))
461 		return true;
462 	if (zone != page_zone(page))
463 		return true;
464 
465 	return false;
466 }
467 #else
bad_range(struct zone * zone,struct page * page)468 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
469 {
470 	return false;
471 }
472 #endif
473 
bad_page(struct page * page,const char * reason)474 static void bad_page(struct page *page, const char *reason)
475 {
476 	static unsigned long resume;
477 	static unsigned long nr_shown;
478 	static unsigned long nr_unshown;
479 
480 	/*
481 	 * Allow a burst of 60 reports, then keep quiet for that minute;
482 	 * or allow a steady drip of one report per second.
483 	 */
484 	if (nr_shown == 60) {
485 		if (time_before(jiffies, resume)) {
486 			nr_unshown++;
487 			goto out;
488 		}
489 		if (nr_unshown) {
490 			pr_alert(
491 			      "BUG: Bad page state: %lu messages suppressed\n",
492 				nr_unshown);
493 			nr_unshown = 0;
494 		}
495 		nr_shown = 0;
496 	}
497 	if (nr_shown++ == 0)
498 		resume = jiffies + 60 * HZ;
499 
500 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
501 		current->comm, page_to_pfn(page));
502 	dump_page(page, reason);
503 
504 	print_modules();
505 	dump_stack();
506 out:
507 	/* Leave bad fields for debug, except PageBuddy could make trouble */
508 	if (PageBuddy(page))
509 		__ClearPageBuddy(page);
510 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
511 }
512 
order_to_pindex(int migratetype,int order)513 static inline unsigned int order_to_pindex(int migratetype, int order)
514 {
515 
516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
517 	bool movable;
518 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
519 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
520 
521 		movable = migratetype == MIGRATE_MOVABLE;
522 
523 		return NR_LOWORDER_PCP_LISTS + movable;
524 	}
525 #else
526 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
527 #endif
528 
529 	return (MIGRATE_PCPTYPES * order) + migratetype;
530 }
531 
pindex_to_order(unsigned int pindex)532 static inline int pindex_to_order(unsigned int pindex)
533 {
534 	int order = pindex / MIGRATE_PCPTYPES;
535 
536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
537 	if (pindex >= NR_LOWORDER_PCP_LISTS)
538 		order = HPAGE_PMD_ORDER;
539 #else
540 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
541 #endif
542 
543 	return order;
544 }
545 
pcp_allowed_order(unsigned int order)546 static inline bool pcp_allowed_order(unsigned int order)
547 {
548 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
549 		return true;
550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
551 	if (order == HPAGE_PMD_ORDER)
552 		return true;
553 #endif
554 	return false;
555 }
556 
557 /*
558  * Higher-order pages are called "compound pages".  They are structured thusly:
559  *
560  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
561  *
562  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
563  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
564  *
565  * The first tail page's ->compound_order holds the order of allocation.
566  * This usage means that zero-order pages may not be compound.
567  */
568 
prep_compound_page(struct page * page,unsigned int order)569 void prep_compound_page(struct page *page, unsigned int order)
570 {
571 	int i;
572 	int nr_pages = 1 << order;
573 
574 	__SetPageHead(page);
575 	for (i = 1; i < nr_pages; i++)
576 		prep_compound_tail(page, i);
577 
578 	prep_compound_head(page, order);
579 }
580 
set_buddy_order(struct page * page,unsigned int order)581 static inline void set_buddy_order(struct page *page, unsigned int order)
582 {
583 	set_page_private(page, order);
584 	__SetPageBuddy(page);
585 }
586 
587 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)588 static inline struct capture_control *task_capc(struct zone *zone)
589 {
590 	struct capture_control *capc = current->capture_control;
591 
592 	return unlikely(capc) &&
593 		!(current->flags & PF_KTHREAD) &&
594 		!capc->page &&
595 		capc->cc->zone == zone ? capc : NULL;
596 }
597 
598 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)599 compaction_capture(struct capture_control *capc, struct page *page,
600 		   int order, int migratetype)
601 {
602 	if (!capc || order != capc->cc->order)
603 		return false;
604 
605 	/* Do not accidentally pollute CMA or isolated regions*/
606 	if (is_migrate_cma(migratetype) ||
607 	    is_migrate_isolate(migratetype))
608 		return false;
609 
610 	/*
611 	 * Do not let lower order allocations pollute a movable pageblock
612 	 * unless compaction is also requesting movable pages.
613 	 * This might let an unmovable request use a reclaimable pageblock
614 	 * and vice-versa but no more than normal fallback logic which can
615 	 * have trouble finding a high-order free page.
616 	 */
617 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
618 	    capc->cc->migratetype != MIGRATE_MOVABLE)
619 		return false;
620 
621 	if (migratetype != capc->cc->migratetype)
622 		trace_mm_page_alloc_extfrag(page, capc->cc->order, order,
623 					    capc->cc->migratetype, migratetype);
624 
625 	capc->page = page;
626 	return true;
627 }
628 
629 #else
task_capc(struct zone * zone)630 static inline struct capture_control *task_capc(struct zone *zone)
631 {
632 	return NULL;
633 }
634 
635 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)636 compaction_capture(struct capture_control *capc, struct page *page,
637 		   int order, int migratetype)
638 {
639 	return false;
640 }
641 #endif /* CONFIG_COMPACTION */
642 
account_freepages(struct zone * zone,int nr_pages,int migratetype)643 static inline void account_freepages(struct zone *zone, int nr_pages,
644 				     int migratetype)
645 {
646 	lockdep_assert_held(&zone->lock);
647 
648 	if (is_migrate_isolate(migratetype))
649 		return;
650 
651 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
652 
653 	if (is_migrate_cma(migratetype))
654 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
655 	else if (is_migrate_highatomic(migratetype))
656 		WRITE_ONCE(zone->nr_free_highatomic,
657 			   zone->nr_free_highatomic + nr_pages);
658 }
659 
660 /* Used for pages not on another list */
__add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)661 static inline void __add_to_free_list(struct page *page, struct zone *zone,
662 				      unsigned int order, int migratetype,
663 				      bool tail)
664 {
665 	struct free_area *area = &zone->free_area[order];
666 	int nr_pages = 1 << order;
667 
668 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
669 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
670 		     get_pageblock_migratetype(page), migratetype, nr_pages);
671 
672 	if (tail)
673 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
674 	else
675 		list_add(&page->buddy_list, &area->free_list[migratetype]);
676 	area->nr_free++;
677 
678 	if (order >= pageblock_order && !is_migrate_isolate(migratetype))
679 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
680 }
681 
682 /*
683  * Used for pages which are on another list. Move the pages to the tail
684  * of the list - so the moved pages won't immediately be considered for
685  * allocation again (e.g., optimization for memory onlining).
686  */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int old_mt,int new_mt)687 static inline void move_to_free_list(struct page *page, struct zone *zone,
688 				     unsigned int order, int old_mt, int new_mt)
689 {
690 	struct free_area *area = &zone->free_area[order];
691 	int nr_pages = 1 << order;
692 
693 	/* Free page moving can fail, so it happens before the type update */
694 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
695 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
696 		     get_pageblock_migratetype(page), old_mt, nr_pages);
697 
698 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
699 
700 	account_freepages(zone, -nr_pages, old_mt);
701 	account_freepages(zone, nr_pages, new_mt);
702 
703 	if (order >= pageblock_order &&
704 	    is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) {
705 		if (!is_migrate_isolate(old_mt))
706 			nr_pages = -nr_pages;
707 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
708 	}
709 }
710 
__del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)711 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
712 					     unsigned int order, int migratetype)
713 {
714 	int nr_pages = 1 << order;
715 
716         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
717 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
718 		     get_pageblock_migratetype(page), migratetype, nr_pages);
719 
720 	/* clear reported state and update reported page count */
721 	if (page_reported(page))
722 		__ClearPageReported(page);
723 
724 	list_del(&page->buddy_list);
725 	__ClearPageBuddy(page);
726 	set_page_private(page, 0);
727 	zone->free_area[order].nr_free--;
728 
729 	if (order >= pageblock_order && !is_migrate_isolate(migratetype))
730 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages);
731 }
732 
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)733 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
734 					   unsigned int order, int migratetype)
735 {
736 	__del_page_from_free_list(page, zone, order, migratetype);
737 	account_freepages(zone, -(1 << order), migratetype);
738 }
739 
get_page_from_free_area(struct free_area * area,int migratetype)740 static inline struct page *get_page_from_free_area(struct free_area *area,
741 					    int migratetype)
742 {
743 	return list_first_entry_or_null(&area->free_list[migratetype],
744 					struct page, buddy_list);
745 }
746 
747 /*
748  * If this is less than the 2nd largest possible page, check if the buddy
749  * of the next-higher order is free. If it is, it's possible
750  * that pages are being freed that will coalesce soon. In case,
751  * that is happening, add the free page to the tail of the list
752  * so it's less likely to be used soon and more likely to be merged
753  * as a 2-level higher order page
754  */
755 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)756 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
757 		   struct page *page, unsigned int order)
758 {
759 	unsigned long higher_page_pfn;
760 	struct page *higher_page;
761 
762 	if (order >= MAX_PAGE_ORDER - 1)
763 		return false;
764 
765 	higher_page_pfn = buddy_pfn & pfn;
766 	higher_page = page + (higher_page_pfn - pfn);
767 
768 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
769 			NULL) != NULL;
770 }
771 
772 /*
773  * Freeing function for a buddy system allocator.
774  *
775  * The concept of a buddy system is to maintain direct-mapped table
776  * (containing bit values) for memory blocks of various "orders".
777  * The bottom level table contains the map for the smallest allocatable
778  * units of memory (here, pages), and each level above it describes
779  * pairs of units from the levels below, hence, "buddies".
780  * At a high level, all that happens here is marking the table entry
781  * at the bottom level available, and propagating the changes upward
782  * as necessary, plus some accounting needed to play nicely with other
783  * parts of the VM system.
784  * At each level, we keep a list of pages, which are heads of continuous
785  * free pages of length of (1 << order) and marked with PageBuddy.
786  * Page's order is recorded in page_private(page) field.
787  * So when we are allocating or freeing one, we can derive the state of the
788  * other.  That is, if we allocate a small block, and both were
789  * free, the remainder of the region must be split into blocks.
790  * If a block is freed, and its buddy is also free, then this
791  * triggers coalescing into a block of larger size.
792  *
793  * -- nyc
794  */
795 
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)796 static inline void __free_one_page(struct page *page,
797 		unsigned long pfn,
798 		struct zone *zone, unsigned int order,
799 		int migratetype, fpi_t fpi_flags)
800 {
801 	struct capture_control *capc = task_capc(zone);
802 	unsigned long buddy_pfn = 0;
803 	unsigned long combined_pfn;
804 	struct page *buddy;
805 	bool to_tail;
806 
807 	VM_BUG_ON(!zone_is_initialized(zone));
808 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
809 
810 	VM_BUG_ON(migratetype == -1);
811 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
812 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
813 
814 	account_freepages(zone, 1 << order, migratetype);
815 
816 	while (order < MAX_PAGE_ORDER) {
817 		int buddy_mt = migratetype;
818 
819 		if (compaction_capture(capc, page, order, migratetype)) {
820 			account_freepages(zone, -(1 << order), migratetype);
821 			return;
822 		}
823 
824 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
825 		if (!buddy)
826 			goto done_merging;
827 
828 		if (unlikely(order >= pageblock_order)) {
829 			/*
830 			 * We want to prevent merge between freepages on pageblock
831 			 * without fallbacks and normal pageblock. Without this,
832 			 * pageblock isolation could cause incorrect freepage or CMA
833 			 * accounting or HIGHATOMIC accounting.
834 			 */
835 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
836 
837 			if (migratetype != buddy_mt &&
838 			    (!migratetype_is_mergeable(migratetype) ||
839 			     !migratetype_is_mergeable(buddy_mt)))
840 				goto done_merging;
841 		}
842 
843 		/*
844 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
845 		 * merge with it and move up one order.
846 		 */
847 		if (page_is_guard(buddy))
848 			clear_page_guard(zone, buddy, order);
849 		else
850 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
851 
852 		if (unlikely(buddy_mt != migratetype)) {
853 			/*
854 			 * Match buddy type. This ensures that an
855 			 * expand() down the line puts the sub-blocks
856 			 * on the right freelists.
857 			 */
858 			set_pageblock_migratetype(buddy, migratetype);
859 		}
860 
861 		combined_pfn = buddy_pfn & pfn;
862 		page = page + (combined_pfn - pfn);
863 		pfn = combined_pfn;
864 		order++;
865 	}
866 
867 done_merging:
868 	set_buddy_order(page, order);
869 
870 	if (fpi_flags & FPI_TO_TAIL)
871 		to_tail = true;
872 	else if (is_shuffle_order(order))
873 		to_tail = shuffle_pick_tail();
874 	else
875 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
876 
877 	__add_to_free_list(page, zone, order, migratetype, to_tail);
878 
879 	/* Notify page reporting subsystem of freed page */
880 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
881 		page_reporting_notify_free(order);
882 }
883 
884 /*
885  * A bad page could be due to a number of fields. Instead of multiple branches,
886  * try and check multiple fields with one check. The caller must do a detailed
887  * check if necessary.
888  */
page_expected_state(struct page * page,unsigned long check_flags)889 static inline bool page_expected_state(struct page *page,
890 					unsigned long check_flags)
891 {
892 	if (unlikely(atomic_read(&page->_mapcount) != -1))
893 		return false;
894 
895 	if (unlikely((unsigned long)page->mapping |
896 			page_ref_count(page) |
897 #ifdef CONFIG_MEMCG
898 			page->memcg_data |
899 #endif
900 #ifdef CONFIG_PAGE_POOL
901 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
902 #endif
903 			(page->flags & check_flags)))
904 		return false;
905 
906 	return true;
907 }
908 
page_bad_reason(struct page * page,unsigned long flags)909 static const char *page_bad_reason(struct page *page, unsigned long flags)
910 {
911 	const char *bad_reason = NULL;
912 
913 	if (unlikely(atomic_read(&page->_mapcount) != -1))
914 		bad_reason = "nonzero mapcount";
915 	if (unlikely(page->mapping != NULL))
916 		bad_reason = "non-NULL mapping";
917 	if (unlikely(page_ref_count(page) != 0))
918 		bad_reason = "nonzero _refcount";
919 	if (unlikely(page->flags & flags)) {
920 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
921 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
922 		else
923 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
924 	}
925 #ifdef CONFIG_MEMCG
926 	if (unlikely(page->memcg_data))
927 		bad_reason = "page still charged to cgroup";
928 #endif
929 #ifdef CONFIG_PAGE_POOL
930 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
931 		bad_reason = "page_pool leak";
932 #endif
933 	return bad_reason;
934 }
935 
free_page_is_bad_report(struct page * page)936 static void free_page_is_bad_report(struct page *page)
937 {
938 	bad_page(page,
939 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
940 }
941 
free_page_is_bad(struct page * page)942 static inline bool free_page_is_bad(struct page *page)
943 {
944 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
945 		return false;
946 
947 	/* Something has gone sideways, find it */
948 	free_page_is_bad_report(page);
949 	return true;
950 }
951 
is_check_pages_enabled(void)952 static inline bool is_check_pages_enabled(void)
953 {
954 	return static_branch_unlikely(&check_pages_enabled);
955 }
956 
free_tail_page_prepare(struct page * head_page,struct page * page)957 static int free_tail_page_prepare(struct page *head_page, struct page *page)
958 {
959 	struct folio *folio = (struct folio *)head_page;
960 	int ret = 1;
961 
962 	/*
963 	 * We rely page->lru.next never has bit 0 set, unless the page
964 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
965 	 */
966 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
967 
968 	if (!is_check_pages_enabled()) {
969 		ret = 0;
970 		goto out;
971 	}
972 	switch (page - head_page) {
973 	case 1:
974 		/* the first tail page: these may be in place of ->mapping */
975 		if (unlikely(folio_large_mapcount(folio))) {
976 			bad_page(page, "nonzero large_mapcount");
977 			goto out;
978 		}
979 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) &&
980 		    unlikely(atomic_read(&folio->_nr_pages_mapped))) {
981 			bad_page(page, "nonzero nr_pages_mapped");
982 			goto out;
983 		}
984 		if (IS_ENABLED(CONFIG_MM_ID)) {
985 			if (unlikely(folio->_mm_id_mapcount[0] != -1)) {
986 				bad_page(page, "nonzero mm mapcount 0");
987 				goto out;
988 			}
989 			if (unlikely(folio->_mm_id_mapcount[1] != -1)) {
990 				bad_page(page, "nonzero mm mapcount 1");
991 				goto out;
992 			}
993 		}
994 		if (IS_ENABLED(CONFIG_64BIT)) {
995 			if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
996 				bad_page(page, "nonzero entire_mapcount");
997 				goto out;
998 			}
999 			if (unlikely(atomic_read(&folio->_pincount))) {
1000 				bad_page(page, "nonzero pincount");
1001 				goto out;
1002 			}
1003 		}
1004 		break;
1005 	case 2:
1006 		/* the second tail page: deferred_list overlaps ->mapping */
1007 		if (unlikely(!list_empty(&folio->_deferred_list))) {
1008 			bad_page(page, "on deferred list");
1009 			goto out;
1010 		}
1011 		if (!IS_ENABLED(CONFIG_64BIT)) {
1012 			if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
1013 				bad_page(page, "nonzero entire_mapcount");
1014 				goto out;
1015 			}
1016 			if (unlikely(atomic_read(&folio->_pincount))) {
1017 				bad_page(page, "nonzero pincount");
1018 				goto out;
1019 			}
1020 		}
1021 		break;
1022 	case 3:
1023 		/* the third tail page: hugetlb specifics overlap ->mappings */
1024 		if (IS_ENABLED(CONFIG_HUGETLB_PAGE))
1025 			break;
1026 		fallthrough;
1027 	default:
1028 		if (page->mapping != TAIL_MAPPING) {
1029 			bad_page(page, "corrupted mapping in tail page");
1030 			goto out;
1031 		}
1032 		break;
1033 	}
1034 	if (unlikely(!PageTail(page))) {
1035 		bad_page(page, "PageTail not set");
1036 		goto out;
1037 	}
1038 	if (unlikely(compound_head(page) != head_page)) {
1039 		bad_page(page, "compound_head not consistent");
1040 		goto out;
1041 	}
1042 	ret = 0;
1043 out:
1044 	page->mapping = NULL;
1045 	clear_compound_head(page);
1046 	return ret;
1047 }
1048 
1049 /*
1050  * Skip KASAN memory poisoning when either:
1051  *
1052  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1053  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1054  *    using page tags instead (see below).
1055  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1056  *    that error detection is disabled for accesses via the page address.
1057  *
1058  * Pages will have match-all tags in the following circumstances:
1059  *
1060  * 1. Pages are being initialized for the first time, including during deferred
1061  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1062  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1063  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1064  * 3. The allocation was excluded from being checked due to sampling,
1065  *    see the call to kasan_unpoison_pages.
1066  *
1067  * Poisoning pages during deferred memory init will greatly lengthen the
1068  * process and cause problem in large memory systems as the deferred pages
1069  * initialization is done with interrupt disabled.
1070  *
1071  * Assuming that there will be no reference to those newly initialized
1072  * pages before they are ever allocated, this should have no effect on
1073  * KASAN memory tracking as the poison will be properly inserted at page
1074  * allocation time. The only corner case is when pages are allocated by
1075  * on-demand allocation and then freed again before the deferred pages
1076  * initialization is done, but this is not likely to happen.
1077  */
should_skip_kasan_poison(struct page * page)1078 static inline bool should_skip_kasan_poison(struct page *page)
1079 {
1080 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1081 		return deferred_pages_enabled();
1082 
1083 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1084 }
1085 
kernel_init_pages(struct page * page,int numpages)1086 static void kernel_init_pages(struct page *page, int numpages)
1087 {
1088 	int i;
1089 
1090 	/* s390's use of memset() could override KASAN redzones. */
1091 	kasan_disable_current();
1092 	for (i = 0; i < numpages; i++)
1093 		clear_highpage_kasan_tagged(page + i);
1094 	kasan_enable_current();
1095 }
1096 
1097 #ifdef CONFIG_MEM_ALLOC_PROFILING
1098 
1099 /* Should be called only if mem_alloc_profiling_enabled() */
__clear_page_tag_ref(struct page * page)1100 void __clear_page_tag_ref(struct page *page)
1101 {
1102 	union pgtag_ref_handle handle;
1103 	union codetag_ref ref;
1104 
1105 	if (get_page_tag_ref(page, &ref, &handle)) {
1106 		set_codetag_empty(&ref);
1107 		update_page_tag_ref(handle, &ref);
1108 		put_page_tag_ref(handle);
1109 	}
1110 }
1111 
1112 /* Should be called only if mem_alloc_profiling_enabled() */
1113 static noinline
__pgalloc_tag_add(struct page * page,struct task_struct * task,unsigned int nr)1114 void __pgalloc_tag_add(struct page *page, struct task_struct *task,
1115 		       unsigned int nr)
1116 {
1117 	union pgtag_ref_handle handle;
1118 	union codetag_ref ref;
1119 
1120 	if (get_page_tag_ref(page, &ref, &handle)) {
1121 		alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr);
1122 		update_page_tag_ref(handle, &ref);
1123 		put_page_tag_ref(handle);
1124 	}
1125 }
1126 
pgalloc_tag_add(struct page * page,struct task_struct * task,unsigned int nr)1127 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1128 				   unsigned int nr)
1129 {
1130 	if (mem_alloc_profiling_enabled())
1131 		__pgalloc_tag_add(page, task, nr);
1132 }
1133 
1134 /* Should be called only if mem_alloc_profiling_enabled() */
1135 static noinline
__pgalloc_tag_sub(struct page * page,unsigned int nr)1136 void __pgalloc_tag_sub(struct page *page, unsigned int nr)
1137 {
1138 	union pgtag_ref_handle handle;
1139 	union codetag_ref ref;
1140 
1141 	if (get_page_tag_ref(page, &ref, &handle)) {
1142 		alloc_tag_sub(&ref, PAGE_SIZE * nr);
1143 		update_page_tag_ref(handle, &ref);
1144 		put_page_tag_ref(handle);
1145 	}
1146 }
1147 
pgalloc_tag_sub(struct page * page,unsigned int nr)1148 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr)
1149 {
1150 	if (mem_alloc_profiling_enabled())
1151 		__pgalloc_tag_sub(page, nr);
1152 }
1153 
pgalloc_tag_sub_pages(struct page * page,unsigned int nr)1154 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr)
1155 {
1156 	struct alloc_tag *tag;
1157 
1158 	if (!mem_alloc_profiling_enabled())
1159 		return;
1160 
1161 	tag = __pgalloc_tag_get(page);
1162 	if (tag)
1163 		this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr);
1164 }
1165 
1166 #else /* CONFIG_MEM_ALLOC_PROFILING */
1167 
pgalloc_tag_add(struct page * page,struct task_struct * task,unsigned int nr)1168 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1169 				   unsigned int nr) {}
pgalloc_tag_sub(struct page * page,unsigned int nr)1170 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {}
pgalloc_tag_sub_pages(struct page * page,unsigned int nr)1171 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr) {}
1172 
1173 #endif /* CONFIG_MEM_ALLOC_PROFILING */
1174 
free_pages_prepare(struct page * page,unsigned int order)1175 __always_inline bool free_pages_prepare(struct page *page,
1176 			unsigned int order)
1177 {
1178 	int bad = 0;
1179 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1180 	bool init = want_init_on_free();
1181 	bool compound = PageCompound(page);
1182 	struct folio *folio = page_folio(page);
1183 
1184 	VM_BUG_ON_PAGE(PageTail(page), page);
1185 
1186 	trace_mm_page_free(page, order);
1187 	kmsan_free_page(page, order);
1188 
1189 	if (memcg_kmem_online() && PageMemcgKmem(page))
1190 		__memcg_kmem_uncharge_page(page, order);
1191 
1192 	/*
1193 	 * In rare cases, when truncation or holepunching raced with
1194 	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1195 	 * found set here.  This does not indicate a problem, unless
1196 	 * "unevictable_pgs_cleared" appears worryingly large.
1197 	 */
1198 	if (unlikely(folio_test_mlocked(folio))) {
1199 		long nr_pages = folio_nr_pages(folio);
1200 
1201 		__folio_clear_mlocked(folio);
1202 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1203 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1204 	}
1205 
1206 	if (unlikely(PageHWPoison(page)) && !order) {
1207 		/* Do not let hwpoison pages hit pcplists/buddy */
1208 		reset_page_owner(page, order);
1209 		page_table_check_free(page, order);
1210 		pgalloc_tag_sub(page, 1 << order);
1211 
1212 		/*
1213 		 * The page is isolated and accounted for.
1214 		 * Mark the codetag as empty to avoid accounting error
1215 		 * when the page is freed by unpoison_memory().
1216 		 */
1217 		clear_page_tag_ref(page);
1218 		return false;
1219 	}
1220 
1221 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1222 
1223 	/*
1224 	 * Check tail pages before head page information is cleared to
1225 	 * avoid checking PageCompound for order-0 pages.
1226 	 */
1227 	if (unlikely(order)) {
1228 		int i;
1229 
1230 		if (compound) {
1231 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1232 #ifdef NR_PAGES_IN_LARGE_FOLIO
1233 			folio->_nr_pages = 0;
1234 #endif
1235 		}
1236 		for (i = 1; i < (1 << order); i++) {
1237 			if (compound)
1238 				bad += free_tail_page_prepare(page, page + i);
1239 			if (is_check_pages_enabled()) {
1240 				if (free_page_is_bad(page + i)) {
1241 					bad++;
1242 					continue;
1243 				}
1244 			}
1245 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1246 		}
1247 	}
1248 	if (PageMappingFlags(page)) {
1249 		if (PageAnon(page))
1250 			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1251 		page->mapping = NULL;
1252 	}
1253 	if (is_check_pages_enabled()) {
1254 		if (free_page_is_bad(page))
1255 			bad++;
1256 		if (bad)
1257 			return false;
1258 	}
1259 
1260 	page_cpupid_reset_last(page);
1261 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1262 	reset_page_owner(page, order);
1263 	page_table_check_free(page, order);
1264 	pgalloc_tag_sub(page, 1 << order);
1265 
1266 	if (!PageHighMem(page)) {
1267 		debug_check_no_locks_freed(page_address(page),
1268 					   PAGE_SIZE << order);
1269 		debug_check_no_obj_freed(page_address(page),
1270 					   PAGE_SIZE << order);
1271 	}
1272 
1273 	kernel_poison_pages(page, 1 << order);
1274 
1275 	/*
1276 	 * As memory initialization might be integrated into KASAN,
1277 	 * KASAN poisoning and memory initialization code must be
1278 	 * kept together to avoid discrepancies in behavior.
1279 	 *
1280 	 * With hardware tag-based KASAN, memory tags must be set before the
1281 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1282 	 */
1283 	if (!skip_kasan_poison) {
1284 		kasan_poison_pages(page, order, init);
1285 
1286 		/* Memory is already initialized if KASAN did it internally. */
1287 		if (kasan_has_integrated_init())
1288 			init = false;
1289 	}
1290 	if (init)
1291 		kernel_init_pages(page, 1 << order);
1292 
1293 	/*
1294 	 * arch_free_page() can make the page's contents inaccessible.  s390
1295 	 * does this.  So nothing which can access the page's contents should
1296 	 * happen after this.
1297 	 */
1298 	arch_free_page(page, order);
1299 
1300 	debug_pagealloc_unmap_pages(page, 1 << order);
1301 
1302 	return true;
1303 }
1304 
1305 /*
1306  * Frees a number of pages from the PCP lists
1307  * Assumes all pages on list are in same zone.
1308  * count is the number of pages to free.
1309  */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1310 static void free_pcppages_bulk(struct zone *zone, int count,
1311 					struct per_cpu_pages *pcp,
1312 					int pindex)
1313 {
1314 	unsigned long flags;
1315 	unsigned int order;
1316 	struct page *page;
1317 
1318 	/*
1319 	 * Ensure proper count is passed which otherwise would stuck in the
1320 	 * below while (list_empty(list)) loop.
