1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask_types.h>
17
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/spinlock.h>
38 #include <linux/syscall_user_dispatch_types.h>
39 #include <linux/mm_types_task.h>
40 #include <linux/netdevice_xmit.h>
41 #include <linux/task_io_accounting.h>
42 #include <linux/posix-timers_types.h>
43 #include <linux/restart_block.h>
44 #include <linux/rseq_types.h>
45 #include <linux/seqlock_types.h>
46 #include <linux/kcsan.h>
47 #include <linux/rv.h>
48 #include <linux/uidgid_types.h>
49 #include <linux/tracepoint-defs.h>
50 #include <linux/unwind_deferred_types.h>
51 #include <asm/kmap_size.h>
52 #include <linux/time64.h>
53 #ifndef COMPILE_OFFSETS
54 #include <generated/rq-offsets.h>
55 #endif
56
57 /* task_struct member predeclarations (sorted alphabetically): */
58 struct audit_context;
59 struct bio_list;
60 struct blk_plug;
61 struct bpf_local_storage;
62 struct bpf_run_ctx;
63 struct bpf_net_context;
64 struct capture_control;
65 struct cfs_rq;
66 struct fs_struct;
67 struct futex_pi_state;
68 struct io_context;
69 struct io_uring_task;
70 struct mempolicy;
71 struct nameidata;
72 struct nsproxy;
73 struct perf_event_context;
74 struct perf_ctx_data;
75 struct pid_namespace;
76 struct pipe_inode_info;
77 struct rcu_node;
78 struct reclaim_state;
79 struct robust_list_head;
80 struct root_domain;
81 struct rq;
82 struct sched_attr;
83 struct sched_dl_entity;
84 struct seq_file;
85 struct sighand_struct;
86 struct signal_struct;
87 struct task_delay_info;
88 struct task_group;
89 struct task_struct;
90 struct timespec64;
91 struct user_event_mm;
92
93 #include <linux/sched/ext.h>
94
95 /*
96 * Task state bitmask. NOTE! These bits are also
97 * encoded in fs/proc/array.c: get_task_state().
98 *
99 * We have two separate sets of flags: task->__state
100 * is about runnability, while task->exit_state are
101 * about the task exiting. Confusing, but this way
102 * modifying one set can't modify the other one by
103 * mistake.
104 */
105
106 /* Used in tsk->__state: */
107 #define TASK_RUNNING 0x00000000
108 #define TASK_INTERRUPTIBLE 0x00000001
109 #define TASK_UNINTERRUPTIBLE 0x00000002
110 #define __TASK_STOPPED 0x00000004
111 #define __TASK_TRACED 0x00000008
112 /* Used in tsk->exit_state: */
113 #define EXIT_DEAD 0x00000010
114 #define EXIT_ZOMBIE 0x00000020
115 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
116 /* Used in tsk->__state again: */
117 #define TASK_PARKED 0x00000040
118 #define TASK_DEAD 0x00000080
119 #define TASK_WAKEKILL 0x00000100
120 #define TASK_WAKING 0x00000200
121 #define TASK_NOLOAD 0x00000400
122 #define TASK_NEW 0x00000800
123 #define TASK_RTLOCK_WAIT 0x00001000
124 #define TASK_FREEZABLE 0x00002000
125 #define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
126 #define TASK_FROZEN 0x00008000
127 #define TASK_STATE_MAX 0x00010000
128
129 #define TASK_ANY (TASK_STATE_MAX-1)
130
131 /*
132 * DO NOT ADD ANY NEW USERS !
133 */
134 #define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
135
136 /* Convenience macros for the sake of set_current_state: */
137 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
138 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
139 #define TASK_TRACED __TASK_TRACED
140
141 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
142
143 /* Convenience macros for the sake of wake_up(): */
144 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
145
146 /* get_task_state(): */
147 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
148 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
149 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
150 TASK_PARKED)
151
152 #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
153
154 #define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
155 #define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
156 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
157
158 /*
159 * Special states are those that do not use the normal wait-loop pattern. See
160 * the comment with set_special_state().
161 */
162 #define is_special_task_state(state) \
163 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | \
164 TASK_DEAD | TASK_FROZEN))
165
166 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
167 # define debug_normal_state_change(state_value) \
168 do { \
169 WARN_ON_ONCE(is_special_task_state(state_value)); \
170 current->task_state_change = _THIS_IP_; \
171 } while (0)
172
173 # define debug_special_state_change(state_value) \
174 do { \
175 WARN_ON_ONCE(!is_special_task_state(state_value)); \
176 current->task_state_change = _THIS_IP_; \
177 } while (0)
178
179 # define debug_rtlock_wait_set_state() \
180 do { \
181 current->saved_state_change = current->task_state_change;\
182 current->task_state_change = _THIS_IP_; \
183 } while (0)
184
185 # define debug_rtlock_wait_restore_state() \
186 do { \
187 current->task_state_change = current->saved_state_change;\
188 } while (0)
189
190 #else
191 # define debug_normal_state_change(cond) do { } while (0)
192 # define debug_special_state_change(cond) do { } while (0)
193 # define debug_rtlock_wait_set_state() do { } while (0)
194 # define debug_rtlock_wait_restore_state() do { } while (0)
195 #endif
196
197 #define trace_set_current_state(state_value) \
198 do { \
199 if (tracepoint_enabled(sched_set_state_tp)) \
200 __trace_set_current_state(state_value); \
201 } while (0)
202
203 /*
204 * set_current_state() includes a barrier so that the write of current->__state
205 * is correctly serialised wrt the caller's subsequent test of whether to
206 * actually sleep:
207 *
208 * for (;;) {
209 * set_current_state(TASK_UNINTERRUPTIBLE);
210 * if (CONDITION)
211 * break;
212 *
213 * schedule();
214 * }
215 * __set_current_state(TASK_RUNNING);
216 *
217 * If the caller does not need such serialisation (because, for instance, the
218 * CONDITION test and condition change and wakeup are under the same lock) then
219 * use __set_current_state().
220 *
221 * The above is typically ordered against the wakeup, which does:
222 *
223 * CONDITION = 1;
224 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
225 *
226 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
227 * accessing p->__state.
228 *
229 * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
230 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
231 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
232 *
233 * However, with slightly different timing the wakeup TASK_RUNNING store can
234 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
235 * a problem either because that will result in one extra go around the loop
236 * and our @cond test will save the day.
237 *
238 * Also see the comments of try_to_wake_up().
239 */
240 #define __set_current_state(state_value) \
241 do { \
242 debug_normal_state_change((state_value)); \
243 trace_set_current_state(state_value); \
244 WRITE_ONCE(current->__state, (state_value)); \
245 } while (0)
246
247 #define set_current_state(state_value) \
248 do { \
249 debug_normal_state_change((state_value)); \
250 trace_set_current_state(state_value); \
251 smp_store_mb(current->__state, (state_value)); \
252 } while (0)
253
254 /*
255 * set_special_state() should be used for those states when the blocking task
256 * can not use the regular condition based wait-loop. In that case we must
257 * serialize against wakeups such that any possible in-flight TASK_RUNNING
258 * stores will not collide with our state change.
259 */
260 #define set_special_state(state_value) \
261 do { \
262 unsigned long flags; /* may shadow */ \
263 \
264 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
265 debug_special_state_change((state_value)); \
266 trace_set_current_state(state_value); \
267 WRITE_ONCE(current->__state, (state_value)); \
268 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
269 } while (0)
270
271 /*
272 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
273 *
274 * RT's spin/rwlock substitutions are state preserving. The state of the
275 * task when blocking on the lock is saved in task_struct::saved_state and
276 * restored after the lock has been acquired. These operations are
277 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
278 * lock related wakeups while the task is blocked on the lock are
279 * redirected to operate on task_struct::saved_state to ensure that these
280 * are not dropped. On restore task_struct::saved_state is set to
281 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
282 *
283 * The lock operation looks like this:
284 *
285 * current_save_and_set_rtlock_wait_state();
286 * for (;;) {
287 * if (try_lock())
288 * break;
289 * raw_spin_unlock_irq(&lock->wait_lock);
290 * schedule_rtlock();
291 * raw_spin_lock_irq(&lock->wait_lock);
292 * set_current_state(TASK_RTLOCK_WAIT);
293 * }
294 * current_restore_rtlock_saved_state();
295 */
296 #define current_save_and_set_rtlock_wait_state() \
297 do { \
298 lockdep_assert_irqs_disabled(); \
299 raw_spin_lock(¤t->pi_lock); \
300 current->saved_state = current->__state; \
301 debug_rtlock_wait_set_state(); \
302 trace_set_current_state(TASK_RTLOCK_WAIT); \
303 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
304 raw_spin_unlock(¤t->pi_lock); \
305 } while (0);
306
307 #define current_restore_rtlock_saved_state() \
308 do { \
309 lockdep_assert_irqs_disabled(); \
310 raw_spin_lock(¤t->pi_lock); \
311 debug_rtlock_wait_restore_state(); \
312 trace_set_current_state(current->saved_state); \
313 WRITE_ONCE(current->__state, current->saved_state); \
314 current->saved_state = TASK_RUNNING; \
315 raw_spin_unlock(¤t->pi_lock); \
316 } while (0);
317
318 #define get_current_state() READ_ONCE(current->__state)
319
320 /*
321 * Define the task command name length as enum, then it can be visible to
322 * BPF programs.
323 */
324 enum {
325 TASK_COMM_LEN = 16,
326 };
327
328 extern void sched_tick(void);
329
330 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
331
332 extern long schedule_timeout(long timeout);
333 extern long schedule_timeout_interruptible(long timeout);
334 extern long schedule_timeout_killable(long timeout);
335 extern long schedule_timeout_uninterruptible(long timeout);
336 extern long schedule_timeout_idle(long timeout);
337 asmlinkage void schedule(void);
338 extern void schedule_preempt_disabled(void);
339 asmlinkage void preempt_schedule_irq(void);
340 #ifdef CONFIG_PREEMPT_RT
341 extern void schedule_rtlock(void);
342 #endif
343
344 extern int __must_check io_schedule_prepare(void);
345 extern void io_schedule_finish(int token);
346 extern long io_schedule_timeout(long timeout);
347 extern void io_schedule(void);
348
349 /* wrapper functions to trace from this header file */
350 DECLARE_TRACEPOINT(sched_set_state_tp);
351 extern void __trace_set_current_state(int state_value);
352 DECLARE_TRACEPOINT(sched_set_need_resched_tp);
353 extern void __trace_set_need_resched(struct task_struct *curr, int tif);
354
355 /**
356 * struct prev_cputime - snapshot of system and user cputime
357 * @utime: time spent in user mode
358 * @stime: time spent in system mode
359 * @lock: protects the above two fields
360 *
361 * Stores previous user/system time values such that we can guarantee
362 * monotonicity.
