xref: /linux/fs/hugetlbfs/inode.c (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/hugetlbfs.h>
44 
45 static const struct address_space_operations hugetlbfs_aops;
46 static const struct file_operations hugetlbfs_file_operations;
47 static const struct inode_operations hugetlbfs_dir_inode_operations;
48 static const struct inode_operations hugetlbfs_inode_operations;
49 
50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
51 
52 struct hugetlbfs_fs_context {
53 	struct hstate		*hstate;
54 	unsigned long long	max_size_opt;
55 	unsigned long long	min_size_opt;
56 	long			max_hpages;
57 	long			nr_inodes;
58 	long			min_hpages;
59 	enum hugetlbfs_size_type max_val_type;
60 	enum hugetlbfs_size_type min_val_type;
61 	kuid_t			uid;
62 	kgid_t			gid;
63 	umode_t			mode;
64 };
65 
66 int sysctl_hugetlb_shm_group;
67 
68 enum hugetlb_param {
69 	Opt_gid,
70 	Opt_min_size,
71 	Opt_mode,
72 	Opt_nr_inodes,
73 	Opt_pagesize,
74 	Opt_size,
75 	Opt_uid,
76 };
77 
78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
79 	fsparam_gid   ("gid",		Opt_gid),
80 	fsparam_string("min_size",	Opt_min_size),
81 	fsparam_u32oct("mode",		Opt_mode),
82 	fsparam_string("nr_inodes",	Opt_nr_inodes),
83 	fsparam_string("pagesize",	Opt_pagesize),
84 	fsparam_string("size",		Opt_size),
85 	fsparam_uid   ("uid",		Opt_uid),
86 	{}
87 };
88 
89 /*
90  * Mask used when checking the page offset value passed in via system
91  * calls.  This value will be converted to a loff_t which is signed.
92  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
93  * value.  The extra bit (- 1 in the shift value) is to take the sign
94  * bit into account.
95  */
96 #define PGOFF_LOFFT_MAX \
97 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
98 
hugetlbfs_file_mmap(struct file * file,struct vm_area_struct * vma)99 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
100 {
101 	struct inode *inode = file_inode(file);
102 	loff_t len, vma_len;
103 	int ret;
104 	struct hstate *h = hstate_file(file);
105 	vm_flags_t vm_flags;
106 
107 	/*
108 	 * vma address alignment (but not the pgoff alignment) has
109 	 * already been checked by prepare_hugepage_range.  If you add
110 	 * any error returns here, do so after setting VM_HUGETLB, so
111 	 * is_vm_hugetlb_page tests below unmap_region go the right
112 	 * way when do_mmap unwinds (may be important on powerpc
113 	 * and ia64).
114 	 */
115 	vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
116 	vma->vm_ops = &hugetlb_vm_ops;
117 
118 	/*
119 	 * page based offset in vm_pgoff could be sufficiently large to
120 	 * overflow a loff_t when converted to byte offset.  This can
121 	 * only happen on architectures where sizeof(loff_t) ==
122 	 * sizeof(unsigned long).  So, only check in those instances.
123 	 */
124 	if (sizeof(unsigned long) == sizeof(loff_t)) {
125 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
126 			return -EINVAL;
127 	}
128 
129 	/* must be huge page aligned */
130 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
131 		return -EINVAL;
132 
133 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
134 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
135 	/* check for overflow */
136 	if (len < vma_len)
137 		return -EINVAL;
138 
139 	inode_lock(inode);
140 	file_accessed(file);
141 
142 	ret = -ENOMEM;
143 
144 	vm_flags = vma->vm_flags;
145 	/*
146 	 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
147 	 * reserving here. Note: only for SHM hugetlbfs file, the inode
148 	 * flag S_PRIVATE is set.
149 	 */
150 	if (inode->i_flags & S_PRIVATE)
151 		vm_flags |= VM_NORESERVE;
152 
153 	if (hugetlb_reserve_pages(inode,
154 				vma->vm_pgoff >> huge_page_order(h),
155 				len >> huge_page_shift(h), vma,
156 				vm_flags) < 0)
157 		goto out;
158 
159 	ret = 0;
160 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
161 		i_size_write(inode, len);
162 out:
163 	inode_unlock(inode);
164 
165 	return ret;
166 }
167 
168 /*
169  * Called under mmap_write_lock(mm).
170  */
171 
172 unsigned long
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)173 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
174 			    unsigned long len, unsigned long pgoff,
175 			    unsigned long flags)
176 {
177 	unsigned long addr0 = 0;
178 	struct hstate *h = hstate_file(file);
179 
180 	if (len & ~huge_page_mask(h))
181 		return -EINVAL;
182 	if ((flags & MAP_FIXED) && (addr & ~huge_page_mask(h)))
183 		return -EINVAL;
184 	if (addr)
185 		addr0 = ALIGN(addr, huge_page_size(h));
186 
187 	return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff,
188 					    flags, 0);
189 }
190 
191 /*
192  * Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset.
193  * Returns the maximum number of bytes one can read without touching the 1st raw
194  * HWPOISON page.
195  */
adjust_range_hwpoison(struct folio * folio,size_t offset,size_t bytes)196 static size_t adjust_range_hwpoison(struct folio *folio, size_t offset,
197 		size_t bytes)
198 {
199 	struct page *page = folio_page(folio, offset / PAGE_SIZE);
200 	size_t safe_bytes;
201 
202 	if (is_raw_hwpoison_page_in_hugepage(page))
203 		return 0;
204 	/* Safe to read the remaining bytes in this page. */
205 	safe_bytes = PAGE_SIZE - (offset % PAGE_SIZE);
206 	page++;
207 
208 	/* Check each remaining page as long as we are not done yet. */
209 	for (; safe_bytes < bytes; safe_bytes += PAGE_SIZE, page++)
210 		if (is_raw_hwpoison_page_in_hugepage(page))
211 			break;
212 
213 	return min(safe_bytes, bytes);
214 }
215 
216 /*
217  * Support for read() - Find the page attached to f_mapping and copy out the
218  * data. This provides functionality similar to filemap_read().
219  */
hugetlbfs_read_iter(struct kiocb * iocb,struct iov_iter * to)220 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
221 {
222 	struct file *file = iocb->ki_filp;
223 	struct hstate *h = hstate_file(file);
224 	struct address_space *mapping = file->f_mapping;
225 	struct inode *inode = mapping->host;
226 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
227 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
228 	unsigned long end_index;
229 	loff_t isize;
230 	ssize_t retval = 0;
231 
232 	while (iov_iter_count(to)) {
233 		struct folio *folio;
234 		size_t nr, copied, want;
235 
236 		/* nr is the maximum number of bytes to copy from this page */
237 		nr = huge_page_size(h);
238 		isize = i_size_read(inode);
239 		if (!isize)
240 			break;
241 		end_index = (isize - 1) >> huge_page_shift(h);
242 		if (index > end_index)
243 			break;
244 		if (index == end_index) {
245 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
246 			if (nr <= offset)
247 				break;
248 		}
249 		nr = nr - offset;
250 
251 		/* Find the folio */
252 		folio = filemap_lock_hugetlb_folio(h, mapping, index);
253 		if (IS_ERR(folio)) {
254 			/*
255 			 * We have a HOLE, zero out the user-buffer for the
256 			 * length of the hole or request.
