xref: /linux/drivers/clk/ti/fapll.c (revision 522ba450b56fff29f868b1552bdc2965f55de7ed)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 #include <linux/clk.h>
4 #include <linux/clk-provider.h>
5 #include <linux/delay.h>
6 #include <linux/err.h>
7 #include <linux/io.h>
8 #include <linux/math64.h>
9 #include <linux/of.h>
10 #include <linux/of_address.h>
11 #include <linux/clk/ti.h>
12 
13 #include "clock.h"
14 
15 /* FAPLL Control Register PLL_CTRL */
16 #define FAPLL_MAIN_MULT_N_SHIFT	16
17 #define FAPLL_MAIN_DIV_P_SHIFT	8
18 #define FAPLL_MAIN_LOCK		BIT(7)
19 #define FAPLL_MAIN_PLLEN	BIT(3)
20 #define FAPLL_MAIN_BP		BIT(2)
21 #define FAPLL_MAIN_LOC_CTL	BIT(0)
22 
23 #define FAPLL_MAIN_MAX_MULT_N	0xffff
24 #define FAPLL_MAIN_MAX_DIV_P	0xff
25 #define FAPLL_MAIN_CLEAR_MASK	\
26 	((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \
27 	 (FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \
28 	 FAPLL_MAIN_LOC_CTL)
29 
30 /* FAPLL powerdown register PWD */
31 #define FAPLL_PWD_OFFSET	4
32 
33 #define MAX_FAPLL_OUTPUTS	7
34 #define FAPLL_MAX_RETRIES	1000
35 
36 #define to_fapll(_hw)		container_of(_hw, struct fapll_data, hw)
37 #define to_synth(_hw)		container_of(_hw, struct fapll_synth, hw)
38 
39 /* The bypass bit is inverted on the ddr_pll.. */
40 #define fapll_is_ddr_pll(va)	(((u32)(va) & 0xffff) == 0x0440)
41 
42 /*
43  * The audio_pll_clk1 input is hard wired to the 27MHz bypass clock,
44  * and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output.
45  */
46 #define is_ddr_pll_clk1(va)	(((u32)(va) & 0xffff) == 0x044c)
47 #define is_audio_pll_clk1(va)	(((u32)(va) & 0xffff) == 0x04a8)
48 
49 /* Synthesizer divider register */
50 #define SYNTH_LDMDIV1		BIT(8)
51 
52 /* Synthesizer frequency register */
53 #define SYNTH_LDFREQ		BIT(31)
54 
55 #define SYNTH_PHASE_K		8
56 #define SYNTH_MAX_INT_DIV	0xf
57 #define SYNTH_MAX_DIV_M		0xff
58 
59 struct fapll_data {
60 	struct clk_hw hw;
61 	void __iomem *base;
62 	const char *name;
63 	struct clk *clk_ref;
64 	struct clk *clk_bypass;
65 	struct clk_onecell_data outputs;
66 	bool bypass_bit_inverted;
67 };
68 
69 struct fapll_synth {
70 	struct clk_hw hw;
71 	struct fapll_data *fd;
72 	int index;
73 	void __iomem *freq;
74 	void __iomem *div;
75 	const char *name;
76 	struct clk *clk_pll;
77 };
78 
ti_fapll_clock_is_bypass(struct fapll_data * fd)79 static bool ti_fapll_clock_is_bypass(struct fapll_data *fd)
80 {
81 	u32 v = readl_relaxed(fd->base);
82 
83 	if (fd->bypass_bit_inverted)
84 		return !(v & FAPLL_MAIN_BP);
85 	else
86 		return !!(v & FAPLL_MAIN_BP);
87 }
88 
ti_fapll_set_bypass(struct fapll_data * fd)89 static void ti_fapll_set_bypass(struct fapll_data *fd)
90 {
91 	u32 v = readl_relaxed(fd->base);
92 
93 	if (fd->bypass_bit_inverted)
94 		v &= ~FAPLL_MAIN_BP;
95 	else
96 		v |= FAPLL_MAIN_BP;
97 	writel_relaxed(v, fd->base);