363 */
364 struct prev_cputime {
365 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
366 u64 utime;
367 u64 stime;
368 raw_spinlock_t lock;
369 #endif
370 };
371
372 enum vtime_state {
373 /* Task is sleeping or running in a CPU with VTIME inactive: */
374 VTIME_INACTIVE = 0,
375 /* Task is idle */
376 VTIME_IDLE,
377 /* Task runs in kernelspace in a CPU with VTIME active: */
378 VTIME_SYS,
379 /* Task runs in userspace in a CPU with VTIME active: */
380 VTIME_USER,
381 /* Task runs as guests in a CPU with VTIME active: */
382 VTIME_GUEST,
383 };
384
385 struct vtime {
386 seqcount_t seqcount;
387 unsigned long long starttime;
388 enum vtime_state state;
389 unsigned int cpu;
390 u64 utime;
391 u64 stime;
392 u64 gtime;
393 };
394
395 /*
396 * Utilization clamp constraints.
397 * @UCLAMP_MIN: Minimum utilization
398 * @UCLAMP_MAX: Maximum utilization
399 * @UCLAMP_CNT: Utilization clamp constraints count
400 */
401 enum uclamp_id {
402 UCLAMP_MIN = 0,
403 UCLAMP_MAX,
404 UCLAMP_CNT
405 };
406
407 extern struct root_domain def_root_domain;
408 extern struct mutex sched_domains_mutex;
409 extern void sched_domains_mutex_lock(void);
410 extern void sched_domains_mutex_unlock(void);
411
412 struct sched_param {
413 int sched_priority;
414 };
415
416 struct sched_info {
417 #ifdef CONFIG_SCHED_INFO
418 /* Cumulative counters: */
419
420 /* # of times we have run on this CPU: */
421 unsigned long pcount;
422
423 /* Time spent waiting on a runqueue: */
424 unsigned long long run_delay;
425
426 /* Max time spent waiting on a runqueue: */
427 unsigned long long max_run_delay;
428
429 /* Min time spent waiting on a runqueue: */
430 unsigned long long min_run_delay;
431
432 /* Timestamps: */
433
434 /* When did we last run on a CPU? */
435 unsigned long long last_arrival;
436
437 /* When were we last queued to run? */
438 unsigned long long last_queued;
439
440 /* Timestamp of max time spent waiting on a runqueue: */
441 struct timespec64 max_run_delay_ts;
442
443 #endif /* CONFIG_SCHED_INFO */
444 };
445
446 /*
447 * Integer metrics need fixed point arithmetic, e.g., sched/fair
448 * has a few: load, load_avg, util_avg, freq, and capacity.
449 *
450 * We define a basic fixed point arithmetic range, and then formalize
451 * all these metrics based on that basic range.
452 */
453 # define SCHED_FIXEDPOINT_SHIFT 10
454 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
455
456 /* Increase resolution of cpu_capacity calculations */
457 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
458 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
459
460 struct load_weight {
461 unsigned long weight;
462 u32 inv_weight;
463 };
464
465 /*
466 * The load/runnable/util_avg accumulates an infinite geometric series
467 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
468 *
469 * [load_avg definition]
470 *
471 * load_avg = runnable% * scale_load_down(load)
472 *
473 * [runnable_avg definition]
474 *
475 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
476 *
477 * [util_avg definition]
478 *
479 * util_avg = running% * SCHED_CAPACITY_SCALE
480 *
481 * where runnable% is the time ratio that a sched_entity is runnable and
482 * running% the time ratio that a sched_entity is running.
483 *
484 * For cfs_rq, they are the aggregated values of all runnable and blocked
485 * sched_entities.
486 *
487 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
488 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
489 * for computing those signals (see update_rq_clock_pelt())
490 *
491 * N.B., the above ratios (runnable% and running%) themselves are in the
492 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
493 * to as large a range as necessary. This is for example reflected by
494 * util_avg's SCHED_CAPACITY_SCALE.
495 *
496 * [Overflow issue]
497 *
498 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
499 * with the highest load (=88761), always runnable on a single cfs_rq,
500 * and should not overflow as the number already hits PID_MAX_LIMIT.
501 *
502 * For all other cases (including 32-bit kernels), struct load_weight's
503 * weight will overflow first before we do, because:
504 *
505 * Max(load_avg) <= Max(load.weight)
506 *
507 * Then it is the load_weight's responsibility to consider overflow
508 * issues.
509 */
510 struct sched_avg {
511 u64 last_update_time;
512 u64 load_sum;
513 u64 runnable_sum;
514 u32 util_sum;
515 u32 period_contrib;
516 unsigned long load_avg;
517 unsigned long runnable_avg;
518 unsigned long util_avg;
519 unsigned int util_est;
520 } ____cacheline_aligned;
521
522 /*
523 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
524 * updates. When a task is dequeued, its util_est should not be updated if its
525 * util_avg has not been updated in the meantime.
526 * This information is mapped into the MSB bit of util_est at dequeue time.
527 * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
528 * it is safe to use MSB.
529 */
530 #define UTIL_EST_WEIGHT_SHIFT 2
531 #define UTIL_AVG_UNCHANGED 0x80000000
532
533 struct sched_statistics {
534 #ifdef CONFIG_SCHEDSTATS
535 u64 wait_start;
536 u64 wait_max;
537 u64 wait_count;
538 u64 wait_sum;
539 u64 iowait_count;
540 u64 iowait_sum;
541
542 u64 sleep_start;
543 u64 sleep_max;
544 s64 sum_sleep_runtime;
545
546 u64 block_start;
547 u64 block_max;
548 s64 sum_block_runtime;
549
550 s64 exec_max;
551 u64 slice_max;
552
553 u64 nr_migrations_cold;
554 u64 nr_failed_migrations_affine;
555 u64 nr_failed_migrations_running;
556 u64 nr_failed_migrations_hot;
557 u64 nr_forced_migrations;
558
559 u64 nr_wakeups;
560 u64 nr_wakeups_sync;
561 u64 nr_wakeups_migrate;
562 u64 nr_wakeups_local;
563 u64 nr_wakeups_remote;
564 u64 nr_wakeups_affine;
565 u64 nr_wakeups_affine_attempts;
566 u64 nr_wakeups_passive;
567 u64 nr_wakeups_idle;
568
569 #ifdef CONFIG_SCHED_CORE
570 u64 core_forceidle_sum;
571 #endif
572 #endif /* CONFIG_SCHEDSTATS */
573 } ____cacheline_aligned;
574
575 struct sched_entity {
576 /* For load-balancing: */
577 struct load_weight load;
578 struct rb_node run_node;
579 u64 deadline;
580 u64 min_vruntime;
581 u64 min_slice;
582
583 struct list_head group_node;
584 unsigned char on_rq;
585 unsigned char sched_delayed;
586 unsigned char rel_deadline;
587 unsigned char custom_slice;
588 /* hole */
589
590 u64 exec_start;
591 u64 sum_exec_runtime;
592 u64 prev_sum_exec_runtime;
593 u64 vruntime;
594 /* Approximated virtual lag: */
595 s64 vlag;
596 /* 'Protected' deadline, to give out minimum quantums: */
597 u64 vprot;
598 u64 slice;
599
600 u64 nr_migrations;
601
602 #ifdef CONFIG_FAIR_GROUP_SCHED
603 int depth;
604 struct sched_entity *parent;
605 /* rq on which this entity is (to be) queued: */
606 struct cfs_rq *cfs_rq;
607 /* rq "owned" by this entity/group: */
608 struct cfs_rq *my_q;
609 /* cached value of my_q->h_nr_running */
610 unsigned long runnable_weight;
611 #endif
612
613 /*
614 * Per entity load average tracking.
615 *
616 * Put into separate cache line so it does not
617 * collide with read-mostly values above.
618 */
619 struct sched_avg avg;
620 };
621
622 struct sched_rt_entity {
623 struct list_head run_list;
624 unsigned long timeout;
625 unsigned long watchdog_stamp;
626 unsigned int time_slice;
627 unsigned short on_rq;
628 unsigned short on_list;
629
630 struct sched_rt_entity *back;
631 #ifdef CONFIG_RT_GROUP_SCHED
632 struct sched_rt_entity *parent;
633 /* rq on which this entity is (to be) queued: */
634 struct rt_rq *rt_rq;
635 /* rq "owned" by this entity/group: */
636 struct rt_rq *my_q;
637 #endif
638 } __randomize_layout;
639
640 struct rq_flags;
641 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *, struct rq_flags *rf);
642
643 struct sched_dl_entity {
644 struct rb_node rb_node;
645
646 /*
647 * Original scheduling parameters. Copied here from sched_attr
648 * during sched_setattr(), they will remain the same until
649 * the next sched_setattr().
650 */
651 u64 dl_runtime; /* Maximum runtime for each instance */
652 u64 dl_deadline; /* Relative deadline of each instance */
653 u64 dl_period; /* Separation of two instances (period) */
654 u64 dl_bw; /* dl_runtime / dl_period */
655 u64 dl_density; /* dl_runtime / dl_deadline */
656
657 /*
658 * Actual scheduling parameters. Initialized with the values above,
659 * they are continuously updated during task execution. Note that
660 * the remaining runtime could be < 0 in case we are in overrun.
661 */
662 s64 runtime; /* Remaining runtime for this instance */
663 u64 deadline; /* Absolute deadline for this instance */
664 unsigned int flags; /* Specifying the scheduler behaviour */
665
666 /*
667 * Some bool flags:
668 *
669 * @dl_throttled tells if we exhausted the runtime. If so, the
670 * task has to wait for a replenishment to be performed at the
671 * next firing of dl_timer.
672 *
673 * @dl_yielded tells if task gave up the CPU before consuming
674 * all its available runtime during the last job.
675 *
676 * @dl_non_contending tells if the task is inactive while still
677 * contributing to the active utilization. In other words, it
678 * indicates if the inactive timer has been armed and its handler
679 * has not been executed yet. This flag is useful to avoid race
680 * conditions between the inactive timer handler and the wakeup
681 * code.
