xref: /freebsd/sys/dev/sym/sym_hipd.c (revision b941d1c64e58708c93621cc07ed1c8e5e709cd48)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
5  *  PCI-SCSI controllers.
6  *
7  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
8  *
9  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
10  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
11  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
12  *
13  *
14  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
15  *  Copyright (C) 1998-1999  Gerard Roudier
16  *
17  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
18  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
19  *
20  *  The original ncr driver has been written for 386bsd and FreeBSD by
21  *          Wolfgang Stanglmeier        <wolf@cologne.de>
22  *          Stefan Esser                <se@mi.Uni-Koeln.de>
23  *  Copyright (C) 1994  Wolfgang Stanglmeier
24  *
25  *  The initialisation code, and part of the code that addresses
26  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
27  *  written by Justin T. Gibbs.
28  *
29  *  Other major contributions:
30  *
31  *  NVRAM detection and reading.
32  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
33  *
34  *-----------------------------------------------------------------------------
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. The name of the author may not be used to endorse or promote products
45  *    derived from this software without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
51  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  */
59 
60 #include <sys/cdefs.h>
61 
62 /* #define SYM_DEBUG_GENERIC_SUPPORT */
63 
64 #include <sys/param.h>
65 
66 /*
67  *  Driver configuration options.
68  */
69 #include "opt_sym.h"
70 #include <dev/sym/sym_conf.h>
71 
72 #include <sys/systm.h>
73 #include <sys/malloc.h>
74 #include <sys/endian.h>
75 #include <sys/kernel.h>
76 #include <sys/lock.h>
77 #include <sys/mutex.h>
78 #include <sys/module.h>
79 #include <sys/bus.h>
80 
81 #include <sys/proc.h>
82 
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 
86 #include <machine/bus.h>
87 #include <machine/resource.h>
88 #include <machine/atomic.h>
89 
90 #include <sys/rman.h>
91 
92 #include <cam/cam.h>
93 #include <cam/cam_ccb.h>
94 #include <cam/cam_sim.h>
95 #include <cam/cam_xpt_sim.h>
96 #include <cam/cam_debug.h>
97 
98 #include <cam/scsi/scsi_all.h>
99 #include <cam/scsi/scsi_message.h>
100 
101 /* Short and quite clear integer types */
102 typedef int8_t    s8;
103 typedef int16_t   s16;
104 typedef	int32_t   s32;
105 typedef u_int8_t  u8;
106 typedef u_int16_t u16;
107 typedef	u_int32_t u32;
108 
109 /*
110  *  Driver definitions.
111  */
112 #include <dev/sym/sym_defs.h>
113 #include <dev/sym/sym_fw.h>
114 
115 /*
116  * With uncacheable memory, x86 does not reorder STORES and prevents LOADS
117  * from passing STORES.  For ensuring this program order, we still need to
118  * employ compiler barriers, though, when the ordering of LOADS and STORES
119  * matters.
120  * Other architectures may implement weaker ordering guarantees and, thus,
121  * require memory barriers (and also IO barriers) to be used.
122  */
123 #if	defined	__i386__ || defined __amd64__
124 #define	MEMORY_BARRIER()	__compiler_membar()
125 #elif	defined	__powerpc__
126 #define MEMORY_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")
127 #elif	defined	__arm__
128 #define MEMORY_BARRIER()	dmb()
129 #elif	defined	__aarch64__
130 #define MEMORY_BARRIER()	dmb(sy)
131 #elif	defined __riscv
132 #define MEMORY_BARRIER()	fence()
133 #else
134 #error	"Not supported platform"
135 #endif
136 
137 /*
138  *  A la VMS/CAM-3 queue management.
139  */
140 typedef struct sym_quehead {
141 	struct sym_quehead *flink;	/* Forward  pointer */
142 	struct sym_quehead *blink;	/* Backward pointer */
143 } SYM_QUEHEAD;
144 
145 #define sym_que_init(ptr) do { \
146 	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
147 } while (0)
148 
149 static __inline void __sym_que_add(struct sym_quehead * new,
150 	struct sym_quehead * blink,
151 	struct sym_quehead * flink)
152 {
153 	flink->blink	= new;
154 	new->flink	= flink;
155 	new->blink	= blink;
156 	blink->flink	= new;
157 }
158 
159 static __inline void __sym_que_del(struct sym_quehead * blink,
160 	struct sym_quehead * flink)
161 {
162 	flink->blink = blink;
163 	blink->flink = flink;
164 }
165 
166 static __inline int sym_que_empty(struct sym_quehead *head)
167 {
168 	return head->flink == head;
169 }
170 
171 static __inline void sym_que_splice(struct sym_quehead *list,
172 	struct sym_quehead *head)
173 {
174 	struct sym_quehead *first = list->flink;
175 
176 	if (first != list) {
177 		struct sym_quehead *last = list->blink;
178 		struct sym_quehead *at   = head->flink;
179 
180 		first->blink = head;
181 		head->flink  = first;
182 
183 		last->flink = at;
184 		at->blink   = last;
185 	}
186 }
187 
188 #define sym_que_entry(ptr, type, member) \
189 	((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))
190 
191 #define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
192 
193 #define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
194 
195 #define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
196 
197 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
198 {
199 	struct sym_quehead *elem = head->flink;
200 
201 	if (elem != head)
202 		__sym_que_del(head, elem->flink);
203 	else
204 		elem = NULL;
205 	return elem;
206 }
207 
208 #define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
209 
210 /*
211  *  This one may be useful.
212  */
213 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
214 	for (qp = (head)->flink; qp != (head); qp = qp->flink)
215 /*
216  *  FreeBSD does not offer our kind of queue in the CAM CCB.
217  *  So, we have to cast.
218  */
219 #define sym_qptr(p)	((struct sym_quehead *) (p))
220 
221 /*
222  *  Simple bitmap operations.
223  */
224 #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
225 #define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
226 #define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
227 
228 /*
229  *  Number of tasks per device we want to handle.
230  */
231 #if	SYM_CONF_MAX_TAG_ORDER > 8
232 #error	"more than 256 tags per logical unit not allowed."
233 #endif
234 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
235 
236 /*
237  *  Donnot use more tasks that we can handle.
238  */
239 #ifndef	SYM_CONF_MAX_TAG
240 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
241 #endif
242 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
243 #undef	SYM_CONF_MAX_TAG
244 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
245 #endif
246 
247 /*
248  *    This one means 'NO TAG for this job'
249  */
250 #define NO_TAG	(256)
251 
252 /*
253  *  Number of SCSI targets.
254  */
255 #if	SYM_CONF_MAX_TARGET > 16
256 #error	"more than 16 targets not allowed."
257 #endif
258 
259 /*
260  *  Number of logical units per target.
261  */
262 #if	SYM_CONF_MAX_LUN > 64
263 #error	"more than 64 logical units per target not allowed."
264 #endif
265 
266 /*
267  *    Asynchronous pre-scaler (ns). Shall be 40 for
268  *    the SCSI timings to be compliant.
269  */
270 #define	SYM_CONF_MIN_ASYNC (40)
271 
272 /*
273  *  Number of entries in the START and DONE queues.
274  *
275  *  We limit to 1 PAGE in order to succeed allocation of
276  *  these queues. Each entry is 8 bytes long (2 DWORDS).
277  */
278 #ifdef	SYM_CONF_MAX_START
279 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
280 #else
281 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
282 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
283 #endif
284 
285 #if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
286 #undef	SYM_CONF_MAX_QUEUE
287 #define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
288 #undef	SYM_CONF_MAX_START
289 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
290 #endif
291 
292 /*
293  *  For this one, we want a short name :-)
294  */
295 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
296 
297 /*
298  *  Active debugging tags and verbosity.
299  */
300 #define DEBUG_ALLOC	(0x0001)
301 #define DEBUG_PHASE	(0x0002)
302 #define DEBUG_POLL	(0x0004)
303 #define DEBUG_QUEUE	(0x0008)
304 #define DEBUG_RESULT	(0x0010)
305 #define DEBUG_SCATTER	(0x0020)
306 #define DEBUG_SCRIPT	(0x0040)
307 #define DEBUG_TINY	(0x0080)
308 #define DEBUG_TIMING	(0x0100)
309 #define DEBUG_NEGO	(0x0200)
310 #define DEBUG_TAGS	(0x0400)
311 #define DEBUG_POINTER	(0x0800)
312 
313 #if 0
314 static int sym_debug = 0;
315 	#define DEBUG_FLAGS sym_debug
316 #else
317 /*	#define DEBUG_FLAGS (0x0631) */
318 	#define DEBUG_FLAGS (0x0000)
319 
320 #endif
321 #define sym_verbose	(np->verbose)
322 
323 /*
324  *  Insert a delay in micro-seconds and milli-seconds.
325  */
326 static void UDELAY(int us) { DELAY(us); }
327 static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
328 
329 /*
330  *  Simple power of two buddy-like allocator.
331  *
332  *  This simple code is not intended to be fast, but to
333  *  provide power of 2 aligned memory allocations.
334  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
335  *  this allocator allows simple and fast address calculations
336  *  from the SCRIPTS code. In addition, cache line alignment
337  *  is guaranteed for power of 2 cache line size.
338  *
339  *  This allocator has been developed for the Linux sym53c8xx
340  *  driver, since this O/S does not provide naturally aligned
341  *  allocations.
342  *  It has the advantage of allowing the driver to use private
343  *  pages of memory that will be useful if we ever need to deal
344  *  with IO MMUs for PCI.
345  */
346 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
347 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
348 #if 0
349 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
350 #endif
351 #define MEMO_WARN	1
352 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
353 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
354 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
355 
356 #define get_pages()		malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT)
357 #define free_pages(p)		free((p), M_DEVBUF)
358 
359 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
360 
361 typedef struct m_link {		/* Link between free memory chunks */
362 	struct m_link *next;
363 } m_link_s;
364 
365 typedef struct m_vtob {		/* Virtual to Bus address translation */
366 	struct m_vtob	*next;
367 	bus_dmamap_t	dmamap;	/* Map for this chunk */
368 	m_addr_t	vaddr;	/* Virtual address */
369 	m_addr_t	baddr;	/* Bus physical address */
370 } m_vtob_s;
371 /* Hash this stuff a bit to speed up translations */
372 #define VTOB_HASH_SHIFT		5
373 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
374 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
375 #define VTOB_HASH_CODE(m)	\
376 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
377 
378 typedef struct m_pool {		/* Memory pool of a given kind */
379 	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
380 	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
381 	m_addr_t (*getp)(struct m_pool *);
382 #ifdef	MEMO_FREE_UNUSED
383 	void (*freep)(struct m_pool *, m_addr_t);
384 #endif
385 #define M_GETP()		mp->getp(mp)
386 #define M_FREEP(p)		mp->freep(mp, p)
387 	int nump;
388 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
389 	struct m_pool *next;
390 	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
391 } m_pool_s;
392 
393 static void *___sym_malloc(m_pool_s *mp, int size)
394 {
395 	int i = 0;
396 	int s = (1 << MEMO_SHIFT);
397 	int j;
398 	m_addr_t a;
399 	m_link_s *h = mp->h;
400 
401 	if (size > MEMO_CLUSTER_SIZE)
402 		return NULL;
403 
404 	while (size > s) {
405 		s <<= 1;
406 		++i;
407 	}
408 
409 	j = i;
410 	while (!h[j].next) {
411 		if (s == MEMO_CLUSTER_SIZE) {
412 			h[j].next = (m_link_s *) M_GETP();
413 			if (h[j].next)
414 				h[j].next->next = NULL;
415 			break;
416 		}
417 		++j;
418 		s <<= 1;
419 	}
420 	a = (m_addr_t) h[j].next;
421 	if (a) {
422 		h[j].next = h[j].next->next;
423 		while (j > i) {
424 			j -= 1;
425 			s >>= 1;
426 			h[j].next = (m_link_s *) (a+s);
427 			h[j].next->next = NULL;
428 		}
429 	}
430 #ifdef DEBUG
431 	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
432 #endif
433 	return (void *) a;
434 }
435 
436 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
437 {
438 	int i = 0;
439 	int s = (1 << MEMO_SHIFT);
440 	m_link_s *q;
441 	m_addr_t a, b;
442 	m_link_s *h = mp->h;
443 
444 #ifdef DEBUG
445 	printf("___sym_mfree(%p, %d)\n", ptr, size);
446 #endif
447 
448 	if (size > MEMO_CLUSTER_SIZE)
449 		return;
450 
451 	while (size > s) {
452 		s <<= 1;
453 		++i;
454 	}
455 
456 	a = (m_addr_t) ptr;
457 
458 	while (1) {
459 #ifdef MEMO_FREE_UNUSED
460 		if (s == MEMO_CLUSTER_SIZE) {
461 			M_FREEP(a);
462 			break;
463 		}
464 #endif
465 		b = a ^ s;
466 		q = &h[i];
467 		while (q->next && q->next != (m_link_s *) b) {
468 			q = q->next;
469 		}
470 		if (!q->next) {
471 			((m_link_s *) a)->next = h[i].next;
472 			h[i].next = (m_link_s *) a;
473 			break;
474 		}
475 		q->next = q->next->next;
476 		a = a & b;
477 		s <<= 1;
478 		++i;
479 	}
480 }
481 
482 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
483 {
484 	void *p;
485 
486 	p = ___sym_malloc(mp, size);
487 
488 	if (DEBUG_FLAGS & DEBUG_ALLOC)
489 		printf ("new %-10s[%4d] @%p.\n", name, size, p);
490 
491 	if (p)
492 		bzero(p, size);
493 	else if (uflags & MEMO_WARN)
494 		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
495 
496 	return p;
497 }
498 
499 #define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
500 
501 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
502 {
503 	if (DEBUG_FLAGS & DEBUG_ALLOC)
504 		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
505 
506 	___sym_mfree(mp, ptr, size);
507 
508 }
509 
510 /*
511  * Default memory pool we donnot need to involve in DMA.
512  */
513 /*
514  * With the `bus dma abstraction', we use a separate pool for
515  * memory we donnot need to involve in DMA.
516  */
517 static m_addr_t ___mp0_getp(m_pool_s *mp)
518 {
519 	m_addr_t m = (m_addr_t) get_pages();
520 	if (m)
521 		++mp->nump;
522 	return m;
523 }
524 
525 #ifdef	MEMO_FREE_UNUSED
526 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
527 {
528 	free_pages(m);
529 	--mp->nump;
530 }
531 #endif
532 
533 #ifdef	MEMO_FREE_UNUSED
534 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
535 #else
536 static m_pool_s mp0 = {0, 0, ___mp0_getp};
537 #endif
538 
539 /*
540  * Actual memory allocation routine for non-DMAed memory.
541  */
542 static void *sym_calloc(int size, char *name)
543 {
544 	void *m;
545 	/* Lock */
546 	m = __sym_calloc(&mp0, size, name);
547 	/* Unlock */
548 	return m;
549 }
550 
551 /*
552  * Actual memory allocation routine for non-DMAed memory.
553  */
554 static void sym_mfree(void *ptr, int size, char *name)
555 {
556 	/* Lock */
557 	__sym_mfree(&mp0, ptr, size, name);
558 	/* Unlock */
559 }
560 
561 /*
562  * DMAable pools.
563  */
564 /*
565  * With `bus dma abstraction', we use a separate pool per parent
566  * BUS handle. A reverse table (hashed) is maintained for virtual
567  * to BUS address translation.
568  */
569 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg __diagused,
570     int error)
571 {
572 	bus_addr_t *baddr;
573 
574 	KASSERT(nseg == 1, ("%s: too many DMA segments (%d)", __func__, nseg));
575 
576 	baddr = (bus_addr_t *)arg;
577 	if (error)
578 		*baddr = 0;
579 	else
580 		*baddr = segs->ds_addr;
581 }
582 
583 static m_addr_t ___dma_getp(m_pool_s *mp)
584 {
585 	m_vtob_s *vbp;
586 	void *vaddr = NULL;
587 	bus_addr_t baddr = 0;
588 
589 	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
590 	if (!vbp)
591 		goto out_err;
592 
593 	if (bus_dmamem_alloc(mp->dmat, &vaddr,
594 	    BUS_DMA_COHERENT | BUS_DMA_NOCACHE | BUS_DMA_WAITOK, &vbp->dmamap))
595 		goto out_err;
596 	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr, MEMO_CLUSTER_SIZE,
597 	    getbaddrcb, &baddr, BUS_DMA_NOWAIT);
598 	if (baddr) {
599 		int hc = VTOB_HASH_CODE(vaddr);
600 		vbp->vaddr = (m_addr_t) vaddr;
601 		vbp->baddr = (m_addr_t) baddr;
602 		vbp->next = mp->vtob[hc];
603 		mp->vtob[hc] = vbp;
604 		++mp->nump;
605 		return (m_addr_t) vaddr;
606 	}
607 out_err:
608 	if (vaddr)
609 		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
610 	if (vbp)
611 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
612 	return 0;
613 }
614 
615 #ifdef	MEMO_FREE_UNUSED
616 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
617 {
618 	m_vtob_s **vbpp, *vbp;
619 	int hc = VTOB_HASH_CODE(m);
620 
621 	vbpp = &mp->vtob[hc];
622 	while (*vbpp && (*vbpp)->vaddr != m)
623 		vbpp = &(*vbpp)->next;
624 	if (*vbpp) {
625 		vbp = *vbpp;
626 		*vbpp = (*vbpp)->next;
627 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
628 		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
629 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
630 		--mp->nump;
631 	}
632 }
633 #endif
634 
635 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
636 {
637 	m_pool_s *mp;
638 	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
639 	return mp;
640 }
641 
642 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
643 {
644 	m_pool_s *mp = NULL;
645 
646 	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
647 	if (mp) {
648 		mp->dev_dmat = dev_dmat;
649 		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
650 			       BUS_SPACE_MAXADDR_32BIT,
651 			       BUS_SPACE_MAXADDR,
652 			       NULL, NULL, MEMO_CLUSTER_SIZE, 1,
653 			       MEMO_CLUSTER_SIZE, 0,
654 			       NULL, NULL, &mp->dmat)) {
655 			mp->getp = ___dma_getp;
656 #ifdef	MEMO_FREE_UNUSED
657 			mp->freep = ___dma_freep;
658 #endif
659 			mp->next = mp0.next;
660 			mp0.next = mp;
661 			return mp;
662 		}
663 	}
664 	if (mp)
665 		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
666 	return NULL;
667 }
668 
669 #ifdef	MEMO_FREE_UNUSED
670 static void ___del_dma_pool(m_pool_s *p)
671 {
672 	struct m_pool **pp = &mp0.next;
673 
674 	while (*pp && *pp != p)
675 		pp = &(*pp)->next;
676 	if (*pp) {
677 		*pp = (*pp)->next;
678 		bus_dma_tag_destroy(p->dmat);
679 		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
680 	}
681 }
682 #endif
683 
684 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
685 {
686 	struct m_pool *mp;
687 	void *m = NULL;
688 
689 	/* Lock */
690 	mp = ___get_dma_pool(dev_dmat);
691 	if (!mp)
692 		mp = ___cre_dma_pool(dev_dmat);
693 	if (mp)
694 		m = __sym_calloc(mp, size, name);
695 #ifdef	MEMO_FREE_UNUSED
696 	if (mp && !mp->nump)
697 		___del_dma_pool(mp);
698 #endif
699 	/* Unlock */
700 
701 	return m;
702 }
703 
704 static void
705 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
706 {
707 	struct m_pool *mp;
708 
709 	/* Lock */
710 	mp = ___get_dma_pool(dev_dmat);
711 	if (mp)
712 		__sym_mfree(mp, m, size, name);
713 #ifdef	MEMO_FREE_UNUSED
714 	if (mp && !mp->nump)
715 		___del_dma_pool(mp);
716 #endif
717 	/* Unlock */
718 }
719 
720 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
721 {
722 	m_pool_s *mp;
723 	int hc = VTOB_HASH_CODE(m);
724 	m_vtob_s *vp = NULL;
725 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
726 
727 	/* Lock */
728 	mp = ___get_dma_pool(dev_dmat);
729 	if (mp) {
730 		vp = mp->vtob[hc];
731 		while (vp && (m_addr_t) vp->vaddr != a)
732 			vp = vp->next;
733 	}
734 	/* Unlock */
735 	if (!vp)
736 		panic("sym: VTOBUS FAILED!\n");
737 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
738 }
739 
740 /*
741  * Verbs for DMAable memory handling.
742  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
743  * being discarded.
744  */
745 #define _uvptv_(p) ((void *)((vm_offset_t)(p)))
746 #define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
747 #define _sym_mfree_dma(np, p, s, n)	\
748 				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
749 #define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
750 #define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
751 #define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
752 #define vtobus(p)			_vtobus(np, p)
753 
754 /*
755  *  Print a buffer in hexadecimal format.
756  */
757 static void sym_printb_hex (u_char *p, int n)
758 {
759 	while (n-- > 0)
760 		printf (" %x", *p++);
761 }
762 
763 /*
764  *  Same with a label at beginning and .\n at end.
765  */
766 static void sym_printl_hex (char *label, u_char *p, int n)
767 {
768 	printf ("%s", label);
769 	sym_printb_hex (p, n);
770 	printf (".\n");
771 }
772 
773 /*
774  *  Return a string for SCSI BUS mode.
775  */
776 static const char *sym_scsi_bus_mode(int mode)
777 {
778 	switch(mode) {
779 	case SMODE_HVD:	return "HVD";
780 	case SMODE_SE:	return "SE";
781 	case SMODE_LVD: return "LVD";
782 	}
783 	return "??";
784 }
785 
786 /*
787  *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
788  */
789 #ifdef SYM_CONF_NVRAM_SUPPORT
790 static const u_char Tekram_sync[16] =
791 	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
792 #endif
793 
794 /*
795  *  Union of supported NVRAM formats.
796  */
797 struct sym_nvram {
798 	int type;
799 #define	SYM_SYMBIOS_NVRAM	(1)
800 #define	SYM_TEKRAM_NVRAM	(2)
801 #ifdef	SYM_CONF_NVRAM_SUPPORT
802 	union {
803 		Symbios_nvram Symbios;
804 		Tekram_nvram Tekram;
805 	} data;
806 #endif
807 };
808 
809 /*
810  *  This one is hopefully useless, but actually useful. :-)
811  */
812 #ifndef assert
813 #define	assert(expression) { \
814 	if (!(expression)) { \
815 		(void)panic( \
816 			"assertion \"%s\" failed: file \"%s\", line %d\n", \
817 			#expression, \
818 			__FILE__, __LINE__); \
819 	} \
820 }
821 #endif
822 
823 /*
824  *  Some provision for a possible big endian mode supported by
825  *  Symbios chips (never seen, by the way).
826  *  For now, this stuff does not deserve any comments. :)
827  */
828 #define sym_offb(o)	(o)
829 #define sym_offw(o)	(o)
830 
831 /*
832  *  Some provision for support for BIG ENDIAN CPU.
833  */
834 #define cpu_to_scr(dw)	htole32(dw)
835 #define scr_to_cpu(dw)	le32toh(dw)
836 
837 /*
838  *  Access to the chip IO registers and on-chip RAM.
839  *  We use the `bus space' interface under FreeBSD-4 and
840  *  later kernel versions.
841  */
842 #if defined(SYM_CONF_IOMAPPED)
843 
844 #define INB_OFF(o)	bus_read_1(np->io_res, (o))
845 #define INW_OFF(o)	bus_read_2(np->io_res, (o))
846 #define INL_OFF(o)	bus_read_4(np->io_res, (o))
847 
848 #define OUTB_OFF(o, v)	bus_write_1(np->io_res, (o), (v))
849 #define OUTW_OFF(o, v)	bus_write_2(np->io_res, (o), (v))
850 #define OUTL_OFF(o, v)	bus_write_4(np->io_res, (o), (v))
851 
852 #else	/* Memory mapped IO */
853 
854 #define INB_OFF(o)	bus_read_1(np->mmio_res, (o))
855 #define INW_OFF(o)	bus_read_2(np->mmio_res, (o))
856 #define INL_OFF(o)	bus_read_4(np->mmio_res, (o))
857 
858 #define OUTB_OFF(o, v)	bus_write_1(np->mmio_res, (o), (v))
859 #define OUTW_OFF(o, v)	bus_write_2(np->mmio_res, (o), (v))
860 #define OUTL_OFF(o, v)	bus_write_4(np->mmio_res, (o), (v))
861 
862 #endif	/* SYM_CONF_IOMAPPED */
863 
864 #define OUTRAM_OFF(o, a, l)	\
865 	bus_write_region_1(np->ram_res, (o), (a), (l))
866 
867 /*
868  *  Common definitions for both bus space and legacy IO methods.
869  */
870 #define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
871 #define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
872 #define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
873 
874 #define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
875 #define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
876 #define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
877 
878 #define OUTONB(r, m)	OUTB(r, INB(r) | (m))
879 #define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
880 #define OUTONW(r, m)	OUTW(r, INW(r) | (m))
881 #define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
882 #define OUTONL(r, m)	OUTL(r, INL(r) | (m))
883 #define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
884 
885 /*
886  *  We normally want the chip to have a consistent view
887  *  of driver internal data structures when we restart it.
888  *  Thus these macros.
889  */
890 #define OUTL_DSP(v)				\
891 	do {					\
892 		MEMORY_BARRIER();		\
893 		OUTL (nc_dsp, (v));		\
894 	} while (0)
895 
896 #define OUTONB_STD()				\
897 	do {					\
898 		MEMORY_BARRIER();		\
899 		OUTONB (nc_dcntl, (STD|NOCOM));	\
900 	} while (0)
901 
902 /*
903  *  Command control block states.
904  */
905 #define HS_IDLE		(0)
906 #define HS_BUSY		(1)
907 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
908 #define HS_DISCONNECT	(3)	/* Disconnected by target */
909 #define HS_WAIT		(4)	/* waiting for resource	  */
910 
911 #define HS_DONEMASK	(0x80)
912 #define HS_COMPLETE	(4|HS_DONEMASK)
913 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
914 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
915 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
916 
917 /*
918  *  Software Interrupt Codes
919  */
920 #define	SIR_BAD_SCSI_STATUS	(1)
921 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
922 #define	SIR_MSG_RECEIVED	(3)
923 #define	SIR_MSG_WEIRD		(4)
924 #define	SIR_NEGO_FAILED		(5)
925 #define	SIR_NEGO_PROTO		(6)
926 #define	SIR_SCRIPT_STOPPED	(7)
927 #define	SIR_REJECT_TO_SEND	(8)
928 #define	SIR_SWIDE_OVERRUN	(9)
929 #define	SIR_SODL_UNDERRUN	(10)
930 #define	SIR_RESEL_NO_MSG_IN	(11)
931 #define	SIR_RESEL_NO_IDENTIFY	(12)
932 #define	SIR_RESEL_BAD_LUN	(13)
933 #define	SIR_TARGET_SELECTED	(14)
934 #define	SIR_RESEL_BAD_I_T_L	(15)
935 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
936 #define	SIR_ABORT_SENT		(17)
937 #define	SIR_RESEL_ABORTED	(18)
938 #define	SIR_MSG_OUT_DONE	(19)
939 #define	SIR_COMPLETE_ERROR	(20)
940 #define	SIR_DATA_OVERRUN	(21)
941 #define	SIR_BAD_PHASE		(22)
942 #define	SIR_MAX			(22)
943 
944 /*
945  *  Extended error bit codes.
946  *  xerr_status field of struct sym_ccb.
947  */
948 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
949 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
950 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
951 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
952 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
953 
954 /*
955  *  Negotiation status.
956  *  nego_status field of struct sym_ccb.
957  */
958 #define NS_SYNC		(1)
959 #define NS_WIDE		(2)
960 #define NS_PPR		(3)
961 
962 /*
963  *  A CCB hashed table is used to retrieve CCB address
964  *  from DSA value.
965  */
966 #define CCB_HASH_SHIFT		8
967 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
968 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
969 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
970 
971 /*
972  *  Device flags.
973  */
974 #define SYM_DISC_ENABLED	(1)
975 #define SYM_TAGS_ENABLED	(1<<1)
976 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
977 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
978 
979 /*
980  *  Host adapter miscellaneous flags.
981  */
982 #define SYM_AVOID_BUS_RESET	(1)
983 #define SYM_SCAN_TARGETS_HILO	(1<<1)
984 
985 /*
986  *  Device quirks.
987  *  Some devices, for example the CHEETAH 2 LVD, disconnects without
988  *  saving the DATA POINTER then reselects and terminates the IO.
989  *  On reselection, the automatic RESTORE DATA POINTER makes the
990  *  CURRENT DATA POINTER not point at the end of the IO.
991  *  This behaviour just breaks our calculation of the residual.
992  *  For now, we just force an AUTO SAVE on disconnection and will
993  *  fix that in a further driver version.
994  */
995 #define SYM_QUIRK_AUTOSAVE 1
996 
997 /*
998  *  Misc.
999  */
1000 #define	SYM_LOCK()		mtx_lock(&np->mtx)
1001 #define	SYM_LOCK_ASSERT(_what)	mtx_assert(&np->mtx, (_what))
1002 #define	SYM_LOCK_DESTROY()	mtx_destroy(&np->mtx)
1003 #define	SYM_LOCK_INIT()		mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF)
1004 #define	SYM_LOCK_INITIALIZED()	mtx_initialized(&np->mtx)
1005 #define	SYM_UNLOCK()		mtx_unlock(&np->mtx)
1006 
1007 #define SYM_SNOOP_TIMEOUT (10000000)
1008 #define SYM_PCI_IO	PCIR_BAR(0)
1009 #define SYM_PCI_MMIO	PCIR_BAR(1)
1010 #define SYM_PCI_RAM	PCIR_BAR(2)
1011 #define SYM_PCI_RAM64	PCIR_BAR(3)
1012 
1013 /*
1014  *  Back-pointer from the CAM CCB to our data structures.
1015  */
1016 #define sym_hcb_ptr	spriv_ptr0
1017 /* #define sym_ccb_ptr	spriv_ptr1 */
1018 
1019 /*
1020  *  We mostly have to deal with pointers.
1021  *  Thus these typedef's.
1022  */
1023 typedef struct sym_tcb *tcb_p;
1024 typedef struct sym_lcb *lcb_p;
1025 typedef struct sym_ccb *ccb_p;
1026 typedef struct sym_hcb *hcb_p;
1027 
1028 /*
1029  *  Gather negotiable parameters value
1030  */
1031 struct sym_trans {
1032 	u8 scsi_version;
1033 	u8 spi_version;
1034 	u8 period;
1035 	u8 offset;
1036 	u8 width;
1037 	u8 options;	/* PPR options */
1038 };
1039 
1040 struct sym_tinfo {
1041 	struct sym_trans current;
1042 	struct sym_trans goal;
1043 	struct sym_trans user;
1044 };
1045 
1046 #define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1047 #define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1048 
1049 /*
1050  *  Global TCB HEADER.
1051  *
1052  *  Due to lack of indirect addressing on earlier NCR chips,
1053  *  this substructure is copied from the TCB to a global
1054  *  address after selection.
1055  *  For SYMBIOS chips that support LOAD/STORE this copy is
1056  *  not needed and thus not performed.
1057  */
1058 struct sym_tcbh {
1059 	/*
1060 	 *  Scripts bus addresses of LUN table accessed from scripts.
1061 	 *  LUN #0 is a special case, since multi-lun devices are rare,
1062 	 *  and we we want to speed-up the general case and not waste
1063 	 *  resources.
1064 	 */
1065 	u32	luntbl_sa;	/* bus address of this table	*/
1066 	u32	lun0_sa;	/* bus address of LCB #0	*/
1067 	/*
1068 	 *  Actual SYNC/WIDE IO registers value for this target.
1069 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1070 	 *  so have alignment constraints.
1071 	 */
1072 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1073 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
1074 /*2*/	u_char	filler1;
1075 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1076 };
1077 
1078 /*
1079  *  Target Control Block
1080  */
1081 struct sym_tcb {
1082 	/*
1083 	 *  TCB header.
1084 	 *  Assumed at offset 0.
1085 	 */
1086 /*0*/	struct sym_tcbh head;
1087 
1088 	/*
1089 	 *  LUN table used by the SCRIPTS processor.
1090 	 *  An array of bus addresses is used on reselection.
1091 	 */
1092 	u32	*luntbl;	/* LCBs bus address table	*/
1093 
1094 	/*
1095 	 *  LUN table used by the C code.
1096 	 */
1097 	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1098 #if SYM_CONF_MAX_LUN > 1
1099 	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1100 #endif
1101 
1102 	/*
1103 	 *  Bitmap that tells about LUNs that succeeded at least
1104 	 *  1 IO and therefore assumed to be a real device.
1105 	 *  Avoid useless allocation of the LCB structure.
1106 	 */
1107 	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1108 
1109 	/*
1110 	 *  Bitmap that tells about LUNs that haven't yet an LCB
1111 	 *  allocated (not discovered or LCB allocation failed).
1112 	 */
1113 	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1114 
1115 	/*
1116 	 *  Transfer capabilities (SIP)
1117 	 */
1118 	struct sym_tinfo tinfo;
1119 
1120 	/*
1121 	 * Keep track of the CCB used for the negotiation in order
1122 	 * to ensure that only 1 negotiation is queued at a time.
1123 	 */
1124 	ccb_p   nego_cp;	/* CCB used for the nego		*/
1125 
1126 	/*
1127 	 *  Set when we want to reset the device.
1128 	 */
1129 	u_char	to_reset;
1130 
1131 	/*
1132 	 *  Other user settable limits and options.
1133 	 *  These limits are read from the NVRAM if present.
1134 	 */
1135 	u_char	usrflags;
1136 	u_short	usrtags;
1137 };
1138 
1139 /*
1140  *  Assert some alignments required by the chip.
1141  */
1142 CTASSERT(((offsetof(struct sym_reg, nc_sxfer) ^
1143     offsetof(struct sym_tcb, head.sval)) &3) == 0);
1144 CTASSERT(((offsetof(struct sym_reg, nc_scntl3) ^
1145     offsetof(struct sym_tcb, head.wval)) &3) == 0);
1146 
1147 /*
1148  *  Global LCB HEADER.
1149  *
1150  *  Due to lack of indirect addressing on earlier NCR chips,
1151  *  this substructure is copied from the LCB to a global
1152  *  address after selection.
1153  *  For SYMBIOS chips that support LOAD/STORE this copy is
1154  *  not needed and thus not performed.
1155  */
1156 struct sym_lcbh {
1157 	/*
1158 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1159 	 *  For not probed logical units, this address points to
1160 	 *  SCRIPTS that deal with bad LU handling (must be at
1161 	 *  offset zero of the LCB for that reason).
1162 	 */
1163 /*0*/	u32	resel_sa;
1164 
1165 	/*
1166 	 *  Task (bus address of a CCB) read from SCRIPTS that points
1167 	 *  to the unique ITL nexus allowed to be disconnected.
1168 	 */
1169 	u32	itl_task_sa;
1170 
1171 	/*
1172 	 *  Task table bus address (read from SCRIPTS).
1173 	 */
1174 	u32	itlq_tbl_sa;
1175 };
1176 
1177 /*
1178  *  Logical Unit Control Block
1179  */
1180 struct sym_lcb {
1181 	/*
1182 	 *  TCB header.
1183 	 *  Assumed at offset 0.
1184 	 */
1185 /*0*/	struct sym_lcbh head;
1186 
1187 	/*
1188 	 *  Task table read from SCRIPTS that contains pointers to
1189 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1190 	 *  inside the header.
1191 	 */
1192 	u32	*itlq_tbl;	/* Kernel virtual address	*/
1193 
1194 	/*
1195 	 *  Busy CCBs management.
1196 	 */
1197 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1198 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1199 
1200 	/*
1201 	 *  Circular tag allocation buffer.