257 			 */
258 			copied = iov_iter_zero(nr, to);
259 		} else {
260 			folio_unlock(folio);
261 
262 			if (!folio_test_hwpoison(folio))
263 				want = nr;
264 			else {
265 				/*
266 				 * Adjust how many bytes safe to read without
267 				 * touching the 1st raw HWPOISON page after
268 				 * offset.
269 				 */
270 				want = adjust_range_hwpoison(folio, offset, nr);
271 				if (want == 0) {
272 					folio_put(folio);
273 					retval = -EIO;
274 					break;
275 				}
276 			}
277 
278 			/*
279 			 * We have the folio, copy it to user space buffer.
280 			 */
281 			copied = copy_folio_to_iter(folio, offset, want, to);
282 			folio_put(folio);
283 		}
284 		offset += copied;
285 		retval += copied;
286 		if (copied != nr && iov_iter_count(to)) {
287 			if (!retval)
288 				retval = -EFAULT;
289 			break;
290 		}
291 		index += offset >> huge_page_shift(h);
292 		offset &= ~huge_page_mask(h);
293 	}
294 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
295 	return retval;
296 }
297 
hugetlbfs_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)298 static int hugetlbfs_write_begin(const struct kiocb *iocb,
299 			struct address_space *mapping,
300 			loff_t pos, unsigned len,
301 			struct folio **foliop, void **fsdata)
302 {
303 	return -EINVAL;
304 }
305 
hugetlbfs_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)306 static int hugetlbfs_write_end(const struct kiocb *iocb,
307 			       struct address_space *mapping,
308 			       loff_t pos, unsigned len, unsigned copied,
309 			       struct folio *folio, void *fsdata)
310 {
311 	BUG();
312 	return -EINVAL;
313 }
314 
hugetlb_delete_from_page_cache(struct folio * folio)315 static void hugetlb_delete_from_page_cache(struct folio *folio)
316 {
317 	folio_clear_dirty(folio);
318 	folio_clear_uptodate(folio);
319 	filemap_remove_folio(folio);
320 }
321 
322 /*
323  * Called with i_mmap_rwsem held for inode based vma maps.  This makes
324  * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
325  * mutex for the page in the mapping.  So, we can not race with page being
326  * faulted into the vma.
327  */
hugetlb_vma_maps_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)328 static bool hugetlb_vma_maps_pfn(struct vm_area_struct *vma,
329 				unsigned long addr, unsigned long pfn)
330 {
331 	pte_t *ptep, pte;
332 
333 	ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
334 	if (!ptep)
335 		return false;
336 
337 	pte = huge_ptep_get(vma->vm_mm, addr, ptep);
338 	if (huge_pte_none(pte) || !pte_present(pte))
339 		return false;
340 
341 	if (pte_pfn(pte) == pfn)
342 		return true;
343 
344 	return false;
345 }
346 
347 /*
348  * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
349  * No, because the interval tree returns us only those vmas
350  * which overlap the truncated area starting at pgoff,
351  * and no vma on a 32-bit arch can span beyond the 4GB.
352  */
vma_offset_start(struct vm_area_struct * vma,pgoff_t start)353 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
354 {
355 	unsigned long offset = 0;
356 
357 	if (vma->vm_pgoff < start)
358 		offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
359 
360 	return vma->vm_start + offset;
361 }
362 
vma_offset_end(struct vm_area_struct * vma,pgoff_t end)363 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
364 {
365 	unsigned long t_end;
366 
367 	if (!end)
368 		return vma->vm_end;
369 
370 	t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
371 	if (t_end > vma->vm_end)
372 		t_end = vma->vm_end;
373 	return t_end;
374 }
375 
376 /*
377  * Called with hugetlb fault mutex held.  Therefore, no more mappings to
378  * this folio can be created while executing the routine.
379  */
hugetlb_unmap_file_folio(struct hstate * h,struct address_space * mapping,struct folio * folio,pgoff_t index)380 static void hugetlb_unmap_file_folio(struct hstate *h,
381 					struct address_space *mapping,
382 					struct folio *folio, pgoff_t index)
383 {
384 	struct rb_root_cached *root = &mapping->i_mmap;
385 	struct hugetlb_vma_lock *vma_lock;
386 	unsigned long pfn = folio_pfn(folio);
387 	struct vm_area_struct *vma;
388 	unsigned long v_start;
389 	unsigned long v_end;
390 	pgoff_t start, end;
391 
392 	start = index * pages_per_huge_page(h);
393 	end = (index + 1) * pages_per_huge_page(h);
394 
395 	i_mmap_lock_write(mapping);
396 retry:
397 	vma_lock = NULL;
398 	vma_interval_tree_foreach(vma, root, start, end - 1) {
399 		v_start = vma_offset_start(vma, start);
400 		v_end = vma_offset_end(vma, end);
401 
402 		if (!hugetlb_vma_maps_pfn(vma, v_start, pfn))
403 			continue;
404 
405 		if (!hugetlb_vma_trylock_write(vma)) {
406 			vma_lock = vma->vm_private_data;
407 			/*
408 			 * If we can not get vma lock, we need to drop
409 			 * immap_sema and take locks in order.  First,
410 			 * take a ref on the vma_lock structure so that
411 			 * we can be guaranteed it will not go away when
412 			 * dropping immap_sema.
413 			 */
414 			kref_get(&vma_lock->refs);
415 			break;
416 		}
417 
418 		unmap_hugepage_range(vma, v_start, v_end, NULL,
419 				     ZAP_FLAG_DROP_MARKER);
420 		hugetlb_vma_unlock_write(vma);
421 	}
422 
423 	i_mmap_unlock_write(mapping);
424 
425 	if (vma_lock) {
426 		/*
427 		 * Wait on vma_lock.  We know it is still valid as we have
428 		 * a reference.  We must 'open code' vma locking as we do
429 		 * not know if vma_lock is still attached to vma.
430 		 */
431 		down_write(&vma_lock->rw_sema);
432 		i_mmap_lock_write(mapping);
433 
434 		vma = vma_lock->vma;
435 		if (!vma) {
436 			/*
437 			 * If lock is no longer attached to vma, then just
438 			 * unlock, drop our reference and retry looking for
439 			 * other vmas.
440 			 */
441 			up_write(&vma_lock->rw_sema);
442 			kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
443 			goto retry;
444 		}
445 
446 		/*
447 		 * vma_lock is still attached to vma.  Check to see if vma
448 		 * still maps page and if so, unmap.