682 *
683 * @dl_overrun tells if the task asked to be informed about runtime
684 * overruns.
685 *
686 * @dl_server tells if this is a server entity.
687 *
688 * @dl_server_active tells if the dlserver is active(started).
689 * dlserver is started on first cfs enqueue on an idle runqueue
690 * and is stopped when a dequeue results in 0 cfs tasks on the
691 * runqueue. In other words, dlserver is active only when cpu's
692 * runqueue has atleast one cfs task.
693 *
694 * @dl_defer tells if this is a deferred or regular server. For
695 * now only defer server exists.
696 *
697 * @dl_defer_armed tells if the deferrable server is waiting
698 * for the replenishment timer to activate it.
699 *
700 * @dl_defer_running tells if the deferrable server is actually
701 * running, skipping the defer phase.
702 *
703 * @dl_defer_idle tracks idle state
704 */
705 unsigned int dl_throttled : 1;
706 unsigned int dl_yielded : 1;
707 unsigned int dl_non_contending : 1;
708 unsigned int dl_overrun : 1;
709 unsigned int dl_server : 1;
710 unsigned int dl_server_active : 1;
711 unsigned int dl_defer : 1;
712 unsigned int dl_defer_armed : 1;
713 unsigned int dl_defer_running : 1;
714 unsigned int dl_defer_idle : 1;
715
716 /*
717 * Bandwidth enforcement timer. Each -deadline task has its
718 * own bandwidth to be enforced, thus we need one timer per task.
719 */
720 struct hrtimer dl_timer;
721
722 /*
723 * Inactive timer, responsible for decreasing the active utilization
724 * at the "0-lag time". When a -deadline task blocks, it contributes
725 * to GRUB's active utilization until the "0-lag time", hence a
726 * timer is needed to decrease the active utilization at the correct
727 * time.
728 */
729 struct hrtimer inactive_timer;
730
731 /*
732 * Bits for DL-server functionality. Also see the comment near
733 * dl_server_update().
734 *
735 * @rq the runqueue this server is for
736 */
737 struct rq *rq;
738 dl_server_pick_f server_pick_task;
739
740 #ifdef CONFIG_RT_MUTEXES
741 /*
742 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
743 * pi_se points to the donor, otherwise points to the dl_se it belongs
744 * to (the original one/itself).
745 */
746 struct sched_dl_entity *pi_se;
747 #endif
748 };
749
750 #ifdef CONFIG_UCLAMP_TASK
751 /* Number of utilization clamp buckets (shorter alias) */
752 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
753
754 /*
755 * Utilization clamp for a scheduling entity
756 * @value: clamp value "assigned" to a se
757 * @bucket_id: bucket index corresponding to the "assigned" value
758 * @active: the se is currently refcounted in a rq's bucket
759 * @user_defined: the requested clamp value comes from user-space
760 *
761 * The bucket_id is the index of the clamp bucket matching the clamp value
762 * which is pre-computed and stored to avoid expensive integer divisions from
763 * the fast path.
764 *
765 * The active bit is set whenever a task has got an "effective" value assigned,
766 * which can be different from the clamp value "requested" from user-space.
767 * This allows to know a task is refcounted in the rq's bucket corresponding
768 * to the "effective" bucket_id.
769 *
770 * The user_defined bit is set whenever a task has got a task-specific clamp
771 * value requested from userspace, i.e. the system defaults apply to this task
772 * just as a restriction. This allows to relax default clamps when a less
773 * restrictive task-specific value has been requested, thus allowing to
774 * implement a "nice" semantic. For example, a task running with a 20%
775 * default boost can still drop its own boosting to 0%.
776 */
777 struct uclamp_se {
778 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
779 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
780 unsigned int active : 1;
781 unsigned int user_defined : 1;
782 };
783 #endif /* CONFIG_UCLAMP_TASK */
784
785 union rcu_special {
786 struct {
787 u8 blocked;
788 u8 need_qs;
789 u8 exp_hint; /* Hint for performance. */
790 u8 need_mb; /* Readers need smp_mb(). */
791 } b; /* Bits. */
792 u32 s; /* Set of bits. */
793 };
794
795 enum perf_event_task_context {
796 perf_invalid_context = -1,
797 perf_hw_context = 0,
798 perf_sw_context,
799 perf_nr_task_contexts,
800 };
801
802 /*
803 * Number of contexts where an event can trigger:
804 * task, softirq, hardirq, nmi.
805 */
806 #define PERF_NR_CONTEXTS 4
807
808 struct wake_q_node {
809 struct wake_q_node *next;
810 };
811
812 struct kmap_ctrl {
813 #ifdef CONFIG_KMAP_LOCAL
814 int idx;
815 pte_t pteval[KM_MAX_IDX];
816 #endif
817 };
818
819 struct task_struct {
820 #ifdef CONFIG_THREAD_INFO_IN_TASK
821 /*
822 * For reasons of header soup (see current_thread_info()), this
823 * must be the first element of task_struct.
824 */
825 struct thread_info thread_info;
826 #endif
827 unsigned int __state;
828
829 /* saved state for "spinlock sleepers" */
830 unsigned int saved_state;
831
832 /*
833 * This begins the randomizable portion of task_struct. Only
834 * scheduling-critical items should be added above here.
835 */
836 randomized_struct_fields_start
837
838 void *stack;
839 refcount_t usage;
840 /* Per task flags (PF_*), defined further below: */
841 unsigned int flags;
842 unsigned int ptrace;
843
844 #ifdef CONFIG_MEM_ALLOC_PROFILING
845 struct alloc_tag *alloc_tag;
846 #endif
847
848 int on_cpu;
849 struct __call_single_node wake_entry;
850 unsigned int wakee_flips;
851 unsigned long wakee_flip_decay_ts;
852 struct task_struct *last_wakee;
853
854 /*
855 * recent_used_cpu is initially set as the last CPU used by a task
856 * that wakes affine another task. Waker/wakee relationships can
857 * push tasks around a CPU where each wakeup moves to the next one.
858 * Tracking a recently used CPU allows a quick search for a recently
859 * used CPU that may be idle.
860 */
861 int recent_used_cpu;
862 int wake_cpu;
863 int on_rq;
864
865 int prio;
866 int static_prio;
867 int normal_prio;
868 unsigned int rt_priority;
869
870 struct sched_entity se;
871 struct sched_rt_entity rt;
872 struct sched_dl_entity dl;
873 struct sched_dl_entity *dl_server;
874 #ifdef CONFIG_SCHED_CLASS_EXT
875 struct sched_ext_entity scx;
876 #endif
877 const struct sched_class *sched_class;
878
879 #ifdef CONFIG_SCHED_CORE
880 struct rb_node core_node;
881 unsigned long core_cookie;
882 unsigned int core_occupation;
883 #endif
884
885 #ifdef CONFIG_CGROUP_SCHED
886 struct task_group *sched_task_group;
887 #ifdef CONFIG_CFS_BANDWIDTH
888 struct callback_head sched_throttle_work;
889 struct list_head throttle_node;
890 bool throttled;
891 #endif
892 #endif
893
894
895 #ifdef CONFIG_UCLAMP_TASK
896 /*
897 * Clamp values requested for a scheduling entity.
898 * Must be updated with task_rq_lock() held.
899 */
900 struct uclamp_se uclamp_req[UCLAMP_CNT];
901 /*
902 * Effective clamp values used for a scheduling entity.
903 * Must be updated with task_rq_lock() held.
904 */
905 struct uclamp_se uclamp[UCLAMP_CNT];
906 #endif
907
908 struct sched_statistics stats;
909
910 #ifdef CONFIG_PREEMPT_NOTIFIERS
911 /* List of struct preempt_notifier: */
912 struct hlist_head preempt_notifiers;
913 #endif
914
915 #ifdef CONFIG_BLK_DEV_IO_TRACE
916 unsigned int btrace_seq;
917 #endif
918
919 unsigned int policy;
920 unsigned long max_allowed_capacity;
921 int nr_cpus_allowed;
922 const cpumask_t *cpus_ptr;
923 cpumask_t *user_cpus_ptr;
924 cpumask_t cpus_mask;
925 void *migration_pending;
926 unsigned short migration_disabled;
927 unsigned short migration_flags;
928
929 #ifdef CONFIG_PREEMPT_RCU
930 int rcu_read_lock_nesting;
931 union rcu_special rcu_read_unlock_special;
932 struct list_head rcu_node_entry;
933 struct rcu_node *rcu_blocked_node;
934 #endif /* #ifdef CONFIG_PREEMPT_RCU */
935
936 #ifdef CONFIG_TASKS_RCU
937 unsigned long rcu_tasks_nvcsw;
938 u8 rcu_tasks_holdout;
939 u8 rcu_tasks_idx;
940 int rcu_tasks_idle_cpu;
941 struct list_head rcu_tasks_holdout_list;
942 int rcu_tasks_exit_cpu;
943 struct list_head rcu_tasks_exit_list;
944 #endif /* #ifdef CONFIG_TASKS_RCU */
945
946 #ifdef CONFIG_TASKS_TRACE_RCU
947 int trc_reader_nesting;
948 struct srcu_ctr __percpu *trc_reader_scp;
949 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
950
951 struct sched_info sched_info;
952
953 struct list_head tasks;
954 struct plist_node pushable_tasks;
955 struct rb_node pushable_dl_tasks;
956
957 struct mm_struct *mm;
958 struct mm_struct *active_mm;
959
960 int exit_state;
961 int exit_code;
962 int exit_signal;
963 /* The signal sent when the parent dies: */
964 int pdeath_signal;
965 /* JOBCTL_*, siglock protected: */
966 unsigned long jobctl;
967
968 /* Used for emulating ABI behavior of previous Linux versions: */
969 unsigned int personality;
970
971 /* Scheduler bits, serialized by scheduler locks: */
972 unsigned sched_reset_on_fork:1;
973 unsigned sched_contributes_to_load:1;
974 unsigned sched_migrated:1;
975 unsigned sched_task_hot:1;
976
977 /* Force alignment to the next boundary: */
978 unsigned :0;
979
980 /* Unserialized, strictly 'current' */
981
982 /*
983 * This field must not be in the scheduler word above due to wakelist
984 * queueing no longer being serialized by p->on_cpu. However:
985 *
986 * p->XXX = X; ttwu()
987 * schedule() if (p->on_rq && ..) // false
988 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
989 * deactivate_task() ttwu_queue_wakelist())
990 * p->on_rq = 0; p->sched_remote_wakeup = Y;
991 *
992 * guarantees all stores of 'current' are visible before
993 * ->sched_remote_wakeup gets used, so it can be in this word.