1202 	 */
1203 	u_short	ia_tag;		/* Tag allocation index		*/
1204 	u_short	if_tag;		/* Tag release index		*/
1205 	u_char	*cb_tags;	/* Circular tags buffer		*/
1206 
1207 	/*
1208 	 *  Set when we want to clear all tasks.
1209 	 */
1210 	u_char to_clear;
1211 
1212 	/*
1213 	 *  Capabilities.
1214 	 */
1215 	u_char	user_flags;
1216 	u_char	current_flags;
1217 };
1218 
1219 /*
1220  *  Action from SCRIPTS on a task.
1221  *  Is part of the CCB, but is also used separately to plug
1222  *  error handling action to perform from SCRIPTS.
1223  */
1224 struct sym_actscr {
1225 	u32	start;		/* Jumped by SCRIPTS after selection	*/
1226 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1227 };
1228 
1229 /*
1230  *  Phase mismatch context.
1231  *
1232  *  It is part of the CCB and is used as parameters for the
1233  *  DATA pointer. We need two contexts to handle correctly the
1234  *  SAVED DATA POINTER.
1235  */
1236 struct sym_pmc {
1237 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1238 	u32	ret;		/* SCRIPT return address	*/
1239 };
1240 
1241 /*
1242  *  LUN control block lookup.
1243  *  We use a direct pointer for LUN #0, and a table of
1244  *  pointers which is only allocated for devices that support
1245  *  LUN(s) > 0.
1246  */
1247 #if SYM_CONF_MAX_LUN <= 1
1248 #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : 0
1249 #else
1250 #define sym_lp(tp, lun) \
1251 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1252 #endif
1253 
1254 /*
1255  *  Status are used by the host and the script processor.
1256  *
1257  *  The last four bytes (status[4]) are copied to the
1258  *  scratchb register (declared as scr0..scr3) just after the
1259  *  select/reselect, and copied back just after disconnecting.
1260  *  Inside the script the XX_REG are used.
1261  */
1262 
1263 /*
1264  *  Last four bytes (script)
1265  */
1266 #define  QU_REG	scr0
1267 #define  HS_REG	scr1
1268 #define  HS_PRT	nc_scr1
1269 #define  SS_REG	scr2
1270 #define  SS_PRT	nc_scr2
1271 #define  HF_REG	scr3
1272 #define  HF_PRT	nc_scr3
1273 
1274 /*
1275  *  Last four bytes (host)
1276  */
1277 #define  actualquirks  phys.head.status[0]
1278 #define  host_status   phys.head.status[1]
1279 #define  ssss_status   phys.head.status[2]
1280 #define  host_flags    phys.head.status[3]
1281 
1282 /*
1283  *  Host flags
1284  */
1285 #define HF_IN_PM0	1u
1286 #define HF_IN_PM1	(1u<<1)
1287 #define HF_ACT_PM	(1u<<2)
1288 #define HF_DP_SAVED	(1u<<3)
1289 #define HF_SENSE	(1u<<4)
1290 #define HF_EXT_ERR	(1u<<5)
1291 #define HF_DATA_IN	(1u<<6)
1292 #ifdef SYM_CONF_IARB_SUPPORT
1293 #define HF_HINT_IARB	(1u<<7)
1294 #endif
1295 
1296 /*
1297  *  Global CCB HEADER.
1298  *
1299  *  Due to lack of indirect addressing on earlier NCR chips,
1300  *  this substructure is copied from the ccb to a global
1301  *  address after selection (or reselection) and copied back
1302  *  before disconnect.
1303  *  For SYMBIOS chips that support LOAD/STORE this copy is
1304  *  not needed and thus not performed.
1305  */
1306 struct sym_ccbh {
1307 	/*
1308 	 *  Start and restart SCRIPTS addresses (must be at 0).
1309 	 */
1310 /*0*/	struct sym_actscr go;
1311 
1312 	/*
1313 	 *  SCRIPTS jump address that deal with data pointers.
1314 	 *  'savep' points to the position in the script responsible
1315 	 *  for the actual transfer of data.
1316 	 *  It's written on reception of a SAVE_DATA_POINTER message.
1317 	 */
1318 	u32	savep;		/* Jump address to saved data pointer	*/
1319 	u32	lastp;		/* SCRIPTS address at end of data	*/
1320 	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1321 
1322 	/*
1323 	 *  Status fields.
1324 	 */
1325 	u8	status[4];
1326 };
1327 
1328 /*
1329  *  Data Structure Block
1330  *
1331  *  During execution of a ccb by the script processor, the
1332  *  DSA (data structure address) register points to this
1333  *  substructure of the ccb.
1334  */
1335 struct sym_dsb {
1336 	/*
1337 	 *  CCB header.
1338 	 *  Also assumed at offset 0 of the sym_ccb structure.
1339 	 */
1340 /*0*/	struct sym_ccbh head;
1341 
1342 	/*
1343 	 *  Phase mismatch contexts.
1344 	 *  We need two to handle correctly the SAVED DATA POINTER.
1345 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1346 	 *  for address calculation from SCRIPTS.
1347 	 */
1348 	struct sym_pmc pm0;
1349 	struct sym_pmc pm1;
1350 
1351 	/*
1352 	 *  Table data for Script
1353 	 */
1354 	struct sym_tblsel  select;
1355 	struct sym_tblmove smsg;
1356 	struct sym_tblmove smsg_ext;
1357 	struct sym_tblmove cmd;
1358 	struct sym_tblmove sense;
1359 	struct sym_tblmove wresid;
1360 	struct sym_tblmove data [SYM_CONF_MAX_SG];
1361 };
1362 
1363 /*
1364  *  Our Command Control Block
1365  */
1366 struct sym_ccb {
1367 	/*
1368 	 *  This is the data structure which is pointed by the DSA
1369 	 *  register when it is executed by the script processor.
1370 	 *  It must be the first entry.
1371 	 */
1372 	struct sym_dsb phys;
1373 
1374 	/*
1375 	 *  Pointer to CAM ccb and related stuff.
1376 	 */
1377 	struct callout ch;	/* callout handle		*/
1378 	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1379 	u8	cdb_buf[16];	/* Copy of CDB			*/
1380 	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1381 #define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1382 	int	data_len;	/* Total data length		*/
1383 	int	segments;	/* Number of SG segments	*/
1384 
1385 	/*
1386 	 *  Miscellaneous status'.
1387 	 */
1388 	u_char	nego_status;	/* Negotiation status		*/
1389 	u_char	xerr_status;	/* Extended error flags		*/
1390 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1391 
1392 	/*
1393 	 *  Message areas.
1394 	 *  We prepare a message to be sent after selection.
1395 	 *  We may use a second one if the command is rescheduled
1396 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1397 	 *  Contents are IDENTIFY and SIMPLE_TAG.
1398 	 *  While negotiating sync or wide transfer,
1399 	 *  a SDTR or WDTR message is appended.
1400 	 */
1401 	u_char	scsi_smsg [12];
1402 	u_char	scsi_smsg2[12];
1403 
1404 	/*
1405 	 *  Auto request sense related fields.
1406 	 */
1407 	u_char	sensecmd[6];	/* Request Sense command	*/
1408 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1409 	u_char	sv_xerr_status;	/* Saved extended status	*/
1410 	int	sv_resid;	/* Saved residual		*/
1411 
1412 	/*
1413 	 *  Map for the DMA of user data.
1414 	 */
1415 	void		*arg;	/* Argument for some callback	*/
1416 	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1417 	u_char		dmamapped;
1418 #define SYM_DMA_NONE	0
1419 #define SYM_DMA_READ	1
1420 #define SYM_DMA_WRITE	2
1421 	/*
1422 	 *  Other fields.
1423 	 */
1424 	u32	ccb_ba;		/* BUS address of this CCB	*/
1425 	u_short	tag;		/* Tag for this transfer	*/
1426 				/*  NO_TAG means no tag		*/
1427 	u_char	target;
1428 	u_char	lun;
1429 	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1430 	SYM_QUEHEAD
1431 		link_ccbq;	/* Link to free/busy CCB queue	*/
1432 	u32	startp;		/* Initial data pointer		*/
1433 	int	ext_sg;		/* Extreme data pointer, used	*/
1434 	int	ext_ofs;	/*  to calculate the residual.	*/
1435 	u_char	to_abort;	/* Want this IO to be aborted	*/
1436 };
1437 
1438 #define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1439 
1440 /*
1441  *  Host Control Block
1442  */
1443 struct sym_hcb {
1444 	struct mtx	mtx;
1445 
1446 	/*
1447 	 *  Global headers.
1448 	 *  Due to poorness of addressing capabilities, earlier
1449 	 *  chips (810, 815, 825) copy part of the data structures
1450 	 *  (CCB, TCB and LCB) in fixed areas.
1451 	 */
1452 #ifdef	SYM_CONF_GENERIC_SUPPORT
1453 	struct sym_ccbh	ccb_head;
1454 	struct sym_tcbh	tcb_head;
1455 	struct sym_lcbh	lcb_head;
1456 #endif
1457 	/*
1458 	 *  Idle task and invalid task actions and
1459 	 *  their bus addresses.
1460 	 */
1461 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1462 	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1463 
1464 	/*
1465 	 *  Dummy lun table to protect us against target
1466 	 *  returning bad lun number on reselection.
1467 	 */
1468 	u32	*badluntbl;	/* Table physical address	*/
1469 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1470 
1471 	/*
1472 	 *  Bus address of this host control block.
1473 	 */
1474 	u32	hcb_ba;
1475 
1476 	/*
1477 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1478 	 *  The START_RAM64 script loads the MMRS and MMWS from this
1479 	 *  field.
1480 	 */
1481 	u32	scr_ram_seg;
1482 
1483 	/*
1484 	 *  Chip and controller identification.
1485 	 */
1486 	device_t device;
1487 
1488 	/*
1489 	 *  Initial value of some IO register bits.
1490 	 *  These values are assumed to have been set by BIOS, and may
1491 	 *  be used to probe adapter implementation differences.
1492 	 */
1493 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1494 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1495 		sv_stest1;
1496 
1497 	/*
1498 	 *  Actual initial value of IO register bits used by the
1499 	 *  driver. They are loaded at initialisation according to
1500 	 *  features that are to be enabled/disabled.
1501 	 */
1502 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1503 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1504 
1505 	/*
1506 	 *  Target data.
1507 	 */
1508 #ifdef __amd64__
1509 	struct sym_tcb	*target;
1510 #else
1511 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1512 #endif
1513 
1514 	/*
1515 	 *  Target control block bus address array used by the SCRIPT
1516 	 *  on reselection.
1517 	 */
1518 	u32		*targtbl;
1519 	u32		targtbl_ba;
1520 
1521 	/*
1522 	 *  CAM SIM information for this instance.
1523 	 */
1524 	struct		cam_sim  *sim;
1525 	struct		cam_path *path;
1526 
1527 	/*
1528 	 *  Allocated hardware resources.
1529 	 */
1530 	struct resource	*irq_res;
1531 	struct resource	*io_res;
1532 	struct resource	*mmio_res;
1533 	struct resource	*ram_res;
1534 	void *intr;
1535 
1536 	/*
1537 	 *  Bus stuff.
1538 	 *
1539 	 *  My understanding of PCI is that all agents must share the
1540 	 *  same addressing range and model.
1541 	 *  But some hardware architecture guys provide complex and
1542 	 *  brain-deaded stuff that makes shit.
1543 	 *  This driver only support PCI compliant implementations and
1544 	 *  deals with part of the BUS stuff complexity only to fit O/S
1545 	 *  requirements.
1546 	 */
1547 
1548 	/*
1549 	 *  DMA stuff.
1550 	 */
1551 	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1552 	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1553 	/*
1554 	 *  BUS addresses of the chip
1555 	 */
1556 	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1557 	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1558 	int		ram_ws;		/* RAM window size		*/
1559 
1560 	/*
1561 	 *  SCRIPTS virtual and physical bus addresses.
1562 	 *  'script'  is loaded in the on-chip RAM if present.
1563 	 *  'scripth' stays in main memory for all chips except the
1564 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1565 	 */
1566 	u_char		*scripta0;	/* Copies of script and scripth	*/
1567 	u_char		*scriptb0;	/* Copies of script and scripth	*/
1568 	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1569 	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1570 	vm_offset_t	scriptb0_ba;
1571 	u_short		scripta_sz;	/* Actual size of script A	*/
1572 	u_short		scriptb_sz;	/* Actual size of script B	*/
1573 
1574 	/*
1575 	 *  Bus addresses, setup and patch methods for
1576 	 *  the selected firmware.
1577 	 */
1578 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1579 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1580 	void		(*fw_setup)(hcb_p np, const struct sym_fw *fw);
1581 	void		(*fw_patch)(hcb_p np);
1582 	const char	*fw_name;
1583 
1584 	/*
1585 	 *  General controller parameters and configuration.
1586 	 */
1587 	u_short	device_id;	/* PCI device id		*/
1588 	u_char	revision_id;	/* PCI device revision id	*/
1589 	u_int	features;	/* Chip features map		*/
1590 	u_char	myaddr;		/* SCSI id of the adapter	*/
1591 	u_char	maxburst;	/* log base 2 of dwords burst	*/
1592 	u_char	maxwide;	/* Maximum transfer width	*/
1593 	u_char	minsync;	/* Min sync period factor (ST)	*/
1594 	u_char	maxsync;	/* Max sync period factor (ST)	*/
1595 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1596 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1597 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1598 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1599 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1600 	u_char	clock_divn;	/* Number of clock divisors	*/
1601 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1602 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1603 	/*
1604 	 *  Start queue management.
1605 	 *  It is filled up by the host processor and accessed by the
1606 	 *  SCRIPTS processor in order to start SCSI commands.
1607 	 */
1608 	volatile		/* Prevent code optimizations	*/
1609 	u32	*squeue;	/* Start queue virtual address	*/
1610 	u32	squeue_ba;	/* Start queue BUS address	*/
1611 	u_short	squeueput;	/* Next free slot of the queue	*/
1612 	u_short	actccbs;	/* Number of allocated CCBs	*/
1613 
1614 	/*
1615 	 *  Command completion queue.
1616 	 *  It is the same size as the start queue to avoid overflow.
1617 	 */
1618 	u_short	dqueueget;	/* Next position to scan	*/
1619 	volatile		/* Prevent code optimizations	*/
1620 	u32	*dqueue;	/* Completion (done) queue	*/
1621 	u32	dqueue_ba;	/* Done queue BUS address	*/
1622 
1623 	/*
1624 	 *  Miscellaneous buffers accessed by the scripts-processor.
1625 	 *  They shall be DWORD aligned, because they may be read or
1626 	 *  written with a script command.
1627 	 */
1628 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1629 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1630 	u32		lastmsg;	/* Last SCSI message sent	*/
1631 	u_char		scratch;	/* Scratch for SCSI receive	*/
1632 
1633 	/*
1634 	 *  Miscellaneous configuration and status parameters.
1635 	 */
1636 	u_char		usrflags;	/* Miscellaneous user flags	*/
1637 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1638 	u_char		verbose;	/* Verbosity for this controller*/
1639 	u32		cache;		/* Used for cache test at init.	*/
1640 
1641 	/*
1642 	 *  CCB lists and queue.
1643 	 */
1644 	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1645 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1646 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1647 
1648 	/*
1649 	 *  During error handling and/or recovery,
1650 	 *  active CCBs that are to be completed with
1651 	 *  error or requeued are moved from the busy_ccbq
1652 	 *  to the comp_ccbq prior to completion.
1653 	 */
1654 	SYM_QUEHEAD	comp_ccbq;
1655 
1656 	/*
1657 	 *  CAM CCB pending queue.
1658 	 */
1659 	SYM_QUEHEAD	cam_ccbq;
1660 
1661 	/*
1662 	 *  IMMEDIATE ARBITRATION (IARB) control.
1663 	 *
1664 	 *  We keep track in 'last_cp' of the last CCB that has been
1665 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1666 	 *  this CCB completes. If last_cp is not zero at the moment
1667 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1668 	 *  used by the SCRIPTS as a hint for setting IARB.
1669 	 *  We donnot set more than 'iarb_max' consecutive hints for
1670 	 *  IARB in order to leave devices a chance to reselect.
1671 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1672 	 */
1673 #ifdef SYM_CONF_IARB_SUPPORT
1674 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1675 	u_short		iarb_count;	/* Actual # of these hints	*/
1676 	ccb_p		last_cp;
1677 #endif
1678 
1679 	/*
1680 	 *  Command abort handling.
1681 	 *  We need to synchronize tightly with the SCRIPTS
1682 	 *  processor in order to handle things correctly.
1683 	 */
1684 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1685 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1686 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1687 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1688 };
1689 
1690 #define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1691 
1692 /*
1693  *  Return the name of the controller.
1694  */
1695 static __inline const char *sym_name(hcb_p np)
1696 {
1697 	return device_get_nameunit(np->device);
1698 }
1699 
1700 /*--------------------------------------------------------------------------*/
1701 /*------------------------------ FIRMWARES ---------------------------------*/
1702 /*--------------------------------------------------------------------------*/
1703 
1704 /*
1705  *  This stuff will be moved to a separate source file when
1706  *  the driver will be broken into several source modules.
1707  */
1708 
1709 /*
1710  *  Macros used for all firmwares.
1711  */
1712 #define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1713 #define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1714 #define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1715 #define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1716 
1717 #ifdef	SYM_CONF_GENERIC_SUPPORT
1718 /*
1719  *  Allocate firmware #1 script area.
1720  */
1721 #define	SYM_FWA_SCR		sym_fw1a_scr
1722 #define	SYM_FWB_SCR		sym_fw1b_scr
1723 #include <dev/sym/sym_fw1.h>
1724 static const struct sym_fwa_ofs sym_fw1a_ofs = {
1725 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1726 };
1727 static const struct sym_fwb_ofs sym_fw1b_ofs = {
1728 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1729 };
1730 #undef	SYM_FWA_SCR
1731 #undef	SYM_FWB_SCR
1732 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1733 
1734 /*
1735  *  Allocate firmware #2 script area.
1736  */
1737 #define	SYM_FWA_SCR		sym_fw2a_scr
1738 #define	SYM_FWB_SCR		sym_fw2b_scr
1739 #include <dev/sym/sym_fw2.h>
1740 static const struct sym_fwa_ofs sym_fw2a_ofs = {
1741 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1742 };
1743 static const struct sym_fwb_ofs sym_fw2b_ofs = {
1744 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1745 	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1746 	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1747 };
1748 #undef	SYM_FWA_SCR
1749 #undef	SYM_FWB_SCR
1750 
1751 #undef	SYM_GEN_A
1752 #undef	SYM_GEN_B
1753 #undef	PADDR_A
1754 #undef	PADDR_B
1755 
1756 #ifdef	SYM_CONF_GENERIC_SUPPORT
1757 /*
1758  *  Patch routine for firmware #1.
1759  */
1760 static void
1761 sym_fw1_patch(hcb_p np)
1762 {
1763 	struct sym_fw1a_scr *scripta0;
1764 	struct sym_fw1b_scr *scriptb0;
1765 
1766 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1767 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1768 
1769 	/*
1770 	 *  Remove LED support if not needed.
1771 	 */
1772 	if (!(np->features & FE_LED0)) {
1773 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1774 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1775 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1776 	}
1777 
1778 #ifdef SYM_CONF_IARB_SUPPORT
1779 	/*
1780 	 *    If user does not want to use IMMEDIATE ARBITRATION
1781 	 *    when we are reselected while attempting to arbitrate,
1782 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1783 	 */
1784 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1785 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1786 #endif
1787 	/*
1788 	 *  Patch some data in SCRIPTS.
1789 	 *  - start and done queue initial bus address.
1790 	 *  - target bus address table bus address.
1791 	 */
1792 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1793 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1794 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1795 }
1796 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1797 
1798 /*
1799  *  Patch routine for firmware #2.
1800  */
1801 static void
1802 sym_fw2_patch(hcb_p np)
1803 {
1804 	struct sym_fw2a_scr *scripta0;
1805 	struct sym_fw2b_scr *scriptb0;
1806 
1807 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1808 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1809 
1810 	/*
1811 	 *  Remove LED support if not needed.
1812 	 */
1813 	if (!(np->features & FE_LED0)) {
1814 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1815 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1816 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1817 	}
1818 
1819 #ifdef SYM_CONF_IARB_SUPPORT
1820 	/*
1821 	 *    If user does not want to use IMMEDIATE ARBITRATION
1822 	 *    when we are reselected while attempting to arbitrate,
1823 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1824 	 */
1825 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1826 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1827 #endif
1828 	/*
1829 	 *  Patch some variable in SCRIPTS.
1830 	 *  - start and done queue initial bus address.
1831 	 *  - target bus address table bus address.
1832 	 */
1833 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1834 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1835 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1836 
1837 	/*
1838 	 *  Remove the load of SCNTL4 on reselection if not a C10.
1839 	 */
1840 	if (!(np->features & FE_C10)) {
1841 		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
1842 		scripta0->resel_scntl4[1] = cpu_to_scr(0);
1843 	}
1844 
1845 	/*
1846 	 *  Remove a couple of work-arounds specific to C1010 if
1847 	 *  they are not desirable. See `sym_fw2.h' for more details.
1848 	 */
1849 	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
1850 	      np->revision_id < 0x1 &&
1851 	      np->pciclk_khz < 60000)) {
1852 		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
1853 		scripta0->datao_phase[1] = cpu_to_scr(0);
1854 	}
1855 	if (!(np->device_id == PCI_ID_LSI53C1010 &&
1856 	      /* np->revision_id < 0xff */ 1)) {
1857 		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
1858 		scripta0->sel_done[1] = cpu_to_scr(0);
1859 	}
1860 
1861 	/*
1862 	 *  Patch some other variables in SCRIPTS.
1863 	 *  These ones are loaded by the SCRIPTS processor.
1864 	 */
1865 	scriptb0->pm0_data_addr[0] =
1866 		cpu_to_scr(np->scripta_ba +
1867 			   offsetof(struct sym_fw2a_scr, pm0_data));
1868 	scriptb0->pm1_data_addr[0] =
1869 		cpu_to_scr(np->scripta_ba +
1870 			   offsetof(struct sym_fw2a_scr, pm1_data));
1871 }
1872 
1873 /*
1874  *  Fill the data area in scripts.
1875  *  To be done for all firmwares.
1876  */
1877 static void
1878 sym_fw_fill_data (u32 *in, u32 *out)
1879 {
1880 	int	i;
1881 
1882 	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
1883 		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
1884 		*in++  = offsetof (struct sym_dsb, data[i]);
1885 		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
1886 		*out++ = offsetof (struct sym_dsb, data[i]);
1887 	}
1888 }
1889 
1890 /*
1891  *  Setup useful script bus addresses.
1892  *  To be done for all firmwares.
1893  */
1894 static void
1895 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw)
1896 {
1897 	u32 *pa;
1898 	const u_short *po;
1899 	int i;
1900 
1901 	/*
1902 	 *  Build the bus address table for script A
1903 	 *  from the script A offset table.
1904 	 */
1905 	po = (const u_short *) fw->a_ofs;
1906 	pa = (u32 *) &np->fwa_bas;
1907 	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
1908 		pa[i] = np->scripta_ba + po[i];
1909 
1910 	/*
1911 	 *  Same for script B.
1912 	 */
1913 	po = (const u_short *) fw->b_ofs;
1914 	pa = (u32 *) &np->fwb_bas;
1915 	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
1916 		pa[i] = np->scriptb_ba + po[i];
1917 }
1918 
1919 #ifdef	SYM_CONF_GENERIC_SUPPORT
1920 /*
1921  *  Setup routine for firmware #1.
1922  */
1923 static void
1924 sym_fw1_setup(hcb_p np, const struct sym_fw *fw)
1925 {
1926 	struct sym_fw1a_scr *scripta0;
1927 
1928 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1929 
1930 	/*
1931 	 *  Fill variable parts in scripts.
1932 	 */
1933 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1934 
1935 	/*
1936 	 *  Setup bus addresses used from the C code..
1937 	 */
1938 	sym_fw_setup_bus_addresses(np, fw);
1939 }
1940 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1941 
1942 /*
1943  *  Setup routine for firmware #2.
1944  */
1945 static void
1946 sym_fw2_setup(hcb_p np, const struct sym_fw *fw)
1947 {
1948 	struct sym_fw2a_scr *scripta0;
1949 
1950 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1951 
1952 	/*
1953 	 *  Fill variable parts in scripts.
1954 	 */
1955 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1956 
1957 	/*
1958 	 *  Setup bus addresses used from the C code..
1959 	 */
1960 	sym_fw_setup_bus_addresses(np, fw);
1961 }
1962 
1963 /*
1964  *  Allocate firmware descriptors.
1965  */
1966 #ifdef	SYM_CONF_GENERIC_SUPPORT
1967 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
1968 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1969 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
1970 
1971 /*
1972  *  Find the most appropriate firmware for a chip.
1973  */
1974 static const struct sym_fw *
1975 sym_find_firmware(const struct sym_pci_chip *chip)
1976 {
1977 	if (chip->features & FE_LDSTR)
1978 		return &sym_fw2;
1979 #ifdef	SYM_CONF_GENERIC_SUPPORT
1980 	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
1981 		return &sym_fw1;
1982 #endif
1983 	else
1984 		return NULL;
1985 }
1986 
1987 /*
1988  *  Bind a script to physical addresses.
1989  */
1990 static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
1991 {
1992 	u32 opcode, new, old, tmp1, tmp2;
1993 	u32 *end, *cur;
1994 	int relocs;
1995 
1996 	cur = start;
1997 	end = start + len/4;
1998 
1999 	while (cur < end) {
2000 		opcode = *cur;
2001 
2002 		/*
2003 		 *  If we forget to change the length
2004 		 *  in scripts, a field will be
2005 		 *  padded with 0. This is an illegal
2006 		 *  command.
2007 		 */
2008 		if (opcode == 0) {
2009 			device_printf(np->device, "ERROR0 IN SCRIPT at %d.\n",
2010 			    (int)(cur-start));
2011 			MDELAY (10000);
2012 			++cur;
2013 			continue;
2014 		}
2015 
2016 		/*
2017 		 *  We use the bogus value 0xf00ff00f ;-)
2018 		 *  to reserve data area in SCRIPTS.
2019 		 */
2020 		if (opcode == SCR_DATA_ZERO) {
2021 			*cur++ = 0;
2022 			continue;
2023 		}
2024 
2025 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2026 			printf ("%d:  <%x>\n", (int) (cur-start),
2027 				(unsigned)opcode);
2028 
2029 		/*
2030 		 *  We don't have to decode ALL commands
2031 		 */
2032 		switch (opcode >> 28) {
2033 		case 0xf:
2034 			/*
2035 			 *  LOAD / STORE DSA relative, don't relocate.
2036 			 */
2037 			relocs = 0;
2038 			break;
2039 		case 0xe:
2040 			/*
2041 			 *  LOAD / STORE absolute.
2042 			 */
2043 			relocs = 1;
2044 			break;
2045 		case 0xc:
2046 			/*
2047 			 *  COPY has TWO arguments.
2048 			 */
2049 			relocs = 2;
2050 			tmp1 = cur[1];
2051 			tmp2 = cur[2];
2052 			if ((tmp1 ^ tmp2) & 3) {
2053 				device_printf(np->device,
2054 				    "ERROR1 IN SCRIPT at %d.\n",
2055 				    (int)(cur-start));
2056 				MDELAY (10000);
2057 			}
2058 			/*
2059 			 *  If PREFETCH feature not enabled, remove
2060 			 *  the NO FLUSH bit if present.
2061 			 */
2062 			if ((opcode & SCR_NO_FLUSH) &&
2063 			    !(np->features & FE_PFEN)) {
2064 				opcode = (opcode & ~SCR_NO_FLUSH);
2065 			}
2066 			break;
2067 		case 0x0:
2068 			/*
2069 			 *  MOVE/CHMOV (absolute address)
2070 			 */
2071 			if (!(np->features & FE_WIDE))
2072 				opcode = (opcode | OPC_MOVE);
2073 			relocs = 1;
2074 			break;
2075 		case 0x1:
2076 			/*
2077 			 *  MOVE/CHMOV (table indirect)
2078 			 */
2079 			if (!(np->features & FE_WIDE))
2080 				opcode = (opcode | OPC_MOVE);
2081 			relocs = 0;
2082 			break;
2083 		case 0x8:
2084 			/*
2085 			 *  JUMP / CALL
2086 			 *  dont't relocate if relative :-)
2087 			 */
2088 			if (opcode & 0x00800000)
2089 				relocs = 0;
2090 			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2091 				relocs = 2;
2092 			else
2093 				relocs = 1;
2094 			break;
2095 		case 0x4:
2096 		case 0x5:
2097 		case 0x6:
2098 		case 0x7:
2099 			relocs = 1;
2100 			break;
2101 		default:
2102 			relocs = 0;
2103 			break;
2104 		}
2105 
2106 		/*
2107 		 *  Scriptify:) the opcode.
2108 		 */
2109 		*cur++ = cpu_to_scr(opcode);
2110 
2111 		/*
2112 		 *  If no relocation, assume 1 argument
2113 		 *  and just scriptize:) it.
2114 		 */
2115 		if (!relocs) {
2116 			*cur = cpu_to_scr(*cur);
2117 			++cur;
2118 			continue;
2119 		}
2120 
2121 		/*
2122 		 *  Otherwise performs all needed relocations.
2123 		 */
2124 		while (relocs--) {
2125 			old = *cur;
2126 
2127 			switch (old & RELOC_MASK) {
2128 			case RELOC_REGISTER:
2129 				new = (old & ~RELOC_MASK) + np->mmio_ba;
2130 				break;
2131 			case RELOC_LABEL_A:
2132 				new = (old & ~RELOC_MASK) + np->scripta_ba;
2133 				break;
2134 			case RELOC_LABEL_B:
2135 				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2136 				break;
2137 			case RELOC_SOFTC:
2138 				new = (old & ~RELOC_MASK) + np->hcb_ba;
2139 				break;
2140 			case 0:
2141 				/*
2142 				 *  Don't relocate a 0 address.
2143 				 *  They are mostly used for patched or
2144 				 *  script self-modified areas.
2145 				 */
2146 				if (old == 0) {
2147 					new = old;
2148 					break;
2149 				}
2150 				/* fall through */
2151 			default:
2152 				new = 0;
2153 				panic("sym_fw_bind_script: "
2154 				      "weird relocation %x\n", old);
2155 				break;
2156 			}
2157 
2158 			*cur++ = cpu_to_scr(new);
2159 		}
2160 	}
2161 }
2162 
2163 /*---------------------------------------------------------------------------*/
2164 /*--------------------------- END OF FIRMWARES  -----------------------------*/
2165 /*---------------------------------------------------------------------------*/
2166 
2167 /*
2168  *  Function prototypes.
2169  */
2170 static void sym_save_initial_setting (hcb_p np);
2171 static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2172 static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2173 static void sym_put_start_queue (hcb_p np, ccb_p cp);
2174 static void sym_chip_reset (hcb_p np);
2175 static void sym_soft_reset (hcb_p np);
2176 static void sym_start_reset (hcb_p np);
2177 static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2178 static int  sym_wakeup_done (hcb_p np);
2179 static void sym_flush_busy_queue (hcb_p np, int cam_status);
2180 static void sym_flush_comp_queue (hcb_p np, int cam_status);
2181 static void sym_init (hcb_p np, int reason);
2182 static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2183 		        u_char *fakp);
2184 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2185 			 u_char div, u_char fak);
2186 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2187 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2188 			 u_char per, u_char wide, u_char div, u_char fak);
2189 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2190 			 u_char per, u_char wide, u_char div, u_char fak);
2191 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2192 static void sym_intr (void *arg);
2193 static void sym_poll (struct cam_sim *sim);
2194 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2195 static void sym_int_sto (hcb_p np);
2196 static void sym_int_udc (hcb_p np);
2197 static void sym_int_sbmc (hcb_p np);
2198 static void sym_int_par (hcb_p np, u_short sist);
2199 static void sym_int_ma (hcb_p np);
2200 static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2201 				    int task);
2202 static void sym_sir_bad_scsi_status (hcb_p np, ccb_p cp);
2203 static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2204 static void sym_sir_task_recovery (hcb_p np, int num);
2205 static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2206 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs);
2207 static int  sym_compute_residual (hcb_p np, ccb_p cp);
2208 static int  sym_show_msg (u_char * msg);
2209 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2210 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2211 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2212 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2213 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2214 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2215 static void sym_int_sir (hcb_p np);
2216 static void sym_free_ccb (hcb_p np, ccb_p cp);
2217 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2218 static ccb_p sym_alloc_ccb (hcb_p np);
2219 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2220 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2221 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2222 static int  sym_snooptest (hcb_p np);
2223 static void sym_selectclock(hcb_p np, u_char scntl3);
2224 static void sym_getclock (hcb_p np, int mult);
2225 static int  sym_getpciclock (hcb_p np);
2226 static void sym_complete_ok (hcb_p np, ccb_p cp);
2227 static void sym_complete_error (hcb_p np, ccb_p cp);
2228 static void sym_callout (void *arg);
2229 static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2230 static void sym_reset_dev (hcb_p np, union ccb *ccb);
2231 static void sym_action (struct cam_sim *sim, union ccb *ccb);
2232 static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2233 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2234 				      ccb_p cp);
2235 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2236 					bus_dma_segment_t *psegs, int nsegs);
2237 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2238 				    bus_dma_segment_t *psegs, int nsegs);
2239 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2240 static void sym_update_trans(hcb_p np, struct sym_trans *tip,
2241 			      struct ccb_trans_settings *cts);
2242 static void sym_update_dflags(hcb_p np, u_char *flags,
2243 			      struct ccb_trans_settings *cts);
2244 
2245 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2246 
2247 static device_probe_t sym_pci_probe;
2248 static device_attach_t sym_pci_attach;
2249 static device_detach_t sym_pci_detach;
2250 
2251 static int  sym_cam_attach (hcb_p np);
2252 static void sym_cam_free (hcb_p np);
2253 
2254 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2255 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2256 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2257 
2258 /*
2259  *  Print something which allows to retrieve the controller type,
2260  *  unit, target, lun concerned by a kernel message.
2261  */
2262 static void PRINT_TARGET (hcb_p np, int target)
2263 {
2264 	printf ("%s:%d:", sym_name(np), target);
2265 }
2266 
2267 static void PRINT_LUN(hcb_p np, int target, int lun)
2268 {
2269 	printf ("%s:%d:%d:", sym_name(np), target, lun);
2270 }
2271 
2272 static void PRINT_ADDR (ccb_p cp)
2273 {
2274 	if (cp && cp->cam_ccb)
2275 		xpt_print_path(cp->cam_ccb->ccb_h.path);
2276 }
2277 
2278 /*
2279  *  Take into account this ccb in the freeze count.
2280  */
2281 static void sym_freeze_cam_ccb(union ccb *ccb)
2282 {
2283 	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2284 		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2285 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2286 			xpt_freeze_devq(ccb->ccb_h.path, 1);
2287 		}
2288 	}
2289 }
2290 
2291 /*
2292  *  Set the status field of a CAM CCB.
2293  */
2294 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2295 {
2296 	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2297 	ccb->ccb_h.status |= status;
2298 }
2299 
2300 /*
2301  *  Get the status field of a CAM CCB.
2302  */
2303 static __inline int sym_get_cam_status(union ccb *ccb)
2304 {
2305 	return ccb->ccb_h.status & CAM_STATUS_MASK;
2306 }
2307 
2308 /*
2309  *  Enqueue a CAM CCB.