98 }
99 
ti_fapll_clear_bypass(struct fapll_data * fd)100 static void ti_fapll_clear_bypass(struct fapll_data *fd)
101 {
102 	u32 v = readl_relaxed(fd->base);
103 
104 	if (fd->bypass_bit_inverted)
105 		v |= FAPLL_MAIN_BP;
106 	else
107 		v &= ~FAPLL_MAIN_BP;
108 	writel_relaxed(v, fd->base);
109 }
110 
ti_fapll_wait_lock(struct fapll_data * fd)111 static int ti_fapll_wait_lock(struct fapll_data *fd)
112 {
113 	int retries = FAPLL_MAX_RETRIES;
114 	u32 v;
115 
116 	while ((v = readl_relaxed(fd->base))) {
117 		if (v & FAPLL_MAIN_LOCK)
118 			return 0;
119 
120 		if (retries-- <= 0)
121 			break;
122 
123 		udelay(1);
124 	}
125 
126 	pr_err("%s failed to lock\n", fd->name);
127 
128 	return -ETIMEDOUT;
129 }
130 
ti_fapll_enable(struct clk_hw * hw)131 static int ti_fapll_enable(struct clk_hw *hw)
132 {
133 	struct fapll_data *fd = to_fapll(hw);
134 	u32 v = readl_relaxed(fd->base);
135 
136 	v |= FAPLL_MAIN_PLLEN;
137 	writel_relaxed(v, fd->base);
138 	ti_fapll_wait_lock(fd);
139 
140 	return 0;
141 }
142 
ti_fapll_disable(struct clk_hw * hw)143 static void ti_fapll_disable(struct clk_hw *hw)
144 {
145 	struct fapll_data *fd = to_fapll(hw);
146 	u32 v = readl_relaxed(fd->base);
147 
148 	v &= ~FAPLL_MAIN_PLLEN;
149 	writel_relaxed(v, fd->base);
150 }
151 
ti_fapll_is_enabled(struct clk_hw * hw)152 static int ti_fapll_is_enabled(struct clk_hw *hw)
153 {
154 	struct fapll_data *fd = to_fapll(hw);
155 	u32 v = readl_relaxed(fd->base);
156 
157 	return v & FAPLL_MAIN_PLLEN;
158 }
159 
ti_fapll_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)160 static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw,
161 					  unsigned long parent_rate)
162 {
163 	struct fapll_data *fd = to_fapll(hw);
164 	u32 fapll_n, fapll_p, v;
165 	u64 rate;
166 
167 	if (ti_fapll_clock_is_bypass(fd))
168 		return parent_rate;
169 
170 	rate = parent_rate;
171 
172 	/* PLL pre-divider is P and multiplier is N */
173 	v = readl_relaxed(fd->base);
174 	fapll_p = (v >> 8) & 0xff;
175 	if (fapll_p)
176 		do_div(rate, fapll_p);
177 	fapll_n = v >> 16;
178 	if (fapll_n)
179 		rate *= fapll_n;
180 
181 	return rate;
182 }
183 
ti_fapll_get_parent(struct clk_hw * hw)184 static u8 ti_fapll_get_parent(struct clk_hw *hw)
185 {
186 	struct fapll_data *fd = to_fapll(hw);
187 
188 	if (ti_fapll_clock_is_bypass(fd))
189 		return 1;
190 
191 	return 0;
192 }
193 
ti_fapll_set_div_mult(unsigned long rate,unsigned long parent_rate,u32 * pre_div_p,u32 * mult_n)194 static int ti_fapll_set_div_mult(unsigned long rate,
195 				 unsigned long parent_rate,
196 				 u32 *pre_div_p, u32 *mult_n)
197 {
198 	/*
199 	 * So far no luck getting decent clock with PLL divider,
200 	 * PLL does not seem to lock and the signal does not look
201 	 * right. It seems the divider can only be used together
202 	 * with the multiplier?
