1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2018, Google LLC.
4 */
5 #ifndef SELFTEST_KVM_UTIL_H
6 #define SELFTEST_KVM_UTIL_H
7
8 #include "test_util.h"
9
10 #include <linux/compiler.h>
11 #include "linux/hashtable.h"
12 #include "linux/list.h"
13 #include <linux/kernel.h>
14 #include <linux/kvm.h>
15 #include "linux/rbtree.h"
16 #include <linux/types.h>
17
18 #include <asm/atomic.h>
19 #include <asm/kvm.h>
20
21 #include <sys/eventfd.h>
22 #include <sys/ioctl.h>
23
24 #include <pthread.h>
25
26 #include "kvm_syscalls.h"
27 #include "kvm_util_arch.h"
28 #include "kvm_util_types.h"
29 #include "sparsebit.h"
30
31 #define KVM_DEV_PATH "/dev/kvm"
32 #define KVM_MAX_VCPUS 512
33
34 #define NSEC_PER_SEC 1000000000L
35
36 struct userspace_mem_region {
37 struct kvm_userspace_memory_region2 region;
38 struct sparsebit *unused_phy_pages;
39 struct sparsebit *protected_phy_pages;
40 int fd;
41 off_t offset;
42 enum vm_mem_backing_src_type backing_src_type;
43 void *host_mem;
44 void *host_alias;
45 void *mmap_start;
46 void *mmap_alias;
47 size_t mmap_size;
48 struct rb_node gpa_node;
49 struct rb_node hva_node;
50 struct hlist_node slot_node;
51 };
52
53 struct kvm_binary_stats {
54 int fd;
55 struct kvm_stats_header header;
56 struct kvm_stats_desc *desc;
57 };
58
59 struct kvm_vcpu {
60 struct list_head list;
61 uint32_t id;
62 int fd;
63 struct kvm_vm *vm;
64 struct kvm_run *run;
65 #ifdef __x86_64__
66 struct kvm_cpuid2 *cpuid;
67 #endif
68 #ifdef __aarch64__
69 struct kvm_vcpu_init init;
70 #endif
71 struct kvm_binary_stats stats;
72 struct kvm_dirty_gfn *dirty_gfns;
73 uint32_t fetch_index;
74 uint32_t dirty_gfns_count;
75 };
76
77 struct userspace_mem_regions {
78 struct rb_root gpa_tree;
79 struct rb_root hva_tree;
80 DECLARE_HASHTABLE(slot_hash, 9);
81 };
82
83 enum kvm_mem_region_type {
84 MEM_REGION_CODE,
85 MEM_REGION_DATA,
86 MEM_REGION_PT,
87 MEM_REGION_TEST_DATA,
88 NR_MEM_REGIONS,
89 };
90
91 struct kvm_vm {
92 int mode;
93 unsigned long type;
94 int kvm_fd;
95 int fd;
96 unsigned int pgtable_levels;
97 unsigned int page_size;
98 unsigned int page_shift;
99 unsigned int pa_bits;
100 unsigned int va_bits;
101 uint64_t max_gfn;
102 struct list_head vcpus;
103 struct userspace_mem_regions regions;
104 struct sparsebit *vpages_valid;
105 struct sparsebit *vpages_mapped;
106 bool has_irqchip;
107 bool pgd_created;
108 vm_paddr_t ucall_mmio_addr;
109 vm_paddr_t pgd;
110 vm_vaddr_t handlers;
111 uint32_t dirty_ring_size;
112 uint64_t gpa_tag_mask;
113
114 struct kvm_vm_arch arch;
115
116 struct kvm_binary_stats stats;
117
118 /*
119 * KVM region slots. These are the default memslots used by page
120 * allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE]
121 * memslot.
122 */
123 uint32_t memslots[NR_MEM_REGIONS];
124 };
125
126 struct vcpu_reg_sublist {
127 const char *name;
128 long capability;
129 int feature;
130 int feature_type;
131 bool finalize;
132 __u64 *regs;
133 __u64 regs_n;
134 __u64 *rejects_set;
135 __u64 rejects_set_n;
136 __u64 *skips_set;
137 __u64 skips_set_n;
138 };
139
140 struct vcpu_reg_list {
141 char *name;
142 struct vcpu_reg_sublist sublists[];
143 };
144
145 #define for_each_sublist(c, s) \
146 for ((s) = &(c)->sublists[0]; (s)->regs; ++(s))
147
148 #define kvm_for_each_vcpu(vm, i, vcpu) \
149 for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++) \
150 if (!((vcpu) = vm->vcpus[i])) \
151 continue; \
152 else
153
154 struct userspace_mem_region *
155 memslot2region(struct kvm_vm *vm, uint32_t memslot);
156
vm_get_mem_region(struct kvm_vm * vm,enum kvm_mem_region_type type)157 static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm,
158 enum kvm_mem_region_type type)
159 {
160 assert(type < NR_MEM_REGIONS);
161 return memslot2region(vm, vm->memslots[type]);
162 }
163
164 /* Minimum allocated guest virtual and physical addresses */
165 #define KVM_UTIL_MIN_VADDR 0x2000
166 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
167
168 #define DEFAULT_GUEST_STACK_VADDR_MIN 0xab6000
169 #define DEFAULT_STACK_PGS 5
170
171 enum vm_guest_mode {
172 VM_MODE_P52V48_4K,
173 VM_MODE_P52V48_16K,
174 VM_MODE_P52V48_64K,
175 VM_MODE_P48V48_4K,
176 VM_MODE_P48V48_16K,
177 VM_MODE_P48V48_64K,
178 VM_MODE_P40V48_4K,
179 VM_MODE_P40V48_16K,
180 VM_MODE_P40V48_64K,
181 VM_MODE_PXXVYY_4K, /* For 48-bit or 57-bit VA, depending on host support */
182 VM_MODE_P47V64_4K,
183 VM_MODE_P44V64_4K,
184 VM_MODE_P36V48_4K,