994 */
995 unsigned sched_remote_wakeup:1;
996 #ifdef CONFIG_RT_MUTEXES
997 unsigned sched_rt_mutex:1;
998 #endif
999
1000 /* Bit to tell TOMOYO we're in execve(): */
1001 unsigned in_execve:1;
1002 unsigned in_iowait:1;
1003 #ifndef TIF_RESTORE_SIGMASK
1004 unsigned restore_sigmask:1;
1005 #endif
1006 #ifdef CONFIG_MEMCG_V1
1007 unsigned in_user_fault:1;
1008 #endif
1009 #ifdef CONFIG_LRU_GEN
1010 /* whether the LRU algorithm may apply to this access */
1011 unsigned in_lru_fault:1;
1012 #endif
1013 #ifdef CONFIG_COMPAT_BRK
1014 unsigned brk_randomized:1;
1015 #endif
1016 #ifdef CONFIG_CGROUPS
1017 /* disallow userland-initiated cgroup migration */
1018 unsigned no_cgroup_migration:1;
1019 /* task is frozen/stopped (used by the cgroup freezer) */
1020 unsigned frozen:1;
1021 #endif
1022 #ifdef CONFIG_BLK_CGROUP
1023 unsigned use_memdelay:1;
1024 #endif
1025 #ifdef CONFIG_PSI
1026 /* Stalled due to lack of memory */
1027 unsigned in_memstall:1;
1028 #endif
1029 #ifdef CONFIG_PAGE_OWNER
1030 /* Used by page_owner=on to detect recursion in page tracking. */
1031 unsigned in_page_owner:1;
1032 #endif
1033 #ifdef CONFIG_EVENTFD
1034 /* Recursion prevention for eventfd_signal() */
1035 unsigned in_eventfd:1;
1036 #endif
1037 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1038 unsigned pasid_activated:1;
1039 #endif
1040 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1041 unsigned reported_split_lock:1;
1042 #endif
1043 #ifdef CONFIG_TASK_DELAY_ACCT
1044 /* delay due to memory thrashing */
1045 unsigned in_thrashing:1;
1046 #endif
1047 unsigned in_nf_duplicate:1;
1048 #ifdef CONFIG_PREEMPT_RT
1049 struct netdev_xmit net_xmit;
1050 #endif
1051 unsigned long atomic_flags; /* Flags requiring atomic access. */
1052
1053 struct restart_block restart_block;
1054
1055 pid_t pid;
1056 pid_t tgid;
1057
1058 #ifdef CONFIG_STACKPROTECTOR
1059 /* Canary value for the -fstack-protector GCC feature: */
1060 unsigned long stack_canary;
1061 #endif
1062 /*
1063 * Pointers to the (original) parent process, youngest child, younger sibling,
1064 * older sibling, respectively. (p->father can be replaced with
1065 * p->real_parent->pid)
1066 */
1067
1068 /* Real parent process: */
1069 struct task_struct __rcu *real_parent;
1070
1071 /* Recipient of SIGCHLD, wait4() reports: */
1072 struct task_struct __rcu *parent;
1073
1074 /*
1075 * Children/sibling form the list of natural children:
1076 */
1077 struct list_head children;
1078 struct list_head sibling;
1079 struct task_struct *group_leader;
1080
1081 /*
1082 * 'ptraced' is the list of tasks this task is using ptrace() on.
1083 *
1084 * This includes both natural children and PTRACE_ATTACH targets.
1085 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1086 */
1087 struct list_head ptraced;
1088 struct list_head ptrace_entry;
1089
1090 /* PID/PID hash table linkage. */
1091 struct pid *thread_pid;
1092 struct hlist_node pid_links[PIDTYPE_MAX];
1093 struct list_head thread_node;
1094
1095 struct completion *vfork_done;
1096
1097 /* CLONE_CHILD_SETTID: */
1098 int __user *set_child_tid;
1099
1100 /* CLONE_CHILD_CLEARTID: */
1101 int __user *clear_child_tid;
1102
1103 /* PF_KTHREAD | PF_IO_WORKER */
1104 void *worker_private;
1105
1106 u64 utime;
1107 u64 stime;
1108 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1109 u64 utimescaled;
1110 u64 stimescaled;
1111 #endif
1112 u64 gtime;
1113 struct prev_cputime prev_cputime;
1114 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1115 struct vtime vtime;
1116 #endif
1117
1118 #ifdef CONFIG_NO_HZ_FULL
1119 atomic_t tick_dep_mask;
1120 #endif
1121 /* Context switch counts: */
1122 unsigned long nvcsw;
1123 unsigned long nivcsw;
1124
1125 /* Monotonic time in nsecs: */
1126 u64 start_time;
1127
1128 /* Boot based time in nsecs: */
1129 u64 start_boottime;
1130
1131 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1132 unsigned long min_flt;
1133 unsigned long maj_flt;
1134
1135 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1136 struct posix_cputimers posix_cputimers;
1137
1138 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1139 struct posix_cputimers_work posix_cputimers_work;
1140 #endif
1141
1142 /* Process credentials: */
1143
1144 /* Tracer's credentials at attach: */
1145 const struct cred __rcu *ptracer_cred;
1146
1147 /* Objective and real subjective task credentials (COW): */
1148 const struct cred __rcu *real_cred;
1149
1150 /* Effective (overridable) subjective task credentials (COW): */
1151 const struct cred __rcu *cred;
1152
1153 #ifdef CONFIG_KEYS
1154 /* Cached requested key. */
1155 struct key *cached_requested_key;
1156 #endif
1157
1158 /*
1159 * executable name, excluding path.
1160 *
1161 * - normally initialized begin_new_exec()
1162 * - set it with set_task_comm()
1163 * - strscpy_pad() to ensure it is always NUL-terminated and
1164 * zero-padded
1165 * - task_lock() to ensure the operation is atomic and the name is
1166 * fully updated.
1167 */
1168 char comm[TASK_COMM_LEN];
1169
1170 struct nameidata *nameidata;
1171
1172 #ifdef CONFIG_SYSVIPC
1173 struct sysv_sem sysvsem;
1174 struct sysv_shm sysvshm;
1175 #endif
1176 #ifdef CONFIG_DETECT_HUNG_TASK
1177 unsigned long last_switch_count;
1178 unsigned long last_switch_time;
1179 #endif
1180 /* Filesystem information: */
1181 struct fs_struct *fs;
1182
1183 /* Open file information: */
1184 struct files_struct *files;
1185
1186 #ifdef CONFIG_IO_URING
1187 struct io_uring_task *io_uring;
1188 struct io_restriction *io_uring_restrict;
1189 #endif
1190
1191 /* Namespaces: */
1192 struct nsproxy *nsproxy;
1193
1194 /* Signal handlers: */
1195 struct signal_struct *signal;
1196 struct sighand_struct __rcu *sighand;
1197 sigset_t blocked;
1198 sigset_t real_blocked;
1199 /* Restored if set_restore_sigmask() was used: */
1200 sigset_t saved_sigmask;
1201 struct sigpending pending;
1202 unsigned long sas_ss_sp;
1203 size_t sas_ss_size;
1204 unsigned int sas_ss_flags;
1205
1206 struct callback_head *task_works;
1207
1208 #ifdef CONFIG_AUDIT
1209 #ifdef CONFIG_AUDITSYSCALL
1210 struct audit_context *audit_context;
1211 #endif
1212 kuid_t loginuid;
1213 unsigned int sessionid;
1214 #endif
1215 struct seccomp seccomp;
1216 struct syscall_user_dispatch syscall_dispatch;
1217
1218 /* Thread group tracking: */
1219 u64 parent_exec_id;
1220 u64 self_exec_id;
1221
1222 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1223 spinlock_t alloc_lock;
1224
1225 /* Protection of the PI data structures: */
1226 raw_spinlock_t pi_lock;
1227
1228 struct wake_q_node wake_q;
1229
1230 #ifdef CONFIG_RT_MUTEXES
1231 /* PI waiters blocked on a rt_mutex held by this task: */
1232 struct rb_root_cached pi_waiters;
1233 /* Updated under owner's pi_lock and rq lock */
1234 struct task_struct *pi_top_task;
1235 /* Deadlock detection and priority inheritance handling: */
1236 struct rt_mutex_waiter *pi_blocked_on;
1237 #endif
1238
1239 struct mutex *blocked_on; /* lock we're blocked on */
1240
1241 #ifdef CONFIG_DETECT_HUNG_TASK_BLOCKER
1242 /*
1243 * Encoded lock address causing task block (lower 2 bits = type from
1244 * <linux/hung_task.h>). Accessed via hung_task_*() helpers.