203 	 */
204 	if (rate < parent_rate) {
205 		pr_warn("FAPLL main divider rates unsupported\n");
206 		return -EINVAL;
207 	}
208 
209 	*mult_n = rate / parent_rate;
210 	if (*mult_n > FAPLL_MAIN_MAX_MULT_N)
211 		return -EINVAL;
212 	*pre_div_p = 1;
213 
214 	return 0;
215 }
216 
ti_fapll_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)217 static int ti_fapll_determine_rate(struct clk_hw *hw,
218 				   struct clk_rate_request *req)
219 {
220 	u32 pre_div_p, mult_n;
221 	int error;
222 
223 	if (!req->rate)
224 		return -EINVAL;
225 
226 	error = ti_fapll_set_div_mult(req->rate, req->best_parent_rate,
227 				      &pre_div_p, &mult_n);
228 	if (error) {
229 		req->rate = error;
230 
231 		return 0;
232 	}
233 
234 	req->rate = req->best_parent_rate / pre_div_p;
235 	req->rate *= mult_n;
236 
237 	return 0;
238 }
239 
ti_fapll_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)240 static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate,
241 			     unsigned long parent_rate)
242 {
243 	struct fapll_data *fd = to_fapll(hw);
244 	u32 pre_div_p, mult_n, v;
245 	int error;
246 
247 	if (!rate)
248 		return -EINVAL;
249 
250 	error = ti_fapll_set_div_mult(rate, parent_rate,
251 				      &pre_div_p, &mult_n);
252 	if (error)
253 		return error;
254 
255 	ti_fapll_set_bypass(fd);
256 	v = readl_relaxed(fd->base);
257 	v &= ~FAPLL_MAIN_CLEAR_MASK;
258 	v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT;
259 	v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT;
260 	writel_relaxed(v, fd->base);
261 	if (ti_fapll_is_enabled(hw))
262 		ti_fapll_wait_lock(fd);
263 	ti_fapll_clear_bypass(fd);
264 
265 	return 0;
266 }
267 
268 static const struct clk_ops ti_fapll_ops = {
269 	.enable = ti_fapll_enable,
270 	.disable = ti_fapll_disable,
271 	.is_enabled = ti_fapll_is_enabled,
272 	.recalc_rate = ti_fapll_recalc_rate,
273 	.get_parent = ti_fapll_get_parent,
274 	.determine_rate = ti_fapll_determine_rate,
275 	.set_rate = ti_fapll_set_rate,
276 };
277 
ti_fapll_synth_enable(struct clk_hw * hw)278 static int ti_fapll_synth_enable(struct clk_hw *hw)
279 {
280 	struct fapll_synth *synth = to_synth(hw);
281 	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
282 
283 	v &= ~(1 << synth->index);
284 	writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
285 
286 	return 0;
287 }
288 
ti_fapll_synth_disable(struct clk_hw * hw)289 static void ti_fapll_synth_disable(struct clk_hw *hw)
290 {
291 	struct fapll_synth *synth = to_synth(hw);
292 	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
293 
294 	v |= 1 << synth->index;
295 	writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
296 }
297 
ti_fapll_synth_is_enabled(struct clk_hw * hw)298 static int ti_fapll_synth_is_enabled(struct clk_hw *hw)
299 {
300 	struct fapll_synth *synth = to_synth(hw);
301 	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
302 
303 	return !(v & (1 << synth->index));
304 }
305 
306 /*
307  * See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info
308  */
ti_fapll_synth_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)309 static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw,
310 						unsigned long parent_rate)
311 {
312 	struct fapll_synth *synth = to_synth(hw);
313 	u32 synth_div_m;
314 	u64 rate;
315 
316 	/* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */
317 	if (!synth->div)
318 		return 32768;
319 
320 	/*
321 	 * PLL in bypass sets the synths in bypass mode too. The PLL rate
322 	 * can be also be set to 27MHz, so we can't use parent_rate to
323 	 * check for bypass mode.