2310  */
2311 static void sym_enqueue_cam_ccb(ccb_p cp)
2312 {
2313 	hcb_p np;
2314 	union ccb *ccb;
2315 
2316 	ccb = cp->cam_ccb;
2317 	np = (hcb_p) cp->arg;
2318 
2319 	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2320 	ccb->ccb_h.status = CAM_REQ_INPROG;
2321 
2322 	callout_reset_sbt(&cp->ch, SBT_1MS * ccb->ccb_h.timeout, 0, sym_callout,
2323 	    (caddr_t)ccb, 0);
2324 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2325 	ccb->ccb_h.sym_hcb_ptr = np;
2326 
2327 	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2328 }
2329 
2330 /*
2331  *  Complete a pending CAM CCB.
2332  */
2333 
2334 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp)
2335 {
2336 
2337 	SYM_LOCK_ASSERT(MA_OWNED);
2338 
2339 	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2340 		callout_stop(&cp->ch);
2341 		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2342 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2343 		ccb->ccb_h.sym_hcb_ptr = NULL;
2344 	}
2345 	xpt_done(ccb);
2346 }
2347 
2348 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2349 {
2350 
2351 	SYM_LOCK_ASSERT(MA_OWNED);
2352 
2353 	sym_set_cam_status(ccb, cam_status);
2354 	xpt_done(ccb);
2355 }
2356 
2357 /*
2358  *  SYMBIOS chip clock divisor table.
2359  *
2360  *  Divisors are multiplied by 10,000,000 in order to make
2361  *  calculations more simple.
2362  */
2363 #define _5M 5000000
2364 static const u32 div_10M[] =
2365 	{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2366 
2367 /*
2368  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2369  *  128 transfers. All chips support at least 16 transfers
2370  *  bursts. The 825A, 875 and 895 chips support bursts of up
2371  *  to 128 transfers and the 895A and 896 support bursts of up
2372  *  to 64 transfers. All other chips support up to 16
2373  *  transfers bursts.
2374  *
2375  *  For PCI 32 bit data transfers each transfer is a DWORD.
2376  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2377  *
2378  *  We use log base 2 (burst length) as internal code, with
2379  *  value 0 meaning "burst disabled".
2380  */
2381 
2382 /*
2383  *  Burst length from burst code.
2384  */
2385 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2386 
2387 /*
2388  *  Burst code from io register bits.
2389  */
2390 #define burst_code(dmode, ctest4, ctest5) \
2391 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2392 
2393 /*
2394  *  Set initial io register bits from burst code.
2395  */
2396 static __inline void sym_init_burst(hcb_p np, u_char bc)
2397 {
2398 	np->rv_ctest4	&= ~0x80;
2399 	np->rv_dmode	&= ~(0x3 << 6);
2400 	np->rv_ctest5	&= ~0x4;
2401 
2402 	if (!bc) {
2403 		np->rv_ctest4	|= 0x80;
2404 	}
2405 	else {
2406 		--bc;
2407 		np->rv_dmode	|= ((bc & 0x3) << 6);
2408 		np->rv_ctest5	|= (bc & 0x4);
2409 	}
2410 }
2411 
2412 /*
2413  * Print out the list of targets that have some flag disabled by user.
2414  */
2415 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2416 {
2417 	int cnt;
2418 	int i;
2419 
2420 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2421 		if (i == np->myaddr)
2422 			continue;
2423 		if (np->target[i].usrflags & mask) {
2424 			if (!cnt++)
2425 				device_printf(np->device,
2426 				    "%s disabled for targets", msg);
2427 			printf(" %d", i);
2428 		}
2429 	}
2430 	if (cnt)
2431 		printf(".\n");
2432 }
2433 
2434 /*
2435  *  Save initial settings of some IO registers.
2436  *  Assumed to have been set by BIOS.
2437  *  We cannot reset the chip prior to reading the
2438  *  IO registers, since informations will be lost.
2439  *  Since the SCRIPTS processor may be running, this
2440  *  is not safe on paper, but it seems to work quite
2441  *  well. :)
2442  */
2443 static void sym_save_initial_setting (hcb_p np)
2444 {
2445 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2446 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2447 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2448 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2449 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2450 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2451 	np->sv_gpcntl	= INB(nc_gpcntl);
2452 	np->sv_stest1	= INB(nc_stest1);
2453 	np->sv_stest2	= INB(nc_stest2) & 0x20;
2454 	np->sv_stest4	= INB(nc_stest4);
2455 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2456 		np->sv_scntl4	= INB(nc_scntl4);
2457 		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2458 	}
2459 	else
2460 		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2461 }
2462 
2463 /*
2464  *  Prepare io register values used by sym_init() according
2465  *  to selected and supported features.
2466  */
2467 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2468 {
2469 	u_char	burst_max;
2470 	u32	period;
2471 	int i;
2472 
2473 	/*
2474 	 *  Wide ?
2475 	 */
2476 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2477 
2478 	/*
2479 	 *  Get the frequency of the chip's clock.
2480 	 */
2481 	if	(np->features & FE_QUAD)
2482 		np->multiplier	= 4;
2483 	else if	(np->features & FE_DBLR)
2484 		np->multiplier	= 2;
2485 	else
2486 		np->multiplier	= 1;
2487 
2488 	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2489 	np->clock_khz	*= np->multiplier;
2490 
2491 	if (np->clock_khz != 40000)
2492 		sym_getclock(np, np->multiplier);
2493 
2494 	/*
2495 	 * Divisor to be used for async (timer pre-scaler).
2496 	 */
2497 	i = np->clock_divn - 1;
2498 	while (--i >= 0) {
2499 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2500 			++i;
2501 			break;
2502 		}
2503 	}
2504 	np->rv_scntl3 = i+1;
2505 
2506 	/*
2507 	 * The C1010 uses hardwired divisors for async.
2508 	 * So, we just throw away, the async. divisor.:-)
2509 	 */
2510 	if (np->features & FE_C10)
2511 		np->rv_scntl3 = 0;
2512 
2513 	/*
2514 	 * Minimum synchronous period factor supported by the chip.
2515 	 * Btw, 'period' is in tenths of nanoseconds.
2516 	 */
2517 	period = howmany(4 * div_10M[0], np->clock_khz);
2518 	if	(period <= 250)		np->minsync = 10;
2519 	else if	(period <= 303)		np->minsync = 11;
2520 	else if	(period <= 500)		np->minsync = 12;
2521 	else				np->minsync = howmany(period, 40);
2522 
2523 	/*
2524 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2525 	 */
2526 	if	(np->minsync < 25 &&
2527 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2528 		np->minsync = 25;
2529 	else if	(np->minsync < 12 &&
2530 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2531 		np->minsync = 12;
2532 
2533 	/*
2534 	 * Maximum synchronous period factor supported by the chip.
2535 	 */
2536 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2537 	np->maxsync = period > 2540 ? 254 : period / 10;
2538 
2539 	/*
2540 	 * If chip is a C1010, guess the sync limits in DT mode.
2541 	 */
2542 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2543 		if (np->clock_khz == 160000) {
2544 			np->minsync_dt = 9;
2545 			np->maxsync_dt = 50;
2546 			np->maxoffs_dt = 62;
2547 		}
2548 	}
2549 
2550 	/*
2551 	 *  64 bit addressing  (895A/896/1010) ?
2552 	 */
2553 	if (np->features & FE_DAC)
2554 #ifdef __LP64__
2555 		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2556 #else
2557 		np->rv_ccntl1	|= (DDAC);
2558 #endif
2559 
2560 	/*
2561 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2562   	 */
2563 	if (np->features & FE_NOPM)
2564 		np->rv_ccntl0	|= (ENPMJ);
2565 
2566  	/*
2567 	 *  C1010 Errata.
2568 	 *  In dual channel mode, contention occurs if internal cycles
2569 	 *  are used. Disable internal cycles.
2570 	 */
2571 	if (np->device_id == PCI_ID_LSI53C1010 &&
2572 	    np->revision_id < 0x2)
2573 		np->rv_ccntl0	|=  DILS;
2574 
2575 	/*
2576 	 *  Select burst length (dwords)
2577 	 */
2578 	burst_max	= SYM_SETUP_BURST_ORDER;
2579 	if (burst_max == 255)
2580 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2581 				       np->sv_ctest5);
2582 	if (burst_max > 7)
2583 		burst_max = 7;
2584 	if (burst_max > np->maxburst)
2585 		burst_max = np->maxburst;
2586 
2587 	/*
2588 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2589 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2590 	 *  based transactions on LOAD/STORE instructions. So we have
2591 	 *  to prevent these chips from using such PCI transactions in
2592 	 *  this driver. The generic ncr driver that does not use
2593 	 *  LOAD/STORE instructions does not need this work-around.
2594 	 */
2595 	if ((np->device_id == PCI_ID_SYM53C810 &&
2596 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2597 	    (np->device_id == PCI_ID_SYM53C860 &&
2598 	     np->revision_id <= 0x1))
2599 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2600 
2601 	/*
2602 	 *  Select all supported special features.
2603 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2604 	 *  does not help, but burst op fetch (BOF) does.
2605 	 *  Disabling PFEN makes sure BOF will be used.
2606 	 */
2607 	if (np->features & FE_ERL)
2608 		np->rv_dmode	|= ERL;		/* Enable Read Line */
2609 	if (np->features & FE_BOF)
2610 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2611 	if (np->features & FE_ERMP)
2612 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2613 #if 1
2614 	if ((np->features & FE_PFEN) && !np->ram_ba)
2615 #else
2616 	if (np->features & FE_PFEN)
2617 #endif
2618 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2619 	if (np->features & FE_CLSE)
2620 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2621 	if (np->features & FE_WRIE)
2622 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2623 	if (np->features & FE_DFS)
2624 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2625 
2626 	/*
2627 	 *  Select some other
2628 	 */
2629 	if (SYM_SETUP_PCI_PARITY)
2630 		np->rv_ctest4	|= MPEE; /* Master parity checking */
2631 	if (SYM_SETUP_SCSI_PARITY)
2632 		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2633 
2634 	/*
2635 	 *  Get parity checking, host ID and verbose mode from NVRAM
2636 	 */
2637 	np->myaddr = 255;
2638 	sym_nvram_setup_host (np, nvram);
2639 
2640 	/*
2641 	 *  Get SCSI addr of host adapter (set by bios?).
2642 	 */
2643 	if (np->myaddr == 255) {
2644 		np->myaddr = INB(nc_scid) & 0x07;
2645 		if (!np->myaddr)
2646 			np->myaddr = SYM_SETUP_HOST_ID;
2647 	}
2648 
2649 	/*
2650 	 *  Prepare initial io register bits for burst length
2651 	 */
2652 	sym_init_burst(np, burst_max);
2653 
2654 	/*
2655 	 *  Set SCSI BUS mode.
2656 	 *  - LVD capable chips (895/895A/896/1010) report the
2657 	 *    current BUS mode through the STEST4 IO register.
2658 	 *  - For previous generation chips (825/825A/875),
2659 	 *    user has to tell us how to check against HVD,
2660 	 *    since a 100% safe algorithm is not possible.
2661 	 */
2662 	np->scsi_mode = SMODE_SE;
2663 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2664 		np->scsi_mode = (np->sv_stest4 & SMODE);
2665 	else if	(np->features & FE_DIFF) {
2666 		if (SYM_SETUP_SCSI_DIFF == 1) {
2667 			if (np->sv_scntl3) {
2668 				if (np->sv_stest2 & 0x20)
2669 					np->scsi_mode = SMODE_HVD;
2670 			}
2671 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2672 				if (!(INB(nc_gpreg) & 0x08))
2673 					np->scsi_mode = SMODE_HVD;
2674 			}
2675 		}
2676 		else if	(SYM_SETUP_SCSI_DIFF == 2)
2677 			np->scsi_mode = SMODE_HVD;
2678 	}
2679 	if (np->scsi_mode == SMODE_HVD)
2680 		np->rv_stest2 |= 0x20;
2681 
2682 	/*
2683 	 *  Set LED support from SCRIPTS.
2684 	 *  Ignore this feature for boards known to use a
2685 	 *  specific GPIO wiring and for the 895A, 896
2686 	 *  and 1010 that drive the LED directly.
2687 	 */
2688 	if ((SYM_SETUP_SCSI_LED ||
2689 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2690 	      (nvram->type == SYM_TEKRAM_NVRAM &&
2691 	       np->device_id == PCI_ID_SYM53C895))) &&
2692 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2693 		np->features |= FE_LED0;
2694 
2695 	/*
2696 	 *  Set irq mode.
2697 	 */
2698 	switch(SYM_SETUP_IRQ_MODE & 3) {
2699 	case 2:
2700 		np->rv_dcntl	|= IRQM;
2701 		break;
2702 	case 1:
2703 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2704 		break;
2705 	default:
2706 		break;
2707 	}
2708 
2709 	/*
2710 	 *  Configure targets according to driver setup.
2711 	 *  If NVRAM present get targets setup from NVRAM.
2712 	 */
2713 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2714 		tcb_p tp = &np->target[i];
2715 
2716 		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2717 		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2718 		tp->tinfo.user.period = np->minsync;
2719 		if (np->features & FE_ULTRA3)
2720 			tp->tinfo.user.period = np->minsync_dt;
2721 		tp->tinfo.user.offset = np->maxoffs;
2722 		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2723 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2724 		tp->usrtags = SYM_SETUP_MAX_TAG;
2725 
2726 		sym_nvram_setup_target (np, i, nvram);
2727 
2728 		/*
2729 		 *  For now, guess PPR/DT support from the period
2730 		 *  and BUS width.
2731 		 */
2732 		if (np->features & FE_ULTRA3) {
2733 			if (tp->tinfo.user.period <= 9	&&
2734 			    tp->tinfo.user.width == BUS_16_BIT) {
2735 				tp->tinfo.user.options |= PPR_OPT_DT;
2736 				tp->tinfo.user.offset   = np->maxoffs_dt;
2737 				tp->tinfo.user.spi_version = 3;
2738 			}
2739 		}
2740 
2741 		if (!tp->usrtags)
2742 			tp->usrflags &= ~SYM_TAGS_ENABLED;
2743 	}
2744 
2745 	/*
2746 	 *  Let user know about the settings.
2747 	 */
2748 	i = nvram->type;
2749 	device_printf(np->device, "%s NVRAM, ID %d, Fast-%d, %s, %s\n",
2750 	    i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2751 	    (i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
2752 	    np->myaddr,
2753 	    (np->features & FE_ULTRA3)	? 80 :
2754 	    (np->features & FE_ULTRA2)	? 40 :
2755 	    (np->features & FE_ULTRA)	? 20 : 10,
2756 	    sym_scsi_bus_mode(np->scsi_mode),
2757 	    (np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
2758 	/*
2759 	 *  Tell him more on demand.
2760 	 */
2761 	if (sym_verbose) {
2762 		device_printf(np->device, "%s IRQ line driver%s\n",
2763 		    np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2764 		    np->ram_ba ? ", using on-chip SRAM" : "");
2765 		device_printf(np->device, "using %s firmware.\n", np->fw_name);
2766 		if (np->features & FE_NOPM)
2767 			device_printf(np->device,
2768 			    "handling phase mismatch from SCRIPTS.\n");
2769 	}
2770 	/*
2771 	 *  And still more.
2772 	 */
2773 	if (sym_verbose > 1) {
2774 		device_printf(np->device,
2775 		    "initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2776 		    "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2777 		    np->sv_scntl3, np->sv_dmode, np->sv_dcntl, np->sv_ctest3,
2778 		    np->sv_ctest4, np->sv_ctest5);
2779 
2780 		device_printf(np->device,
2781 		    "final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2782 		    "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2783 		    np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
2784 		    np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
2785 	}
2786 	/*
2787 	 *  Let user be aware of targets that have some disable flags set.
2788 	 */
2789 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
2790 	if (sym_verbose)
2791 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
2792 				       "SCAN FOR LUNS");
2793 
2794 	return 0;
2795 }
2796 
2797 /*
2798  *  Prepare the next negotiation message if needed.
2799  *
2800  *  Fill in the part of message buffer that contains the
2801  *  negotiation and the nego_status field of the CCB.
2802  *  Returns the size of the message in bytes.
2803  */
2804 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
2805 {
2806 	tcb_p tp = &np->target[cp->target];
2807 	int msglen = 0;
2808 
2809 	/*
2810 	 *  Early C1010 chips need a work-around for DT
2811 	 *  data transfer to work.
2812 	 */
2813 	if (!(np->features & FE_U3EN))
2814 		tp->tinfo.goal.options = 0;
2815 	/*
2816 	 *  negotiate using PPR ?
2817 	 */
2818 	if (tp->tinfo.goal.options & PPR_OPT_MASK)
2819 		nego = NS_PPR;
2820 	/*
2821 	 *  negotiate wide transfers ?
2822 	 */
2823 	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
2824 		nego = NS_WIDE;
2825 	/*
2826 	 *  negotiate synchronous transfers?
2827 	 */
2828 	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
2829 		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
2830 		nego = NS_SYNC;
2831 
2832 	switch (nego) {
2833 	case NS_SYNC:
2834 		msgptr[msglen++] = M_EXTENDED;
2835 		msgptr[msglen++] = 3;
2836 		msgptr[msglen++] = M_X_SYNC_REQ;
2837 		msgptr[msglen++] = tp->tinfo.goal.period;
2838 		msgptr[msglen++] = tp->tinfo.goal.offset;
2839 		break;
2840 	case NS_WIDE:
2841 		msgptr[msglen++] = M_EXTENDED;
2842 		msgptr[msglen++] = 2;
2843 		msgptr[msglen++] = M_X_WIDE_REQ;
2844 		msgptr[msglen++] = tp->tinfo.goal.width;
2845 		break;
2846 	case NS_PPR:
2847 		msgptr[msglen++] = M_EXTENDED;
2848 		msgptr[msglen++] = 6;
2849 		msgptr[msglen++] = M_X_PPR_REQ;
2850 		msgptr[msglen++] = tp->tinfo.goal.period;
2851 		msgptr[msglen++] = 0;
2852 		msgptr[msglen++] = tp->tinfo.goal.offset;
2853 		msgptr[msglen++] = tp->tinfo.goal.width;
2854 		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
2855 		break;
2856 	}
2857 
2858 	cp->nego_status = nego;
2859 
2860 	if (nego) {
2861 		tp->nego_cp = cp; /* Keep track a nego will be performed */
2862 		if (DEBUG_FLAGS & DEBUG_NEGO) {
2863 			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
2864 					  nego == NS_WIDE ? "wide msgout" :
2865 					  "ppr msgout", msgptr);
2866 		}
2867 	}
2868 
2869 	return msglen;
2870 }
2871 
2872 /*
2873  *  Insert a job into the start queue.
2874  */
2875 static void sym_put_start_queue(hcb_p np, ccb_p cp)
2876 {
2877 	u_short	qidx;
2878 
2879 #ifdef SYM_CONF_IARB_SUPPORT
2880 	/*
2881 	 *  If the previously queued CCB is not yet done,
2882 	 *  set the IARB hint. The SCRIPTS will go with IARB
2883 	 *  for this job when starting the previous one.
2884 	 *  We leave devices a chance to win arbitration by
2885 	 *  not using more than 'iarb_max' consecutive
2886 	 *  immediate arbitrations.
2887 	 */
2888 	if (np->last_cp && np->iarb_count < np->iarb_max) {
2889 		np->last_cp->host_flags |= HF_HINT_IARB;
2890 		++np->iarb_count;
2891 	}
2892 	else
2893 		np->iarb_count = 0;
2894 	np->last_cp = cp;
2895 #endif
2896 
2897 	/*
2898 	 *  Insert first the idle task and then our job.
2899 	 *  The MB should ensure proper ordering.
2900 	 */
2901 	qidx = np->squeueput + 2;
2902 	if (qidx >= MAX_QUEUE*2) qidx = 0;
2903 
2904 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
2905 	MEMORY_BARRIER();
2906 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
2907 
2908 	np->squeueput = qidx;
2909 
2910 	if (DEBUG_FLAGS & DEBUG_QUEUE)
2911 		device_printf(np->device, "queuepos=%d.\n", np->squeueput);
2912 
2913 	/*
2914 	 *  Script processor may be waiting for reselect.
2915 	 *  Wake it up.
2916 	 */
2917 	MEMORY_BARRIER();
2918 	OUTB (nc_istat, SIGP|np->istat_sem);
2919 }
2920 
2921 /*
2922  *  Soft reset the chip.
2923  *
2924  *  Raising SRST when the chip is running may cause
2925  *  problems on dual function chips (see below).
2926  *  On the other hand, LVD devices need some delay
2927  *  to settle and report actual BUS mode in STEST4.
2928  */
2929 static void sym_chip_reset (hcb_p np)
2930 {
2931 	OUTB (nc_istat, SRST);
2932 	UDELAY (10);
2933 	OUTB (nc_istat, 0);
2934 	UDELAY(2000);	/* For BUS MODE to settle */
2935 }
2936 
2937 /*
2938  *  Soft reset the chip.
2939  *
2940  *  Some 896 and 876 chip revisions may hang-up if we set
2941  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
2942  *  are running.
2943  *  So, we need to abort the current operation prior to
2944  *  soft resetting the chip.
2945  */
2946 static void sym_soft_reset (hcb_p np)
2947 {
2948 	u_char istat;
2949 	int i;
2950 
2951 	OUTB (nc_istat, CABRT);
2952 	for (i = 1000000 ; i ; --i) {
2953 		istat = INB (nc_istat);
2954 		if (istat & SIP) {
2955 			INW (nc_sist);
2956 			continue;
2957 		}
2958 		if (istat & DIP) {
2959 			OUTB (nc_istat, 0);
2960 			INB (nc_dstat);
2961 			break;
2962 		}
2963 	}
2964 	if (!i)
2965 		device_printf(np->device,
2966 		    "unable to abort current chip operation.\n");
2967 	sym_chip_reset (np);
2968 }
2969 
2970 /*
2971  *  Start reset process.
2972  *
2973  *  The interrupt handler will reinitialize the chip.
2974  */
2975 static void sym_start_reset(hcb_p np)
2976 {
2977 	(void) sym_reset_scsi_bus(np, 1);
2978 }
2979 
2980 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
2981 {
2982 	u32 term;
2983 	int retv = 0;
2984 
2985 	sym_soft_reset(np);	/* Soft reset the chip */
2986 	if (enab_int)
2987 		OUTW (nc_sien, RST);
2988 	/*
2989 	 *  Enable Tolerant, reset IRQD if present and
2990 	 *  properly set IRQ mode, prior to resetting the bus.
2991 	 */
2992 	OUTB (nc_stest3, TE);
2993 	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
2994 	OUTB (nc_scntl1, CRST);
2995 	UDELAY (200);
2996 
2997 	if (!SYM_SETUP_SCSI_BUS_CHECK)
2998 		goto out;
2999 	/*
3000 	 *  Check for no terminators or SCSI bus shorts to ground.
3001 	 *  Read SCSI data bus, data parity bits and control signals.
3002 	 *  We are expecting RESET to be TRUE and other signals to be
3003 	 *  FALSE.
3004 	 */
3005 	term =	INB(nc_sstat0);
3006 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3007 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3008 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3009 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3010 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3011 
3012 	if (!(np->features & FE_WIDE))
3013 		term &= 0x3ffff;
3014 
3015 	if (term != (2<<7)) {
3016 		device_printf(np->device,
3017 		    "suspicious SCSI data while resetting the BUS.\n");
3018 		device_printf(np->device,
3019 		    "%sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3020 		    "0x%lx, expecting 0x%lx\n", (np->features & FE_WIDE) ?
3021 		    "dp1,d15-8," : "", (u_long)term, (u_long)(2 << 7));
3022 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3023 			retv = 1;
3024 	}
3025 out:
3026 	OUTB (nc_scntl1, 0);
3027 	/* MDELAY(100); */
3028 	return retv;
3029 }
3030 
3031 /*
3032  *  The chip may have completed jobs. Look at the DONE QUEUE.
3033  *
3034  *  On architectures that may reorder LOAD/STORE operations,
3035  *  a memory barrier may be needed after the reading of the
3036  *  so-called `flag' and prior to dealing with the data.
3037  */
3038 static int sym_wakeup_done (hcb_p np)
3039 {
3040 	ccb_p cp;
3041 	int i, n;
3042 	u32 dsa;
3043 
3044 	SYM_LOCK_ASSERT(MA_OWNED);
3045 
3046 	n = 0;
3047 	i = np->dqueueget;
3048 	while (1) {
3049 		dsa = scr_to_cpu(np->dqueue[i]);
3050 		if (!dsa)
3051 			break;
3052 		np->dqueue[i] = 0;
3053 		if ((i = i+2) >= MAX_QUEUE*2)
3054 			i = 0;
3055 
3056 		cp = sym_ccb_from_dsa(np, dsa);
3057 		if (cp) {
3058 			MEMORY_BARRIER();
3059 			sym_complete_ok (np, cp);
3060 			++n;
3061 		} else
3062 			device_printf(np->device,
3063 			    "bad DSA (%x) in done queue.\n", (u_int)dsa);
3064 	}
3065 	np->dqueueget = i;
3066 
3067 	return n;
3068 }
3069 
3070 /*
3071  *  Complete all active CCBs with error.
3072  *  Used on CHIP/SCSI RESET.
3073  */
3074 static void sym_flush_busy_queue (hcb_p np, int cam_status)
3075 {
3076 	/*
3077 	 *  Move all active CCBs to the COMP queue
3078 	 *  and flush this queue.
3079 	 */
3080 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3081 	sym_que_init(&np->busy_ccbq);
3082 	sym_flush_comp_queue(np, cam_status);
3083 }
3084 
3085 /*
3086  *  Start chip.
3087  *
3088  *  'reason' means:
3089  *     0: initialisation.
3090  *     1: SCSI BUS RESET delivered or received.
3091  *     2: SCSI BUS MODE changed.
3092  */
3093 static void sym_init (hcb_p np, int reason)
3094 {
3095  	int	i;
3096 	u32	phys;
3097 
3098 	SYM_LOCK_ASSERT(MA_OWNED);
3099 
3100  	/*
3101 	 *  Reset chip if asked, otherwise just clear fifos.
3102  	 */
3103 	if (reason == 1)
3104 		sym_soft_reset(np);
3105 	else {
3106 		OUTB (nc_stest3, TE|CSF);
3107 		OUTONB (nc_ctest3, CLF);
3108 	}
3109 
3110 	/*
3111 	 *  Clear Start Queue
3112 	 */
3113 	phys = np->squeue_ba;
3114 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3115 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3116 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3117 	}
3118 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3119 
3120 	/*
3121 	 *  Start at first entry.
3122 	 */
3123 	np->squeueput = 0;
3124 
3125 	/*
3126 	 *  Clear Done Queue
3127 	 */
3128 	phys = np->dqueue_ba;
3129 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3130 		np->dqueue[i]   = 0;
3131 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3132 	}
3133 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3134 
3135 	/*
3136 	 *  Start at first entry.
3137 	 */
3138 	np->dqueueget = 0;
3139 
3140 	/*
3141 	 *  Install patches in scripts.
3142 	 *  This also let point to first position the start
3143 	 *  and done queue pointers used from SCRIPTS.
3144 	 */
3145 	np->fw_patch(np);
3146 
3147 	/*
3148 	 *  Wakeup all pending jobs.
3149 	 */
3150 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3151 
3152 	/*
3153 	 *  Init chip.
3154 	 */
3155 	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3156 	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3157 
3158 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3159 					/*  full arb., ena parity, par->ATN  */
3160 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3161 
3162 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3163 
3164 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3165 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3166 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3167 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3168 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3169 
3170 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3171 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3172 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3173 
3174 	/* Extended Sreq/Sack filtering not supported on the C10 */
3175 	if (np->features & FE_C10)
3176 		OUTB (nc_stest2, np->rv_stest2);
3177 	else
3178 		OUTB (nc_stest2, EXT|np->rv_stest2);
3179 
3180 	OUTB (nc_stest3, TE);			/* TolerANT enable */
3181 	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3182 
3183 	/*
3184 	 *  For now, disable AIP generation on C1010-66.
3185 	 */
3186 	if (np->device_id == PCI_ID_LSI53C1010_2)
3187 		OUTB (nc_aipcntl1, DISAIP);
3188 
3189 	/*
3190 	 *  C10101 Errata.
3191 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3192 	 *  STEST1 register to disable SGE. We probably should do
3193 	 *  that from SCRIPTS for each selection/reselection, but
3194 	 *  I just don't want. :)
3195 	 */
3196 	if (np->device_id == PCI_ID_LSI53C1010 &&
3197 	    /* np->revision_id < 0xff */ 1)
3198 		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3199 
3200 	/*
3201 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3202 	 *  Disable overlapped arbitration for some dual function devices,
3203 	 *  regardless revision id (kind of post-chip-design feature. ;-))
3204 	 */
3205 	if (np->device_id == PCI_ID_SYM53C875)
3206 		OUTB (nc_ctest0, (1<<5));
3207 	else if (np->device_id == PCI_ID_SYM53C896)
3208 		np->rv_ccntl0 |= DPR;
3209 
3210 	/*
3211 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3212 	 *  and/or hardware phase mismatch, since only such chips
3213 	 *  seem to support those IO registers.
3214 	 */
3215 	if (np->features & (FE_DAC|FE_NOPM)) {
3216 		OUTB (nc_ccntl0, np->rv_ccntl0);
3217 		OUTB (nc_ccntl1, np->rv_ccntl1);
3218 	}
3219 
3220 	/*
3221 	 *  If phase mismatch handled by scripts (895A/896/1010),
3222 	 *  set PM jump addresses.
3223 	 */
3224 	if (np->features & FE_NOPM) {
3225 		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3226 		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3227 	}
3228 
3229 	/*
3230 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3231 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3232 	 */
3233 	if (np->features & FE_LED0)
3234 		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3235 	else if (np->features & FE_LEDC)
3236 		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3237 
3238 	/*
3239 	 *      enable ints
3240 	 */
3241 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3242 	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3243 
3244 	/*
3245 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3246 	 *  Try to eat the spurious SBMC interrupt that may occur when
3247 	 *  we reset the chip but not the SCSI BUS (at initialization).
3248 	 */
3249 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3250 		OUTONW (nc_sien, SBMC);
3251 		if (reason == 0) {
3252 			MDELAY(100);
3253 			INW (nc_sist);
3254 		}
3255 		np->scsi_mode = INB (nc_stest4) & SMODE;
3256 	}
3257 
3258 	/*
3259 	 *  Fill in target structure.
3260 	 *  Reinitialize usrsync.
3261 	 *  Reinitialize usrwide.
3262 	 *  Prepare sync negotiation according to actual SCSI bus mode.
3263 	 */
3264 	for (i = 0; i < SYM_CONF_MAX_TARGET; i++) {
3265 		tcb_p tp = &np->target[i];
3266 
3267 		tp->to_reset  = 0;
3268 		tp->head.sval = 0;
3269 		tp->head.wval = np->rv_scntl3;
3270 		tp->head.uval = 0;
3271 
3272 		tp->tinfo.current.period = 0;
3273 		tp->tinfo.current.offset = 0;
3274 		tp->tinfo.current.width  = BUS_8_BIT;
3275 		tp->tinfo.current.options = 0;
3276 	}
3277 
3278 	/*
3279 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3280 	 *  and start script processor.
3281 	 */
3282 	if (np->ram_ba) {
3283 		if (sym_verbose > 1)
3284 			device_printf(np->device,
3285 			    "Downloading SCSI SCRIPTS.\n");
3286 		if (np->ram_ws == 8192) {
3287 			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3288 			OUTL (nc_mmws, np->scr_ram_seg);
3289 			OUTL (nc_mmrs, np->scr_ram_seg);
3290 			OUTL (nc_sfs,  np->scr_ram_seg);
3291 			phys = SCRIPTB_BA (np, start64);
3292 		}
3293 		else
3294 			phys = SCRIPTA_BA (np, init);
3295 		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3296 	}
3297 	else
3298 		phys = SCRIPTA_BA (np, init);
3299 
3300 	np->istat_sem = 0;
3301 
3302 	OUTL (nc_dsa, np->hcb_ba);
3303 	OUTL_DSP (phys);
3304 
3305 	/*
3306 	 *  Notify the XPT about the RESET condition.
3307 	 */
3308 	if (reason != 0)
3309 		xpt_async(AC_BUS_RESET, np->path, NULL);
3310 }
3311 
3312 /*
3313  *  Get clock factor and sync divisor for a given
3314  *  synchronous factor period.
3315  */
3316 static int
3317 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3318 {
3319 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3320 	int	div = np->clock_divn;	/* Number of divisors supported	*/
3321 	u32	fak;			/* Sync factor in sxfer		*/
3322 	u32	per;			/* Period in tenths of ns	*/
3323 	u32	kpc;			/* (per * clk)			*/
3324 	int	ret;
3325 
3326 	/*
3327 	 *  Compute the synchronous period in tenths of nano-seconds
3328 	 */
3329 	if (dt && sfac <= 9)	per = 125;
3330 	else if	(sfac <= 10)	per = 250;
3331 	else if	(sfac == 11)	per = 303;
3332 	else if	(sfac == 12)	per = 500;
3333 	else			per = 40 * sfac;
3334 	ret = per;
3335 
3336 	kpc = per * clk;
3337 	if (dt)
3338 		kpc <<= 1;
3339 
3340 	/*
3341 	 *  For earliest C10 revision 0, we cannot use extra
3342 	 *  clocks for the setting of the SCSI clocking.
3343 	 *  Note that this limits the lowest sync data transfer
3344 	 *  to 5 Mega-transfers per second and may result in
3345 	 *  using higher clock divisors.
3346 	 */
3347 #if 1
3348 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3349 		/*
3350 		 *  Look for the lowest clock divisor that allows an
3351 		 *  output speed not faster than the period.
3352 		 */
3353 		while (div > 0) {
3354 			--div;
3355 			if (kpc > (div_10M[div] << 2)) {
3356 				++div;
3357 				break;
3358 			}
3359 		}
3360 		fak = 0;			/* No extra clocks */
3361 		if (div == np->clock_divn) {	/* Are we too fast ? */
3362 			ret = -1;
3363 		}
3364 		*divp = div;
3365 		*fakp = fak;
3366 		return ret;
3367 	}
3368 #endif
3369 
3370 	/*
3371 	 *  Look for the greatest clock divisor that allows an
3372 	 *  input speed faster than the period.
3373 	 */
3374 	while (div-- > 0)
3375 		if (kpc >= (div_10M[div] << 2)) break;
3376 
3377 	/*
3378 	 *  Calculate the lowest clock factor that allows an output
3379 	 *  speed not faster than the period, and the max output speed.
3380 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3381 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3382 	 */
3383 	if (dt) {
3384 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3385 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3386 	}
3387 	else {
3388 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3389 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3390 	}
3391 
3392 	/*
3393 	 *  Check against our hardware limits, or bugs :).
3394 	 */
3395 	if (fak > 2)	{fak = 2; ret = -1;}
3396 
3397 	/*
3398 	 *  Compute and return sync parameters.
3399 	 */
3400 	*divp = div;
3401 	*fakp = fak;
3402 
3403 	return ret;
3404 }
3405 
3406 /*
3407  *  Tell the SCSI layer about the new transfer parameters.