1321 	 */
1322 	count = min(pcp->count, count);
1323 
1324 	/* Ensure requested pindex is drained first. */
1325 	pindex = pindex - 1;
1326 
1327 	spin_lock_irqsave(&zone->lock, flags);
1328 
1329 	while (count > 0) {
1330 		struct list_head *list;
1331 		int nr_pages;
1332 
1333 		/* Remove pages from lists in a round-robin fashion. */
1334 		do {
1335 			if (++pindex > NR_PCP_LISTS - 1)
1336 				pindex = 0;
1337 			list = &pcp->lists[pindex];
1338 		} while (list_empty(list));
1339 
1340 		order = pindex_to_order(pindex);
1341 		nr_pages = 1 << order;
1342 		do {
1343 			unsigned long pfn;
1344 			int mt;
1345 
1346 			page = list_last_entry(list, struct page, pcp_list);
1347 			pfn = page_to_pfn(page);
1348 			mt = get_pfnblock_migratetype(page, pfn);
1349 
1350 			/* must delete to avoid corrupting pcp list */
1351 			list_del(&page->pcp_list);
1352 			count -= nr_pages;
1353 			pcp->count -= nr_pages;
1354 
1355 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1356 			trace_mm_page_pcpu_drain(page, order, mt);
1357 		} while (count > 0 && !list_empty(list));
1358 	}
1359 
1360 	spin_unlock_irqrestore(&zone->lock, flags);
1361 }
1362 
1363 /* Split a multi-block free page into its individual pageblocks. */
split_large_buddy(struct zone * zone,struct page * page,unsigned long pfn,int order,fpi_t fpi)1364 static void split_large_buddy(struct zone *zone, struct page *page,
1365 			      unsigned long pfn, int order, fpi_t fpi)
1366 {
1367 	unsigned long end = pfn + (1 << order);
1368 
1369 	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1370 	/* Caller removed page from freelist, buddy info cleared! */
1371 	VM_WARN_ON_ONCE(PageBuddy(page));
1372 
1373 	if (order > pageblock_order)
1374 		order = pageblock_order;
1375 
1376 	do {
1377 		int mt = get_pfnblock_migratetype(page, pfn);
1378 
1379 		__free_one_page(page, pfn, zone, order, mt, fpi);
1380 		pfn += 1 << order;
1381 		if (pfn == end)
1382 			break;
1383 		page = pfn_to_page(pfn);
1384 	} while (1);
1385 }
1386 
add_page_to_zone_llist(struct zone * zone,struct page * page,unsigned int order)1387 static void add_page_to_zone_llist(struct zone *zone, struct page *page,
1388 				   unsigned int order)
1389 {
1390 	/* Remember the order */
1391 	page->order = order;
1392 	/* Add the page to the free list */
1393 	llist_add(&page->pcp_llist, &zone->trylock_free_pages);
1394 }
1395 
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,fpi_t fpi_flags)1396 static void free_one_page(struct zone *zone, struct page *page,
1397 			  unsigned long pfn, unsigned int order,
1398 			  fpi_t fpi_flags)
1399 {
1400 	struct llist_head *llhead;
1401 	unsigned long flags;
1402 
1403 	if (!spin_trylock_irqsave(&zone->lock, flags)) {
1404 		if (unlikely(fpi_flags & FPI_TRYLOCK)) {
1405 			add_page_to_zone_llist(zone, page, order);
1406 			return;
1407 		}
1408 		spin_lock_irqsave(&zone->lock, flags);
1409 	}
1410 
1411 	/* The lock succeeded. Process deferred pages. */
1412 	llhead = &zone->trylock_free_pages;
1413 	if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) {
1414 		struct llist_node *llnode;
1415 		struct page *p, *tmp;
1416 
1417 		llnode = llist_del_all(llhead);
1418 		llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) {
1419 			unsigned int p_order = p->order;
1420 
1421 			split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags);
1422 			__count_vm_events(PGFREE, 1 << p_order);
1423 		}
1424 	}
1425 	split_large_buddy(zone, page, pfn, order, fpi_flags);
1426 	spin_unlock_irqrestore(&zone->lock, flags);
1427 
1428 	__count_vm_events(PGFREE, 1 << order);
1429 }
1430 
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1431 static void __free_pages_ok(struct page *page, unsigned int order,
1432 			    fpi_t fpi_flags)
1433 {
1434 	unsigned long pfn = page_to_pfn(page);
1435 	struct zone *zone = page_zone(page);
1436 
1437 	if (free_pages_prepare(page, order))
1438 		free_one_page(zone, page, pfn, order, fpi_flags);
1439 }
1440 
__free_pages_core(struct page * page,unsigned int order,enum meminit_context context)1441 void __meminit __free_pages_core(struct page *page, unsigned int order,
1442 		enum meminit_context context)
1443 {
1444 	unsigned int nr_pages = 1 << order;
1445 	struct page *p = page;
1446 	unsigned int loop;
1447 
1448 	/*
1449 	 * When initializing the memmap, __init_single_page() sets the refcount
1450 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1451 	 * refcount of all involved pages to 0.
1452 	 *
1453 	 * Note that hotplugged memory pages are initialized to PageOffline().
1454 	 * Pages freed from memblock might be marked as reserved.
1455 	 */
1456 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1457 	    unlikely(context == MEMINIT_HOTPLUG)) {
1458 		for (loop = 0; loop < nr_pages; loop++, p++) {
1459 			VM_WARN_ON_ONCE(PageReserved(p));
1460 			__ClearPageOffline(p);
1461 			set_page_count(p, 0);
1462 		}
1463 
1464 		adjust_managed_page_count(page, nr_pages);
1465 	} else {
1466 		for (loop = 0; loop < nr_pages; loop++, p++) {
1467 			__ClearPageReserved(p);
1468 			set_page_count(p, 0);
1469 		}
1470 
1471 		/* memblock adjusts totalram_pages() manually. */
1472 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1473 	}
1474 
1475 	if (page_contains_unaccepted(page, order)) {
1476 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1477 			return;
1478 
1479 		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1480 	}
1481 
1482 	/*
1483 	 * Bypass PCP and place fresh pages right to the tail, primarily
1484 	 * relevant for memory onlining.
1485 	 */
1486 	__free_pages_ok(page, order, FPI_TO_TAIL);
1487 }
1488 
1489 /*
1490  * Check that the whole (or subset of) a pageblock given by the interval of
1491  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1492  * with the migration of free compaction scanner.
1493  *
1494  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1495  *
1496  * It's possible on some configurations to have a setup like node0 node1 node0
1497  * i.e. it's possible that all pages within a zones range of pages do not
1498  * belong to a single zone. We assume that a border between node0 and node1
1499  * can occur within a single pageblock, but not a node0 node1 node0
1500  * interleaving within a single pageblock. It is therefore sufficient to check
1501  * the first and last page of a pageblock and avoid checking each individual
1502  * page in a pageblock.
1503  *
1504  * Note: the function may return non-NULL struct page even for a page block
1505  * which contains a memory hole (i.e. there is no physical memory for a subset
1506  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1507  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1508  * even though the start pfn is online and valid. This should be safe most of
1509  * the time because struct pages are still initialized via init_unavailable_range()
1510  * and pfn walkers shouldn't touch any physical memory range for which they do
1511  * not recognize any specific metadata in struct pages.
1512  */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1513 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1514 				     unsigned long end_pfn, struct zone *zone)
1515 {
1516 	struct page *start_page;
1517 	struct page *end_page;
1518 
1519 	/* end_pfn is one past the range we are checking */
1520 	end_pfn--;
1521 
1522 	if (!pfn_valid(end_pfn))
1523 		return NULL;
1524 
1525 	start_page = pfn_to_online_page(start_pfn);
1526 	if (!start_page)
1527 		return NULL;
1528 
1529 	if (page_zone(start_page) != zone)
1530 		return NULL;
1531 
1532 	end_page = pfn_to_page(end_pfn);
1533 
1534 	/* This gives a shorter code than deriving page_zone(end_page) */
1535 	if (page_zone_id(start_page) != page_zone_id(end_page))
1536 		return NULL;
1537 
1538 	return start_page;
1539 }
1540 
1541 /*
1542  * The order of subdivision here is critical for the IO subsystem.
1543  * Please do not alter this order without good reasons and regression
1544  * testing. Specifically, as large blocks of memory are subdivided,
1545  * the order in which smaller blocks are delivered depends on the order
1546  * they're subdivided in this function. This is the primary factor
1547  * influencing the order in which pages are delivered to the IO
1548  * subsystem according to empirical testing, and this is also justified
1549  * by considering the behavior of a buddy system containing a single
1550  * large block of memory acted on by a series of small allocations.
1551  * This behavior is a critical factor in sglist merging's success.
1552  *
1553  * -- nyc
1554  */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1555 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1556 				  int high, int migratetype)
1557 {
1558 	unsigned int size = 1 << high;
1559 	unsigned int nr_added = 0;
1560 
1561 	while (high > low) {
1562 		high--;
1563 		size >>= 1;
1564 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1565 
1566 		/*
1567 		 * Mark as guard pages (or page), that will allow to
1568 		 * merge back to allocator when buddy will be freed.
1569 		 * Corresponding page table entries will not be touched,
1570 		 * pages will stay not present in virtual address space
1571 		 */
1572 		if (set_page_guard(zone, &page[size], high))
1573 			continue;
1574 
1575 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1576 		set_buddy_order(&page[size], high);
1577 		nr_added += size;
1578 	}
1579 
1580 	return nr_added;
1581 }
1582 
page_del_and_expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1583 static __always_inline void page_del_and_expand(struct zone *zone,
1584 						struct page *page, int low,
1585 						int high, int migratetype)
1586 {
1587 	int nr_pages = 1 << high;
1588 
1589 	__del_page_from_free_list(page, zone, high, migratetype);
1590 	nr_pages -= expand(zone, page, low, high, migratetype);
1591 	account_freepages(zone, -nr_pages, migratetype);
1592 }
1593 
check_new_page_bad(struct page * page)1594 static void check_new_page_bad(struct page *page)
1595 {
1596 	if (unlikely(PageHWPoison(page))) {
1597 		/* Don't complain about hwpoisoned pages */
1598 		if (PageBuddy(page))
1599 			__ClearPageBuddy(page);
1600 		return;
1601 	}
1602 
1603 	bad_page(page,
1604 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1605 }
1606 
1607 /*
1608  * This page is about to be returned from the page allocator
1609  */
check_new_page(struct page * page)1610 static bool check_new_page(struct page *page)
1611 {
1612 	if (likely(page_expected_state(page,
1613 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1614 		return false;
1615 
1616 	check_new_page_bad(page);
1617 	return true;
1618 }
1619 
check_new_pages(struct page * page,unsigned int order)1620 static inline bool check_new_pages(struct page *page, unsigned int order)
1621 {
1622 	if (is_check_pages_enabled()) {
1623 		for (int i = 0; i < (1 << order); i++) {
1624 			struct page *p = page + i;
1625 
1626 			if (check_new_page(p))
1627 				return true;
1628 		}
1629 	}
1630 
1631 	return false;
1632 }
1633 
should_skip_kasan_unpoison(gfp_t flags)1634 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1635 {
1636 	/* Don't skip if a software KASAN mode is enabled. */
1637 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1638 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1639 		return false;
1640 
1641 	/* Skip, if hardware tag-based KASAN is not enabled. */
1642 	if (!kasan_hw_tags_enabled())
1643 		return true;
1644 
1645 	/*
1646 	 * With hardware tag-based KASAN enabled, skip if this has been
1647 	 * requested via __GFP_SKIP_KASAN.
1648 	 */
1649 	return flags & __GFP_SKIP_KASAN;
1650 }
1651 
should_skip_init(gfp_t flags)1652 static inline bool should_skip_init(gfp_t flags)
1653 {
1654 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1655 	if (!kasan_hw_tags_enabled())
1656 		return false;
1657 
1658 	/* For hardware tag-based KASAN, skip if requested. */
1659 	return (flags & __GFP_SKIP_ZERO);
1660 }
1661 
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1662 inline void post_alloc_hook(struct page *page, unsigned int order,
1663 				gfp_t gfp_flags)
1664 {
1665 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1666 			!should_skip_init(gfp_flags);
1667 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1668 	int i;
1669 
1670 	set_page_private(page, 0);
1671 
1672 	arch_alloc_page(page, order);
1673 	debug_pagealloc_map_pages(page, 1 << order);
1674 
1675 	/*
1676 	 * Page unpoisoning must happen before memory initialization.
1677 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1678 	 * allocations and the page unpoisoning code will complain.
1679 	 */
1680 	kernel_unpoison_pages(page, 1 << order);
1681 
1682 	/*
1683 	 * As memory initialization might be integrated into KASAN,
1684 	 * KASAN unpoisoning and memory initializion code must be
1685 	 * kept together to avoid discrepancies in behavior.
1686 	 */
1687 
1688 	/*
1689 	 * If memory tags should be zeroed
1690 	 * (which happens only when memory should be initialized as well).
1691 	 */
1692 	if (zero_tags) {
1693 		/* Initialize both memory and memory tags. */
1694 		for (i = 0; i != 1 << order; ++i)
1695 			tag_clear_highpage(page + i);
1696 
1697 		/* Take note that memory was initialized by the loop above. */
1698 		init = false;
1699 	}
1700 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1701 	    kasan_unpoison_pages(page, order, init)) {
1702 		/* Take note that memory was initialized by KASAN. */
1703 		if (kasan_has_integrated_init())
1704 			init = false;
1705 	} else {
1706 		/*
1707 		 * If memory tags have not been set by KASAN, reset the page
1708 		 * tags to ensure page_address() dereferencing does not fault.
1709 		 */
1710 		for (i = 0; i != 1 << order; ++i)
1711 			page_kasan_tag_reset(page + i);
1712 	}
1713 	/* If memory is still not initialized, initialize it now. */
1714 	if (init)
1715 		kernel_init_pages(page, 1 << order);
1716 
1717 	set_page_owner(page, order, gfp_flags);
1718 	page_table_check_alloc(page, order);
1719 	pgalloc_tag_add(page, current, 1 << order);
1720 }
1721 
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1722 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1723 							unsigned int alloc_flags)
1724 {
1725 	post_alloc_hook(page, order, gfp_flags);
1726 
1727 	if (order && (gfp_flags & __GFP_COMP))
1728 		prep_compound_page(page, order);
1729 
1730 	/*
1731 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1732 	 * allocate the page. The expectation is that the caller is taking
1733 	 * steps that will free more memory. The caller should avoid the page
1734 	 * being used for !PFMEMALLOC purposes.
1735 	 */
1736 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1737 		set_page_pfmemalloc(page);
1738 	else
1739 		clear_page_pfmemalloc(page);
1740 }
1741 
1742 /*
1743  * Go through the free lists for the given migratetype and remove
1744  * the smallest available page from the freelists
1745  */
1746 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1747 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1748 						int migratetype)
1749 {
1750 	unsigned int current_order;
1751 	struct free_area *area;
1752 	struct page *page;
1753 
1754 	/* Find a page of the appropriate size in the preferred list */
1755 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1756 		area = &(zone->free_area[current_order]);
1757 		page = get_page_from_free_area(area, migratetype);
1758 		if (!page)
1759 			continue;
1760 
1761 		page_del_and_expand(zone, page, order, current_order,
1762 				    migratetype);
1763 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1764 				pcp_allowed_order(order) &&
1765 				migratetype < MIGRATE_PCPTYPES);
1766 		return page;
1767 	}
1768 
1769 	return NULL;
1770 }
1771 
1772 
1773 /*
1774  * This array describes the order lists are fallen back to when
1775  * the free lists for the desirable migrate type are depleted
1776  *
1777  * The other migratetypes do not have fallbacks.
1778  */
1779 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1780 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1781 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1782 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1783 };
1784 
1785 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1786 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1787 					unsigned int order)
1788 {
1789 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1790 }
1791 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1792 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1793 					unsigned int order) { return NULL; }
1794 #endif
1795 
1796 /*
1797  * Change the type of a block and move all its free pages to that
1798  * type's freelist.
1799  */
__move_freepages_block(struct zone * zone,unsigned long start_pfn,int old_mt,int new_mt)1800 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1801 				  int old_mt, int new_mt)
1802 {
1803 	struct page *page;
1804 	unsigned long pfn, end_pfn;
1805 	unsigned int order;
1806 	int pages_moved = 0;
1807 
1808 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1809 	end_pfn = pageblock_end_pfn(start_pfn);
1810 
1811 	for (pfn = start_pfn; pfn < end_pfn;) {
1812 		page = pfn_to_page(pfn);
1813 		if (!PageBuddy(page)) {
1814 			pfn++;
1815 			continue;
1816 		}
1817 
1818 		/* Make sure we are not inadvertently changing nodes */
1819 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1820 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1821 
1822 		order = buddy_order(page);
1823 
1824 		move_to_free_list(page, zone, order, old_mt, new_mt);
1825 
1826 		pfn += 1 << order;
1827 		pages_moved += 1 << order;
1828 	}
1829 
1830 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1831 
1832 	return pages_moved;
1833 }
1834 
prep_move_freepages_block(struct zone * zone,struct page * page,unsigned long * start_pfn,int * num_free,int * num_movable)1835 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1836 				      unsigned long *start_pfn,
1837 				      int *num_free, int *num_movable)
1838 {
1839 	unsigned long pfn, start, end;
1840 
1841 	pfn = page_to_pfn(page);
1842 	start = pageblock_start_pfn(pfn);
1843 	end = pageblock_end_pfn(pfn);
1844 
1845 	/*
1846 	 * The caller only has the lock for @zone, don't touch ranges
1847 	 * that straddle into other zones. While we could move part of
1848 	 * the range that's inside the zone, this call is usually
1849 	 * accompanied by other operations such as migratetype updates
1850 	 * which also should be locked.
1851 	 */
1852 	if (!zone_spans_pfn(zone, start))
1853 		return false;
1854 	if (!zone_spans_pfn(zone, end - 1))
1855 		return false;
1856 
1857 	*start_pfn = start;
1858 
1859 	if (num_free) {
1860 		*num_free = 0;
1861 		*num_movable = 0;
1862 		for (pfn = start; pfn < end;) {
1863 			page = pfn_to_page(pfn);
1864 			if (PageBuddy(page)) {
1865 				int nr = 1 << buddy_order(page);
1866 
1867 				*num_free += nr;
1868 				pfn += nr;
1869 				continue;
1870 			}
1871 			/*
1872 			 * We assume that pages that could be isolated for
1873 			 * migration are movable. But we don't actually try
1874 			 * isolating, as that would be expensive.
1875 			 */
1876 			if (PageLRU(page) || __PageMovable(page))
1877 				(*num_movable)++;
1878 			pfn++;
1879 		}
1880 	}
1881 
1882 	return true;
1883 }
1884 
move_freepages_block(struct zone * zone,struct page * page,int old_mt,int new_mt)1885 static int move_freepages_block(struct zone *zone, struct page *page,
1886 				int old_mt, int new_mt)
1887 {
1888 	unsigned long start_pfn;
1889 
1890 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1891 		return -1;
1892 
1893 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1894 }
1895 
1896 #ifdef CONFIG_MEMORY_ISOLATION
1897 /* Look for a buddy that straddles start_pfn */
find_large_buddy(unsigned long start_pfn)1898 static unsigned long find_large_buddy(unsigned long start_pfn)
1899 {
1900 	int order = 0;
1901 	struct page *page;
1902 	unsigned long pfn = start_pfn;
1903 
1904 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1905 		/* Nothing found */
1906 		if (++order > MAX_PAGE_ORDER)
1907 			return start_pfn;
1908 		pfn &= ~0UL << order;
1909 	}
1910 
1911 	/*
1912 	 * Found a preceding buddy, but does it straddle?
1913 	 */
1914 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1915 		return pfn;
1916 
1917 	/* Nothing found */
1918 	return start_pfn;
1919 }
1920 
1921 /**
1922  * move_freepages_block_isolate - move free pages in block for page isolation
1923  * @zone: the zone
1924  * @page: the pageblock page
1925  * @migratetype: migratetype to set on the pageblock
1926  *
1927  * This is similar to move_freepages_block(), but handles the special
1928  * case encountered in page isolation, where the block of interest
1929  * might be part of a larger buddy spanning multiple pageblocks.
1930  *
1931  * Unlike the regular page allocator path, which moves pages while
1932  * stealing buddies off the freelist, page isolation is interested in
1933  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1934  *
1935  * This function handles that. Straddling buddies are split into
1936  * individual pageblocks. Only the block of interest is moved.
1937  *
1938  * Returns %true if pages could be moved, %false otherwise.
1939  */
move_freepages_block_isolate(struct zone * zone,struct page * page,int migratetype)1940 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1941 				  int migratetype)
1942 {
1943 	unsigned long start_pfn, pfn;
1944 
1945 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1946 		return false;
1947 
1948 	/* No splits needed if buddies can't span multiple blocks */
1949 	if (pageblock_order == MAX_PAGE_ORDER)
1950 		goto move;
1951 
1952 	/* We're a tail block in a larger buddy */
1953 	pfn = find_large_buddy(start_pfn);
1954 	if (pfn != start_pfn) {
1955 		struct page *buddy = pfn_to_page(pfn);
1956 		int order = buddy_order(buddy);
1957 
1958 		del_page_from_free_list(buddy, zone, order,
1959 					get_pfnblock_migratetype(buddy, pfn));
1960 		set_pageblock_migratetype(page, migratetype);
1961 		split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1962 		return true;
1963 	}
1964 
1965 	/* We're the starting block of a larger buddy */
1966 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1967 		int order = buddy_order(page);
1968 
1969 		del_page_from_free_list(page, zone, order,
1970 					get_pfnblock_migratetype(page, pfn));
1971 		set_pageblock_migratetype(page, migratetype);
1972 		split_large_buddy(zone, page, pfn, order, FPI_NONE);
1973 		return true;
1974 	}
1975 move:
1976 	__move_freepages_block(zone, start_pfn,
1977 			       get_pfnblock_migratetype(page, start_pfn),
1978 			       migratetype);
1979 	return true;
1980 }
1981 #endif /* CONFIG_MEMORY_ISOLATION */
1982 
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1983 static void change_pageblock_range(struct page *pageblock_page,
1984 					int start_order, int migratetype)
1985 {
1986 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1987 
1988 	while (nr_pageblocks--) {
1989 		set_pageblock_migratetype(pageblock_page, migratetype);
1990 		pageblock_page += pageblock_nr_pages;
1991 	}
1992 }
1993 
boost_watermark(struct zone * zone)1994 static inline bool boost_watermark(struct zone *zone)
1995 {
1996 	unsigned long max_boost;
1997 
1998 	if (!watermark_boost_factor)
1999 		return false;
2000 	/*
2001 	 * Don't bother in zones that are unlikely to produce results.
2002 	 * On small machines, including kdump capture kernels running
2003 	 * in a small area, boosting the watermark can cause an out of
2004 	 * memory situation immediately.
2005 	 */
2006 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2007 		return false;
2008 
2009 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2010 			watermark_boost_factor, 10000);
2011 
2012 	/*
2013 	 * high watermark may be uninitialised if fragmentation occurs
2014 	 * very early in boot so do not boost. We do not fall
2015 	 * through and boost by pageblock_nr_pages as failing
2016 	 * allocations that early means that reclaim is not going
2017 	 * to help and it may even be impossible to reclaim the
2018 	 * boosted watermark resulting in a hang.
2019 	 */
2020 	if (!max_boost)
2021 		return false;
2022 
2023 	max_boost = max(pageblock_nr_pages, max_boost);
2024 
2025 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2026 		max_boost);
2027 
2028 	return true;
2029 }
2030 
2031 /*
2032  * When we are falling back to another migratetype during allocation, should we
2033  * try to claim an entire block to satisfy further allocations, instead of
2034  * polluting multiple pageblocks?
2035  */
should_try_claim_block(unsigned int order,int start_mt)2036 static bool should_try_claim_block(unsigned int order, int start_mt)
2037 {
2038 	/*
2039 	 * Leaving this order check is intended, although there is
2040 	 * relaxed order check in next check. The reason is that
2041 	 * we can actually claim the whole pageblock if this condition met,
2042 	 * but, below check doesn't guarantee it and that is just heuristic
2043 	 * so could be changed anytime.
2044 	 */
2045 	if (order >= pageblock_order)
2046 		return true;
2047 
2048 	/*
2049 	 * Above a certain threshold, always try to claim, as it's likely there
2050 	 * will be more free pages in the pageblock.
2051 	 */
2052 	if (order >= pageblock_order / 2)
2053 		return true;
2054 
2055 	/*
2056 	 * Unmovable/reclaimable allocations would cause permanent
2057 	 * fragmentations if they fell back to allocating from a movable block
2058 	 * (polluting it), so we try to claim the whole block regardless of the
2059 	 * allocation size. Later movable allocations can always steal from this
2060 	 * block, which is less problematic.
2061 	 */
2062 	if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE)
2063 		return true;
2064 
2065 	if (page_group_by_mobility_disabled)
2066 		return true;
2067 
2068 	/*
2069 	 * Movable pages won't cause permanent fragmentation, so when you alloc
2070 	 * small pages, we just need to temporarily steal unmovable or
2071 	 * reclaimable pages that are closest to the request size. After a
2072 	 * while, memory compaction may occur to form large contiguous pages,
2073 	 * and the next movable allocation may not need to steal.
2074 	 */
2075 	return false;
2076 }
2077 
2078 /*
2079  * Check whether there is a suitable fallback freepage with requested order.
2080  * Sets *claim_block to instruct the caller whether it should convert a whole
2081  * pageblock to the returned migratetype.
2082  * If only_claim is true, this function returns fallback_mt only if
2083  * we would do this whole-block claiming. This would help to reduce
2084  * fragmentation due to mixed migratetype pages in one pageblock.
2085  */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_claim,bool * claim_block)2086 int find_suitable_fallback(struct free_area *area, unsigned int order,
2087 			int migratetype, bool only_claim, bool *claim_block)
2088 {
2089 	int i;
2090 	int fallback_mt;
2091 
2092 	if (area->nr_free == 0)
2093 		return -1;
2094 
2095 	*claim_block = false;
2096 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2097 		fallback_mt = fallbacks[migratetype][i];
2098 		if (free_area_empty(area, fallback_mt))
2099 			continue;
2100 
2101 		if (should_try_claim_block(order, migratetype))
2102 			*claim_block = true;
2103 
2104 		if (*claim_block || !only_claim)
2105 			return fallback_mt;
2106 	}
2107 
2108 	return -1;
2109 }
2110 
2111 /*
2112  * This function implements actual block claiming behaviour. If order is large
2113  * enough, we can claim the whole pageblock for the requested migratetype. If
2114  * not, we check the pageblock for constituent pages; if at least half of the
2115  * pages are free or compatible, we can still claim the whole block, so pages
2116  * freed in the future will be put on the correct free list.
2117  */
2118 static struct page *
try_to_claim_block(struct zone * zone,struct page * page,int current_order,int order,int start_type,int block_type,unsigned int alloc_flags)2119 try_to_claim_block(struct zone *zone, struct page *page,
2120 		   int current_order, int order, int start_type,
2121 		   int block_type, unsigned int alloc_flags)
2122 {
2123 	int free_pages, movable_pages, alike_pages;
2124 	unsigned long start_pfn;
2125 
2126 	/* Take ownership for orders >= pageblock_order */
2127 	if (current_order >= pageblock_order) {
2128 		unsigned int nr_added;
2129 
2130 		del_page_from_free_list(page, zone, current_order, block_type);
2131 		change_pageblock_range(page, current_order, start_type);
2132 		nr_added = expand(zone, page, order, current_order, start_type);
2133 		account_freepages(zone, nr_added, start_type);
2134 		return page;
2135 	}
2136 
2137 	/*
2138 	 * Boost watermarks to increase reclaim pressure to reduce the
2139 	 * likelihood of future fallbacks. Wake kswapd now as the node
2140 	 * may be balanced overall and kswapd will not wake naturally.
2141 	 */
2142 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2143 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2144 
2145 	/* moving whole block can fail due to zone boundary conditions */
2146 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
2147 				       &movable_pages))
2148 		return NULL;
2149 
2150 	/*
2151 	 * Determine how many pages are compatible with our allocation.
2152 	 * For movable allocation, it's the number of movable pages which
2153 	 * we just obtained. For other types it's a bit more tricky.