324 	 */
325 	if (ti_fapll_clock_is_bypass(synth->fd))
326 		return parent_rate;
327 
328 	rate = parent_rate;
329 
330 	/*
331 	 * Synth frequency integer and fractional divider.
332 	 * Note that the phase output K is 8, so the result needs
333 	 * to be multiplied by SYNTH_PHASE_K.
334 	 */
335 	if (synth->freq) {
336 		u32 v, synth_int_div, synth_frac_div, synth_div_freq;
337 
338 		v = readl_relaxed(synth->freq);
339 		synth_int_div = (v >> 24) & 0xf;
340 		synth_frac_div = v & 0xffffff;
341 		synth_div_freq = (synth_int_div * 10000000) + synth_frac_div;
342 		rate *= 10000000;
343 		do_div(rate, synth_div_freq);
344 		rate *= SYNTH_PHASE_K;
345 	}
346 
347 	/* Synth post-divider M */
348 	synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
349 
350 	return DIV_ROUND_UP_ULL(rate, synth_div_m);
351 }
352 
ti_fapll_synth_get_frac_rate(struct clk_hw * hw,unsigned long parent_rate)353 static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw,
354 						  unsigned long parent_rate)
355 {
356 	struct fapll_synth *synth = to_synth(hw);
357 	unsigned long current_rate, frac_rate;
358 	u32 post_div_m;
359 
360 	current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate);
361 	post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
362 	frac_rate = current_rate * post_div_m;
363 
364 	return frac_rate;
365 }
366 
ti_fapll_synth_set_frac_rate(struct fapll_synth * synth,unsigned long rate,unsigned long parent_rate)367 static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth,
368 					unsigned long rate,
369 					unsigned long parent_rate)
370 {
371 	u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v;
372 
373 	post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate);
374 	post_div_m = post_div_m / SYNTH_MAX_INT_DIV;
375 	if (post_div_m > SYNTH_MAX_DIV_M)
376 		return -EINVAL;
377 	if (!post_div_m)
378 		post_div_m = 1;
379 
380 	for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) {
381 		synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate *
382 						 SYNTH_PHASE_K *
383 						 10000000,
384 						 rate * post_div_m);
385 		synth_frac_div = synth_int_div % 10000000;
386 		synth_int_div /= 10000000;
387 
388 		if (synth_int_div <= SYNTH_MAX_INT_DIV)
389 			break;
390 	}
391 
392 	if (synth_int_div > SYNTH_MAX_INT_DIV)
393 		return -EINVAL;
394 
395 	v = readl_relaxed(synth->freq);
396 	v &= ~0x1fffffff;
397 	v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24;
398 	v |= (synth_frac_div & 0xffffff);
399 	v |= SYNTH_LDFREQ;
400 	writel_relaxed(v, synth->freq);
401 
402 	return post_div_m;
403 }
404 
ti_fapll_synth_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)405 static int ti_fapll_synth_determine_rate(struct clk_hw *hw,
406 					 struct clk_rate_request *req)
407 {
408 	struct fapll_synth *synth = to_synth(hw);
409 	struct fapll_data *fd = synth->fd;
410 	unsigned long r;
411 
412 	if (ti_fapll_clock_is_bypass(fd) || !synth->div || !req->rate)
413 		return -EINVAL;
414 
415 	/* Only post divider m available with no fractional divider? */
416 	if (!synth->freq) {
417 		unsigned long frac_rate;
418 		u32 synth_post_div_m;
419 
420 		frac_rate = ti_fapll_synth_get_frac_rate(hw,
421 							 req->best_parent_rate);
422 		synth_post_div_m = DIV_ROUND_UP(frac_rate, req->rate);
423 		r = DIV_ROUND_UP(frac_rate, synth_post_div_m);
424 		goto out;
425 	}
426 
427 	r = req->best_parent_rate * SYNTH_PHASE_K;