185 VM_MODE_P36V48_16K,
186 VM_MODE_P36V48_64K,
187 VM_MODE_P47V47_16K,
188 VM_MODE_P36V47_16K,
189 NUM_VM_MODES,
190 };
191
192 struct vm_shape {
193 uint32_t type;
194 uint8_t mode;
195 uint8_t pad0;
196 uint16_t pad1;
197 };
198
199 kvm_static_assert(sizeof(struct vm_shape) == sizeof(uint64_t));
200
201 #define VM_TYPE_DEFAULT 0
202
203 #define VM_SHAPE(__mode) \
204 ({ \
205 struct vm_shape shape = { \
206 .mode = (__mode), \
207 .type = VM_TYPE_DEFAULT \
208 }; \
209 \
210 shape; \
211 })
212
213 #if defined(__aarch64__)
214
215 extern enum vm_guest_mode vm_mode_default;
216
217 #define VM_MODE_DEFAULT vm_mode_default
218 #define MIN_PAGE_SHIFT 12U
219 #define ptes_per_page(page_size) ((page_size) / 8)
220
221 #elif defined(__x86_64__)
222
223 #define VM_MODE_DEFAULT VM_MODE_PXXVYY_4K
224 #define MIN_PAGE_SHIFT 12U
225 #define ptes_per_page(page_size) ((page_size) / 8)
226
227 #elif defined(__s390x__)
228
229 #define VM_MODE_DEFAULT VM_MODE_P44V64_4K
230 #define MIN_PAGE_SHIFT 12U
231 #define ptes_per_page(page_size) ((page_size) / 16)
232
233 #elif defined(__riscv)
234
235 #if __riscv_xlen == 32
236 #error "RISC-V 32-bit kvm selftests not supported"
237 #endif
238
239 #define VM_MODE_DEFAULT VM_MODE_P40V48_4K
240 #define MIN_PAGE_SHIFT 12U
241 #define ptes_per_page(page_size) ((page_size) / 8)
242
243 #elif defined(__loongarch__)
244 #define VM_MODE_DEFAULT VM_MODE_P47V47_16K
245 #define MIN_PAGE_SHIFT 12U
246 #define ptes_per_page(page_size) ((page_size) / 8)
247
248 #endif
249
250 #define VM_SHAPE_DEFAULT VM_SHAPE(VM_MODE_DEFAULT)
251
252 #define MIN_PAGE_SIZE (1U << MIN_PAGE_SHIFT)
253 #define PTES_PER_MIN_PAGE ptes_per_page(MIN_PAGE_SIZE)
254
255 struct vm_guest_mode_params {
256 unsigned int pa_bits;
257 unsigned int va_bits;
258 unsigned int page_size;
259 unsigned int page_shift;
260 };
261 extern const struct vm_guest_mode_params vm_guest_mode_params[];
262
263 int __open_path_or_exit(const char *path, int flags, const char *enoent_help);
264 int open_path_or_exit(const char *path, int flags);
265 int open_kvm_dev_path_or_exit(void);
266
267 int kvm_get_module_param_integer(const char *module_name, const char *param);
268 bool kvm_get_module_param_bool(const char *module_name, const char *param);
269
get_kvm_param_bool(const char * param)270 static inline bool get_kvm_param_bool(const char *param)
271 {
272 return kvm_get_module_param_bool("kvm", param);
273 }
274
get_kvm_param_integer(const char * param)275 static inline int get_kvm_param_integer(const char *param)
276 {
277 return kvm_get_module_param_integer("kvm", param);
278 }
279
280 unsigned int kvm_check_cap(long cap);
281
kvm_has_cap(long cap)282 static inline bool kvm_has_cap(long cap)
283 {
284 return kvm_check_cap(cap);
285 }
286
287 /*
288 * Use the "inner", double-underscore macro when reporting errors from within
289 * other macros so that the name of ioctl() and not its literal numeric value
290 * is printed on error. The "outer" macro is strongly preferred when reporting
291 * errors "directly", i.e. without an additional layer of macros, as it reduces
292 * the probability of passing in the wrong string.
293 */
294 #define __KVM_IOCTL_ERROR(_name, _ret) __KVM_SYSCALL_ERROR(_name, _ret)
295 #define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret)
296
297 #define kvm_do_ioctl(fd, cmd, arg) \
298 ({ \
299 kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd)); \
300 ioctl(fd, cmd, arg); \
301 })
302
303 #define __kvm_ioctl(kvm_fd, cmd, arg) \
304 kvm_do_ioctl(kvm_fd, cmd, arg)
305
306 #define kvm_ioctl(kvm_fd, cmd, arg) \
307 ({ \
308 int ret = __kvm_ioctl(kvm_fd, cmd, arg); \
309 \
310 TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(#cmd, ret)); \
311 })
312
static_assert_is_vm(struct kvm_vm * vm)313 static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { }
314
315 #define __vm_ioctl(vm, cmd, arg) \
316 ({ \
317 static_assert_is_vm(vm); \
318 kvm_do_ioctl((vm)->fd, cmd, arg); \
319 })
320
321 /*
322 * Assert that a VM or vCPU ioctl() succeeded, with extra magic to detect if
323 * the ioctl() failed because KVM killed/bugged the VM. To detect a dead VM,
324 * probe KVM_CAP_USER_MEMORY, which (a) has been supported by KVM since before
325 * selftests existed and (b) should never outright fail, i.e. is supposed to
326 * return 0 or 1. If KVM kills a VM, KVM returns -EIO for all ioctl()s for the
327 * VM and its vCPUs, including KVM_CHECK_EXTENSION.
