xref: /linux/tools/testing/selftests/kvm/include/kvm_util.h (revision 51d90a15fedf8366cb96ef68d0ea2d0bf15417d2)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2018, Google LLC.
4  */
5 #ifndef SELFTEST_KVM_UTIL_H
6 #define SELFTEST_KVM_UTIL_H
7 
8 #include "test_util.h"
9 
10 #include <linux/compiler.h>
11 #include "linux/hashtable.h"
12 #include "linux/list.h"
13 #include <linux/kernel.h>
14 #include <linux/kvm.h>
15 #include "linux/rbtree.h"
16 #include <linux/types.h>
17 
18 #include <asm/atomic.h>
19 #include <asm/kvm.h>
20 
21 #include <sys/eventfd.h>
22 #include <sys/ioctl.h>
23 
24 #include <pthread.h>
25 
26 #include "kvm_syscalls.h"
27 #include "kvm_util_arch.h"
28 #include "kvm_util_types.h"
29 #include "sparsebit.h"
30 
31 #define KVM_DEV_PATH "/dev/kvm"
32 #define KVM_MAX_VCPUS 512
33 
34 #define NSEC_PER_SEC 1000000000L
35 
36 struct userspace_mem_region {
37 	struct kvm_userspace_memory_region2 region;
38 	struct sparsebit *unused_phy_pages;
39 	struct sparsebit *protected_phy_pages;
40 	int fd;
41 	off_t offset;
42 	enum vm_mem_backing_src_type backing_src_type;
43 	void *host_mem;
44 	void *host_alias;
45 	void *mmap_start;
46 	void *mmap_alias;
47 	size_t mmap_size;
48 	struct rb_node gpa_node;
49 	struct rb_node hva_node;
50 	struct hlist_node slot_node;
51 };
52 
53 struct kvm_binary_stats {
54 	int fd;
55 	struct kvm_stats_header header;
56 	struct kvm_stats_desc *desc;
57 };
58 
59 struct kvm_vcpu {
60 	struct list_head list;
61 	uint32_t id;
62 	int fd;
63 	struct kvm_vm *vm;
64 	struct kvm_run *run;
65 #ifdef __x86_64__
66 	struct kvm_cpuid2 *cpuid;
67 #endif
68 #ifdef __aarch64__
69 	struct kvm_vcpu_init init;
70 #endif
71 	struct kvm_binary_stats stats;
72 	struct kvm_dirty_gfn *dirty_gfns;
73 	uint32_t fetch_index;
74 	uint32_t dirty_gfns_count;
75 };
76 
77 struct userspace_mem_regions {
78 	struct rb_root gpa_tree;
79 	struct rb_root hva_tree;
80 	DECLARE_HASHTABLE(slot_hash, 9);
81 };
82 
83 enum kvm_mem_region_type {
84 	MEM_REGION_CODE,
85 	MEM_REGION_DATA,
86 	MEM_REGION_PT,
87 	MEM_REGION_TEST_DATA,
88 	NR_MEM_REGIONS,
89 };
90 
91 struct kvm_vm {
92 	int mode;
93 	unsigned long type;
94 	int kvm_fd;
95 	int fd;
96 	unsigned int pgtable_levels;
97 	unsigned int page_size;
98 	unsigned int page_shift;
99 	unsigned int pa_bits;
100 	unsigned int va_bits;
101 	uint64_t max_gfn;
102 	struct list_head vcpus;
103 	struct userspace_mem_regions regions;
104 	struct sparsebit *vpages_valid;
105 	struct sparsebit *vpages_mapped;
106 	bool has_irqchip;
107 	bool pgd_created;
108 	vm_paddr_t ucall_mmio_addr;
109 	vm_paddr_t pgd;
110 	vm_vaddr_t handlers;
111 	uint32_t dirty_ring_size;
112 	uint64_t gpa_tag_mask;
113 
114 	struct kvm_vm_arch arch;
115 
116 	struct kvm_binary_stats stats;
117 
118 	/*
119 	 * KVM region slots. These are the default memslots used by page
120 	 * allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE]
121 	 * memslot.
122 	 */
123 	uint32_t memslots[NR_MEM_REGIONS];
124 };
125 
126 struct vcpu_reg_sublist {
127 	const char *name;
128 	long capability;
129 	int feature;
130 	int feature_type;
131 	bool finalize;
132 	__u64 *regs;
133 	__u64 regs_n;
134 	__u64 *rejects_set;
135 	__u64 rejects_set_n;
136 	__u64 *skips_set;
137 	__u64 skips_set_n;
138 };
139 
140 struct vcpu_reg_list {
141 	char *name;
142 	struct vcpu_reg_sublist sublists[];
143 };
144 
145 #define for_each_sublist(c, s)		\
146 	for ((s) = &(c)->sublists[0]; (s)->regs; ++(s))
147 
148 #define kvm_for_each_vcpu(vm, i, vcpu)			\
149 	for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++)	\
150 		if (!((vcpu) = vm->vcpus[i]))		\
151 			continue;			\
152 		else
153 
154 struct userspace_mem_region *
155 memslot2region(struct kvm_vm *vm, uint32_t memslot);
156 
vm_get_mem_region(struct kvm_vm * vm,enum kvm_mem_region_type type)157 static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm,
158 							     enum kvm_mem_region_type type)
159 {
160 	assert(type < NR_MEM_REGIONS);
161 	return memslot2region(vm, vm->memslots[type]);
162 }
163 
164 /* Minimum allocated guest virtual and physical addresses */
165 #define KVM_UTIL_MIN_VADDR		0x2000
166 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR	0x180000
167 
168 #define DEFAULT_GUEST_STACK_VADDR_MIN	0xab6000
169 #define DEFAULT_STACK_PGS		5
170 
171 enum vm_guest_mode {
172 	VM_MODE_P52V48_4K,
173 	VM_MODE_P52V48_16K,
174 	VM_MODE_P52V48_64K,
175 	VM_MODE_P48V48_4K,
176 	VM_MODE_P48V48_16K,
177 	VM_MODE_P48V48_64K,
178 	VM_MODE_P40V48_4K,
179 	VM_MODE_P40V48_16K,
180 	VM_MODE_P40V48_64K,
181 	VM_MODE_PXXVYY_4K,	/* For 48-bit or 57-bit VA, depending on host support */
182 	VM_MODE_P47V64_4K,