449 		 */
450 		v_start = vma_offset_start(vma, start);
451 		v_end = vma_offset_end(vma, end);
452 		if (hugetlb_vma_maps_pfn(vma, v_start, pfn))
453 			unmap_hugepage_range(vma, v_start, v_end, NULL,
454 					     ZAP_FLAG_DROP_MARKER);
455 
456 		kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
457 		hugetlb_vma_unlock_write(vma);
458 
459 		goto retry;
460 	}
461 }
462 
463 static void
hugetlb_vmdelete_list(struct rb_root_cached * root,pgoff_t start,pgoff_t end,zap_flags_t zap_flags)464 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
465 		      zap_flags_t zap_flags)
466 {
467 	struct vm_area_struct *vma;
468 
469 	/*
470 	 * end == 0 indicates that the entire range after start should be
471 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
472 	 * an inclusive "last".
473 	 */
474 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
475 		unsigned long v_start;
476 		unsigned long v_end;
477 
478 		if (!hugetlb_vma_trylock_write(vma))
479 			continue;
480 
481 		/*
482 		 * Skip VMAs without shareable locks. Per the design in commit
483 		 * 40549ba8f8e0, these will be handled by remove_inode_hugepages()
484 		 * called after this function with proper locking.
485 		 */
486 		if (!__vma_shareable_lock(vma))
487 			goto skip;
488 
489 		v_start = vma_offset_start(vma, start);
490 		v_end = vma_offset_end(vma, end);
491 
492 		unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
493 
494 		/*
495 		 * Note that vma lock only exists for shared/non-private
496 		 * vmas.  Therefore, lock is not held when calling
497 		 * unmap_hugepage_range for private vmas.
498 		 */
499 skip:
500 		hugetlb_vma_unlock_write(vma);
501 	}
502 }
503 
504 /*
505  * Called with hugetlb fault mutex held.
506  * Returns true if page was actually removed, false otherwise.
507  */
remove_inode_single_folio(struct hstate * h,struct inode * inode,struct address_space * mapping,struct folio * folio,pgoff_t index,bool truncate_op)508 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
509 					struct address_space *mapping,
510 					struct folio *folio, pgoff_t index,
511 					bool truncate_op)
512 {
513 	bool ret = false;
514 
515 	/*
516 	 * If folio is mapped, it was faulted in after being
517 	 * unmapped in caller or hugetlb_vmdelete_list() skips
518 	 * unmapping it due to fail to grab lock.  Unmap (again)
519 	 * while holding the fault mutex.  The mutex will prevent
520 	 * faults until we finish removing the folio.  Hold folio
521 	 * lock to guarantee no concurrent migration.
522 	 */
523 	folio_lock(folio);
524 	if (unlikely(folio_mapped(folio)))
525 		hugetlb_unmap_file_folio(h, mapping, folio, index);
526 
527 	/*
528 	 * We must remove the folio from page cache before removing
529 	 * the region/ reserve map (hugetlb_unreserve_pages).  In
530 	 * rare out of memory conditions, removal of the region/reserve
531 	 * map could fail.  Correspondingly, the subpool and global
532 	 * reserve usage count can need to be adjusted.
533 	 */
534 	VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
535 	hugetlb_delete_from_page_cache(folio);
536 	ret = true;
537 	if (!truncate_op) {
538 		if (unlikely(hugetlb_unreserve_pages(inode, index,
539 							index + 1, 1)))
540 			hugetlb_fix_reserve_counts(inode);
541 	}
542 
543 	folio_unlock(folio);
544 	return ret;
545 }
546 
547 /*
548  * remove_inode_hugepages handles two distinct cases: truncation and hole
549  * punch.  There are subtle differences in operation for each case.
550  *
551  * truncation is indicated by end of range being LLONG_MAX
552  *	In this case, we first scan the range and release found pages.
553  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
554  *	maps and global counts.  Page faults can race with truncation.
555  *	During faults, hugetlb_no_page() checks i_size before page allocation,
556  *	and again after obtaining page table lock.  It will 'back out'
557  *	allocations in the truncated range.
558  * hole punch is indicated if end is not LLONG_MAX
559  *	In the hole punch case we scan the range and release found pages.
560  *	Only when releasing a page is the associated region/reserve map
561  *	deleted.  The region/reserve map for ranges without associated
562  *	pages are not modified.  Page faults can race with hole punch.
563  *	This is indicated if we find a mapped page.
564  * Note: If the passed end of range value is beyond the end of file, but
565  * not LLONG_MAX this routine still performs a hole punch operation.
566  */
remove_inode_hugepages(struct inode * inode,loff_t lstart,loff_t lend)567 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
568 				   loff_t lend)
569 {
570 	struct hstate *h = hstate_inode(inode);
571 	struct address_space *mapping = &inode->i_data;
572 	const pgoff_t end = lend >> PAGE_SHIFT;
573 	struct folio_batch fbatch;
574 	pgoff_t next, index;
575 	int i, freed = 0;
576 	bool truncate_op = (lend == LLONG_MAX);
577 
578 	folio_batch_init(&fbatch);
579 	next = lstart >> PAGE_SHIFT;
580 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
581 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
582 			struct folio *folio = fbatch.folios[i];
583 			u32 hash = 0;
584 
585 			index = folio->index >> huge_page_order(h);
586 			hash = hugetlb_fault_mutex_hash(mapping, index);
587 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
588 
589 			/*
590 			 * Remove folio that was part of folio_batch.
591 			 */
592 			if (remove_inode_single_folio(h, inode, mapping, folio,
593 							index, truncate_op))
594 				freed++;
595 
596 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
597 		}
598 		folio_batch_release(&fbatch);
599 		cond_resched();
600 	}
601 
602 	if (truncate_op)
603 		(void)hugetlb_unreserve_pages(inode,
604 				lstart >> huge_page_shift(h),
605 				LONG_MAX, freed);
606 }
607 
hugetlbfs_evict_inode(struct inode * inode)608 static void hugetlbfs_evict_inode(struct inode *inode)
609 {
610 	struct resv_map *resv_map;
611 
612 	trace_hugetlbfs_evict_inode(inode);
613 	remove_inode_hugepages(inode, 0, LLONG_MAX);
614 
615 	/*
616 	 * Get the resv_map from the address space embedded in the inode.
617 	 * This is the address space which points to any resv_map allocated
618 	 * at inode creation time.  If this is a device special inode,
619 	 * i_mapping may not point to the original address space.