328 */
329 #define __TEST_ASSERT_VM_VCPU_IOCTL(cond, name, ret, vm) \
330 do { \
331 int __errno = errno; \
332 \
333 static_assert_is_vm(vm); \
334 \
335 if (cond) \
336 break; \
337 \
338 if (errno == EIO && \
339 __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)KVM_CAP_USER_MEMORY) < 0) { \
340 TEST_ASSERT(errno == EIO, "KVM killed the VM, should return -EIO"); \
341 TEST_FAIL("KVM killed/bugged the VM, check the kernel log for clues"); \
342 } \
343 errno = __errno; \
344 TEST_ASSERT(cond, __KVM_IOCTL_ERROR(name, ret)); \
345 } while (0)
346
347 #define TEST_ASSERT_VM_VCPU_IOCTL(cond, cmd, ret, vm) \
348 __TEST_ASSERT_VM_VCPU_IOCTL(cond, #cmd, ret, vm)
349
350 #define vm_ioctl(vm, cmd, arg) \
351 ({ \
352 int ret = __vm_ioctl(vm, cmd, arg); \
353 \
354 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, vm); \
355 })
356
static_assert_is_vcpu(struct kvm_vcpu * vcpu)357 static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { }
358
359 #define __vcpu_ioctl(vcpu, cmd, arg) \
360 ({ \
361 static_assert_is_vcpu(vcpu); \
362 kvm_do_ioctl((vcpu)->fd, cmd, arg); \
363 })
364
365 #define vcpu_ioctl(vcpu, cmd, arg) \
366 ({ \
367 int ret = __vcpu_ioctl(vcpu, cmd, arg); \
368 \
369 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, (vcpu)->vm); \
370 })
371
372 /*
373 * Looks up and returns the value corresponding to the capability
374 * (KVM_CAP_*) given by cap.
375 */
vm_check_cap(struct kvm_vm * vm,long cap)376 static inline int vm_check_cap(struct kvm_vm *vm, long cap)
377 {
378 int ret = __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap);
379
380 TEST_ASSERT_VM_VCPU_IOCTL(ret >= 0, KVM_CHECK_EXTENSION, ret, vm);
381 return ret;
382 }
383
__vm_enable_cap(struct kvm_vm * vm,uint32_t cap,uint64_t arg0)384 static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
385 {
386 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
387
388 return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
389 }
vm_enable_cap(struct kvm_vm * vm,uint32_t cap,uint64_t arg0)390 static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
391 {
392 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
393
394 vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
395 }
396
vm_set_memory_attributes(struct kvm_vm * vm,uint64_t gpa,uint64_t size,uint64_t attributes)397 static inline void vm_set_memory_attributes(struct kvm_vm *vm, uint64_t gpa,
398 uint64_t size, uint64_t attributes)
399 {
400 struct kvm_memory_attributes attr = {
401 .attributes = attributes,
402 .address = gpa,
403 .size = size,
404 .flags = 0,
405 };
406
407 /*
408 * KVM_SET_MEMORY_ATTRIBUTES overwrites _all_ attributes. These flows
409 * need significant enhancements to support multiple attributes.
410 */
411 TEST_ASSERT(!attributes || attributes == KVM_MEMORY_ATTRIBUTE_PRIVATE,
412 "Update me to support multiple attributes!");
413
414 vm_ioctl(vm, KVM_SET_MEMORY_ATTRIBUTES, &attr);
415 }
416
417
vm_mem_set_private(struct kvm_vm * vm,uint64_t gpa,uint64_t size)418 static inline void vm_mem_set_private(struct kvm_vm *vm, uint64_t gpa,
419 uint64_t size)
420 {
421 vm_set_memory_attributes(vm, gpa, size, KVM_MEMORY_ATTRIBUTE_PRIVATE);
422 }
423
vm_mem_set_shared(struct kvm_vm * vm,uint64_t gpa,uint64_t size)424 static inline void vm_mem_set_shared(struct kvm_vm *vm, uint64_t gpa,
425 uint64_t size)
426 {
427 vm_set_memory_attributes(vm, gpa, size, 0);
428 }
429
430 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t gpa, uint64_t size,
431 bool punch_hole);
432
vm_guest_mem_punch_hole(struct kvm_vm * vm,uint64_t gpa,uint64_t size)433 static inline void vm_guest_mem_punch_hole(struct kvm_vm *vm, uint64_t gpa,
434 uint64_t size)
435 {
436 vm_guest_mem_fallocate(vm, gpa, size, true);
437 }
438
vm_guest_mem_allocate(struct kvm_vm * vm,uint64_t gpa,uint64_t size)439 static inline void vm_guest_mem_allocate(struct kvm_vm *vm, uint64_t gpa,
440 uint64_t size)
441 {
442 vm_guest_mem_fallocate(vm, gpa, size, false);
443 }
444
445 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size);
446 const char *vm_guest_mode_string(uint32_t i);
447
448 void kvm_vm_free(struct kvm_vm *vmp);
449 void kvm_vm_restart(struct kvm_vm *vmp);
450 void kvm_vm_release(struct kvm_vm *vmp);
451 void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename);
452 int kvm_memfd_alloc(size_t size, bool hugepages);
453
454 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
455
kvm_vm_get_dirty_log(struct kvm_vm * vm,int slot,void * log)456 static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