183 	VM_MODE_P44V64_4K,
184 	VM_MODE_P36V48_4K,
185 	VM_MODE_P36V48_16K,
186 	VM_MODE_P36V48_64K,
187 	VM_MODE_P47V47_16K,
188 	VM_MODE_P36V47_16K,
189 	NUM_VM_MODES,
190 };
191 
192 struct vm_shape {
193 	uint32_t type;
194 	uint8_t  mode;
195 	uint8_t  pad0;
196 	uint16_t pad1;
197 };
198 
199 kvm_static_assert(sizeof(struct vm_shape) == sizeof(uint64_t));
200 
201 #define VM_TYPE_DEFAULT			0
202 
203 #define VM_SHAPE(__mode)			\
204 ({						\
205 	struct vm_shape shape = {		\
206 		.mode = (__mode),		\
207 		.type = VM_TYPE_DEFAULT		\
208 	};					\
209 						\
210 	shape;					\
211 })
212 
213 #if defined(__aarch64__)
214 
215 extern enum vm_guest_mode vm_mode_default;
216 
217 #define VM_MODE_DEFAULT			vm_mode_default
218 #define MIN_PAGE_SHIFT			12U
219 #define ptes_per_page(page_size)	((page_size) / 8)
220 
221 #elif defined(__x86_64__)
222 
223 #define VM_MODE_DEFAULT			VM_MODE_PXXVYY_4K
224 #define MIN_PAGE_SHIFT			12U
225 #define ptes_per_page(page_size)	((page_size) / 8)
226 
227 #elif defined(__s390x__)
228 
229 #define VM_MODE_DEFAULT			VM_MODE_P44V64_4K
230 #define MIN_PAGE_SHIFT			12U
231 #define ptes_per_page(page_size)	((page_size) / 16)
232 
233 #elif defined(__riscv)
234 
235 #if __riscv_xlen == 32
236 #error "RISC-V 32-bit kvm selftests not supported"
237 #endif
238 
239 #define VM_MODE_DEFAULT			VM_MODE_P40V48_4K
240 #define MIN_PAGE_SHIFT			12U
241 #define ptes_per_page(page_size)	((page_size) / 8)
242 
243 #elif defined(__loongarch__)
244 #define VM_MODE_DEFAULT			VM_MODE_P47V47_16K
245 #define MIN_PAGE_SHIFT			12U
246 #define ptes_per_page(page_size)	((page_size) / 8)
247 
248 #endif
249 
250 #define VM_SHAPE_DEFAULT	VM_SHAPE(VM_MODE_DEFAULT)
251 
252 #define MIN_PAGE_SIZE		(1U << MIN_PAGE_SHIFT)
253 #define PTES_PER_MIN_PAGE	ptes_per_page(MIN_PAGE_SIZE)
254 
255 struct vm_guest_mode_params {
256 	unsigned int pa_bits;
257 	unsigned int va_bits;
258 	unsigned int page_size;
259 	unsigned int page_shift;
260 };
261 extern const struct vm_guest_mode_params vm_guest_mode_params[];
262 
263 int __open_path_or_exit(const char *path, int flags, const char *enoent_help);
264 int open_path_or_exit(const char *path, int flags);
265 int open_kvm_dev_path_or_exit(void);
266 
267 int kvm_get_module_param_integer(const char *module_name, const char *param);
268 bool kvm_get_module_param_bool(const char *module_name, const char *param);
269 
get_kvm_param_bool(const char * param)270 static inline bool get_kvm_param_bool(const char *param)
271 {
272 	return kvm_get_module_param_bool("kvm", param);
273 }
274 
get_kvm_param_integer(const char * param)275 static inline int get_kvm_param_integer(const char *param)
276 {
277 	return kvm_get_module_param_integer("kvm", param);
278 }
279 
280 unsigned int kvm_check_cap(long cap);
281 
kvm_has_cap(long cap)282 static inline bool kvm_has_cap(long cap)
283 {
284 	return kvm_check_cap(cap);
285 }
286 
287 /*
288  * Use the "inner", double-underscore macro when reporting errors from within
289  * other macros so that the name of ioctl() and not its literal numeric value
290  * is printed on error.  The "outer" macro is strongly preferred when reporting
291  * errors "directly", i.e. without an additional layer of macros, as it reduces
292  * the probability of passing in the wrong string.
293  */
294 #define __KVM_IOCTL_ERROR(_name, _ret)	__KVM_SYSCALL_ERROR(_name, _ret)
295 #define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret)
296 
297 #define kvm_do_ioctl(fd, cmd, arg)						\
298 ({										\
299 	kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd));	\
300 	ioctl(fd, cmd, arg);							\
301 })
302 
303 #define __kvm_ioctl(kvm_fd, cmd, arg)				\
304 	kvm_do_ioctl(kvm_fd, cmd, arg)
305 
306 #define kvm_ioctl(kvm_fd, cmd, arg)				\
307 ({								\
308 	int ret = __kvm_ioctl(kvm_fd, cmd, arg);		\
309 								\
310 	TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(#cmd, ret));	\
311 })
312 
static_assert_is_vm(struct kvm_vm * vm)313 static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { }
314 
315 #define __vm_ioctl(vm, cmd, arg)				\
316 ({								\
317 	static_assert_is_vm(vm);				\
318 	kvm_do_ioctl((vm)->fd, cmd, arg);			\
319 })
320 
321 /*
322  * Assert that a VM or vCPU ioctl() succeeded, with extra magic to detect if
323  * the ioctl() failed because KVM killed/bugged the VM.  To detect a dead VM,
324  * probe KVM_CAP_USER_MEMORY, which (a) has been supported by KVM since before
325  * selftests existed and (b) should never outright fail, i.e. is supposed to
326  * return 0 or 1.  If KVM kills a VM, KVM returns -EIO for all ioctl()s for the
327  * VM and its vCPUs, including KVM_CHECK_EXTENSION.