2154 	 */
2155 	if (start_type == MIGRATE_MOVABLE) {
2156 		alike_pages = movable_pages;
2157 	} else {
2158 		/*
2159 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2160 		 * to MOVABLE pageblock, consider all non-movable pages as
2161 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2162 		 * vice versa, be conservative since we can't distinguish the
2163 		 * exact migratetype of non-movable pages.
2164 		 */
2165 		if (block_type == MIGRATE_MOVABLE)
2166 			alike_pages = pageblock_nr_pages
2167 						- (free_pages + movable_pages);
2168 		else
2169 			alike_pages = 0;
2170 	}
2171 	/*
2172 	 * If a sufficient number of pages in the block are either free or of
2173 	 * compatible migratability as our allocation, claim the whole block.
2174 	 */
2175 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2176 			page_group_by_mobility_disabled) {
2177 		__move_freepages_block(zone, start_pfn, block_type, start_type);
2178 		return __rmqueue_smallest(zone, order, start_type);
2179 	}
2180 
2181 	return NULL;
2182 }
2183 
2184 /*
2185  * Try finding a free buddy page on the fallback list.
2186  *
2187  * This will attempt to claim a whole pageblock for the requested type
2188  * to ensure grouping of such requests in the future.
2189  *
2190  * If a whole block cannot be claimed, steal an individual page, regressing to
2191  * __rmqueue_smallest() logic to at least break up as little contiguity as
2192  * possible.
2193  *
2194  * The use of signed ints for order and current_order is a deliberate
2195  * deviation from the rest of this file, to make the for loop
2196  * condition simpler.
2197  *
2198  * Return the stolen page, or NULL if none can be found.
2199  */
2200 static __always_inline struct page *
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2201 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2202 						unsigned int alloc_flags)
2203 {
2204 	struct free_area *area;
2205 	int current_order;
2206 	int min_order = order;
2207 	struct page *page;
2208 	int fallback_mt;
2209 	bool claim_block;
2210 
2211 	/*
2212 	 * Do not steal pages from freelists belonging to other pageblocks
2213 	 * i.e. orders < pageblock_order. If there are no local zones free,
2214 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2215 	 */
2216 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2217 		min_order = pageblock_order;
2218 
2219 	/*
2220 	 * Find the largest available free page in the other list. This roughly
2221 	 * approximates finding the pageblock with the most free pages, which
2222 	 * would be too costly to do exactly.
2223 	 */
2224 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2225 				--current_order) {
2226 		area = &(zone->free_area[current_order]);
2227 		fallback_mt = find_suitable_fallback(area, current_order,
2228 				start_migratetype, false, &claim_block);
2229 		if (fallback_mt == -1)
2230 			continue;
2231 
2232 		if (!claim_block)
2233 			break;
2234 
2235 		page = get_page_from_free_area(area, fallback_mt);
2236 		page = try_to_claim_block(zone, page, current_order, order,
2237 					  start_migratetype, fallback_mt,
2238 					  alloc_flags);
2239 		if (page)
2240 			goto got_one;
2241 	}
2242 
2243 	if (alloc_flags & ALLOC_NOFRAGMENT)
2244 		return NULL;
2245 
2246 	/* No luck claiming pageblock. Find the smallest fallback page */
2247 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2248 		area = &(zone->free_area[current_order]);
2249 		fallback_mt = find_suitable_fallback(area, current_order,
2250 				start_migratetype, false, &claim_block);
2251 		if (fallback_mt == -1)
2252 			continue;
2253 
2254 		page = get_page_from_free_area(area, fallback_mt);
2255 		page_del_and_expand(zone, page, order, current_order, fallback_mt);
2256 		goto got_one;
2257 	}
2258 
2259 	return NULL;
2260 
2261 got_one:
2262 	trace_mm_page_alloc_extfrag(page, order, current_order,
2263 		start_migratetype, fallback_mt);
2264 
2265 	return page;
2266 }
2267 
2268 /*
2269  * Do the hard work of removing an element from the buddy allocator.
2270  * Call me with the zone->lock already held.
2271  */
2272 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2273 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2274 						unsigned int alloc_flags)
2275 {
2276 	struct page *page;
2277 
2278 	if (IS_ENABLED(CONFIG_CMA)) {
2279 		/*
2280 		 * Balance movable allocations between regular and CMA areas by
2281 		 * allocating from CMA when over half of the zone's free memory
2282 		 * is in the CMA area.
2283 		 */
2284 		if (alloc_flags & ALLOC_CMA &&
2285 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2286 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2287 			page = __rmqueue_cma_fallback(zone, order);
2288 			if (page)
2289 				return page;
2290 		}
2291 	}
2292 
2293 	page = __rmqueue_smallest(zone, order, migratetype);
2294 	if (unlikely(!page)) {
2295 		if (alloc_flags & ALLOC_CMA)
2296 			page = __rmqueue_cma_fallback(zone, order);
2297 
2298 		if (!page)
2299 			page = __rmqueue_fallback(zone, order, migratetype,
2300 						  alloc_flags);
2301 	}
2302 	return page;
2303 }
2304 
2305 /*
2306  * Obtain a specified number of elements from the buddy allocator, all under
2307  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2308  * Returns the number of new pages which were placed at *list.
2309  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2310 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2311 			unsigned long count, struct list_head *list,
2312 			int migratetype, unsigned int alloc_flags)
2313 {
2314 	unsigned long flags;
2315 	int i;
2316 
2317 	if (!spin_trylock_irqsave(&zone->lock, flags)) {
2318 		if (unlikely(alloc_flags & ALLOC_TRYLOCK))
2319 			return 0;
2320 		spin_lock_irqsave(&zone->lock, flags);
2321 	}
2322 	for (i = 0; i < count; ++i) {
2323 		struct page *page = __rmqueue(zone, order, migratetype,
2324 								alloc_flags);
2325 		if (unlikely(page == NULL))
2326 			break;
2327 
2328 		/*
2329 		 * Split buddy pages returned by expand() are received here in
2330 		 * physical page order. The page is added to the tail of
2331 		 * caller's list. From the callers perspective, the linked list
2332 		 * is ordered by page number under some conditions. This is
2333 		 * useful for IO devices that can forward direction from the
2334 		 * head, thus also in the physical page order. This is useful
2335 		 * for IO devices that can merge IO requests if the physical
2336 		 * pages are ordered properly.
2337 		 */
2338 		list_add_tail(&page->pcp_list, list);
2339 	}
2340 	spin_unlock_irqrestore(&zone->lock, flags);
2341 
2342 	return i;
2343 }
2344 
2345 /*
2346  * Called from the vmstat counter updater to decay the PCP high.
2347  * Return whether there are addition works to do.
2348  */
decay_pcp_high(struct zone * zone,struct per_cpu_pages * pcp)2349 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2350 {
2351 	int high_min, to_drain, batch;
2352 	int todo = 0;
2353 
2354 	high_min = READ_ONCE(pcp->high_min);
2355 	batch = READ_ONCE(pcp->batch);
2356 	/*
2357 	 * Decrease pcp->high periodically to try to free possible
2358 	 * idle PCP pages.  And, avoid to free too many pages to
2359 	 * control latency.  This caps pcp->high decrement too.
2360 	 */
2361 	if (pcp->high > high_min) {
2362 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2363 				 pcp->high - (pcp->high >> 3), high_min);
2364 		if (pcp->high > high_min)
2365 			todo++;
2366 	}
2367 
2368 	to_drain = pcp->count - pcp->high;
2369 	if (to_drain > 0) {
2370 		spin_lock(&pcp->lock);
2371 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2372 		spin_unlock(&pcp->lock);
2373 		todo++;
2374 	}
2375 
2376 	return todo;
2377 }
2378 
2379 #ifdef CONFIG_NUMA
2380 /*
2381  * Called from the vmstat counter updater to drain pagesets of this
2382  * currently executing processor on remote nodes after they have
2383  * expired.
2384  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2385 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2386 {
2387 	int to_drain, batch;
2388 
2389 	batch = READ_ONCE(pcp->batch);
2390 	to_drain = min(pcp->count, batch);
2391 	if (to_drain > 0) {
2392 		spin_lock(&pcp->lock);
2393 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2394 		spin_unlock(&pcp->lock);
2395 	}
2396 }
2397 #endif
2398 
2399 /*
2400  * Drain pcplists of the indicated processor and zone.
2401  */
drain_pages_zone(unsigned int cpu,struct zone * zone)2402 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2403 {
2404 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2405 	int count;
2406 
2407 	do {
2408 		spin_lock(&pcp->lock);
2409 		count = pcp->count;
2410 		if (count) {
2411 			int to_drain = min(count,
2412 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2413 
2414 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2415 			count -= to_drain;
2416 		}
2417 		spin_unlock(&pcp->lock);
2418 	} while (count);
2419 }
2420 
2421 /*
2422  * Drain pcplists of all zones on the indicated processor.
2423  */
drain_pages(unsigned int cpu)2424 static void drain_pages(unsigned int cpu)
2425 {
2426 	struct zone *zone;
2427 
2428 	for_each_populated_zone(zone) {
2429 		drain_pages_zone(cpu, zone);
2430 	}
2431 }
2432 
2433 /*
2434  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2435  */
drain_local_pages(struct zone * zone)2436 void drain_local_pages(struct zone *zone)
2437 {
2438 	int cpu = smp_processor_id();
2439 
2440 	if (zone)
2441 		drain_pages_zone(cpu, zone);
2442 	else
2443 		drain_pages(cpu);
2444 }
2445 
2446 /*
2447  * The implementation of drain_all_pages(), exposing an extra parameter to
2448  * drain on all cpus.
2449  *
2450  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2451  * not empty. The check for non-emptiness can however race with a free to
2452  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2453  * that need the guarantee that every CPU has drained can disable the
2454  * optimizing racy check.
2455  */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2456 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2457 {
2458 	int cpu;
2459 
2460 	/*
2461 	 * Allocate in the BSS so we won't require allocation in
2462 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2463 	 */
2464 	static cpumask_t cpus_with_pcps;
2465 
2466 	/*
2467 	 * Do not drain if one is already in progress unless it's specific to
2468 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2469 	 * the drain to be complete when the call returns.
2470 	 */
2471 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2472 		if (!zone)
2473 			return;
2474 		mutex_lock(&pcpu_drain_mutex);
2475 	}
2476 
2477 	/*
2478 	 * We don't care about racing with CPU hotplug event
2479 	 * as offline notification will cause the notified
2480 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2481 	 * disables preemption as part of its processing
2482 	 */
2483 	for_each_online_cpu(cpu) {
2484 		struct per_cpu_pages *pcp;
2485 		struct zone *z;
2486 		bool has_pcps = false;
2487 
2488 		if (force_all_cpus) {
2489 			/*
2490 			 * The pcp.count check is racy, some callers need a
2491 			 * guarantee that no cpu is missed.
2492 			 */
2493 			has_pcps = true;
2494 		} else if (zone) {
2495 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2496 			if (pcp->count)
2497 				has_pcps = true;
2498 		} else {
2499 			for_each_populated_zone(z) {
2500 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2501 				if (pcp->count) {
2502 					has_pcps = true;
2503 					break;
2504 				}
2505 			}
2506 		}
2507 
2508 		if (has_pcps)
2509 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2510 		else
2511 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2512 	}
2513 
2514 	for_each_cpu(cpu, &cpus_with_pcps) {
2515 		if (zone)
2516 			drain_pages_zone(cpu, zone);
2517 		else
2518 			drain_pages(cpu);
2519 	}
2520 
2521 	mutex_unlock(&pcpu_drain_mutex);
2522 }
2523 
2524 /*
2525  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2526  *
2527  * When zone parameter is non-NULL, spill just the single zone's pages.
2528  */
drain_all_pages(struct zone * zone)2529 void drain_all_pages(struct zone *zone)
2530 {
2531 	__drain_all_pages(zone, false);
2532 }
2533 
nr_pcp_free(struct per_cpu_pages * pcp,int batch,int high,bool free_high)2534 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2535 {
2536 	int min_nr_free, max_nr_free;
2537 
2538 	/* Free as much as possible if batch freeing high-order pages. */
2539 	if (unlikely(free_high))
2540 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2541 
2542 	/* Check for PCP disabled or boot pageset */
2543 	if (unlikely(high < batch))
2544 		return 1;
2545 
2546 	/* Leave at least pcp->batch pages on the list */
2547 	min_nr_free = batch;
2548 	max_nr_free = high - batch;
2549 
2550 	/*
2551 	 * Increase the batch number to the number of the consecutive
2552 	 * freed pages to reduce zone lock contention.
2553 	 */
2554 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2555 
2556 	return batch;
2557 }
2558 
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,int batch,bool free_high)2559 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2560 		       int batch, bool free_high)
2561 {
2562 	int high, high_min, high_max;
2563 
2564 	high_min = READ_ONCE(pcp->high_min);
2565 	high_max = READ_ONCE(pcp->high_max);
2566 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2567 
2568 	if (unlikely(!high))
2569 		return 0;
2570 
2571 	if (unlikely(free_high)) {
2572 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2573 				high_min);
2574 		return 0;
2575 	}
2576 
2577 	/*
2578 	 * If reclaim is active, limit the number of pages that can be
2579 	 * stored on pcp lists
2580 	 */
2581 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2582 		int free_count = max_t(int, pcp->free_count, batch);
2583 
2584 		pcp->high = max(high - free_count, high_min);
2585 		return min(batch << 2, pcp->high);
2586 	}
2587 
2588 	if (high_min == high_max)
2589 		return high;
2590 
2591 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2592 		int free_count = max_t(int, pcp->free_count, batch);
2593 
2594 		pcp->high = max(high - free_count, high_min);
2595 		high = max(pcp->count, high_min);
2596 	} else if (pcp->count >= high) {
2597 		int need_high = pcp->free_count + batch;
2598 
2599 		/* pcp->high should be large enough to hold batch freed pages */
2600 		if (pcp->high < need_high)
2601 			pcp->high = clamp(need_high, high_min, high_max);
2602 	}
2603 
2604 	return high;
2605 }
2606 
free_frozen_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order,fpi_t fpi_flags)2607 static void free_frozen_page_commit(struct zone *zone,
2608 		struct per_cpu_pages *pcp, struct page *page, int migratetype,
2609 		unsigned int order, fpi_t fpi_flags)
2610 {
2611 	int high, batch;
2612 	int pindex;
2613 	bool free_high = false;
2614 
2615 	/*
2616 	 * On freeing, reduce the number of pages that are batch allocated.
2617 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2618 	 * allocations.
2619 	 */
2620 	pcp->alloc_factor >>= 1;
2621 	__count_vm_events(PGFREE, 1 << order);
2622 	pindex = order_to_pindex(migratetype, order);
2623 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2624 	pcp->count += 1 << order;
2625 
2626 	batch = READ_ONCE(pcp->batch);
2627 	/*
2628 	 * As high-order pages other than THP's stored on PCP can contribute
2629 	 * to fragmentation, limit the number stored when PCP is heavily
2630 	 * freeing without allocation. The remainder after bulk freeing
2631 	 * stops will be drained from vmstat refresh context.
2632 	 */
2633 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2634 		free_high = (pcp->free_count >= batch &&
2635 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2636 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2637 			      pcp->count >= READ_ONCE(batch)));
2638 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2639 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2640 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2641 	}
2642 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2643 		pcp->free_count += (1 << order);
2644 
2645 	if (unlikely(fpi_flags & FPI_TRYLOCK)) {
2646 		/*
2647 		 * Do not attempt to take a zone lock. Let pcp->count get
2648 		 * over high mark temporarily.
2649 		 */
2650 		return;
2651 	}
2652 	high = nr_pcp_high(pcp, zone, batch, free_high);
2653 	if (pcp->count >= high) {
2654 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2655 				   pcp, pindex);
2656 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2657 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2658 				      ZONE_MOVABLE, 0))
2659 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2660 	}
2661 }
2662 
2663 /*
2664  * Free a pcp page
2665  */
__free_frozen_pages(struct page * page,unsigned int order,fpi_t fpi_flags)2666 static void __free_frozen_pages(struct page *page, unsigned int order,
2667 				fpi_t fpi_flags)
2668 {
2669 	unsigned long __maybe_unused UP_flags;
2670 	struct per_cpu_pages *pcp;
2671 	struct zone *zone;
2672 	unsigned long pfn = page_to_pfn(page);
2673 	int migratetype;
2674 
2675 	if (!pcp_allowed_order(order)) {
2676 		__free_pages_ok(page, order, fpi_flags);
2677 		return;
2678 	}
2679 
2680 	if (!free_pages_prepare(page, order))
2681 		return;
2682 
2683 	/*
2684 	 * We only track unmovable, reclaimable and movable on pcp lists.
2685 	 * Place ISOLATE pages on the isolated list because they are being
2686 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2687 	 * get those areas back if necessary. Otherwise, we may have to free
2688 	 * excessively into the page allocator
2689 	 */
2690 	zone = page_zone(page);
2691 	migratetype = get_pfnblock_migratetype(page, pfn);
2692 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2693 		if (unlikely(is_migrate_isolate(migratetype))) {
2694 			free_one_page(zone, page, pfn, order, fpi_flags);
2695 			return;
2696 		}
2697 		migratetype = MIGRATE_MOVABLE;
2698 	}
2699 
2700 	if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT)
2701 		     && (in_nmi() || in_hardirq()))) {
2702 		add_page_to_zone_llist(zone, page, order);
2703 		return;
2704 	}
2705 	pcp_trylock_prepare(UP_flags);
2706 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2707 	if (pcp) {
2708 		free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags);
2709 		pcp_spin_unlock(pcp);
2710 	} else {
2711 		free_one_page(zone, page, pfn, order, fpi_flags);
2712 	}
2713 	pcp_trylock_finish(UP_flags);
2714 }
2715 
free_frozen_pages(struct page * page,unsigned int order)2716 void free_frozen_pages(struct page *page, unsigned int order)
2717 {
2718 	__free_frozen_pages(page, order, FPI_NONE);
2719 }
2720 
2721 /*
2722  * Free a batch of folios
2723  */
free_unref_folios(struct folio_batch * folios)2724 void free_unref_folios(struct folio_batch *folios)
2725 {
2726 	unsigned long __maybe_unused UP_flags;
2727 	struct per_cpu_pages *pcp = NULL;
2728 	struct zone *locked_zone = NULL;
2729 	int i, j;
2730 
2731 	/* Prepare folios for freeing */
2732 	for (i = 0, j = 0; i < folios->nr; i++) {
2733 		struct folio *folio = folios->folios[i];
2734 		unsigned long pfn = folio_pfn(folio);
2735 		unsigned int order = folio_order(folio);
2736 
2737 		if (!free_pages_prepare(&folio->page, order))
2738 			continue;
2739 		/*
2740 		 * Free orders not handled on the PCP directly to the
2741 		 * allocator.
2742 		 */
2743 		if (!pcp_allowed_order(order)) {
2744 			free_one_page(folio_zone(folio), &folio->page,
2745 				      pfn, order, FPI_NONE);
2746 			continue;
2747 		}
2748 		folio->private = (void *)(unsigned long)order;
2749 		if (j != i)
2750 			folios->folios[j] = folio;
2751 		j++;
2752 	}
2753 	folios->nr = j;
2754 
2755 	for (i = 0; i < folios->nr; i++) {
2756 		struct folio *folio = folios->folios[i];
2757 		struct zone *zone = folio_zone(folio);
2758 		unsigned long pfn = folio_pfn(folio);
2759 		unsigned int order = (unsigned long)folio->private;
2760 		int migratetype;
2761 
2762 		folio->private = NULL;
2763 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2764 
2765 		/* Different zone requires a different pcp lock */
2766 		if (zone != locked_zone ||
2767 		    is_migrate_isolate(migratetype)) {
2768 			if (pcp) {
2769 				pcp_spin_unlock(pcp);
2770 				pcp_trylock_finish(UP_flags);
2771 				locked_zone = NULL;
2772 				pcp = NULL;
2773 			}
2774 
2775 			/*
2776 			 * Free isolated pages directly to the
2777 			 * allocator, see comment in free_frozen_pages.
2778 			 */
2779 			if (is_migrate_isolate(migratetype)) {
2780 				free_one_page(zone, &folio->page, pfn,
2781 					      order, FPI_NONE);
2782 				continue;
2783 			}
2784 
2785 			/*
2786 			 * trylock is necessary as folios may be getting freed
2787 			 * from IRQ or SoftIRQ context after an IO completion.
2788 			 */
2789 			pcp_trylock_prepare(UP_flags);
2790 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2791 			if (unlikely(!pcp)) {
2792 				pcp_trylock_finish(UP_flags);
2793 				free_one_page(zone, &folio->page, pfn,
2794 					      order, FPI_NONE);
2795 				continue;
2796 			}
2797 			locked_zone = zone;
2798 		}
2799 
2800 		/*
2801 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2802 		 * to the MIGRATE_MOVABLE pcp list.
2803 		 */
2804 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2805 			migratetype = MIGRATE_MOVABLE;
2806 
2807 		trace_mm_page_free_batched(&folio->page);
2808 		free_frozen_page_commit(zone, pcp, &folio->page, migratetype,
2809 					order, FPI_NONE);
2810 	}
2811 
2812 	if (pcp) {
2813 		pcp_spin_unlock(pcp);
2814 		pcp_trylock_finish(UP_flags);
2815 	}
2816 	folio_batch_reinit(folios);
2817 }
2818 
2819 /*
2820  * split_page takes a non-compound higher-order page, and splits it into
2821  * n (1<<order) sub-pages: page[0..n]
2822  * Each sub-page must be freed individually.
2823  *
2824  * Note: this is probably too low level an operation for use in drivers.
2825  * Please consult with lkml before using this in your driver.
2826  */
split_page(struct page * page,unsigned int order)2827 void split_page(struct page *page, unsigned int order)
2828 {
2829 	int i;
2830 
2831 	VM_BUG_ON_PAGE(PageCompound(page), page);
2832 	VM_BUG_ON_PAGE(!page_count(page), page);
2833 
2834 	for (i = 1; i < (1 << order); i++)
2835 		set_page_refcounted(page + i);
2836 	split_page_owner(page, order, 0);
2837 	pgalloc_tag_split(page_folio(page), order, 0);
2838 	split_page_memcg(page, order);
2839 }
2840 EXPORT_SYMBOL_GPL(split_page);
2841 
__isolate_free_page(struct page * page,unsigned int order)2842 int __isolate_free_page(struct page *page, unsigned int order)
2843 {
2844 	struct zone *zone = page_zone(page);
2845 	int mt = get_pageblock_migratetype(page);
2846 
2847 	if (!is_migrate_isolate(mt)) {
2848 		unsigned long watermark;
2849 		/*
2850 		 * Obey watermarks as if the page was being allocated. We can
2851 		 * emulate a high-order watermark check with a raised order-0
2852 		 * watermark, because we already know our high-order page
2853 		 * exists.
2854 		 */
2855 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2856 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2857 			return 0;
2858 	}
2859 
2860 	del_page_from_free_list(page, zone, order, mt);
2861 
2862 	/*
2863 	 * Set the pageblock if the isolated page is at least half of a
2864 	 * pageblock
2865 	 */
2866 	if (order >= pageblock_order - 1) {
2867 		struct page *endpage = page + (1 << order) - 1;
2868 		for (; page < endpage; page += pageblock_nr_pages) {
2869 			int mt = get_pageblock_migratetype(page);
2870 			/*
2871 			 * Only change normal pageblocks (i.e., they can merge
2872 			 * with others)
2873 			 */
2874 			if (migratetype_is_mergeable(mt))
2875 				move_freepages_block(zone, page, mt,
2876 						     MIGRATE_MOVABLE);
2877 		}
2878 	}
2879 
2880 	return 1UL << order;
2881 }
2882 
2883 /**
2884  * __putback_isolated_page - Return a now-isolated page back where we got it
2885  * @page: Page that was isolated
2886  * @order: Order of the isolated page
2887  * @mt: The page's pageblock's migratetype
2888  *
2889  * This function is meant to return a page pulled from the free lists via
2890  * __isolate_free_page back to the free lists they were pulled from.
2891  */
__putback_isolated_page(struct page * page,unsigned int order,int mt)2892 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2893 {
2894 	struct zone *zone = page_zone(page);
2895 
2896 	/* zone lock should be held when this function is called */
2897 	lockdep_assert_held(&zone->lock);
2898 
2899 	/* Return isolated page to tail of freelist. */
2900 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2901 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2902 }
2903 
2904 /*
2905  * Update NUMA hit/miss statistics
2906  */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)2907 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2908 				   long nr_account)
2909 {
2910 #ifdef CONFIG_NUMA
2911 	enum numa_stat_item local_stat = NUMA_LOCAL;
2912 
2913 	/* skip numa counters update if numa stats is disabled */
2914 	if (!static_branch_likely(&vm_numa_stat_key))
2915 		return;
2916 
2917 	if (zone_to_nid(z) != numa_node_id())
2918 		local_stat = NUMA_OTHER;
2919 
2920 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2921 		__count_numa_events(z, NUMA_HIT, nr_account);
2922 	else {
2923 		__count_numa_events(z, NUMA_MISS, nr_account);
2924 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2925 	}
2926 	__count_numa_events(z, local_stat, nr_account);
2927 #endif
2928 }
2929 
2930 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)2931 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2932 			   unsigned int order, unsigned int alloc_flags,
2933 			   int migratetype)
2934 {
2935 	struct page *page;
2936 	unsigned long flags;
2937 
2938 	do {
2939 		page = NULL;
2940 		if (!spin_trylock_irqsave(&zone->lock, flags)) {
2941 			if (unlikely(alloc_flags & ALLOC_TRYLOCK))
2942 				return NULL;
2943 			spin_lock_irqsave(&zone->lock, flags);
2944 		}
2945 		if (alloc_flags & ALLOC_HIGHATOMIC)
2946 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2947 		if (!page) {
2948 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2949 
2950 			/*
2951 			 * If the allocation fails, allow OOM handling and
2952 			 * order-0 (atomic) allocs access to HIGHATOMIC
2953 			 * reserves as failing now is worse than failing a
2954 			 * high-order atomic allocation in the future.
2955 			 */
2956 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2957 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2958 
2959 			if (!page) {
2960 				spin_unlock_irqrestore(&zone->lock, flags);
2961 				return NULL;
2962 			}
2963 		}
2964 		spin_unlock_irqrestore(&zone->lock, flags);
2965 	} while (check_new_pages(page, order));
2966 
2967 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2968 	zone_statistics(preferred_zone, zone, 1);
2969 
2970 	return page;
2971 }
2972 
nr_pcp_alloc(struct per_cpu_pages * pcp,struct zone * zone,int order)2973 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2974 {
2975 	int high, base_batch, batch, max_nr_alloc;
2976 	int high_max, high_min;
2977 
2978 	base_batch = READ_ONCE(pcp->batch);
2979 	high_min = READ_ONCE(pcp->high_min);
2980 	high_max = READ_ONCE(pcp->high_max);
2981 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2982 
2983 	/* Check for PCP disabled or boot pageset */
2984 	if (unlikely(high < base_batch))
2985 		return 1;
2986 
2987 	if (order)
2988 		batch = base_batch;
2989 	else
2990 		batch = (base_batch << pcp->alloc_factor);
2991 
2992 	/*
2993 	 * If we had larger pcp->high, we could avoid to allocate from
2994 	 * zone.
2995 	 */
2996 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2997 		high = pcp->high = min(high + batch, high_max);
2998 
2999 	if (!order) {
3000 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
3001 		/*
3002 		 * Double the number of pages allocated each time there is
3003 		 * subsequent allocation of order-0 pages without any freeing.
3004 		 */
3005 		if (batch <= max_nr_alloc &&
3006 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
3007 			pcp->alloc_factor++;
3008 		batch = min(batch, max_nr_alloc);
3009 	}
3010 
3011 	/*
3012 	 * Scale batch relative to order if batch implies free pages
3013 	 * can be stored on the PCP. Batch can be 1 for small zones or
3014 	 * for boot pagesets which should never store free pages as
3015 	 * the pages may belong to arbitrary zones.