457 {
458 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
459
460 vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args);
461 }
462
kvm_vm_clear_dirty_log(struct kvm_vm * vm,int slot,void * log,uint64_t first_page,uint32_t num_pages)463 static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
464 uint64_t first_page, uint32_t num_pages)
465 {
466 struct kvm_clear_dirty_log args = {
467 .dirty_bitmap = log,
468 .slot = slot,
469 .first_page = first_page,
470 .num_pages = num_pages
471 };
472
473 vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args);
474 }
475
kvm_vm_reset_dirty_ring(struct kvm_vm * vm)476 static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
477 {
478 return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL);
479 }
480
kvm_vm_register_coalesced_io(struct kvm_vm * vm,uint64_t address,uint64_t size,bool pio)481 static inline void kvm_vm_register_coalesced_io(struct kvm_vm *vm,
482 uint64_t address,
483 uint64_t size, bool pio)
484 {
485 struct kvm_coalesced_mmio_zone zone = {
486 .addr = address,
487 .size = size,
488 .pio = pio,
489 };
490
491 vm_ioctl(vm, KVM_REGISTER_COALESCED_MMIO, &zone);
492 }
493
kvm_vm_unregister_coalesced_io(struct kvm_vm * vm,uint64_t address,uint64_t size,bool pio)494 static inline void kvm_vm_unregister_coalesced_io(struct kvm_vm *vm,
495 uint64_t address,
496 uint64_t size, bool pio)
497 {
498 struct kvm_coalesced_mmio_zone zone = {
499 .addr = address,
500 .size = size,
501 .pio = pio,
502 };
503
504 vm_ioctl(vm, KVM_UNREGISTER_COALESCED_MMIO, &zone);
505 }
506
vm_get_stats_fd(struct kvm_vm * vm)507 static inline int vm_get_stats_fd(struct kvm_vm *vm)
508 {
509 int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL);
510
511 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_GET_STATS_FD, fd, vm);
512 return fd;
513 }
514
__kvm_irqfd(struct kvm_vm * vm,uint32_t gsi,int eventfd,uint32_t flags)515 static inline int __kvm_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd,
516 uint32_t flags)
517 {
518 struct kvm_irqfd irqfd = {
519 .fd = eventfd,
520 .gsi = gsi,
521 .flags = flags,
522 .resamplefd = -1,
523 };
524
525 return __vm_ioctl(vm, KVM_IRQFD, &irqfd);
526 }
527
kvm_irqfd(struct kvm_vm * vm,uint32_t gsi,int eventfd,uint32_t flags)528 static inline void kvm_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd,
529 uint32_t flags)
530 {
531 int ret = __kvm_irqfd(vm, gsi, eventfd, flags);
532
533 TEST_ASSERT_VM_VCPU_IOCTL(!ret, KVM_IRQFD, ret, vm);
534 }
535
kvm_assign_irqfd(struct kvm_vm * vm,uint32_t gsi,int eventfd)536 static inline void kvm_assign_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd)
537 {
538 kvm_irqfd(vm, gsi, eventfd, 0);
539 }
540
kvm_deassign_irqfd(struct kvm_vm * vm,uint32_t gsi,int eventfd)541 static inline void kvm_deassign_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd)
542 {
543 kvm_irqfd(vm, gsi, eventfd, KVM_IRQFD_FLAG_DEASSIGN);
544 }
545
kvm_new_eventfd(void)546 static inline int kvm_new_eventfd(void)
547 {
548 int fd = eventfd(0, 0);
549
550 TEST_ASSERT(fd >= 0, __KVM_SYSCALL_ERROR("eventfd()", fd));
551 return fd;
552 }
553
read_stats_header(int stats_fd,struct kvm_stats_header * header)554 static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header)
555 {
556 ssize_t ret;
557
558 ret = pread(stats_fd, header, sizeof(*header), 0);
559 TEST_ASSERT(ret == sizeof(*header),
560 "Failed to read '%lu' header bytes, ret = '%ld'",
561 sizeof(*header), ret);
562 }
563
564 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
565 struct kvm_stats_header *header);
566
get_stats_descriptor_size(struct kvm_stats_header * header)567 static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header)
568 {
569 /*
570 * The base size of the descriptor is defined by KVM's ABI, but the
571 * size of the name field is variable, as far as KVM's ABI is
572 * concerned. For a given instance of KVM, the name field is the same
573 * size for all stats and is provided in the overall stats header.
574 */
575 return sizeof(struct kvm_stats_desc) + header->name_size;
576 }
577
get_stats_descriptor(struct kvm_stats_desc * stats,int index,struct kvm_stats_header * header)578 static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats,
579 int index,
580 struct kvm_stats_header *header)
581 {
582 /*
583 * Note, size_desc includes the size of the name field, which is
584 * variable. i.e. this is NOT equivalent to &stats_desc[i].