620 	 */
621 	resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
622 	/* Only regular and link inodes have associated reserve maps */
623 	if (resv_map)
624 		resv_map_release(&resv_map->refs);
625 	clear_inode(inode);
626 }
627 
hugetlb_vmtruncate(struct inode * inode,loff_t offset)628 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
629 {
630 	pgoff_t pgoff;
631 	struct address_space *mapping = inode->i_mapping;
632 	struct hstate *h = hstate_inode(inode);
633 
634 	BUG_ON(offset & ~huge_page_mask(h));
635 	pgoff = offset >> PAGE_SHIFT;
636 
637 	i_size_write(inode, offset);
638 	i_mmap_lock_write(mapping);
639 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
640 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
641 				      ZAP_FLAG_DROP_MARKER);
642 	i_mmap_unlock_write(mapping);
643 	remove_inode_hugepages(inode, offset, LLONG_MAX);
644 }
645 
hugetlbfs_zero_partial_page(struct hstate * h,struct address_space * mapping,loff_t start,loff_t end)646 static void hugetlbfs_zero_partial_page(struct hstate *h,
647 					struct address_space *mapping,
648 					loff_t start,
649 					loff_t end)
650 {
651 	pgoff_t idx = start >> huge_page_shift(h);
652 	struct folio *folio;
653 
654 	folio = filemap_lock_hugetlb_folio(h, mapping, idx);
655 	if (IS_ERR(folio))
656 		return;
657 
658 	start = start & ~huge_page_mask(h);
659 	end = end & ~huge_page_mask(h);
660 	if (!end)
661 		end = huge_page_size(h);
662 
663 	folio_zero_segment(folio, (size_t)start, (size_t)end);
664 
665 	folio_unlock(folio);
666 	folio_put(folio);
667 }
668 
hugetlbfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)669 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
670 {
671 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
672 	struct address_space *mapping = inode->i_mapping;
673 	struct hstate *h = hstate_inode(inode);
674 	loff_t hpage_size = huge_page_size(h);
675 	loff_t hole_start, hole_end;
676 
677 	/*
678 	 * hole_start and hole_end indicate the full pages within the hole.
679 	 */
680 	hole_start = round_up(offset, hpage_size);
681 	hole_end = round_down(offset + len, hpage_size);
682 
683 	inode_lock(inode);
684 
685 	/* protected by i_rwsem */
686 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
687 		inode_unlock(inode);
688 		return -EPERM;
689 	}
690 
691 	i_mmap_lock_write(mapping);
692 
693 	/* If range starts before first full page, zero partial page. */
694 	if (offset < hole_start)
695 		hugetlbfs_zero_partial_page(h, mapping,
696 				offset, min(offset + len, hole_start));
697 
698 	/* Unmap users of full pages in the hole. */
699 	if (hole_end > hole_start) {
700 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
701 			hugetlb_vmdelete_list(&mapping->i_mmap,
702 					      hole_start >> PAGE_SHIFT,
703 					      hole_end >> PAGE_SHIFT, 0);
704 	}
705 
706 	/* If range extends beyond last full page, zero partial page. */
707 	if ((offset + len) > hole_end && (offset + len) > hole_start)
708 		hugetlbfs_zero_partial_page(h, mapping,
709 				hole_end, offset + len);
710 
711 	i_mmap_unlock_write(mapping);
712 
713 	/* Remove full pages from the file. */
714 	if (hole_end > hole_start)
715 		remove_inode_hugepages(inode, hole_start, hole_end);
716 
717 	inode_unlock(inode);
718 
719 	return 0;
720 }
721 
hugetlbfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)722 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
723 				loff_t len)
724 {
725 	struct inode *inode = file_inode(file);
726 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
727 	struct address_space *mapping = inode->i_mapping;
728 	struct hstate *h = hstate_inode(inode);
729 	struct vm_area_struct pseudo_vma;
730 	struct mm_struct *mm = current->mm;
731 	loff_t hpage_size = huge_page_size(h);
732 	unsigned long hpage_shift = huge_page_shift(h);
733 	pgoff_t start, index, end;
734 	int error;
735 	u32 hash;
736 
737 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
738 		return -EOPNOTSUPP;
739 
740 	if (mode & FALLOC_FL_PUNCH_HOLE) {
741 		error = hugetlbfs_punch_hole(inode, offset, len);
742 		goto out_nolock;
743 	}
744 
745 	/*
746 	 * Default preallocate case.
747 	 * For this range, start is rounded down and end is rounded up
748 	 * as well as being converted to page offsets.
749 	 */
750 	start = offset >> hpage_shift;
751 	end = (offset + len + hpage_size - 1) >> hpage_shift;
752 
753 	inode_lock(inode);
754 
755 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
756 	error = inode_newsize_ok(inode, offset + len);
757 	if (error)
758 		goto out;
759 
760 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
761 		error = -EPERM;
762 		goto out;
763 	}
764 
765 	/*
766 	 * Initialize a pseudo vma as this is required by the huge page
767 	 * allocation routines.
768 	 */
769 	vma_init(&pseudo_vma, mm);
770 	vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
771 	pseudo_vma.vm_file = file;
772 
773 	for (index = start; index < end; index++) {
774 		/*
775 		 * This is supposed to be the vaddr where the page is being
776 		 * faulted in, but we have no vaddr here.
777 		 */
778 		struct folio *folio;
779 		unsigned long addr;
780 
781 		cond_resched();
782 
783 		/*
784 		 * fallocate(2) manpage permits EINTR; we may have been
785 		 * interrupted because we are using up too much memory.
786 		 */
787 		if (signal_pending(current)) {
788 			error = -EINTR;
789 			break;
790 		}
791 
792 		/* addr is the offset within the file (zero based) */
793 		addr = index * hpage_size;
794 
795 		/* mutex taken here, fault path and hole punch */
796 		hash = hugetlb_fault_mutex_hash(mapping, index);
797 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
798 
799 		/* See if already present in mapping to avoid alloc/free */
800 		folio = filemap_get_folio(mapping, index << huge_page_order(h));
801 		if (!IS_ERR(folio)) {
802 			folio_put(folio);
803 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
804 			continue;
805 		}
806 
807 		/*
808 		 * Allocate folio without setting the avoid_reserve argument.
809 		 * There certainly are no reserves associated with the
810 		 * pseudo_vma.  However, there could be shared mappings with
811 		 * reserves for the file at the inode level.  If we fallocate
812 		 * folios in these areas, we need to consume the reserves
813 		 * to keep reservation accounting consistent.