328  */
329 #define __TEST_ASSERT_VM_VCPU_IOCTL(cond, name, ret, vm)				\
330 do {											\
331 	int __errno = errno;								\
332 											\
333 	static_assert_is_vm(vm);							\
334 											\
335 	if (cond)									\
336 		break;									\
337 											\
338 	if (errno == EIO &&								\
339 	    __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)KVM_CAP_USER_MEMORY) < 0) {	\
340 		TEST_ASSERT(errno == EIO, "KVM killed the VM, should return -EIO");	\
341 		TEST_FAIL("KVM killed/bugged the VM, check the kernel log for clues");	\
342 	}										\
343 	errno = __errno;								\
344 	TEST_ASSERT(cond, __KVM_IOCTL_ERROR(name, ret));				\
345 } while (0)
346 
347 #define TEST_ASSERT_VM_VCPU_IOCTL(cond, cmd, ret, vm)		\
348 	__TEST_ASSERT_VM_VCPU_IOCTL(cond, #cmd, ret, vm)
349 
350 #define vm_ioctl(vm, cmd, arg)					\
351 ({								\
352 	int ret = __vm_ioctl(vm, cmd, arg);			\
353 								\
354 	__TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, vm);		\
355 })
356 
static_assert_is_vcpu(struct kvm_vcpu * vcpu)357 static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { }
358 
359 #define __vcpu_ioctl(vcpu, cmd, arg)				\
360 ({								\
361 	static_assert_is_vcpu(vcpu);				\
362 	kvm_do_ioctl((vcpu)->fd, cmd, arg);			\
363 })
364 
365 #define vcpu_ioctl(vcpu, cmd, arg)				\
366 ({								\
367 	int ret = __vcpu_ioctl(vcpu, cmd, arg);			\
368 								\
369 	__TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, (vcpu)->vm);	\
370 })
371 
372 /*
373  * Looks up and returns the value corresponding to the capability
374  * (KVM_CAP_*) given by cap.
375  */
vm_check_cap(struct kvm_vm * vm,long cap)376 static inline int vm_check_cap(struct kvm_vm *vm, long cap)
377 {
378 	int ret =  __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap);
379 
380 	TEST_ASSERT_VM_VCPU_IOCTL(ret >= 0, KVM_CHECK_EXTENSION, ret, vm);
381 	return ret;
382 }
383 
__vm_enable_cap(struct kvm_vm * vm,uint32_t cap,uint64_t arg0)384 static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
385 {
386 	struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
387 
388 	return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
389 }
vm_enable_cap(struct kvm_vm * vm,uint32_t cap,uint64_t arg0)390 static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
391 {
392 	struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
393 
394 	vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
395 }
396 
vm_set_memory_attributes(struct kvm_vm * vm,uint64_t gpa,uint64_t size,uint64_t attributes)397 static inline void vm_set_memory_attributes(struct kvm_vm *vm, uint64_t gpa,
398 					    uint64_t size, uint64_t attributes)
399 {
400 	struct kvm_memory_attributes attr = {
401 		.attributes = attributes,
402 		.address = gpa,
403 		.size = size,
404 		.flags = 0,
405 	};
406 
407 	/*
408 	 * KVM_SET_MEMORY_ATTRIBUTES overwrites _all_ attributes.  These flows
409 	 * need significant enhancements to support multiple attributes.
410 	 */
411 	TEST_ASSERT(!attributes || attributes == KVM_MEMORY_ATTRIBUTE_PRIVATE,
412 		    "Update me to support multiple attributes!");
413 
414 	vm_ioctl(vm, KVM_SET_MEMORY_ATTRIBUTES, &attr);
415 }
416 
417 
vm_mem_set_private(struct kvm_vm * vm,uint64_t gpa,uint64_t size)418 static inline void vm_mem_set_private(struct kvm_vm *vm, uint64_t gpa,
419 				      uint64_t size)
420 {
421 	vm_set_memory_attributes(vm, gpa, size, KVM_MEMORY_ATTRIBUTE_PRIVATE);
422 }
423 
vm_mem_set_shared(struct kvm_vm * vm,uint64_t gpa,uint64_t size)424 static inline void vm_mem_set_shared(struct kvm_vm *vm, uint64_t gpa,
425 				     uint64_t size)
426 {
427 	vm_set_memory_attributes(vm, gpa, size, 0);
428 }
429 
430 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t gpa, uint64_t size,
431 			    bool punch_hole);
432 
vm_guest_mem_punch_hole(struct kvm_vm * vm,uint64_t gpa,uint64_t size)433 static inline void vm_guest_mem_punch_hole(struct kvm_vm *vm, uint64_t gpa,
434 					   uint64_t size)
435 {
436 	vm_guest_mem_fallocate(vm, gpa, size, true);
437 }
438 
vm_guest_mem_allocate(struct kvm_vm * vm,uint64_t gpa,uint64_t size)439 static inline void vm_guest_mem_allocate(struct kvm_vm *vm, uint64_t gpa,
440 					 uint64_t size)
441 {
442 	vm_guest_mem_fallocate(vm, gpa, size, false);
443 }
444 
445 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size);
446 const char *vm_guest_mode_string(uint32_t i);
447 
448 void kvm_vm_free(struct kvm_vm *vmp);
449 void kvm_vm_restart(struct kvm_vm *vmp);
450 void kvm_vm_release(struct kvm_vm *vmp);
451 void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename);
452 int kvm_memfd_alloc(size_t size, bool hugepages);
453 
454 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
455 