428 	if (req->rate > r)
429 		goto out;
430 
431 	r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M);
432 	if (req->rate < r)
433 		goto out;
434 
435 	r = req->rate;
436 out:
437 	req->rate = r;
438 
439 	return 0;
440 }
441 
ti_fapll_synth_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)442 static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate,
443 				   unsigned long parent_rate)
444 {
445 	struct fapll_synth *synth = to_synth(hw);
446 	struct fapll_data *fd = synth->fd;
447 	unsigned long frac_rate, post_rate = 0;
448 	u32 post_div_m = 0, v;
449 
450 	if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
451 		return -EINVAL;
452 
453 	/* Produce the rate with just post divider M? */
454 	frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate);
455 	if (frac_rate < rate) {
456 		if (!synth->freq)
457 			return -EINVAL;
458 	} else {
459 		post_div_m = DIV_ROUND_UP(frac_rate, rate);
460 		if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M))
461 			post_rate = DIV_ROUND_UP(frac_rate, post_div_m);
462 		if (!synth->freq && !post_rate)
463 			return -EINVAL;
464 	}
465 
466 	/* Need to recalculate the fractional divider? */
467 	if ((post_rate != rate) && synth->freq)
468 		post_div_m = ti_fapll_synth_set_frac_rate(synth,
469 							  rate,
470 							  parent_rate);
471 
472 	v = readl_relaxed(synth->div);
473 	v &= ~SYNTH_MAX_DIV_M;
474 	v |= post_div_m;
475 	v |= SYNTH_LDMDIV1;
476 	writel_relaxed(v, synth->div);
477 
478 	return 0;
479 }
480 
481 static const struct clk_ops ti_fapll_synt_ops = {
482 	.enable = ti_fapll_synth_enable,
483 	.disable = ti_fapll_synth_disable,
484 	.is_enabled = ti_fapll_synth_is_enabled,
485 	.recalc_rate = ti_fapll_synth_recalc_rate,
486 	.determine_rate = ti_fapll_synth_determine_rate,
487 	.set_rate = ti_fapll_synth_set_rate,
488 };
489 
ti_fapll_synth_setup(struct fapll_data * fd,void __iomem * freq,void __iomem * div,int index,const char * name,const char * parent,struct clk * pll_clk)490 static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd,
491 						void __iomem *freq,
492 						void __iomem *div,
493 						int index,
494 						const char *name,
495 						const char *parent,
496 						struct clk *pll_clk)
497 {
498 	struct clk_init_data *init;
499 	struct fapll_synth *synth;
500 	struct clk *clk = ERR_PTR(-ENOMEM);
501 
502 	init = kzalloc(sizeof(*init), GFP_KERNEL);
503 	if (!init)
504 		return ERR_PTR(-ENOMEM);
505 
506 	init->ops = &ti_fapll_synt_ops;
507 	init->name = name;
508 	init->parent_names = &parent;
509 	init->num_parents = 1;
510 
511 	synth = kzalloc(sizeof(*synth), GFP_KERNEL);
512 	if (!synth)
513 		goto free;
514 
515 	synth->fd = fd;
516 	synth->index = index;
517 	synth->freq = freq;
518 	synth->div = div;
519 	synth->name = name;
520 	synth->hw.init = init;
521 	synth->clk_pll = pll_clk;
522 
523 	clk = clk_register(NULL, &synth->hw);
524 	if (IS_ERR(clk)) {
525 		pr_err("failed to register clock\n");
526 		goto free;
527 	}
528 
529 	return clk;
530 
531 free:
532 	kfree(synth);
533 	kfree(init);
534 
535 	return clk;
536 }
537 
ti_fapll_setup(struct device_node * node)538 static void __init ti_fapll_setup(struct device_node *node)
539 {
540 	struct fapll_data *fd;
541 	struct clk_init_data *init = NULL;
542 	const char *parent_name[2];
543 	struct clk *pll_clk;
544 	const char *name;
545 	int i;
546 