814 		 */
815 		folio = alloc_hugetlb_folio(&pseudo_vma, addr, false);
816 		if (IS_ERR(folio)) {
817 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
818 			error = PTR_ERR(folio);
819 			goto out;
820 		}
821 		folio_zero_user(folio, addr);
822 		__folio_mark_uptodate(folio);
823 		error = hugetlb_add_to_page_cache(folio, mapping, index);
824 		if (unlikely(error)) {
825 			restore_reserve_on_error(h, &pseudo_vma, addr, folio);
826 			folio_put(folio);
827 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
828 			goto out;
829 		}
830 
831 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
832 
833 		folio_set_hugetlb_migratable(folio);
834 		/*
835 		 * folio_unlock because locked by hugetlb_add_to_page_cache()
836 		 * folio_put() due to reference from alloc_hugetlb_folio()
837 		 */
838 		folio_unlock(folio);
839 		folio_put(folio);
840 	}
841 
842 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
843 		i_size_write(inode, offset + len);
844 	inode_set_ctime_current(inode);
845 out:
846 	inode_unlock(inode);
847 
848 out_nolock:
849 	trace_hugetlbfs_fallocate(inode, mode, offset, len, error);
850 	return error;
851 }
852 
hugetlbfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)853 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
854 			     struct dentry *dentry, struct iattr *attr)
855 {
856 	struct inode *inode = d_inode(dentry);
857 	struct hstate *h = hstate_inode(inode);
858 	int error;
859 	unsigned int ia_valid = attr->ia_valid;
860 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
861 
862 	error = setattr_prepare(idmap, dentry, attr);
863 	if (error)
864 		return error;
865 
866 	trace_hugetlbfs_setattr(inode, dentry, attr);
867 
868 	if (ia_valid & ATTR_SIZE) {
869 		loff_t oldsize = inode->i_size;
870 		loff_t newsize = attr->ia_size;
871 
872 		if (newsize & ~huge_page_mask(h))
873 			return -EINVAL;
874 		/* protected by i_rwsem */
875 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
876 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
877 			return -EPERM;
878 		hugetlb_vmtruncate(inode, newsize);
879 	}
880 
881 	setattr_copy(idmap, inode, attr);
882 	mark_inode_dirty(inode);
883 	return 0;
884 }
885 
hugetlbfs_get_root(struct super_block * sb,struct hugetlbfs_fs_context * ctx)886 static struct inode *hugetlbfs_get_root(struct super_block *sb,
887 					struct hugetlbfs_fs_context *ctx)
888 {
889 	struct inode *inode;
890 
891 	inode = new_inode(sb);
892 	if (inode) {
893 		inode->i_ino = get_next_ino();
894 		inode->i_mode = S_IFDIR | ctx->mode;
895 		inode->i_uid = ctx->uid;
896 		inode->i_gid = ctx->gid;
897 		simple_inode_init_ts(inode);
898 		inode->i_op = &hugetlbfs_dir_inode_operations;
899 		inode->i_fop = &simple_dir_operations;
900 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
901 		inc_nlink(inode);
902 		lockdep_annotate_inode_mutex_key(inode);
903 	}
904 	return inode;
905 }
906 
907 /*
908  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
909  * be taken from reclaim -- unlike regular filesystems. This needs an
910  * annotation because huge_pmd_share() does an allocation under hugetlb's
911  * i_mmap_rwsem.
912  */
913 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
914 
hugetlbfs_get_inode(struct super_block * sb,struct mnt_idmap * idmap,struct inode * dir,umode_t mode,dev_t dev)915 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
916 					struct mnt_idmap *idmap,
917 					struct inode *dir,
918 					umode_t mode, dev_t dev)
919 {
920 	struct inode *inode;
921 	struct resv_map *resv_map = NULL;
922 
923 	/*
924 	 * Reserve maps are only needed for inodes that can have associated
925 	 * page allocations.
926 	 */
927 	if (S_ISREG(mode) || S_ISLNK(mode)) {
928 		resv_map = resv_map_alloc();
929 		if (!resv_map)
930 			return NULL;
931 	}
932 
933 	inode = new_inode(sb);
934 	if (inode) {
935 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
936 
937 		inode->i_ino = get_next_ino();
938 		inode_init_owner(idmap, inode, dir, mode);
939 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
940 				&hugetlbfs_i_mmap_rwsem_key);
941 		inode->i_mapping->a_ops = &hugetlbfs_aops;
942 		simple_inode_init_ts(inode);
943 		inode->i_mapping->i_private_data = resv_map;
944 		info->seals = F_SEAL_SEAL;
945 		switch (mode & S_IFMT) {
946 		default:
947 			init_special_inode(inode, mode, dev);
948 			break;
949 		case S_IFREG:
950 			inode->i_op = &hugetlbfs_inode_operations;
951 			inode->i_fop = &hugetlbfs_file_operations;
952 			break;
953 		case S_IFDIR:
954 			inode->i_op = &hugetlbfs_dir_inode_operations;
955 			inode->i_fop = &simple_dir_operations;
956 
957 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
958 			inc_nlink(inode);
959 			break;
960 		case S_IFLNK:
961 			inode->i_op = &page_symlink_inode_operations;
962 			inode_nohighmem(inode);
963 			break;
964 		}
965 		lockdep_annotate_inode_mutex_key(inode);
966 		trace_hugetlbfs_alloc_inode(inode, dir, mode);
967 	} else {
968 		if (resv_map)
969 			kref_put(&resv_map->refs, resv_map_release);
970 	}
971 
972 	return inode;
973 }
974 
975 /*
976  * File creation. Allocate an inode, and we're done..
977  */
hugetlbfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)978 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
979 			   struct dentry *dentry, umode_t mode, dev_t dev)
980 {
981 	struct inode *inode;
982 
983 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev);
984 	if (!inode)
985 		return -ENOSPC;
986 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
987 	d_instantiate(dentry, inode);
988 	dget(dentry);/* Extra count - pin the dentry in core */
989 	return 0;
990 }
991 
hugetlbfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)992 static struct dentry *hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
993 				      struct dentry *dentry, umode_t mode)
994 {
995 	int retval = hugetlbfs_mknod(idmap, dir, dentry,
996 				     mode | S_IFDIR, 0);
997 	if (!retval)
998 		inc_nlink(dir);
999 	return ERR_PTR(retval);
1000 }
1001 
hugetlbfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)1002 static int hugetlbfs_create(struct mnt_idmap *idmap,
1003 			    struct inode *dir, struct dentry *dentry,
1004 			    umode_t mode, bool excl)
1005 {
1006 	return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
1007 }
1008 
hugetlbfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)1009 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1010 			     struct inode *dir, struct file *file,
1011 			     umode_t mode)
1012 {
1013 	struct inode *inode;
1014 
1015 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0);
1016 	if (!inode)
1017 		return -ENOSPC;
1018 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1019 	d_tmpfile(file, inode);
1020 	return finish_open_simple(file, 0);
1021 }
1022 
hugetlbfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)1023 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1024 			     struct inode *dir, struct dentry *dentry,
1025 			     const char *symname)
1026 {
1027 	const umode_t mode = S_IFLNK|S_IRWXUGO;
1028 	struct inode *inode;
1029 	int error = -ENOSPC;
1030 
1031 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0);
1032 	if (inode) {
1033 		int l = strlen(symname)+1;
1034 		error = page_symlink(inode, symname, l);
1035 		if (!error) {
1036 			d_instantiate(dentry, inode);
1037 			dget(dentry);
1038 		} else
1039 			iput(inode);
1040 	}
1041 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1042 
1043 	return error;
1044 }
1045 
1046 #ifdef CONFIG_MIGRATION
hugetlbfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)1047 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1048 				struct folio *dst, struct folio *src,
1049 				enum migrate_mode mode)
1050 {
1051 	int rc;
1052 
1053 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
1054 	if (rc)
1055 		return rc;
1056 
1057 	if (hugetlb_folio_subpool(src)) {
1058 		hugetlb_set_folio_subpool(dst,
1059 					hugetlb_folio_subpool(src));
1060 		hugetlb_set_folio_subpool(src, NULL);
1061 	}
1062 
1063 	folio_migrate_flags(dst, src);
1064 
1065 	return 0;
1066 }
1067 #else
1068 #define hugetlbfs_migrate_folio NULL
1069 #endif
1070 
hugetlbfs_error_remove_folio(struct address_space * mapping,struct folio * folio)1071 static int hugetlbfs_error_remove_folio(struct address_space *mapping,
1072 				struct folio *folio)
1073 {
1074 	return 0;
1075 }
1076 
1077 /*
1078  * Display the mount options in /proc/mounts.