1245 */
1246 unsigned long blocker;
1247 #endif
1248
1249 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1250 int non_block_count;
1251 #endif
1252
1253 #ifdef CONFIG_TRACE_IRQFLAGS
1254 struct irqtrace_events irqtrace;
1255 unsigned int hardirq_threaded;
1256 u64 hardirq_chain_key;
1257 int softirqs_enabled;
1258 int softirq_context;
1259 int irq_config;
1260 #endif
1261 #ifdef CONFIG_PREEMPT_RT
1262 int softirq_disable_cnt;
1263 #endif
1264
1265 #ifdef CONFIG_LOCKDEP
1266 # define MAX_LOCK_DEPTH 48UL
1267 u64 curr_chain_key;
1268 int lockdep_depth;
1269 unsigned int lockdep_recursion;
1270 struct held_lock held_locks[MAX_LOCK_DEPTH];
1271 #endif
1272
1273 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1274 unsigned int in_ubsan;
1275 #endif
1276
1277 /* Journalling filesystem info: */
1278 void *journal_info;
1279
1280 /* Stacked block device info: */
1281 struct bio_list *bio_list;
1282
1283 /* Stack plugging: */
1284 struct blk_plug *plug;
1285
1286 /* VM state: */
1287 struct reclaim_state *reclaim_state;
1288
1289 struct io_context *io_context;
1290
1291 #ifdef CONFIG_COMPACTION
1292 struct capture_control *capture_control;
1293 #endif
1294 /* Ptrace state: */
1295 unsigned long ptrace_message;
1296 kernel_siginfo_t *last_siginfo;
1297
1298 struct task_io_accounting ioac;
1299 #ifdef CONFIG_PSI
1300 /* Pressure stall state */
1301 unsigned int psi_flags;
1302 #endif
1303 #ifdef CONFIG_TASK_XACCT
1304 /* Accumulated RSS usage: */
1305 u64 acct_rss_mem1;
1306 /* Accumulated virtual memory usage: */
1307 u64 acct_vm_mem1;
1308 /* stime + utime since last update: */
1309 u64 acct_timexpd;
1310 #endif
1311 #ifdef CONFIG_CPUSETS
1312 /* Protected by ->alloc_lock: */
1313 nodemask_t mems_allowed;
1314 /* Sequence number to catch updates: */
1315 seqcount_spinlock_t mems_allowed_seq;
1316 int cpuset_mem_spread_rotor;
1317 #endif
1318 #ifdef CONFIG_CGROUPS
1319 /* Control Group info protected by css_set_lock: */
1320 struct css_set __rcu *cgroups;
1321 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1322 struct list_head cg_list;
1323 #ifdef CONFIG_PREEMPT_RT
1324 struct llist_node cg_dead_lnode;
1325 #endif /* CONFIG_PREEMPT_RT */
1326 #endif /* CONFIG_CGROUPS */
1327 #ifdef CONFIG_X86_CPU_RESCTRL
1328 u32 closid;
1329 u32 rmid;
1330 #endif
1331 #ifdef CONFIG_FUTEX
1332 struct robust_list_head __user *robust_list;
1333 #ifdef CONFIG_COMPAT
1334 struct compat_robust_list_head __user *compat_robust_list;
1335 #endif
1336 struct list_head pi_state_list;
1337 struct futex_pi_state *pi_state_cache;
1338 struct mutex futex_exit_mutex;
1339 unsigned int futex_state;
1340 #endif
1341 #ifdef CONFIG_PERF_EVENTS
1342 u8 perf_recursion[PERF_NR_CONTEXTS];
1343 struct perf_event_context *perf_event_ctxp;
1344 struct mutex perf_event_mutex;
1345 struct list_head perf_event_list;
1346 struct perf_ctx_data __rcu *perf_ctx_data;
1347 #endif
1348 #ifdef CONFIG_DEBUG_PREEMPT
1349 unsigned long preempt_disable_ip;
1350 #endif
1351 #ifdef CONFIG_NUMA
1352 /* Protected by alloc_lock: */
1353 struct mempolicy *mempolicy;
1354 short il_prev;
1355 u8 il_weight;
1356 short pref_node_fork;
1357 #endif
1358 #ifdef CONFIG_NUMA_BALANCING
1359 int numa_scan_seq;
1360 unsigned int numa_scan_period;
1361 unsigned int numa_scan_period_max;
1362 int numa_preferred_nid;
1363 unsigned long numa_migrate_retry;
1364 /* Migration stamp: */
1365 u64 node_stamp;
1366 u64 last_task_numa_placement;
1367 u64 last_sum_exec_runtime;
1368 struct callback_head numa_work;
1369
1370 /*
1371 * This pointer is only modified for current in syscall and
1372 * pagefault context (and for tasks being destroyed), so it can be read
1373 * from any of the following contexts:
1374 * - RCU read-side critical section
1375 * - current->numa_group from everywhere
1376 * - task's runqueue locked, task not running
1377 */
1378 struct numa_group __rcu *numa_group;
1379
1380 /*
1381 * numa_faults is an array split into four regions:
1382 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1383 * in this precise order.
1384 *
1385 * faults_memory: Exponential decaying average of faults on a per-node
1386 * basis. Scheduling placement decisions are made based on these
1387 * counts. The values remain static for the duration of a PTE scan.
1388 * faults_cpu: Track the nodes the process was running on when a NUMA
1389 * hinting fault was incurred.
1390 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1391 * during the current scan window. When the scan completes, the counts
1392 * in faults_memory and faults_cpu decay and these values are copied.
1393 */
1394 unsigned long *numa_faults;
1395 unsigned long total_numa_faults;
1396
1397 /*
1398 * numa_faults_locality tracks if faults recorded during the last
1399 * scan window were remote/local or failed to migrate. The task scan
1400 * period is adapted based on the locality of the faults with different
1401 * weights depending on whether they were shared or private faults
1402 */
1403 unsigned long numa_faults_locality[3];
1404
1405 unsigned long numa_pages_migrated;
1406 #endif /* CONFIG_NUMA_BALANCING */
1407
1408 struct rseq_data rseq;
1409 struct sched_mm_cid mm_cid;
1410
1411 struct tlbflush_unmap_batch tlb_ubc;
1412
1413 /* Cache last used pipe for splice(): */
1414 struct pipe_inode_info *splice_pipe;
1415
1416 struct page_frag task_frag;
1417
1418 #ifdef CONFIG_ARCH_HAS_LAZY_MMU_MODE
1419 struct lazy_mmu_state lazy_mmu_state;
1420 #endif
1421
1422 #ifdef CONFIG_TASK_DELAY_ACCT
1423 struct task_delay_info *delays;
1424 #endif
1425
1426 #ifdef CONFIG_FAULT_INJECTION
1427 int make_it_fail;
1428 unsigned int fail_nth;
1429 #endif
1430 /*
1431 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1432 * balance_dirty_pages() for a dirty throttling pause:
1433 */
1434 int nr_dirtied;
1435 int nr_dirtied_pause;
1436 /* Start of a write-and-pause period: */
1437 unsigned long dirty_paused_when;
1438
1439 #ifdef CONFIG_LATENCYTOP
1440 int latency_record_count;
1441 struct latency_record latency_record[LT_SAVECOUNT];
1442 #endif
1443 /*
1444 * Time slack values; these are used to round up poll() and
1445 * select() etc timeout values. These are in nanoseconds.
1446 */
1447 u64 timer_slack_ns;
1448 u64 default_timer_slack_ns;
1449
1450 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1451 unsigned int kasan_depth;
1452 #endif
1453
1454 #ifdef CONFIG_KCSAN
1455 struct kcsan_ctx kcsan_ctx;
1456 #ifdef CONFIG_TRACE_IRQFLAGS
1457 struct irqtrace_events kcsan_save_irqtrace;
1458 #endif
1459 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1460 int kcsan_stack_depth;
1461 #endif
1462 #endif
1463
1464 #ifdef CONFIG_KMSAN
1465 struct kmsan_ctx kmsan_ctx;
1466 #endif
1467
1468 #if IS_ENABLED(CONFIG_KUNIT)
1469 struct kunit *kunit_test;
1470 #endif
1471
1472 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1473 /* Index of current stored address in ret_stack: */
1474 int curr_ret_stack;
1475 int curr_ret_depth;
1476
1477 /* Stack of return addresses for return function tracing: */
1478 unsigned long *ret_stack;
1479
1480 /* Timestamp for last schedule: */
1481 unsigned long long ftrace_timestamp;
1482 unsigned long long ftrace_sleeptime;
1483
1484 /*
1485 * Number of functions that haven't been traced
1486 * because of depth overrun:
1487 */
1488 atomic_t trace_overrun;
1489
1490 /* Pause tracing: */
1491 atomic_t tracing_graph_pause;
1492 #endif
1493
1494 #ifdef CONFIG_TRACING
1495 /* Bitmask and counter of trace recursion: */
1496 unsigned long trace_recursion;
1497 #endif /* CONFIG_TRACING */
1498
1499 #ifdef CONFIG_KCOV
1500 /* See kernel/kcov.c for more details. */
1501
1502 /* Coverage collection mode enabled for this task (0 if disabled): */
1503 unsigned int kcov_mode;
1504
1505 /* Size of the kcov_area: */
1506 unsigned int kcov_size;
1507
1508 /* Buffer for coverage collection: */
1509 void *kcov_area;
1510
1511 /* KCOV descriptor wired with this task or NULL: */
1512 struct kcov *kcov;
1513
1514 /* KCOV common handle for remote coverage collection: */
1515 u64 kcov_handle;
1516
1517 /* KCOV sequence number: */
1518 int kcov_sequence;
1519
1520 /* Collect coverage from softirq context: */
1521 unsigned int kcov_softirq;
1522 #endif
1523
1524 #ifdef CONFIG_MEMCG_V1
1525 struct mem_cgroup *memcg_in_oom;
1526 #endif
1527
1528 #ifdef CONFIG_MEMCG
1529 /* Number of pages to reclaim on returning to userland: */
1530 unsigned int memcg_nr_pages_over_high;
1531
1532 /* Used by memcontrol for targeted memcg charge: */
1533 struct mem_cgroup *active_memcg;
1534
1535 /* Cache for current->cgroups->memcg->objcg lookups: */
1536 struct obj_cgroup *objcg;
1537 #endif
1538
1539 #ifdef CONFIG_BLK_CGROUP
1540 struct gendisk *throttle_disk;
1541 #endif
1542
1543 #ifdef CONFIG_UPROBES
1544 struct uprobe_task *utask;
1545 #endif
1546 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1547 unsigned int sequential_io;
1548 unsigned int sequential_io_avg;
1549 #endif
1550 struct kmap_ctrl kmap_ctrl;
1551 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1552 unsigned long task_state_change;
1553 # ifdef CONFIG_PREEMPT_RT
1554 unsigned long saved_state_change;
1555 # endif
1556 #endif
1557 struct rcu_head rcu;
1558 refcount_t rcu_users;
1559 int pagefault_disabled;
1560 #ifdef CONFIG_MMU
1561 struct task_struct *oom_reaper_list;
1562 struct timer_list oom_reaper_timer;
1563 #endif
1564 #ifdef CONFIG_VMAP_STACK
1565 struct vm_struct *stack_vm_area;
1566 #endif
1567 #ifdef CONFIG_THREAD_INFO_IN_TASK
1568 /* A live task holds one reference: */
1569 refcount_t stack_refcount;
1570 #endif
1571 #ifdef CONFIG_LIVEPATCH
1572 int patch_state;
1573 #endif
1574 #ifdef CONFIG_SECURITY
1575 /* Used by LSM modules for access restriction: */
1576 void *security;
1577 #endif
1578 #ifdef CONFIG_BPF_SYSCALL
1579 /* Used by BPF task local storage */
1580 struct bpf_local_storage __rcu *bpf_storage;
1581 /* Used for BPF run context */
1582 struct bpf_run_ctx *bpf_ctx;
1583 #endif
1584 /* Used by BPF for per-TASK xdp storage */
1585 struct bpf_net_context *bpf_net_context;
1586
1587 #ifdef CONFIG_KSTACK_ERASE
1588 unsigned long lowest_stack;
1589 #endif
1590 #ifdef CONFIG_KSTACK_ERASE_METRICS
1591 unsigned long prev_lowest_stack;
1592 #endif
1593
1594 #ifdef CONFIG_X86_MCE
1595 void __user *mce_vaddr;
1596 __u64 mce_kflags;
1597 u64 mce_addr;
1598 __u64 mce_ripv : 1,
1599 mce_whole_page : 1,
1600 __mce_reserved : 62;
1601 struct callback_head mce_kill_me;
1602 int mce_count;
1603 #endif
1604
1605 #ifdef CONFIG_KRETPROBES
1606 struct llist_head kretprobe_instances;
1607 #endif
1608 #ifdef CONFIG_RETHOOK
1609 struct llist_head rethooks;
1610 #endif
1611
1612 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1613 /*
1614 * If L1D flush is supported on mm context switch
1615 * then we use this callback head to queue kill work
1616 * to kill tasks that are not running on SMT disabled
1617 * cores
1618 */
1619 struct callback_head l1d_flush_kill;
1620 #endif
1621
1622 #ifdef CONFIG_RV
1623 /*
1624 * Per-task RV monitor, fixed in CONFIG_RV_PER_TASK_MONITORS.