3408  */
3409 static void
3410 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3411 {
3412 	struct ccb_trans_settings cts;
3413 	struct cam_path *path;
3414 	int sts;
3415 	tcb_p tp = &np->target[target];
3416 
3417 	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3418 	                      CAM_LUN_WILDCARD);
3419 	if (sts != CAM_REQ_CMP)
3420 		return;
3421 
3422 	bzero(&cts, sizeof(cts));
3423 
3424 #define	cts__scsi (cts.proto_specific.scsi)
3425 #define	cts__spi  (cts.xport_specific.spi)
3426 
3427 	cts.type      = CTS_TYPE_CURRENT_SETTINGS;
3428 	cts.protocol  = PROTO_SCSI;
3429 	cts.transport = XPORT_SPI;
3430 	cts.protocol_version  = tp->tinfo.current.scsi_version;
3431 	cts.transport_version = tp->tinfo.current.spi_version;
3432 
3433 	cts__spi.valid = spi_valid;
3434 	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3435 		cts__spi.sync_period = tp->tinfo.current.period;
3436 	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3437 		cts__spi.sync_offset = tp->tinfo.current.offset;
3438 	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3439 		cts__spi.bus_width   = tp->tinfo.current.width;
3440 	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3441 		cts__spi.ppr_options = tp->tinfo.current.options;
3442 #undef cts__spi
3443 #undef cts__scsi
3444 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3445 	xpt_async(AC_TRANSFER_NEG, path, &cts);
3446 	xpt_free_path(path);
3447 }
3448 
3449 #define SYM_SPI_VALID_WDTR		\
3450 	CTS_SPI_VALID_BUS_WIDTH |	\
3451 	CTS_SPI_VALID_SYNC_RATE |	\
3452 	CTS_SPI_VALID_SYNC_OFFSET
3453 #define SYM_SPI_VALID_SDTR		\
3454 	CTS_SPI_VALID_SYNC_RATE |	\
3455 	CTS_SPI_VALID_SYNC_OFFSET
3456 #define SYM_SPI_VALID_PPR		\
3457 	CTS_SPI_VALID_PPR_OPTIONS |	\
3458 	CTS_SPI_VALID_BUS_WIDTH |	\
3459 	CTS_SPI_VALID_SYNC_RATE |	\
3460 	CTS_SPI_VALID_SYNC_OFFSET
3461 
3462 /*
3463  *  We received a WDTR.
3464  *  Let everything be aware of the changes.
3465  */
3466 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3467 {
3468 	tcb_p tp = &np->target[cp->target];
3469 
3470 	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3471 
3472 	/*
3473 	 *  Tell the SCSI layer about the new transfer parameters.
3474 	 */
3475 	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3476 	tp->tinfo.current.offset = 0;
3477 	tp->tinfo.current.period = 0;
3478 	tp->tinfo.current.options = 0;
3479 
3480 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3481 }
3482 
3483 /*
3484  *  We received a SDTR.
3485  *  Let everything be aware of the changes.
3486  */
3487 static void
3488 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3489 {
3490 	tcb_p tp = &np->target[cp->target];
3491 	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3492 
3493 	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3494 
3495 	/*
3496 	 *  Tell the SCSI layer about the new transfer parameters.
3497 	 */
3498 	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3499 	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3500 	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3501 
3502 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3503 }
3504 
3505 /*
3506  *  We received a PPR.
3507  *  Let everything be aware of the changes.
3508  */
3509 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3510 			 u_char per, u_char wide, u_char div, u_char fak)
3511 {
3512 	tcb_p tp = &np->target[cp->target];
3513 
3514 	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3515 
3516 	/*
3517 	 *  Tell the SCSI layer about the new transfer parameters.
3518 	 */
3519 	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3520 	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3521 	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3522 	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3523 
3524 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3525 }
3526 
3527 /*
3528  *  Switch trans mode for current job and it's target.
3529  */
3530 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3531 			 u_char per, u_char wide, u_char div, u_char fak)
3532 {
3533 	SYM_QUEHEAD *qp;
3534 	union	ccb *ccb;
3535 	tcb_p tp;
3536 	u_char target = INB (nc_sdid) & 0x0f;
3537 	u_char sval, wval, uval;
3538 
3539 	assert (cp);
3540 	if (!cp) return;
3541 	ccb = cp->cam_ccb;
3542 	assert (ccb);
3543 	if (!ccb) return;
3544 	assert (target == (cp->target & 0xf));
3545 	tp = &np->target[target];
3546 
3547 	sval = tp->head.sval;
3548 	wval = tp->head.wval;
3549 	uval = tp->head.uval;
3550 
3551 #if 0
3552 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3553 		sval, wval, uval, np->rv_scntl3);
3554 #endif
3555 	/*
3556 	 *  Set the offset.
3557 	 */
3558 	if (!(np->features & FE_C10))
3559 		sval = (sval & ~0x1f) | ofs;
3560 	else
3561 		sval = (sval & ~0x3f) | ofs;
3562 
3563 	/*
3564 	 *  Set the sync divisor and extra clock factor.
3565 	 */
3566 	if (ofs != 0) {
3567 		wval = (wval & ~0x70) | ((div+1) << 4);
3568 		if (!(np->features & FE_C10))
3569 			sval = (sval & ~0xe0) | (fak << 5);
3570 		else {
3571 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3572 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3573 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3574 		}
3575 	}
3576 
3577 	/*
3578 	 *  Set the bus width.
3579 	 */
3580 	wval = wval & ~EWS;
3581 	if (wide != 0)
3582 		wval |= EWS;
3583 
3584 	/*
3585 	 *  Set misc. ultra enable bits.
3586 	 */
3587 	if (np->features & FE_C10) {
3588 		uval = uval & ~(U3EN|AIPCKEN);
3589 		if (dt)	{
3590 			assert(np->features & FE_U3EN);
3591 			uval |= U3EN;
3592 		}
3593 	}
3594 	else {
3595 		wval = wval & ~ULTRA;
3596 		if (per <= 12)	wval |= ULTRA;
3597 	}
3598 
3599 	/*
3600 	 *   Stop there if sync parameters are unchanged.
3601 	 */
3602 	if (tp->head.sval == sval &&
3603 	    tp->head.wval == wval &&
3604 	    tp->head.uval == uval)
3605 		return;
3606 	tp->head.sval = sval;
3607 	tp->head.wval = wval;
3608 	tp->head.uval = uval;
3609 
3610 	/*
3611 	 *  Disable extended Sreq/Sack filtering if per < 50.
3612 	 *  Not supported on the C1010.
3613 	 */
3614 	if (per < 50 && !(np->features & FE_C10))
3615 		OUTOFFB (nc_stest2, EXT);
3616 
3617 	/*
3618 	 *  set actual value and sync_status
3619 	 */
3620 	OUTB (nc_sxfer,  tp->head.sval);
3621 	OUTB (nc_scntl3, tp->head.wval);
3622 
3623 	if (np->features & FE_C10) {
3624 		OUTB (nc_scntl4, tp->head.uval);
3625 	}
3626 
3627 	/*
3628 	 *  patch ALL busy ccbs of this target.
3629 	 */
3630 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3631 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3632 		if (cp->target != target)
3633 			continue;
3634 		cp->phys.select.sel_scntl3 = tp->head.wval;
3635 		cp->phys.select.sel_sxfer  = tp->head.sval;
3636 		if (np->features & FE_C10) {
3637 			cp->phys.select.sel_scntl4 = tp->head.uval;
3638 		}
3639 	}
3640 }
3641 
3642 /*
3643  *  log message for real hard errors
3644  *
3645  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3646  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3647  *
3648  *  exception register:
3649  *  	ds:	dstat
3650  *  	si:	sist
3651  *
3652  *  SCSI bus lines:
3653  *  	so:	control lines as driven by chip.
3654  *  	si:	control lines as seen by chip.
3655  *  	sd:	scsi data lines as seen by chip.
3656  *
3657  *  wide/fastmode:
3658  *  	sxfer:	(see the manual)
3659  *  	scntl3:	(see the manual)
3660  *
3661  *  current script command:
3662  *  	dsp:	script address (relative to start of script).
3663  *  	dbc:	first word of script command.
3664  *
3665  *  First 24 register of the chip:
3666  *  	r0..rf
3667  */
3668 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3669 {
3670 	u32	dsp;
3671 	int	script_ofs;
3672 	int	script_size;
3673 	char	*script_name;
3674 	u_char	*script_base;
3675 	int	i;
3676 
3677 	dsp	= INL (nc_dsp);
3678 
3679 	if	(dsp > np->scripta_ba &&
3680 		 dsp <= np->scripta_ba + np->scripta_sz) {
3681 		script_ofs	= dsp - np->scripta_ba;
3682 		script_size	= np->scripta_sz;
3683 		script_base	= (u_char *) np->scripta0;
3684 		script_name	= "scripta";
3685 	}
3686 	else if (np->scriptb_ba < dsp &&
3687 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3688 		script_ofs	= dsp - np->scriptb_ba;
3689 		script_size	= np->scriptb_sz;
3690 		script_base	= (u_char *) np->scriptb0;
3691 		script_name	= "scriptb";
3692 	} else {
3693 		script_ofs	= dsp;
3694 		script_size	= 0;
3695 		script_base	= NULL;
3696 		script_name	= "mem";
3697 	}
3698 
3699 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3700 		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3701 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3702 		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3703 		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3704 		(unsigned)INL (nc_dbc));
3705 
3706 	if (((script_ofs & 3) == 0) &&
3707 	    (unsigned)script_ofs < script_size) {
3708 		device_printf(np->device, "script cmd = %08x\n",
3709 		    scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3710 	}
3711 
3712 	device_printf(np->device, "regdump:");
3713         for (i = 0; i < 24; i++)
3714             printf (" %02x", (unsigned)INB_OFF(i));
3715         printf (".\n");
3716 
3717 	/*
3718 	 *  PCI BUS error, read the PCI ststus register.
3719 	 */
3720 	if (dstat & (MDPE|BF)) {
3721 		u_short pci_sts;
3722 		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3723 		if (pci_sts & 0xf900) {
3724 			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3725 			device_printf(np->device, "PCI STATUS = 0x%04x\n",
3726 			    pci_sts & 0xf900);
3727 		}
3728 	}
3729 }
3730 
3731 /*
3732  *  chip interrupt handler
3733  *
3734  *  In normal situations, interrupt conditions occur one at
3735  *  a time. But when something bad happens on the SCSI BUS,
3736  *  the chip may raise several interrupt flags before
3737  *  stopping and interrupting the CPU. The additionnal
3738  *  interrupt flags are stacked in some extra registers
3739  *  after the SIP and/or DIP flag has been raised in the
3740  *  ISTAT. After the CPU has read the interrupt condition
3741  *  flag from SIST or DSTAT, the chip unstacks the other
3742  *  interrupt flags and sets the corresponding bits in
3743  *  SIST or DSTAT. Since the chip starts stacking once the
3744  *  SIP or DIP flag is set, there is a small window of time
3745  *  where the stacking does not occur.
3746  *
3747  *  Typically, multiple interrupt conditions may happen in
3748  *  the following situations:
3749  *
3750  *  - SCSI parity error + Phase mismatch  (PAR|MA)
3751  *    When a parity error is detected in input phase
3752  *    and the device switches to msg-in phase inside a
3753  *    block MOV.
3754  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
3755  *    When a stupid device does not want to handle the
3756  *    recovery of an SCSI parity error.
3757  *  - Some combinations of STO, PAR, UDC, ...
3758  *    When using non compliant SCSI stuff, when user is
3759  *    doing non compliant hot tampering on the BUS, when
3760  *    something really bad happens to a device, etc ...
3761  *
3762  *  The heuristic suggested by SYMBIOS to handle
3763  *  multiple interrupts is to try unstacking all
3764  *  interrupts conditions and to handle them on some
3765  *  priority based on error severity.
3766  *  This will work when the unstacking has been
3767  *  successful, but we cannot be 100 % sure of that,
3768  *  since the CPU may have been faster to unstack than
3769  *  the chip is able to stack. Hmmm ... But it seems that
3770  *  such a situation is very unlikely to happen.
3771  *
3772  *  If this happen, for example STO caught by the CPU
3773  *  then UDC happenning before the CPU have restarted
3774  *  the SCRIPTS, the driver may wrongly complete the
3775  *  same command on UDC, since the SCRIPTS didn't restart
3776  *  and the DSA still points to the same command.
3777  *  We avoid this situation by setting the DSA to an
3778  *  invalid value when the CCB is completed and before
3779  *  restarting the SCRIPTS.
3780  *
3781  *  Another issue is that we need some section of our
3782  *  recovery procedures to be somehow uninterruptible but
3783  *  the SCRIPTS processor does not provides such a
3784  *  feature. For this reason, we handle recovery preferently
3785  *  from the C code and check against some SCRIPTS critical
3786  *  sections from the C code.
3787  *
3788  *  Hopefully, the interrupt handling of the driver is now
3789  *  able to resist to weird BUS error conditions, but donnot
3790  *  ask me for any guarantee that it will never fail. :-)
3791  *  Use at your own decision and risk.
3792  */
3793 static void sym_intr1 (hcb_p np)
3794 {
3795 	u_char	istat, istatc;
3796 	u_char	dstat;
3797 	u_short	sist;
3798 
3799 	SYM_LOCK_ASSERT(MA_OWNED);
3800 
3801 	/*
3802 	 *  interrupt on the fly ?
3803 	 *
3804 	 *  A `dummy read' is needed to ensure that the
3805 	 *  clear of the INTF flag reaches the device
3806 	 *  before the scanning of the DONE queue.
3807 	 */
3808 	istat = INB (nc_istat);
3809 	if (istat & INTF) {
3810 		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
3811 		istat = INB (nc_istat);		/* DUMMY READ */
3812 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
3813 		(void)sym_wakeup_done (np);
3814 	}
3815 
3816 	if (!(istat & (SIP|DIP)))
3817 		return;
3818 
3819 #if 0	/* We should never get this one */
3820 	if (istat & CABRT)
3821 		OUTB (nc_istat, CABRT);
3822 #endif
3823 
3824 	/*
3825 	 *  PAR and MA interrupts may occur at the same time,
3826 	 *  and we need to know of both in order to handle
3827 	 *  this situation properly. We try to unstack SCSI
3828 	 *  interrupts for that reason. BTW, I dislike a LOT
3829 	 *  such a loop inside the interrupt routine.
3830 	 *  Even if DMA interrupt stacking is very unlikely to
3831 	 *  happen, we also try unstacking these ones, since
3832 	 *  this has no performance impact.
3833 	 */
3834 	sist	= 0;
3835 	dstat	= 0;
3836 	istatc	= istat;
3837 	do {
3838 		if (istatc & SIP)
3839 			sist  |= INW (nc_sist);
3840 		if (istatc & DIP)
3841 			dstat |= INB (nc_dstat);
3842 		istatc = INB (nc_istat);
3843 		istat |= istatc;
3844 	} while (istatc & (SIP|DIP));
3845 
3846 	if (DEBUG_FLAGS & DEBUG_TINY)
3847 		printf ("<%d|%x:%x|%x:%x>",
3848 			(int)INB(nc_scr0),
3849 			dstat,sist,
3850 			(unsigned)INL(nc_dsp),
3851 			(unsigned)INL(nc_dbc));
3852 	/*
3853 	 *  On paper, a memory barrier may be needed here.
3854 	 *  And since we are paranoid ... :)
3855 	 */
3856 	MEMORY_BARRIER();
3857 
3858 	/*
3859 	 *  First, interrupts we want to service cleanly.
3860 	 *
3861 	 *  Phase mismatch (MA) is the most frequent interrupt
3862 	 *  for chip earlier than the 896 and so we have to service
3863 	 *  it as quickly as possible.
3864 	 *  A SCSI parity error (PAR) may be combined with a phase
3865 	 *  mismatch condition (MA).
3866 	 *  Programmed interrupts (SIR) are used to call the C code
3867 	 *  from SCRIPTS.
3868 	 *  The single step interrupt (SSI) is not used in this
3869 	 *  driver.
3870 	 */
3871 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
3872 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3873 		if	(sist & PAR)	sym_int_par (np, sist);
3874 		else if (sist & MA)	sym_int_ma (np);
3875 		else if (dstat & SIR)	sym_int_sir (np);
3876 		else if (dstat & SSI)	OUTONB_STD ();
3877 		else			goto unknown_int;
3878 		return;
3879 	}
3880 
3881 	/*
3882 	 *  Now, interrupts that donnot happen in normal
3883 	 *  situations and that we may need to recover from.
3884 	 *
3885 	 *  On SCSI RESET (RST), we reset everything.
3886 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
3887 	 *  active CCBs with RESET status, prepare all devices
3888 	 *  for negotiating again and restart the SCRIPTS.
3889 	 *  On STO and UDC, we complete the CCB with the corres-
3890 	 *  ponding status and restart the SCRIPTS.
3891 	 */
3892 	if (sist & RST) {
3893 		xpt_print_path(np->path);
3894 		printf("SCSI BUS reset detected.\n");
3895 		sym_init (np, 1);
3896 		return;
3897 	}
3898 
3899 	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
3900 	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
3901 
3902 	if (!(sist  & (GEN|HTH|SGE)) &&
3903 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3904 		if	(sist & SBMC)	sym_int_sbmc (np);
3905 		else if (sist & STO)	sym_int_sto (np);
3906 		else if (sist & UDC)	sym_int_udc (np);
3907 		else			goto unknown_int;
3908 		return;
3909 	}
3910 
3911 	/*
3912 	 *  Now, interrupts we are not able to recover cleanly.
3913 	 *
3914 	 *  Log message for hard errors.
3915 	 *  Reset everything.
3916 	 */
3917 
3918 	sym_log_hard_error(np, sist, dstat);
3919 
3920 	if ((sist & (GEN|HTH|SGE)) ||
3921 		(dstat & (MDPE|BF|ABRT|IID))) {
3922 		sym_start_reset(np);
3923 		return;
3924 	}
3925 
3926 unknown_int:
3927 	/*
3928 	 *  We just miss the cause of the interrupt. :(
3929 	 *  Print a message. The timeout will do the real work.
3930 	 */
3931 	device_printf(np->device,
3932 	    "unknown interrupt(s) ignored, ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
3933 	    istat, dstat, sist);
3934 }
3935 
3936 static void sym_intr(void *arg)
3937 {
3938 	hcb_p np = arg;
3939 
3940 	SYM_LOCK();
3941 
3942 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
3943 	sym_intr1((hcb_p) arg);
3944 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
3945 
3946 	SYM_UNLOCK();
3947 }
3948 
3949 static void sym_poll(struct cam_sim *sim)
3950 {
3951 	sym_intr1(cam_sim_softc(sim));
3952 }
3953 
3954 /*
3955  *  generic recovery from scsi interrupt
3956  *
3957  *  The doc says that when the chip gets an SCSI interrupt,
3958  *  it tries to stop in an orderly fashion, by completing
3959  *  an instruction fetch that had started or by flushing
3960  *  the DMA fifo for a write to memory that was executing.
3961  *  Such a fashion is not enough to know if the instruction
3962  *  that was just before the current DSP value has been
3963  *  executed or not.
3964  *
3965  *  There are some small SCRIPTS sections that deal with
3966  *  the start queue and the done queue that may break any
3967  *  assomption from the C code if we are interrupted
3968  *  inside, so we reset if this happens. Btw, since these
3969  *  SCRIPTS sections are executed while the SCRIPTS hasn't
3970  *  started SCSI operations, it is very unlikely to happen.
3971  *
3972  *  All the driver data structures are supposed to be
3973  *  allocated from the same 4 GB memory window, so there
3974  *  is a 1 to 1 relationship between DSA and driver data
3975  *  structures. Since we are careful :) to invalidate the
3976  *  DSA when we complete a command or when the SCRIPTS
3977  *  pushes a DSA into a queue, we can trust it when it
3978  *  points to a CCB.
3979  */
3980 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
3981 {
3982 	u32	dsp	= INL (nc_dsp);
3983 	u32	dsa	= INL (nc_dsa);
3984 	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
3985 
3986 	/*
3987 	 *  If we haven't been interrupted inside the SCRIPTS
3988 	 *  critical paths, we can safely restart the SCRIPTS
3989 	 *  and trust the DSA value if it matches a CCB.
3990 	 */
3991 	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
3992 	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
3993 	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
3994 	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
3995 	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
3996 	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
3997 	    (!(dsp > SCRIPTA_BA (np, done) &&
3998 	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
3999 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4000 		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4001 		/*
4002 		 *  If we have a CCB, let the SCRIPTS call us back for
4003 		 *  the handling of the error with SCRATCHA filled with
4004 		 *  STARTPOS. This way, we will be able to freeze the
4005 		 *  device queue and requeue awaiting IOs.
4006 		 */
4007 		if (cp) {
4008 			cp->host_status = hsts;
4009 			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4010 		}
4011 		/*
4012 		 *  Otherwise just restart the SCRIPTS.
4013 		 */
4014 		else {
4015 			OUTL (nc_dsa, 0xffffff);
4016 			OUTL_DSP (SCRIPTA_BA (np, start));
4017 		}
4018 	}
4019 	else
4020 		goto reset_all;
4021 
4022 	return;
4023 
4024 reset_all:
4025 	sym_start_reset(np);
4026 }
4027 
4028 /*
4029  *  chip exception handler for selection timeout
4030  */
4031 static void sym_int_sto (hcb_p np)
4032 {
4033 	u32 dsp	= INL (nc_dsp);
4034 
4035 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
4036 
4037 	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4038 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4039 	else
4040 		sym_start_reset(np);
4041 }
4042 
4043 /*
4044  *  chip exception handler for unexpected disconnect
4045  */
4046 static void sym_int_udc (hcb_p np)
4047 {
4048 	device_printf(np->device, "unexpected disconnect\n");
4049 	sym_recover_scsi_int(np, HS_UNEXPECTED);
4050 }
4051 
4052 /*
4053  *  chip exception handler for SCSI bus mode change
4054  *
4055  *  spi2-r12 11.2.3 says a transceiver mode change must
4056  *  generate a reset event and a device that detects a reset
4057  *  event shall initiate a hard reset. It says also that a
4058  *  device that detects a mode change shall set data transfer
4059  *  mode to eight bit asynchronous, etc...
4060  *  So, just reinitializing all except chip should be enough.
4061  */
4062 static void sym_int_sbmc (hcb_p np)
4063 {
4064 	u_char scsi_mode = INB (nc_stest4) & SMODE;
4065 
4066 	/*
4067 	 *  Notify user.
4068 	 */
4069 	xpt_print_path(np->path);
4070 	printf("SCSI BUS mode change from %s to %s.\n",
4071 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4072 
4073 	/*
4074 	 *  Should suspend command processing for a few seconds and
4075 	 *  reinitialize all except the chip.
4076 	 */
4077 	sym_init (np, 2);
4078 }
4079 
4080 /*
4081  *  chip exception handler for SCSI parity error.
4082  *
4083  *  When the chip detects a SCSI parity error and is
4084  *  currently executing a (CH)MOV instruction, it does
4085  *  not interrupt immediately, but tries to finish the
4086  *  transfer of the current scatter entry before
4087  *  interrupting. The following situations may occur:
4088  *
4089  *  - The complete scatter entry has been transferred
4090  *    without the device having changed phase.
4091  *    The chip will then interrupt with the DSP pointing
4092  *    to the instruction that follows the MOV.
4093  *
4094  *  - A phase mismatch occurs before the MOV finished
4095  *    and phase errors are to be handled by the C code.
4096  *    The chip will then interrupt with both PAR and MA
4097  *    conditions set.
4098  *
4099  *  - A phase mismatch occurs before the MOV finished and
4100  *    phase errors are to be handled by SCRIPTS.
4101  *    The chip will load the DSP with the phase mismatch
4102  *    JUMP address and interrupt the host processor.
4103  */
4104 static void sym_int_par (hcb_p np, u_short sist)
4105 {
4106 	u_char	hsts	= INB (HS_PRT);
4107 	u32	dsp	= INL (nc_dsp);
4108 	u32	dbc	= INL (nc_dbc);
4109 	u32	dsa	= INL (nc_dsa);
4110 	u_char	sbcl	= INB (nc_sbcl);
4111 	u_char	cmd	= dbc >> 24;
4112 	int phase	= cmd & 7;
4113 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4114 
4115 	device_printf(np->device,
4116 	    "SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", hsts, dbc,
4117 	    sbcl);
4118 
4119 	/*
4120 	 *  Check that the chip is connected to the SCSI BUS.
4121 	 */
4122 	if (!(INB (nc_scntl1) & ISCON)) {
4123 		sym_recover_scsi_int(np, HS_UNEXPECTED);
4124 		return;
4125 	}
4126 
4127 	/*
4128 	 *  If the nexus is not clearly identified, reset the bus.
4129 	 *  We will try to do better later.
4130 	 */
4131 	if (!cp)
4132 		goto reset_all;
4133 
4134 	/*
4135 	 *  Check instruction was a MOV, direction was INPUT and
4136 	 *  ATN is asserted.
4137 	 */
4138 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4139 		goto reset_all;
4140 
4141 	/*
4142 	 *  Keep track of the parity error.
4143 	 */
4144 	OUTONB (HF_PRT, HF_EXT_ERR);
4145 	cp->xerr_status |= XE_PARITY_ERR;
4146 
4147 	/*
4148 	 *  Prepare the message to send to the device.
4149 	 */
4150 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4151 
4152 	/*
4153 	 *  If the old phase was DATA IN phase, we have to deal with
4154 	 *  the 3 situations described above.
4155 	 *  For other input phases (MSG IN and STATUS), the device
4156 	 *  must resend the whole thing that failed parity checking
4157 	 *  or signal error. So, jumping to dispatcher should be OK.
4158 	 */
4159 	if (phase == 1 || phase == 5) {
4160 		/* Phase mismatch handled by SCRIPTS */
4161 		if (dsp == SCRIPTB_BA (np, pm_handle))
4162 			OUTL_DSP (dsp);
4163 		/* Phase mismatch handled by the C code */
4164 		else if (sist & MA)
4165 			sym_int_ma (np);
4166 		/* No phase mismatch occurred */
4167 		else {
4168 			OUTL (nc_temp, dsp);
4169 			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4170 		}
4171 	}
4172 	else
4173 		OUTL_DSP (SCRIPTA_BA (np, clrack));
4174 	return;
4175 
4176 reset_all:
4177 	sym_start_reset(np);
4178 }
4179 
4180 /*
4181  *  chip exception handler for phase errors.
4182  *
4183  *  We have to construct a new transfer descriptor,
4184  *  to transfer the rest of the current block.
4185  */
4186 static void sym_int_ma (hcb_p np)
4187 {
4188 	u32	dbc;
4189 	u32	rest;
4190 	u32	dsp;
4191 	u32	dsa;
4192 	u32	nxtdsp;
4193 	u32	*vdsp;
4194 	u32	oadr, olen;
4195 	u32	*tblp;
4196         u32	newcmd;
4197 	u_int	delta;
4198 	u_char	cmd;
4199 	u_char	hflags, hflags0;
4200 	struct	sym_pmc *pm;
4201 	ccb_p	cp;
4202 
4203 	dsp	= INL (nc_dsp);
4204 	dbc	= INL (nc_dbc);
4205 	dsa	= INL (nc_dsa);
4206 
4207 	cmd	= dbc >> 24;
4208 	rest	= dbc & 0xffffff;
4209 	delta	= 0;
4210 
4211 	/*
4212 	 *  locate matching cp if any.
4213 	 */
4214 	cp = sym_ccb_from_dsa(np, dsa);
4215 
4216 	/*
4217 	 *  Donnot take into account dma fifo and various buffers in
4218 	 *  INPUT phase since the chip flushes everything before
4219 	 *  raising the MA interrupt for interrupted INPUT phases.
4220 	 *  For DATA IN phase, we will check for the SWIDE later.
4221 	 */
4222 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4223 		u_char ss0, ss2;
4224 
4225 		if (np->features & FE_DFBC)
4226 			delta = INW (nc_dfbc);
4227 		else {
4228 			u32 dfifo;
4229 
4230 			/*
4231 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4232 			 */
4233 			dfifo = INL(nc_dfifo);
4234 
4235 			/*
4236 			 *  Calculate remaining bytes in DMA fifo.
4237 			 *  (CTEST5 = dfifo >> 16)
4238 			 */
4239 			if (dfifo & (DFS << 16))
4240 				delta = ((((dfifo >> 8) & 0x300) |
4241 				          (dfifo & 0xff)) - rest) & 0x3ff;
4242 			else
4243 				delta = ((dfifo & 0xff) - rest) & 0x7f;
4244 		}
4245 
4246 		/*
4247 		 *  The data in the dma fifo has not been transferred to
4248 		 *  the target -> add the amount to the rest
4249 		 *  and clear the data.
4250 		 *  Check the sstat2 register in case of wide transfer.
4251 		 */
4252 		rest += delta;
4253 		ss0  = INB (nc_sstat0);
4254 		if (ss0 & OLF) rest++;
4255 		if (!(np->features & FE_C10))
4256 			if (ss0 & ORF) rest++;
4257 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4258 			ss2 = INB (nc_sstat2);
4259 			if (ss2 & OLF1) rest++;
4260 			if (!(np->features & FE_C10))
4261 				if (ss2 & ORF1) rest++;
4262 		}
4263 
4264 		/*
4265 		 *  Clear fifos.
4266 		 */
4267 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4268 		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4269 	}
4270 
4271 	/*
4272 	 *  log the information
4273 	 */
4274 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4275 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4276 			(unsigned) rest, (unsigned) delta);
4277 
4278 	/*
4279 	 *  try to find the interrupted script command,
4280 	 *  and the address at which to continue.
4281 	 */
4282 	vdsp	= NULL;
4283 	nxtdsp	= 0;
4284 	if	(dsp >  np->scripta_ba &&
4285 		 dsp <= np->scripta_ba + np->scripta_sz) {
4286 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4287 		nxtdsp = dsp;
4288 	}
4289 	else if	(dsp >  np->scriptb_ba &&
4290 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4291 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4292 		nxtdsp = dsp;
4293 	}
4294 
4295 	/*
4296 	 *  log the information
4297 	 */
4298 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4299 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4300 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4301 	}
4302 
4303 	if (!vdsp) {
4304 		device_printf(np->device,
4305 		    "interrupted SCRIPT address not found.\n");
4306 		goto reset_all;
4307 	}
4308 
4309 	if (!cp) {
4310 		device_printf(np->device,
4311 		    "SCSI phase error fixup: CCB already dequeued.\n");
4312 		goto reset_all;
4313 	}
4314 
4315 	/*
4316 	 *  get old startaddress and old length.
4317 	 */
4318 	oadr = scr_to_cpu(vdsp[1]);
4319 
4320 	if (cmd & 0x10) {	/* Table indirect */
4321 		tblp = (u32 *) ((char*) &cp->phys + oadr);
4322 		olen = scr_to_cpu(tblp[0]);
4323 		oadr = scr_to_cpu(tblp[1]);
4324 	} else {
4325 		tblp = (u32 *) 0;
4326 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4327 	}
4328 
4329 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4330 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4331 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4332 			tblp,
4333 			(unsigned) olen,
4334 			(unsigned) oadr);
4335 	}
4336 
4337 	/*
4338 	 *  check cmd against assumed interrupted script command.
4339 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4340 	 *  the phase.
4341 	 */
4342 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4343 		PRINT_ADDR(cp);
4344 		printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4345 			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4346 
4347 		goto reset_all;
4348 	}
4349 
4350 	/*
4351 	 *  if old phase not dataphase, leave here.
4352 	 */
4353 	if (cmd & 2) {
4354 		PRINT_ADDR(cp);
4355 		printf ("phase change %x-%x %d@%08x resid=%d.\n",
4356 			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4357 			(unsigned)oadr, (unsigned)rest);
4358 		goto unexpected_phase;
4359 	}
4360 
4361 	/*
4362 	 *  Choose the correct PM save area.
4363 	 *
4364 	 *  Look at the PM_SAVE SCRIPT if you want to understand
4365 	 *  this stuff. The equivalent code is implemented in
4366 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4367 	 *  handle PM from the SCRIPTS processor.
4368 	 */
4369 	hflags0 = INB (HF_PRT);
4370 	hflags = hflags0;
4371 
4372 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4373 		if (hflags & HF_IN_PM0)
4374 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4375 		else if	(hflags & HF_IN_PM1)
4376 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4377 
4378 		if (hflags & HF_DP_SAVED)
4379 			hflags ^= HF_ACT_PM;
4380 	}
4381 
4382 	if (!(hflags & HF_ACT_PM)) {
4383 		pm = &cp->phys.pm0;
4384 		newcmd = SCRIPTA_BA (np, pm0_data);
4385 	}
4386 	else {
4387 		pm = &cp->phys.pm1;
4388 		newcmd = SCRIPTA_BA (np, pm1_data);
4389 	}
4390 
4391 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4392 	if (hflags != hflags0)
4393 		OUTB (HF_PRT, hflags);
4394 
4395 	/*
4396 	 *  fillin the phase mismatch context
4397 	 */
4398 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4399 	pm->sg.size = cpu_to_scr(rest);
4400 	pm->ret     = cpu_to_scr(nxtdsp);
4401 
4402 	/*
4403 	 *  If we have a SWIDE,
4404 	 *  - prepare the address to write the SWIDE from SCRIPTS,
4405 	 *  - compute the SCRIPTS address to restart from,
4406 	 *  - move current data pointer context by one byte.
4407 	 */
4408 	nxtdsp = SCRIPTA_BA (np, dispatch);
4409 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4410 	    (INB (nc_scntl2) & WSR)) {
4411 		u32 tmp;
4412 
4413 		/*
4414 		 *  Set up the table indirect for the MOVE
4415 		 *  of the residual byte and adjust the data
4416 		 *  pointer context.
4417 		 */
4418 		tmp = scr_to_cpu(pm->sg.addr);
4419 		cp->phys.wresid.addr = cpu_to_scr(tmp);
4420 		pm->sg.addr = cpu_to_scr(tmp + 1);
4421 		tmp = scr_to_cpu(pm->sg.size);
4422 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4423 		pm->sg.size = cpu_to_scr(tmp - 1);
4424 
4425 		/*
4426 		 *  If only the residual byte is to be moved,
4427 		 *  no PM context is needed.
4428 		 */
4429 		if ((tmp&0xffffff) == 1)
4430 			newcmd = pm->ret;
4431 
4432 		/*
4433 		 *  Prepare the address of SCRIPTS that will
4434 		 *  move the residual byte to memory.
4435 		 */
4436 		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4437 	}
4438 
4439 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4440 		PRINT_ADDR(cp);
4441 		printf ("PM %x %x %x / %x %x %x.\n",
4442 			hflags0, hflags, newcmd,
4443 			(unsigned)scr_to_cpu(pm->sg.addr),
4444 			(unsigned)scr_to_cpu(pm->sg.size),
4445 			(unsigned)scr_to_cpu(pm->ret));
4446 	}
4447 
4448 	/*
4449 	 *  Restart the SCRIPTS processor.
4450 	 */
4451 	OUTL (nc_temp, newcmd);
4452 	OUTL_DSP (nxtdsp);
4453 	return;
4454 
4455 	/*
4456 	 *  Unexpected phase changes that occurs when the current phase
4457 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4458 	 *  Such event may only happen when the SCRIPTS is using a
4459 	 *  multibyte SCSI MOVE.
4460 	 *
4461 	 *  Phase change		Some possible cause
4462 	 *
4463 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4464 	 *  COMMAND  --> STATUS	Bad command or refused by target.
4465 	 *  MSG OUT  --> MSG IN     Message rejected by target.
4466 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4467 	 *  			negotiation messages.
4468 	 *
4469 	 *  The code below does not care of the new phase and so
4470 	 *  trusts the target. Why to annoy it ?
4471 	 *  If the interrupted phase is COMMAND phase, we restart at
4472 	 *  dispatcher.
4473 	 *  If a target does not get all the messages after selection,
4474 	 *  the code assumes blindly that the target discards extended
4475 	 *  messages and clears the negotiation status.
4476 	 *  If the target does not want all our response to negotiation,
4477 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4478 	 *  bloat for such a should_not_happen situation).
4479 	 *  In all other situation, we reset the BUS.
4480 	 *  Are these assumptions reasonnable ? (Wait and see ...)