1079  */
hugetlbfs_show_options(struct seq_file * m,struct dentry * root)1080 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1081 {
1082 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1083 	struct hugepage_subpool *spool = sbinfo->spool;
1084 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1085 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1086 	char mod;
1087 
1088 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1089 		seq_printf(m, ",uid=%u",
1090 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1091 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1092 		seq_printf(m, ",gid=%u",
1093 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1094 	if (sbinfo->mode != 0755)
1095 		seq_printf(m, ",mode=%o", sbinfo->mode);
1096 	if (sbinfo->max_inodes != -1)
1097 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1098 
1099 	hpage_size /= 1024;
1100 	mod = 'K';
1101 	if (hpage_size >= 1024) {
1102 		hpage_size /= 1024;
1103 		mod = 'M';
1104 	}
1105 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1106 	if (spool) {
1107 		if (spool->max_hpages != -1)
1108 			seq_printf(m, ",size=%llu",
1109 				   (unsigned long long)spool->max_hpages << hpage_shift);
1110 		if (spool->min_hpages != -1)
1111 			seq_printf(m, ",min_size=%llu",
1112 				   (unsigned long long)spool->min_hpages << hpage_shift);
1113 	}
1114 	return 0;
1115 }
1116 
hugetlbfs_statfs(struct dentry * dentry,struct kstatfs * buf)1117 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1118 {
1119 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1120 	struct hstate *h = hstate_inode(d_inode(dentry));
1121 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1122 
1123 	buf->f_fsid = u64_to_fsid(id);
1124 	buf->f_type = HUGETLBFS_MAGIC;
1125 	buf->f_bsize = huge_page_size(h);
1126 	if (sbinfo) {
1127 		spin_lock(&sbinfo->stat_lock);
1128 		/* If no limits set, just report 0 or -1 for max/free/used
1129 		 * blocks, like simple_statfs() */
1130 		if (sbinfo->spool) {
1131 			long free_pages;
1132 
1133 			spin_lock_irq(&sbinfo->spool->lock);
1134 			buf->f_blocks = sbinfo->spool->max_hpages;
1135 			free_pages = sbinfo->spool->max_hpages
1136 				- sbinfo->spool->used_hpages;
1137 			buf->f_bavail = buf->f_bfree = free_pages;
1138 			spin_unlock_irq(&sbinfo->spool->lock);
1139 			buf->f_files = sbinfo->max_inodes;
1140 			buf->f_ffree = sbinfo->free_inodes;
1141 		}
1142 		spin_unlock(&sbinfo->stat_lock);
1143 	}
1144 	buf->f_namelen = NAME_MAX;
1145 	return 0;
1146 }
1147 
hugetlbfs_put_super(struct super_block * sb)1148 static void hugetlbfs_put_super(struct super_block *sb)
1149 {
1150 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1151 
1152 	if (sbi) {
1153 		sb->s_fs_info = NULL;
1154 
1155 		if (sbi->spool)
1156 			hugepage_put_subpool(sbi->spool);
1157 
1158 		kfree(sbi);
1159 	}
1160 }
1161 
hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info * sbinfo)1162 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1163 {
1164 	if (sbinfo->free_inodes >= 0) {
1165 		spin_lock(&sbinfo->stat_lock);
1166 		if (unlikely(!sbinfo->free_inodes)) {
1167 			spin_unlock(&sbinfo->stat_lock);
1168 			return 0;
1169 		}
1170 		sbinfo->free_inodes--;
1171 		spin_unlock(&sbinfo->stat_lock);
1172 	}
1173 
1174 	return 1;
1175 }
1176 
hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info * sbinfo)1177 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1178 {
1179 	if (sbinfo->free_inodes >= 0) {
1180 		spin_lock(&sbinfo->stat_lock);
1181 		sbinfo->free_inodes++;
1182 		spin_unlock(&sbinfo->stat_lock);
1183 	}
1184 }
1185 
1186 
1187 static struct kmem_cache *hugetlbfs_inode_cachep;
1188 
hugetlbfs_alloc_inode(struct super_block * sb)1189 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1190 {
1191 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1192 	struct hugetlbfs_inode_info *p;
1193 
1194 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1195 		return NULL;
1196 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1197 	if (unlikely(!p)) {
1198 		hugetlbfs_inc_free_inodes(sbinfo);
1199 		return NULL;
1200 	}
1201 	return &p->vfs_inode;
1202 }
1203 
hugetlbfs_free_inode(struct inode * inode)1204 static void hugetlbfs_free_inode(struct inode *inode)
1205 {
1206 	trace_hugetlbfs_free_inode(inode);
1207 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1208 }
1209 
hugetlbfs_destroy_inode(struct inode * inode)1210 static void hugetlbfs_destroy_inode(struct inode *inode)
1211 {
1212 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1213 }
1214 
1215 static const struct address_space_operations hugetlbfs_aops = {
1216 	.write_begin	= hugetlbfs_write_begin,
1217 	.write_end	= hugetlbfs_write_end,
1218 	.dirty_folio	= noop_dirty_folio,
1219 	.migrate_folio  = hugetlbfs_migrate_folio,
1220 	.error_remove_folio	= hugetlbfs_error_remove_folio,
1221 };
1222 
1223 
init_once(void * foo)1224 static void init_once(void *foo)
1225 {
1226 	struct hugetlbfs_inode_info *ei = foo;
1227 
1228 	inode_init_once(&ei->vfs_inode);
1229 }
1230 
1231 static const struct file_operations hugetlbfs_file_operations = {
1232 	.read_iter		= hugetlbfs_read_iter,
1233 	.mmap			= hugetlbfs_file_mmap,
1234 	.fsync			= noop_fsync,
1235 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1236 	.llseek			= default_llseek,
1237 	.fallocate		= hugetlbfs_fallocate,
1238 	.fop_flags		= FOP_HUGE_PAGES,
1239 };
1240 
1241 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1242 	.create		= hugetlbfs_create,
1243 	.lookup		= simple_lookup,
1244 	.link		= simple_link,
1245 	.unlink		= simple_unlink,
1246 	.symlink	= hugetlbfs_symlink,
1247 	.mkdir		= hugetlbfs_mkdir,
1248 	.rmdir		= simple_rmdir,
1249 	.mknod		= hugetlbfs_mknod,
1250 	.rename		= simple_rename,
1251 	.setattr	= hugetlbfs_setattr,
1252 	.tmpfile	= hugetlbfs_tmpfile,
1253 };
1254 
1255 static const struct inode_operations hugetlbfs_inode_operations = {
1256 	.setattr	= hugetlbfs_setattr,
1257 };
1258 
1259 static const struct super_operations hugetlbfs_ops = {
1260 	.alloc_inode    = hugetlbfs_alloc_inode,
1261 	.free_inode     = hugetlbfs_free_inode,
1262 	.destroy_inode  = hugetlbfs_destroy_inode,
1263 	.evict_inode	= hugetlbfs_evict_inode,
1264 	.statfs		= hugetlbfs_statfs,
1265 	.put_super	= hugetlbfs_put_super,
1266 	.show_options	= hugetlbfs_show_options,
1267 };
1268 
1269 /*
1270  * Convert size option passed from command line to number of huge pages
1271  * in the pool specified by hstate.  Size option could be in bytes
1272  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1273  */
1274 static long
hugetlbfs_size_to_hpages(struct hstate * h,unsigned long long size_opt,enum hugetlbfs_size_type val_type)1275 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1276 			 enum hugetlbfs_size_type val_type)
1277 {
1278 	if (val_type == NO_SIZE)
1279 		return -1;
1280 
1281 	if (val_type == SIZE_PERCENT) {
1282 		size_opt <<= huge_page_shift(h);
1283 		size_opt *= h->max_huge_pages;
1284 		do_div(size_opt, 100);
1285 	}
1286 
1287 	size_opt >>= huge_page_shift(h);
1288 	return size_opt;
1289 }
1290 
1291 /*
1292  * Parse one mount parameter.