3016 	 */
3017 	if (batch > 1)
3018 		batch = max(batch >> order, 2);
3019 
3020 	return batch;
3021 }
3022 
3023 /* Remove page from the per-cpu list, caller must protect the list */
3024 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)3025 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3026 			int migratetype,
3027 			unsigned int alloc_flags,
3028 			struct per_cpu_pages *pcp,
3029 			struct list_head *list)
3030 {
3031 	struct page *page;
3032 
3033 	do {
3034 		if (list_empty(list)) {
3035 			int batch = nr_pcp_alloc(pcp, zone, order);
3036 			int alloced;
3037 
3038 			alloced = rmqueue_bulk(zone, order,
3039 					batch, list,
3040 					migratetype, alloc_flags);
3041 
3042 			pcp->count += alloced << order;
3043 			if (unlikely(list_empty(list)))
3044 				return NULL;
3045 		}
3046 
3047 		page = list_first_entry(list, struct page, pcp_list);
3048 		list_del(&page->pcp_list);
3049 		pcp->count -= 1 << order;
3050 	} while (check_new_pages(page, order));
3051 
3052 	return page;
3053 }
3054 
3055 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3056 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3057 			struct zone *zone, unsigned int order,
3058 			int migratetype, unsigned int alloc_flags)
3059 {
3060 	struct per_cpu_pages *pcp;
3061 	struct list_head *list;
3062 	struct page *page;
3063 	unsigned long __maybe_unused UP_flags;
3064 
3065 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3066 	pcp_trylock_prepare(UP_flags);
3067 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3068 	if (!pcp) {
3069 		pcp_trylock_finish(UP_flags);
3070 		return NULL;
3071 	}
3072 
3073 	/*
3074 	 * On allocation, reduce the number of pages that are batch freed.
3075 	 * See nr_pcp_free() where free_factor is increased for subsequent
3076 	 * frees.
3077 	 */
3078 	pcp->free_count >>= 1;
3079 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3080 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3081 	pcp_spin_unlock(pcp);
3082 	pcp_trylock_finish(UP_flags);
3083 	if (page) {
3084 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3085 		zone_statistics(preferred_zone, zone, 1);
3086 	}
3087 	return page;
3088 }
3089 
3090 /*
3091  * Allocate a page from the given zone.
3092  * Use pcplists for THP or "cheap" high-order allocations.
3093  */
3094 
3095 /*
3096  * Do not instrument rmqueue() with KMSAN. This function may call
3097  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3098  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3099  * may call rmqueue() again, which will result in a deadlock.
3100  */
3101 __no_sanitize_memory
3102 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3103 struct page *rmqueue(struct zone *preferred_zone,
3104 			struct zone *zone, unsigned int order,
3105 			gfp_t gfp_flags, unsigned int alloc_flags,
3106 			int migratetype)
3107 {
3108 	struct page *page;
3109 
3110 	if (likely(pcp_allowed_order(order))) {
3111 		page = rmqueue_pcplist(preferred_zone, zone, order,
3112 				       migratetype, alloc_flags);
3113 		if (likely(page))
3114 			goto out;
3115 	}
3116 
3117 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3118 							migratetype);
3119 
3120 out:
3121 	/* Separate test+clear to avoid unnecessary atomics */
3122 	if ((alloc_flags & ALLOC_KSWAPD) &&
3123 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3124 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3125 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3126 	}
3127 
3128 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3129 	return page;
3130 }
3131 
3132 /*
3133  * Reserve the pageblock(s) surrounding an allocation request for
3134  * exclusive use of high-order atomic allocations if there are no
3135  * empty page blocks that contain a page with a suitable order
3136  */
reserve_highatomic_pageblock(struct page * page,int order,struct zone * zone)3137 static void reserve_highatomic_pageblock(struct page *page, int order,
3138 					 struct zone *zone)
3139 {
3140 	int mt;
3141 	unsigned long max_managed, flags;
3142 
3143 	/*
3144 	 * The number reserved as: minimum is 1 pageblock, maximum is
3145 	 * roughly 1% of a zone. But if 1% of a zone falls below a
3146 	 * pageblock size, then don't reserve any pageblocks.
3147 	 * Check is race-prone but harmless.
3148 	 */
3149 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
3150 		return;
3151 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
3152 	if (zone->nr_reserved_highatomic >= max_managed)
3153 		return;
3154 
3155 	spin_lock_irqsave(&zone->lock, flags);
3156 
3157 	/* Recheck the nr_reserved_highatomic limit under the lock */
3158 	if (zone->nr_reserved_highatomic >= max_managed)
3159 		goto out_unlock;
3160 
3161 	/* Yoink! */
3162 	mt = get_pageblock_migratetype(page);
3163 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
3164 	if (!migratetype_is_mergeable(mt))
3165 		goto out_unlock;
3166 
3167 	if (order < pageblock_order) {
3168 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
3169 			goto out_unlock;
3170 		zone->nr_reserved_highatomic += pageblock_nr_pages;
3171 	} else {
3172 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
3173 		zone->nr_reserved_highatomic += 1 << order;
3174 	}
3175 
3176 out_unlock:
3177 	spin_unlock_irqrestore(&zone->lock, flags);
3178 }
3179 
3180 /*
3181  * Used when an allocation is about to fail under memory pressure. This
3182  * potentially hurts the reliability of high-order allocations when under
3183  * intense memory pressure but failed atomic allocations should be easier
3184  * to recover from than an OOM.
3185  *
3186  * If @force is true, try to unreserve pageblocks even though highatomic
3187  * pageblock is exhausted.
3188  */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)3189 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
3190 						bool force)
3191 {
3192 	struct zonelist *zonelist = ac->zonelist;
3193 	unsigned long flags;
3194 	struct zoneref *z;
3195 	struct zone *zone;
3196 	struct page *page;
3197 	int order;
3198 	int ret;
3199 
3200 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
3201 								ac->nodemask) {
3202 		/*
3203 		 * Preserve at least one pageblock unless memory pressure
3204 		 * is really high.
3205 		 */
3206 		if (!force && zone->nr_reserved_highatomic <=
3207 					pageblock_nr_pages)
3208 			continue;
3209 
3210 		spin_lock_irqsave(&zone->lock, flags);
3211 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
3212 			struct free_area *area = &(zone->free_area[order]);
3213 			unsigned long size;
3214 
3215 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
3216 			if (!page)
3217 				continue;
3218 
3219 			size = max(pageblock_nr_pages, 1UL << order);
3220 			/*
3221 			 * It should never happen but changes to
3222 			 * locking could inadvertently allow a per-cpu
3223 			 * drain to add pages to MIGRATE_HIGHATOMIC
3224 			 * while unreserving so be safe and watch for
3225 			 * underflows.
3226 			 */
3227 			if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic))
3228 				size = zone->nr_reserved_highatomic;
3229 			zone->nr_reserved_highatomic -= size;
3230 
3231 			/*
3232 			 * Convert to ac->migratetype and avoid the normal
3233 			 * pageblock stealing heuristics. Minimally, the caller
3234 			 * is doing the work and needs the pages. More
3235 			 * importantly, if the block was always converted to
3236 			 * MIGRATE_UNMOVABLE or another type then the number
3237 			 * of pageblocks that cannot be completely freed
3238 			 * may increase.
3239 			 */
3240 			if (order < pageblock_order)
3241 				ret = move_freepages_block(zone, page,
3242 							   MIGRATE_HIGHATOMIC,
3243 							   ac->migratetype);
3244 			else {
3245 				move_to_free_list(page, zone, order,
3246 						  MIGRATE_HIGHATOMIC,
3247 						  ac->migratetype);
3248 				change_pageblock_range(page, order,
3249 						       ac->migratetype);
3250 				ret = 1;
3251 			}
3252 			/*
3253 			 * Reserving the block(s) already succeeded,
3254 			 * so this should not fail on zone boundaries.
3255 			 */
3256 			WARN_ON_ONCE(ret == -1);
3257 			if (ret > 0) {
3258 				spin_unlock_irqrestore(&zone->lock, flags);
3259 				return ret;
3260 			}
3261 		}
3262 		spin_unlock_irqrestore(&zone->lock, flags);
3263 	}
3264 
3265 	return false;
3266 }
3267 
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)3268 static inline long __zone_watermark_unusable_free(struct zone *z,
3269 				unsigned int order, unsigned int alloc_flags)
3270 {
3271 	long unusable_free = (1 << order) - 1;
3272 
3273 	/*
3274 	 * If the caller does not have rights to reserves below the min
3275 	 * watermark then subtract the free pages reserved for highatomic.
3276 	 */
3277 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3278 		unusable_free += READ_ONCE(z->nr_free_highatomic);
3279 
3280 #ifdef CONFIG_CMA
3281 	/* If allocation can't use CMA areas don't use free CMA pages */
3282 	if (!(alloc_flags & ALLOC_CMA))
3283 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3284 #endif
3285 
3286 	return unusable_free;
3287 }
3288 
3289 /*
3290  * Return true if free base pages are above 'mark'. For high-order checks it
3291  * will return true of the order-0 watermark is reached and there is at least
3292  * one free page of a suitable size. Checking now avoids taking the zone lock
3293  * to check in the allocation paths if no pages are free.
3294  */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)3295 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3296 			 int highest_zoneidx, unsigned int alloc_flags,
3297 			 long free_pages)
3298 {
3299 	long min = mark;
3300 	int o;
3301 
3302 	/* free_pages may go negative - that's OK */
3303 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3304 
3305 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3306 		/*
3307 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3308 		 * as OOM.
3309 		 */
3310 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3311 			min -= min / 2;
3312 
3313 			/*
3314 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3315 			 * access more reserves than just __GFP_HIGH. Other
3316 			 * non-blocking allocations requests such as GFP_NOWAIT
3317 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3318 			 * access to the min reserve.
3319 			 */
3320 			if (alloc_flags & ALLOC_NON_BLOCK)
3321 				min -= min / 4;
3322 		}
3323 
3324 		/*
3325 		 * OOM victims can try even harder than the normal reserve
3326 		 * users on the grounds that it's definitely going to be in
3327 		 * the exit path shortly and free memory. Any allocation it
3328 		 * makes during the free path will be small and short-lived.
3329 		 */
3330 		if (alloc_flags & ALLOC_OOM)
3331 			min -= min / 2;
3332 	}
3333 
3334 	/*
3335 	 * Check watermarks for an order-0 allocation request. If these
3336 	 * are not met, then a high-order request also cannot go ahead
3337 	 * even if a suitable page happened to be free.
3338 	 */
3339 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3340 		return false;
3341 
3342 	/* If this is an order-0 request then the watermark is fine */
3343 	if (!order)
3344 		return true;
3345 
3346 	/* For a high-order request, check at least one suitable page is free */
3347 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3348 		struct free_area *area = &z->free_area[o];
3349 		int mt;
3350 
3351 		if (!area->nr_free)
3352 			continue;
3353 
3354 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3355 			if (!free_area_empty(area, mt))
3356 				return true;
3357 		}
3358 
3359 #ifdef CONFIG_CMA
3360 		if ((alloc_flags & ALLOC_CMA) &&
3361 		    !free_area_empty(area, MIGRATE_CMA)) {
3362 			return true;
3363 		}
3364 #endif
3365 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3366 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3367 			return true;
3368 		}
3369 	}
3370 	return false;
3371 }
3372 
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)3373 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3374 		      int highest_zoneidx, unsigned int alloc_flags)
3375 {
3376 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3377 					zone_page_state(z, NR_FREE_PAGES));
3378 }
3379 
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)3380 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3381 				unsigned long mark, int highest_zoneidx,
3382 				unsigned int alloc_flags, gfp_t gfp_mask)
3383 {
3384 	long free_pages;
3385 
3386 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3387 
3388 	/*
3389 	 * Fast check for order-0 only. If this fails then the reserves
3390 	 * need to be calculated.
3391 	 */
3392 	if (!order) {
3393 		long usable_free;
3394 		long reserved;
3395 
3396 		usable_free = free_pages;
3397 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3398 
3399 		/* reserved may over estimate high-atomic reserves. */
3400 		usable_free -= min(usable_free, reserved);
3401 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3402 			return true;
3403 	}
3404 
3405 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3406 					free_pages))
3407 		return true;
3408 
3409 	/*
3410 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3411 	 * when checking the min watermark. The min watermark is the
3412 	 * point where boosting is ignored so that kswapd is woken up
3413 	 * when below the low watermark.
3414 	 */
3415 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3416 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3417 		mark = z->_watermark[WMARK_MIN];
3418 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3419 					alloc_flags, free_pages);
3420 	}
3421 
3422 	return false;
3423 }
3424 
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)3425 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3426 			unsigned long mark, int highest_zoneidx)
3427 {
3428 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3429 
3430 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3431 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3432 
3433 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3434 								free_pages);
3435 }
3436 
3437 #ifdef CONFIG_NUMA
3438 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3439 
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3440 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3441 {
3442 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3443 				node_reclaim_distance;
3444 }
3445 #else	/* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3446 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3447 {
3448 	return true;
3449 }
3450 #endif	/* CONFIG_NUMA */
3451 
3452 /*
3453  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3454  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3455  * premature use of a lower zone may cause lowmem pressure problems that
3456  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3457  * probably too small. It only makes sense to spread allocations to avoid
3458  * fragmentation between the Normal and DMA32 zones.
3459  */
3460 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3461 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3462 {
3463 	unsigned int alloc_flags;
3464 
3465 	/*
3466 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3467 	 * to save a branch.
3468 	 */
3469 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3470 
3471 	if (defrag_mode) {
3472 		alloc_flags |= ALLOC_NOFRAGMENT;
3473 		return alloc_flags;
3474 	}
3475 
3476 #ifdef CONFIG_ZONE_DMA32
3477 	if (!zone)
3478 		return alloc_flags;
3479 
3480 	if (zone_idx(zone) != ZONE_NORMAL)
3481 		return alloc_flags;
3482 
3483 	/*
3484 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3485 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3486 	 * on UMA that if Normal is populated then so is DMA32.
3487 	 */
3488 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3489 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3490 		return alloc_flags;
3491 
3492 	alloc_flags |= ALLOC_NOFRAGMENT;
3493 #endif /* CONFIG_ZONE_DMA32 */
3494 	return alloc_flags;
3495 }
3496 
3497 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3498 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3499 						  unsigned int alloc_flags)
3500 {
3501 #ifdef CONFIG_CMA
3502 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3503 		alloc_flags |= ALLOC_CMA;
3504 #endif
3505 	return alloc_flags;
3506 }
3507 
3508 /*
3509  * get_page_from_freelist goes through the zonelist trying to allocate
3510  * a page.
3511  */
3512 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3513 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3514 						const struct alloc_context *ac)
3515 {
3516 	struct zoneref *z;
3517 	struct zone *zone;
3518 	struct pglist_data *last_pgdat = NULL;
3519 	bool last_pgdat_dirty_ok = false;
3520 	bool no_fallback;
3521 
3522 retry:
3523 	/*
3524 	 * Scan zonelist, looking for a zone with enough free.
3525 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3526 	 */
3527 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3528 	z = ac->preferred_zoneref;
3529 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3530 					ac->nodemask) {
3531 		struct page *page;
3532 		unsigned long mark;
3533 
3534 		if (cpusets_enabled() &&
3535 			(alloc_flags & ALLOC_CPUSET) &&
3536 			!__cpuset_zone_allowed(zone, gfp_mask))
3537 				continue;
3538 		/*
3539 		 * When allocating a page cache page for writing, we
3540 		 * want to get it from a node that is within its dirty
3541 		 * limit, such that no single node holds more than its
3542 		 * proportional share of globally allowed dirty pages.
3543 		 * The dirty limits take into account the node's
3544 		 * lowmem reserves and high watermark so that kswapd
3545 		 * should be able to balance it without having to
3546 		 * write pages from its LRU list.
3547 		 *
3548 		 * XXX: For now, allow allocations to potentially
3549 		 * exceed the per-node dirty limit in the slowpath
3550 		 * (spread_dirty_pages unset) before going into reclaim,
3551 		 * which is important when on a NUMA setup the allowed
3552 		 * nodes are together not big enough to reach the
3553 		 * global limit.  The proper fix for these situations
3554 		 * will require awareness of nodes in the
3555 		 * dirty-throttling and the flusher threads.
3556 		 */
3557 		if (ac->spread_dirty_pages) {
3558 			if (last_pgdat != zone->zone_pgdat) {
3559 				last_pgdat = zone->zone_pgdat;
3560 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3561 			}
3562 
3563 			if (!last_pgdat_dirty_ok)
3564 				continue;
3565 		}
3566 
3567 		if (no_fallback && !defrag_mode && nr_online_nodes > 1 &&
3568 		    zone != zonelist_zone(ac->preferred_zoneref)) {
3569 			int local_nid;
3570 
3571 			/*
3572 			 * If moving to a remote node, retry but allow
3573 			 * fragmenting fallbacks. Locality is more important
3574 			 * than fragmentation avoidance.
3575 			 */
3576 			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3577 			if (zone_to_nid(zone) != local_nid) {
3578 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3579 				goto retry;
3580 			}
3581 		}
3582 
3583 		cond_accept_memory(zone, order);
3584 
3585 		/*
3586 		 * Detect whether the number of free pages is below high
3587 		 * watermark.  If so, we will decrease pcp->high and free
3588 		 * PCP pages in free path to reduce the possibility of
3589 		 * premature page reclaiming.  Detection is done here to
3590 		 * avoid to do that in hotter free path.
3591 		 */
3592 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3593 			goto check_alloc_wmark;
3594 
3595 		mark = high_wmark_pages(zone);
3596 		if (zone_watermark_fast(zone, order, mark,
3597 					ac->highest_zoneidx, alloc_flags,
3598 					gfp_mask))
3599 			goto try_this_zone;
3600 		else
3601 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3602 
3603 check_alloc_wmark:
3604 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3605 		if (!zone_watermark_fast(zone, order, mark,
3606 				       ac->highest_zoneidx, alloc_flags,
3607 				       gfp_mask)) {
3608 			int ret;
3609 
3610 			if (cond_accept_memory(zone, order))
3611 				goto try_this_zone;
3612 
3613 			/*
3614 			 * Watermark failed for this zone, but see if we can
3615 			 * grow this zone if it contains deferred pages.
3616 			 */
3617 			if (deferred_pages_enabled()) {
3618 				if (_deferred_grow_zone(zone, order))
3619 					goto try_this_zone;
3620 			}
3621 			/* Checked here to keep the fast path fast */
3622 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3623 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3624 				goto try_this_zone;
3625 
3626 			if (!node_reclaim_enabled() ||
3627 			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3628 				continue;
3629 
3630 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3631 			switch (ret) {
3632 			case NODE_RECLAIM_NOSCAN:
3633 				/* did not scan */
3634 				continue;
3635 			case NODE_RECLAIM_FULL:
3636 				/* scanned but unreclaimable */
3637 				continue;
3638 			default:
3639 				/* did we reclaim enough */
3640 				if (zone_watermark_ok(zone, order, mark,
3641 					ac->highest_zoneidx, alloc_flags))
3642 					goto try_this_zone;
3643 
3644 				continue;
3645 			}
3646 		}
3647 
3648 try_this_zone:
3649 		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3650 				gfp_mask, alloc_flags, ac->migratetype);
3651 		if (page) {
3652 			prep_new_page(page, order, gfp_mask, alloc_flags);
3653 
3654 			/*
3655 			 * If this is a high-order atomic allocation then check
3656 			 * if the pageblock should be reserved for the future
3657 			 */
3658 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3659 				reserve_highatomic_pageblock(page, order, zone);
3660 
3661 			return page;
3662 		} else {
3663 			if (cond_accept_memory(zone, order))
3664 				goto try_this_zone;
3665 
3666 			/* Try again if zone has deferred pages */
3667 			if (deferred_pages_enabled()) {
3668 				if (_deferred_grow_zone(zone, order))
3669 					goto try_this_zone;
3670 			}
3671 		}
3672 	}
3673 
3674 	/*
3675 	 * It's possible on a UMA machine to get through all zones that are
3676 	 * fragmented. If avoiding fragmentation, reset and try again.
3677 	 */
3678 	if (no_fallback && !defrag_mode) {
3679 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3680 		goto retry;
3681 	}
3682 
3683 	return NULL;
3684 }
3685 
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3686 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3687 {
3688 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3689 
3690 	/*
3691 	 * This documents exceptions given to allocations in certain
3692 	 * contexts that are allowed to allocate outside current's set
3693 	 * of allowed nodes.
3694 	 */
3695 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3696 		if (tsk_is_oom_victim(current) ||
3697 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3698 			filter &= ~SHOW_MEM_FILTER_NODES;
3699 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3700 		filter &= ~SHOW_MEM_FILTER_NODES;
3701 
3702 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3703 }
3704 
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3705 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3706 {
3707 	struct va_format vaf;
3708 	va_list args;
3709 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3710 
3711 	if ((gfp_mask & __GFP_NOWARN) ||
3712 	     !__ratelimit(&nopage_rs) ||
3713 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3714 		return;
3715 
3716 	va_start(args, fmt);
3717 	vaf.fmt = fmt;
3718 	vaf.va = &args;
3719 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3720 			current->comm, &vaf, gfp_mask, &gfp_mask,
3721 			nodemask_pr_args(nodemask));
3722 	va_end(args);
3723 
3724 	cpuset_print_current_mems_allowed();
3725 	pr_cont("\n");
3726 	dump_stack();
3727 	warn_alloc_show_mem(gfp_mask, nodemask);
3728 }
3729 
3730 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3731 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3732 			      unsigned int alloc_flags,
3733 			      const struct alloc_context *ac)
3734 {
3735 	struct page *page;
3736 
3737 	page = get_page_from_freelist(gfp_mask, order,
3738 			alloc_flags|ALLOC_CPUSET, ac);
3739 	/*
3740 	 * fallback to ignore cpuset restriction if our nodes
3741 	 * are depleted
3742 	 */
3743 	if (!page)
3744 		page = get_page_from_freelist(gfp_mask, order,
3745 				alloc_flags, ac);
3746 	return page;
3747 }
3748 
3749 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3750 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3751 	const struct alloc_context *ac, unsigned long *did_some_progress)
3752 {
3753 	struct oom_control oc = {
3754 		.zonelist = ac->zonelist,
3755 		.nodemask = ac->nodemask,
3756 		.memcg = NULL,
3757 		.gfp_mask = gfp_mask,
3758 		.order = order,
3759 	};
3760 	struct page *page;
3761 
3762 	*did_some_progress = 0;
3763 
3764 	/*
3765 	 * Acquire the oom lock.  If that fails, somebody else is
3766 	 * making progress for us.
3767 	 */
3768 	if (!mutex_trylock(&oom_lock)) {
3769 		*did_some_progress = 1;
3770 		schedule_timeout_uninterruptible(1);
3771 		return NULL;
3772 	}
3773 
3774 	/*
3775 	 * Go through the zonelist yet one more time, keep very high watermark
3776 	 * here, this is only to catch a parallel oom killing, we must fail if
3777 	 * we're still under heavy pressure. But make sure that this reclaim
3778 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3779 	 * allocation which will never fail due to oom_lock already held.
3780 	 */
3781 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3782 				      ~__GFP_DIRECT_RECLAIM, order,
3783 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3784 	if (page)
3785 		goto out;
3786 
3787 	/* Coredumps can quickly deplete all memory reserves */
3788 	if (current->flags & PF_DUMPCORE)
3789 		goto out;
3790 	/* The OOM killer will not help higher order allocs */
3791 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3792 		goto out;
3793 	/*
3794 	 * We have already exhausted all our reclaim opportunities without any
3795 	 * success so it is time to admit defeat. We will skip the OOM killer
3796 	 * because it is very likely that the caller has a more reasonable
3797 	 * fallback than shooting a random task.
3798 	 *
3799 	 * The OOM killer may not free memory on a specific node.
3800 	 */
3801 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3802 		goto out;
3803 	/* The OOM killer does not needlessly kill tasks for lowmem */
3804 	if (ac->highest_zoneidx < ZONE_NORMAL)
3805 		goto out;
3806 	if (pm_suspended_storage())
3807 		goto out;
3808 	/*
3809 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3810 	 * other request to make a forward progress.
3811 	 * We are in an unfortunate situation where out_of_memory cannot
3812 	 * do much for this context but let's try it to at least get
3813 	 * access to memory reserved if the current task is killed (see
3814 	 * out_of_memory). Once filesystems are ready to handle allocation
3815 	 * failures more gracefully we should just bail out here.
3816 	 */
3817 
3818 	/* Exhausted what can be done so it's blame time */
3819 	if (out_of_memory(&oc) ||
3820 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3821 		*did_some_progress = 1;
3822 
3823 		/*
3824 		 * Help non-failing allocations by giving them access to memory
3825 		 * reserves
3826 		 */
3827 		if (gfp_mask & __GFP_NOFAIL)
3828 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3829 					ALLOC_NO_WATERMARKS, ac);
3830 	}
3831 out:
3832 	mutex_unlock(&oom_lock);
3833 	return page;
3834 }
3835 
3836 /*
3837  * Maximum number of compaction retries with a progress before OOM
3838  * killer is consider as the only way to move forward.
3839  */
3840 #define MAX_COMPACT_RETRIES 16
3841 
3842 #ifdef CONFIG_COMPACTION
3843 /* Try memory compaction for high-order allocations before reclaim */
3844 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3845 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3846 		unsigned int alloc_flags, const struct alloc_context *ac,
3847 		enum compact_priority prio, enum compact_result *compact_result)
3848 {
3849 	struct page *page = NULL;
3850 	unsigned long pflags;
3851 	unsigned int noreclaim_flag;
3852 
3853 	if (!order)
3854 		return NULL;
3855 
3856 	psi_memstall_enter(&pflags);
3857 	delayacct_compact_start();
3858 	noreclaim_flag = memalloc_noreclaim_save();
3859 
3860 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3861 								prio, &page);
3862 
3863 	memalloc_noreclaim_restore(noreclaim_flag);
3864 	psi_memstall_leave(&pflags);
3865 	delayacct_compact_end();
3866 
3867 	if (*compact_result == COMPACT_SKIPPED)
3868 		return NULL;
3869 	/*
3870 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3871 	 * count a compaction stall
3872 	 */
3873 	count_vm_event(COMPACTSTALL);
3874 
3875 	/* Prep a captured page if available */
3876 	if (page)
3877 		prep_new_page(page, order, gfp_mask, alloc_flags);
3878 
3879 	/* Try get a page from the freelist if available */
3880 	if (!page)
3881 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3882 
3883 	if (page) {
3884 		struct zone *zone = page_zone(page);
3885 
3886 		zone->compact_blockskip_flush = false;
3887 		compaction_defer_reset(zone, order, true);
3888 		count_vm_event(COMPACTSUCCESS);
3889 		return page;
3890 	}
3891 
3892 	/*
3893 	 * It's bad if compaction run occurs and fails. The most likely reason
3894 	 * is that pages exist, but not enough to satisfy watermarks.
3895 	 */
3896 	count_vm_event(COMPACTFAIL);
3897 
3898 	cond_resched();
3899 
3900 	return NULL;
3901 }
3902 
3903 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3904 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3905 		     enum compact_result compact_result,
3906 		     enum compact_priority *compact_priority,
3907 		     int *compaction_retries)
3908 {
3909 	int max_retries = MAX_COMPACT_RETRIES;
3910 	int min_priority;
3911 	bool ret = false;
3912 	int retries = *compaction_retries;
3913 	enum compact_priority priority = *compact_priority;
3914 
3915 	if (!order)
3916 		return false;
3917 
3918 	if (fatal_signal_pending(current))
3919 		return false;
3920 
3921 	/*
3922 	 * Compaction was skipped due to a lack of free order-0
3923 	 * migration targets. Continue if reclaim can help.
3924 	 */
3925 	if (compact_result == COMPACT_SKIPPED) {
3926 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3927 		goto out;
3928 	}
3929 
3930 	/*
3931 	 * Compaction managed to coalesce some page blocks, but the
3932 	 * allocation failed presumably due to a race. Retry some.
3933 	 */
3934 	if (compact_result == COMPACT_SUCCESS) {
3935 		/*
3936 		 * !costly requests are much more important than
3937 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3938 		 * facto nofail and invoke OOM killer to move on while
3939 		 * costly can fail and users are ready to cope with
3940 		 * that. 1/4 retries is rather arbitrary but we would
3941 		 * need much more detailed feedback from compaction to
3942 		 * make a better decision.
3943 		 */
3944 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3945 			max_retries /= 4;
3946 
3947 		if (++(*compaction_retries) <= max_retries) {
3948 			ret = true;
3949 			goto out;
3950 		}
3951 	}
3952 
3953 	/*
3954 	 * Compaction failed. Retry with increasing priority.