4481 	 */
4482 unexpected_phase:
4483 	dsp -= 8;
4484 	nxtdsp = 0;
4485 
4486 	switch (cmd & 7) {
4487 	case 2:	/* COMMAND phase */
4488 		nxtdsp = SCRIPTA_BA (np, dispatch);
4489 		break;
4490 #if 0
4491 	case 3:	/* STATUS  phase */
4492 		nxtdsp = SCRIPTA_BA (np, dispatch);
4493 		break;
4494 #endif
4495 	case 6:	/* MSG OUT phase */
4496 		/*
4497 		 *  If the device may want to use untagged when we want
4498 		 *  tagged, we prepare an IDENTIFY without disc. granted,
4499 		 *  since we will not be able to handle reselect.
4500 		 *  Otherwise, we just don't care.
4501 		 */
4502 		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4503 			if (cp->tag != NO_TAG && olen - rest <= 3) {
4504 				cp->host_status = HS_BUSY;
4505 				np->msgout[0] = M_IDENTIFY | cp->lun;
4506 				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4507 			}
4508 			else
4509 				nxtdsp = SCRIPTB_BA (np, ident_break);
4510 		}
4511 		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4512 			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4513 			 dsp == SCRIPTB_BA (np, send_ppr)) {
4514 			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4515 		}
4516 		break;
4517 #if 0
4518 	case 7:	/* MSG IN  phase */
4519 		nxtdsp = SCRIPTA_BA (np, clrack);
4520 		break;
4521 #endif
4522 	}
4523 
4524 	if (nxtdsp) {
4525 		OUTL_DSP (nxtdsp);
4526 		return;
4527 	}
4528 
4529 reset_all:
4530 	sym_start_reset(np);
4531 }
4532 
4533 /*
4534  *  Dequeue from the START queue all CCBs that match
4535  *  a given target/lun/task condition (-1 means all),
4536  *  and move them from the BUSY queue to the COMP queue
4537  *  with CAM_REQUEUE_REQ status condition.
4538  *  This function is used during error handling/recovery.
4539  *  It is called with SCRIPTS not running.
4540  */
4541 static int
4542 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4543 {
4544 	int j;
4545 	ccb_p cp;
4546 
4547 	/*
4548 	 *  Make sure the starting index is within range.
4549 	 */
4550 	assert((i >= 0) && (i < 2*MAX_QUEUE));
4551 
4552 	/*
4553 	 *  Walk until end of START queue and dequeue every job
4554 	 *  that matches the target/lun/task condition.
4555 	 */
4556 	j = i;
4557 	while (i != np->squeueput) {
4558 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4559 		assert(cp);
4560 #ifdef SYM_CONF_IARB_SUPPORT
4561 		/* Forget hints for IARB, they may be no longer relevant */
4562 		cp->host_flags &= ~HF_HINT_IARB;
4563 #endif
4564 		if ((target == -1 || cp->target == target) &&
4565 		    (lun    == -1 || cp->lun    == lun)    &&
4566 		    (task   == -1 || cp->tag    == task)) {
4567 			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4568 			sym_remque(&cp->link_ccbq);
4569 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4570 		}
4571 		else {
4572 			if (i != j)
4573 				np->squeue[j] = np->squeue[i];
4574 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4575 		}
4576 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4577 	}
4578 	if (i != j)		/* Copy back the idle task if needed */
4579 		np->squeue[j] = np->squeue[i];
4580 	np->squeueput = j;	/* Update our current start queue pointer */
4581 
4582 	return (i - j) / 2;
4583 }
4584 
4585 /*
4586  *  Complete all CCBs queued to the COMP queue.
4587  *
4588  *  These CCBs are assumed:
4589  *  - Not to be referenced either by devices or
4590  *    SCRIPTS-related queues and datas.
4591  *  - To have to be completed with an error condition
4592  *    or requeued.
4593  *
4594  *  The device queue freeze count is incremented
4595  *  for each CCB that does not prevent this.
4596  *  This function is called when all CCBs involved
4597  *  in error handling/recovery have been reaped.
4598  */
4599 static void
4600 sym_flush_comp_queue(hcb_p np, int cam_status)
4601 {
4602 	SYM_QUEHEAD *qp;
4603 	ccb_p cp;
4604 
4605 	while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
4606 		union ccb *ccb;
4607 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4608 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4609 		/* Leave quiet CCBs waiting for resources */
4610 		if (cp->host_status == HS_WAIT)
4611 			continue;
4612 		ccb = cp->cam_ccb;
4613 		if (cam_status)
4614 			sym_set_cam_status(ccb, cam_status);
4615 		sym_freeze_cam_ccb(ccb);
4616 		sym_xpt_done(np, ccb, cp);
4617 		sym_free_ccb(np, cp);
4618 	}
4619 }
4620 
4621 /*
4622  *  chip handler for bad SCSI status condition
4623  *
4624  *  In case of bad SCSI status, we unqueue all the tasks
4625  *  currently queued to the controller but not yet started
4626  *  and then restart the SCRIPTS processor immediately.
4627  *
4628  *  QUEUE FULL and BUSY conditions are handled the same way.
4629  *  Basically all the not yet started tasks are requeued in
4630  *  device queue and the queue is frozen until a completion.
4631  *
4632  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4633  *  the CCB of the failed command to prepare a REQUEST SENSE
4634  *  SCSI command and queue it to the controller queue.
4635  *
4636  *  SCRATCHA is assumed to have been loaded with STARTPOS
4637  *  before the SCRIPTS called the C code.
4638  */
4639 static void sym_sir_bad_scsi_status(hcb_p np, ccb_p cp)
4640 {
4641 	tcb_p tp	= &np->target[cp->target];
4642 	u32		startp;
4643 	u_char		s_status = cp->ssss_status;
4644 	u_char		h_flags  = cp->host_flags;
4645 	int		msglen;
4646 	int		nego;
4647 	int		i;
4648 
4649 	SYM_LOCK_ASSERT(MA_OWNED);
4650 
4651 	/*
4652 	 *  Compute the index of the next job to start from SCRIPTS.
4653 	 */
4654 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4655 
4656 	/*
4657 	 *  The last CCB queued used for IARB hint may be
4658 	 *  no longer relevant. Forget it.
4659 	 */
4660 #ifdef SYM_CONF_IARB_SUPPORT
4661 	if (np->last_cp)
4662 		np->last_cp = NULL;
4663 #endif
4664 
4665 	/*
4666 	 *  Now deal with the SCSI status.
4667 	 */
4668 	switch(s_status) {
4669 	case S_BUSY:
4670 	case S_QUEUE_FULL:
4671 		if (sym_verbose >= 2) {
4672 			PRINT_ADDR(cp);
4673 			printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4674 		}
4675 		/* FALLTHROUGH */
4676 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4677 		sym_complete_error (np, cp);
4678 		break;
4679 	case S_TERMINATED:
4680 	case S_CHECK_COND:
4681 		/*
4682 		 *  If we get an SCSI error when requesting sense, give up.
4683 		 */
4684 		if (h_flags & HF_SENSE) {
4685 			sym_complete_error (np, cp);
4686 			break;
4687 		}
4688 
4689 		/*
4690 		 *  Dequeue all queued CCBs for that device not yet started,
4691 		 *  and restart the SCRIPTS processor immediately.
4692 		 */
4693 		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4694 		OUTL_DSP (SCRIPTA_BA (np, start));
4695 
4696  		/*
4697 		 *  Save some info of the actual IO.
4698 		 *  Compute the data residual.
4699 		 */
4700 		cp->sv_scsi_status = cp->ssss_status;
4701 		cp->sv_xerr_status = cp->xerr_status;
4702 		cp->sv_resid = sym_compute_residual(np, cp);
4703 
4704 		/*
4705 		 *  Prepare all needed data structures for
4706 		 *  requesting sense data.
4707 		 */
4708 
4709 		/*
4710 		 *  identify message
4711 		 */
4712 		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4713 		msglen = 1;
4714 
4715 		/*
4716 		 *  If we are currently using anything different from
4717 		 *  async. 8 bit data transfers with that target,
4718 		 *  start a negotiation, since the device may want
4719 		 *  to report us a UNIT ATTENTION condition due to
4720 		 *  a cause we currently ignore, and we donnot want
4721 		 *  to be stuck with WIDE and/or SYNC data transfer.
4722 		 *
4723 		 *  cp->nego_status is filled by sym_prepare_nego().
4724 		 */
4725 		cp->nego_status = 0;
4726 		nego = 0;
4727 		if	(tp->tinfo.current.options & PPR_OPT_MASK)
4728 			nego = NS_PPR;
4729 		else if	(tp->tinfo.current.width != BUS_8_BIT)
4730 			nego = NS_WIDE;
4731 		else if (tp->tinfo.current.offset != 0)
4732 			nego = NS_SYNC;
4733 		if (nego)
4734 			msglen +=
4735 			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4736 		/*
4737 		 *  Message table indirect structure.
4738 		 */
4739 		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4740 		cp->phys.smsg.size	= cpu_to_scr(msglen);
4741 
4742 		/*
4743 		 *  sense command
4744 		 */
4745 		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
4746 		cp->phys.cmd.size	= cpu_to_scr(6);
4747 
4748 		/*
4749 		 *  patch requested size into sense command
4750 		 */
4751 		cp->sensecmd[0]		= 0x03;
4752 		cp->sensecmd[1]		= cp->lun << 5;
4753 		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
4754 			cp->sensecmd[1]	= 0;
4755 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
4756 		cp->data_len		= SYM_SNS_BBUF_LEN;
4757 
4758 		/*
4759 		 *  sense data
4760 		 */
4761 		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
4762 		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
4763 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
4764 
4765 		/*
4766 		 *  requeue the command.
4767 		 */
4768 		startp = SCRIPTB_BA (np, sdata_in);
4769 
4770 		cp->phys.head.savep	= cpu_to_scr(startp);
4771 		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
4772 		cp->phys.head.lastp	= cpu_to_scr(startp);
4773 		cp->startp	= cpu_to_scr(startp);
4774 
4775 		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
4776 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4777 		cp->ssss_status = S_ILLEGAL;
4778 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
4779 		cp->xerr_status = 0;
4780 		cp->extra_bytes = 0;
4781 
4782 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
4783 
4784 		/*
4785 		 *  Requeue the command.
4786 		 */
4787 		sym_put_start_queue(np, cp);
4788 
4789 		/*
4790 		 *  Give back to upper layer everything we have dequeued.
4791 		 */
4792 		sym_flush_comp_queue(np, 0);
4793 		break;
4794 	}
4795 }
4796 
4797 /*
4798  *  After a device has accepted some management message
4799  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
4800  *  a device signals a UNIT ATTENTION condition, some
4801  *  tasks are thrown away by the device. We are required
4802  *  to reflect that on our tasks list since the device
4803  *  will never complete these tasks.
4804  *
4805  *  This function move from the BUSY queue to the COMP
4806  *  queue all disconnected CCBs for a given target that
4807  *  match the following criteria:
4808  *  - lun=-1  means any logical UNIT otherwise a given one.
4809  *  - task=-1 means any task, otherwise a given one.
4810  */
4811 static int
4812 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
4813 {
4814 	SYM_QUEHEAD qtmp, *qp;
4815 	int i = 0;
4816 	ccb_p cp;
4817 
4818 	/*
4819 	 *  Move the entire BUSY queue to our temporary queue.
4820 	 */
4821 	sym_que_init(&qtmp);
4822 	sym_que_splice(&np->busy_ccbq, &qtmp);
4823 	sym_que_init(&np->busy_ccbq);
4824 
4825 	/*
4826 	 *  Put all CCBs that matches our criteria into
4827 	 *  the COMP queue and put back other ones into
4828 	 *  the BUSY queue.
4829 	 */
4830 	while ((qp = sym_remque_head(&qtmp)) != NULL) {
4831 		union ccb *ccb;
4832 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4833 		ccb = cp->cam_ccb;
4834 		if (cp->host_status != HS_DISCONNECT ||
4835 		    cp->target != target	     ||
4836 		    (lun  != -1 && cp->lun != lun)   ||
4837 		    (task != -1 &&
4838 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
4839 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4840 			continue;
4841 		}
4842 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4843 
4844 		/* Preserve the software timeout condition */
4845 		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
4846 			sym_set_cam_status(ccb, cam_status);
4847 		++i;
4848 #if 0
4849 printf("XXXX TASK @%p CLEARED\n", cp);
4850 #endif
4851 	}
4852 	return i;
4853 }
4854 
4855 /*
4856  *  chip handler for TASKS recovery
4857  *
4858  *  We cannot safely abort a command, while the SCRIPTS
4859  *  processor is running, since we just would be in race
4860  *  with it.
4861  *
4862  *  As long as we have tasks to abort, we keep the SEM
4863  *  bit set in the ISTAT. When this bit is set, the
4864  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
4865  *  each time it enters the scheduler.
4866  *
4867  *  If we have to reset a target, clear tasks of a unit,
4868  *  or to perform the abort of a disconnected job, we
4869  *  restart the SCRIPTS for selecting the target. Once
4870  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
4871  *  If it loses arbitration, the SCRIPTS will interrupt again
4872  *  the next time it will enter its scheduler, and so on ...
4873  *
4874  *  On SIR_TARGET_SELECTED, we scan for the more
4875  *  appropriate thing to do:
4876  *
4877  *  - If nothing, we just sent a M_ABORT message to the
4878  *    target to get rid of the useless SCSI bus ownership.
4879  *    According to the specs, no tasks shall be affected.
4880  *  - If the target is to be reset, we send it a M_RESET
4881  *    message.
4882  *  - If a logical UNIT is to be cleared , we send the
4883  *    IDENTIFY(lun) + M_ABORT.
4884  *  - If an untagged task is to be aborted, we send the
4885  *    IDENTIFY(lun) + M_ABORT.
4886  *  - If a tagged task is to be aborted, we send the
4887  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
4888  *
4889  *  Once our 'kiss of death' :) message has been accepted
4890  *  by the target, the SCRIPTS interrupts again
4891  *  (SIR_ABORT_SENT). On this interrupt, we complete
4892  *  all the CCBs that should have been aborted by the
4893  *  target according to our message.
4894  */
4895 static void sym_sir_task_recovery(hcb_p np, int num)
4896 {
4897 	SYM_QUEHEAD *qp;
4898 	ccb_p cp;
4899 	tcb_p tp;
4900 	int target=-1, lun=-1, task;
4901 	int i, k;
4902 
4903 	switch(num) {
4904 	/*
4905 	 *  The SCRIPTS processor stopped before starting
4906 	 *  the next command in order to allow us to perform
4907 	 *  some task recovery.
4908 	 */
4909 	case SIR_SCRIPT_STOPPED:
4910 		/*
4911 		 *  Do we have any target to reset or unit to clear ?
4912 		 */
4913 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
4914 			tp = &np->target[i];
4915 			if (tp->to_reset ||
4916 			    (tp->lun0p && tp->lun0p->to_clear)) {
4917 				target = i;
4918 				break;
4919 			}
4920 			if (!tp->lunmp)
4921 				continue;
4922 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
4923 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
4924 					target	= i;
4925 					break;
4926 				}
4927 			}
4928 			if (target != -1)
4929 				break;
4930 		}
4931 
4932 		/*
4933 		 *  If not, walk the busy queue for any
4934 		 *  disconnected CCB to be aborted.
4935 		 */
4936 		if (target == -1) {
4937 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4938 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
4939 				if (cp->host_status != HS_DISCONNECT)
4940 					continue;
4941 				if (cp->to_abort) {
4942 					target = cp->target;
4943 					break;
4944 				}
4945 			}
4946 		}
4947 
4948 		/*
4949 		 *  If some target is to be selected,
4950 		 *  prepare and start the selection.
4951 		 */
4952 		if (target != -1) {
4953 			tp = &np->target[target];
4954 			np->abrt_sel.sel_id	= target;
4955 			np->abrt_sel.sel_scntl3 = tp->head.wval;
4956 			np->abrt_sel.sel_sxfer  = tp->head.sval;
4957 			OUTL(nc_dsa, np->hcb_ba);
4958 			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
4959 			return;
4960 		}
4961 
4962 		/*
4963 		 *  Now look for a CCB to abort that haven't started yet.
4964 		 *  Btw, the SCRIPTS processor is still stopped, so
4965 		 *  we are not in race.
4966 		 */
4967 		i = 0;
4968 		cp = NULL;
4969 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4970 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4971 			if (cp->host_status != HS_BUSY &&
4972 			    cp->host_status != HS_NEGOTIATE)
4973 				continue;
4974 			if (!cp->to_abort)
4975 				continue;
4976 #ifdef SYM_CONF_IARB_SUPPORT
4977 			/*
4978 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
4979 			 *    want to cancel the last queued CCB, since the
4980 			 *    SCRIPTS may have anticipated the selection.
4981 			 */
4982 			if (cp == np->last_cp) {
4983 				cp->to_abort = 0;
4984 				continue;
4985 			}
4986 #endif
4987 			i = 1;	/* Means we have found some */
4988 			break;
4989 		}
4990 		if (!i) {
4991 			/*
4992 			 *  We are done, so we donnot need
4993 			 *  to synchronize with the SCRIPTS anylonger.
4994 			 *  Remove the SEM flag from the ISTAT.
4995 			 */
4996 			np->istat_sem = 0;
4997 			OUTB (nc_istat, SIGP);
4998 			break;
4999 		}
5000 		/*
5001 		 *  Compute index of next position in the start
5002 		 *  queue the SCRIPTS intends to start and dequeue
5003 		 *  all CCBs for that device that haven't been started.
5004 		 */
5005 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5006 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5007 
5008 		/*
5009 		 *  Make sure at least our IO to abort has been dequeued.
5010 		 */
5011 		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5012 
5013 		/*
5014 		 *  Keep track in cam status of the reason of the abort.
5015 		 */
5016 		if (cp->to_abort == 2)
5017 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5018 		else
5019 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5020 
5021 		/*
5022 		 *  Complete with error everything that we have dequeued.
5023 	 	 */
5024 		sym_flush_comp_queue(np, 0);
5025 		break;
5026 	/*
5027 	 *  The SCRIPTS processor has selected a target
5028 	 *  we may have some manual recovery to perform for.
5029 	 */
5030 	case SIR_TARGET_SELECTED:
5031 		target = (INB (nc_sdid) & 0xf);
5032 		tp = &np->target[target];
5033 
5034 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5035 
5036 		/*
5037 		 *  If the target is to be reset, prepare a
5038 		 *  M_RESET message and clear the to_reset flag
5039 		 *  since we donnot expect this operation to fail.
5040 		 */
5041 		if (tp->to_reset) {
5042 			np->abrt_msg[0] = M_RESET;
5043 			np->abrt_tbl.size = 1;
5044 			tp->to_reset = 0;
5045 			break;
5046 		}
5047 
5048 		/*
5049 		 *  Otherwise, look for some logical unit to be cleared.
5050 		 */
5051 		if (tp->lun0p && tp->lun0p->to_clear)
5052 			lun = 0;
5053 		else if (tp->lunmp) {
5054 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5055 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5056 					lun = k;
5057 					break;
5058 				}
5059 			}
5060 		}
5061 
5062 		/*
5063 		 *  If a logical unit is to be cleared, prepare
5064 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5065 		 */
5066 		if (lun != -1) {
5067 			lcb_p lp = sym_lp(tp, lun);
5068 			lp->to_clear = 0; /* We donnot expect to fail here */
5069 			np->abrt_msg[0] = M_IDENTIFY | lun;
5070 			np->abrt_msg[1] = M_ABORT;
5071 			np->abrt_tbl.size = 2;
5072 			break;
5073 		}
5074 
5075 		/*
5076 		 *  Otherwise, look for some disconnected job to
5077 		 *  abort for this target.
5078 		 */
5079 		i = 0;
5080 		cp = NULL;
5081 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5082 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5083 			if (cp->host_status != HS_DISCONNECT)
5084 				continue;
5085 			if (cp->target != target)
5086 				continue;
5087 			if (!cp->to_abort)
5088 				continue;
5089 			i = 1;	/* Means we have some */
5090 			break;
5091 		}
5092 
5093 		/*
5094 		 *  If we have none, probably since the device has
5095 		 *  completed the command before we won abitration,
5096 		 *  send a M_ABORT message without IDENTIFY.
5097 		 *  According to the specs, the device must just
5098 		 *  disconnect the BUS and not abort any task.
5099 		 */
5100 		if (!i) {
5101 			np->abrt_msg[0] = M_ABORT;
5102 			np->abrt_tbl.size = 1;
5103 			break;
5104 		}
5105 
5106 		/*
5107 		 *  We have some task to abort.
5108 		 *  Set the IDENTIFY(lun)
5109 		 */
5110 		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5111 
5112 		/*
5113 		 *  If we want to abort an untagged command, we
5114 		 *  will send an IDENTIFY + M_ABORT.
5115 		 *  Otherwise (tagged command), we will send
5116 		 *  an IDENTIFY + task attributes + ABORT TAG.
5117 		 */
5118 		if (cp->tag == NO_TAG) {
5119 			np->abrt_msg[1] = M_ABORT;
5120 			np->abrt_tbl.size = 2;
5121 		}
5122 		else {
5123 			np->abrt_msg[1] = cp->scsi_smsg[1];
5124 			np->abrt_msg[2] = cp->scsi_smsg[2];
5125 			np->abrt_msg[3] = M_ABORT_TAG;
5126 			np->abrt_tbl.size = 4;
5127 		}
5128 		/*
5129 		 *  Keep track of software timeout condition, since the
5130 		 *  peripheral driver may not count retries on abort
5131 		 *  conditions not due to timeout.
5132 		 */
5133 		if (cp->to_abort == 2)
5134 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5135 		cp->to_abort = 0; /* We donnot expect to fail here */
5136 		break;
5137 
5138 	/*
5139 	 *  The target has accepted our message and switched
5140 	 *  to BUS FREE phase as we expected.
5141 	 */
5142 	case SIR_ABORT_SENT:
5143 		target = (INB (nc_sdid) & 0xf);
5144 		tp = &np->target[target];
5145 
5146 		/*
5147 		**  If we didn't abort anything, leave here.
5148 		*/
5149 		if (np->abrt_msg[0] == M_ABORT)
5150 			break;
5151 
5152 		/*
5153 		 *  If we sent a M_RESET, then a hardware reset has
5154 		 *  been performed by the target.
5155 		 *  - Reset everything to async 8 bit
5156 		 *  - Tell ourself to negotiate next time :-)
5157 		 *  - Prepare to clear all disconnected CCBs for
5158 		 *    this target from our task list (lun=task=-1)
5159 		 */
5160 		lun = -1;
5161 		task = -1;
5162 		if (np->abrt_msg[0] == M_RESET) {
5163 			tp->head.sval = 0;
5164 			tp->head.wval = np->rv_scntl3;
5165 			tp->head.uval = 0;
5166 			tp->tinfo.current.period = 0;
5167 			tp->tinfo.current.offset = 0;
5168 			tp->tinfo.current.width  = BUS_8_BIT;
5169 			tp->tinfo.current.options = 0;
5170 		}
5171 
5172 		/*
5173 		 *  Otherwise, check for the LUN and TASK(s)
5174 		 *  concerned by the cancellation.
5175 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5176 		 *  or an ABORT message :-)
5177 		 */
5178 		else {
5179 			lun = np->abrt_msg[0] & 0x3f;
5180 			if (np->abrt_msg[1] == M_ABORT_TAG)
5181 				task = np->abrt_msg[2];
5182 		}
5183 
5184 		/*
5185 		 *  Complete all the CCBs the device should have
5186 		 *  aborted due to our 'kiss of death' message.
5187 		 */
5188 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5189 		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5190 		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5191 		sym_flush_comp_queue(np, 0);
5192 
5193 		/*
5194 		 *  If we sent a BDR, make uper layer aware of that.
5195 		 */
5196 		if (np->abrt_msg[0] == M_RESET)
5197 			xpt_async(AC_SENT_BDR, np->path, NULL);
5198 		break;
5199 	}
5200 
5201 	/*
5202 	 *  Print to the log the message we intend to send.
5203 	 */
5204 	if (num == SIR_TARGET_SELECTED) {
5205 		PRINT_TARGET(np, target);
5206 		sym_printl_hex("control msgout:", np->abrt_msg,
5207 			      np->abrt_tbl.size);
5208 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5209 	}
5210 
5211 	/*
5212 	 *  Let the SCRIPTS processor continue.
5213 	 */
5214 	OUTONB_STD ();
5215 }
5216 
5217 /*
5218  *  Gerard's alchemy:) that deals with with the data
5219  *  pointer for both MDP and the residual calculation.
5220  *
5221  *  I didn't want to bloat the code by more than 200
5222  *  lignes for the handling of both MDP and the residual.
5223  *  This has been achieved by using a data pointer
5224  *  representation consisting in an index in the data
5225  *  array (dp_sg) and a negative offset (dp_ofs) that
5226  *  have the following meaning:
5227  *
5228  *  - dp_sg = SYM_CONF_MAX_SG
5229  *    we are at the end of the data script.
5230  *  - dp_sg < SYM_CONF_MAX_SG
5231  *    dp_sg points to the next entry of the scatter array
5232  *    we want to transfer.
5233  *  - dp_ofs < 0
5234  *    dp_ofs represents the residual of bytes of the
5235  *    previous entry scatter entry we will send first.
5236  *  - dp_ofs = 0
5237  *    no residual to send first.
5238  *
5239  *  The function sym_evaluate_dp() accepts an arbitray
5240  *  offset (basically from the MDP message) and returns
5241  *  the corresponding values of dp_sg and dp_ofs.
5242  */
5243 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5244 {
5245 	u32	dp_scr;
5246 	int	dp_ofs, dp_sg, dp_sgmin;
5247 	int	tmp;
5248 	struct sym_pmc *pm;
5249 
5250 	/*
5251 	 *  Compute the resulted data pointer in term of a script
5252 	 *  address within some DATA script and a signed byte offset.
5253 	 */
5254 	dp_scr = scr;
5255 	dp_ofs = *ofs;
5256 	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5257 		pm = &cp->phys.pm0;
5258 	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5259 		pm = &cp->phys.pm1;
5260 	else
5261 		pm = NULL;
5262 
5263 	if (pm) {
5264 		dp_scr  = scr_to_cpu(pm->ret);
5265 		dp_ofs -= scr_to_cpu(pm->sg.size);
5266 	}
5267 
5268 	/*
5269 	 *  If we are auto-sensing, then we are done.
5270 	 */
5271 	if (cp->host_flags & HF_SENSE) {
5272 		*ofs = dp_ofs;
5273 		return 0;
5274 	}
5275 
5276 	/*
5277 	 *  Deduce the index of the sg entry.
5278 	 *  Keep track of the index of the first valid entry.
5279 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5280 	 *  end of the data.
5281 	 */
5282 	tmp = scr_to_cpu(cp->phys.head.goalp);
5283 	dp_sg = SYM_CONF_MAX_SG;
5284 	if (dp_scr != tmp)
5285 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5286 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5287 
5288 	/*
5289 	 *  Move to the sg entry the data pointer belongs to.
5290 	 *
5291 	 *  If we are inside the data area, we expect result to be:
5292 	 *
5293 	 *  Either,
5294 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5295 	 *      the data pointer belongs to (or the end of the data)
5296 	 *  Or,
5297 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5298 	 *      the data pointer belongs to + 1.
5299 	 */
5300 	if (dp_ofs < 0) {
5301 		int n;
5302 		while (dp_sg > dp_sgmin) {
5303 			--dp_sg;
5304 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5305 			n = dp_ofs + (tmp & 0xffffff);
5306 			if (n > 0) {
5307 				++dp_sg;
5308 				break;
5309 			}
5310 			dp_ofs = n;
5311 		}
5312 	}
5313 	else if (dp_ofs > 0) {
5314 		while (dp_sg < SYM_CONF_MAX_SG) {
5315 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5316 			dp_ofs -= (tmp & 0xffffff);
5317 			++dp_sg;
5318 			if (dp_ofs <= 0)
5319 				break;
5320 		}
5321 	}
5322 
5323 	/*
5324 	 *  Make sure the data pointer is inside the data area.
5325 	 *  If not, return some error.
5326 	 */
5327 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5328 		goto out_err;
5329 	else if	(dp_sg > SYM_CONF_MAX_SG ||
5330 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5331 		goto out_err;
5332 
5333 	/*
5334 	 *  Save the extreme pointer if needed.
5335 	 */
5336 	if (dp_sg > cp->ext_sg ||
5337             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5338 		cp->ext_sg  = dp_sg;
5339 		cp->ext_ofs = dp_ofs;
5340 	}
5341 
5342 	/*
5343 	 *  Return data.
5344 	 */
5345 	*ofs = dp_ofs;
5346 	return dp_sg;
5347 
5348 out_err:
5349 	return -1;
5350 }
5351 
5352 /*
5353  *  chip handler for MODIFY DATA POINTER MESSAGE
5354  *
5355  *  We also call this function on IGNORE WIDE RESIDUE
5356  *  messages that do not match a SWIDE full condition.
5357  *  Btw, we assume in that situation that such a message
5358  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5359  */
5360 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs)
5361 {
5362 	int dp_ofs	= ofs;
5363 	u32	dp_scr	= INL (nc_temp);
5364 	u32	dp_ret;
5365 	u32	tmp;
5366 	u_char	hflags;
5367 	int	dp_sg;
5368 	struct	sym_pmc *pm;
5369 
5370 	/*
5371 	 *  Not supported for auto-sense.
5372 	 */
5373 	if (cp->host_flags & HF_SENSE)
5374 		goto out_reject;
5375 
5376 	/*
5377 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5378 	 *  to the resulted data pointer.
5379 	 */
5380 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5381 	if (dp_sg < 0)
5382 		goto out_reject;
5383 
5384 	/*
5385 	 *  And our alchemy:) allows to easily calculate the data
5386 	 *  script address we want to return for the next data phase.
5387 	 */
5388 	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5389 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5390 
5391 	/*
5392 	 *  If offset / scatter entry is zero we donnot need
5393 	 *  a context for the new current data pointer.
5394 	 */
5395 	if (dp_ofs == 0) {
5396 		dp_scr = dp_ret;
5397 		goto out_ok;
5398 	}
5399 
5400 	/*
5401 	 *  Get a context for the new current data pointer.
5402 	 */
5403 	hflags = INB (HF_PRT);
5404 
5405 	if (hflags & HF_DP_SAVED)
5406 		hflags ^= HF_ACT_PM;
5407 
5408 	if (!(hflags & HF_ACT_PM)) {
5409 		pm  = &cp->phys.pm0;
5410 		dp_scr = SCRIPTA_BA (np, pm0_data);
5411 	}
5412 	else {
5413 		pm = &cp->phys.pm1;
5414 		dp_scr = SCRIPTA_BA (np, pm1_data);
5415 	}
5416 
5417 	hflags &= ~(HF_DP_SAVED);
5418 
5419 	OUTB (HF_PRT, hflags);
5420 
5421 	/*
5422 	 *  Set up the new current data pointer.
5423 	 *  ofs < 0 there, and for the next data phase, we
5424 	 *  want to transfer part of the data of the sg entry
5425 	 *  corresponding to index dp_sg-1 prior to returning
5426 	 *  to the main data script.
5427 	 */
5428 	pm->ret = cpu_to_scr(dp_ret);
5429 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5430 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5431 	pm->sg.addr = cpu_to_scr(tmp);
5432 	pm->sg.size = cpu_to_scr(-dp_ofs);
5433 
5434 out_ok:
5435 	OUTL (nc_temp, dp_scr);
5436 	OUTL_DSP (SCRIPTA_BA (np, clrack));
5437 	return;
5438 
5439 out_reject:
5440 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5441 }
5442 
5443 /*
5444  *  chip calculation of the data residual.
5445  *
5446  *  As I used to say, the requirement of data residual
5447  *  in SCSI is broken, useless and cannot be achieved
5448  *  without huge complexity.
5449  *  But most OSes and even the official CAM require it.
5450  *  When stupidity happens to be so widely spread inside
5451  *  a community, it gets hard to convince.
5452  *
5453  *  Anyway, I don't care, since I am not going to use
5454  *  any software that considers this data residual as
5455  *  a relevant information. :)
5456  */
5457 static int sym_compute_residual(hcb_p np, ccb_p cp)
5458 {
5459 	int dp_sg, resid = 0;
5460 	int dp_ofs = 0;
5461 
5462 	/*
5463 	 *  Check for some data lost or just thrown away.
5464 	 *  We are not required to be quite accurate in this
5465 	 *  situation. Btw, if we are odd for output and the
5466 	 *  device claims some more data, it may well happen
5467 	 *  than our residual be zero. :-)
5468 	 */
5469 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5470 		if (cp->xerr_status & XE_EXTRA_DATA)
5471 			resid -= cp->extra_bytes;
5472 		if (cp->xerr_status & XE_SODL_UNRUN)
5473 			++resid;
5474 		if (cp->xerr_status & XE_SWIDE_OVRUN)
5475 			--resid;
5476 	}
5477 
5478 	/*
5479 	 *  If all data has been transferred,
5480 	 *  there is no residual.
5481 	 */
5482 	if (cp->phys.head.lastp == cp->phys.head.goalp)
5483 		return resid;
5484 
5485 	/*
5486 	 *  If no data transfer occurs, or if the data
5487 	 *  pointer is weird, return full residual.
5488 	 */
5489 	if (cp->startp == cp->phys.head.lastp ||
5490 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5491 			    &dp_ofs) < 0) {
5492 		return cp->data_len;
5493 	}
5494 
5495 	/*
5496 	 *  If we were auto-sensing, then we are done.
5497 	 */
5498 	if (cp->host_flags & HF_SENSE) {
5499 		return -dp_ofs;
5500 	}
5501 
5502 	/*
5503 	 *  We are now full comfortable in the computation
5504 	 *  of the data residual (2's complement).
5505 	 */
5506 	resid = -cp->ext_ofs;
5507 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5508 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5509 		resid += (tmp & 0xffffff);
5510 	}
5511 
5512 	/*
5513 	 *  Hopefully, the result is not too wrong.
5514 	 */
5515 	return resid;
5516 }
5517 
5518 /*
5519  *  Print out the content of a SCSI message.
5520  */
5521 static int sym_show_msg (u_char * msg)
5522 {
5523 	u_char i;
5524 	printf ("%x",*msg);
5525 	if (*msg==M_EXTENDED) {
5526 		for (i = 1; i < 8; i++) {
5527 			if (i - 1 > msg[1]) break;
5528 			printf ("-%x",msg[i]);
5529 		}
5530 		return (i+1);
5531 	} else if ((*msg & 0xf0) == 0x20) {
5532 		printf ("-%x",msg[1]);
5533 		return (2);
5534 	}
5535 	return (1);
5536 }
5537 
5538 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5539 {
5540 	PRINT_ADDR(cp);
5541 	if (label)
5542 		printf ("%s: ", label);
5543 
5544 	(void) sym_show_msg (msg);
5545 	printf (".\n");
5546 }
5547 
5548 /*
5549  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5550  *
5551  *  When we try to negotiate, we append the negotiation message
5552  *  to the identify and (maybe) simple tag message.
5553  *  The host status field is set to HS_NEGOTIATE to mark this
5554  *  situation.
5555  *
5556  *  If the target doesn't answer this message immediately
5557  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5558  *  will be raised eventually.
5559  *  The handler removes the HS_NEGOTIATE status, and sets the
5560  *  negotiated value to the default (async / nowide).
5561  *
5562  *  If we receive a matching answer immediately, we check it
5563  *  for validity, and set the values.
5564  *
5565  *  If we receive a Reject message immediately, we assume the
5566  *  negotiation has failed, and fall back to standard values.