kvm_vm_get_dirty_log(struct kvm_vm * vm,int slot,void * log)456 static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
457 {
458 	struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
459 
460 	vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args);
461 }
462 
kvm_vm_clear_dirty_log(struct kvm_vm * vm,int slot,void * log,uint64_t first_page,uint32_t num_pages)463 static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
464 					  uint64_t first_page, uint32_t num_pages)
465 {
466 	struct kvm_clear_dirty_log args = {
467 		.dirty_bitmap = log,
468 		.slot = slot,
469 		.first_page = first_page,
470 		.num_pages = num_pages
471 	};
472 
473 	vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args);
474 }
475 
kvm_vm_reset_dirty_ring(struct kvm_vm * vm)476 static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
477 {
478 	return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL);
479 }
480 
kvm_vm_register_coalesced_io(struct kvm_vm * vm,uint64_t address,uint64_t size,bool pio)481 static inline void kvm_vm_register_coalesced_io(struct kvm_vm *vm,
482 						uint64_t address,
483 						uint64_t size, bool pio)
484 {
485 	struct kvm_coalesced_mmio_zone zone = {
486 		.addr = address,
487 		.size = size,
488 		.pio  = pio,
489 	};
490 
491 	vm_ioctl(vm, KVM_REGISTER_COALESCED_MMIO, &zone);
492 }
493 
kvm_vm_unregister_coalesced_io(struct kvm_vm * vm,uint64_t address,uint64_t size,bool pio)494 static inline void kvm_vm_unregister_coalesced_io(struct kvm_vm *vm,
495 						  uint64_t address,
496 						  uint64_t size, bool pio)
497 {
498 	struct kvm_coalesced_mmio_zone zone = {
499 		.addr = address,
500 		.size = size,
501 		.pio  = pio,
502 	};
503 
504 	vm_ioctl(vm, KVM_UNREGISTER_COALESCED_MMIO, &zone);
505 }
506 
vm_get_stats_fd(struct kvm_vm * vm)507 static inline int vm_get_stats_fd(struct kvm_vm *vm)
508 {
509 	int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL);
510 
511 	TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_GET_STATS_FD, fd, vm);
512 	return fd;
513 }
514 
__kvm_irqfd(struct kvm_vm * vm,uint32_t gsi,int eventfd,uint32_t flags)515 static inline int __kvm_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd,
516 			      uint32_t flags)
517 {
518 	struct kvm_irqfd irqfd = {
519 		.fd = eventfd,
520 		.gsi = gsi,
521 		.flags = flags,
522 		.resamplefd = -1,
523 	};
524 
525 	return __vm_ioctl(vm, KVM_IRQFD, &irqfd);
526 }
527 
kvm_irqfd(struct kvm_vm * vm,uint32_t gsi,int eventfd,uint32_t flags)528 static inline void kvm_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd,
529 			      uint32_t flags)
530 {
531 	int ret = __kvm_irqfd(vm, gsi, eventfd, flags);
532 
533 	TEST_ASSERT_VM_VCPU_IOCTL(!ret, KVM_IRQFD, ret, vm);
534 }
535 
kvm_assign_irqfd(struct kvm_vm * vm,uint32_t gsi,int eventfd)536 static inline void kvm_assign_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd)
537 {
538 	kvm_irqfd(vm, gsi, eventfd, 0);
539 }
540 
kvm_deassign_irqfd(struct kvm_vm * vm,uint32_t gsi,int eventfd)541 static inline void kvm_deassign_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd)
542 {
543 	kvm_irqfd(vm, gsi, eventfd, KVM_IRQFD_FLAG_DEASSIGN);
544 }
545 
kvm_new_eventfd(void)546 static inline int kvm_new_eventfd(void)
547 {
548 	int fd = eventfd(0, 0);
549 
550 	TEST_ASSERT(fd >= 0, __KVM_SYSCALL_ERROR("eventfd()", fd));
551 	return fd;
552 }
553 
read_stats_header(int stats_fd,struct kvm_stats_header * header)554 static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header)
555 {
556 	ssize_t ret;
557 
558 	ret = pread(stats_fd, header, sizeof(*header), 0);
559 	TEST_ASSERT(ret == sizeof(*header),
560 		    "Failed to read '%lu' header bytes, ret = '%ld'",
561 		    sizeof(*header), ret);
562 }
563 
564 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
565 					      struct kvm_stats_header *header);
566 
get_stats_descriptor_size(struct kvm_stats_header * header)567 static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header)
568 {
569 	 /*
570 	  * The base size of the descriptor is defined by KVM's ABI, but the
571 	  * size of the name field is variable, as far as KVM's ABI is
572 	  * concerned. For a given instance of KVM, the name field is the same
573 	  * size for all stats and is provided in the overall stats header.
574 	  */
575 	return sizeof(struct kvm_stats_desc) + header->name_size;
576 }
577 
get_stats_descriptor(struct kvm_stats_desc * stats,int index,struct kvm_stats_header * header)578 static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats,
579 							  int index,
580 							  struct kvm_stats_header *header)
581 {
582 	/*
583 	 * Note, size_desc includes the size of the name field, which is
584 	 * variable. i.e. this is NOT equivalent to &stats_desc[i].