585 */
586 return (void *)stats + index * get_stats_descriptor_size(header);
587 }
588
589 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
590 struct kvm_stats_desc *desc, uint64_t *data,
591 size_t max_elements);
592
593 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name,
594 uint64_t *data, size_t max_elements);
595
596 #define __get_stat(stats, stat) \
597 ({ \
598 uint64_t data; \
599 \
600 kvm_get_stat(stats, #stat, &data, 1); \
601 data; \
602 })
603
604 #define vm_get_stat(vm, stat) __get_stat(&(vm)->stats, stat)
605 #define vcpu_get_stat(vcpu, stat) __get_stat(&(vcpu)->stats, stat)
606
read_smt_control(char * buf,size_t buf_size)607 static inline bool read_smt_control(char *buf, size_t buf_size)
608 {
609 FILE *f = fopen("/sys/devices/system/cpu/smt/control", "r");
610 bool ret;
611
612 if (!f)
613 return false;
614
615 ret = fread(buf, sizeof(*buf), buf_size, f) > 0;
616 fclose(f);
617
618 return ret;
619 }
620
is_smt_possible(void)621 static inline bool is_smt_possible(void)
622 {
623 char buf[16];
624
625 if (read_smt_control(buf, sizeof(buf)) &&
626 (!strncmp(buf, "forceoff", 8) || !strncmp(buf, "notsupported", 12)))
627 return false;
628
629 return true;
630 }
631
is_smt_on(void)632 static inline bool is_smt_on(void)
633 {
634 char buf[16];
635
636 if (read_smt_control(buf, sizeof(buf)) && !strncmp(buf, "on", 2))
637 return true;
638
639 return false;
640 }
641
642 void vm_create_irqchip(struct kvm_vm *vm);
643
__vm_create_guest_memfd(struct kvm_vm * vm,uint64_t size,uint64_t flags)644 static inline int __vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
645 uint64_t flags)
646 {
647 struct kvm_create_guest_memfd guest_memfd = {
648 .size = size,
649 .flags = flags,
650 };
651
652 return __vm_ioctl(vm, KVM_CREATE_GUEST_MEMFD, &guest_memfd);
653 }
654
vm_create_guest_memfd(struct kvm_vm * vm,uint64_t size,uint64_t flags)655 static inline int vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
656 uint64_t flags)
657 {
658 int fd = __vm_create_guest_memfd(vm, size, flags);
659
660 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_GUEST_MEMFD, fd));
661 return fd;
662 }
663
664 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
665 uint64_t gpa, uint64_t size, void *hva);
666 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
667 uint64_t gpa, uint64_t size, void *hva);
668 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
669 uint64_t gpa, uint64_t size, void *hva,
670 uint32_t guest_memfd, uint64_t guest_memfd_offset);
671 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
672 uint64_t gpa, uint64_t size, void *hva,
673 uint32_t guest_memfd, uint64_t guest_memfd_offset);
674
675 void vm_userspace_mem_region_add(struct kvm_vm *vm,
676 enum vm_mem_backing_src_type src_type,
677 uint64_t gpa, uint32_t slot, uint64_t npages,
678 uint32_t flags);
679 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
680 uint64_t gpa, uint32_t slot, uint64_t npages, uint32_t flags,
681 int guest_memfd_fd, uint64_t guest_memfd_offset);
682
683 #ifndef vm_arch_has_protected_memory
vm_arch_has_protected_memory(struct kvm_vm * vm)684 static inline bool vm_arch_has_protected_memory(struct kvm_vm *vm)
685 {
686 return false;
687 }
688 #endif
689
690 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags);
691 void vm_mem_region_reload(struct kvm_vm *vm, uint32_t slot);
692 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa);
693 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot);
694 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
695 void vm_populate_vaddr_bitmap(struct kvm_vm *vm);
696 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
697 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
698 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
699 enum kvm_mem_region_type type);
700 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
701 vm_vaddr_t vaddr_min,
702 enum kvm_mem_region_type type);
703 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages);
704 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm,
705 enum kvm_mem_region_type type);
706 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm);
707
708 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
709 unsigned int npages);
710 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa);
711 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva);
712 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva);
713 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa);
714
715 #ifndef vcpu_arch_put_guest
716 #define vcpu_arch_put_guest(mem, val) do { (mem) = (val); } while (0)
717 #endif
718
vm_untag_gpa(struct kvm_vm * vm,vm_paddr_t gpa)719 static inline vm_paddr_t vm_untag_gpa(struct kvm_vm *vm, vm_paddr_t gpa)
720 {
721 return gpa & ~vm->gpa_tag_mask;
722 }
723
724 void vcpu_run(struct kvm_vcpu *vcpu);
725 int _vcpu_run(struct kvm_vcpu *vcpu);
726
__vcpu_run(struct kvm_vcpu * vcpu)727 static inline int __vcpu_run(struct kvm_vcpu *vcpu)
728 {
729 return __vcpu_ioctl(vcpu, KVM_RUN, NULL);
730 }
731
732 void vcpu_run_complete_io(struct kvm_vcpu *vcpu);
733 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu);
734
vcpu_enable_cap(struct kvm_vcpu * vcpu,uint32_t cap,uint64_t arg0)735 static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap,
736 uint64_t arg0)
737 {
738 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
739
740 vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap);
741 }
742
vcpu_guest_debug_set(struct kvm_vcpu * vcpu,struct kvm_guest_debug * debug)743 static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu,
744 struct kvm_guest_debug *debug)
745 {
746 vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug);
747 }
748
vcpu_mp_state_get(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)749 static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu,
750 struct kvm_mp_state *mp_state)
751 {
752 vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state);
753 }
vcpu_mp_state_set(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)754 static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu,
755 struct kvm_mp_state *mp_state)
756 {
757 vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state);
758 }
759
vcpu_regs_get(struct kvm_vcpu * vcpu,struct kvm_regs * regs)760 static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
761 {
762 vcpu_ioctl(vcpu, KVM_GET_REGS, regs);
763 }
764
vcpu_regs_set(struct kvm_vcpu * vcpu,struct kvm_regs * regs)765 static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
766 {
767 vcpu_ioctl(vcpu, KVM_SET_REGS, regs);
768 }
vcpu_sregs_get(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)769 static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
770 {
771 vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs);
772
773 }
vcpu_sregs_set(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)774 static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
775 {
776 vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