1625 * If memory becomes a concern, we can think about a dynamic method.
1626 */
1627 union rv_task_monitor rv[CONFIG_RV_PER_TASK_MONITORS];
1628 #endif
1629
1630 #ifdef CONFIG_USER_EVENTS
1631 struct user_event_mm *user_event_mm;
1632 #endif
1633
1634 #ifdef CONFIG_UNWIND_USER
1635 struct unwind_task_info unwind_info;
1636 #endif
1637
1638 /* CPU-specific state of this task: */
1639 struct thread_struct thread;
1640
1641 /*
1642 * New fields for task_struct should be added above here, so that
1643 * they are included in the randomized portion of task_struct.
1644 */
1645 randomized_struct_fields_end
1646 } __attribute__ ((aligned (64)));
1647
1648 #ifdef CONFIG_SCHED_PROXY_EXEC
1649 DECLARE_STATIC_KEY_TRUE(__sched_proxy_exec);
sched_proxy_exec(void)1650 static inline bool sched_proxy_exec(void)
1651 {
1652 return static_branch_likely(&__sched_proxy_exec);
1653 }
1654 #else
sched_proxy_exec(void)1655 static inline bool sched_proxy_exec(void)
1656 {
1657 return false;
1658 }
1659 #endif
1660
1661 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1662 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1663
__task_state_index(unsigned int tsk_state,unsigned int tsk_exit_state)1664 static inline unsigned int __task_state_index(unsigned int tsk_state,
1665 unsigned int tsk_exit_state)
1666 {
1667 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1668
1669 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1670
1671 if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1672 state = TASK_REPORT_IDLE;
1673
1674 /*
1675 * We're lying here, but rather than expose a completely new task state
1676 * to userspace, we can make this appear as if the task has gone through
1677 * a regular rt_mutex_lock() call.
1678 * Report frozen tasks as uninterruptible.
1679 */
1680 if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
1681 state = TASK_UNINTERRUPTIBLE;
1682
1683 return fls(state);
1684 }
1685
task_state_index(struct task_struct * tsk)1686 static inline unsigned int task_state_index(struct task_struct *tsk)
1687 {
1688 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1689 }
1690
task_index_to_char(unsigned int state)1691 static inline char task_index_to_char(unsigned int state)
1692 {
1693 static const char state_char[] = "RSDTtXZPI";
1694
1695 BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1));
1696
1697 return state_char[state];
1698 }
1699
task_state_to_char(struct task_struct * tsk)1700 static inline char task_state_to_char(struct task_struct *tsk)
1701 {
1702 return task_index_to_char(task_state_index(tsk));
1703 }
1704
1705 #ifdef CONFIG_ARCH_HAS_LAZY_MMU_MODE
1706 /**
1707 * __task_lazy_mmu_mode_active() - Test the lazy MMU mode state for a task.
1708 * @tsk: The task to check.
1709 *
1710 * Test whether @tsk has its lazy MMU mode state set to active (i.e. enabled
1711 * and not paused).
1712 *
1713 * This function only considers the state saved in task_struct; to test whether
1714 * current actually is in lazy MMU mode, is_lazy_mmu_mode_active() should be
1715 * used instead.
1716 *
1717 * This function is intended for architectures that implement the lazy MMU
1718 * mode; it must not be called from generic code.
1719 */
__task_lazy_mmu_mode_active(struct task_struct * tsk)1720 static inline bool __task_lazy_mmu_mode_active(struct task_struct *tsk)
1721 {
1722 struct lazy_mmu_state *state = &tsk->lazy_mmu_state;
1723
1724 return state->enable_count > 0 && state->pause_count == 0;
1725 }
1726
1727 /**
1728 * is_lazy_mmu_mode_active() - Test whether we are currently in lazy MMU mode.
1729 *
1730 * Test whether the current context is in lazy MMU mode. This is true if both:
1731 * 1. We are not in interrupt context
1732 * 2. Lazy MMU mode is active for the current task
1733 *
1734 * This function is intended for architectures that implement the lazy MMU
1735 * mode; it must not be called from generic code.
1736 */
is_lazy_mmu_mode_active(void)1737 static inline bool is_lazy_mmu_mode_active(void)
1738 {
1739 if (in_interrupt())
1740 return false;
1741
1742 return __task_lazy_mmu_mode_active(current);
1743 }
1744 #endif
1745
1746 extern struct pid *cad_pid;
1747
1748 /*
1749 * Per process flags
1750 */
1751 #define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1752 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1753 #define PF_EXITING 0x00000004 /* Getting shut down */
1754 #define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
1755 #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1756 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1757 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1758 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1759 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1760 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1761 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1762 #define PF_MEMALLOC 0x00000800 /* Allocating memory to free memory. See memalloc_noreclaim_save() */
1763 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1764 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1765 #define PF_USER_WORKER 0x00004000 /* Kernel thread cloned from userspace thread */
1766 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1767 #define PF_KCOMPACTD 0x00010000 /* I am kcompactd */
1768 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1769 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1770 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1771 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1772 * I am cleaning dirty pages from some other bdi. */
1773 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1774 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1775 #define PF__HOLE__00800000 0x00800000
1776 #define PF__HOLE__01000000 0x01000000
1777 #define PF__HOLE__02000000 0x02000000
1778 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1779 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1780 #define PF_MEMALLOC_PIN 0x10000000 /* Allocations constrained to zones which allow long term pinning.
1781 * See memalloc_pin_save() */
1782 #define PF_BLOCK_TS 0x20000000 /* plug has ts that needs updating */
1783 #define PF__HOLE__40000000 0x40000000
1784 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1785
1786 /*
1787 * Only the _current_ task can read/write to tsk->flags, but other
1788 * tasks can access tsk->flags in readonly mode for example
1789 * with tsk_used_math (like during threaded core dumping).
1790 * There is however an exception to this rule during ptrace
1791 * or during fork: the ptracer task is allowed to write to the
1792 * child->flags of its traced child (same goes for fork, the parent
1793 * can write to the child->flags), because we're guaranteed the
1794 * child is not running and in turn not changing child->flags
1795 * at the same time the parent does it.
1796 */
1797 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1798 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1799 #define clear_used_math() clear_stopped_child_used_math(current)
1800 #define set_used_math() set_stopped_child_used_math(current)
1801
1802 #define conditional_stopped_child_used_math(condition, child) \
1803 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1804
1805 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1806
1807 #define copy_to_stopped_child_used_math(child) \
1808 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1809
1810 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1811 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1812 #define used_math() tsk_used_math(current)
1813
is_percpu_thread(void)1814 static __always_inline bool is_percpu_thread(void)
1815 {
1816 return (current->flags & PF_NO_SETAFFINITY) &&
1817 (current->nr_cpus_allowed == 1);
1818 }
1819
is_user_task(struct task_struct * task)1820 static __always_inline bool is_user_task(struct task_struct *task)
1821 {
1822 return task->mm && !(task->flags & (PF_KTHREAD | PF_USER_WORKER));
1823 }
1824
1825 /* Per-process atomic flags. */
1826 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1827 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1828 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1829 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1830 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1831 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1832 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1833 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1834
1835 #define TASK_PFA_TEST(name, func) \
1836 static inline bool task_##func(struct task_struct *p) \
1837 { return test_bit(PFA_##name, &p->atomic_flags); }
1838
1839 #define TASK_PFA_SET(name, func) \
1840 static inline void task_set_##func(struct task_struct *p) \
1841 { set_bit(PFA_##name, &p->atomic_flags); }
1842
1843 #define TASK_PFA_CLEAR(name, func) \
1844 static inline void task_clear_##func(struct task_struct *p) \
1845 { clear_bit(PFA_##name, &p->atomic_flags); }
1846
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1847 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1848 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1849
1850 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1851 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1852 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1853
1854 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1855 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1856 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1857
1858 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1859 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1860 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1861
1862 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1863 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1864 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1865
1866 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1867 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1868
1869 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1870 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1871 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1872
1873 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1874 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1875
1876 static inline void
1877 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1878 {
1879 current->flags &= ~flags;
1880 current->flags |= orig_flags & flags;
1881 }
1882
1883 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1884 extern int task_can_attach(struct task_struct *p);
1885 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1886 extern void dl_bw_free(int cpu, u64 dl_bw);
1887
1888 /* set_cpus_allowed_force() - consider using set_cpus_allowed_ptr() instead */
1889 extern void set_cpus_allowed_force(struct task_struct *p, const struct cpumask *new_mask);
1890
1891 /**
1892 * set_cpus_allowed_ptr - set CPU affinity mask of a task
1893 * @p: the task
1894 * @new_mask: CPU affinity mask
1895 *
1896 * Return: zero if successful, or a negative error code
1897 */
1898 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1899 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1900 extern void release_user_cpus_ptr(struct task_struct *p);
1901 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1902 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1903 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1904
1905 extern int yield_to(struct task_struct *p, bool preempt);
1906 extern void set_user_nice(struct task_struct *p, long nice);
1907 extern int task_prio(const struct task_struct *p);
1908
1909 /**
1910 * task_nice - return the nice value of a given task.