1293  */
hugetlbfs_parse_param(struct fs_context * fc,struct fs_parameter * param)1294 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1295 {
1296 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1297 	struct fs_parse_result result;
1298 	struct hstate *h;
1299 	char *rest;
1300 	unsigned long ps;
1301 	int opt;
1302 
1303 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1304 	if (opt < 0)
1305 		return opt;
1306 
1307 	switch (opt) {
1308 	case Opt_uid:
1309 		ctx->uid = result.uid;
1310 		return 0;
1311 
1312 	case Opt_gid:
1313 		ctx->gid = result.gid;
1314 		return 0;
1315 
1316 	case Opt_mode:
1317 		ctx->mode = result.uint_32 & 01777U;
1318 		return 0;
1319 
1320 	case Opt_size:
1321 		/* memparse() will accept a K/M/G without a digit */
1322 		if (!param->string || !isdigit(param->string[0]))
1323 			goto bad_val;
1324 		ctx->max_size_opt = memparse(param->string, &rest);
1325 		ctx->max_val_type = SIZE_STD;
1326 		if (*rest == '%')
1327 			ctx->max_val_type = SIZE_PERCENT;
1328 		return 0;
1329 
1330 	case Opt_nr_inodes:
1331 		/* memparse() will accept a K/M/G without a digit */
1332 		if (!param->string || !isdigit(param->string[0]))
1333 			goto bad_val;
1334 		ctx->nr_inodes = memparse(param->string, &rest);
1335 		return 0;
1336 
1337 	case Opt_pagesize:
1338 		ps = memparse(param->string, &rest);
1339 		h = size_to_hstate(ps);
1340 		if (!h) {
1341 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1342 			return -EINVAL;
1343 		}
1344 		ctx->hstate = h;
1345 		return 0;
1346 
1347 	case Opt_min_size:
1348 		/* memparse() will accept a K/M/G without a digit */
1349 		if (!param->string || !isdigit(param->string[0]))
1350 			goto bad_val;
1351 		ctx->min_size_opt = memparse(param->string, &rest);
1352 		ctx->min_val_type = SIZE_STD;
1353 		if (*rest == '%')
1354 			ctx->min_val_type = SIZE_PERCENT;
1355 		return 0;
1356 
1357 	default:
1358 		return -EINVAL;
1359 	}
1360 
1361 bad_val:
1362 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1363 		      param->string, param->key);
1364 }
1365 
1366 /*
1367  * Validate the parsed options.
1368  */
hugetlbfs_validate(struct fs_context * fc)1369 static int hugetlbfs_validate(struct fs_context *fc)
1370 {
1371 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1372 
1373 	/*
1374 	 * Use huge page pool size (in hstate) to convert the size
1375 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1376 	 */
1377 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1378 						   ctx->max_size_opt,
1379 						   ctx->max_val_type);
1380 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1381 						   ctx->min_size_opt,
1382 						   ctx->min_val_type);
1383 
1384 	/*
1385 	 * If max_size was specified, then min_size must be smaller
1386 	 */
1387 	if (ctx->max_val_type > NO_SIZE &&
1388 	    ctx->min_hpages > ctx->max_hpages) {
1389 		pr_err("Minimum size can not be greater than maximum size\n");
1390 		return -EINVAL;
1391 	}
1392 
1393 	return 0;
1394 }
1395 
1396 static int
hugetlbfs_fill_super(struct super_block * sb,struct fs_context * fc)1397 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1398 {
1399 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1400 	struct hugetlbfs_sb_info *sbinfo;
1401 
1402 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1403 	if (!sbinfo)
1404 		return -ENOMEM;
1405 	sb->s_fs_info = sbinfo;
1406 	spin_lock_init(&sbinfo->stat_lock);
1407 	sbinfo->hstate		= ctx->hstate;
1408 	sbinfo->max_inodes	= ctx->nr_inodes;
1409 	sbinfo->free_inodes	= ctx->nr_inodes;
1410 	sbinfo->spool		= NULL;
1411 	sbinfo->uid		= ctx->uid;
1412 	sbinfo->gid		= ctx->gid;
1413 	sbinfo->mode		= ctx->mode;
1414 
1415 	/*
1416 	 * Allocate and initialize subpool if maximum or minimum size is
1417 	 * specified.  Any needed reservations (for minimum size) are taken
1418 	 * when the subpool is created.
1419 	 */
1420 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1421 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1422 						     ctx->max_hpages,
1423 						     ctx->min_hpages);
1424 		if (!sbinfo->spool)
1425 			goto out_free;
1426 	}
1427 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1428 	sb->s_blocksize = huge_page_size(ctx->hstate);
1429 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1430 	sb->s_magic = HUGETLBFS_MAGIC;
1431 	sb->s_op = &hugetlbfs_ops;
1432 	sb->s_d_flags = DCACHE_DONTCACHE;
1433 	sb->s_time_gran = 1;
1434 
1435 	/*
1436 	 * Due to the special and limited functionality of hugetlbfs, it does
1437 	 * not work well as a stacking filesystem.