777 }
_vcpu_sregs_set(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)778 static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
779 {
780 return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
781 }
vcpu_fpu_get(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)782 static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
783 {
784 vcpu_ioctl(vcpu, KVM_GET_FPU, fpu);
785 }
vcpu_fpu_set(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)786 static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
787 {
788 vcpu_ioctl(vcpu, KVM_SET_FPU, fpu);
789 }
790
__vcpu_get_reg(struct kvm_vcpu * vcpu,uint64_t id,void * addr)791 static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
792 {
793 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
794
795 return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®);
796 }
__vcpu_set_reg(struct kvm_vcpu * vcpu,uint64_t id,uint64_t val)797 static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
798 {
799 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
800
801 return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®);
802 }
vcpu_get_reg(struct kvm_vcpu * vcpu,uint64_t id)803 static inline uint64_t vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id)
804 {
805 uint64_t val;
806 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
807
808 TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id);
809
810 vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®);
811 return val;
812 }
vcpu_set_reg(struct kvm_vcpu * vcpu,uint64_t id,uint64_t val)813 static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
814 {
815 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
816
817 TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id);
818
819 vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®);
820 }
821
822 #ifdef __KVM_HAVE_VCPU_EVENTS
vcpu_events_get(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)823 static inline void vcpu_events_get(struct kvm_vcpu *vcpu,
824 struct kvm_vcpu_events *events)
825 {
826 vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events);
827 }
vcpu_events_set(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)828 static inline void vcpu_events_set(struct kvm_vcpu *vcpu,
829 struct kvm_vcpu_events *events)
830 {
831 vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events);
832 }
833 #endif
834 #ifdef __x86_64__
vcpu_nested_state_get(struct kvm_vcpu * vcpu,struct kvm_nested_state * state)835 static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu,
836 struct kvm_nested_state *state)
837 {
838 vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state);
839 }
__vcpu_nested_state_set(struct kvm_vcpu * vcpu,struct kvm_nested_state * state)840 static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu,
841 struct kvm_nested_state *state)
842 {
843 return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
844 }
845
vcpu_nested_state_set(struct kvm_vcpu * vcpu,struct kvm_nested_state * state)846 static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu,
847 struct kvm_nested_state *state)
848 {
849 vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
850 }
851 #endif
vcpu_get_stats_fd(struct kvm_vcpu * vcpu)852 static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu)
853 {
854 int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL);
855
856 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_CHECK_EXTENSION, fd, vcpu->vm);
857 return fd;
858 }
859
860 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr);
861
kvm_has_device_attr(int dev_fd,uint32_t group,uint64_t attr)862 static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
863 {
864 int ret = __kvm_has_device_attr(dev_fd, group, attr);
865
866 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
867 }
868
869 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val);
870
kvm_device_attr_get(int dev_fd,uint32_t group,uint64_t attr,void * val)871 static inline void kvm_device_attr_get(int dev_fd, uint32_t group,
872 uint64_t attr, void *val)
873 {
874 int ret = __kvm_device_attr_get(dev_fd, group, attr, val);
875
876 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret));
877 }
878
879 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val);
880
kvm_device_attr_set(int dev_fd,uint32_t group,uint64_t attr,void * val)881 static inline void kvm_device_attr_set(int dev_fd, uint32_t group,
882 uint64_t attr, void *val)
883 {
884 int ret = __kvm_device_attr_set(dev_fd, group, attr, val);
885
886 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret));
887 }
888
__vcpu_has_device_attr(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr)889 static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
890 uint64_t attr)
891 {
892 return __kvm_has_device_attr(vcpu->fd, group, attr);
893 }
894
vcpu_has_device_attr(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr)895 static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
896 uint64_t attr)
897 {
898 kvm_has_device_attr(vcpu->fd, group, attr);
899 }
900
__vcpu_device_attr_get(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)901 static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
902 uint64_t attr, void *val)
903 {
904 return __kvm_device_attr_get(vcpu->fd, group, attr, val);
905 }
906
vcpu_device_attr_get(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)907 static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
908 uint64_t attr, void *val)
909 {
910 kvm_device_attr_get(vcpu->fd, group, attr, val);
911 }
912
__vcpu_device_attr_set(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)913 static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
914 uint64_t attr, void *val)
915 {
916 return __kvm_device_attr_set(vcpu->fd, group, attr, val);
917 }
918
vcpu_device_attr_set(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)919 static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
920 uint64_t attr, void *val)
921 {
922 kvm_device_attr_set(vcpu->fd, group, attr, val);
923 }
924
925 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type);
926 int __kvm_create_device(struct kvm_vm *vm, uint64_t type);
927
kvm_create_device(struct kvm_vm * vm,uint64_t type)928 static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type)
929 {
930 int fd = __kvm_create_device(vm, type);
931
932 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd));
933 return fd;
934 }
935
936 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu);
937
938 /*
939 * VM VCPU Args Set
940 *
941 * Input Args:
942 * vm - Virtual Machine
943 * num - number of arguments
944 * ... - arguments, each of type uint64_t
945 *
946 * Output Args: None
947 *
948 * Return: None
949 *
950 * Sets the first @num input parameters for the function at @vcpu's entry point,
951 * per the C calling convention of the architecture, to the values given as
952 * variable args. Each of the variable args is expected to be of type uint64_t.