1911 * @p: the task in question.
1912 *
1913 * Return: The nice value [ -20 ... 0 ... 19 ].
1914 */
task_nice(const struct task_struct * p)1915 static inline int task_nice(const struct task_struct *p)
1916 {
1917 return PRIO_TO_NICE((p)->static_prio);
1918 }
1919
1920 extern int can_nice(const struct task_struct *p, const int nice);
1921 extern int task_curr(const struct task_struct *p);
1922 extern int idle_cpu(int cpu);
1923 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1924 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1925 extern void sched_set_fifo(struct task_struct *p);
1926 extern void sched_set_fifo_low(struct task_struct *p);
1927 extern void sched_set_fifo_secondary(struct task_struct *p);
1928 extern void sched_set_normal(struct task_struct *p, int nice);
1929 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1930 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1931 extern struct task_struct *idle_task(int cpu);
1932
1933 /**
1934 * is_idle_task - is the specified task an idle task?
1935 * @p: the task in question.
1936 *
1937 * Return: 1 if @p is an idle task. 0 otherwise.
1938 */
is_idle_task(const struct task_struct * p)1939 static __always_inline bool is_idle_task(const struct task_struct *p)
1940 {
1941 return !!(p->flags & PF_IDLE);
1942 }
1943
1944 extern struct task_struct *curr_task(int cpu);
1945 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1946
1947 void yield(void);
1948
1949 union thread_union {
1950 struct task_struct task;
1951 #ifndef CONFIG_THREAD_INFO_IN_TASK
1952 struct thread_info thread_info;
1953 #endif
1954 unsigned long stack[THREAD_SIZE/sizeof(long)];
1955 };
1956
1957 #ifndef CONFIG_THREAD_INFO_IN_TASK
1958 extern struct thread_info init_thread_info;
1959 #endif
1960
1961 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1962
1963 #ifdef CONFIG_THREAD_INFO_IN_TASK
1964 # define task_thread_info(task) (&(task)->thread_info)
1965 #else
1966 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1967 #endif
1968
1969 /*
1970 * find a task by one of its numerical ids
1971 *
1972 * find_task_by_pid_ns():
1973 * finds a task by its pid in the specified namespace
1974 * find_task_by_vpid():
1975 * finds a task by its virtual pid
1976 *
1977 * see also find_vpid() etc in include/linux/pid.h
1978 */
1979
1980 extern struct task_struct *find_task_by_vpid(pid_t nr);
1981 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1982
1983 /*
1984 * find a task by its virtual pid and get the task struct
1985 */
1986 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1987
1988 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1989 extern int wake_up_process(struct task_struct *tsk);
1990 extern void wake_up_new_task(struct task_struct *tsk);
1991
1992 extern void kick_process(struct task_struct *tsk);
1993
1994 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1995 #define set_task_comm(tsk, from) ({ \
1996 BUILD_BUG_ON(sizeof(from) != TASK_COMM_LEN); \
1997 __set_task_comm(tsk, from, false); \
1998 })
1999
2000 /*
2001 * - Why not use task_lock()?
2002 * User space can randomly change their names anyway, so locking for readers
2003 * doesn't make sense. For writers, locking is probably necessary, as a race
2004 * condition could lead to long-term mixed results.
2005 * The strscpy_pad() in __set_task_comm() can ensure that the task comm is
2006 * always NUL-terminated and zero-padded. Therefore the race condition between
2007 * reader and writer is not an issue.
2008 *
2009 * - BUILD_BUG_ON() can help prevent the buf from being truncated.
2010 * Since the callers don't perform any return value checks, this safeguard is
2011 * necessary.
2012 */
2013 #define get_task_comm(buf, tsk) ({ \
2014 BUILD_BUG_ON(sizeof(buf) < TASK_COMM_LEN); \
2015 strscpy_pad(buf, (tsk)->comm); \
2016 buf; \
2017 })
2018
scheduler_ipi(void)2019 static __always_inline void scheduler_ipi(void)
2020 {
2021 /*
2022 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2023 * TIF_NEED_RESCHED remotely (for the first time) will also send
2024 * this IPI.
2025 */
2026 preempt_fold_need_resched();
2027 }
2028
2029 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2030
2031 /*
2032 * Set thread flags in other task's structures.
2033 * See asm/thread_info.h for TIF_xxxx flags available:
2034 */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2035 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2036 {
2037 set_ti_thread_flag(task_thread_info(tsk), flag);
2038 }
2039
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2040 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2041 {
2042 clear_ti_thread_flag(task_thread_info(tsk), flag);
2043 }
2044
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)2045 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2046 bool value)
2047 {
2048 update_ti_thread_flag(task_thread_info(tsk), flag, value);
2049 }
2050
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2051 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2052 {
2053 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2054 }
2055
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2056 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2057 {
2058 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2059 }
2060
test_tsk_thread_flag(struct task_struct * tsk,int flag)2061 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2062 {
2063 return test_ti_thread_flag(task_thread_info(tsk), flag);
2064 }
2065
set_tsk_need_resched(struct task_struct * tsk)2066 static inline void set_tsk_need_resched(struct task_struct *tsk)
2067 {
2068 if (tracepoint_enabled(sched_set_need_resched_tp) &&
2069 !test_tsk_thread_flag(tsk, TIF_NEED_RESCHED))
2070 __trace_set_need_resched(tsk, TIF_NEED_RESCHED);
2071 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2072 }
2073
clear_tsk_need_resched(struct task_struct * tsk)2074 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2075 {
2076 atomic_long_andnot(_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY,
2077 (atomic_long_t *)&task_thread_info(tsk)->flags);
2078 }
2079
test_tsk_need_resched(struct task_struct * tsk)2080 static inline int test_tsk_need_resched(struct task_struct *tsk)
2081 {
2082 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2083 }
2084
set_need_resched_current(void)2085 static inline void set_need_resched_current(void)
2086 {
2087 lockdep_assert_irqs_disabled();
2088 set_tsk_need_resched(current);
2089 set_preempt_need_resched();
2090 }
2091
2092 /*
2093 * cond_resched() and cond_resched_lock(): latency reduction via
2094 * explicit rescheduling in places that are safe. The return
2095 * value indicates whether a reschedule was done in fact.
2096 * cond_resched_lock() will drop the spinlock before scheduling,
2097 */
2098 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2099 extern int __cond_resched(void);
2100
2101 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2102
2103 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2104
_cond_resched(void)2105 static __always_inline int _cond_resched(void)
2106 {
2107 return static_call_mod(cond_resched)();
2108 }
2109
2110 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2111
2112 extern int dynamic_cond_resched(void);
2113
_cond_resched(void)2114 static __always_inline int _cond_resched(void)
2115 {
2116 return dynamic_cond_resched();
2117 }
2118
2119 #else /* !CONFIG_PREEMPTION */
2120
_cond_resched(void)2121 static inline int _cond_resched(void)
2122 {
2123 return __cond_resched();
2124 }
2125
2126 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2127
2128 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2129
_cond_resched(void)2130 static inline int _cond_resched(void)
2131 {
2132 return 0;
2133 }
2134
2135 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2136
2137 #define cond_resched() ({ \
2138 __might_resched(__FILE__, __LINE__, 0); \
2139 _cond_resched(); \
2140 })
2141
2142 extern int __cond_resched_lock(spinlock_t *lock) __must_hold(lock);
2143 extern int __cond_resched_rwlock_read(rwlock_t *lock) __must_hold_shared(lock);
2144 extern int __cond_resched_rwlock_write(rwlock_t *lock) __must_hold(lock);
2145
2146 #define MIGHT_RESCHED_RCU_SHIFT 8
2147 #define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2148
2149 #ifndef CONFIG_PREEMPT_RT
2150 /*
2151 * Non RT kernels have an elevated preempt count due to the held lock,
2152 * but are not allowed to be inside a RCU read side critical section
2153 */
2154 # define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2155 #else
2156 /*
2157 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2158 * cond_resched*lock() has to take that into account because it checks for
2159 * preempt_count() and rcu_preempt_depth().
2160 */
2161 # define PREEMPT_LOCK_RESCHED_OFFSETS \
2162 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2163 #endif
2164
2165 #define cond_resched_lock(lock) ({ \
2166 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2167 __cond_resched_lock(lock); \
2168 })
2169
2170 #define cond_resched_rwlock_read(lock) ({ \
2171 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2172 __cond_resched_rwlock_read(lock); \
2173 })
2174
2175 #define cond_resched_rwlock_write(lock) ({ \
2176 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2177 __cond_resched_rwlock_write(lock); \
2178 })
2179
2180 #ifndef CONFIG_PREEMPT_RT
__get_task_blocked_on(struct task_struct * p)2181 static inline struct mutex *__get_task_blocked_on(struct task_struct *p)
2182 {
2183 struct mutex *m = p->blocked_on;
2184
2185 if (m)
2186 lockdep_assert_held_once(&m->wait_lock);
2187 return m;
2188 }
2189
__set_task_blocked_on(struct task_struct * p,struct mutex * m)2190 static inline void __set_task_blocked_on(struct task_struct *p, struct mutex *m)
2191 {
2192 struct mutex *blocked_on = READ_ONCE(p->blocked_on);
2193
2194 WARN_ON_ONCE(!m);
2195 /* The task should only be setting itself as blocked */
2196 WARN_ON_ONCE(p != current);
2197 /* Currently we serialize blocked_on under the mutex::wait_lock */
2198 lockdep_assert_held_once(&m->wait_lock);
2199 /*
2200 * Check ensure we don't overwrite existing mutex value
2201 * with a different mutex. Note, setting it to the same
2202 * lock repeatedly is ok.
2203 */
2204 WARN_ON_ONCE(blocked_on && blocked_on != m);
2205 WRITE_ONCE(p->blocked_on, m);
2206 }
2207
set_task_blocked_on(struct task_struct * p,struct mutex * m)2208 static inline void set_task_blocked_on(struct task_struct *p, struct mutex *m)
2209 {
2210 guard(raw_spinlock_irqsave)(&m->wait_lock);
2211 __set_task_blocked_on(p, m);
2212 }
2213
__clear_task_blocked_on(struct task_struct * p,struct mutex * m)2214 static inline void __clear_task_blocked_on(struct task_struct *p, struct mutex *m)
2215 {
2216 if (m) {
2217 struct mutex *blocked_on = READ_ONCE(p->blocked_on);
2218
2219 /* Currently we serialize blocked_on under the mutex::wait_lock */
2220 lockdep_assert_held_once(&m->wait_lock);
2221 /*
2222 * There may be cases where we re-clear already cleared
2223 * blocked_on relationships, but make sure we are not
2224 * clearing the relationship with a different lock.