547 	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
548 	if (!fd)
549 		return;
550 
551 	fd->outputs.clks = kzalloc(sizeof(struct clk *) *
552 				   MAX_FAPLL_OUTPUTS + 1,
553 				   GFP_KERNEL);
554 	if (!fd->outputs.clks)
555 		goto free;
556 
557 	init = kzalloc(sizeof(*init), GFP_KERNEL);
558 	if (!init)
559 		goto free;
560 
561 	init->ops = &ti_fapll_ops;
562 	name = ti_dt_clk_name(node);
563 	init->name = name;
564 
565 	init->num_parents = of_clk_get_parent_count(node);
566 	if (init->num_parents != 2) {
567 		pr_err("%pOFn must have two parents\n", node);
568 		goto free;
569 	}
570 
571 	of_clk_parent_fill(node, parent_name, 2);
572 	init->parent_names = parent_name;
573 
574 	fd->clk_ref = of_clk_get(node, 0);
575 	if (IS_ERR(fd->clk_ref)) {
576 		pr_err("%pOFn could not get clk_ref\n", node);
577 		goto free;
578 	}
579 
580 	fd->clk_bypass = of_clk_get(node, 1);
581 	if (IS_ERR(fd->clk_bypass)) {
582 		pr_err("%pOFn could not get clk_bypass\n", node);
583 		goto free;
584 	}
585 
586 	fd->base = of_iomap(node, 0);
587 	if (!fd->base) {
588 		pr_err("%pOFn could not get IO base\n", node);
589 		goto free;
590 	}
591 
592 	if (fapll_is_ddr_pll(fd->base))
593 		fd->bypass_bit_inverted = true;
594 
595 	fd->name = name;
596 	fd->hw.init = init;
597 
598 	/* Register the parent PLL */
599 	pll_clk = clk_register(NULL, &fd->hw);
600 	if (IS_ERR(pll_clk))
601 		goto unmap;
602 
603 	fd->outputs.clks[0] = pll_clk;
604 	fd->outputs.clk_num++;
605 
606 	/*
607 	 * Set up the child synthesizers starting at index 1 as the
608 	 * PLL output is at index 0. We need to check the clock-indices
609 	 * for numbering in case there are holes in the synth mapping,
610 	 * and then probe the synth register to see if it has a FREQ
611 	 * register available.
612 	 */
613 	for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) {
614 		const char *output_name;
615 		void __iomem *freq, *div;
616 		struct clk *synth_clk;
617 		int output_instance;
618 		u32 v;
619 
620 		if (of_property_read_string_index(node, "clock-output-names",
621 						  i, &output_name))
622 			continue;
623 
624 		if (of_property_read_u32_index(node, "clock-indices", i,
625 					       &output_instance))
626 			output_instance = i;
627 
628 		freq = fd->base + (output_instance * 8);
629 		div = freq + 4;
630 
631 		/* Check for hardwired audio_pll_clk1 */
632 		if (is_audio_pll_clk1(freq)) {
633 			freq = NULL;
634 			div = NULL;
635 		} else {
636 			/* Does the synthesizer have a FREQ register? */
637 			v = readl_relaxed(freq);
638 			if (!v)
639 				freq = NULL;
640 		}
641 		synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance,
642 						 output_name, name, pll_clk);
643 		if (IS_ERR(synth_clk))
644 			continue;
645 
646 		fd->outputs.clks[output_instance] = synth_clk;
647 		fd->outputs.clk_num++;
648 
649 		clk_register_clkdev(synth_clk, output_name, NULL);
650 	}
651 
652 	/* Register the child synthesizers as the FAPLL outputs */
653 	of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs);
654 	/* Add clock alias for the outputs */
655 
656 	kfree(init);
657 
658 	return;
659 
660 unmap:
661 	iounmap(fd->base);
662 free:
663 	if (fd->clk_bypass)
664 		clk_put(fd->clk_bypass);
665 	if (fd->clk_ref)
666 		clk_put(fd->clk_ref);
667 	kfree(fd->outputs.clks);
668 	kfree(fd);
669 	kfree(init);
670 }
671 
672 CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup);
673