5567  *
5568  *  If we receive a negotiation message while not in HS_NEGOTIATE
5569  *  state, it's a target initiated negotiation. We prepare a
5570  *  (hopefully) valid answer, set our parameters, and send back
5571  *  this answer to the target.
5572  *
5573  *  If the target doesn't fetch the answer (no message out phase),
5574  *  we assume the negotiation has failed, and fall back to default
5575  *  settings (SIR_NEGO_PROTO interrupt).
5576  *
5577  *  When we set the values, we adjust them in all ccbs belonging
5578  *  to this target, in the controller's register, and in the "phys"
5579  *  field of the controller's struct sym_hcb.
5580  */
5581 
5582 /*
5583  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5584  */
5585 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5586 {
5587 	u_char	chg, ofs, per, fak, div;
5588 	int	req = 1;
5589 
5590 	/*
5591 	 *  Synchronous request message received.
5592 	 */
5593 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5594 		sym_print_msg(cp, "sync msgin", np->msgin);
5595 	}
5596 
5597 	/*
5598 	 * request or answer ?
5599 	 */
5600 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5601 		OUTB (HS_PRT, HS_BUSY);
5602 		if (cp->nego_status && cp->nego_status != NS_SYNC)
5603 			goto reject_it;
5604 		req = 0;
5605 	}
5606 
5607 	/*
5608 	 *  get requested values.
5609 	 */
5610 	chg = 0;
5611 	per = np->msgin[3];
5612 	ofs = np->msgin[4];
5613 
5614 	/*
5615 	 *  check values against our limits.
5616 	 */
5617 	if (ofs) {
5618 		if (ofs > np->maxoffs)
5619 			{chg = 1; ofs = np->maxoffs;}
5620 		if (req) {
5621 			if (ofs > tp->tinfo.user.offset)
5622 				{chg = 1; ofs = tp->tinfo.user.offset;}
5623 		}
5624 	}
5625 
5626 	if (ofs) {
5627 		if (per < np->minsync)
5628 			{chg = 1; per = np->minsync;}
5629 		if (req) {
5630 			if (per < tp->tinfo.user.period)
5631 				{chg = 1; per = tp->tinfo.user.period;}
5632 		}
5633 	}
5634 
5635 	div = fak = 0;
5636 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5637 		goto reject_it;
5638 
5639 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5640 		PRINT_ADDR(cp);
5641 		printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5642 			ofs, per, div, fak, chg);
5643 	}
5644 
5645 	/*
5646 	 *  This was an answer message
5647 	 */
5648 	if (req == 0) {
5649 		if (chg) 	/* Answer wasn't acceptable. */
5650 			goto reject_it;
5651 		sym_setsync (np, cp, ofs, per, div, fak);
5652 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5653 		return;
5654 	}
5655 
5656 	/*
5657 	 *  It was a request. Set value and
5658 	 *  prepare an answer message
5659 	 */
5660 	sym_setsync (np, cp, ofs, per, div, fak);
5661 
5662 	np->msgout[0] = M_EXTENDED;
5663 	np->msgout[1] = 3;
5664 	np->msgout[2] = M_X_SYNC_REQ;
5665 	np->msgout[3] = per;
5666 	np->msgout[4] = ofs;
5667 
5668 	cp->nego_status = NS_SYNC;
5669 
5670 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5671 		sym_print_msg(cp, "sync msgout", np->msgout);
5672 	}
5673 
5674 	np->msgin [0] = M_NOOP;
5675 
5676 	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5677 	return;
5678 reject_it:
5679 	sym_setsync (np, cp, 0, 0, 0, 0);
5680 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5681 }
5682 
5683 /*
5684  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5685  */
5686 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5687 {
5688 	u_char	chg, ofs, per, fak, dt, div, wide;
5689 	int	req = 1;
5690 
5691 	/*
5692 	 * Synchronous request message received.
5693 	 */
5694 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5695 		sym_print_msg(cp, "ppr msgin", np->msgin);
5696 	}
5697 
5698 	/*
5699 	 *  get requested values.
5700 	 */
5701 	chg  = 0;
5702 	per  = np->msgin[3];
5703 	ofs  = np->msgin[5];
5704 	wide = np->msgin[6];
5705 	dt   = np->msgin[7] & PPR_OPT_DT;
5706 
5707 	/*
5708 	 * request or answer ?
5709 	 */
5710 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5711 		OUTB (HS_PRT, HS_BUSY);
5712 		if (cp->nego_status && cp->nego_status != NS_PPR)
5713 			goto reject_it;
5714 		req = 0;
5715 	}
5716 
5717 	/*
5718 	 *  check values against our limits.
5719 	 */
5720 	if (wide > np->maxwide)
5721 		{chg = 1; wide = np->maxwide;}
5722 	if (!wide || !(np->features & FE_ULTRA3))
5723 		dt &= ~PPR_OPT_DT;
5724 	if (req) {
5725 		if (wide > tp->tinfo.user.width)
5726 			{chg = 1; wide = tp->tinfo.user.width;}
5727 	}
5728 
5729 	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
5730 		dt &= ~PPR_OPT_DT;
5731 
5732 	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5733 
5734 	if (ofs) {
5735 		if (dt) {
5736 			if (ofs > np->maxoffs_dt)
5737 				{chg = 1; ofs = np->maxoffs_dt;}
5738 		}
5739 		else if (ofs > np->maxoffs)
5740 			{chg = 1; ofs = np->maxoffs;}
5741 		if (req) {
5742 			if (ofs > tp->tinfo.user.offset)
5743 				{chg = 1; ofs = tp->tinfo.user.offset;}
5744 		}
5745 	}
5746 
5747 	if (ofs) {
5748 		if (dt) {
5749 			if (per < np->minsync_dt)
5750 				{chg = 1; per = np->minsync_dt;}
5751 		}
5752 		else if (per < np->minsync)
5753 			{chg = 1; per = np->minsync;}
5754 		if (req) {
5755 			if (per < tp->tinfo.user.period)
5756 				{chg = 1; per = tp->tinfo.user.period;}
5757 		}
5758 	}
5759 
5760 	div = fak = 0;
5761 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
5762 		goto reject_it;
5763 
5764 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5765 		PRINT_ADDR(cp);
5766 		printf ("ppr: "
5767 			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
5768 			dt, ofs, per, wide, div, fak, chg);
5769 	}
5770 
5771 	/*
5772 	 *  It was an answer.
5773 	 */
5774 	if (req == 0) {
5775 		if (chg) 	/* Answer wasn't acceptable */
5776 			goto reject_it;
5777 		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5778 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5779 		return;
5780 	}
5781 
5782 	/*
5783 	 *  It was a request. Set value and
5784 	 *  prepare an answer message
5785 	 */
5786 	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5787 
5788 	np->msgout[0] = M_EXTENDED;
5789 	np->msgout[1] = 6;
5790 	np->msgout[2] = M_X_PPR_REQ;
5791 	np->msgout[3] = per;
5792 	np->msgout[4] = 0;
5793 	np->msgout[5] = ofs;
5794 	np->msgout[6] = wide;
5795 	np->msgout[7] = dt;
5796 
5797 	cp->nego_status = NS_PPR;
5798 
5799 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5800 		sym_print_msg(cp, "ppr msgout", np->msgout);
5801 	}
5802 
5803 	np->msgin [0] = M_NOOP;
5804 
5805 	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
5806 	return;
5807 reject_it:
5808 	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5809 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5810 	/*
5811 	 *  If it was a device response that should result in
5812 	 *  ST, we may want to try a legacy negotiation later.
5813 	 */
5814 	if (!req && !dt) {
5815 		tp->tinfo.goal.options = 0;
5816 		tp->tinfo.goal.width   = wide;
5817 		tp->tinfo.goal.period  = per;
5818 		tp->tinfo.goal.offset  = ofs;
5819 	}
5820 }
5821 
5822 /*
5823  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
5824  */
5825 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
5826 {
5827 	u_char	chg, wide;
5828 	int	req = 1;
5829 
5830 	/*
5831 	 *  Wide request message received.
5832 	 */
5833 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5834 		sym_print_msg(cp, "wide msgin", np->msgin);
5835 	}
5836 
5837 	/*
5838 	 * Is it a request from the device?
5839 	 */
5840 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5841 		OUTB (HS_PRT, HS_BUSY);
5842 		if (cp->nego_status && cp->nego_status != NS_WIDE)
5843 			goto reject_it;
5844 		req = 0;
5845 	}
5846 
5847 	/*
5848 	 *  get requested values.
5849 	 */
5850 	chg  = 0;
5851 	wide = np->msgin[3];
5852 
5853 	/*
5854 	 *  check values against driver limits.
5855 	 */
5856 	if (wide > np->maxwide)
5857 		{chg = 1; wide = np->maxwide;}
5858 	if (req) {
5859 		if (wide > tp->tinfo.user.width)
5860 			{chg = 1; wide = tp->tinfo.user.width;}
5861 	}
5862 
5863 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5864 		PRINT_ADDR(cp);
5865 		printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
5866 	}
5867 
5868 	/*
5869 	 * This was an answer message
5870 	 */
5871 	if (req == 0) {
5872 		if (chg)	/*  Answer wasn't acceptable. */
5873 			goto reject_it;
5874 		sym_setwide (np, cp, wide);
5875 
5876 		/*
5877 		 * Negotiate for SYNC immediately after WIDE response.
5878 		 * This allows to negotiate for both WIDE and SYNC on
5879 		 * a single SCSI command (Suggested by Justin Gibbs).
5880 		 */
5881 		if (tp->tinfo.goal.offset) {
5882 			np->msgout[0] = M_EXTENDED;
5883 			np->msgout[1] = 3;
5884 			np->msgout[2] = M_X_SYNC_REQ;
5885 			np->msgout[3] = tp->tinfo.goal.period;
5886 			np->msgout[4] = tp->tinfo.goal.offset;
5887 
5888 			if (DEBUG_FLAGS & DEBUG_NEGO) {
5889 				sym_print_msg(cp, "sync msgout", np->msgout);
5890 			}
5891 
5892 			cp->nego_status = NS_SYNC;
5893 			OUTB (HS_PRT, HS_NEGOTIATE);
5894 			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5895 			return;
5896 		}
5897 
5898 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5899 		return;
5900 	}
5901 
5902 	/*
5903 	 *  It was a request, set value and
5904 	 *  prepare an answer message
5905 	 */
5906 	sym_setwide (np, cp, wide);
5907 
5908 	np->msgout[0] = M_EXTENDED;
5909 	np->msgout[1] = 2;
5910 	np->msgout[2] = M_X_WIDE_REQ;
5911 	np->msgout[3] = wide;
5912 
5913 	np->msgin [0] = M_NOOP;
5914 
5915 	cp->nego_status = NS_WIDE;
5916 
5917 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5918 		sym_print_msg(cp, "wide msgout", np->msgout);
5919 	}
5920 
5921 	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
5922 	return;
5923 reject_it:
5924 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5925 }
5926 
5927 /*
5928  *  Reset SYNC or WIDE to default settings.
5929  *
5930  *  Called when a negotiation does not succeed either
5931  *  on rejection or on protocol error.
5932  *
5933  *  If it was a PPR that made problems, we may want to
5934  *  try a legacy negotiation later.
5935  */
5936 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
5937 {
5938 	/*
5939 	 *  any error in negotiation:
5940 	 *  fall back to default mode.
5941 	 */
5942 	switch (cp->nego_status) {
5943 	case NS_PPR:
5944 #if 0
5945 		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5946 #else
5947 		tp->tinfo.goal.options = 0;
5948 		if (tp->tinfo.goal.period < np->minsync)
5949 			tp->tinfo.goal.period = np->minsync;
5950 		if (tp->tinfo.goal.offset > np->maxoffs)
5951 			tp->tinfo.goal.offset = np->maxoffs;
5952 #endif
5953 		break;
5954 	case NS_SYNC:
5955 		sym_setsync (np, cp, 0, 0, 0, 0);
5956 		break;
5957 	case NS_WIDE:
5958 		sym_setwide (np, cp, 0);
5959 		break;
5960 	}
5961 	np->msgin [0] = M_NOOP;
5962 	np->msgout[0] = M_NOOP;
5963 	cp->nego_status = 0;
5964 }
5965 
5966 /*
5967  *  chip handler for MESSAGE REJECT received in response to
5968  *  a WIDE or SYNCHRONOUS negotiation.
5969  */
5970 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
5971 {
5972 	sym_nego_default(np, tp, cp);
5973 	OUTB (HS_PRT, HS_BUSY);
5974 }
5975 
5976 /*
5977  *  chip exception handler for programmed interrupts.
5978  */
5979 static void sym_int_sir (hcb_p np)
5980 {
5981 	u_char	num	= INB (nc_dsps);
5982 	u32	dsa	= INL (nc_dsa);
5983 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
5984 	u_char	target	= INB (nc_sdid) & 0x0f;
5985 	tcb_p	tp	= &np->target[target];
5986 	int	tmp;
5987 
5988 	SYM_LOCK_ASSERT(MA_OWNED);
5989 
5990 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
5991 
5992 	switch (num) {
5993 	/*
5994 	 *  Command has been completed with error condition
5995 	 *  or has been auto-sensed.
5996 	 */
5997 	case SIR_COMPLETE_ERROR:
5998 		if (!cp)
5999 			goto out;
6000 		sym_complete_error(np, cp);
6001 		return;
6002 	/*
6003 	 *  The C code is currently trying to recover from something.
6004 	 *  Typically, user want to abort some command.
6005 	 */
6006 	case SIR_SCRIPT_STOPPED:
6007 	case SIR_TARGET_SELECTED:
6008 	case SIR_ABORT_SENT:
6009 		sym_sir_task_recovery(np, num);
6010 		return;
6011 	/*
6012 	 *  The device didn't go to MSG OUT phase after having
6013 	 *  been selected with ATN. We donnot want to handle
6014 	 *  that.
6015 	 */
6016 	case SIR_SEL_ATN_NO_MSG_OUT:
6017 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6018 			sym_name (np), target);
6019 		goto out_stuck;
6020 	/*
6021 	 *  The device didn't switch to MSG IN phase after
6022 	 *  having reseleted the initiator.
6023 	 */
6024 	case SIR_RESEL_NO_MSG_IN:
6025 		printf ("%s:%d: No MSG IN phase after reselection.\n",
6026 			sym_name (np), target);
6027 		goto out_stuck;
6028 	/*
6029 	 *  After reselection, the device sent a message that wasn't
6030 	 *  an IDENTIFY.
6031 	 */
6032 	case SIR_RESEL_NO_IDENTIFY:
6033 		printf ("%s:%d: No IDENTIFY after reselection.\n",
6034 			sym_name (np), target);
6035 		goto out_stuck;
6036 	/*
6037 	 *  The device reselected a LUN we donnot know about.
6038 	 */
6039 	case SIR_RESEL_BAD_LUN:
6040 		np->msgout[0] = M_RESET;
6041 		goto out;
6042 	/*
6043 	 *  The device reselected for an untagged nexus and we
6044 	 *  haven't any.
6045 	 */
6046 	case SIR_RESEL_BAD_I_T_L:
6047 		np->msgout[0] = M_ABORT;
6048 		goto out;
6049 	/*
6050 	 *  The device reselected for a tagged nexus that we donnot
6051 	 *  have.
6052 	 */
6053 	case SIR_RESEL_BAD_I_T_L_Q:
6054 		np->msgout[0] = M_ABORT_TAG;
6055 		goto out;
6056 	/*
6057 	 *  The SCRIPTS let us know that the device has grabbed
6058 	 *  our message and will abort the job.
6059 	 */
6060 	case SIR_RESEL_ABORTED:
6061 		np->lastmsg = np->msgout[0];
6062 		np->msgout[0] = M_NOOP;
6063 		printf ("%s:%d: message %x sent on bad reselection.\n",
6064 			sym_name (np), target, np->lastmsg);
6065 		goto out;
6066 	/*
6067 	 *  The SCRIPTS let us know that a message has been
6068 	 *  successfully sent to the device.
6069 	 */
6070 	case SIR_MSG_OUT_DONE:
6071 		np->lastmsg = np->msgout[0];
6072 		np->msgout[0] = M_NOOP;
6073 		/* Should we really care of that */
6074 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6075 			if (cp) {
6076 				cp->xerr_status &= ~XE_PARITY_ERR;
6077 				if (!cp->xerr_status)
6078 					OUTOFFB (HF_PRT, HF_EXT_ERR);
6079 			}
6080 		}
6081 		goto out;
6082 	/*
6083 	 *  The device didn't send a GOOD SCSI status.
6084 	 *  We may have some work to do prior to allow
6085 	 *  the SCRIPTS processor to continue.
6086 	 */
6087 	case SIR_BAD_SCSI_STATUS:
6088 		if (!cp)
6089 			goto out;
6090 		sym_sir_bad_scsi_status(np, cp);
6091 		return;
6092 	/*
6093 	 *  We are asked by the SCRIPTS to prepare a
6094 	 *  REJECT message.
6095 	 */
6096 	case SIR_REJECT_TO_SEND:
6097 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6098 		np->msgout[0] = M_REJECT;
6099 		goto out;
6100 	/*
6101 	 *  We have been ODD at the end of a DATA IN
6102 	 *  transfer and the device didn't send a
6103 	 *  IGNORE WIDE RESIDUE message.
6104 	 *  It is a data overrun condition.
6105 	 */
6106 	case SIR_SWIDE_OVERRUN:
6107 		if (cp) {
6108 			OUTONB (HF_PRT, HF_EXT_ERR);
6109 			cp->xerr_status |= XE_SWIDE_OVRUN;
6110 		}
6111 		goto out;
6112 	/*
6113 	 *  We have been ODD at the end of a DATA OUT
6114 	 *  transfer.
6115 	 *  It is a data underrun condition.
6116 	 */
6117 	case SIR_SODL_UNDERRUN:
6118 		if (cp) {
6119 			OUTONB (HF_PRT, HF_EXT_ERR);
6120 			cp->xerr_status |= XE_SODL_UNRUN;
6121 		}
6122 		goto out;
6123 	/*
6124 	 *  The device wants us to transfer more data than
6125 	 *  expected or in the wrong direction.
6126 	 *  The number of extra bytes is in scratcha.
6127 	 *  It is a data overrun condition.
6128 	 */
6129 	case SIR_DATA_OVERRUN:
6130 		if (cp) {
6131 			OUTONB (HF_PRT, HF_EXT_ERR);
6132 			cp->xerr_status |= XE_EXTRA_DATA;
6133 			cp->extra_bytes += INL (nc_scratcha);
6134 		}
6135 		goto out;
6136 	/*
6137 	 *  The device switched to an illegal phase (4/5).
6138 	 */
6139 	case SIR_BAD_PHASE:
6140 		if (cp) {
6141 			OUTONB (HF_PRT, HF_EXT_ERR);
6142 			cp->xerr_status |= XE_BAD_PHASE;
6143 		}
6144 		goto out;
6145 	/*
6146 	 *  We received a message.
6147 	 */
6148 	case SIR_MSG_RECEIVED:
6149 		if (!cp)
6150 			goto out_stuck;
6151 		switch (np->msgin [0]) {
6152 		/*
6153 		 *  We received an extended message.
6154 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6155 		 *  and reject all other extended messages.
6156 		 */
6157 		case M_EXTENDED:
6158 			switch (np->msgin [2]) {
6159 			case M_X_MODIFY_DP:
6160 				if (DEBUG_FLAGS & DEBUG_POINTER)
6161 					sym_print_msg(cp,"modify DP",np->msgin);
6162 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6163 				      (np->msgin[5]<<8)  + (np->msgin[6]);
6164 				sym_modify_dp(np, cp, tmp);
6165 				return;
6166 			case M_X_SYNC_REQ:
6167 				sym_sync_nego(np, tp, cp);
6168 				return;
6169 			case M_X_PPR_REQ:
6170 				sym_ppr_nego(np, tp, cp);
6171 				return;
6172 			case M_X_WIDE_REQ:
6173 				sym_wide_nego(np, tp, cp);
6174 				return;
6175 			default:
6176 				goto out_reject;
6177 			}
6178 			break;
6179 		/*
6180 		 *  We received a 1/2 byte message not handled from SCRIPTS.
6181 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6182 		 *  RESIDUE messages that haven't been anticipated by
6183 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6184 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6185 		 */
6186 		case M_IGN_RESIDUE:
6187 			if (DEBUG_FLAGS & DEBUG_POINTER)
6188 				sym_print_msg(cp,"ign wide residue", np->msgin);
6189 			sym_modify_dp(np, cp, -1);
6190 			return;
6191 		case M_REJECT:
6192 			if (INB (HS_PRT) == HS_NEGOTIATE)
6193 				sym_nego_rejected(np, tp, cp);
6194 			else {
6195 				PRINT_ADDR(cp);
6196 				printf ("M_REJECT received (%x:%x).\n",
6197 					scr_to_cpu(np->lastmsg), np->msgout[0]);
6198 			}
6199 			goto out_clrack;
6200 			break;
6201 		default:
6202 			goto out_reject;
6203 		}
6204 		break;
6205 	/*
6206 	 *  We received an unknown message.
6207 	 *  Ignore all MSG IN phases and reject it.
6208 	 */
6209 	case SIR_MSG_WEIRD:
6210 		sym_print_msg(cp, "WEIRD message received", np->msgin);
6211 		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6212 		return;
6213 	/*
6214 	 *  Negotiation failed.
6215 	 *  Target does not send us the reply.
6216 	 *  Remove the HS_NEGOTIATE status.
6217 	 */
6218 	case SIR_NEGO_FAILED:
6219 		OUTB (HS_PRT, HS_BUSY);
6220 	/*
6221 	 *  Negotiation failed.
6222 	 *  Target does not want answer message.
6223 	 */
6224 	case SIR_NEGO_PROTO:
6225 		if (!cp)
6226 			goto out;
6227 		sym_nego_default(np, tp, cp);
6228 		goto out;
6229 	}
6230 
6231 out:
6232 	OUTONB_STD ();
6233 	return;
6234 out_reject:
6235 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6236 	return;
6237 out_clrack:
6238 	OUTL_DSP (SCRIPTA_BA (np, clrack));
6239 	return;
6240 out_stuck:
6241 	return;
6242 }
6243 
6244 /*
6245  *  Acquire a control block
6246  */
6247 static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6248 {
6249 	tcb_p tp = &np->target[tn];
6250 	lcb_p lp = sym_lp(tp, ln);
6251 	u_short tag = NO_TAG;
6252 	SYM_QUEHEAD *qp;
6253 	ccb_p cp = (ccb_p) NULL;
6254 
6255 	/*
6256 	 *  Look for a free CCB
6257 	 */
6258 	if (sym_que_empty(&np->free_ccbq))
6259 		goto out;
6260 	qp = sym_remque_head(&np->free_ccbq);
6261 	if (!qp)
6262 		goto out;
6263 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6264 
6265 	/*
6266 	 *  If the LCB is not yet available and the LUN
6267 	 *  has been probed ok, try to allocate the LCB.
6268 	 */
6269 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6270 		lp = sym_alloc_lcb(np, tn, ln);
6271 		if (!lp)
6272 			goto out_free;
6273 	}
6274 
6275 	/*
6276 	 *  If the LCB is not available here, then the
6277 	 *  logical unit is not yet discovered. For those
6278 	 *  ones only accept 1 SCSI IO per logical unit,
6279 	 *  since we cannot allow disconnections.
6280 	 */
6281 	if (!lp) {
6282 		if (!sym_is_bit(tp->busy0_map, ln))
6283 			sym_set_bit(tp->busy0_map, ln);
6284 		else
6285 			goto out_free;
6286 	} else {
6287 		/*
6288 		 *  If we have been asked for a tagged command, refuse
6289 		 *  to overlap with an existing untagged one.
6290 		 */
6291 		if (tag_order) {
6292 			if (lp->busy_itl != 0)
6293 				goto out_free;
6294 			/*
6295 			 *  Allocate resources for tags if not yet.
6296 			 */
6297 			if (!lp->cb_tags) {
6298 				sym_alloc_lcb_tags(np, tn, ln);
6299 				if (!lp->cb_tags)
6300 					goto out_free;
6301 			}
6302 			/*
6303 			 *  Get a tag for this SCSI IO and set up
6304 			 *  the CCB bus address for reselection,
6305 			 *  and count it for this LUN.
6306 			 *  Toggle reselect path to tagged.
6307 			 */
6308 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6309 				tag = lp->cb_tags[lp->ia_tag];
6310 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6311 					lp->ia_tag = 0;
6312 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6313 				++lp->busy_itlq;
6314 				lp->head.resel_sa =
6315 					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6316 			}
6317 			else
6318 				goto out_free;
6319 		}
6320 		/*
6321 		 *  This command will not be tagged.
6322 		 *  If we already have either a tagged or untagged
6323 		 *  one, refuse to overlap this untagged one.
6324 		 */
6325 		else {
6326 			if (lp->busy_itlq != 0 || lp->busy_itl != 0)
6327 				goto out_free;
6328 			/*
6329 			 *  Count this nexus for this LUN.
6330 			 *  Set up the CCB bus address for reselection.
6331 			 *  Toggle reselect path to untagged.
6332 			 */
6333 			lp->busy_itl = 1;
6334 			lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6335 			lp->head.resel_sa =
6336 			      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6337 		}
6338 	}
6339 	/*
6340 	 *  Put the CCB into the busy queue.
6341 	 */
6342 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6343 
6344 	/*
6345 	 *  Remember all informations needed to free this CCB.
6346 	 */
6347 	cp->to_abort = 0;
6348 	cp->tag	   = tag;
6349 	cp->target = tn;
6350 	cp->lun    = ln;
6351 
6352 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6353 		PRINT_LUN(np, tn, ln);
6354 		printf ("ccb @%p using tag %d.\n", cp, tag);
6355 	}
6356 
6357 out:
6358 	return cp;
6359 out_free:
6360 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6361 	return NULL;
6362 }
6363 
6364 /*
6365  *  Release one control block
6366  */
6367 static void sym_free_ccb(hcb_p np, ccb_p cp)
6368 {
6369 	tcb_p tp = &np->target[cp->target];
6370 	lcb_p lp = sym_lp(tp, cp->lun);
6371 
6372 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6373 		PRINT_LUN(np, cp->target, cp->lun);
6374 		printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6375 	}
6376 
6377 	/*
6378 	 *  If LCB available,
6379 	 */
6380 	if (lp) {
6381 		/*
6382 		 *  If tagged, release the tag, set the reselect path.
6383 		 */
6384 		if (cp->tag != NO_TAG) {
6385 			/*
6386 			 *  Free the tag value.
6387 			 */
6388 			lp->cb_tags[lp->if_tag] = cp->tag;
6389 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6390 				lp->if_tag = 0;
6391 			/*
6392 			 *  Make the reselect path invalid,
6393 			 *  and uncount this CCB.
6394 			 */
6395 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6396 			--lp->busy_itlq;
6397 		} else {	/* Untagged */
6398 			/*
6399 			 *  Make the reselect path invalid,
6400 			 *  and uncount this CCB.
6401 			 */
6402 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6403 			lp->busy_itl = 0;
6404 		}
6405 		/*
6406 		 *  If no JOB active, make the LUN reselect path invalid.
6407 		 */
6408 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6409 			lp->head.resel_sa =
6410 				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6411 	}
6412 	/*
6413 	 *  Otherwise, we only accept 1 IO per LUN.
6414 	 *  Clear the bit that keeps track of this IO.
6415 	 */
6416 	else
6417 		sym_clr_bit(tp->busy0_map, cp->lun);
6418 
6419 	/*
6420 	 *  We donnot queue more than 1 ccb per target
6421 	 *  with negotiation at any time. If this ccb was
6422 	 *  used for negotiation, clear this info in the tcb.
6423 	 */
6424 	if (cp == tp->nego_cp)
6425 		tp->nego_cp = NULL;
6426 
6427 #ifdef SYM_CONF_IARB_SUPPORT
6428 	/*
6429 	 *  If we just complete the last queued CCB,
6430 	 *  clear this info that is no longer relevant.
6431 	 */
6432 	if (cp == np->last_cp)
6433 		np->last_cp = NULL;
6434 #endif
6435 
6436 	/*
6437 	 *  Unmap user data from DMA map if needed.
6438 	 */
6439 	if (cp->dmamapped) {
6440 		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6441 		cp->dmamapped = 0;
6442 	}
6443 
6444 	/*
6445 	 *  Make this CCB available.
6446 	 */
6447 	cp->cam_ccb = NULL;
6448 	cp->host_status = HS_IDLE;
6449 	sym_remque(&cp->link_ccbq);
6450 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6451 }
6452 
6453 /*
6454  *  Allocate a CCB from memory and initialize its fixed part.
6455  */
6456 static ccb_p sym_alloc_ccb(hcb_p np)
6457 {
6458 	ccb_p cp = NULL;
6459 	int hcode;
6460 
6461 	SYM_LOCK_ASSERT(MA_NOTOWNED);
6462 
6463 	/*
6464 	 *  Prevent from allocating more CCBs than we can
6465 	 *  queue to the controller.
6466 	 */
6467 	if (np->actccbs >= SYM_CONF_MAX_START)
6468 		return NULL;
6469 
6470 	/*
6471 	 *  Allocate memory for this CCB.
6472 	 */
6473 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6474 	if (!cp)
6475 		return NULL;
6476 
6477 	/*
6478 	 *  Allocate a bounce buffer for sense data.
6479 	 */
6480 	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6481 	if (!cp->sns_bbuf)
6482 		goto out_free;
6483 
6484 	/*
6485 	 *  Allocate a map for the DMA of user data.
6486 	 */
6487 	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6488 		goto out_free;
6489 	/*
6490 	 *  Count it.
6491 	 */
6492 	np->actccbs++;
6493 
6494 	/*
6495 	 * Initialize the callout.
6496 	 */
6497 	callout_init(&cp->ch, 1);
6498 
6499 	/*
6500 	 *  Compute the bus address of this ccb.
6501 	 */
6502 	cp->ccb_ba = vtobus(cp);
6503 
6504 	/*
6505 	 *  Insert this ccb into the hashed list.
6506 	 */
6507 	hcode = CCB_HASH_CODE(cp->ccb_ba);
6508 	cp->link_ccbh = np->ccbh[hcode];
6509 	np->ccbh[hcode] = cp;
6510 
6511 	/*
6512 	 *  Initialize the start and restart actions.
6513 	 */
6514 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6515 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6516 
6517  	/*
6518 	 *  Initilialyze some other fields.
6519 	 */
6520 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6521 
6522 	/*
6523 	 *  Chain into free ccb queue.
6524 	 */
6525 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6526 
6527 	return cp;
6528 out_free:
6529 	if (cp->sns_bbuf)
6530 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
6531 	sym_mfree_dma(cp, sizeof(*cp), "CCB");
6532 	return NULL;
6533 }
6534 
6535 /*
6536  *  Look up a CCB from a DSA value.
6537  */
6538 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6539 {
6540 	int hcode;
6541 	ccb_p cp;
6542 
6543 	hcode = CCB_HASH_CODE(dsa);
6544 	cp = np->ccbh[hcode];
6545 	while (cp) {
6546 		if (cp->ccb_ba == dsa)
6547 			break;
6548 		cp = cp->link_ccbh;
6549 	}
6550 
6551 	return cp;
6552 }
6553 
6554 /*
6555  *  Lun control block allocation and initialization.
6556  */
6557 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6558 {
6559 	tcb_p tp = &np->target[tn];
6560 	lcb_p lp = sym_lp(tp, ln);
6561 
6562 	/*
6563 	 *  Already done, just return.
6564 	 */
6565 	if (lp)
6566 		return lp;
6567 	/*
6568 	 *  Check against some race.
6569 	 */
6570 	assert(!sym_is_bit(tp->busy0_map, ln));
6571 
6572 	/*
6573 	 *  Allocate the LCB bus address array.
6574 	 *  Compute the bus address of this table.
6575 	 */
6576 	if (ln && !tp->luntbl) {
6577 		int i;
6578 
6579 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6580 		if (!tp->luntbl)
6581 			goto fail;
6582 		for (i = 0 ; i < 64 ; i++)
6583 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6584 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6585 	}
6586 
6587 	/*
6588 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6589 	 */
6590 	if (ln && !tp->lunmp) {
6591 		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6592 				   "LUNMP");
6593 		if (!tp->lunmp)
6594 			goto fail;
6595 	}
6596 
6597 	/*
6598 	 *  Allocate the lcb.
6599 	 *  Make it available to the chip.
6600 	 */
6601 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6602 	if (!lp)
6603 		goto fail;
6604 	if (ln) {
6605 		tp->lunmp[ln] = lp;
6606 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6607 	}
6608 	else {
6609 		tp->lun0p = lp;
6610 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6611 	}
6612 
6613 	/*
6614 	 *  Let the itl task point to error handling.
6615 	 */
6616 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6617 
6618 	/*
6619 	 *  Set the reselect pattern to our default. :)
6620 	 */
6621 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6622 
6623 	/*
6624 	 *  Set user capabilities.
6625 	 */
6626 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6627 
6628 fail:
6629 	return lp;
6630 }
6631 
6632 /*
6633  *  Allocate LCB resources for tagged command queuing.
6634  */
6635 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6636 {
6637 	tcb_p tp = &np->target[tn];
6638 	lcb_p lp = sym_lp(tp, ln);
6639 	int i;
6640 
6641 	/*
6642 	 *  If LCB not available, try to allocate it.
6643 	 */
6644 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6645 		return;
6646 
6647 	/*
6648 	 *  Allocate the task table and and the tag allocation
6649 	 *  circular buffer. We want both or none.
6650 	 */
6651 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6652 	if (!lp->itlq_tbl)
6653 		return;
6654 	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6655 	if (!lp->cb_tags) {
6656 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6657 		lp->itlq_tbl = NULL;
6658 		return;
6659 	}
6660 
6661 	/*
6662 	 *  Initialize the task table with invalid entries.
6663 	 */
6664 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6665 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6666 
6667 	/*
6668 	 *  Fill up the tag buffer with tag numbers.
6669 	 */
6670 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6671 		lp->cb_tags[i] = i;
6672 
6673 	/*
6674 	 *  Make the task table available to SCRIPTS,
6675 	 *  And accept tagged commands now.
6676 	 */
6677 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6678 }
6679 
6680 /*
6681  *  Test the pci bus snoop logic :-(
6682  *
6683  *  Has to be called with interrupts disabled.
6684  */
6685 #ifndef SYM_CONF_IOMAPPED
6686 static int sym_regtest (hcb_p np)
6687 {
6688 	register volatile u32 data;
6689 	/*
6690 	 *  chip registers may NOT be cached.
6691 	 *  write 0xffffffff to a read only register area,
6692 	 *  and try to read it back.
6693 	 */
6694 	data = 0xffffffff;
6695 	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6696 	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6697 #if 1
6698 	if (data == 0xffffffff) {
6699 #else
6700 	if ((data & 0xe2f0fffd) != 0x02000080) {
6701 #endif
6702 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6703 			(unsigned) data);
6704 		return (0x10);
6705 	}
6706 	return (0);
6707 }
6708 #endif
6709 
6710 static int sym_snooptest (hcb_p np)
6711 {
6712 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6713 	int	i, err=0;
6714 #ifndef SYM_CONF_IOMAPPED
6715 	err |= sym_regtest (np);
6716 	if (err) return (err);
6717 #endif
6718 restart_test:
6719 	/*
6720 	 *  Enable Master Parity Checking as we intend
6721 	 *  to enable it for normal operations.
6722 	 */
6723 	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
6724 	/*
6725 	 *  init
6726 	 */
6727 	pc  = SCRIPTB0_BA (np, snooptest);
6728 	host_wr = 1;
6729 	sym_wr  = 2;
6730 	/*
6731 	 *  Set memory and register.