3955 	 */
3956 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3957 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3958 
3959 	if (*compact_priority > min_priority) {
3960 		(*compact_priority)--;
3961 		*compaction_retries = 0;
3962 		ret = true;
3963 	}
3964 out:
3965 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3966 	return ret;
3967 }
3968 #else
3969 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3970 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3971 		unsigned int alloc_flags, const struct alloc_context *ac,
3972 		enum compact_priority prio, enum compact_result *compact_result)
3973 {
3974 	*compact_result = COMPACT_SKIPPED;
3975 	return NULL;
3976 }
3977 
3978 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3979 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3980 		     enum compact_result compact_result,
3981 		     enum compact_priority *compact_priority,
3982 		     int *compaction_retries)
3983 {
3984 	struct zone *zone;
3985 	struct zoneref *z;
3986 
3987 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3988 		return false;
3989 
3990 	/*
3991 	 * There are setups with compaction disabled which would prefer to loop
3992 	 * inside the allocator rather than hit the oom killer prematurely.
3993 	 * Let's give them a good hope and keep retrying while the order-0
3994 	 * watermarks are OK.
3995 	 */
3996 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3997 				ac->highest_zoneidx, ac->nodemask) {
3998 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3999 					ac->highest_zoneidx, alloc_flags))
4000 			return true;
4001 	}
4002 	return false;
4003 }
4004 #endif /* CONFIG_COMPACTION */
4005 
4006 #ifdef CONFIG_LOCKDEP
4007 static struct lockdep_map __fs_reclaim_map =
4008 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4009 
__need_reclaim(gfp_t gfp_mask)4010 static bool __need_reclaim(gfp_t gfp_mask)
4011 {
4012 	/* no reclaim without waiting on it */
4013 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4014 		return false;
4015 
4016 	/* this guy won't enter reclaim */
4017 	if (current->flags & PF_MEMALLOC)
4018 		return false;
4019 
4020 	if (gfp_mask & __GFP_NOLOCKDEP)
4021 		return false;
4022 
4023 	return true;
4024 }
4025 
__fs_reclaim_acquire(unsigned long ip)4026 void __fs_reclaim_acquire(unsigned long ip)
4027 {
4028 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4029 }
4030 
__fs_reclaim_release(unsigned long ip)4031 void __fs_reclaim_release(unsigned long ip)
4032 {
4033 	lock_release(&__fs_reclaim_map, ip);
4034 }
4035 
fs_reclaim_acquire(gfp_t gfp_mask)4036 void fs_reclaim_acquire(gfp_t gfp_mask)
4037 {
4038 	gfp_mask = current_gfp_context(gfp_mask);
4039 
4040 	if (__need_reclaim(gfp_mask)) {
4041 		if (gfp_mask & __GFP_FS)
4042 			__fs_reclaim_acquire(_RET_IP_);
4043 
4044 #ifdef CONFIG_MMU_NOTIFIER
4045 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4046 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4047 #endif
4048 
4049 	}
4050 }
4051 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4052 
fs_reclaim_release(gfp_t gfp_mask)4053 void fs_reclaim_release(gfp_t gfp_mask)
4054 {
4055 	gfp_mask = current_gfp_context(gfp_mask);
4056 
4057 	if (__need_reclaim(gfp_mask)) {
4058 		if (gfp_mask & __GFP_FS)
4059 			__fs_reclaim_release(_RET_IP_);
4060 	}
4061 }
4062 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4063 #endif
4064 
4065 /*
4066  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4067  * have been rebuilt so allocation retries. Reader side does not lock and
4068  * retries the allocation if zonelist changes. Writer side is protected by the
4069  * embedded spin_lock.
4070  */
4071 static DEFINE_SEQLOCK(zonelist_update_seq);
4072 
zonelist_iter_begin(void)4073 static unsigned int zonelist_iter_begin(void)
4074 {
4075 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4076 		return read_seqbegin(&zonelist_update_seq);
4077 
4078 	return 0;
4079 }
4080 
check_retry_zonelist(unsigned int seq)4081 static unsigned int check_retry_zonelist(unsigned int seq)
4082 {
4083 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4084 		return read_seqretry(&zonelist_update_seq, seq);
4085 
4086 	return seq;
4087 }
4088 
4089 /* Perform direct synchronous page reclaim */
4090 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)4091 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4092 					const struct alloc_context *ac)
4093 {
4094 	unsigned int noreclaim_flag;
4095 	unsigned long progress;
4096 
4097 	cond_resched();
4098 
4099 	/* We now go into synchronous reclaim */
4100 	cpuset_memory_pressure_bump();
4101 	fs_reclaim_acquire(gfp_mask);
4102 	noreclaim_flag = memalloc_noreclaim_save();
4103 
4104 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4105 								ac->nodemask);
4106 
4107 	memalloc_noreclaim_restore(noreclaim_flag);
4108 	fs_reclaim_release(gfp_mask);
4109 
4110 	cond_resched();
4111 
4112 	return progress;
4113 }
4114 
4115 /* The really slow allocator path where we enter direct reclaim */
4116 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)4117 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4118 		unsigned int alloc_flags, const struct alloc_context *ac,
4119 		unsigned long *did_some_progress)
4120 {
4121 	struct page *page = NULL;
4122 	unsigned long pflags;
4123 	bool drained = false;
4124 
4125 	psi_memstall_enter(&pflags);
4126 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4127 	if (unlikely(!(*did_some_progress)))
4128 		goto out;
4129 
4130 retry:
4131 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4132 
4133 	/*
4134 	 * If an allocation failed after direct reclaim, it could be because
4135 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4136 	 * Shrink them and try again
4137 	 */
4138 	if (!page && !drained) {
4139 		unreserve_highatomic_pageblock(ac, false);
4140 		drain_all_pages(NULL);
4141 		drained = true;
4142 		goto retry;
4143 	}
4144 out:
4145 	psi_memstall_leave(&pflags);
4146 
4147 	return page;
4148 }
4149 
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)4150 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4151 			     const struct alloc_context *ac)
4152 {
4153 	struct zoneref *z;
4154 	struct zone *zone;
4155 	pg_data_t *last_pgdat = NULL;
4156 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4157 	unsigned int reclaim_order;
4158 
4159 	if (defrag_mode)
4160 		reclaim_order = max(order, pageblock_order);
4161 	else
4162 		reclaim_order = order;
4163 
4164 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4165 					ac->nodemask) {
4166 		if (!managed_zone(zone))
4167 			continue;
4168 		if (last_pgdat == zone->zone_pgdat)
4169 			continue;
4170 		wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx);
4171 		last_pgdat = zone->zone_pgdat;
4172 	}
4173 }
4174 
4175 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)4176 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4177 {
4178 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4179 
4180 	/*
4181 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4182 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4183 	 * to save two branches.
4184 	 */
4185 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4186 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4187 
4188 	/*
4189 	 * The caller may dip into page reserves a bit more if the caller
4190 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4191 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4192 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4193 	 */
4194 	alloc_flags |= (__force int)
4195 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4196 
4197 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4198 		/*
4199 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4200 		 * if it can't schedule.
4201 		 */
4202 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4203 			alloc_flags |= ALLOC_NON_BLOCK;
4204 
4205 			if (order > 0)
4206 				alloc_flags |= ALLOC_HIGHATOMIC;
4207 		}
4208 
4209 		/*
4210 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4211 		 * GFP_ATOMIC) rather than fail, see the comment for
4212 		 * cpuset_node_allowed().
4213 		 */
4214 		if (alloc_flags & ALLOC_MIN_RESERVE)
4215 			alloc_flags &= ~ALLOC_CPUSET;
4216 	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4217 		alloc_flags |= ALLOC_MIN_RESERVE;
4218 
4219 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4220 
4221 	if (defrag_mode)
4222 		alloc_flags |= ALLOC_NOFRAGMENT;
4223 
4224 	return alloc_flags;
4225 }
4226 
oom_reserves_allowed(struct task_struct * tsk)4227 static bool oom_reserves_allowed(struct task_struct *tsk)
4228 {
4229 	if (!tsk_is_oom_victim(tsk))
4230 		return false;
4231 
4232 	/*
4233 	 * !MMU doesn't have oom reaper so give access to memory reserves
4234 	 * only to the thread with TIF_MEMDIE set
4235 	 */
4236 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4237 		return false;
4238 
4239 	return true;
4240 }
4241 
4242 /*
4243  * Distinguish requests which really need access to full memory
4244  * reserves from oom victims which can live with a portion of it
4245  */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4246 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4247 {
4248 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4249 		return 0;
4250 	if (gfp_mask & __GFP_MEMALLOC)
4251 		return ALLOC_NO_WATERMARKS;
4252 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4253 		return ALLOC_NO_WATERMARKS;
4254 	if (!in_interrupt()) {
4255 		if (current->flags & PF_MEMALLOC)
4256 			return ALLOC_NO_WATERMARKS;
4257 		else if (oom_reserves_allowed(current))
4258 			return ALLOC_OOM;
4259 	}
4260 
4261 	return 0;
4262 }
4263 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4264 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4265 {
4266 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4267 }
4268 
4269 /*
4270  * Checks whether it makes sense to retry the reclaim to make a forward progress
4271  * for the given allocation request.
4272  *
4273  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4274  * without success, or when we couldn't even meet the watermark if we
4275  * reclaimed all remaining pages on the LRU lists.
4276  *
4277  * Returns true if a retry is viable or false to enter the oom path.
4278  */
4279 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4280 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4281 		     struct alloc_context *ac, int alloc_flags,
4282 		     bool did_some_progress, int *no_progress_loops)
4283 {
4284 	struct zone *zone;
4285 	struct zoneref *z;
4286 	bool ret = false;
4287 
4288 	/*
4289 	 * Costly allocations might have made a progress but this doesn't mean
4290 	 * their order will become available due to high fragmentation so
4291 	 * always increment the no progress counter for them
4292 	 */
4293 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4294 		*no_progress_loops = 0;
4295 	else
4296 		(*no_progress_loops)++;
4297 
4298 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4299 		goto out;
4300 
4301 
4302 	/*
4303 	 * Keep reclaiming pages while there is a chance this will lead
4304 	 * somewhere.  If none of the target zones can satisfy our allocation
4305 	 * request even if all reclaimable pages are considered then we are
4306 	 * screwed and have to go OOM.
4307 	 */
4308 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4309 				ac->highest_zoneidx, ac->nodemask) {
4310 		unsigned long available;
4311 		unsigned long reclaimable;
4312 		unsigned long min_wmark = min_wmark_pages(zone);
4313 		bool wmark;
4314 
4315 		if (cpusets_enabled() &&
4316 			(alloc_flags & ALLOC_CPUSET) &&
4317 			!__cpuset_zone_allowed(zone, gfp_mask))
4318 				continue;
4319 
4320 		available = reclaimable = zone_reclaimable_pages(zone);
4321 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4322 
4323 		/*
4324 		 * Would the allocation succeed if we reclaimed all
4325 		 * reclaimable pages?
4326 		 */
4327 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4328 				ac->highest_zoneidx, alloc_flags, available);
4329 		trace_reclaim_retry_zone(z, order, reclaimable,
4330 				available, min_wmark, *no_progress_loops, wmark);
4331 		if (wmark) {
4332 			ret = true;
4333 			break;
4334 		}
4335 	}
4336 
4337 	/*
4338 	 * Memory allocation/reclaim might be called from a WQ context and the
4339 	 * current implementation of the WQ concurrency control doesn't
4340 	 * recognize that a particular WQ is congested if the worker thread is
4341 	 * looping without ever sleeping. Therefore we have to do a short sleep
4342 	 * here rather than calling cond_resched().
4343 	 */
4344 	if (current->flags & PF_WQ_WORKER)
4345 		schedule_timeout_uninterruptible(1);
4346 	else
4347 		cond_resched();
4348 out:
4349 	/* Before OOM, exhaust highatomic_reserve */
4350 	if (!ret)
4351 		return unreserve_highatomic_pageblock(ac, true);
4352 
4353 	return ret;
4354 }
4355 
4356 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4357 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4358 {
4359 	/*
4360 	 * It's possible that cpuset's mems_allowed and the nodemask from
4361 	 * mempolicy don't intersect. This should be normally dealt with by
4362 	 * policy_nodemask(), but it's possible to race with cpuset update in
4363 	 * such a way the check therein was true, and then it became false
4364 	 * before we got our cpuset_mems_cookie here.
4365 	 * This assumes that for all allocations, ac->nodemask can come only
4366 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4367 	 * when it does not intersect with the cpuset restrictions) or the
4368 	 * caller can deal with a violated nodemask.
4369 	 */
4370 	if (cpusets_enabled() && ac->nodemask &&
4371 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4372 		ac->nodemask = NULL;
4373 		return true;
4374 	}
4375 
4376 	/*
4377 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4378 	 * possible to race with parallel threads in such a way that our
4379 	 * allocation can fail while the mask is being updated. If we are about
4380 	 * to fail, check if the cpuset changed during allocation and if so,
4381 	 * retry.
4382 	 */
4383 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4384 		return true;
4385 
4386 	return false;
4387 }
4388 
4389 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4390 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4391 						struct alloc_context *ac)
4392 {
4393 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4394 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4395 	bool nofail = gfp_mask & __GFP_NOFAIL;
4396 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4397 	struct page *page = NULL;
4398 	unsigned int alloc_flags;
4399 	unsigned long did_some_progress;
4400 	enum compact_priority compact_priority;
4401 	enum compact_result compact_result;
4402 	int compaction_retries;
4403 	int no_progress_loops;
4404 	unsigned int cpuset_mems_cookie;
4405 	unsigned int zonelist_iter_cookie;
4406 	int reserve_flags;
4407 
4408 	if (unlikely(nofail)) {
4409 		/*
4410 		 * We most definitely don't want callers attempting to
4411 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
4412 		 */
4413 		WARN_ON_ONCE(order > 1);
4414 		/*
4415 		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4416 		 * otherwise, we may result in lockup.
4417 		 */
4418 		WARN_ON_ONCE(!can_direct_reclaim);
4419 		/*
4420 		 * PF_MEMALLOC request from this context is rather bizarre
4421 		 * because we cannot reclaim anything and only can loop waiting
4422 		 * for somebody to do a work for us.
4423 		 */
4424 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4425 	}
4426 
4427 restart:
4428 	compaction_retries = 0;
4429 	no_progress_loops = 0;
4430 	compact_result = COMPACT_SKIPPED;
4431 	compact_priority = DEF_COMPACT_PRIORITY;
4432 	cpuset_mems_cookie = read_mems_allowed_begin();
4433 	zonelist_iter_cookie = zonelist_iter_begin();
4434 
4435 	/*
4436 	 * The fast path uses conservative alloc_flags to succeed only until
4437 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4438 	 * alloc_flags precisely. So we do that now.
4439 	 */
4440 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4441 
4442 	/*
4443 	 * We need to recalculate the starting point for the zonelist iterator
4444 	 * because we might have used different nodemask in the fast path, or
4445 	 * there was a cpuset modification and we are retrying - otherwise we
4446 	 * could end up iterating over non-eligible zones endlessly.
4447 	 */
4448 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4449 					ac->highest_zoneidx, ac->nodemask);
4450 	if (!zonelist_zone(ac->preferred_zoneref))
4451 		goto nopage;
4452 
4453 	/*
4454 	 * Check for insane configurations where the cpuset doesn't contain
4455 	 * any suitable zone to satisfy the request - e.g. non-movable
4456 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4457 	 */
4458 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4459 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4460 					ac->highest_zoneidx,
4461 					&cpuset_current_mems_allowed);
4462 		if (!zonelist_zone(z))
4463 			goto nopage;
4464 	}
4465 
4466 	if (alloc_flags & ALLOC_KSWAPD)
4467 		wake_all_kswapds(order, gfp_mask, ac);
4468 
4469 	/*
4470 	 * The adjusted alloc_flags might result in immediate success, so try
4471 	 * that first
4472 	 */
4473 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4474 	if (page)
4475 		goto got_pg;
4476 
4477 	/*
4478 	 * For costly allocations, try direct compaction first, as it's likely
4479 	 * that we have enough base pages and don't need to reclaim. For non-
4480 	 * movable high-order allocations, do that as well, as compaction will
4481 	 * try prevent permanent fragmentation by migrating from blocks of the
4482 	 * same migratetype.
4483 	 * Don't try this for allocations that are allowed to ignore
4484 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4485 	 */
4486 	if (can_direct_reclaim && can_compact &&
4487 			(costly_order ||
4488 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4489 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4490 		page = __alloc_pages_direct_compact(gfp_mask, order,
4491 						alloc_flags, ac,
4492 						INIT_COMPACT_PRIORITY,
4493 						&compact_result);
4494 		if (page)
4495 			goto got_pg;
4496 
4497 		/*
4498 		 * Checks for costly allocations with __GFP_NORETRY, which
4499 		 * includes some THP page fault allocations
4500 		 */
4501 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4502 			/*
4503 			 * If allocating entire pageblock(s) and compaction
4504 			 * failed because all zones are below low watermarks
4505 			 * or is prohibited because it recently failed at this
4506 			 * order, fail immediately unless the allocator has
4507 			 * requested compaction and reclaim retry.
4508 			 *
4509 			 * Reclaim is
4510 			 *  - potentially very expensive because zones are far
4511 			 *    below their low watermarks or this is part of very
4512 			 *    bursty high order allocations,
4513 			 *  - not guaranteed to help because isolate_freepages()
4514 			 *    may not iterate over freed pages as part of its
4515 			 *    linear scan, and
4516 			 *  - unlikely to make entire pageblocks free on its
4517 			 *    own.
4518 			 */
4519 			if (compact_result == COMPACT_SKIPPED ||
4520 			    compact_result == COMPACT_DEFERRED)
4521 				goto nopage;
4522 
4523 			/*
4524 			 * Looks like reclaim/compaction is worth trying, but
4525 			 * sync compaction could be very expensive, so keep
4526 			 * using async compaction.
4527 			 */
4528 			compact_priority = INIT_COMPACT_PRIORITY;
4529 		}
4530 	}
4531 
4532 retry:
4533 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4534 	if (alloc_flags & ALLOC_KSWAPD)
4535 		wake_all_kswapds(order, gfp_mask, ac);
4536 
4537 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4538 	if (reserve_flags)
4539 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4540 					  (alloc_flags & ALLOC_KSWAPD);
4541 
4542 	/*
4543 	 * Reset the nodemask and zonelist iterators if memory policies can be
4544 	 * ignored. These allocations are high priority and system rather than
4545 	 * user oriented.
4546 	 */
4547 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4548 		ac->nodemask = NULL;
4549 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4550 					ac->highest_zoneidx, ac->nodemask);
4551 	}
4552 
4553 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4554 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4555 	if (page)
4556 		goto got_pg;
4557 
4558 	/* Caller is not willing to reclaim, we can't balance anything */
4559 	if (!can_direct_reclaim)
4560 		goto nopage;
4561 
4562 	/* Avoid recursion of direct reclaim */
4563 	if (current->flags & PF_MEMALLOC)
4564 		goto nopage;
4565 
4566 	/* Try direct reclaim and then allocating */
4567 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4568 							&did_some_progress);
4569 	if (page)
4570 		goto got_pg;
4571 
4572 	/* Try direct compaction and then allocating */
4573 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4574 					compact_priority, &compact_result);
4575 	if (page)
4576 		goto got_pg;
4577 
4578 	/* Do not loop if specifically requested */
4579 	if (gfp_mask & __GFP_NORETRY)
4580 		goto nopage;
4581 
4582 	/*
4583 	 * Do not retry costly high order allocations unless they are
4584 	 * __GFP_RETRY_MAYFAIL and we can compact
4585 	 */
4586 	if (costly_order && (!can_compact ||
4587 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4588 		goto nopage;
4589 
4590 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4591 				 did_some_progress > 0, &no_progress_loops))
4592 		goto retry;
4593 
4594 	/*
4595 	 * It doesn't make any sense to retry for the compaction if the order-0
4596 	 * reclaim is not able to make any progress because the current
4597 	 * implementation of the compaction depends on the sufficient amount
4598 	 * of free memory (see __compaction_suitable)
4599 	 */
4600 	if (did_some_progress > 0 && can_compact &&
4601 			should_compact_retry(ac, order, alloc_flags,
4602 				compact_result, &compact_priority,
4603 				&compaction_retries))
4604 		goto retry;
4605 
4606 	/* Reclaim/compaction failed to prevent the fallback */
4607 	if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) {
4608 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4609 		goto retry;
4610 	}
4611 
4612 	/*
4613 	 * Deal with possible cpuset update races or zonelist updates to avoid
4614 	 * a unnecessary OOM kill.
4615 	 */
4616 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4617 	    check_retry_zonelist(zonelist_iter_cookie))
4618 		goto restart;
4619 
4620 	/* Reclaim has failed us, start killing things */
4621 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4622 	if (page)
4623 		goto got_pg;
4624 
4625 	/* Avoid allocations with no watermarks from looping endlessly */
4626 	if (tsk_is_oom_victim(current) &&
4627 	    (alloc_flags & ALLOC_OOM ||
4628 	     (gfp_mask & __GFP_NOMEMALLOC)))
4629 		goto nopage;
4630 
4631 	/* Retry as long as the OOM killer is making progress */
4632 	if (did_some_progress) {
4633 		no_progress_loops = 0;
4634 		goto retry;
4635 	}
4636 
4637 nopage:
4638 	/*
4639 	 * Deal with possible cpuset update races or zonelist updates to avoid
4640 	 * a unnecessary OOM kill.
4641 	 */
4642 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4643 	    check_retry_zonelist(zonelist_iter_cookie))
4644 		goto restart;
4645 
4646 	/*
4647 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4648 	 * we always retry
4649 	 */
4650 	if (unlikely(nofail)) {
4651 		/*
4652 		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4653 		 * we disregard these unreasonable nofail requests and still
4654 		 * return NULL
4655 		 */
4656 		if (!can_direct_reclaim)
4657 			goto fail;
4658 
4659 		/*
4660 		 * Help non-failing allocations by giving some access to memory
4661 		 * reserves normally used for high priority non-blocking
4662 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4663 		 * could deplete whole memory reserves which would just make
4664 		 * the situation worse.
4665 		 */
4666 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4667 		if (page)
4668 			goto got_pg;
4669 
4670 		cond_resched();
4671 		goto retry;
4672 	}
4673 fail:
4674 	warn_alloc(gfp_mask, ac->nodemask,
4675 			"page allocation failure: order:%u", order);
4676 got_pg:
4677 	return page;
4678 }
4679 
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4680 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4681 		int preferred_nid, nodemask_t *nodemask,
4682 		struct alloc_context *ac, gfp_t *alloc_gfp,
4683 		unsigned int *alloc_flags)
4684 {
4685 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4686 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4687 	ac->nodemask = nodemask;
4688 	ac->migratetype = gfp_migratetype(gfp_mask);
4689 
4690 	if (cpusets_enabled()) {
4691 		*alloc_gfp |= __GFP_HARDWALL;
4692 		/*
4693 		 * When we are in the interrupt context, it is irrelevant
4694 		 * to the current task context. It means that any node ok.
4695 		 */
4696 		if (in_task() && !ac->nodemask)
4697 			ac->nodemask = &cpuset_current_mems_allowed;
4698 		else
4699 			*alloc_flags |= ALLOC_CPUSET;
4700 	}
4701 
4702 	might_alloc(gfp_mask);
4703 
4704 	/*
4705 	 * Don't invoke should_fail logic, since it may call
4706 	 * get_random_u32() and printk() which need to spin_lock.
4707 	 */
4708 	if (!(*alloc_flags & ALLOC_TRYLOCK) &&
4709 	    should_fail_alloc_page(gfp_mask, order))
4710 		return false;
4711 
4712 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4713 
4714 	/* Dirty zone balancing only done in the fast path */
4715 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4716 
4717 	/*
4718 	 * The preferred zone is used for statistics but crucially it is
4719 	 * also used as the starting point for the zonelist iterator. It
4720 	 * may get reset for allocations that ignore memory policies.
4721 	 */
4722 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4723 					ac->highest_zoneidx, ac->nodemask);
4724 
4725 	return true;
4726 }
4727 
4728 /*
4729  * __alloc_pages_bulk - Allocate a number of order-0 pages to an array
4730  * @gfp: GFP flags for the allocation
4731  * @preferred_nid: The preferred NUMA node ID to allocate from
4732  * @nodemask: Set of nodes to allocate from, may be NULL
4733  * @nr_pages: The number of pages desired in the array
4734  * @page_array: Array to store the pages
4735  *
4736  * This is a batched version of the page allocator that attempts to
4737  * allocate nr_pages quickly. Pages are added to the page_array.
4738  *
4739  * Note that only NULL elements are populated with pages and nr_pages
4740  * is the maximum number of pages that will be stored in the array.
4741  *
4742  * Returns the number of pages in the array.
4743  */
alloc_pages_bulk_noprof(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct page ** page_array)4744 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4745 			nodemask_t *nodemask, int nr_pages,
4746 			struct page **page_array)
4747 {
4748 	struct page *page;
4749 	unsigned long __maybe_unused UP_flags;
4750 	struct zone *zone;
4751 	struct zoneref *z;
4752 	struct per_cpu_pages *pcp;
4753 	struct list_head *pcp_list;
4754 	struct alloc_context ac;
4755 	gfp_t alloc_gfp;
4756 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4757 	int nr_populated = 0, nr_account = 0;
4758 
4759 	/*
4760 	 * Skip populated array elements to determine if any pages need
4761 	 * to be allocated before disabling IRQs.
4762 	 */
4763 	while (nr_populated < nr_pages && page_array[nr_populated])
4764 		nr_populated++;
4765 
4766 	/* No pages requested? */
4767 	if (unlikely(nr_pages <= 0))
4768 		goto out;
4769 
4770 	/* Already populated array? */
4771 	if (unlikely(nr_pages - nr_populated == 0))
4772 		goto out;
4773 
4774 	/* Bulk allocator does not support memcg accounting. */
4775 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4776 		goto failed;
4777 
4778 	/* Use the single page allocator for one page. */
4779 	if (nr_pages - nr_populated == 1)
4780 		goto failed;
4781 
4782 #ifdef CONFIG_PAGE_OWNER
4783 	/*
4784 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4785 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4786 	 * removes much of the performance benefit of bulk allocation so
4787 	 * force the caller to allocate one page at a time as it'll have
4788 	 * similar performance to added complexity to the bulk allocator.
4789 	 */
4790 	if (static_branch_unlikely(&page_owner_inited))
4791 		goto failed;
4792 #endif
4793 
4794 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4795 	gfp &= gfp_allowed_mask;
4796 	alloc_gfp = gfp;
4797 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4798 		goto out;
4799 	gfp = alloc_gfp;
4800 
4801 	/* Find an allowed local zone that meets the low watermark. */
4802 	z = ac.preferred_zoneref;
4803 	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4804 		unsigned long mark;
4805 
4806 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4807 		    !__cpuset_zone_allowed(zone, gfp)) {
4808 			continue;
4809 		}
4810 
4811 		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4812 		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4813 			goto failed;
4814 		}
4815 
4816 		cond_accept_memory(zone, 0);
4817 retry_this_zone:
4818 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4819 		if (zone_watermark_fast(zone, 0,  mark,
4820 				zonelist_zone_idx(ac.preferred_zoneref),
4821 				alloc_flags, gfp)) {
4822 			break;
4823 		}
4824 
4825 		if (cond_accept_memory(zone, 0))
4826 			goto retry_this_zone;
4827 
4828 		/* Try again if zone has deferred pages */
4829 		if (deferred_pages_enabled()) {
4830 			if (_deferred_grow_zone(zone, 0))
4831 				goto retry_this_zone;
4832 		}
4833 	}
4834 
4835 	/*
4836 	 * If there are no allowed local zones that meets the watermarks then
4837 	 * try to allocate a single page and reclaim if necessary.