585 	 */
586 	return (void *)stats + index * get_stats_descriptor_size(header);
587 }
588 
589 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
590 		    struct kvm_stats_desc *desc, uint64_t *data,
591 		    size_t max_elements);
592 
593 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name,
594 		  uint64_t *data, size_t max_elements);
595 
596 #define __get_stat(stats, stat)							\
597 ({										\
598 	uint64_t data;								\
599 										\
600 	kvm_get_stat(stats, #stat, &data, 1);					\
601 	data;									\
602 })
603 
604 #define vm_get_stat(vm, stat) __get_stat(&(vm)->stats, stat)
605 #define vcpu_get_stat(vcpu, stat) __get_stat(&(vcpu)->stats, stat)
606 
read_smt_control(char * buf,size_t buf_size)607 static inline bool read_smt_control(char *buf, size_t buf_size)
608 {
609 	FILE *f = fopen("/sys/devices/system/cpu/smt/control", "r");
610 	bool ret;
611 
612 	if (!f)
613 		return false;
614 
615 	ret = fread(buf, sizeof(*buf), buf_size, f) > 0;
616 	fclose(f);
617 
618 	return ret;
619 }
620 
is_smt_possible(void)621 static inline bool is_smt_possible(void)
622 {
623 	char buf[16];
624 
625 	if (read_smt_control(buf, sizeof(buf)) &&
626 	    (!strncmp(buf, "forceoff", 8) || !strncmp(buf, "notsupported", 12)))
627 		return false;
628 
629 	return true;
630 }
631 
is_smt_on(void)632 static inline bool is_smt_on(void)
633 {
634 	char buf[16];
635 
636 	if (read_smt_control(buf, sizeof(buf)) && !strncmp(buf, "on", 2))
637 		return true;
638 
639 	return false;
640 }
641 
642 void vm_create_irqchip(struct kvm_vm *vm);
643 
__vm_create_guest_memfd(struct kvm_vm * vm,uint64_t size,uint64_t flags)644 static inline int __vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
645 					uint64_t flags)
646 {
647 	struct kvm_create_guest_memfd guest_memfd = {
648 		.size = size,
649 		.flags = flags,
650 	};
651 
652 	return __vm_ioctl(vm, KVM_CREATE_GUEST_MEMFD, &guest_memfd);
653 }
654 
vm_create_guest_memfd(struct kvm_vm * vm,uint64_t size,uint64_t flags)655 static inline int vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
656 					uint64_t flags)
657 {
658 	int fd = __vm_create_guest_memfd(vm, size, flags);
659 
660 	TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_GUEST_MEMFD, fd));
661 	return fd;
662 }
663 
664 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
665 			       uint64_t gpa, uint64_t size, void *hva);
666 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
667 				uint64_t gpa, uint64_t size, void *hva);
668 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
669 				uint64_t gpa, uint64_t size, void *hva,
670 				uint32_t guest_memfd, uint64_t guest_memfd_offset);
671 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
672 				 uint64_t gpa, uint64_t size, void *hva,
673 				 uint32_t guest_memfd, uint64_t guest_memfd_offset);
674 
675 void vm_userspace_mem_region_add(struct kvm_vm *vm,
676 				 enum vm_mem_backing_src_type src_type,
677 				 uint64_t gpa, uint32_t slot, uint64_t npages,
678 				 uint32_t flags);
679 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
680 		uint64_t gpa, uint32_t slot, uint64_t npages, uint32_t flags,
681 		int guest_memfd_fd, uint64_t guest_memfd_offset);
682 
683 #ifndef vm_arch_has_protected_memory
vm_arch_has_protected_memory(struct kvm_vm * vm)684 static inline bool vm_arch_has_protected_memory(struct kvm_vm *vm)
685 {
686 	return false;
687 }
688 #endif
689 
690 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags);
691 void vm_mem_region_reload(struct kvm_vm *vm, uint32_t slot);
692 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa);
693 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot);
694 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
695 void vm_populate_vaddr_bitmap(struct kvm_vm *vm);
696 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
697 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
698 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
699 			    enum kvm_mem_region_type type);
700 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
701 				 vm_vaddr_t vaddr_min,
702 				 enum kvm_mem_region_type type);
703 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages);
704 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm,
705 				 enum kvm_mem_region_type type);
706 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm);
707 
708 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
709 	      unsigned int npages);
710 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa);
711 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva);
712 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva);
713 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa);
714 
715 #ifndef vcpu_arch_put_guest
716 #define vcpu_arch_put_guest(mem, val) do { (mem) = (val); } while (0)
717 #endif
718 
vm_untag_gpa(struct kvm_vm * vm,vm_paddr_t gpa)719 static inline vm_paddr_t vm_untag_gpa(struct kvm_vm *vm, vm_paddr_t gpa)
720 {
721 	return gpa & ~vm->gpa_tag_mask;
722 }
723 
724 void vcpu_run(struct kvm_vcpu *vcpu);
725 int _vcpu_run(struct kvm_vcpu *vcpu);
726 
__vcpu_run(struct kvm_vcpu * vcpu)727 static inline int __vcpu_run(struct kvm_vcpu *vcpu)
728 {
729 	return __vcpu_ioctl(vcpu, KVM_RUN, NULL);
730 }
731 
732 void vcpu_run_complete_io(struct kvm_vcpu *vcpu);
733 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu);
734 
vcpu_enable_cap(struct kvm_vcpu * vcpu,uint32_t cap,uint64_t arg0)735 static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap,
736 				   uint64_t arg0)
737 {
738 	struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
739 
740 	vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap);
741 }
742 
vcpu_guest_debug_set(struct kvm_vcpu * vcpu,struct kvm_guest_debug * debug)743 static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu,
744 					struct kvm_guest_debug *debug)
745 {
746 	vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug);
747 }
748 
vcpu_mp_state_get(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)749 static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu,
750 				     struct kvm_mp_state *mp_state)
751 {
752 	vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state);
753 }
vcpu_mp_state_set(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)754 static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu,
755 				     struct kvm_mp_state *mp_state)
756 {
757 	vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state);
758 }
759 
vcpu_regs_get(struct kvm_vcpu * vcpu,struct kvm_regs * regs)760 static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
761 {
762 	vcpu_ioctl(vcpu, KVM_GET_REGS, regs);
763 }
764 
vcpu_regs_set(struct kvm_vcpu * vcpu,struct kvm_regs * regs)765 static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
766 {
767 	vcpu_ioctl(vcpu, KVM_SET_REGS, regs);
768 }
vcpu_sregs_get(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)769 static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
770 {
771 	vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs);
772 
773 }
vcpu_sregs_set(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)774 static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