2225 */
2226 WARN_ON_ONCE(blocked_on && blocked_on != m);
2227 }
2228 WRITE_ONCE(p->blocked_on, NULL);
2229 }
2230
clear_task_blocked_on(struct task_struct * p,struct mutex * m)2231 static inline void clear_task_blocked_on(struct task_struct *p, struct mutex *m)
2232 {
2233 guard(raw_spinlock_irqsave)(&m->wait_lock);
2234 __clear_task_blocked_on(p, m);
2235 }
2236 #else
__clear_task_blocked_on(struct task_struct * p,struct rt_mutex * m)2237 static inline void __clear_task_blocked_on(struct task_struct *p, struct rt_mutex *m)
2238 {
2239 }
2240
clear_task_blocked_on(struct task_struct * p,struct rt_mutex * m)2241 static inline void clear_task_blocked_on(struct task_struct *p, struct rt_mutex *m)
2242 {
2243 }
2244 #endif /* !CONFIG_PREEMPT_RT */
2245
need_resched(void)2246 static __always_inline bool need_resched(void)
2247 {
2248 return unlikely(tif_need_resched());
2249 }
2250
2251 /*
2252 * Wrappers for p->thread_info->cpu access. No-op on UP.
2253 */
2254 #ifdef CONFIG_SMP
2255
task_cpu(const struct task_struct * p)2256 static inline unsigned int task_cpu(const struct task_struct *p)
2257 {
2258 return READ_ONCE(task_thread_info(p)->cpu);
2259 }
2260
2261 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2262
2263 #else
2264
task_cpu(const struct task_struct * p)2265 static inline unsigned int task_cpu(const struct task_struct *p)
2266 {
2267 return 0;
2268 }
2269
set_task_cpu(struct task_struct * p,unsigned int cpu)2270 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2271 {
2272 }
2273
2274 #endif /* CONFIG_SMP */
2275
task_is_runnable(struct task_struct * p)2276 static inline bool task_is_runnable(struct task_struct *p)
2277 {
2278 return p->on_rq && !p->se.sched_delayed;
2279 }
2280
2281 extern bool sched_task_on_rq(struct task_struct *p);
2282 extern unsigned long get_wchan(struct task_struct *p);
2283 extern struct task_struct *cpu_curr_snapshot(int cpu);
2284
2285 /*
2286 * In order to reduce various lock holder preemption latencies provide an
2287 * interface to see if a vCPU is currently running or not.
2288 *
2289 * This allows us to terminate optimistic spin loops and block, analogous to
2290 * the native optimistic spin heuristic of testing if the lock owner task is
2291 * running or not.
2292 */
2293 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2294 static inline bool vcpu_is_preempted(int cpu)
2295 {
2296 return false;
2297 }
2298 #endif
2299
2300 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2301 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2302
2303 #ifndef TASK_SIZE_OF
2304 #define TASK_SIZE_OF(tsk) TASK_SIZE
2305 #endif
2306
owner_on_cpu(struct task_struct * owner)2307 static inline bool owner_on_cpu(struct task_struct *owner)
2308 {
2309 /*
2310 * As lock holder preemption issue, we both skip spinning if
2311 * task is not on cpu or its cpu is preempted
2312 */
2313 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2314 }
2315
2316 /* Returns effective CPU energy utilization, as seen by the scheduler */
2317 unsigned long sched_cpu_util(int cpu);
2318
2319 #ifdef CONFIG_SCHED_CORE
2320 extern void sched_core_free(struct task_struct *tsk);
2321 extern void sched_core_fork(struct task_struct *p);
2322 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2323 unsigned long uaddr);
2324 extern int sched_core_idle_cpu(int cpu);
2325 #else
sched_core_free(struct task_struct * tsk)2326 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2327 static inline void sched_core_fork(struct task_struct *p) { }
sched_core_idle_cpu(int cpu)2328 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2329 #endif
2330
2331 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2332
2333 #ifdef CONFIG_MEM_ALLOC_PROFILING
alloc_tag_save(struct alloc_tag * tag)2334 static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
2335 {
2336 swap(current->alloc_tag, tag);
2337 return tag;
2338 }
2339
alloc_tag_restore(struct alloc_tag * tag,struct alloc_tag * old)2340 static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
2341 {
2342 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2343 WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
2344 #endif
2345 current->alloc_tag = old;
2346 }
2347 #else
2348 #define alloc_tag_save(_tag) NULL
2349 #define alloc_tag_restore(_tag, _old) do {} while (0)
2350 #endif
2351
2352 /* Avoids recursive inclusion hell */
2353 #ifdef CONFIG_SCHED_MM_CID
2354 void sched_mm_cid_before_execve(struct task_struct *t);
2355 void sched_mm_cid_after_execve(struct task_struct *t);
2356 void sched_mm_cid_fork(struct task_struct *t);
2357 void sched_mm_cid_exit(struct task_struct *t);
task_mm_cid(struct task_struct * t)2358 static __always_inline int task_mm_cid(struct task_struct *t)
2359 {
2360 return t->mm_cid.cid & ~(MM_CID_ONCPU | MM_CID_TRANSIT);
2361 }
2362 #else
sched_mm_cid_before_execve(struct task_struct * t)2363 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
sched_mm_cid_after_execve(struct task_struct * t)2364 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
sched_mm_cid_fork(struct task_struct * t)2365 static inline void sched_mm_cid_fork(struct task_struct *t) { }
sched_mm_cid_exit(struct task_struct * t)2366 static inline void sched_mm_cid_exit(struct task_struct *t) { }
task_mm_cid(struct task_struct * t)2367 static __always_inline int task_mm_cid(struct task_struct *t)
2368 {
2369 /*
2370 * Use the processor id as a fall-back when the mm cid feature is
2371 * disabled. This provides functional per-cpu data structure accesses
2372 * in user-space, althrough it won't provide the memory usage benefits.
2373 */
2374 return task_cpu(t);
2375 }
2376 #endif
2377
2378 #ifndef MODULE
2379 #ifndef COMPILE_OFFSETS
2380
2381 extern void ___migrate_enable(void);
2382
2383 struct rq;
2384 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
2385
2386 /*
2387 * The "struct rq" is not available here, so we can't access the
2388 * "runqueues" with this_cpu_ptr(), as the compilation will fail in
2389 * this_cpu_ptr() -> raw_cpu_ptr() -> __verify_pcpu_ptr():
2390 * typeof((ptr) + 0)
2391 *
2392 * So use arch_raw_cpu_ptr()/PERCPU_PTR() directly here.
2393 */
2394 #ifdef CONFIG_SMP
2395 #define this_rq_raw() arch_raw_cpu_ptr(&runqueues)
2396 #else
2397 #define this_rq_raw() PERCPU_PTR(&runqueues)
2398 #endif
2399 #define this_rq_pinned() (*(unsigned int *)((void *)this_rq_raw() + RQ_nr_pinned))
2400
__migrate_enable(void)2401 static inline void __migrate_enable(void)
2402 {
2403 struct task_struct *p = current;
2404
2405 #ifdef CONFIG_DEBUG_PREEMPT
2406 /*
2407 * Check both overflow from migrate_disable() and superfluous
2408 * migrate_enable().
2409 */
2410 if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2411 return;
2412 #endif
2413
2414 if (p->migration_disabled > 1) {
2415 p->migration_disabled--;
2416 return;
2417 }
2418
2419 /*
2420 * Ensure stop_task runs either before or after this, and that
2421 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2422 */
2423 guard(preempt)();
2424 if (unlikely(p->cpus_ptr != &p->cpus_mask))
2425 ___migrate_enable();
2426 /*
2427 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2428 * regular cpus_mask, otherwise things that race (eg.
2429 * select_fallback_rq) get confused.
2430 */
2431 barrier();
2432 p->migration_disabled = 0;
2433 this_rq_pinned()--;
2434 }
2435
__migrate_disable(void)2436 static inline void __migrate_disable(void)
2437 {
2438 struct task_struct *p = current;
2439
2440 if (p->migration_disabled) {
2441 #ifdef CONFIG_DEBUG_PREEMPT
2442 /*
2443 *Warn about overflow half-way through the range.
2444 */
2445 WARN_ON_ONCE((s16)p->migration_disabled < 0);
2446 #endif
2447 p->migration_disabled++;
2448 return;
2449 }
2450
2451 guard(preempt)();
2452 this_rq_pinned()++;
2453 p->migration_disabled = 1;
2454 }
2455 #else /* !COMPILE_OFFSETS */
__migrate_disable(void)2456 static inline void __migrate_disable(void) { }
__migrate_enable(void)2457 static inline void __migrate_enable(void) { }
2458 #endif /* !COMPILE_OFFSETS */
2459
2460 /*
2461 * So that it is possible to not export the runqueues variable, define and
2462 * export migrate_enable/migrate_disable in kernel/sched/core.c too, and use
2463 * them for the modules. The macro "INSTANTIATE_EXPORTED_MIGRATE_DISABLE" will
2464 * be defined in kernel/sched/core.c.
2465 */
2466 #ifndef INSTANTIATE_EXPORTED_MIGRATE_DISABLE
migrate_disable(void)2467 static __always_inline void migrate_disable(void)
2468 {
2469 __migrate_disable();
2470 }
2471
migrate_enable(void)2472 static __always_inline void migrate_enable(void)
2473 {
2474 __migrate_enable();
2475 }
2476 #else /* INSTANTIATE_EXPORTED_MIGRATE_DISABLE */
2477 extern void migrate_disable(void);
2478 extern void migrate_enable(void);
2479 #endif /* INSTANTIATE_EXPORTED_MIGRATE_DISABLE */
2480
2481 #else /* MODULE */
2482 extern void migrate_disable(void);
2483 extern void migrate_enable(void);
2484 #endif /* MODULE */
2485
2486 DEFINE_LOCK_GUARD_0(migrate, migrate_disable(), migrate_enable())
2487
2488 #endif
2489