953 * The maximum @num can be is specific to the architecture.
954 */
955 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...);
956
957 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
958 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
959
960 #define KVM_MAX_IRQ_ROUTES 4096
961
962 struct kvm_irq_routing *kvm_gsi_routing_create(void);
963 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
964 uint32_t gsi, uint32_t pin);
965 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
966 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
967
968 const char *exit_reason_str(unsigned int exit_reason);
969
970 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
971 uint32_t memslot);
972 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
973 vm_paddr_t paddr_min, uint32_t memslot,
974 bool protected);
975 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm);
976
vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot)977 static inline vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
978 vm_paddr_t paddr_min, uint32_t memslot)
979 {
980 /*
981 * By default, allocate memory as protected for VMs that support
982 * protected memory, as the majority of memory for such VMs is
983 * protected, i.e. using shared memory is effectively opt-in.
984 */
985 return __vm_phy_pages_alloc(vm, num, paddr_min, memslot,
986 vm_arch_has_protected_memory(vm));
987 }
988
989 /*
990 * ____vm_create() does KVM_CREATE_VM and little else. __vm_create() also
991 * loads the test binary into guest memory and creates an IRQ chip (x86 only).
992 * __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to
993 * calculate the amount of memory needed for per-vCPU data, e.g. stacks.
994 */
995 struct kvm_vm *____vm_create(struct vm_shape shape);
996 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
997 uint64_t nr_extra_pages);
998
vm_create_barebones(void)999 static inline struct kvm_vm *vm_create_barebones(void)
1000 {
1001 return ____vm_create(VM_SHAPE_DEFAULT);
1002 }
1003
vm_create_barebones_type(unsigned long type)1004 static inline struct kvm_vm *vm_create_barebones_type(unsigned long type)
1005 {
1006 const struct vm_shape shape = {
1007 .mode = VM_MODE_DEFAULT,
1008 .type = type,
1009 };
1010
1011 return ____vm_create(shape);
1012 }
1013
vm_create(uint32_t nr_runnable_vcpus)1014 static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus)
1015 {
1016 return __vm_create(VM_SHAPE_DEFAULT, nr_runnable_vcpus, 0);
1017 }
1018
1019 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
1020 uint64_t extra_mem_pages,
1021 void *guest_code, struct kvm_vcpu *vcpus[]);
1022
vm_create_with_vcpus(uint32_t nr_vcpus,void * guest_code,struct kvm_vcpu * vcpus[])1023 static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus,
1024 void *guest_code,
1025 struct kvm_vcpu *vcpus[])
1026 {
1027 return __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus, 0,
1028 guest_code, vcpus);
1029 }
1030
1031
1032 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
1033 struct kvm_vcpu **vcpu,
1034 uint64_t extra_mem_pages,
1035 void *guest_code);
1036
1037 /*
1038 * Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages
1039 * additional pages of guest memory. Returns the VM and vCPU (via out param).
1040 */
__vm_create_with_one_vcpu(struct kvm_vcpu ** vcpu,uint64_t extra_mem_pages,void * guest_code)1041 static inline struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
1042 uint64_t extra_mem_pages,
1043 void *guest_code)
1044 {
1045 return __vm_create_shape_with_one_vcpu(VM_SHAPE_DEFAULT, vcpu,
1046 extra_mem_pages, guest_code);
1047 }
1048
vm_create_with_one_vcpu(struct kvm_vcpu ** vcpu,void * guest_code)1049 static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
1050 void *guest_code)
1051 {
1052 return __vm_create_with_one_vcpu(vcpu, 0, guest_code);
1053 }
1054
vm_create_shape_with_one_vcpu(struct vm_shape shape,struct kvm_vcpu ** vcpu,void * guest_code)1055 static inline struct kvm_vm *vm_create_shape_with_one_vcpu(struct vm_shape shape,
1056 struct kvm_vcpu **vcpu,
1057 void *guest_code)
1058 {
1059 return __vm_create_shape_with_one_vcpu(shape, vcpu, 0, guest_code);
1060 }
1061
1062 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm);
1063
1064 void kvm_set_files_rlimit(uint32_t nr_vcpus);
1065
1066 int __pin_task_to_cpu(pthread_t task, int cpu);
1067
pin_task_to_cpu(pthread_t task,int cpu)1068 static inline void pin_task_to_cpu(pthread_t task, int cpu)
1069 {
1070 int r;
1071
1072 r = __pin_task_to_cpu(task, cpu);
1073 TEST_ASSERT(!r, "Failed to set thread affinity to pCPU '%u'", cpu);
1074 }
1075
pin_task_to_any_cpu(pthread_t task)1076 static inline int pin_task_to_any_cpu(pthread_t task)
1077 {
1078 int cpu = sched_getcpu();
1079
1080 pin_task_to_cpu(task, cpu);
1081 return cpu;
1082 }
1083
pin_self_to_cpu(int cpu)1084 static inline void pin_self_to_cpu(int cpu)
1085 {
1086 pin_task_to_cpu(pthread_self(), cpu);
1087 }
1088
pin_self_to_any_cpu(void)1089 static inline int pin_self_to_any_cpu(void)
1090 {
1091 return pin_task_to_any_cpu(pthread_self());
1092 }
1093
1094 void kvm_print_vcpu_pinning_help(void);
1095 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
1096 int nr_vcpus);
1097
1098 unsigned long vm_compute_max_gfn(struct kvm_vm *vm);
1099 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size);
1100 unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages);
1101 unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages);
1102 static inline unsigned int
vm_adjust_num_guest_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)1103 vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
1104 {
1105 unsigned int n;
1106 n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages));
1107 #ifdef __s390x__
1108 /* s390 requires 1M aligned guest sizes */
1109 n = (n + 255) & ~255;
1110 #endif
1111 return n;
1112 }
1113
1114 #define sync_global_to_guest(vm, g) ({ \
1115 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
1116 memcpy(_p, &(g), sizeof(g)); \
1117 })
1118
1119 #define sync_global_from_guest(vm, g) ({ \
1120 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
1121 memcpy(&(g), _p, sizeof(g)); \
1122 })
1123
1124 /*
1125 * Write a global value, but only in the VM's (guest's) domain. Primarily used
1126 * for "globals" that hold per-VM values (VMs always duplicate code and global
1127 * data into their own region of physical memory), but can be used anytime it's
1128 * undesirable to change the host's copy of the global.