775 {
776 	vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
777 }
_vcpu_sregs_set(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)778 static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
779 {
780 	return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
781 }
vcpu_fpu_get(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)782 static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
783 {
784 	vcpu_ioctl(vcpu, KVM_GET_FPU, fpu);
785 }
vcpu_fpu_set(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)786 static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
787 {
788 	vcpu_ioctl(vcpu, KVM_SET_FPU, fpu);
789 }
790 
__vcpu_get_reg(struct kvm_vcpu * vcpu,uint64_t id,void * addr)791 static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
792 {
793 	struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
794 
795 	return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, &reg);
796 }
__vcpu_set_reg(struct kvm_vcpu * vcpu,uint64_t id,uint64_t val)797 static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
798 {
799 	struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
800 
801 	return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, &reg);
802 }
vcpu_get_reg(struct kvm_vcpu * vcpu,uint64_t id)803 static inline uint64_t vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id)
804 {
805 	uint64_t val;
806 	struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
807 
808 	TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id);
809 
810 	vcpu_ioctl(vcpu, KVM_GET_ONE_REG, &reg);
811 	return val;
812 }
vcpu_set_reg(struct kvm_vcpu * vcpu,uint64_t id,uint64_t val)813 static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
814 {
815 	struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
816 
817 	TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id);
818 
819 	vcpu_ioctl(vcpu, KVM_SET_ONE_REG, &reg);
820 }
821 
822 #ifdef __KVM_HAVE_VCPU_EVENTS
vcpu_events_get(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)823 static inline void vcpu_events_get(struct kvm_vcpu *vcpu,
824 				   struct kvm_vcpu_events *events)
825 {
826 	vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events);
827 }
vcpu_events_set(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)828 static inline void vcpu_events_set(struct kvm_vcpu *vcpu,
829 				   struct kvm_vcpu_events *events)
830 {
831 	vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events);
832 }
833 #endif
834 #ifdef __x86_64__
vcpu_nested_state_get(struct kvm_vcpu * vcpu,struct kvm_nested_state * state)835 static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu,
836 					 struct kvm_nested_state *state)
837 {
838 	vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state);
839 }
__vcpu_nested_state_set(struct kvm_vcpu * vcpu,struct kvm_nested_state * state)840 static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu,
841 					  struct kvm_nested_state *state)
842 {
843 	return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
844 }
845 
vcpu_nested_state_set(struct kvm_vcpu * vcpu,struct kvm_nested_state * state)846 static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu,
847 					 struct kvm_nested_state *state)
848 {
849 	vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
850 }
851 #endif
vcpu_get_stats_fd(struct kvm_vcpu * vcpu)852 static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu)
853 {
854 	int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL);
855 
856 	TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_CHECK_EXTENSION, fd, vcpu->vm);
857 	return fd;
858 }
859 
860 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr);
861 
kvm_has_device_attr(int dev_fd,uint32_t group,uint64_t attr)862 static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
863 {
864 	int ret = __kvm_has_device_attr(dev_fd, group, attr);
865 
866 	TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
867 }
868 
869 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val);
870 
kvm_device_attr_get(int dev_fd,uint32_t group,uint64_t attr,void * val)871 static inline void kvm_device_attr_get(int dev_fd, uint32_t group,
872 				       uint64_t attr, void *val)
873 {
874 	int ret = __kvm_device_attr_get(dev_fd, group, attr, val);
875 
876 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret));
877 }
878 
879 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val);
880 
kvm_device_attr_set(int dev_fd,uint32_t group,uint64_t attr,void * val)881 static inline void kvm_device_attr_set(int dev_fd, uint32_t group,
882 				       uint64_t attr, void *val)
883 {
884 	int ret = __kvm_device_attr_set(dev_fd, group, attr, val);
885 
886 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret));
887 }
888 
__vcpu_has_device_attr(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr)889 static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
890 					 uint64_t attr)
891 {
892 	return __kvm_has_device_attr(vcpu->fd, group, attr);
893 }
894 
vcpu_has_device_attr(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr)895 static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
896 					uint64_t attr)
897 {
898 	kvm_has_device_attr(vcpu->fd, group, attr);
899 }
900 
__vcpu_device_attr_get(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)901 static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
902 					 uint64_t attr, void *val)
903 {
904 	return __kvm_device_attr_get(vcpu->fd, group, attr, val);
905 }
906 
vcpu_device_attr_get(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)907 static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
908 					uint64_t attr, void *val)
909 {
910 	kvm_device_attr_get(vcpu->fd, group, attr, val);
911 }
912 
__vcpu_device_attr_set(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)913 static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
914 					 uint64_t attr, void *val)
915 {
916 	return __kvm_device_attr_set(vcpu->fd, group, attr, val);
917 }
918 
vcpu_device_attr_set(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)919 static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
920 					uint64_t attr, void *val)
921 {
922 	kvm_device_attr_set(vcpu->fd, group, attr, val);
923 }
924 
925 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type);
926 int __kvm_create_device(struct kvm_vm *vm, uint64_t type);
927 
kvm_create_device(struct kvm_vm * vm,uint64_t type)928 static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type)
929 {
930 	int fd = __kvm_create_device(vm, type);
931 
932 	TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd));
933 	return fd;
934 }
935 
936 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu);
937 
938 /*
939  * VM VCPU Args Set
940  *
941  * Input Args:
942  *   vm - Virtual Machine
943  *   num - number of arguments
944  *   ... - arguments, each of type uint64_t
945  *
946  * Output Args: None
947  *
948  * Return: None
949  *
950  * Sets the first @num input parameters for the function at @vcpu's entry point,
951  * per the C calling convention of the architecture, to the values given as
952  * variable args. Each of the variable args is expected to be of type uint64_t.