4838 	 */
4839 	if (unlikely(!zone))
4840 		goto failed;
4841 
4842 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4843 	pcp_trylock_prepare(UP_flags);
4844 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4845 	if (!pcp)
4846 		goto failed_irq;
4847 
4848 	/* Attempt the batch allocation */
4849 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4850 	while (nr_populated < nr_pages) {
4851 
4852 		/* Skip existing pages */
4853 		if (page_array[nr_populated]) {
4854 			nr_populated++;
4855 			continue;
4856 		}
4857 
4858 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4859 								pcp, pcp_list);
4860 		if (unlikely(!page)) {
4861 			/* Try and allocate at least one page */
4862 			if (!nr_account) {
4863 				pcp_spin_unlock(pcp);
4864 				goto failed_irq;
4865 			}
4866 			break;
4867 		}
4868 		nr_account++;
4869 
4870 		prep_new_page(page, 0, gfp, 0);
4871 		set_page_refcounted(page);
4872 		page_array[nr_populated++] = page;
4873 	}
4874 
4875 	pcp_spin_unlock(pcp);
4876 	pcp_trylock_finish(UP_flags);
4877 
4878 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4879 	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4880 
4881 out:
4882 	return nr_populated;
4883 
4884 failed_irq:
4885 	pcp_trylock_finish(UP_flags);
4886 
4887 failed:
4888 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4889 	if (page)
4890 		page_array[nr_populated++] = page;
4891 	goto out;
4892 }
4893 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4894 
4895 /*
4896  * This is the 'heart' of the zoned buddy allocator.
4897  */
__alloc_frozen_pages_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4898 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order,
4899 		int preferred_nid, nodemask_t *nodemask)
4900 {
4901 	struct page *page;
4902 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4903 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4904 	struct alloc_context ac = { };
4905 
4906 	/*
4907 	 * There are several places where we assume that the order value is sane
4908 	 * so bail out early if the request is out of bound.
4909 	 */
4910 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4911 		return NULL;
4912 
4913 	gfp &= gfp_allowed_mask;
4914 	/*
4915 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4916 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4917 	 * from a particular context which has been marked by
4918 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4919 	 * movable zones are not used during allocation.
4920 	 */
4921 	gfp = current_gfp_context(gfp);
4922 	alloc_gfp = gfp;
4923 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4924 			&alloc_gfp, &alloc_flags))
4925 		return NULL;
4926 
4927 	/*
4928 	 * Forbid the first pass from falling back to types that fragment
4929 	 * memory until all local zones are considered.
4930 	 */
4931 	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4932 
4933 	/* First allocation attempt */
4934 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4935 	if (likely(page))
4936 		goto out;
4937 
4938 	alloc_gfp = gfp;
4939 	ac.spread_dirty_pages = false;
4940 
4941 	/*
4942 	 * Restore the original nodemask if it was potentially replaced with
4943 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4944 	 */
4945 	ac.nodemask = nodemask;
4946 
4947 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4948 
4949 out:
4950 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4951 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4952 		free_frozen_pages(page, order);
4953 		page = NULL;
4954 	}
4955 
4956 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4957 	kmsan_alloc_page(page, order, alloc_gfp);
4958 
4959 	return page;
4960 }
4961 EXPORT_SYMBOL(__alloc_frozen_pages_noprof);
4962 
__alloc_pages_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4963 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4964 		int preferred_nid, nodemask_t *nodemask)
4965 {
4966 	struct page *page;
4967 
4968 	page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask);
4969 	if (page)
4970 		set_page_refcounted(page);
4971 	return page;
4972 }
4973 EXPORT_SYMBOL(__alloc_pages_noprof);
4974 
__folio_alloc_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4975 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4976 		nodemask_t *nodemask)
4977 {
4978 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4979 					preferred_nid, nodemask);
4980 	return page_rmappable_folio(page);
4981 }
4982 EXPORT_SYMBOL(__folio_alloc_noprof);
4983 
4984 /*
4985  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4986  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4987  * you need to access high mem.
4988  */
get_free_pages_noprof(gfp_t gfp_mask,unsigned int order)4989 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4990 {
4991 	struct page *page;
4992 
4993 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4994 	if (!page)
4995 		return 0;
4996 	return (unsigned long) page_address(page);
4997 }
4998 EXPORT_SYMBOL(get_free_pages_noprof);
4999 
get_zeroed_page_noprof(gfp_t gfp_mask)5000 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
5001 {
5002 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
5003 }
5004 EXPORT_SYMBOL(get_zeroed_page_noprof);
5005 
5006 /**
5007  * ___free_pages - Free pages allocated with alloc_pages().
5008  * @page: The page pointer returned from alloc_pages().
5009  * @order: The order of the allocation.
5010  * @fpi_flags: Free Page Internal flags.
5011  *
5012  * This function can free multi-page allocations that are not compound
5013  * pages.  It does not check that the @order passed in matches that of
5014  * the allocation, so it is easy to leak memory.  Freeing more memory
5015  * than was allocated will probably emit a warning.
5016  *
5017  * If the last reference to this page is speculative, it will be released
5018  * by put_page() which only frees the first page of a non-compound
5019  * allocation.  To prevent the remaining pages from being leaked, we free
5020  * the subsequent pages here.  If you want to use the page's reference
5021  * count to decide when to free the allocation, you should allocate a
5022  * compound page, and use put_page() instead of __free_pages().
5023  *
5024  * Context: May be called in interrupt context or while holding a normal
5025  * spinlock, but not in NMI context or while holding a raw spinlock.
5026  */
___free_pages(struct page * page,unsigned int order,fpi_t fpi_flags)5027 static void ___free_pages(struct page *page, unsigned int order,
5028 			  fpi_t fpi_flags)
5029 {
5030 	/* get PageHead before we drop reference */
5031 	int head = PageHead(page);
5032 
5033 	if (put_page_testzero(page))
5034 		__free_frozen_pages(page, order, fpi_flags);
5035 	else if (!head) {
5036 		pgalloc_tag_sub_pages(page, (1 << order) - 1);
5037 		while (order-- > 0)
5038 			__free_frozen_pages(page + (1 << order), order,
5039 					    fpi_flags);
5040 	}
5041 }
__free_pages(struct page * page,unsigned int order)5042 void __free_pages(struct page *page, unsigned int order)
5043 {
5044 	___free_pages(page, order, FPI_NONE);
5045 }
5046 EXPORT_SYMBOL(__free_pages);
5047 
5048 /*
5049  * Can be called while holding raw_spin_lock or from IRQ and NMI for any
5050  * page type (not only those that came from try_alloc_pages)
5051  */
free_pages_nolock(struct page * page,unsigned int order)5052 void free_pages_nolock(struct page *page, unsigned int order)
5053 {
5054 	___free_pages(page, order, FPI_TRYLOCK);
5055 }
5056 
free_pages(unsigned long addr,unsigned int order)5057 void free_pages(unsigned long addr, unsigned int order)
5058 {
5059 	if (addr != 0) {
5060 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5061 		__free_pages(virt_to_page((void *)addr), order);
5062 	}
5063 }
5064 
5065 EXPORT_SYMBOL(free_pages);
5066 
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)5067 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5068 		size_t size)
5069 {
5070 	if (addr) {
5071 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5072 		struct page *page = virt_to_page((void *)addr);
5073 		struct page *last = page + nr;
5074 
5075 		split_page_owner(page, order, 0);
5076 		pgalloc_tag_split(page_folio(page), order, 0);
5077 		split_page_memcg(page, order);
5078 		while (page < --last)
5079 			set_page_refcounted(last);
5080 
5081 		last = page + (1UL << order);
5082 		for (page += nr; page < last; page++)
5083 			__free_pages_ok(page, 0, FPI_TO_TAIL);
5084 	}
5085 	return (void *)addr;
5086 }
5087 
5088 /**
5089  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5090  * @size: the number of bytes to allocate
5091  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5092  *
5093  * This function is similar to alloc_pages(), except that it allocates the
5094  * minimum number of pages to satisfy the request.  alloc_pages() can only
5095  * allocate memory in power-of-two pages.
5096  *
5097  * This function is also limited by MAX_PAGE_ORDER.
5098  *
5099  * Memory allocated by this function must be released by free_pages_exact().
5100  *
5101  * Return: pointer to the allocated area or %NULL in case of error.
5102  */
alloc_pages_exact_noprof(size_t size,gfp_t gfp_mask)5103 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
5104 {
5105 	unsigned int order = get_order(size);
5106 	unsigned long addr;
5107 
5108 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5109 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5110 
5111 	addr = get_free_pages_noprof(gfp_mask, order);
5112 	return make_alloc_exact(addr, order, size);
5113 }
5114 EXPORT_SYMBOL(alloc_pages_exact_noprof);
5115 
5116 /**
5117  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5118  *			   pages on a node.
5119  * @nid: the preferred node ID where memory should be allocated
5120  * @size: the number of bytes to allocate
5121  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5122  *
5123  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5124  * back.
5125  *
5126  * Return: pointer to the allocated area or %NULL in case of error.
5127  */
alloc_pages_exact_nid_noprof(int nid,size_t size,gfp_t gfp_mask)5128 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5129 {
5130 	unsigned int order = get_order(size);
5131 	struct page *p;
5132 
5133 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5134 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5135 
5136 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
5137 	if (!p)
5138 		return NULL;
5139 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5140 }
5141 
5142 /**
5143  * free_pages_exact - release memory allocated via alloc_pages_exact()
5144  * @virt: the value returned by alloc_pages_exact.
5145  * @size: size of allocation, same value as passed to alloc_pages_exact().
5146  *
5147  * Release the memory allocated by a previous call to alloc_pages_exact.
5148  */
free_pages_exact(void * virt,size_t size)5149 void free_pages_exact(void *virt, size_t size)
5150 {
5151 	unsigned long addr = (unsigned long)virt;
5152 	unsigned long end = addr + PAGE_ALIGN(size);
5153 
5154 	while (addr < end) {
5155 		free_page(addr);
5156 		addr += PAGE_SIZE;
5157 	}
5158 }
5159 EXPORT_SYMBOL(free_pages_exact);
5160 
5161 /**
5162  * nr_free_zone_pages - count number of pages beyond high watermark
5163  * @offset: The zone index of the highest zone
5164  *
5165  * nr_free_zone_pages() counts the number of pages which are beyond the
5166  * high watermark within all zones at or below a given zone index.  For each
5167  * zone, the number of pages is calculated as:
5168  *
5169  *     nr_free_zone_pages = managed_pages - high_pages
5170  *
5171  * Return: number of pages beyond high watermark.
5172  */
nr_free_zone_pages(int offset)5173 static unsigned long nr_free_zone_pages(int offset)
5174 {
5175 	struct zoneref *z;
5176 	struct zone *zone;
5177 
5178 	/* Just pick one node, since fallback list is circular */
5179 	unsigned long sum = 0;
5180 
5181 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5182 
5183 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5184 		unsigned long size = zone_managed_pages(zone);
5185 		unsigned long high = high_wmark_pages(zone);
5186 		if (size > high)
5187 			sum += size - high;
5188 	}
5189 
5190 	return sum;
5191 }
5192 
5193 /**
5194  * nr_free_buffer_pages - count number of pages beyond high watermark
5195  *
5196  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5197  * watermark within ZONE_DMA and ZONE_NORMAL.
5198  *
5199  * Return: number of pages beyond high watermark within ZONE_DMA and
5200  * ZONE_NORMAL.
5201  */
nr_free_buffer_pages(void)5202 unsigned long nr_free_buffer_pages(void)
5203 {
5204 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5205 }
5206 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5207 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)5208 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5209 {
5210 	zoneref->zone = zone;
5211 	zoneref->zone_idx = zone_idx(zone);
5212 }
5213 
5214 /*
5215  * Builds allocation fallback zone lists.
5216  *
5217  * Add all populated zones of a node to the zonelist.
5218  */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5219 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5220 {
5221 	struct zone *zone;
5222 	enum zone_type zone_type = MAX_NR_ZONES;
5223 	int nr_zones = 0;
5224 
5225 	do {
5226 		zone_type--;
5227 		zone = pgdat->node_zones + zone_type;
5228 		if (populated_zone(zone)) {
5229 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5230 			check_highest_zone(zone_type);
5231 		}
5232 	} while (zone_type);
5233 
5234 	return nr_zones;
5235 }
5236 
5237 #ifdef CONFIG_NUMA
5238 
__parse_numa_zonelist_order(char * s)5239 static int __parse_numa_zonelist_order(char *s)
5240 {
5241 	/*
5242 	 * We used to support different zonelists modes but they turned
5243 	 * out to be just not useful. Let's keep the warning in place
5244 	 * if somebody still use the cmd line parameter so that we do
5245 	 * not fail it silently
5246 	 */
5247 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5248 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5249 		return -EINVAL;
5250 	}
5251 	return 0;
5252 }
5253 
5254 static char numa_zonelist_order[] = "Node";
5255 #define NUMA_ZONELIST_ORDER_LEN	16
5256 /*
5257  * sysctl handler for numa_zonelist_order
5258  */
numa_zonelist_order_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5259 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5260 		void *buffer, size_t *length, loff_t *ppos)
5261 {
5262 	if (write)
5263 		return __parse_numa_zonelist_order(buffer);
5264 	return proc_dostring(table, write, buffer, length, ppos);
5265 }
5266 
5267 static int node_load[MAX_NUMNODES];
5268 
5269 /**
5270  * find_next_best_node - find the next node that should appear in a given node's fallback list
5271  * @node: node whose fallback list we're appending
5272  * @used_node_mask: nodemask_t of already used nodes
5273  *
5274  * We use a number of factors to determine which is the next node that should
5275  * appear on a given node's fallback list.  The node should not have appeared
5276  * already in @node's fallback list, and it should be the next closest node
5277  * according to the distance array (which contains arbitrary distance values
5278  * from each node to each node in the system), and should also prefer nodes
5279  * with no CPUs, since presumably they'll have very little allocation pressure
5280  * on them otherwise.
5281  *
5282  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5283  */
find_next_best_node(int node,nodemask_t * used_node_mask)5284 int find_next_best_node(int node, nodemask_t *used_node_mask)
5285 {
5286 	int n, val;
5287 	int min_val = INT_MAX;
5288 	int best_node = NUMA_NO_NODE;
5289 
5290 	/*
5291 	 * Use the local node if we haven't already, but for memoryless local
5292 	 * node, we should skip it and fall back to other nodes.
5293 	 */
5294 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5295 		node_set(node, *used_node_mask);
5296 		return node;
5297 	}
5298 
5299 	for_each_node_state(n, N_MEMORY) {
5300 
5301 		/* Don't want a node to appear more than once */
5302 		if (node_isset(n, *used_node_mask))
5303 			continue;
5304 
5305 		/* Use the distance array to find the distance */
5306 		val = node_distance(node, n);
5307 
5308 		/* Penalize nodes under us ("prefer the next node") */
5309 		val += (n < node);
5310 
5311 		/* Give preference to headless and unused nodes */
5312 		if (!cpumask_empty(cpumask_of_node(n)))
5313 			val += PENALTY_FOR_NODE_WITH_CPUS;
5314 
5315 		/* Slight preference for less loaded node */
5316 		val *= MAX_NUMNODES;
5317 		val += node_load[n];
5318 
5319 		if (val < min_val) {
5320 			min_val = val;
5321 			best_node = n;
5322 		}
5323 	}
5324 
5325 	if (best_node >= 0)
5326 		node_set(best_node, *used_node_mask);
5327 
5328 	return best_node;
5329 }
5330 
5331 
5332 /*
5333  * Build zonelists ordered by node and zones within node.
5334  * This results in maximum locality--normal zone overflows into local
5335  * DMA zone, if any--but risks exhausting DMA zone.
5336  */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5337 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5338 		unsigned nr_nodes)
5339 {
5340 	struct zoneref *zonerefs;
5341 	int i;
5342 
5343 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5344 
5345 	for (i = 0; i < nr_nodes; i++) {
5346 		int nr_zones;
5347 
5348 		pg_data_t *node = NODE_DATA(node_order[i]);
5349 
5350 		nr_zones = build_zonerefs_node(node, zonerefs);
5351 		zonerefs += nr_zones;
5352 	}
5353 	zonerefs->zone = NULL;
5354 	zonerefs->zone_idx = 0;
5355 }
5356 
5357 /*
5358  * Build __GFP_THISNODE zonelists
5359  */
build_thisnode_zonelists(pg_data_t * pgdat)5360 static void build_thisnode_zonelists(pg_data_t *pgdat)
5361 {
5362 	struct zoneref *zonerefs;
5363 	int nr_zones;
5364 
5365 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5366 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5367 	zonerefs += nr_zones;
5368 	zonerefs->zone = NULL;
5369 	zonerefs->zone_idx = 0;
5370 }
5371 
build_zonelists(pg_data_t * pgdat)5372 static void build_zonelists(pg_data_t *pgdat)
5373 {
5374 	static int node_order[MAX_NUMNODES];
5375 	int node, nr_nodes = 0;
5376 	nodemask_t used_mask = NODE_MASK_NONE;
5377 	int local_node, prev_node;
5378 
5379 	/* NUMA-aware ordering of nodes */
5380 	local_node = pgdat->node_id;
5381 	prev_node = local_node;
5382 
5383 	memset(node_order, 0, sizeof(node_order));
5384 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5385 		/*
5386 		 * We don't want to pressure a particular node.
5387 		 * So adding penalty to the first node in same
5388 		 * distance group to make it round-robin.
5389 		 */
5390 		if (node_distance(local_node, node) !=
5391 		    node_distance(local_node, prev_node))
5392 			node_load[node] += 1;
5393 
5394 		node_order[nr_nodes++] = node;
5395 		prev_node = node;
5396 	}
5397 
5398 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5399 	build_thisnode_zonelists(pgdat);
5400 	pr_info("Fallback order for Node %d: ", local_node);
5401 	for (node = 0; node < nr_nodes; node++)
5402 		pr_cont("%d ", node_order[node]);
5403 	pr_cont("\n");
5404 }
5405 
5406 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5407 /*
5408  * Return node id of node used for "local" allocations.
5409  * I.e., first node id of first zone in arg node's generic zonelist.
5410  * Used for initializing percpu 'numa_mem', which is used primarily
5411  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5412  */
local_memory_node(int node)5413 int local_memory_node(int node)
5414 {
5415 	struct zoneref *z;
5416 
5417 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5418 				   gfp_zone(GFP_KERNEL),
5419 				   NULL);
5420 	return zonelist_node_idx(z);
5421 }
5422 #endif
5423 
5424 static void setup_min_unmapped_ratio(void);
5425 static void setup_min_slab_ratio(void);
5426 #else	/* CONFIG_NUMA */
5427 
build_zonelists(pg_data_t * pgdat)5428 static void build_zonelists(pg_data_t *pgdat)
5429 {
5430 	struct zoneref *zonerefs;
5431 	int nr_zones;
5432 
5433 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5434 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5435 	zonerefs += nr_zones;
5436 
5437 	zonerefs->zone = NULL;
5438 	zonerefs->zone_idx = 0;
5439 }
5440 
5441 #endif	/* CONFIG_NUMA */
5442 
5443 /*
5444  * Boot pageset table. One per cpu which is going to be used for all
5445  * zones and all nodes. The parameters will be set in such a way
5446  * that an item put on a list will immediately be handed over to
5447  * the buddy list. This is safe since pageset manipulation is done
5448  * with interrupts disabled.
5449  *
5450  * The boot_pagesets must be kept even after bootup is complete for
5451  * unused processors and/or zones. They do play a role for bootstrapping
5452  * hotplugged processors.
5453  *
5454  * zoneinfo_show() and maybe other functions do
5455  * not check if the processor is online before following the pageset pointer.
5456  * Other parts of the kernel may not check if the zone is available.
5457  */
5458 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5459 /* These effectively disable the pcplists in the boot pageset completely */
5460 #define BOOT_PAGESET_HIGH	0
5461 #define BOOT_PAGESET_BATCH	1
5462 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5463 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5464 
__build_all_zonelists(void * data)5465 static void __build_all_zonelists(void *data)
5466 {
5467 	int nid;
5468 	int __maybe_unused cpu;
5469 	pg_data_t *self = data;
5470 	unsigned long flags;
5471 
5472 	/*
5473 	 * The zonelist_update_seq must be acquired with irqsave because the
5474 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5475 	 */
5476 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5477 	/*
5478 	 * Also disable synchronous printk() to prevent any printk() from
5479 	 * trying to hold port->lock, for
5480 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5481 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5482 	 */
5483 	printk_deferred_enter();
5484 
5485 #ifdef CONFIG_NUMA
5486 	memset(node_load, 0, sizeof(node_load));
5487 #endif
5488 
5489 	/*
5490 	 * This node is hotadded and no memory is yet present.   So just
5491 	 * building zonelists is fine - no need to touch other nodes.
5492 	 */
5493 	if (self && !node_online(self->node_id)) {
5494 		build_zonelists(self);
5495 	} else {
5496 		/*
5497 		 * All possible nodes have pgdat preallocated
5498 		 * in free_area_init
5499 		 */
5500 		for_each_node(nid) {
5501 			pg_data_t *pgdat = NODE_DATA(nid);
5502 
5503 			build_zonelists(pgdat);
5504 		}
5505 
5506 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5507 		/*
5508 		 * We now know the "local memory node" for each node--
5509 		 * i.e., the node of the first zone in the generic zonelist.
5510 		 * Set up numa_mem percpu variable for on-line cpus.  During
5511 		 * boot, only the boot cpu should be on-line;  we'll init the
5512 		 * secondary cpus' numa_mem as they come on-line.  During
5513 		 * node/memory hotplug, we'll fixup all on-line cpus.
5514 		 */
5515 		for_each_online_cpu(cpu)
5516 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5517 #endif
5518 	}
5519 
5520 	printk_deferred_exit();
5521 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5522 }
5523 
5524 static noinline void __init
build_all_zonelists_init(void)5525 build_all_zonelists_init(void)
5526 {
5527 	int cpu;
5528 
5529 	__build_all_zonelists(NULL);
5530 
5531 	/*
5532 	 * Initialize the boot_pagesets that are going to be used
5533 	 * for bootstrapping processors. The real pagesets for
5534 	 * each zone will be allocated later when the per cpu
5535 	 * allocator is available.
5536 	 *
5537 	 * boot_pagesets are used also for bootstrapping offline
5538 	 * cpus if the system is already booted because the pagesets
5539 	 * are needed to initialize allocators on a specific cpu too.
5540 	 * F.e. the percpu allocator needs the page allocator which
5541 	 * needs the percpu allocator in order to allocate its pagesets
5542 	 * (a chicken-egg dilemma).
5543 	 */
5544 	for_each_possible_cpu(cpu)
5545 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5546 
5547 	mminit_verify_zonelist();
5548 	cpuset_init_current_mems_allowed();
5549 }
5550 
5551 /*
5552  * unless system_state == SYSTEM_BOOTING.
5553  *
5554  * __ref due to call of __init annotated helper build_all_zonelists_init
5555  * [protected by SYSTEM_BOOTING].
5556  */
build_all_zonelists(pg_data_t * pgdat)5557 void __ref build_all_zonelists(pg_data_t *pgdat)
5558 {
5559 	unsigned long vm_total_pages;
5560 
5561 	if (system_state == SYSTEM_BOOTING) {
5562 		build_all_zonelists_init();
5563 	} else {
5564 		__build_all_zonelists(pgdat);
5565 		/* cpuset refresh routine should be here */
5566 	}
5567 	/* Get the number of free pages beyond high watermark in all zones. */
5568 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5569 	/*
5570 	 * Disable grouping by mobility if the number of pages in the
5571 	 * system is too low to allow the mechanism to work. It would be
5572 	 * more accurate, but expensive to check per-zone. This check is
5573 	 * made on memory-hotadd so a system can start with mobility
5574 	 * disabled and enable it later
5575 	 */
5576 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5577 		page_group_by_mobility_disabled = 1;
5578 	else
5579 		page_group_by_mobility_disabled = 0;
5580 
5581 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5582 		nr_online_nodes,
5583 		str_off_on(page_group_by_mobility_disabled),
5584 		vm_total_pages);
5585 #ifdef CONFIG_NUMA
5586 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5587 #endif
5588 }
5589 
zone_batchsize(struct zone * zone)5590 static int zone_batchsize(struct zone *zone)
5591 {
5592 #ifdef CONFIG_MMU
5593 	int batch;
5594 
5595 	/*
5596 	 * The number of pages to batch allocate is either ~0.1%
5597 	 * of the zone or 1MB, whichever is smaller. The batch
5598 	 * size is striking a balance between allocation latency
5599 	 * and zone lock contention.
5600 	 */
5601 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5602 	batch /= 4;		/* We effectively *= 4 below */
5603 	if (batch < 1)
5604 		batch = 1;
5605 
5606 	/*
5607 	 * Clamp the batch to a 2^n - 1 value. Having a power
5608 	 * of 2 value was found to be more likely to have
5609 	 * suboptimal cache aliasing properties in some cases.
5610 	 *
5611 	 * For example if 2 tasks are alternately allocating
5612 	 * batches of pages, one task can end up with a lot
5613 	 * of pages of one half of the possible page colors
5614 	 * and the other with pages of the other colors.
5615 	 */
5616 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5617 
5618 	return batch;
5619 
5620 #else
5621 	/* The deferral and batching of frees should be suppressed under NOMMU
5622 	 * conditions.
5623 	 *
5624 	 * The problem is that NOMMU needs to be able to allocate large chunks
5625 	 * of contiguous memory as there's no hardware page translation to
5626 	 * assemble apparent contiguous memory from discontiguous pages.
5627 	 *
5628 	 * Queueing large contiguous runs of pages for batching, however,
5629 	 * causes the pages to actually be freed in smaller chunks.  As there
5630 	 * can be a significant delay between the individual batches being
5631 	 * recycled, this leads to the once large chunks of space being
5632 	 * fragmented and becoming unavailable for high-order allocations.
5633 	 */
5634 	return 0;
5635 #endif
5636 }
5637 
5638 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online,int high_fraction)5639 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5640 			 int high_fraction)
5641 {
5642 #ifdef CONFIG_MMU
5643 	int high;
5644 	int nr_split_cpus;
5645 	unsigned long total_pages;
5646 
5647 	if (!high_fraction) {
5648 		/*
5649 		 * By default, the high value of the pcp is based on the zone
5650 		 * low watermark so that if they are full then background
5651 		 * reclaim will not be started prematurely.
5652 		 */
5653 		total_pages = low_wmark_pages(zone);
5654 	} else {
5655 		/*
5656 		 * If percpu_pagelist_high_fraction is configured, the high
5657 		 * value is based on a fraction of the managed pages in the
5658 		 * zone.
5659 		 */
5660 		total_pages = zone_managed_pages(zone) / high_fraction;
5661 	}
5662 
5663 	/*
5664 	 * Split the high value across all online CPUs local to the zone. Note
5665 	 * that early in boot that CPUs may not be online yet and that during
5666 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5667 	 * onlined. For memory nodes that have no CPUs, split the high value
5668 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5669 	 * prematurely due to pages stored on pcp lists.
5670 	 */
5671 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5672 	if (!nr_split_cpus)
5673 		nr_split_cpus = num_online_cpus();
5674 	high = total_pages / nr_split_cpus;
5675 
5676 	/*
5677 	 * Ensure high is at least batch*4. The multiple is based on the
5678 	 * historical relationship between high and batch.
5679 	 */
5680 	high = max(high, batch << 2);
5681 
5682 	return high;
5683 #else
5684 	return 0;
5685 #endif
5686 }
5687 
5688 /*
5689  * pcp->high and pcp->batch values are related and generally batch is lower
5690  * than high. They are also related to pcp->count such that count is lower
5691  * than high, and as soon as it reaches high, the pcplist is flushed.
5692  *
5693  * However, guaranteeing these relations at all times would require e.g. write
5694  * barriers here but also careful usage of read barriers at the read side, and
5695  * thus be prone to error and bad for performance. Thus the update only prevents
5696  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5697  * should ensure they can cope with those fields changing asynchronously, and
5698  * fully trust only the pcp->count field on the local CPU with interrupts
5699  * disabled.
5700  *
5701  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5702  * outside of boot time (or some other assurance that no concurrent updaters
5703  * exist).