6732 	 */
6733 	np->cache = cpu_to_scr(host_wr);
6734 	OUTL (nc_temp, sym_wr);
6735 	/*
6736 	 *  Start script (exchange values)
6737 	 */
6738 	OUTL (nc_dsa, np->hcb_ba);
6739 	OUTL_DSP (pc);
6740 	/*
6741 	 *  Wait 'til done (with timeout)
6742 	 */
6743 	for (i = 0; i < SYM_SNOOP_TIMEOUT; i++)
6744 		if (INB(nc_istat) & (INTF|SIP|DIP))
6745 			break;
6746 	if (i >= SYM_SNOOP_TIMEOUT) {
6747 		printf ("CACHE TEST FAILED: timeout.\n");
6748 		return (0x20);
6749 	}
6750 	/*
6751 	 *  Check for fatal DMA errors.
6752 	 */
6753 	dstat = INB (nc_dstat);
6754 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
6755 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
6756 		device_printf(np->device, "PCI DATA PARITY ERROR DETECTED - "
6757 		    "DISABLING MASTER DATA PARITY CHECKING.\n");
6758 		np->rv_ctest4 &= ~MPEE;
6759 		goto restart_test;
6760 	}
6761 #endif
6762 	if (dstat & (MDPE|BF|IID)) {
6763 		device_printf(np->device,
6764 		    "CACHE TEST FAILED: DMA error (dstat=0x%02x).\n", dstat);
6765 		return (0x80);
6766 	}
6767 	/*
6768 	 *  Save termination position.
6769 	 */
6770 	pc = INL (nc_dsp);
6771 	/*
6772 	 *  Read memory and register.
6773 	 */
6774 	host_rd = scr_to_cpu(np->cache);
6775 	sym_rd  = INL (nc_scratcha);
6776 	sym_bk  = INL (nc_temp);
6777 
6778 	/*
6779 	 *  Check termination position.
6780 	 */
6781 	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
6782 		device_printf(np->device,
6783 		    "CACHE TEST FAILED: script execution failed.\n");
6784 		device_printf(np->device, "start=%08lx, pc=%08lx, end=%08lx\n",
6785 		    (u_long)SCRIPTB0_BA(np, snooptest), (u_long)pc,
6786 		    (u_long)SCRIPTB0_BA(np, snoopend) + 8);
6787 		return (0x40);
6788 	}
6789 	/*
6790 	 *  Show results.
6791 	 */
6792 	if (host_wr != sym_rd) {
6793 		device_printf(np->device,
6794 		    "CACHE TEST FAILED: host wrote %d, chip read %d.\n",
6795 		    (int)host_wr, (int)sym_rd);
6796 		err |= 1;
6797 	}
6798 	if (host_rd != sym_wr) {
6799 		device_printf(np->device,
6800 		    "CACHE TEST FAILED: chip wrote %d, host read %d.\n",
6801 		    (int)sym_wr, (int)host_rd);
6802 		err |= 2;
6803 	}
6804 	if (sym_bk != sym_wr) {
6805 		device_printf(np->device,
6806 		    "CACHE TEST FAILED: chip wrote %d, read back %d.\n",
6807 		    (int)sym_wr, (int)sym_bk);
6808 		err |= 4;
6809 	}
6810 
6811 	return (err);
6812 }
6813 
6814 /*
6815  *  Determine the chip's clock frequency.
6816  *
6817  *  This is essential for the negotiation of the synchronous
6818  *  transfer rate.
6819  *
6820  *  Note: we have to return the correct value.
6821  *  THERE IS NO SAFE DEFAULT VALUE.
6822  *
6823  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
6824  *  53C860 and 53C875 rev. 1 support fast20 transfers but
6825  *  do not have a clock doubler and so are provided with a
6826  *  80 MHz clock. All other fast20 boards incorporate a doubler
6827  *  and so should be delivered with a 40 MHz clock.
6828  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
6829  *  clock and provide a clock quadrupler (160 Mhz).
6830  */
6831 
6832 /*
6833  *  Select SCSI clock frequency
6834  */
6835 static void sym_selectclock(hcb_p np, u_char scntl3)
6836 {
6837 	/*
6838 	 *  If multiplier not present or not selected, leave here.
6839 	 */
6840 	if (np->multiplier <= 1) {
6841 		OUTB(nc_scntl3,	scntl3);
6842 		return;
6843 	}
6844 
6845 	if (sym_verbose >= 2)
6846 		device_printf(np->device, "enabling clock multiplier\n");
6847 
6848 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
6849 	/*
6850 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
6851 	 *  Otherwise wait 20 micro-seconds.
6852 	 */
6853 	if (np->features & FE_LCKFRQ) {
6854 		int i = 20;
6855 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
6856 			UDELAY (20);
6857 		if (!i)
6858 			device_printf(np->device,
6859 			    "the chip cannot lock the frequency\n");
6860 	} else
6861 		UDELAY (20);
6862 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
6863 	OUTB(nc_scntl3,	scntl3);
6864 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
6865 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
6866 }
6867 
6868 /*
6869  *  calculate SCSI clock frequency (in KHz)
6870  */
6871 static unsigned getfreq (hcb_p np, int gen)
6872 {
6873 	unsigned int ms = 0;
6874 	unsigned int f;
6875 
6876 	/*
6877 	 * Measure GEN timer delay in order
6878 	 * to calculate SCSI clock frequency
6879 	 *
6880 	 * This code will never execute too
6881 	 * many loop iterations (if DELAY is
6882 	 * reasonably correct). It could get
6883 	 * too low a delay (too high a freq.)
6884 	 * if the CPU is slow executing the
6885 	 * loop for some reason (an NMI, for
6886 	 * example). For this reason we will
6887 	 * if multiple measurements are to be
6888 	 * performed trust the higher delay
6889 	 * (lower frequency returned).
6890 	 */
6891 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
6892 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
6893 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
6894 	(void) INW (nc_sist);	/* another one, just to be sure :) */
6895 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
6896 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6897 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
6898 	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
6899 		UDELAY (1000);	/* count ms */
6900 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6901  	/*
6902  	 * set prescaler to divide by whatever 0 means
6903  	 * 0 ought to choose divide by 2, but appears
6904  	 * to set divide by 3.5 mode in my 53c810 ...
6905  	 */
6906  	OUTB (nc_scntl3, 0);
6907 
6908   	/*
6909  	 * adjust for prescaler, and convert into KHz
6910   	 */
6911 	f = ms ? ((1 << gen) * 4340) / ms : 0;
6912 
6913 	if (sym_verbose >= 2)
6914 		device_printf(np->device, "Delay (GEN=%d): %u msec, %u KHz\n",
6915 		    gen, ms, f);
6916 
6917 	return f;
6918 }
6919 
6920 static unsigned sym_getfreq (hcb_p np)
6921 {
6922 	u_int f1, f2;
6923 	int gen = 11;
6924 
6925 	(void) getfreq (np, gen);	/* throw away first result */
6926 	f1 = getfreq (np, gen);
6927 	f2 = getfreq (np, gen);
6928 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
6929 	return f1;
6930 }
6931 
6932 /*
6933  *  Get/probe chip SCSI clock frequency
6934  */
6935 static void sym_getclock (hcb_p np, int mult)
6936 {
6937 	unsigned char scntl3 = np->sv_scntl3;
6938 	unsigned char stest1 = np->sv_stest1;
6939 	unsigned f1;
6940 
6941 	/*
6942 	 *  For the C10 core, assume 40 MHz.
6943 	 */
6944 	if (np->features & FE_C10) {
6945 		np->multiplier = mult;
6946 		np->clock_khz = 40000 * mult;
6947 		return;
6948 	}
6949 
6950 	np->multiplier = 1;
6951 	f1 = 40000;
6952 	/*
6953 	 *  True with 875/895/896/895A with clock multiplier selected
6954 	 */
6955 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
6956 		if (sym_verbose >= 2)
6957 			device_printf(np->device, "clock multiplier found\n");
6958 		np->multiplier = mult;
6959 	}
6960 
6961 	/*
6962 	 *  If multiplier not found or scntl3 not 7,5,3,
6963 	 *  reset chip and get frequency from general purpose timer.
6964 	 *  Otherwise trust scntl3 BIOS setting.
6965 	 */
6966 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
6967 		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
6968 		f1 = sym_getfreq (np);
6969 
6970 		if (sym_verbose)
6971 			device_printf(np->device, "chip clock is %uKHz\n", f1);
6972 
6973 		if	(f1 <	45000)		f1 =  40000;
6974 		else if (f1 <	55000)		f1 =  50000;
6975 		else				f1 =  80000;
6976 
6977 		if (f1 < 80000 && mult > 1) {
6978 			if (sym_verbose >= 2)
6979 				device_printf(np->device,
6980 				    "clock multiplier assumed\n");
6981 			np->multiplier	= mult;
6982 		}
6983 	} else {
6984 		if	((scntl3 & 7) == 3)	f1 =  40000;
6985 		else if	((scntl3 & 7) == 5)	f1 =  80000;
6986 		else 				f1 = 160000;
6987 
6988 		f1 /= np->multiplier;
6989 	}
6990 
6991 	/*
6992 	 *  Compute controller synchronous parameters.
6993 	 */
6994 	f1		*= np->multiplier;
6995 	np->clock_khz	= f1;
6996 }
6997 
6998 /*
6999  *  Get/probe PCI clock frequency
7000  */
7001 static int sym_getpciclock (hcb_p np)
7002 {
7003 	int f = 0;
7004 
7005 	/*
7006 	 *  For the C1010-33, this doesn't work.
7007 	 *  For the C1010-66, this will be tested when I'll have
7008 	 *  such a beast to play with.
7009 	 */
7010 	if (!(np->features & FE_C10)) {
7011 		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7012 		f = (int) sym_getfreq (np);
7013 		OUTB (nc_stest1, 0);
7014 	}
7015 	np->pciclk_khz = f;
7016 
7017 	return f;
7018 }
7019 
7020 /*============= DRIVER ACTION/COMPLETION ====================*/
7021 
7022 /*
7023  *  Print something that tells about extended errors.
7024  */
7025 static void sym_print_xerr(ccb_p cp, int x_status)
7026 {
7027 	if (x_status & XE_PARITY_ERR) {
7028 		PRINT_ADDR(cp);
7029 		printf ("unrecovered SCSI parity error.\n");
7030 	}
7031 	if (x_status & XE_EXTRA_DATA) {
7032 		PRINT_ADDR(cp);
7033 		printf ("extraneous data discarded.\n");
7034 	}
7035 	if (x_status & XE_BAD_PHASE) {
7036 		PRINT_ADDR(cp);
7037 		printf ("illegal scsi phase (4/5).\n");
7038 	}
7039 	if (x_status & XE_SODL_UNRUN) {
7040 		PRINT_ADDR(cp);
7041 		printf ("ODD transfer in DATA OUT phase.\n");
7042 	}
7043 	if (x_status & XE_SWIDE_OVRUN) {
7044 		PRINT_ADDR(cp);
7045 		printf ("ODD transfer in DATA IN phase.\n");
7046 	}
7047 }
7048 
7049 /*
7050  *  Choose the more appropriate CAM status if
7051  *  the IO encountered an extended error.
7052  */
7053 static int sym_xerr_cam_status(int cam_status, int x_status)
7054 {
7055 	if (x_status) {
7056 		if	(x_status & XE_PARITY_ERR)
7057 			cam_status = CAM_UNCOR_PARITY;
7058 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7059 			cam_status = CAM_DATA_RUN_ERR;
7060 		else if	(x_status & XE_BAD_PHASE)
7061 			cam_status = CAM_REQ_CMP_ERR;
7062 		else
7063 			cam_status = CAM_REQ_CMP_ERR;
7064 	}
7065 	return cam_status;
7066 }
7067 
7068 /*
7069  *  Complete execution of a SCSI command with extented
7070  *  error, SCSI status error, or having been auto-sensed.
7071  *
7072  *  The SCRIPTS processor is not running there, so we
7073  *  can safely access IO registers and remove JOBs from
7074  *  the START queue.
7075  *  SCRATCHA is assumed to have been loaded with STARTPOS
7076  *  before the SCRIPTS called the C code.
7077  */
7078 static void sym_complete_error (hcb_p np, ccb_p cp)
7079 {
7080 	struct ccb_scsiio *csio;
7081 	u_int cam_status;
7082 	int i, sense_returned;
7083 
7084 	SYM_LOCK_ASSERT(MA_OWNED);
7085 
7086 	/*
7087 	 *  Paranoid check. :)
7088 	 */
7089 	if (!cp || !cp->cam_ccb)
7090 		return;
7091 
7092 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7093 		printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7094 			cp->host_status, cp->ssss_status, cp->host_flags,
7095 			cp->target, cp->lun);
7096 		MDELAY(100);
7097 	}
7098 
7099 	/*
7100 	 *  Get CAM command pointer.
7101 	 */
7102 	csio = &cp->cam_ccb->csio;
7103 
7104 	/*
7105 	 *  Check for extended errors.
7106 	 */
7107 	if (cp->xerr_status) {
7108 		if (sym_verbose)
7109 			sym_print_xerr(cp, cp->xerr_status);
7110 		if (cp->host_status == HS_COMPLETE)
7111 			cp->host_status = HS_COMP_ERR;
7112 	}
7113 
7114 	/*
7115 	 *  Calculate the residual.
7116 	 */
7117 	csio->sense_resid = 0;
7118 	csio->resid = sym_compute_residual(np, cp);
7119 
7120 	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7121 		csio->resid  = 0;	/* throw them away. :)		   */
7122 		cp->sv_resid = 0;
7123 	}
7124 
7125 	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7126 		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7127 		csio->sense_resid = csio->resid;	/* Swap residuals */
7128 		csio->resid       = cp->sv_resid;
7129 		cp->sv_resid	  = 0;
7130 		if (sym_verbose && cp->sv_xerr_status)
7131 			sym_print_xerr(cp, cp->sv_xerr_status);
7132 		if (cp->host_status == HS_COMPLETE &&
7133 		    cp->ssss_status == S_GOOD &&
7134 		    cp->xerr_status == 0) {
7135 			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7136 							 cp->sv_xerr_status);
7137 			cam_status |= CAM_AUTOSNS_VALID;
7138 			/*
7139 			 *  Bounce back the sense data to user and
7140 			 *  fix the residual.
7141 			 */
7142 			bzero(&csio->sense_data, sizeof(csio->sense_data));
7143 			sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid;
7144 			if (sense_returned < csio->sense_len)
7145 				csio->sense_resid = csio->sense_len -
7146 				    sense_returned;
7147 			else
7148 				csio->sense_resid = 0;
7149 			memcpy(&csio->sense_data, cp->sns_bbuf,
7150 			    MIN(csio->sense_len, sense_returned));
7151 #if 0
7152 			/*
7153 			 *  If the device reports a UNIT ATTENTION condition
7154 			 *  due to a RESET condition, we should consider all
7155 			 *  disconnect CCBs for this unit as aborted.
7156 			 */
7157 			if (1) {
7158 				u_char *p;
7159 				p  = (u_char *) csio->sense_data;
7160 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7161 					sym_clear_tasks(np, CAM_REQ_ABORTED,
7162 							cp->target,cp->lun, -1);
7163 			}
7164 #endif
7165 		}
7166 		else
7167 			cam_status = CAM_AUTOSENSE_FAIL;
7168 	}
7169 	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7170 		csio->scsi_status = cp->ssss_status;
7171 		cam_status = CAM_SCSI_STATUS_ERROR;
7172 	}
7173 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7174 		cam_status = CAM_SEL_TIMEOUT;
7175 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7176 		cam_status = CAM_UNEXP_BUSFREE;
7177 	else {						/* Extended error */
7178 		if (sym_verbose) {
7179 			PRINT_ADDR(cp);
7180 			printf ("COMMAND FAILED (%x %x %x).\n",
7181 				cp->host_status, cp->ssss_status,
7182 				cp->xerr_status);
7183 		}
7184 		csio->scsi_status = cp->ssss_status;
7185 		/*
7186 		 *  Set the most appropriate value for CAM status.
7187 		 */
7188 		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7189 						 cp->xerr_status);
7190 	}
7191 
7192 	/*
7193 	 *  Dequeue all queued CCBs for that device
7194 	 *  not yet started by SCRIPTS.
7195 	 */
7196 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7197 	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7198 
7199 	/*
7200 	 *  Restart the SCRIPTS processor.
7201 	 */
7202 	OUTL_DSP (SCRIPTA_BA (np, start));
7203 
7204 	/*
7205 	 *  Synchronize DMA map if needed.
7206 	 */
7207 	if (cp->dmamapped) {
7208 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7209 			(cp->dmamapped == SYM_DMA_READ ?
7210 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7211 	}
7212 	/*
7213 	 *  Add this one to the COMP queue.
7214 	 *  Complete all those commands with either error
7215 	 *  or requeue condition.
7216 	 */
7217 	sym_set_cam_status((union ccb *) csio, cam_status);
7218 	sym_remque(&cp->link_ccbq);
7219 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7220 	sym_flush_comp_queue(np, 0);
7221 }
7222 
7223 /*
7224  *  Complete execution of a successful SCSI command.
7225  *
7226  *  Only successful commands go to the DONE queue,
7227  *  since we need to have the SCRIPTS processor
7228  *  stopped on any error condition.
7229  *  The SCRIPTS processor is running while we are
7230  *  completing successful commands.
7231  */
7232 static void sym_complete_ok (hcb_p np, ccb_p cp)
7233 {
7234 	struct ccb_scsiio *csio;
7235 	tcb_p tp;
7236 	lcb_p lp;
7237 
7238 	SYM_LOCK_ASSERT(MA_OWNED);
7239 
7240 	/*
7241 	 *  Paranoid check. :)
7242 	 */
7243 	if (!cp || !cp->cam_ccb)
7244 		return;
7245 	assert (cp->host_status == HS_COMPLETE);
7246 
7247 	/*
7248 	 *  Get command, target and lun pointers.
7249 	 */
7250 	csio = &cp->cam_ccb->csio;
7251 	tp = &np->target[cp->target];
7252 	lp = sym_lp(tp, cp->lun);
7253 
7254 	/*
7255 	 *  Assume device discovered on first success.
7256 	 */
7257 	if (!lp)
7258 		sym_set_bit(tp->lun_map, cp->lun);
7259 
7260 	/*
7261 	 *  If all data have been transferred, given than no
7262 	 *  extended error did occur, there is no residual.
7263 	 */
7264 	csio->resid = 0;
7265 	if (cp->phys.head.lastp != cp->phys.head.goalp)
7266 		csio->resid = sym_compute_residual(np, cp);
7267 
7268 	/*
7269 	 *  Wrong transfer residuals may be worse than just always
7270 	 *  returning zero. User can disable this feature from
7271 	 *  sym_conf.h. Residual support is enabled by default.
7272 	 */
7273 	if (!SYM_CONF_RESIDUAL_SUPPORT)
7274 		csio->resid  = 0;
7275 
7276 	/*
7277 	 *  Synchronize DMA map if needed.
7278 	 */
7279 	if (cp->dmamapped) {
7280 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7281 			(cp->dmamapped == SYM_DMA_READ ?
7282 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7283 	}
7284 	/*
7285 	 *  Set status and complete the command.
7286 	 */
7287 	csio->scsi_status = cp->ssss_status;
7288 	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7289 	sym_xpt_done(np, (union ccb *) csio, cp);
7290 	sym_free_ccb(np, cp);
7291 }
7292 
7293 /*
7294  *  Our callout handler
7295  */
7296 static void sym_callout(void *arg)
7297 {
7298 	union ccb *ccb = (union ccb *) arg;
7299 	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7300 
7301 	/*
7302 	 *  Check that the CAM CCB is still queued.
7303 	 */
7304 	if (!np)
7305 		return;
7306 
7307 	SYM_LOCK();
7308 
7309 	switch(ccb->ccb_h.func_code) {
7310 	case XPT_SCSI_IO:
7311 		(void) sym_abort_scsiio(np, ccb, 1);
7312 		break;
7313 	default:
7314 		break;
7315 	}
7316 
7317 	SYM_UNLOCK();
7318 }
7319 
7320 /*
7321  *  Abort an SCSI IO.
7322  */
7323 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7324 {
7325 	ccb_p cp;
7326 	SYM_QUEHEAD *qp;
7327 
7328 	SYM_LOCK_ASSERT(MA_OWNED);
7329 
7330 	/*
7331 	 *  Look up our CCB control block.
7332 	 */
7333 	cp = NULL;
7334 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7335 		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7336 		if (cp2->cam_ccb == ccb) {
7337 			cp = cp2;
7338 			break;
7339 		}
7340 	}
7341 	if (!cp || cp->host_status == HS_WAIT)
7342 		return -1;
7343 
7344 	/*
7345 	 *  If a previous abort didn't succeed in time,
7346 	 *  perform a BUS reset.
7347 	 */
7348 	if (cp->to_abort) {
7349 		sym_reset_scsi_bus(np, 1);
7350 		return 0;
7351 	}
7352 
7353 	/*
7354 	 *  Mark the CCB for abort and allow time for.
7355 	 */
7356 	cp->to_abort = timed_out ? 2 : 1;
7357 	callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb);
7358 
7359 	/*
7360 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7361 	 */
7362 	np->istat_sem = SEM;
7363 	OUTB (nc_istat, SIGP|SEM);
7364 	return 0;
7365 }
7366 
7367 /*
7368  *  Reset a SCSI device (all LUNs of a target).
7369  */
7370 static void sym_reset_dev(hcb_p np, union ccb *ccb)
7371 {
7372 	tcb_p tp;
7373 	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7374 
7375 	SYM_LOCK_ASSERT(MA_OWNED);
7376 
7377 	if (ccb_h->target_id   == np->myaddr ||
7378 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7379 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7380 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7381 		return;
7382 	}
7383 
7384 	tp = &np->target[ccb_h->target_id];
7385 
7386 	tp->to_reset = 1;
7387 	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7388 
7389 	np->istat_sem = SEM;
7390 	OUTB (nc_istat, SIGP|SEM);
7391 }
7392 
7393 /*
7394  *  SIM action entry point.
7395  */
7396 static void sym_action(struct cam_sim *sim, union ccb *ccb)
7397 {
7398 	hcb_p	np;
7399 	tcb_p	tp;
7400 	lcb_p	lp;
7401 	ccb_p	cp;
7402 	int 	tmp;
7403 	u_char	idmsg, *msgptr;
7404 	u_int   msglen;
7405 	struct	ccb_scsiio *csio;
7406 	struct	ccb_hdr  *ccb_h;
7407 
7408 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7409 
7410 	/*
7411 	 *  Retrieve our controller data structure.
7412 	 */
7413 	np = (hcb_p) cam_sim_softc(sim);
7414 
7415 	SYM_LOCK_ASSERT(MA_OWNED);
7416 
7417 	/*
7418 	 *  The common case is SCSI IO.
7419 	 *  We deal with other ones elsewhere.
7420 	 */
7421 	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7422 		sym_action2(sim, ccb);
7423 		return;
7424 	}
7425 	csio  = &ccb->csio;
7426 	ccb_h = &csio->ccb_h;
7427 
7428 	/*
7429 	 *  Work around races.
7430 	 */
7431 	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7432 		xpt_done(ccb);
7433 		return;
7434 	}
7435 
7436 	/*
7437 	 *  Minimal checkings, so that we will not
7438 	 *  go outside our tables.
7439 	 */
7440 	if (ccb_h->target_id   == np->myaddr ||
7441 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7442 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7443 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7444 		return;
7445         }
7446 
7447 	/*
7448 	 *  Retrieve the target and lun descriptors.
7449 	 */
7450 	tp = &np->target[ccb_h->target_id];
7451 	lp = sym_lp(tp, ccb_h->target_lun);
7452 
7453 	/*
7454 	 *  Complete the 1st INQUIRY command with error
7455 	 *  condition if the device is flagged NOSCAN
7456 	 *  at BOOT in the NVRAM. This may speed up
7457 	 *  the boot and maintain coherency with BIOS
7458 	 *  device numbering. Clearing the flag allows
7459 	 *  user to rescan skipped devices later.
7460 	 *  We also return error for devices not flagged
7461 	 *  for SCAN LUNS in the NVRAM since some mono-lun
7462 	 *  devices behave badly when asked for some non
7463 	 *  zero LUN. Btw, this is an absolute hack.:-)
7464 	 */
7465 	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7466 	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7467 		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7468 		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7469 		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7470 		     ccb_h->target_lun != 0)) {
7471 			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7472 			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7473 			return;
7474 		}
7475 	}
7476 
7477 	/*
7478 	 *  Get a control block for this IO.
7479 	 */
7480 	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7481 	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7482 	if (!cp) {
7483 		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7484 		return;
7485 	}
7486 
7487 	/*
7488 	 *  Keep track of the IO in our CCB.
7489 	 */
7490 	cp->cam_ccb = ccb;
7491 
7492 	/*
7493 	 *  Build the IDENTIFY message.
7494 	 */
7495 	idmsg = M_IDENTIFY | cp->lun;
7496 	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7497 		idmsg |= 0x40;
7498 
7499 	msgptr = cp->scsi_smsg;
7500 	msglen = 0;
7501 	msgptr[msglen++] = idmsg;
7502 
7503 	/*
7504 	 *  Build the tag message if present.
7505 	 */
7506 	if (cp->tag != NO_TAG) {
7507 		u_char order = csio->tag_action;
7508 
7509 		switch(order) {
7510 		case M_ORDERED_TAG:
7511 			break;
7512 		case M_HEAD_TAG:
7513 			break;
7514 		default:
7515 			order = M_SIMPLE_TAG;
7516 		}
7517 		msgptr[msglen++] = order;
7518 
7519 		/*
7520 		 *  For less than 128 tags, actual tags are numbered
7521 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7522 		 *  with devices that have problems with #TAG 0 or too
7523 		 *  great #TAG numbers. For more tags (up to 256),
7524 		 *  we use directly our tag number.
7525 		 */
7526 #if SYM_CONF_MAX_TASK > (512/4)
7527 		msgptr[msglen++] = cp->tag;
7528 #else
7529 		msgptr[msglen++] = (cp->tag << 1) + 1;
7530 #endif
7531 	}
7532 
7533 	/*
7534 	 *  Build a negotiation message if needed.
7535 	 *  (nego_status is filled by sym_prepare_nego())
7536 	 */
7537 	cp->nego_status = 0;
7538 	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7539 	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7540 	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7541 	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7542 		if (!tp->nego_cp && lp)
7543 			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7544 	}
7545 
7546 	/*
7547 	 *  Fill in our ccb
7548 	 */
7549 
7550 	/*
7551 	 *  Startqueue
7552 	 */
7553 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7554 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7555 
7556 	/*
7557 	 *  select
7558 	 */
7559 	cp->phys.select.sel_id		= cp->target;
7560 	cp->phys.select.sel_scntl3	= tp->head.wval;
7561 	cp->phys.select.sel_sxfer	= tp->head.sval;
7562 	cp->phys.select.sel_scntl4	= tp->head.uval;
7563 
7564 	/*
7565 	 *  message
7566 	 */
7567 	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7568 	cp->phys.smsg.size	= cpu_to_scr(msglen);
7569 
7570 	/*
7571 	 *  command
7572 	 */
7573 	if (sym_setup_cdb(np, csio, cp) < 0) {
7574 		sym_xpt_done(np, ccb, cp);
7575 		sym_free_ccb(np, cp);
7576 		return;
7577 	}
7578 
7579 	/*
7580 	 *  status
7581 	 */
7582 #if	0	/* Provision */
7583 	cp->actualquirks	= tp->quirks;
7584 #endif
7585 	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7586 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7587 	cp->ssss_status		= S_ILLEGAL;
7588 	cp->xerr_status		= 0;
7589 	cp->host_flags		= 0;
7590 	cp->extra_bytes		= 0;
7591 
7592 	/*
7593 	 *  extreme data pointer.
7594 	 *  shall be positive, so -1 is lower than lowest.:)
7595 	 */
7596 	cp->ext_sg  = -1;
7597 	cp->ext_ofs = 0;
7598 
7599 	/*
7600 	 *  Build the data descriptor block
7601 	 *  and start the IO.
7602 	 */
7603 	sym_setup_data_and_start(np, csio, cp);
7604 }
7605 
7606 /*
7607  *  Setup buffers and pointers that address the CDB.
7608  *  I bet, physical CDBs will never be used on the planet,
7609  *  since they can be bounced without significant overhead.
7610  */
7611 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7612 {
7613 	struct ccb_hdr *ccb_h;
7614 	u32	cmd_ba;
7615 	int	cmd_len;
7616 
7617 	SYM_LOCK_ASSERT(MA_OWNED);
7618 
7619 	ccb_h = &csio->ccb_h;
7620 
7621 	/*
7622 	 *  CDB is 16 bytes max.
7623 	 */
7624 	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7625 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7626 		return -1;
7627 	}
7628 	cmd_len = csio->cdb_len;
7629 
7630 	if (ccb_h->flags & CAM_CDB_POINTER) {
7631 		/* CDB is a pointer */
7632 		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7633 			/* CDB pointer is virtual */
7634 			memcpy(cp->cdb_buf, csio->cdb_io.cdb_ptr, cmd_len);
7635 			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7636 		} else {
7637 			/* CDB pointer is physical */
7638 #if 0
7639 			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7640 #else
7641 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7642 			return -1;
7643 #endif
7644 		}
7645 	} else {
7646 		/* CDB is in the CAM ccb (buffer) */
7647 		memcpy(cp->cdb_buf, csio->cdb_io.cdb_bytes, cmd_len);
7648 		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7649 	}
7650 
7651 	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7652 	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7653 
7654 	return 0;
7655 }
7656 
7657 /*
7658  *  Set up data pointers used by SCRIPTS.
7659  */
7660 static void __inline
7661 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7662 {
7663 	u32 lastp, goalp;
7664 
7665 	SYM_LOCK_ASSERT(MA_OWNED);
7666 
7667 	/*
7668 	 *  No segments means no data.
7669 	 */
7670 	if (!cp->segments)
7671 		dir = CAM_DIR_NONE;
7672 
7673 	/*
7674 	 *  Set the data pointer.
7675 	 */
7676 	switch(dir) {
7677 	case CAM_DIR_OUT:
7678 		goalp = SCRIPTA_BA (np, data_out2) + 8;
7679 		lastp = goalp - 8 - (cp->segments * (2*4));
7680 		break;
7681 	case CAM_DIR_IN:
7682 		cp->host_flags |= HF_DATA_IN;
7683 		goalp = SCRIPTA_BA (np, data_in2) + 8;
7684 		lastp = goalp - 8 - (cp->segments * (2*4));
7685 		break;
7686 	case CAM_DIR_NONE:
7687 	default:
7688 		lastp = goalp = SCRIPTB_BA (np, no_data);
7689 		break;
7690 	}
7691 
7692 	cp->phys.head.lastp = cpu_to_scr(lastp);
7693 	cp->phys.head.goalp = cpu_to_scr(goalp);
7694 	cp->phys.head.savep = cpu_to_scr(lastp);
7695 	cp->startp	    = cp->phys.head.savep;
7696 }
7697 
7698 /*
7699  *  Call back routine for the DMA map service.
7700  *  If bounce buffers are used (why ?), we may sleep and then
7701  *  be called there in another context.
7702  */
7703 static void
7704 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7705 {
7706 	ccb_p	cp;
7707 	hcb_p	np;
7708 	union	ccb *ccb;
7709 
7710 	cp  = (ccb_p) arg;
7711 	ccb = cp->cam_ccb;
7712 	np  = (hcb_p) cp->arg;
7713 
7714 	SYM_LOCK_ASSERT(MA_OWNED);
7715 
7716 	/*
7717 	 *  Deal with weird races.
7718 	 */
7719 	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7720 		goto out_abort;
7721 
7722 	/*
7723 	 *  Deal with weird errors.
7724 	 */
7725 	if (error) {
7726 		cp->dmamapped = 0;
7727 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
7728 		goto out_abort;
7729 	}
7730 
7731 	/*
7732 	 *  Build the data descriptor for the chip.
7733 	 */
7734 	if (nsegs) {
7735 		int retv;
7736 		/* 896 rev 1 requires to be careful about boundaries */
7737 		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
7738 			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
7739 		else
7740 			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
7741 		if (retv < 0) {
7742 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
7743 			goto out_abort;
7744 		}
7745 	}
7746 
7747 	/*
7748 	 *  Synchronize the DMA map only if we have
7749 	 *  actually mapped the data.
7750 	 */
7751 	if (cp->dmamapped) {
7752 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7753 			(cp->dmamapped == SYM_DMA_READ ?
7754 				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
7755 	}
7756 
7757 	/*
7758 	 *  Set host status to busy state.
7759 	 *  May have been set back to HS_WAIT to avoid a race.
7760 	 */
7761 	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7762 
7763 	/*
7764 	 *  Set data pointers.
7765 	 */
7766 	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
7767 
7768 	/*
7769 	 *  Enqueue this IO in our pending queue.
7770 	 */
7771 	sym_enqueue_cam_ccb(cp);
7772 
7773 	/*
7774 	 *  When `#ifed 1', the code below makes the driver
7775 	 *  panic on the first attempt to write to a SCSI device.
7776 	 *  It is the first test we want to do after a driver
7777 	 *  change that does not seem obviously safe. :)
7778 	 */
7779 #if 0
7780 	switch (cp->cdb_buf[0]) {
7781 	case 0x0A: case 0x2A: case 0xAA:
7782 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
7783 		MDELAY(10000);
7784 		break;
7785 	default:
7786 		break;
7787 	}
7788 #endif
7789 	/*
7790 	 *  Activate this job.
7791 	 */
7792 	sym_put_start_queue(np, cp);
7793 	return;
7794 out_abort:
7795 	sym_xpt_done(np, ccb, cp);
7796 	sym_free_ccb(np, cp);
7797 }
7798 
7799 /*
7800  *  How complex it gets to deal with the data in CAM.
7801  *  The Bus Dma stuff makes things still more complex.
7802  */
7803 static void
7804 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7805 {
7806 	struct ccb_hdr *ccb_h;
7807 	int dir, retv;
7808 
7809 	SYM_LOCK_ASSERT(MA_OWNED);
7810 
7811 	ccb_h = &csio->ccb_h;
7812 
7813 	/*
7814 	 *  Now deal with the data.
7815 	 */
7816 	cp->data_len = csio->dxfer_len;
7817 	cp->arg      = np;
7818 
7819 	/*
7820 	 *  No direction means no data.
7821 	 */
7822 	dir = (ccb_h->flags & CAM_DIR_MASK);
7823 	if (dir == CAM_DIR_NONE) {
7824 		sym_execute_ccb(cp, NULL, 0, 0);
7825 		return;
7826 	}
7827 
7828 	cp->dmamapped = (dir == CAM_DIR_IN) ?  SYM_DMA_READ : SYM_DMA_WRITE;
7829 	retv = bus_dmamap_load_ccb(np->data_dmat, cp->dmamap,
7830 			       (union ccb *)csio, sym_execute_ccb, cp, 0);
7831 	if (retv == EINPROGRESS) {
7832 		cp->host_status	= HS_WAIT;
7833 		xpt_freeze_simq(np->sim, 1);
7834 		csio->ccb_h.status |= CAM_RELEASE_SIMQ;
7835 	}
7836 }
7837 
7838 /*
7839  *  Move the scatter list to our data block.