1129 */
1130 #define write_guest_global(vm, g, val) ({ \
1131 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
1132 typeof(g) _val = val; \
1133 \
1134 memcpy(_p, &(_val), sizeof(g)); \
1135 })
1136
1137 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu);
1138
1139 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu,
1140 uint8_t indent);
1141
vcpu_dump(FILE * stream,struct kvm_vcpu * vcpu,uint8_t indent)1142 static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu,
1143 uint8_t indent)
1144 {
1145 vcpu_arch_dump(stream, vcpu, indent);
1146 }
1147
1148 /*
1149 * Adds a vCPU with reasonable defaults (e.g. a stack)
1150 *
1151 * Input Args:
1152 * vm - Virtual Machine
1153 * vcpu_id - The id of the VCPU to add to the VM.
1154 */
1155 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
1156 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code);
1157
vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id,void * guest_code)1158 static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
1159 void *guest_code)
1160 {
1161 struct kvm_vcpu *vcpu = vm_arch_vcpu_add(vm, vcpu_id);
1162
1163 vcpu_arch_set_entry_point(vcpu, guest_code);
1164
1165 return vcpu;
1166 }
1167
1168 /* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */
1169 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id);
1170
vm_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)1171 static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm,
1172 uint32_t vcpu_id)
1173 {
1174 return vm_arch_vcpu_recreate(vm, vcpu_id);
1175 }
1176
1177 void vcpu_arch_free(struct kvm_vcpu *vcpu);
1178
1179 void virt_arch_pgd_alloc(struct kvm_vm *vm);
1180
virt_pgd_alloc(struct kvm_vm * vm)1181 static inline void virt_pgd_alloc(struct kvm_vm *vm)
1182 {
1183 virt_arch_pgd_alloc(vm);
1184 }
1185
1186 /*
1187 * VM Virtual Page Map
1188 *
1189 * Input Args:
1190 * vm - Virtual Machine
1191 * vaddr - VM Virtual Address
1192 * paddr - VM Physical Address
1193 * memslot - Memory region slot for new virtual translation tables
1194 *
1195 * Output Args: None
1196 *
1197 * Return: None
1198 *
1199 * Within @vm, creates a virtual translation for the page starting
1200 * at @vaddr to the page starting at @paddr.
1201 */
1202 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr);
1203
virt_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr)1204 static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
1205 {
1206 virt_arch_pg_map(vm, vaddr, paddr);
1207 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1208 }
1209
1210
1211 /*
1212 * Address Guest Virtual to Guest Physical
1213 *
1214 * Input Args:
1215 * vm - Virtual Machine
1216 * gva - VM virtual address
1217 *
1218 * Output Args: None
1219 *
1220 * Return:
1221 * Equivalent VM physical address
1222 *
1223 * Returns the VM physical address of the translated VM virtual
1224 * address given by @gva.
1225 */
1226 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva);
1227
addr_gva2gpa(struct kvm_vm * vm,vm_vaddr_t gva)1228 static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
1229 {
1230 return addr_arch_gva2gpa(vm, gva);
1231 }
1232
1233 /*
1234 * Virtual Translation Tables Dump
1235 *
1236 * Input Args:
1237 * stream - Output FILE stream
1238 * vm - Virtual Machine
1239 * indent - Left margin indent amount
1240 *
1241 * Output Args: None
1242 *
1243 * Return: None
1244 *
1245 * Dumps to the FILE stream given by @stream, the contents of all the
1246 * virtual translation tables for the VM given by @vm.
1247 */
1248 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
1249
virt_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)1250 static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1251 {
1252 virt_arch_dump(stream, vm, indent);
1253 }
1254
1255
__vm_disable_nx_huge_pages(struct kvm_vm * vm)1256 static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm)
1257 {
1258 return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0);
1259 }
1260
1261 /*
1262 * Arch hook that is invoked via a constructor, i.e. before exeucting main(),
1263 * to allow for arch-specific setup that is common to all tests, e.g. computing
1264 * the default guest "mode".
1265 */
1266 void kvm_selftest_arch_init(void);
1267
1268 void kvm_arch_vm_post_create(struct kvm_vm *vm, unsigned int nr_vcpus);
1269 void kvm_arch_vm_finalize_vcpus(struct kvm_vm *vm);
1270 void kvm_arch_vm_release(struct kvm_vm *vm);
1271
1272 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr);
1273
1274 uint32_t guest_get_vcpuid(void);
1275
1276 bool kvm_arch_has_default_irqchip(void);
1277
1278 #endif /* SELFTEST_KVM_UTIL_H */
1279