5704  */
pageset_update(struct per_cpu_pages * pcp,unsigned long high_min,unsigned long high_max,unsigned long batch)5705 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5706 			   unsigned long high_max, unsigned long batch)
5707 {
5708 	WRITE_ONCE(pcp->batch, batch);
5709 	WRITE_ONCE(pcp->high_min, high_min);
5710 	WRITE_ONCE(pcp->high_max, high_max);
5711 }
5712 
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5713 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5714 {
5715 	int pindex;
5716 
5717 	memset(pcp, 0, sizeof(*pcp));
5718 	memset(pzstats, 0, sizeof(*pzstats));
5719 
5720 	spin_lock_init(&pcp->lock);
5721 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5722 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5723 
5724 	/*
5725 	 * Set batch and high values safe for a boot pageset. A true percpu
5726 	 * pageset's initialization will update them subsequently. Here we don't
5727 	 * need to be as careful as pageset_update() as nobody can access the
5728 	 * pageset yet.
5729 	 */
5730 	pcp->high_min = BOOT_PAGESET_HIGH;
5731 	pcp->high_max = BOOT_PAGESET_HIGH;
5732 	pcp->batch = BOOT_PAGESET_BATCH;
5733 	pcp->free_count = 0;
5734 }
5735 
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high_min,unsigned long high_max,unsigned long batch)5736 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5737 					      unsigned long high_max, unsigned long batch)
5738 {
5739 	struct per_cpu_pages *pcp;
5740 	int cpu;
5741 
5742 	for_each_possible_cpu(cpu) {
5743 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5744 		pageset_update(pcp, high_min, high_max, batch);
5745 	}
5746 }
5747 
5748 /*
5749  * Calculate and set new high and batch values for all per-cpu pagesets of a
5750  * zone based on the zone's size.
5751  */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5752 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5753 {
5754 	int new_high_min, new_high_max, new_batch;
5755 
5756 	new_batch = max(1, zone_batchsize(zone));
5757 	if (percpu_pagelist_high_fraction) {
5758 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5759 					     percpu_pagelist_high_fraction);
5760 		/*
5761 		 * PCP high is tuned manually, disable auto-tuning via
5762 		 * setting high_min and high_max to the manual value.
5763 		 */
5764 		new_high_max = new_high_min;
5765 	} else {
5766 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5767 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5768 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5769 	}
5770 
5771 	if (zone->pageset_high_min == new_high_min &&
5772 	    zone->pageset_high_max == new_high_max &&
5773 	    zone->pageset_batch == new_batch)
5774 		return;
5775 
5776 	zone->pageset_high_min = new_high_min;
5777 	zone->pageset_high_max = new_high_max;
5778 	zone->pageset_batch = new_batch;
5779 
5780 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5781 					  new_batch);
5782 }
5783 
setup_zone_pageset(struct zone * zone)5784 void __meminit setup_zone_pageset(struct zone *zone)
5785 {
5786 	int cpu;
5787 
5788 	/* Size may be 0 on !SMP && !NUMA */
5789 	if (sizeof(struct per_cpu_zonestat) > 0)
5790 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5791 
5792 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5793 	for_each_possible_cpu(cpu) {
5794 		struct per_cpu_pages *pcp;
5795 		struct per_cpu_zonestat *pzstats;
5796 
5797 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5798 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5799 		per_cpu_pages_init(pcp, pzstats);
5800 	}
5801 
5802 	zone_set_pageset_high_and_batch(zone, 0);
5803 }
5804 
5805 /*
5806  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5807  * page high values need to be recalculated.
5808  */
zone_pcp_update(struct zone * zone,int cpu_online)5809 static void zone_pcp_update(struct zone *zone, int cpu_online)
5810 {
5811 	mutex_lock(&pcp_batch_high_lock);
5812 	zone_set_pageset_high_and_batch(zone, cpu_online);
5813 	mutex_unlock(&pcp_batch_high_lock);
5814 }
5815 
zone_pcp_update_cacheinfo(struct zone * zone,unsigned int cpu)5816 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5817 {
5818 	struct per_cpu_pages *pcp;
5819 	struct cpu_cacheinfo *cci;
5820 
5821 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5822 	cci = get_cpu_cacheinfo(cpu);
5823 	/*
5824 	 * If data cache slice of CPU is large enough, "pcp->batch"
5825 	 * pages can be preserved in PCP before draining PCP for
5826 	 * consecutive high-order pages freeing without allocation.
5827 	 * This can reduce zone lock contention without hurting
5828 	 * cache-hot pages sharing.
5829 	 */
5830 	spin_lock(&pcp->lock);
5831 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5832 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5833 	else
5834 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5835 	spin_unlock(&pcp->lock);
5836 }
5837 
setup_pcp_cacheinfo(unsigned int cpu)5838 void setup_pcp_cacheinfo(unsigned int cpu)
5839 {
5840 	struct zone *zone;
5841 
5842 	for_each_populated_zone(zone)
5843 		zone_pcp_update_cacheinfo(zone, cpu);
5844 }
5845 
5846 /*
5847  * Allocate per cpu pagesets and initialize them.
5848  * Before this call only boot pagesets were available.
5849  */
setup_per_cpu_pageset(void)5850 void __init setup_per_cpu_pageset(void)
5851 {
5852 	struct pglist_data *pgdat;
5853 	struct zone *zone;
5854 	int __maybe_unused cpu;
5855 
5856 	for_each_populated_zone(zone)
5857 		setup_zone_pageset(zone);
5858 
5859 #ifdef CONFIG_NUMA
5860 	/*
5861 	 * Unpopulated zones continue using the boot pagesets.
5862 	 * The numa stats for these pagesets need to be reset.
5863 	 * Otherwise, they will end up skewing the stats of
5864 	 * the nodes these zones are associated with.
5865 	 */
5866 	for_each_possible_cpu(cpu) {
5867 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5868 		memset(pzstats->vm_numa_event, 0,
5869 		       sizeof(pzstats->vm_numa_event));
5870 	}
5871 #endif
5872 
5873 	for_each_online_pgdat(pgdat)
5874 		pgdat->per_cpu_nodestats =
5875 			alloc_percpu(struct per_cpu_nodestat);
5876 }
5877 
zone_pcp_init(struct zone * zone)5878 __meminit void zone_pcp_init(struct zone *zone)
5879 {
5880 	/*
5881 	 * per cpu subsystem is not up at this point. The following code
5882 	 * relies on the ability of the linker to provide the
5883 	 * offset of a (static) per cpu variable into the per cpu area.
5884 	 */
5885 	zone->per_cpu_pageset = &boot_pageset;
5886 	zone->per_cpu_zonestats = &boot_zonestats;
5887 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5888 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5889 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5890 
5891 	if (populated_zone(zone))
5892 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5893 			 zone->present_pages, zone_batchsize(zone));
5894 }
5895 
5896 static void setup_per_zone_lowmem_reserve(void);
5897 
adjust_managed_page_count(struct page * page,long count)5898 void adjust_managed_page_count(struct page *page, long count)
5899 {
5900 	atomic_long_add(count, &page_zone(page)->managed_pages);
5901 	totalram_pages_add(count);
5902 	setup_per_zone_lowmem_reserve();
5903 }
5904 EXPORT_SYMBOL(adjust_managed_page_count);
5905 
free_reserved_area(void * start,void * end,int poison,const char * s)5906 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5907 {
5908 	void *pos;
5909 	unsigned long pages = 0;
5910 
5911 	start = (void *)PAGE_ALIGN((unsigned long)start);
5912 	end = (void *)((unsigned long)end & PAGE_MASK);
5913 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5914 		struct page *page = virt_to_page(pos);
5915 		void *direct_map_addr;
5916 
5917 		/*
5918 		 * 'direct_map_addr' might be different from 'pos'
5919 		 * because some architectures' virt_to_page()
5920 		 * work with aliases.  Getting the direct map
5921 		 * address ensures that we get a _writeable_
5922 		 * alias for the memset().
5923 		 */
5924 		direct_map_addr = page_address(page);
5925 		/*
5926 		 * Perform a kasan-unchecked memset() since this memory
5927 		 * has not been initialized.
5928 		 */
5929 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5930 		if ((unsigned int)poison <= 0xFF)
5931 			memset(direct_map_addr, poison, PAGE_SIZE);
5932 
5933 		free_reserved_page(page);
5934 	}
5935 
5936 	if (pages && s)
5937 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5938 
5939 	return pages;
5940 }
5941 
free_reserved_page(struct page * page)5942 void free_reserved_page(struct page *page)
5943 {
5944 	clear_page_tag_ref(page);
5945 	ClearPageReserved(page);
5946 	init_page_count(page);
5947 	__free_page(page);
5948 	adjust_managed_page_count(page, 1);
5949 }
5950 EXPORT_SYMBOL(free_reserved_page);
5951 
page_alloc_cpu_dead(unsigned int cpu)5952 static int page_alloc_cpu_dead(unsigned int cpu)
5953 {
5954 	struct zone *zone;
5955 
5956 	lru_add_drain_cpu(cpu);
5957 	mlock_drain_remote(cpu);
5958 	drain_pages(cpu);
5959 
5960 	/*
5961 	 * Spill the event counters of the dead processor
5962 	 * into the current processors event counters.
5963 	 * This artificially elevates the count of the current
5964 	 * processor.
5965 	 */
5966 	vm_events_fold_cpu(cpu);
5967 
5968 	/*
5969 	 * Zero the differential counters of the dead processor
5970 	 * so that the vm statistics are consistent.
5971 	 *
5972 	 * This is only okay since the processor is dead and cannot
5973 	 * race with what we are doing.
5974 	 */
5975 	cpu_vm_stats_fold(cpu);
5976 
5977 	for_each_populated_zone(zone)
5978 		zone_pcp_update(zone, 0);
5979 
5980 	return 0;
5981 }
5982 
page_alloc_cpu_online(unsigned int cpu)5983 static int page_alloc_cpu_online(unsigned int cpu)
5984 {
5985 	struct zone *zone;
5986 
5987 	for_each_populated_zone(zone)
5988 		zone_pcp_update(zone, 1);
5989 	return 0;
5990 }
5991 
page_alloc_init_cpuhp(void)5992 void __init page_alloc_init_cpuhp(void)
5993 {
5994 	int ret;
5995 
5996 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5997 					"mm/page_alloc:pcp",
5998 					page_alloc_cpu_online,
5999 					page_alloc_cpu_dead);
6000 	WARN_ON(ret < 0);
6001 }
6002 
6003 /*
6004  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6005  *	or min_free_kbytes changes.
6006  */
calculate_totalreserve_pages(void)6007 static void calculate_totalreserve_pages(void)
6008 {
6009 	struct pglist_data *pgdat;
6010 	unsigned long reserve_pages = 0;
6011 	enum zone_type i, j;
6012 
6013 	for_each_online_pgdat(pgdat) {
6014 
6015 		pgdat->totalreserve_pages = 0;
6016 
6017 		for (i = 0; i < MAX_NR_ZONES; i++) {
6018 			struct zone *zone = pgdat->node_zones + i;
6019 			long max = 0;
6020 			unsigned long managed_pages = zone_managed_pages(zone);
6021 
6022 			/* Find valid and maximum lowmem_reserve in the zone */
6023 			for (j = i; j < MAX_NR_ZONES; j++) {
6024 				if (zone->lowmem_reserve[j] > max)
6025 					max = zone->lowmem_reserve[j];
6026 			}
6027 
6028 			/* we treat the high watermark as reserved pages. */
6029 			max += high_wmark_pages(zone);
6030 
6031 			if (max > managed_pages)
6032 				max = managed_pages;
6033 
6034 			pgdat->totalreserve_pages += max;
6035 
6036 			reserve_pages += max;
6037 		}
6038 	}
6039 	totalreserve_pages = reserve_pages;
6040 	trace_mm_calculate_totalreserve_pages(totalreserve_pages);
6041 }
6042 
6043 /*
6044  * setup_per_zone_lowmem_reserve - called whenever
6045  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6046  *	has a correct pages reserved value, so an adequate number of
6047  *	pages are left in the zone after a successful __alloc_pages().
6048  */
setup_per_zone_lowmem_reserve(void)6049 static void setup_per_zone_lowmem_reserve(void)
6050 {
6051 	struct pglist_data *pgdat;
6052 	enum zone_type i, j;
6053 
6054 	for_each_online_pgdat(pgdat) {
6055 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
6056 			struct zone *zone = &pgdat->node_zones[i];
6057 			int ratio = sysctl_lowmem_reserve_ratio[i];
6058 			bool clear = !ratio || !zone_managed_pages(zone);
6059 			unsigned long managed_pages = 0;
6060 
6061 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
6062 				struct zone *upper_zone = &pgdat->node_zones[j];
6063 
6064 				managed_pages += zone_managed_pages(upper_zone);
6065 
6066 				if (clear)
6067 					zone->lowmem_reserve[j] = 0;
6068 				else
6069 					zone->lowmem_reserve[j] = managed_pages / ratio;
6070 				trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone,
6071 								       zone->lowmem_reserve[j]);
6072 			}
6073 		}
6074 	}
6075 
6076 	/* update totalreserve_pages */
6077 	calculate_totalreserve_pages();
6078 }
6079 
__setup_per_zone_wmarks(void)6080 static void __setup_per_zone_wmarks(void)
6081 {
6082 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6083 	unsigned long lowmem_pages = 0;
6084 	struct zone *zone;
6085 	unsigned long flags;
6086 
6087 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
6088 	for_each_zone(zone) {
6089 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
6090 			lowmem_pages += zone_managed_pages(zone);
6091 	}
6092 
6093 	for_each_zone(zone) {
6094 		u64 tmp;
6095 
6096 		spin_lock_irqsave(&zone->lock, flags);
6097 		tmp = (u64)pages_min * zone_managed_pages(zone);
6098 		tmp = div64_ul(tmp, lowmem_pages);
6099 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
6100 			/*
6101 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6102 			 * need highmem and movable zones pages, so cap pages_min
6103 			 * to a small  value here.
6104 			 *
6105 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6106 			 * deltas control async page reclaim, and so should
6107 			 * not be capped for highmem and movable zones.
6108 			 */
6109 			unsigned long min_pages;
6110 
6111 			min_pages = zone_managed_pages(zone) / 1024;
6112 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6113 			zone->_watermark[WMARK_MIN] = min_pages;
6114 		} else {
6115 			/*
6116 			 * If it's a lowmem zone, reserve a number of pages
6117 			 * proportionate to the zone's size.
6118 			 */
6119 			zone->_watermark[WMARK_MIN] = tmp;
6120 		}
6121 
6122 		/*
6123 		 * Set the kswapd watermarks distance according to the
6124 		 * scale factor in proportion to available memory, but
6125 		 * ensure a minimum size on small systems.
6126 		 */
6127 		tmp = max_t(u64, tmp >> 2,
6128 			    mult_frac(zone_managed_pages(zone),
6129 				      watermark_scale_factor, 10000));
6130 
6131 		zone->watermark_boost = 0;
6132 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6133 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6134 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6135 		trace_mm_setup_per_zone_wmarks(zone);
6136 
6137 		spin_unlock_irqrestore(&zone->lock, flags);
6138 	}
6139 
6140 	/* update totalreserve_pages */
6141 	calculate_totalreserve_pages();
6142 }
6143 
6144 /**
6145  * setup_per_zone_wmarks - called when min_free_kbytes changes
6146  * or when memory is hot-{added|removed}
6147  *
6148  * Ensures that the watermark[min,low,high] values for each zone are set
6149  * correctly with respect to min_free_kbytes.
6150  */
setup_per_zone_wmarks(void)6151 void setup_per_zone_wmarks(void)
6152 {
6153 	struct zone *zone;
6154 	static DEFINE_SPINLOCK(lock);
6155 
6156 	spin_lock(&lock);
6157 	__setup_per_zone_wmarks();
6158 	spin_unlock(&lock);
6159 
6160 	/*
6161 	 * The watermark size have changed so update the pcpu batch
6162 	 * and high limits or the limits may be inappropriate.
6163 	 */
6164 	for_each_zone(zone)
6165 		zone_pcp_update(zone, 0);
6166 }
6167 
6168 /*
6169  * Initialise min_free_kbytes.
6170  *
6171  * For small machines we want it small (128k min).  For large machines
6172  * we want it large (256MB max).  But it is not linear, because network
6173  * bandwidth does not increase linearly with machine size.  We use
6174  *
6175  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6176  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6177  *
6178  * which yields
6179  *
6180  * 16MB:	512k
6181  * 32MB:	724k
6182  * 64MB:	1024k
6183  * 128MB:	1448k
6184  * 256MB:	2048k
6185  * 512MB:	2896k
6186  * 1024MB:	4096k
6187  * 2048MB:	5792k
6188  * 4096MB:	8192k
6189  * 8192MB:	11584k
6190  * 16384MB:	16384k
6191  */
calculate_min_free_kbytes(void)6192 void calculate_min_free_kbytes(void)
6193 {
6194 	unsigned long lowmem_kbytes;
6195 	int new_min_free_kbytes;
6196 
6197 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6198 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6199 
6200 	if (new_min_free_kbytes > user_min_free_kbytes)
6201 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6202 	else
6203 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6204 				new_min_free_kbytes, user_min_free_kbytes);
6205 
6206 }
6207 
init_per_zone_wmark_min(void)6208 int __meminit init_per_zone_wmark_min(void)
6209 {
6210 	calculate_min_free_kbytes();
6211 	setup_per_zone_wmarks();
6212 	refresh_zone_stat_thresholds();
6213 	setup_per_zone_lowmem_reserve();
6214 
6215 #ifdef CONFIG_NUMA
6216 	setup_min_unmapped_ratio();
6217 	setup_min_slab_ratio();
6218 #endif
6219 
6220 	khugepaged_min_free_kbytes_update();
6221 
6222 	return 0;
6223 }
postcore_initcall(init_per_zone_wmark_min)6224 postcore_initcall(init_per_zone_wmark_min)
6225 
6226 /*
6227  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6228  *	that we can call two helper functions whenever min_free_kbytes
6229  *	changes.
6230  */
6231 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6232 		void *buffer, size_t *length, loff_t *ppos)
6233 {
6234 	int rc;
6235 
6236 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6237 	if (rc)
6238 		return rc;
6239 
6240 	if (write) {
6241 		user_min_free_kbytes = min_free_kbytes;
6242 		setup_per_zone_wmarks();
6243 	}
6244 	return 0;
6245 }
6246 
watermark_scale_factor_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6247 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6248 		void *buffer, size_t *length, loff_t *ppos)
6249 {
6250 	int rc;
6251 
6252 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6253 	if (rc)
6254 		return rc;
6255 
6256 	if (write)
6257 		setup_per_zone_wmarks();
6258 
6259 	return 0;
6260 }
6261 
6262 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)6263 static void setup_min_unmapped_ratio(void)
6264 {
6265 	pg_data_t *pgdat;
6266 	struct zone *zone;
6267 
6268 	for_each_online_pgdat(pgdat)
6269 		pgdat->min_unmapped_pages = 0;
6270 
6271 	for_each_zone(zone)
6272 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6273 						         sysctl_min_unmapped_ratio) / 100;
6274 }
6275 
6276 
sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6277 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6278 		void *buffer, size_t *length, loff_t *ppos)
6279 {
6280 	int rc;
6281 
6282 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6283 	if (rc)
6284 		return rc;
6285 
6286 	setup_min_unmapped_ratio();
6287 
6288 	return 0;
6289 }
6290 
setup_min_slab_ratio(void)6291 static void setup_min_slab_ratio(void)
6292 {
6293 	pg_data_t *pgdat;
6294 	struct zone *zone;
6295 
6296 	for_each_online_pgdat(pgdat)
6297 		pgdat->min_slab_pages = 0;
6298 
6299 	for_each_zone(zone)
6300 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6301 						     sysctl_min_slab_ratio) / 100;
6302 }
6303 
sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6304 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6305 		void *buffer, size_t *length, loff_t *ppos)
6306 {
6307 	int rc;
6308 
6309 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6310 	if (rc)
6311 		return rc;
6312 
6313 	setup_min_slab_ratio();
6314 
6315 	return 0;
6316 }
6317 #endif
6318 
6319 /*
6320  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6321  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6322  *	whenever sysctl_lowmem_reserve_ratio changes.
6323  *
6324  * The reserve ratio obviously has absolutely no relation with the
6325  * minimum watermarks. The lowmem reserve ratio can only make sense
6326  * if in function of the boot time zone sizes.
6327  */
lowmem_reserve_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6328 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6329 		int write, void *buffer, size_t *length, loff_t *ppos)
6330 {
6331 	int i;
6332 
6333 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6334 
6335 	for (i = 0; i < MAX_NR_ZONES; i++) {
6336 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6337 			sysctl_lowmem_reserve_ratio[i] = 0;
6338 	}
6339 
6340 	setup_per_zone_lowmem_reserve();
6341 	return 0;
6342 }
6343 
6344 /*
6345  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6346  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6347  * pagelist can have before it gets flushed back to buddy allocator.
6348  */
percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6349 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6350 		int write, void *buffer, size_t *length, loff_t *ppos)
6351 {
6352 	struct zone *zone;
6353 	int old_percpu_pagelist_high_fraction;
6354 	int ret;
6355 
6356 	mutex_lock(&pcp_batch_high_lock);
6357 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6358 
6359 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6360 	if (!write || ret < 0)
6361 		goto out;
6362 
6363 	/* Sanity checking to avoid pcp imbalance */
6364 	if (percpu_pagelist_high_fraction &&
6365 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6366 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6367 		ret = -EINVAL;
6368 		goto out;
6369 	}
6370 
6371 	/* No change? */
6372 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6373 		goto out;
6374 
6375 	for_each_populated_zone(zone)
6376 		zone_set_pageset_high_and_batch(zone, 0);
6377 out:
6378 	mutex_unlock(&pcp_batch_high_lock);
6379 	return ret;
6380 }
6381 
6382 static const struct ctl_table page_alloc_sysctl_table[] = {
6383 	{
6384 		.procname	= "min_free_kbytes",
6385 		.data		= &min_free_kbytes,
6386 		.maxlen		= sizeof(min_free_kbytes),
6387 		.mode		= 0644,
6388 		.proc_handler	= min_free_kbytes_sysctl_handler,
6389 		.extra1		= SYSCTL_ZERO,
6390 	},
6391 	{
6392 		.procname	= "watermark_boost_factor",
6393 		.data		= &watermark_boost_factor,
6394 		.maxlen		= sizeof(watermark_boost_factor),
6395 		.mode		= 0644,
6396 		.proc_handler	= proc_dointvec_minmax,
6397 		.extra1		= SYSCTL_ZERO,
6398 	},
6399 	{
6400 		.procname	= "watermark_scale_factor",
6401 		.data		= &watermark_scale_factor,
6402 		.maxlen		= sizeof(watermark_scale_factor),
6403 		.mode		= 0644,
6404 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6405 		.extra1		= SYSCTL_ONE,
6406 		.extra2		= SYSCTL_THREE_THOUSAND,
6407 	},
6408 	{
6409 		.procname	= "defrag_mode",
6410 		.data		= &defrag_mode,
6411 		.maxlen		= sizeof(defrag_mode),
6412 		.mode		= 0644,
6413 		.proc_handler	= proc_dointvec_minmax,
6414 		.extra1		= SYSCTL_ZERO,
6415 		.extra2		= SYSCTL_ONE,
6416 	},
6417 	{
6418 		.procname	= "percpu_pagelist_high_fraction",
6419 		.data		= &percpu_pagelist_high_fraction,
6420 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6421 		.mode		= 0644,
6422 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6423 		.extra1		= SYSCTL_ZERO,
6424 	},
6425 	{
6426 		.procname	= "lowmem_reserve_ratio",
6427 		.data		= &sysctl_lowmem_reserve_ratio,
6428 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6429 		.mode		= 0644,
6430 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6431 	},
6432 #ifdef CONFIG_NUMA
6433 	{
6434 		.procname	= "numa_zonelist_order",
6435 		.data		= &numa_zonelist_order,
6436 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6437 		.mode		= 0644,
6438 		.proc_handler	= numa_zonelist_order_handler,
6439 	},
6440 	{
6441 		.procname	= "min_unmapped_ratio",
6442 		.data		= &sysctl_min_unmapped_ratio,
6443 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6444 		.mode		= 0644,
6445 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6446 		.extra1		= SYSCTL_ZERO,
6447 		.extra2		= SYSCTL_ONE_HUNDRED,
6448 	},
6449 	{
6450 		.procname	= "min_slab_ratio",
6451 		.data		= &sysctl_min_slab_ratio,
6452 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6453 		.mode		= 0644,
6454 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6455 		.extra1		= SYSCTL_ZERO,
6456 		.extra2		= SYSCTL_ONE_HUNDRED,
6457 	},
6458 #endif
6459 };
6460 
page_alloc_sysctl_init(void)6461 void __init page_alloc_sysctl_init(void)
6462 {
6463 	register_sysctl_init("vm", page_alloc_sysctl_table);
6464 }
6465 
6466 #ifdef CONFIG_CONTIG_ALLOC
6467 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6468 static void alloc_contig_dump_pages(struct list_head *page_list)
6469 {
6470 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6471 
6472 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6473 		struct page *page;
6474 
6475 		dump_stack();
6476 		list_for_each_entry(page, page_list, lru)
6477 			dump_page(page, "migration failure");
6478 	}
6479 }
6480 
6481 /*
6482  * [start, end) must belong to a single zone.
6483  * @migratetype: using migratetype to filter the type of migration in
6484  *		trace_mm_alloc_contig_migrate_range_info.
6485  */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end,int migratetype)6486 static int __alloc_contig_migrate_range(struct compact_control *cc,
6487 		unsigned long start, unsigned long end, int migratetype)
6488 {
6489 	/* This function is based on compact_zone() from compaction.c. */
6490 	unsigned int nr_reclaimed;
6491 	unsigned long pfn = start;
6492 	unsigned int tries = 0;
6493 	int ret = 0;
6494 	struct migration_target_control mtc = {
6495 		.nid = zone_to_nid(cc->zone),
6496 		.gfp_mask = cc->gfp_mask,
6497 		.reason = MR_CONTIG_RANGE,
6498 	};
6499 	struct page *page;
6500 	unsigned long total_mapped = 0;
6501 	unsigned long total_migrated = 0;
6502 	unsigned long total_reclaimed = 0;
6503 
6504 	lru_cache_disable();
6505 
6506 	while (pfn < end || !list_empty(&cc->migratepages)) {
6507 		if (fatal_signal_pending(current)) {
6508 			ret = -EINTR;
6509 			break;
6510 		}
6511 
6512 		if (list_empty(&cc->migratepages)) {
6513 			cc->nr_migratepages = 0;
6514 			ret = isolate_migratepages_range(cc, pfn, end);
6515 			if (ret && ret != -EAGAIN)
6516 				break;
6517 			pfn = cc->migrate_pfn;
6518 			tries = 0;
6519 		} else if (++tries == 5) {
6520 			ret = -EBUSY;
6521 			break;
6522 		}
6523 
6524 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6525 							&cc->migratepages);
6526 		cc->nr_migratepages -= nr_reclaimed;
6527 
6528 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6529 			total_reclaimed += nr_reclaimed;
6530 			list_for_each_entry(page, &cc->migratepages, lru) {
6531 				struct folio *folio = page_folio(page);
6532 
6533 				total_mapped += folio_mapped(folio) *
6534 						folio_nr_pages(folio);
6535 			}
6536 		}
6537 
6538 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6539 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6540 
6541 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6542 			total_migrated += cc->nr_migratepages;
6543 
6544 		/*
6545 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6546 		 * to retry again over this error, so do the same here.
6547 		 */
6548 		if (ret == -ENOMEM)
6549 			break;
6550 	}
6551 
6552 	lru_cache_enable();
6553 	if (ret < 0) {
6554 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6555 			alloc_contig_dump_pages(&cc->migratepages);
6556 		putback_movable_pages(&cc->migratepages);
6557 	}
6558 
6559 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6560 						 total_migrated,
6561 						 total_reclaimed,
6562 						 total_mapped);
6563 	return (ret < 0) ? ret : 0;
6564 }
6565 
split_free_pages(struct list_head * list,gfp_t gfp_mask)6566 static void split_free_pages(struct list_head *list, gfp_t gfp_mask)
6567 {
6568 	int order;
6569 
6570 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6571 		struct page *page, *next;
6572 		int nr_pages = 1 << order;
6573 
6574 		list_for_each_entry_safe(page, next, &list[order], lru) {
6575 			int i;
6576 
6577 			post_alloc_hook(page, order, gfp_mask);
6578 			set_page_refcounted(page);
6579 			if (!order)
6580 				continue;
6581 
6582 			split_page(page, order);
6583 
6584 			/* Add all subpages to the order-0 head, in sequence. */
6585 			list_del(&page->lru);
6586 			for (i = 0; i < nr_pages; i++)
6587 				list_add_tail(&page[i].lru, &list[0]);
6588 		}
6589 	}
6590 }
6591 
__alloc_contig_verify_gfp_mask(gfp_t gfp_mask,gfp_t * gfp_cc_mask)6592 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask)
6593 {
6594 	const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
6595 	const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
6596 				  __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO;
6597 	const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
6598 
6599 	/*
6600 	 * We are given the range to allocate; node, mobility and placement
6601 	 * hints are irrelevant at this point. We'll simply ignore them.