953  * The maximum @num can be is specific to the architecture.
954  */
955 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...);
956 
957 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
958 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
959 
960 #define KVM_MAX_IRQ_ROUTES		4096
961 
962 struct kvm_irq_routing *kvm_gsi_routing_create(void);
963 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
964 		uint32_t gsi, uint32_t pin);
965 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
966 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
967 
968 const char *exit_reason_str(unsigned int exit_reason);
969 
970 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
971 			     uint32_t memslot);
972 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
973 				vm_paddr_t paddr_min, uint32_t memslot,
974 				bool protected);
975 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm);
976 
vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot)977 static inline vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
978 					    vm_paddr_t paddr_min, uint32_t memslot)
979 {
980 	/*
981 	 * By default, allocate memory as protected for VMs that support
982 	 * protected memory, as the majority of memory for such VMs is
983 	 * protected, i.e. using shared memory is effectively opt-in.
984 	 */
985 	return __vm_phy_pages_alloc(vm, num, paddr_min, memslot,
986 				    vm_arch_has_protected_memory(vm));
987 }
988 
989 /*
990  * ____vm_create() does KVM_CREATE_VM and little else.  __vm_create() also
991  * loads the test binary into guest memory and creates an IRQ chip (x86 only).
992  * __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to
993  * calculate the amount of memory needed for per-vCPU data, e.g. stacks.
994  */
995 struct kvm_vm *____vm_create(struct vm_shape shape);
996 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
997 			   uint64_t nr_extra_pages);
998 
vm_create_barebones(void)999 static inline struct kvm_vm *vm_create_barebones(void)
1000 {
1001 	return ____vm_create(VM_SHAPE_DEFAULT);
1002 }
1003 
vm_create_barebones_type(unsigned long type)1004 static inline struct kvm_vm *vm_create_barebones_type(unsigned long type)
1005 {
1006 	const struct vm_shape shape = {
1007 		.mode = VM_MODE_DEFAULT,
1008 		.type = type,
1009 	};
1010 
1011 	return ____vm_create(shape);
1012 }
1013 
vm_create(uint32_t nr_runnable_vcpus)1014 static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus)
1015 {
1016 	return __vm_create(VM_SHAPE_DEFAULT, nr_runnable_vcpus, 0);
1017 }
1018 
1019 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
1020 				      uint64_t extra_mem_pages,
1021 				      void *guest_code, struct kvm_vcpu *vcpus[]);
1022 
vm_create_with_vcpus(uint32_t nr_vcpus,void * guest_code,struct kvm_vcpu * vcpus[])1023 static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus,
1024 						  void *guest_code,
1025 						  struct kvm_vcpu *vcpus[])
1026 {
1027 	return __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus, 0,
1028 				      guest_code, vcpus);
1029 }
1030 
1031 
1032 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
1033 					       struct kvm_vcpu **vcpu,
1034 					       uint64_t extra_mem_pages,
1035 					       void *guest_code);
1036 
1037 /*
1038  * Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages
1039  * additional pages of guest memory.  Returns the VM and vCPU (via out param).
1040  */
__vm_create_with_one_vcpu(struct kvm_vcpu ** vcpu,uint64_t extra_mem_pages,void * guest_code)1041 static inline struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
1042 						       uint64_t extra_mem_pages,
1043 						       void *guest_code)
1044 {
1045 	return __vm_create_shape_with_one_vcpu(VM_SHAPE_DEFAULT, vcpu,
1046 					       extra_mem_pages, guest_code);
1047 }
1048 
vm_create_with_one_vcpu(struct kvm_vcpu ** vcpu,void * guest_code)1049 static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
1050 						     void *guest_code)
1051 {
1052 	return __vm_create_with_one_vcpu(vcpu, 0, guest_code);
1053 }
1054 
vm_create_shape_with_one_vcpu(struct vm_shape shape,struct kvm_vcpu ** vcpu,void * guest_code)1055 static inline struct kvm_vm *vm_create_shape_with_one_vcpu(struct vm_shape shape,
1056 							   struct kvm_vcpu **vcpu,
1057 							   void *guest_code)
1058 {
1059 	return __vm_create_shape_with_one_vcpu(shape, vcpu, 0, guest_code);
1060 }
1061 
1062 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm);
1063 
1064 void kvm_set_files_rlimit(uint32_t nr_vcpus);
1065 
1066 int __pin_task_to_cpu(pthread_t task, int cpu);
1067 
pin_task_to_cpu(pthread_t task,int cpu)1068 static inline void pin_task_to_cpu(pthread_t task, int cpu)
1069 {
1070 	int r;
1071 
1072 	r = __pin_task_to_cpu(task, cpu);
1073 	TEST_ASSERT(!r, "Failed to set thread affinity to pCPU '%u'", cpu);
1074 }
1075 
pin_task_to_any_cpu(pthread_t task)1076 static inline int pin_task_to_any_cpu(pthread_t task)
1077 {
1078 	int cpu = sched_getcpu();
1079 
1080 	pin_task_to_cpu(task, cpu);
1081 	return cpu;
1082 }
1083 
pin_self_to_cpu(int cpu)1084 static inline void pin_self_to_cpu(int cpu)
1085 {
1086 	pin_task_to_cpu(pthread_self(), cpu);
1087 }
1088 
pin_self_to_any_cpu(void)1089 static inline int pin_self_to_any_cpu(void)
1090 {
1091 	return pin_task_to_any_cpu(pthread_self());
1092 }
1093 
1094 void kvm_print_vcpu_pinning_help(void);
1095 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
1096 			    int nr_vcpus);
1097 
1098 unsigned long vm_compute_max_gfn(struct kvm_vm *vm);
1099 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size);
1100 unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages);
1101 unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages);
1102 static inline unsigned int
vm_adjust_num_guest_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)1103 vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
1104 {
1105 	unsigned int n;
1106 	n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages));
1107 #ifdef __s390x__
1108 	/* s390 requires 1M aligned guest sizes */
1109 	n = (n + 255) & ~255;
1110 #endif
1111 	return n;
1112 }
1113 
1114 #define sync_global_to_guest(vm, g) ({				\
1115 	typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g));	\
1116 	memcpy(_p, &(g), sizeof(g));				\
1117 })
1118 
1119 #define sync_global_from_guest(vm, g) ({			\
1120 	typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g));	\
1121 	memcpy(&(g), _p, sizeof(g));				\
1122 })
1123 
1124 /*
1125  * Write a global value, but only in the VM's (guest's) domain.  Primarily used
1126  * for "globals" that hold per-VM values (VMs always duplicate code and global
1127  * data into their own region of physical memory), but can be used anytime it's
1128  * undesirable to change the host's copy of the global.