1438 	 */
1439 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1440 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1441 	if (!sb->s_root)
1442 		goto out_free;
1443 	return 0;
1444 out_free:
1445 	kfree(sbinfo->spool);
1446 	kfree(sbinfo);
1447 	return -ENOMEM;
1448 }
1449 
hugetlbfs_get_tree(struct fs_context * fc)1450 static int hugetlbfs_get_tree(struct fs_context *fc)
1451 {
1452 	int err = hugetlbfs_validate(fc);
1453 	if (err)
1454 		return err;
1455 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1456 }
1457 
hugetlbfs_fs_context_free(struct fs_context * fc)1458 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1459 {
1460 	kfree(fc->fs_private);
1461 }
1462 
1463 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1464 	.free		= hugetlbfs_fs_context_free,
1465 	.parse_param	= hugetlbfs_parse_param,
1466 	.get_tree	= hugetlbfs_get_tree,
1467 };
1468 
hugetlbfs_init_fs_context(struct fs_context * fc)1469 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1470 {
1471 	struct hugetlbfs_fs_context *ctx;
1472 
1473 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1474 	if (!ctx)
1475 		return -ENOMEM;
1476 
1477 	ctx->max_hpages	= -1; /* No limit on size by default */
1478 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1479 	ctx->uid	= current_fsuid();
1480 	ctx->gid	= current_fsgid();
1481 	ctx->mode	= 0755;
1482 	ctx->hstate	= &default_hstate;
1483 	ctx->min_hpages	= -1; /* No default minimum size */
1484 	ctx->max_val_type = NO_SIZE;
1485 	ctx->min_val_type = NO_SIZE;
1486 	fc->fs_private = ctx;
1487 	fc->ops	= &hugetlbfs_fs_context_ops;
1488 	return 0;
1489 }
1490 
1491 static struct file_system_type hugetlbfs_fs_type = {
1492 	.name			= "hugetlbfs",
1493 	.init_fs_context	= hugetlbfs_init_fs_context,
1494 	.parameters		= hugetlb_fs_parameters,
1495 	.kill_sb		= kill_litter_super,
1496 	.fs_flags               = FS_ALLOW_IDMAP,
1497 };
1498 
1499 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1500 
can_do_hugetlb_shm(void)1501 static int can_do_hugetlb_shm(void)
1502 {
1503 	kgid_t shm_group;
1504 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1505 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1506 }
1507 
get_hstate_idx(int page_size_log)1508 static int get_hstate_idx(int page_size_log)
1509 {
1510 	struct hstate *h = hstate_sizelog(page_size_log);
1511 
1512 	if (!h)
1513 		return -1;
1514 	return hstate_index(h);
1515 }
1516 
1517 /*
1518  * Note that size should be aligned to proper hugepage size in caller side,
1519  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1520  */
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)1521 struct file *hugetlb_file_setup(const char *name, size_t size,
1522 				vm_flags_t acctflag, int creat_flags,
1523 				int page_size_log)
1524 {
1525 	struct inode *inode;
1526 	struct vfsmount *mnt;
1527 	int hstate_idx;
1528 	struct file *file;
1529 
1530 	hstate_idx = get_hstate_idx(page_size_log);
1531 	if (hstate_idx < 0)
1532 		return ERR_PTR(-ENODEV);
1533 
1534 	mnt = hugetlbfs_vfsmount[hstate_idx];
1535 	if (!mnt)
1536 		return ERR_PTR(-ENOENT);
1537 
1538 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1539 		struct ucounts *ucounts = current_ucounts();
1540 
1541 		if (user_shm_lock(size, ucounts)) {
1542 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1543 				current->comm, current->pid);
1544 			user_shm_unlock(size, ucounts);
1545 		}
1546 		return ERR_PTR(-EPERM);
1547 	}
1548 
1549 	file = ERR_PTR(-ENOSPC);
1550 	/* hugetlbfs_vfsmount[] mounts do not use idmapped mounts.  */
1551 	inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL,
1552 				    S_IFREG | S_IRWXUGO, 0);
1553 	if (!inode)
1554 		goto out;
1555 	if (creat_flags == HUGETLB_SHMFS_INODE)
1556 		inode->i_flags |= S_PRIVATE;
1557 
1558 	inode->i_size = size;
1559 	clear_nlink(inode);
1560 
1561 	if (hugetlb_reserve_pages(inode, 0,
1562 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1563 			acctflag) < 0)
1564 		file = ERR_PTR(-ENOMEM);
1565 	else
1566 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1567 					&hugetlbfs_file_operations);
1568 	if (!IS_ERR(file))
1569 		return file;
1570 
1571 	iput(inode);
1572 out:
1573 	return file;
1574 }
1575 
mount_one_hugetlbfs(struct hstate * h)1576 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1577 {
1578 	struct fs_context *fc;
1579 	struct vfsmount *mnt;
1580 
1581 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1582 	if (IS_ERR(fc)) {
1583 		mnt = ERR_CAST(fc);
1584 	} else {
1585 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1586 		ctx->hstate = h;
1587 		mnt = fc_mount_longterm(fc);
1588 		put_fs_context(fc);
1589 	}
1590 	if (IS_ERR(mnt))
1591 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1592 		       huge_page_size(h) / SZ_1K);
1593 	return mnt;
1594 }
1595 
init_hugetlbfs_fs(void)1596 static int __init init_hugetlbfs_fs(void)
1597 {
1598 	struct vfsmount *mnt;
1599 	struct hstate *h;
1600 	int error;
1601 	int i;
1602 
1603 	if (!hugepages_supported()) {
1604 		pr_info("disabling because there are no supported hugepage sizes\n");
1605 		return -ENOTSUPP;
1606 	}
1607 
1608 	error = -ENOMEM;
1609 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1610 					sizeof(struct hugetlbfs_inode_info),
1611 					0, SLAB_ACCOUNT, init_once);
1612 	if (hugetlbfs_inode_cachep == NULL)
1613 		goto out;
1614 
1615 	error = register_filesystem(&hugetlbfs_fs_type);
1616 	if (error)
1617 		goto out_free;
1618 
1619 	/* default hstate mount is required */
1620 	mnt = mount_one_hugetlbfs(&default_hstate);
1621 	if (IS_ERR(mnt)) {
1622 		error = PTR_ERR(mnt);
1623 		goto out_unreg;
1624 	}
1625 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1626 
1627 	/* other hstates are optional */
1628 	i = 0;
1629 	for_each_hstate(h) {
1630 		if (i == default_hstate_idx) {
1631 			i++;
1632 			continue;
1633 		}
1634 
1635 		mnt = mount_one_hugetlbfs(h);
1636 		if (IS_ERR(mnt))
1637 			hugetlbfs_vfsmount[i] = NULL;
1638 		else
1639 			hugetlbfs_vfsmount[i] = mnt;
1640 		i++;
1641 	}
1642 
1643 	return 0;
1644 
1645  out_unreg:
1646 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1647  out_free:
1648 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1649  out:
1650 	return error;
1651 }
1652 fs_initcall(init_hugetlbfs_fs)
1653