6602 	 */
6603 	gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE |
6604 		      __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE);
6605 
6606 	/*
6607 	 * We only support most reclaim flags (but not NOFAIL/NORETRY), and
6608 	 * selected action flags.
6609 	 */
6610 	if (gfp_mask & ~(reclaim_mask | action_mask))
6611 		return -EINVAL;
6612 
6613 	/*
6614 	 * Flags to control page compaction/migration/reclaim, to free up our
6615 	 * page range. Migratable pages are movable, __GFP_MOVABLE is implied
6616 	 * for them.
6617 	 *
6618 	 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that
6619 	 * to not degrade callers.
6620 	 */
6621 	*gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) |
6622 			__GFP_MOVABLE | __GFP_RETRY_MAYFAIL;
6623 	return 0;
6624 }
6625 
6626 /**
6627  * alloc_contig_range() -- tries to allocate given range of pages
6628  * @start:	start PFN to allocate
6629  * @end:	one-past-the-last PFN to allocate
6630  * @migratetype:	migratetype of the underlying pageblocks (either
6631  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6632  *			in range must have the same migratetype and it must
6633  *			be either of the two.
6634  * @gfp_mask:	GFP mask. Node/zone/placement hints are ignored; only some
6635  *		action and reclaim modifiers are supported. Reclaim modifiers
6636  *		control allocation behavior during compaction/migration/reclaim.
6637  *
6638  * The PFN range does not have to be pageblock aligned. The PFN range must
6639  * belong to a single zone.
6640  *
6641  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6642  * pageblocks in the range.  Once isolated, the pageblocks should not
6643  * be modified by others.
6644  *
6645  * Return: zero on success or negative error code.  On success all
6646  * pages which PFN is in [start, end) are allocated for the caller and
6647  * need to be freed with free_contig_range().
6648  */
alloc_contig_range_noprof(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)6649 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6650 		       unsigned migratetype, gfp_t gfp_mask)
6651 {
6652 	unsigned long outer_start, outer_end;
6653 	int ret = 0;
6654 
6655 	struct compact_control cc = {
6656 		.nr_migratepages = 0,
6657 		.order = -1,
6658 		.zone = page_zone(pfn_to_page(start)),
6659 		.mode = MIGRATE_SYNC,
6660 		.ignore_skip_hint = true,
6661 		.no_set_skip_hint = true,
6662 		.alloc_contig = true,
6663 	};
6664 	INIT_LIST_HEAD(&cc.migratepages);
6665 
6666 	gfp_mask = current_gfp_context(gfp_mask);
6667 	if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask))
6668 		return -EINVAL;
6669 
6670 	/*
6671 	 * What we do here is we mark all pageblocks in range as
6672 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6673 	 * have different sizes, and due to the way page allocator
6674 	 * work, start_isolate_page_range() has special handlings for this.
6675 	 *
6676 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6677 	 * migrate the pages from an unaligned range (ie. pages that
6678 	 * we are interested in). This will put all the pages in
6679 	 * range back to page allocator as MIGRATE_ISOLATE.
6680 	 *
6681 	 * When this is done, we take the pages in range from page
6682 	 * allocator removing them from the buddy system.  This way
6683 	 * page allocator will never consider using them.
6684 	 *
6685 	 * This lets us mark the pageblocks back as
6686 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6687 	 * aligned range but not in the unaligned, original range are
6688 	 * put back to page allocator so that buddy can use them.
6689 	 */
6690 
6691 	ret = start_isolate_page_range(start, end, migratetype, 0);
6692 	if (ret)
6693 		goto done;
6694 
6695 	drain_all_pages(cc.zone);
6696 
6697 	/*
6698 	 * In case of -EBUSY, we'd like to know which page causes problem.
6699 	 * So, just fall through. test_pages_isolated() has a tracepoint
6700 	 * which will report the busy page.
6701 	 *
6702 	 * It is possible that busy pages could become available before
6703 	 * the call to test_pages_isolated, and the range will actually be
6704 	 * allocated.  So, if we fall through be sure to clear ret so that
6705 	 * -EBUSY is not accidentally used or returned to caller.
6706 	 */
6707 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6708 	if (ret && ret != -EBUSY)
6709 		goto done;
6710 
6711 	/*
6712 	 * When in-use hugetlb pages are migrated, they may simply be released
6713 	 * back into the free hugepage pool instead of being returned to the
6714 	 * buddy system.  After the migration of in-use huge pages is completed,
6715 	 * we will invoke replace_free_hugepage_folios() to ensure that these
6716 	 * hugepages are properly released to the buddy system.
6717 	 */
6718 	ret = replace_free_hugepage_folios(start, end);
6719 	if (ret)
6720 		goto done;
6721 
6722 	/*
6723 	 * Pages from [start, end) are within a pageblock_nr_pages
6724 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6725 	 * more, all pages in [start, end) are free in page allocator.
6726 	 * What we are going to do is to allocate all pages from
6727 	 * [start, end) (that is remove them from page allocator).
6728 	 *
6729 	 * The only problem is that pages at the beginning and at the
6730 	 * end of interesting range may be not aligned with pages that
6731 	 * page allocator holds, ie. they can be part of higher order
6732 	 * pages.  Because of this, we reserve the bigger range and
6733 	 * once this is done free the pages we are not interested in.
6734 	 *
6735 	 * We don't have to hold zone->lock here because the pages are
6736 	 * isolated thus they won't get removed from buddy.
6737 	 */
6738 	outer_start = find_large_buddy(start);
6739 
6740 	/* Make sure the range is really isolated. */
6741 	if (test_pages_isolated(outer_start, end, 0)) {
6742 		ret = -EBUSY;
6743 		goto done;
6744 	}
6745 
6746 	/* Grab isolated pages from freelists. */
6747 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6748 	if (!outer_end) {
6749 		ret = -EBUSY;
6750 		goto done;
6751 	}
6752 
6753 	if (!(gfp_mask & __GFP_COMP)) {
6754 		split_free_pages(cc.freepages, gfp_mask);
6755 
6756 		/* Free head and tail (if any) */
6757 		if (start != outer_start)
6758 			free_contig_range(outer_start, start - outer_start);
6759 		if (end != outer_end)
6760 			free_contig_range(end, outer_end - end);
6761 	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6762 		struct page *head = pfn_to_page(start);
6763 		int order = ilog2(end - start);
6764 
6765 		check_new_pages(head, order);
6766 		prep_new_page(head, order, gfp_mask, 0);
6767 		set_page_refcounted(head);
6768 	} else {
6769 		ret = -EINVAL;
6770 		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6771 		     start, end, outer_start, outer_end);
6772 	}
6773 done:
6774 	undo_isolate_page_range(start, end, migratetype);
6775 	return ret;
6776 }
6777 EXPORT_SYMBOL(alloc_contig_range_noprof);
6778 
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6779 static int __alloc_contig_pages(unsigned long start_pfn,
6780 				unsigned long nr_pages, gfp_t gfp_mask)
6781 {
6782 	unsigned long end_pfn = start_pfn + nr_pages;
6783 
6784 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6785 				   gfp_mask);
6786 }
6787 
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6788 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6789 				   unsigned long nr_pages)
6790 {
6791 	unsigned long i, end_pfn = start_pfn + nr_pages;
6792 	struct page *page;
6793 
6794 	for (i = start_pfn; i < end_pfn; i++) {
6795 		page = pfn_to_online_page(i);
6796 		if (!page)
6797 			return false;
6798 
6799 		if (page_zone(page) != z)
6800 			return false;
6801 
6802 		if (PageReserved(page))
6803 			return false;
6804 
6805 		if (PageHuge(page))
6806 			return false;
6807 	}
6808 	return true;
6809 }
6810 
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)6811 static bool zone_spans_last_pfn(const struct zone *zone,
6812 				unsigned long start_pfn, unsigned long nr_pages)
6813 {
6814 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6815 
6816 	return zone_spans_pfn(zone, last_pfn);
6817 }
6818 
6819 /**
6820  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6821  * @nr_pages:	Number of contiguous pages to allocate
6822  * @gfp_mask:	GFP mask. Node/zone/placement hints limit the search; only some
6823  *		action and reclaim modifiers are supported. Reclaim modifiers
6824  *		control allocation behavior during compaction/migration/reclaim.
6825  * @nid:	Target node
6826  * @nodemask:	Mask for other possible nodes
6827  *
6828  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6829  * on an applicable zonelist to find a contiguous pfn range which can then be
6830  * tried for allocation with alloc_contig_range(). This routine is intended
6831  * for allocation requests which can not be fulfilled with the buddy allocator.
6832  *
6833  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6834  * power of two, then allocated range is also guaranteed to be aligned to same
6835  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6836  *
6837  * Allocated pages can be freed with free_contig_range() or by manually calling
6838  * __free_page() on each allocated page.
6839  *
6840  * Return: pointer to contiguous pages on success, or NULL if not successful.
6841  */
alloc_contig_pages_noprof(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)6842 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6843 				 int nid, nodemask_t *nodemask)
6844 {
6845 	unsigned long ret, pfn, flags;
6846 	struct zonelist *zonelist;
6847 	struct zone *zone;
6848 	struct zoneref *z;
6849 
6850 	zonelist = node_zonelist(nid, gfp_mask);
6851 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6852 					gfp_zone(gfp_mask), nodemask) {
6853 		spin_lock_irqsave(&zone->lock, flags);
6854 
6855 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6856 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6857 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6858 				/*
6859 				 * We release the zone lock here because
6860 				 * alloc_contig_range() will also lock the zone
6861 				 * at some point. If there's an allocation
6862 				 * spinning on this lock, it may win the race
6863 				 * and cause alloc_contig_range() to fail...
6864 				 */
6865 				spin_unlock_irqrestore(&zone->lock, flags);
6866 				ret = __alloc_contig_pages(pfn, nr_pages,
6867 							gfp_mask);
6868 				if (!ret)
6869 					return pfn_to_page(pfn);
6870 				spin_lock_irqsave(&zone->lock, flags);
6871 			}
6872 			pfn += nr_pages;
6873 		}
6874 		spin_unlock_irqrestore(&zone->lock, flags);
6875 	}
6876 	return NULL;
6877 }
6878 #endif /* CONFIG_CONTIG_ALLOC */
6879 
free_contig_range(unsigned long pfn,unsigned long nr_pages)6880 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6881 {
6882 	unsigned long count = 0;
6883 	struct folio *folio = pfn_folio(pfn);
6884 
6885 	if (folio_test_large(folio)) {
6886 		int expected = folio_nr_pages(folio);
6887 
6888 		if (nr_pages == expected)
6889 			folio_put(folio);
6890 		else
6891 			WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6892 			     pfn, nr_pages, expected);
6893 		return;
6894 	}
6895 
6896 	for (; nr_pages--; pfn++) {
6897 		struct page *page = pfn_to_page(pfn);
6898 
6899 		count += page_count(page) != 1;
6900 		__free_page(page);
6901 	}
6902 	WARN(count != 0, "%lu pages are still in use!\n", count);
6903 }
6904 EXPORT_SYMBOL(free_contig_range);
6905 
6906 /*
6907  * Effectively disable pcplists for the zone by setting the high limit to 0
6908  * and draining all cpus. A concurrent page freeing on another CPU that's about
6909  * to put the page on pcplist will either finish before the drain and the page
6910  * will be drained, or observe the new high limit and skip the pcplist.
6911  *
6912  * Must be paired with a call to zone_pcp_enable().
6913  */
zone_pcp_disable(struct zone * zone)6914 void zone_pcp_disable(struct zone *zone)
6915 {
6916 	mutex_lock(&pcp_batch_high_lock);
6917 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6918 	__drain_all_pages(zone, true);
6919 }
6920 
zone_pcp_enable(struct zone * zone)6921 void zone_pcp_enable(struct zone *zone)
6922 {
6923 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6924 		zone->pageset_high_max, zone->pageset_batch);
6925 	mutex_unlock(&pcp_batch_high_lock);
6926 }
6927 
zone_pcp_reset(struct zone * zone)6928 void zone_pcp_reset(struct zone *zone)
6929 {
6930 	int cpu;
6931 	struct per_cpu_zonestat *pzstats;
6932 
6933 	if (zone->per_cpu_pageset != &boot_pageset) {
6934 		for_each_online_cpu(cpu) {
6935 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6936 			drain_zonestat(zone, pzstats);
6937 		}
6938 		free_percpu(zone->per_cpu_pageset);
6939 		zone->per_cpu_pageset = &boot_pageset;
6940 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6941 			free_percpu(zone->per_cpu_zonestats);
6942 			zone->per_cpu_zonestats = &boot_zonestats;
6943 		}
6944 	}
6945 }
6946 
6947 #ifdef CONFIG_MEMORY_HOTREMOVE
6948 /*
6949  * All pages in the range must be in a single zone, must not contain holes,
6950  * must span full sections, and must be isolated before calling this function.
6951  *
6952  * Returns the number of managed (non-PageOffline()) pages in the range: the
6953  * number of pages for which memory offlining code must adjust managed page
6954  * counters using adjust_managed_page_count().
6955  */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6956 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6957 		unsigned long end_pfn)
6958 {
6959 	unsigned long already_offline = 0, flags;
6960 	unsigned long pfn = start_pfn;
6961 	struct page *page;
6962 	struct zone *zone;
6963 	unsigned int order;
6964 
6965 	offline_mem_sections(pfn, end_pfn);
6966 	zone = page_zone(pfn_to_page(pfn));
6967 	spin_lock_irqsave(&zone->lock, flags);
6968 	while (pfn < end_pfn) {
6969 		page = pfn_to_page(pfn);
6970 		/*
6971 		 * The HWPoisoned page may be not in buddy system, and
6972 		 * page_count() is not 0.
6973 		 */
6974 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6975 			pfn++;
6976 			continue;
6977 		}
6978 		/*
6979 		 * At this point all remaining PageOffline() pages have a
6980 		 * reference count of 0 and can simply be skipped.
6981 		 */
6982 		if (PageOffline(page)) {
6983 			BUG_ON(page_count(page));
6984 			BUG_ON(PageBuddy(page));
6985 			already_offline++;
6986 			pfn++;
6987 			continue;
6988 		}
6989 
6990 		BUG_ON(page_count(page));
6991 		BUG_ON(!PageBuddy(page));
6992 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6993 		order = buddy_order(page);
6994 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6995 		pfn += (1 << order);
6996 	}
6997 	spin_unlock_irqrestore(&zone->lock, flags);
6998 
6999 	return end_pfn - start_pfn - already_offline;
7000 }
7001 #endif
7002 
7003 /*
7004  * This function returns a stable result only if called under zone lock.
7005  */
is_free_buddy_page(const struct page * page)7006 bool is_free_buddy_page(const struct page *page)
7007 {
7008 	unsigned long pfn = page_to_pfn(page);
7009 	unsigned int order;
7010 
7011 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
7012 		const struct page *head = page - (pfn & ((1 << order) - 1));
7013 
7014 		if (PageBuddy(head) &&
7015 		    buddy_order_unsafe(head) >= order)
7016 			break;
7017 	}
7018 
7019 	return order <= MAX_PAGE_ORDER;
7020 }
7021 EXPORT_SYMBOL(is_free_buddy_page);
7022 
7023 #ifdef CONFIG_MEMORY_FAILURE
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)7024 static inline void add_to_free_list(struct page *page, struct zone *zone,
7025 				    unsigned int order, int migratetype,
7026 				    bool tail)
7027 {
7028 	__add_to_free_list(page, zone, order, migratetype, tail);
7029 	account_freepages(zone, 1 << order, migratetype);
7030 }
7031 
7032 /*
7033  * Break down a higher-order page in sub-pages, and keep our target out of
7034  * buddy allocator.
7035  */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)7036 static void break_down_buddy_pages(struct zone *zone, struct page *page,
7037 				   struct page *target, int low, int high,
7038 				   int migratetype)
7039 {
7040 	unsigned long size = 1 << high;
7041 	struct page *current_buddy;
7042 
7043 	while (high > low) {
7044 		high--;
7045 		size >>= 1;
7046 
7047 		if (target >= &page[size]) {
7048 			current_buddy = page;
7049 			page = page + size;
7050 		} else {
7051 			current_buddy = page + size;
7052 		}
7053 
7054 		if (set_page_guard(zone, current_buddy, high))
7055 			continue;
7056 
7057 		add_to_free_list(current_buddy, zone, high, migratetype, false);
7058 		set_buddy_order(current_buddy, high);
7059 	}
7060 }
7061 
7062 /*
7063  * Take a page that will be marked as poisoned off the buddy allocator.
7064  */
take_page_off_buddy(struct page * page)7065 bool take_page_off_buddy(struct page *page)
7066 {
7067 	struct zone *zone = page_zone(page);
7068 	unsigned long pfn = page_to_pfn(page);
7069 	unsigned long flags;
7070 	unsigned int order;
7071 	bool ret = false;
7072 
7073 	spin_lock_irqsave(&zone->lock, flags);
7074 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
7075 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7076 		int page_order = buddy_order(page_head);
7077 
7078 		if (PageBuddy(page_head) && page_order >= order) {
7079 			unsigned long pfn_head = page_to_pfn(page_head);
7080 			int migratetype = get_pfnblock_migratetype(page_head,
7081 								   pfn_head);
7082 
7083 			del_page_from_free_list(page_head, zone, page_order,
7084 						migratetype);
7085 			break_down_buddy_pages(zone, page_head, page, 0,
7086 						page_order, migratetype);
7087 			SetPageHWPoisonTakenOff(page);
7088 			ret = true;
7089 			break;
7090 		}
7091 		if (page_count(page_head) > 0)
7092 			break;
7093 	}
7094 	spin_unlock_irqrestore(&zone->lock, flags);
7095 	return ret;
7096 }
7097 
7098 /*
7099  * Cancel takeoff done by take_page_off_buddy().
7100  */
put_page_back_buddy(struct page * page)7101 bool put_page_back_buddy(struct page *page)
7102 {
7103 	struct zone *zone = page_zone(page);
7104 	unsigned long flags;
7105 	bool ret = false;
7106 
7107 	spin_lock_irqsave(&zone->lock, flags);
7108 	if (put_page_testzero(page)) {
7109 		unsigned long pfn = page_to_pfn(page);
7110 		int migratetype = get_pfnblock_migratetype(page, pfn);
7111 
7112 		ClearPageHWPoisonTakenOff(page);
7113 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
7114 		if (TestClearPageHWPoison(page)) {
7115 			ret = true;
7116 		}
7117 	}
7118 	spin_unlock_irqrestore(&zone->lock, flags);
7119 
7120 	return ret;
7121 }
7122 #endif
7123 
7124 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)7125 bool has_managed_dma(void)
7126 {
7127 	struct pglist_data *pgdat;
7128 
7129 	for_each_online_pgdat(pgdat) {
7130 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
7131 
7132 		if (managed_zone(zone))
7133 			return true;
7134 	}
7135 	return false;
7136 }
7137 #endif /* CONFIG_ZONE_DMA */
7138 
7139 #ifdef CONFIG_UNACCEPTED_MEMORY
7140 
7141 /* Counts number of zones with unaccepted pages. */
7142 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
7143 
7144 static bool lazy_accept = true;
7145 
accept_memory_parse(char * p)7146 static int __init accept_memory_parse(char *p)
7147 {
7148 	if (!strcmp(p, "lazy")) {
7149 		lazy_accept = true;
7150 		return 0;
7151 	} else if (!strcmp(p, "eager")) {
7152 		lazy_accept = false;
7153 		return 0;
7154 	} else {
7155 		return -EINVAL;
7156 	}
7157 }
7158 early_param("accept_memory", accept_memory_parse);
7159 
page_contains_unaccepted(struct page * page,unsigned int order)7160 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7161 {
7162 	phys_addr_t start = page_to_phys(page);
7163 
7164 	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7165 }
7166 
__accept_page(struct zone * zone,unsigned long * flags,struct page * page)7167 static void __accept_page(struct zone *zone, unsigned long *flags,
7168 			  struct page *page)
7169 {
7170 	bool last;
7171 
7172 	list_del(&page->lru);
7173 	last = list_empty(&zone->unaccepted_pages);
7174 
7175 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7176 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7177 	__ClearPageUnaccepted(page);
7178 	spin_unlock_irqrestore(&zone->lock, *flags);
7179 
7180 	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7181 
7182 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7183 
7184 	if (last)
7185 		static_branch_dec(&zones_with_unaccepted_pages);
7186 }
7187 
accept_page(struct page * page)7188 void accept_page(struct page *page)
7189 {
7190 	struct zone *zone = page_zone(page);
7191 	unsigned long flags;
7192 
7193 	spin_lock_irqsave(&zone->lock, flags);
7194 	if (!PageUnaccepted(page)) {
7195 		spin_unlock_irqrestore(&zone->lock, flags);
7196 		return;
7197 	}
7198 
7199 	/* Unlocks zone->lock */
7200 	__accept_page(zone, &flags, page);
7201 }
7202 
try_to_accept_memory_one(struct zone * zone)7203 static bool try_to_accept_memory_one(struct zone *zone)
7204 {
7205 	unsigned long flags;
7206 	struct page *page;
7207 
7208 	spin_lock_irqsave(&zone->lock, flags);
7209 	page = list_first_entry_or_null(&zone->unaccepted_pages,
7210 					struct page, lru);
7211 	if (!page) {
7212 		spin_unlock_irqrestore(&zone->lock, flags);
7213 		return false;
7214 	}
7215 
7216 	/* Unlocks zone->lock */
7217 	__accept_page(zone, &flags, page);
7218 
7219 	return true;
7220 }
7221 
has_unaccepted_memory(void)7222 static inline bool has_unaccepted_memory(void)
7223 {
7224 	return static_branch_unlikely(&zones_with_unaccepted_pages);
7225 }
7226 
cond_accept_memory(struct zone * zone,unsigned int order)7227 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7228 {
7229 	long to_accept, wmark;
7230 	bool ret = false;
7231 
7232 	if (!has_unaccepted_memory())
7233 		return false;
7234 
7235 	if (list_empty(&zone->unaccepted_pages))
7236 		return false;
7237 
7238 	wmark = promo_wmark_pages(zone);
7239 
7240 	/*
7241 	 * Watermarks have not been initialized yet.
7242 	 *
7243 	 * Accepting one MAX_ORDER page to ensure progress.
7244 	 */
7245 	if (!wmark)
7246 		return try_to_accept_memory_one(zone);
7247 
7248 	/* How much to accept to get to promo watermark? */
7249 	to_accept = wmark -
7250 		    (zone_page_state(zone, NR_FREE_PAGES) -
7251 		    __zone_watermark_unusable_free(zone, order, 0) -
7252 		    zone_page_state(zone, NR_UNACCEPTED));
7253 
7254 	while (to_accept > 0) {
7255 		if (!try_to_accept_memory_one(zone))
7256 			break;
7257 		ret = true;
7258 		to_accept -= MAX_ORDER_NR_PAGES;
7259 	}
7260 
7261 	return ret;
7262 }
7263 
__free_unaccepted(struct page * page)7264 static bool __free_unaccepted(struct page *page)
7265 {
7266 	struct zone *zone = page_zone(page);
7267 	unsigned long flags;
7268 	bool first = false;
7269 
7270 	if (!lazy_accept)
7271 		return false;
7272 
7273 	spin_lock_irqsave(&zone->lock, flags);
7274 	first = list_empty(&zone->unaccepted_pages);
7275 	list_add_tail(&page->lru, &zone->unaccepted_pages);
7276 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7277 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7278 	__SetPageUnaccepted(page);
7279 	spin_unlock_irqrestore(&zone->lock, flags);
7280 
7281 	if (first)
7282 		static_branch_inc(&zones_with_unaccepted_pages);
7283 
7284 	return true;
7285 }
7286 
7287 #else
7288 
page_contains_unaccepted(struct page * page,unsigned int order)7289 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7290 {
7291 	return false;
7292 }
7293 
cond_accept_memory(struct zone * zone,unsigned int order)7294 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7295 {
7296 	return false;
7297 }
7298 
__free_unaccepted(struct page * page)7299 static bool __free_unaccepted(struct page *page)
7300 {
7301 	BUILD_BUG();
7302 	return false;
7303 }
7304 
7305 #endif /* CONFIG_UNACCEPTED_MEMORY */
7306 
7307 /**
7308  * try_alloc_pages - opportunistic reentrant allocation from any context
7309  * @nid: node to allocate from
7310  * @order: allocation order size
7311  *
7312  * Allocates pages of a given order from the given node. This is safe to
7313  * call from any context (from atomic, NMI, and also reentrant
7314  * allocator -> tracepoint -> try_alloc_pages_noprof).
7315  * Allocation is best effort and to be expected to fail easily so nobody should
7316  * rely on the success. Failures are not reported via warn_alloc().
7317  * See always fail conditions below.
7318  *
7319  * Return: allocated page or NULL on failure.
7320  */
try_alloc_pages_noprof(int nid,unsigned int order)7321 struct page *try_alloc_pages_noprof(int nid, unsigned int order)
7322 {
7323 	/*
7324 	 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed.
7325 	 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd
7326 	 * is not safe in arbitrary context.
7327 	 *
7328 	 * These two are the conditions for gfpflags_allow_spinning() being true.
7329 	 *
7330 	 * Specify __GFP_NOWARN since failing try_alloc_pages() is not a reason
7331 	 * to warn. Also warn would trigger printk() which is unsafe from
7332 	 * various contexts. We cannot use printk_deferred_enter() to mitigate,
7333 	 * since the running context is unknown.
7334 	 *
7335 	 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below
7336 	 * is safe in any context. Also zeroing the page is mandatory for
7337 	 * BPF use cases.
7338 	 *
7339 	 * Though __GFP_NOMEMALLOC is not checked in the code path below,
7340 	 * specify it here to highlight that try_alloc_pages()
7341 	 * doesn't want to deplete reserves.
7342 	 */
7343 	gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC
7344 			| __GFP_ACCOUNT;
7345 	unsigned int alloc_flags = ALLOC_TRYLOCK;
7346 	struct alloc_context ac = { };
7347 	struct page *page;
7348 
7349 	/*
7350 	 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is
7351 	 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current
7352 	 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will
7353 	 * mark the task as the owner of another rt_spin_lock which will
7354 	 * confuse PI logic, so return immediately if called form hard IRQ or
7355 	 * NMI.
7356 	 *
7357 	 * Note, irqs_disabled() case is ok. This function can be called
7358 	 * from raw_spin_lock_irqsave region.
7359 	 */
7360 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
7361 		return NULL;
7362 	if (!pcp_allowed_order(order))
7363 		return NULL;
7364 
7365 #ifdef CONFIG_UNACCEPTED_MEMORY
7366 	/* Bailout, since try_to_accept_memory_one() needs to take a lock */
7367 	if (has_unaccepted_memory())
7368 		return NULL;
7369 #endif
7370 	/* Bailout, since _deferred_grow_zone() needs to take a lock */
7371 	if (deferred_pages_enabled())
7372 		return NULL;
7373 
7374 	if (nid == NUMA_NO_NODE)
7375 		nid = numa_node_id();
7376 
7377 	prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac,
7378 			    &alloc_gfp, &alloc_flags);
7379 
7380 	/*
7381 	 * Best effort allocation from percpu free list.
7382 	 * If it's empty attempt to spin_trylock zone->lock.
7383 	 */
7384 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
7385 
7386 	/* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */
7387 
7388 	if (page)
7389 		set_page_refcounted(page);
7390 
7391 	if (memcg_kmem_online() && page &&
7392 	    unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) {
7393 		free_pages_nolock(page, order);
7394 		page = NULL;
7395 	}
7396 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
7397 	kmsan_alloc_page(page, order, alloc_gfp);
7398 	return page;
7399 }
7400