1129  */
1130 #define write_guest_global(vm, g, val) ({			\
1131 	typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g));	\
1132 	typeof(g) _val = val;					\
1133 								\
1134 	memcpy(_p, &(_val), sizeof(g));				\
1135 })
1136 
1137 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu);
1138 
1139 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu,
1140 		    uint8_t indent);
1141 
vcpu_dump(FILE * stream,struct kvm_vcpu * vcpu,uint8_t indent)1142 static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu,
1143 			     uint8_t indent)
1144 {
1145 	vcpu_arch_dump(stream, vcpu, indent);
1146 }
1147 
1148 /*
1149  * Adds a vCPU with reasonable defaults (e.g. a stack)
1150  *
1151  * Input Args:
1152  *   vm - Virtual Machine
1153  *   vcpu_id - The id of the VCPU to add to the VM.
1154  */
1155 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
1156 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code);
1157 
vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id,void * guest_code)1158 static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
1159 					   void *guest_code)
1160 {
1161 	struct kvm_vcpu *vcpu = vm_arch_vcpu_add(vm, vcpu_id);
1162 
1163 	vcpu_arch_set_entry_point(vcpu, guest_code);
1164 
1165 	return vcpu;
1166 }
1167 
1168 /* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */
1169 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id);
1170 
vm_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)1171 static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm,
1172 						uint32_t vcpu_id)
1173 {
1174 	return vm_arch_vcpu_recreate(vm, vcpu_id);
1175 }
1176 
1177 void vcpu_arch_free(struct kvm_vcpu *vcpu);
1178 
1179 void virt_arch_pgd_alloc(struct kvm_vm *vm);
1180 
virt_pgd_alloc(struct kvm_vm * vm)1181 static inline void virt_pgd_alloc(struct kvm_vm *vm)
1182 {
1183 	virt_arch_pgd_alloc(vm);
1184 }
1185 
1186 /*
1187  * VM Virtual Page Map
1188  *
1189  * Input Args:
1190  *   vm - Virtual Machine
1191  *   vaddr - VM Virtual Address
1192  *   paddr - VM Physical Address
1193  *   memslot - Memory region slot for new virtual translation tables
1194  *
1195  * Output Args: None
1196  *
1197  * Return: None
1198  *
1199  * Within @vm, creates a virtual translation for the page starting
1200  * at @vaddr to the page starting at @paddr.
1201  */
1202 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr);
1203 
virt_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr)1204 static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
1205 {
1206 	virt_arch_pg_map(vm, vaddr, paddr);
1207 	sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1208 }
1209 
1210 
1211 /*
1212  * Address Guest Virtual to Guest Physical
1213  *
1214  * Input Args:
1215  *   vm - Virtual Machine
1216  *   gva - VM virtual address
1217  *
1218  * Output Args: None
1219  *
1220  * Return:
1221  *   Equivalent VM physical address
1222  *
1223  * Returns the VM physical address of the translated VM virtual
1224  * address given by @gva.
1225  */
1226 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva);
1227 
addr_gva2gpa(struct kvm_vm * vm,vm_vaddr_t gva)1228 static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
1229 {
1230 	return addr_arch_gva2gpa(vm, gva);
1231 }
1232 
1233 /*
1234  * Virtual Translation Tables Dump
1235  *
1236  * Input Args:
1237  *   stream - Output FILE stream
1238  *   vm     - Virtual Machine
1239  *   indent - Left margin indent amount
1240  *
1241  * Output Args: None
1242  *
1243  * Return: None
1244  *
1245  * Dumps to the FILE stream given by @stream, the contents of all the
1246  * virtual translation tables for the VM given by @vm.
1247  */
1248 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
1249 
virt_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)1250 static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1251 {
1252 	virt_arch_dump(stream, vm, indent);
1253 }
1254 
1255 
__vm_disable_nx_huge_pages(struct kvm_vm * vm)1256 static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm)
1257 {
1258 	return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0);
1259 }
1260 
1261 /*
1262  * Arch hook that is invoked via a constructor, i.e. before exeucting main(),
1263  * to allow for arch-specific setup that is common to all tests, e.g. computing
1264  * the default guest "mode".
1265  */
1266 void kvm_selftest_arch_init(void);
1267 
1268 void kvm_arch_vm_post_create(struct kvm_vm *vm, unsigned int nr_vcpus);
1269 void kvm_arch_vm_finalize_vcpus(struct kvm_vm *vm);
1270 void kvm_arch_vm_release(struct kvm_vm *vm);
1271 
1272 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr);
1273 
1274 uint32_t guest_get_vcpuid(void);
1275 
1276 bool kvm_arch_has_default_irqchip(void);
1277 
1278 #endif /* SELFTEST_KVM_UTIL_H */
1279