7840  */
7841 static int
7842 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
7843 			     bus_dma_segment_t *psegs, int nsegs)
7844 {
7845 	struct sym_tblmove *data;
7846 	bus_dma_segment_t *psegs2;
7847 
7848 	SYM_LOCK_ASSERT(MA_OWNED);
7849 
7850 	if (nsegs > SYM_CONF_MAX_SG)
7851 		return -1;
7852 
7853 	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
7854 	psegs2 = &psegs[nsegs-1];
7855 	cp->segments = nsegs;
7856 
7857 	while (1) {
7858 		data->addr = cpu_to_scr(psegs2->ds_addr);
7859 		data->size = cpu_to_scr(psegs2->ds_len);
7860 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7861 			device_printf(np->device,
7862 			    "scatter: paddr=%lx len=%ld\n",
7863 			    (long)psegs2->ds_addr, (long)psegs2->ds_len);
7864 		}
7865 		if (psegs2 != psegs) {
7866 			--data;
7867 			--psegs2;
7868 			continue;
7869 		}
7870 		break;
7871 	}
7872 	return 0;
7873 }
7874 
7875 /*
7876  *  Scatter a SG list with physical addresses into bus addressable chunks.
7877  */
7878 static int
7879 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
7880 {
7881 	u_long	ps, pe, pn;
7882 	u_long	k;
7883 	int s, t;
7884 
7885 	SYM_LOCK_ASSERT(MA_OWNED);
7886 
7887 	s  = SYM_CONF_MAX_SG - 1;
7888 	t  = nsegs - 1;
7889 	ps = psegs[t].ds_addr;
7890 	pe = ps + psegs[t].ds_len;
7891 
7892 	while (s >= 0) {
7893 		pn = rounddown2(pe - 1, SYM_CONF_DMA_BOUNDARY);
7894 		if (pn <= ps)
7895 			pn = ps;
7896 		k = pe - pn;
7897 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7898 			device_printf(np->device,
7899 			    "scatter: paddr=%lx len=%ld\n", pn, k);
7900 		}
7901 		cp->phys.data[s].addr = cpu_to_scr(pn);
7902 		cp->phys.data[s].size = cpu_to_scr(k);
7903 		--s;
7904 		if (pn == ps) {
7905 			if (--t < 0)
7906 				break;
7907 			ps = psegs[t].ds_addr;
7908 			pe = ps + psegs[t].ds_len;
7909 		}
7910 		else
7911 			pe = pn;
7912 	}
7913 
7914 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
7915 
7916 	return t >= 0 ? -1 : 0;
7917 }
7918 
7919 /*
7920  *  SIM action for non performance critical stuff.
7921  */
7922 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
7923 {
7924 	union ccb *abort_ccb;
7925 	struct ccb_hdr *ccb_h;
7926 	struct ccb_pathinq *cpi;
7927 	struct ccb_trans_settings *cts;
7928 	struct sym_trans *tip;
7929 	hcb_p	np;
7930 	tcb_p	tp;
7931 	lcb_p	lp;
7932 	u_char dflags;
7933 
7934 	/*
7935 	 *  Retrieve our controller data structure.
7936 	 */
7937 	np = (hcb_p) cam_sim_softc(sim);
7938 
7939 	SYM_LOCK_ASSERT(MA_OWNED);
7940 
7941 	ccb_h = &ccb->ccb_h;
7942 
7943 	switch (ccb_h->func_code) {
7944 	case XPT_SET_TRAN_SETTINGS:
7945 		cts  = &ccb->cts;
7946 		tp = &np->target[ccb_h->target_id];
7947 
7948 		/*
7949 		 *  Update SPI transport settings in TARGET control block.
7950 		 *  Update SCSI device settings in LUN control block.
7951 		 */
7952 		lp = sym_lp(tp, ccb_h->target_lun);
7953 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7954 			sym_update_trans(np, &tp->tinfo.goal, cts);
7955 			if (lp)
7956 				sym_update_dflags(np, &lp->current_flags, cts);
7957 		}
7958 		if (cts->type == CTS_TYPE_USER_SETTINGS) {
7959 			sym_update_trans(np, &tp->tinfo.user, cts);
7960 			if (lp)
7961 				sym_update_dflags(np, &lp->user_flags, cts);
7962 		}
7963 
7964 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7965 		break;
7966 	case XPT_GET_TRAN_SETTINGS:
7967 		cts = &ccb->cts;
7968 		tp = &np->target[ccb_h->target_id];
7969 		lp = sym_lp(tp, ccb_h->target_lun);
7970 
7971 #define	cts__scsi (&cts->proto_specific.scsi)
7972 #define	cts__spi  (&cts->xport_specific.spi)
7973 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7974 			tip = &tp->tinfo.current;
7975 			dflags = lp ? lp->current_flags : 0;
7976 		}
7977 		else {
7978 			tip = &tp->tinfo.user;
7979 			dflags = lp ? lp->user_flags : tp->usrflags;
7980 		}
7981 
7982 		cts->protocol  = PROTO_SCSI;
7983 		cts->transport = XPORT_SPI;
7984 		cts->protocol_version  = tip->scsi_version;
7985 		cts->transport_version = tip->spi_version;
7986 
7987 		cts__spi->sync_period = tip->period;
7988 		cts__spi->sync_offset = tip->offset;
7989 		cts__spi->bus_width   = tip->width;
7990 		cts__spi->ppr_options = tip->options;
7991 
7992 		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
7993 		                | CTS_SPI_VALID_SYNC_OFFSET
7994 		                | CTS_SPI_VALID_BUS_WIDTH
7995 		                | CTS_SPI_VALID_PPR_OPTIONS;
7996 
7997 		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
7998 		if (dflags & SYM_DISC_ENABLED)
7999 			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8000 		cts__spi->valid |= CTS_SPI_VALID_DISC;
8001 
8002 		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8003 		if (dflags & SYM_TAGS_ENABLED)
8004 			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8005 		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8006 #undef	cts__spi
8007 #undef	cts__scsi
8008 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8009 		break;
8010 	case XPT_CALC_GEOMETRY:
8011 		cam_calc_geometry(&ccb->ccg, /*extended*/1);
8012 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8013 		break;
8014 	case XPT_PATH_INQ:
8015 		cpi = &ccb->cpi;
8016 		cpi->version_num = 1;
8017 		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8018 		if ((np->features & FE_WIDE) != 0)
8019 			cpi->hba_inquiry |= PI_WIDE_16;
8020 		cpi->target_sprt = 0;
8021 		cpi->hba_misc = PIM_UNMAPPED;
8022 		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8023 			cpi->hba_misc |= PIM_SCANHILO;
8024 		if (np->usrflags & SYM_AVOID_BUS_RESET)
8025 			cpi->hba_misc |= PIM_NOBUSRESET;
8026 		cpi->hba_eng_cnt = 0;
8027 		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8028 		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8029 		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8030 		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8031 			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8032 		cpi->bus_id = cam_sim_bus(sim);
8033 		cpi->initiator_id = np->myaddr;
8034 		cpi->base_transfer_speed = 3300;
8035 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8036 		strlcpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8037 		strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8038 		cpi->unit_number = cam_sim_unit(sim);
8039 
8040 		cpi->protocol = PROTO_SCSI;
8041 		cpi->protocol_version = SCSI_REV_2;
8042 		cpi->transport = XPORT_SPI;
8043 		cpi->transport_version = 2;
8044 		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8045 		if (np->features & FE_ULTRA3) {
8046 			cpi->transport_version = 3;
8047 			cpi->xport_specific.spi.ppr_options =
8048 			    SID_SPI_CLOCK_DT_ST;
8049 		}
8050 		cpi->maxio = SYM_CONF_MAX_SG * PAGE_SIZE;
8051 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8052 		break;
8053 	case XPT_ABORT:
8054 		abort_ccb = ccb->cab.abort_ccb;
8055 		switch(abort_ccb->ccb_h.func_code) {
8056 		case XPT_SCSI_IO:
8057 			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8058 				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8059 				break;
8060 			}
8061 		default:
8062 			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8063 			break;
8064 		}
8065 		break;
8066 	case XPT_RESET_DEV:
8067 		sym_reset_dev(np, ccb);
8068 		break;
8069 	case XPT_RESET_BUS:
8070 		sym_reset_scsi_bus(np, 0);
8071 		if (sym_verbose) {
8072 			xpt_print_path(np->path);
8073 			printf("SCSI BUS reset delivered.\n");
8074 		}
8075 		sym_init (np, 1);
8076 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8077 		break;
8078 	case XPT_TERM_IO:
8079 	default:
8080 		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8081 		break;
8082 	}
8083 }
8084 
8085 /*
8086  *  Asynchronous notification handler.
8087  */
8088 static void
8089 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *args __unused)
8090 {
8091 	hcb_p np;
8092 	struct cam_sim *sim;
8093 	u_int tn;
8094 	tcb_p tp;
8095 
8096 	sim = (struct cam_sim *) cb_arg;
8097 	np  = (hcb_p) cam_sim_softc(sim);
8098 
8099 	SYM_LOCK_ASSERT(MA_OWNED);
8100 
8101 	switch (code) {
8102 	case AC_LOST_DEVICE:
8103 		tn = xpt_path_target_id(path);
8104 		if (tn >= SYM_CONF_MAX_TARGET)
8105 			break;
8106 
8107 		tp = &np->target[tn];
8108 
8109 		tp->to_reset  = 0;
8110 		tp->head.sval = 0;
8111 		tp->head.wval = np->rv_scntl3;
8112 		tp->head.uval = 0;
8113 
8114 		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8115 		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8116 		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8117 		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8118 
8119 		break;
8120 	default:
8121 		break;
8122 	}
8123 }
8124 
8125 /*
8126  *  Update transfer settings of a target.
8127  */
8128 static void sym_update_trans(hcb_p np, struct sym_trans *tip,
8129     struct ccb_trans_settings *cts)
8130 {
8131 
8132 	SYM_LOCK_ASSERT(MA_OWNED);
8133 
8134 	/*
8135 	 *  Update the infos.
8136 	 */
8137 #define cts__spi (&cts->xport_specific.spi)
8138 	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8139 		tip->width = cts__spi->bus_width;
8140 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8141 		tip->offset = cts__spi->sync_offset;
8142 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8143 		tip->period = cts__spi->sync_period;
8144 	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8145 		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8146 	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8147 	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8148 		tip->scsi_version = cts->protocol_version;
8149 	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8150 	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8151 		tip->spi_version = cts->transport_version;
8152 #undef cts__spi
8153 	/*
8154 	 *  Scale against driver configuration limits.
8155 	 */
8156 	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8157 	if (tip->period && tip->offset) {
8158 		if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8159 		if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8160 	} else {
8161 		tip->offset = 0;
8162 		tip->period = 0;
8163 	}
8164 
8165 	/*
8166 	 *  Scale against actual controller BUS width.
8167 	 */
8168 	if (tip->width > np->maxwide)
8169 		tip->width  = np->maxwide;
8170 
8171 	/*
8172 	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8173 	 */
8174 	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8175 	    !(tip->width == BUS_16_BIT && tip->offset)) {
8176 		tip->options &= ~PPR_OPT_DT;
8177 	}
8178 
8179 	/*
8180 	 *  Scale period factor and offset against controller limits.
8181 	 */
8182 	if (tip->offset && tip->period) {
8183 		if (tip->options & PPR_OPT_DT) {
8184 			if (tip->period < np->minsync_dt)
8185 				tip->period = np->minsync_dt;
8186 			if (tip->period > np->maxsync_dt)
8187 				tip->period = np->maxsync_dt;
8188 			if (tip->offset > np->maxoffs_dt)
8189 				tip->offset = np->maxoffs_dt;
8190 		}
8191 		else {
8192 			if (tip->period < np->minsync)
8193 				tip->period = np->minsync;
8194 			if (tip->period > np->maxsync)
8195 				tip->period = np->maxsync;
8196 			if (tip->offset > np->maxoffs)
8197 				tip->offset = np->maxoffs;
8198 		}
8199 	}
8200 }
8201 
8202 /*
8203  *  Update flags for a device (logical unit).
8204  */
8205 static void
8206 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8207 {
8208 
8209 	SYM_LOCK_ASSERT(MA_OWNED);
8210 
8211 #define	cts__scsi (&cts->proto_specific.scsi)
8212 #define	cts__spi  (&cts->xport_specific.spi)
8213 	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8214 		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8215 			*flags |= SYM_DISC_ENABLED;
8216 		else
8217 			*flags &= ~SYM_DISC_ENABLED;
8218 	}
8219 
8220 	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8221 		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8222 			*flags |= SYM_TAGS_ENABLED;
8223 		else
8224 			*flags &= ~SYM_TAGS_ENABLED;
8225 	}
8226 #undef	cts__spi
8227 #undef	cts__scsi
8228 }
8229 
8230 /*============= DRIVER INITIALISATION ==================*/
8231 
8232 static device_method_t sym_pci_methods[] = {
8233 	DEVMETHOD(device_probe,	 sym_pci_probe),
8234 	DEVMETHOD(device_attach, sym_pci_attach),
8235 	DEVMETHOD(device_detach, sym_pci_detach),
8236 	DEVMETHOD_END
8237 };
8238 
8239 static driver_t sym_pci_driver = {
8240 	"sym",
8241 	sym_pci_methods,
8242 	1	/* no softc */
8243 };
8244 
8245 DRIVER_MODULE(sym, pci, sym_pci_driver, NULL, NULL);
8246 MODULE_DEPEND(sym, cam, 1, 1, 1);
8247 MODULE_DEPEND(sym, pci, 1, 1, 1);
8248 
8249 static const struct sym_pci_chip sym_pci_dev_table[] = {
8250  {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8251  FE_ERL}
8252  ,
8253 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8254  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8255  FE_BOF}
8256  ,
8257 #else
8258  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8259  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8260  ,
8261 #endif
8262  {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8263  FE_BOF|FE_ERL}
8264  ,
8265  {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8266  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8267  ,
8268  {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8269  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8270  ,
8271  {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8272  FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8273  ,
8274  {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8275  FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8276  FE_RAM|FE_DIFF}
8277  ,
8278  {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8279  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8280  FE_RAM|FE_DIFF}
8281  ,
8282  {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8283  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8284  FE_RAM|FE_DIFF}
8285  ,
8286  {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8287  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8288  FE_RAM|FE_DIFF}
8289  ,
8290 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8291  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8292  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8293  FE_RAM|FE_LCKFRQ}
8294  ,
8295 #else
8296  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8297  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8298  FE_RAM|FE_LCKFRQ}
8299  ,
8300 #endif
8301  {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8302  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8303  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8304  ,
8305  {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8306  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8307  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8308  ,
8309  {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8310  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8311  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8312  FE_C10}
8313  ,
8314  {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8315  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8316  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8317  FE_C10|FE_U3EN}
8318  ,
8319  {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8320  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8321  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8322  FE_C10|FE_U3EN}
8323  ,
8324  {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8325  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8326  FE_RAM|FE_IO256|FE_LEDC}
8327 };
8328 
8329 /*
8330  *  Look up the chip table.
8331  *
8332  *  Return a pointer to the chip entry if found,
8333  *  zero otherwise.
8334  */
8335 static const struct sym_pci_chip *
8336 sym_find_pci_chip(device_t dev)
8337 {
8338 	const struct	sym_pci_chip *chip;
8339 	int	i;
8340 	u_short	device_id;
8341 	u_char	revision;
8342 
8343 	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8344 		return NULL;
8345 
8346 	device_id = pci_get_device(dev);
8347 	revision  = pci_get_revid(dev);
8348 
8349 	for (i = 0; i < nitems(sym_pci_dev_table); i++) {
8350 		chip = &sym_pci_dev_table[i];
8351 		if (device_id != chip->device_id)
8352 			continue;
8353 		if (revision > chip->revision_id)
8354 			continue;
8355 		return chip;
8356 	}
8357 
8358 	return NULL;
8359 }
8360 
8361 /*
8362  *  Tell upper layer if the chip is supported.
8363  */
8364 static int
8365 sym_pci_probe(device_t dev)
8366 {
8367 	const struct	sym_pci_chip *chip;
8368 
8369 	chip = sym_find_pci_chip(dev);
8370 	if (chip && sym_find_firmware(chip)) {
8371 		device_set_desc(dev, chip->name);
8372 		return BUS_PROBE_DEFAULT;
8373 	}
8374 	return ENXIO;
8375 }
8376 
8377 /*
8378  *  Attach a sym53c8xx device.
8379  */
8380 static int
8381 sym_pci_attach(device_t dev)
8382 {
8383 	const struct	sym_pci_chip *chip;
8384 	u_short	command;
8385 	u_char	cachelnsz;
8386 	struct	sym_hcb *np = NULL;
8387 	struct	sym_nvram nvram;
8388 	const struct	sym_fw *fw = NULL;
8389 	int 	i;
8390 	bus_dma_tag_t	bus_dmat;
8391 
8392 	bus_dmat = bus_get_dma_tag(dev);
8393 
8394 	/*
8395 	 *  Only probed devices should be attached.
8396 	 *  We just enjoy being paranoid. :)
8397 	 */
8398 	chip = sym_find_pci_chip(dev);
8399 	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
8400 		return (ENXIO);
8401 
8402 	/*
8403 	 *  Allocate immediately the host control block,
8404 	 *  since we are only expecting to succeed. :)
8405 	 *  We keep track in the HCB of all the resources that
8406 	 *  are to be released on error.
8407 	 */
8408 	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
8409 	if (np)
8410 		np->bus_dmat = bus_dmat;
8411 	else
8412 		return (ENXIO);
8413 	device_set_softc(dev, np);
8414 
8415 	SYM_LOCK_INIT();
8416 
8417 	/*
8418 	 *  Copy some useful infos to the HCB.
8419 	 */
8420 	np->hcb_ba	 = vtobus(np);
8421 	np->verbose	 = bootverbose;
8422 	np->device	 = dev;
8423 	np->device_id	 = pci_get_device(dev);
8424 	np->revision_id  = pci_get_revid(dev);
8425 	np->features	 = chip->features;
8426 	np->clock_divn	 = chip->nr_divisor;
8427 	np->maxoffs	 = chip->offset_max;
8428 	np->maxburst	 = chip->burst_max;
8429 	np->scripta_sz	 = fw->a_size;
8430 	np->scriptb_sz	 = fw->b_size;
8431 	np->fw_setup	 = fw->setup;
8432 	np->fw_patch	 = fw->patch;
8433 	np->fw_name	 = fw->name;
8434 
8435 #ifdef __amd64__
8436 	np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)),
8437 			"TARGET");
8438 	if (!np->target)
8439 		goto attach_failed;
8440 #endif
8441 
8442 	/*
8443 	 *  Initialize the CCB free and busy queues.
8444 	 */
8445 	sym_que_init(&np->free_ccbq);
8446 	sym_que_init(&np->busy_ccbq);
8447 	sym_que_init(&np->comp_ccbq);
8448 	sym_que_init(&np->cam_ccbq);
8449 
8450 	/*
8451 	 *  Allocate a tag for the DMA of user data.
8452 	 */
8453 	if (bus_dma_tag_create(np->bus_dmat, 1, SYM_CONF_DMA_BOUNDARY,
8454 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
8455 	    BUS_SPACE_MAXSIZE_32BIT, SYM_CONF_MAX_SG, SYM_CONF_DMA_BOUNDARY,
8456 	    0, busdma_lock_mutex, &np->mtx, &np->data_dmat)) {
8457 		device_printf(dev, "failed to create DMA tag.\n");
8458 		goto attach_failed;
8459 	}
8460 
8461 	/*
8462 	 *  Read and apply some fix-ups to the PCI COMMAND
8463 	 *  register. We want the chip to be enabled for:
8464 	 *  - BUS mastering
8465 	 *  - PCI parity checking (reporting would also be fine)
8466 	 *  - Write And Invalidate.
8467 	 */
8468 	command = pci_read_config(dev, PCIR_COMMAND, 2);
8469 	command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_PERRESPEN |
8470 	    PCIM_CMD_MWRICEN;
8471 	pci_write_config(dev, PCIR_COMMAND, command, 2);
8472 
8473 	/*
8474 	 *  Let the device know about the cache line size,
8475 	 *  if it doesn't yet.
8476 	 */
8477 	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
8478 	if (!cachelnsz) {
8479 		cachelnsz = 8;
8480 		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
8481 	}
8482 
8483 	/*
8484 	 *  Alloc/get/map/retrieve everything that deals with MMIO.
8485 	 */
8486 	i = SYM_PCI_MMIO;
8487 	np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i,
8488 	    RF_ACTIVE);
8489 	if (!np->mmio_res) {
8490 		device_printf(dev, "failed to allocate MMIO resources\n");
8491 		goto attach_failed;
8492 	}
8493 	np->mmio_ba = rman_get_start(np->mmio_res);
8494 
8495 	/*
8496 	 *  Allocate the IRQ.
8497 	 */
8498 	i = 0;
8499 	np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
8500 					     RF_ACTIVE | RF_SHAREABLE);
8501 	if (!np->irq_res) {
8502 		device_printf(dev, "failed to allocate IRQ resource\n");
8503 		goto attach_failed;
8504 	}
8505 
8506 #ifdef	SYM_CONF_IOMAPPED
8507 	/*
8508 	 *  User want us to use normal IO with PCI.
8509 	 *  Alloc/get/map/retrieve everything that deals with IO.
8510 	 */
8511 	i = SYM_PCI_IO;
8512 	np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &i, RF_ACTIVE);
8513 	if (!np->io_res) {
8514 		device_printf(dev, "failed to allocate IO resources\n");
8515 		goto attach_failed;
8516 	}
8517 
8518 #endif /* SYM_CONF_IOMAPPED */
8519 
8520 	/*
8521 	 *  If the chip has RAM.
8522 	 *  Alloc/get/map/retrieve the corresponding resources.
8523 	 */
8524 	if (np->features & (FE_RAM|FE_RAM8K)) {
8525 		i = SYM_PCI_RAM;
8526 		if (np->features & FE_64BIT)
8527 			i = SYM_PCI_RAM64;
8528 		np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i,
8529 		    RF_ACTIVE);
8530 		if (!np->ram_res) {
8531 			device_printf(dev,"failed to allocate RAM resources\n");
8532 			goto attach_failed;
8533 		}
8534 		np->ram_ba = rman_get_start(np->ram_res);
8535 	}
8536 
8537 	/*
8538 	 *  Save setting of some IO registers, so we will
8539 	 *  be able to probe specific implementations.
8540 	 */
8541 	sym_save_initial_setting (np);
8542 
8543 	/*
8544 	 *  Reset the chip now, since it has been reported
8545 	 *  that SCSI clock calibration may not work properly
8546 	 *  if the chip is currently active.
8547 	 */
8548 	sym_chip_reset (np);
8549 
8550 	/*
8551 	 *  Try to read the user set-up.
8552 	 */
8553 	(void) sym_read_nvram(np, &nvram);
8554 
8555 	/*
8556 	 *  Prepare controller and devices settings, according
8557 	 *  to chip features, user set-up and driver set-up.
8558 	 */
8559 	(void) sym_prepare_setting(np, &nvram);
8560 
8561 	/*
8562 	 *  Check the PCI clock frequency.
8563 	 *  Must be performed after prepare_setting since it destroys
8564 	 *  STEST1 that is used to probe for the clock doubler.
8565 	 */
8566 	i = sym_getpciclock(np);
8567 	if (i > 37000)
8568 		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
8569 
8570 	/*
8571 	 *  Allocate the start queue.
8572 	 */
8573 	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
8574 	if (!np->squeue)
8575 		goto attach_failed;
8576 	np->squeue_ba = vtobus(np->squeue);
8577 
8578 	/*
8579 	 *  Allocate the done queue.
8580 	 */
8581 	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
8582 	if (!np->dqueue)
8583 		goto attach_failed;
8584 	np->dqueue_ba = vtobus(np->dqueue);
8585 
8586 	/*
8587 	 *  Allocate the target bus address array.
8588 	 */
8589 	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
8590 	if (!np->targtbl)
8591 		goto attach_failed;
8592 	np->targtbl_ba = vtobus(np->targtbl);
8593 
8594 	/*
8595 	 *  Allocate SCRIPTS areas.
8596 	 */
8597 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
8598 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
8599 	if (!np->scripta0 || !np->scriptb0)
8600 		goto attach_failed;
8601 
8602 	/*
8603 	 *  Allocate the CCBs. We need at least ONE.
8604 	 */
8605 	for (i = 0; sym_alloc_ccb(np) != NULL; i++)
8606 		;
8607 	if (i < 1)
8608 		goto attach_failed;
8609 
8610 	/*
8611 	 *  Calculate BUS addresses where we are going
8612 	 *  to load the SCRIPTS.
8613 	 */
8614 	np->scripta_ba	= vtobus(np->scripta0);
8615 	np->scriptb_ba	= vtobus(np->scriptb0);
8616 	np->scriptb0_ba	= np->scriptb_ba;
8617 
8618 	if (np->ram_ba) {
8619 		np->scripta_ba	= np->ram_ba;
8620 		if (np->features & FE_RAM8K) {
8621 			np->ram_ws = 8192;
8622 			np->scriptb_ba = np->scripta_ba + 4096;
8623 #ifdef __LP64__
8624 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
8625 #endif
8626 		}
8627 		else
8628 			np->ram_ws = 4096;
8629 	}
8630 
8631 	/*
8632 	 *  Copy scripts to controller instance.
8633 	 */
8634 	memcpy(np->scripta0, fw->a_base, np->scripta_sz);
8635 	memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
8636 
8637 	/*
8638 	 *  Setup variable parts in scripts and compute
8639 	 *  scripts bus addresses used from the C code.
8640 	 */
8641 	np->fw_setup(np, fw);
8642 
8643 	/*
8644 	 *  Bind SCRIPTS with physical addresses usable by the
8645 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
8646 	 */
8647 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
8648 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
8649 
8650 #ifdef SYM_CONF_IARB_SUPPORT
8651 	/*
8652 	 *    If user wants IARB to be set when we win arbitration
8653 	 *    and have other jobs, compute the max number of consecutive
8654 	 *    settings of IARB hints before we leave devices a chance to
8655 	 *    arbitrate for reselection.
8656 	 */
8657 #ifdef	SYM_SETUP_IARB_MAX
8658 	np->iarb_max = SYM_SETUP_IARB_MAX;
8659 #else
8660 	np->iarb_max = 4;
8661 #endif
8662 #endif
8663 
8664 	/*
8665 	 *  Prepare the idle and invalid task actions.
8666 	 */
8667 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8668 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8669 	np->idletask_ba		= vtobus(&np->idletask);
8670 
8671 	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8672 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8673 	np->notask_ba		= vtobus(&np->notask);
8674 
8675 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8676 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8677 	np->bad_itl_ba		= vtobus(&np->bad_itl);
8678 
8679 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8680 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
8681 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
8682 
8683 	/*
8684 	 *  Allocate and prepare the lun JUMP table that is used
8685 	 *  for a target prior the probing of devices (bad lun table).
8686 	 *  A private table will be allocated for the target on the
8687 	 *  first INQUIRY response received.
8688 	 */
8689 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
8690 	if (!np->badluntbl)
8691 		goto attach_failed;
8692 
8693 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
8694 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
8695 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
8696 
8697 	/*
8698 	 *  Prepare the bus address array that contains the bus
8699 	 *  address of each target control block.
8700 	 *  For now, assume all logical units are wrong. :)
8701 	 */
8702 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
8703 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
8704 		np->target[i].head.luntbl_sa =
8705 				cpu_to_scr(vtobus(np->badluntbl));
8706 		np->target[i].head.lun0_sa =
8707 				cpu_to_scr(vtobus(&np->badlun_sa));
8708 	}
8709 
8710 	/*
8711 	 *  Now check the cache handling of the pci chipset.
8712 	 */
8713 	if (sym_snooptest (np)) {
8714 		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
8715 		goto attach_failed;
8716 	}
8717 
8718 	/*
8719 	 *  Now deal with CAM.
8720 	 *  Hopefully, we will succeed with that one.:)
8721 	 */
8722 	if (!sym_cam_attach(np))
8723 		goto attach_failed;
8724 
8725 	/*
8726 	 *  Sigh! we are done.
8727 	 */
8728 	return 0;
8729 
8730 	/*
8731 	 *  We have failed.
8732 	 *  We will try to free all the resources we have
8733 	 *  allocated, but if we are a boot device, this
8734 	 *  will not help that much.;)
8735 	 */
8736 attach_failed:
8737 	if (np)
8738 		sym_pci_detach(dev);
8739 	return ENXIO;
8740 }
8741 
8742 /*
8743  *  Detach a device by freeing everything that has been allocated for it.
8744  */
8745 static int
8746 sym_pci_detach(device_t dev)
8747 {
8748 	hcb_p np;
8749 	SYM_QUEHEAD *qp;
8750 	ccb_p cp;
8751 	tcb_p tp;
8752 	lcb_p lp;
8753 	int target, lun;
8754 
8755 	np = device_get_softc(dev);
8756 
8757 	/*
8758 	 *  First free CAM resources.
8759 	 */
8760 	sym_cam_free(np);
8761 
8762 	/*
8763 	 *  Now every should be quiet for us to
8764 	 *  free other resources.
8765 	 */
8766 	if (np->ram_res)
8767 		bus_release_resource(np->device, SYS_RES_MEMORY,
8768 		    rman_get_rid(np->ram_res), np->ram_res);
8769 	if (np->mmio_res)
8770 		bus_release_resource(np->device, SYS_RES_MEMORY,
8771 		    rman_get_rid(np->mmio_res), np->mmio_res);
8772 	if (np->io_res)
8773 		bus_release_resource(np->device, SYS_RES_IOPORT,
8774 		    rman_get_rid(np->io_res), np->io_res);
8775 	if (np->irq_res)
8776 		bus_release_resource(np->device, SYS_RES_IRQ, 0, np->irq_res);
8777 
8778 	if (np->scriptb0)
8779 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
8780 	if (np->scripta0)
8781 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
8782 	if (np->squeue)
8783 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
8784 	if (np->dqueue)
8785 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
8786 
8787 	while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
8788 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
8789 		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
8790 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
8791 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
8792 	}
8793 
8794 	if (np->badluntbl)
8795 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
8796 
8797 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
8798 		tp = &np->target[target];
8799 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
8800 			lp = sym_lp(tp, lun);
8801 			if (!lp)
8802 				continue;
8803 			if (lp->itlq_tbl)
8804 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
8805 				       "ITLQ_TBL");
8806 			if (lp->cb_tags)
8807 				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
8808 				       "CB_TAGS");
8809 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
8810 		}
8811 #if SYM_CONF_MAX_LUN > 1
8812 		if (tp->lunmp)
8813 			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
8814 			       "LUNMP");
8815 #endif
8816 	}
8817 #ifdef __amd64__
8818 	if (np->target)
8819 		sym_mfree_dma(np->target,
8820 			SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET");
8821 #endif
8822 	if (np->targtbl)
8823 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
8824 	if (np->data_dmat)
8825 		bus_dma_tag_destroy(np->data_dmat);
8826 	if (SYM_LOCK_INITIALIZED() != 0)
8827 		SYM_LOCK_DESTROY();
8828 	device_set_softc(np->device, NULL);
8829 	sym_mfree_dma(np, sizeof(*np), "HCB");
8830 
8831 	return (0);
8832 }
8833 
8834 /*
8835  *  Allocate CAM resources and register a bus to CAM.
8836  */
8837 static int sym_cam_attach(hcb_p np)
8838 {
8839 	struct cam_devq *devq = NULL;
8840 	struct cam_sim *sim = NULL;
8841 	struct cam_path *path = NULL;
8842 	int err;
8843 
8844 	/*
8845 	 *  Establish our interrupt handler.
8846 	 */
8847 	err = bus_setup_intr(np->device, np->irq_res,
8848 			INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM,
8849 			NULL, sym_intr, np, &np->intr);
8850 	if (err) {
8851 		device_printf(np->device, "bus_setup_intr() failed: %d\n",
8852 			      err);
8853 		goto fail;
8854 	}
8855 
8856 	/*
8857 	 *  Create the device queue for our sym SIM.
8858 	 */
8859 	devq = cam_simq_alloc(SYM_CONF_MAX_START);
8860 	if (!devq)
8861 		goto fail;
8862 
8863 	/*
8864 	 *  Construct our SIM entry.
8865 	 */
8866 	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np,
8867 			device_get_unit(np->device),
8868 			&np->mtx, 1, SYM_SETUP_MAX_TAG, devq);
8869 	if (!sim)
8870 		goto fail;
8871 
8872 	SYM_LOCK();
8873 
8874 	if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS)
8875 		goto fail;
8876 	np->sim = sim;
8877 	sim = NULL;
8878 
8879 	if (xpt_create_path(&path, NULL,
8880 			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
8881 			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
8882 		goto fail;
8883 	}
8884 	np->path = path;
8885 
8886 	/*
8887 	 *  Establish our async notification handler.
8888 	 */
8889 	if (xpt_register_async(AC_LOST_DEVICE, sym_async, np->sim, path) !=
8890 	    CAM_REQ_CMP)
8891 		goto fail;
8892 
8893 	/*
8894 	 *  Start the chip now, without resetting the BUS, since
8895 	 *  it seems that this must stay under control of CAM.
8896 	 *  With LVD/SE capable chips and BUS in SE mode, we may
8897 	 *  get a spurious SMBC interrupt.
8898 	 */
8899 	sym_init (np, 0);
8900 
8901 	SYM_UNLOCK();
8902 
8903 	return 1;
8904 fail:
8905 	SYM_UNLOCK();
8906 
8907 	sym_cam_free(np);
8908 
8909 	return 0;
8910 }
8911 
8912 /*
8913  *  Free everything that deals with CAM.
8914  */
8915 static void sym_cam_free(hcb_p np)
8916 {
8917 
8918 	SYM_LOCK_ASSERT(MA_NOTOWNED);
8919 
8920 	if (np->intr) {
8921 		bus_teardown_intr(np->device, np->irq_res, np->intr);
8922 		np->intr = NULL;
8923 	}
8924 
8925 	SYM_LOCK();
8926 
8927 	if (np->path) {
8928 		xpt_async(AC_LOST_DEVICE, np->path, NULL);
8929 		xpt_free_path(np->path);
8930 		np->path = NULL;
8931 	}
8932 	if (np->sim) {
8933 		xpt_bus_deregister(cam_sim_path(np->sim));
8934 		cam_sim_free(np->sim, /*free_devq*/ TRUE);
8935 		np->sim = NULL;
8936 	}
8937 
8938 	SYM_UNLOCK();
8939 }
8940 
8941 /*============ OPTIONNAL NVRAM SUPPORT =================*/
8942 
8943 /*
8944  *  Get host setup from NVRAM.
8945  */
8946 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
8947 {
8948 #ifdef SYM_CONF_NVRAM_SUPPORT
8949 	/*
8950 	 *  Get parity checking, host ID, verbose mode
8951 	 *  and miscellaneous host flags from NVRAM.
8952 	 */
8953 	switch(nvram->type) {
8954 	case SYM_SYMBIOS_NVRAM:
8955 		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
8956 			np->rv_scntl0  &= ~0x0a;
8957 		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
8958 		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
8959 			np->verbose += 1;
8960 		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
8961 			np->usrflags |= SYM_SCAN_TARGETS_HILO;
8962 		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
8963 			np->usrflags |= SYM_AVOID_BUS_RESET;
8964 		break;
8965 	case SYM_TEKRAM_NVRAM:
8966 		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
8967 		break;
8968 	default:
8969 		break;
8970 	}
8971 #endif
8972 }
8973 
8974 /*
8975  *  Get target setup from NVRAM.
8976  */
8977 #ifdef SYM_CONF_NVRAM_SUPPORT
8978 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
8979 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
8980 #endif
8981 
8982 static void
8983 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
8984 {
8985 #ifdef SYM_CONF_NVRAM_SUPPORT
8986 	switch(nvp->type) {
8987 	case SYM_SYMBIOS_NVRAM:
8988 		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
8989 		break;
8990 	case SYM_TEKRAM_NVRAM:
8991 		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
8992 		break;
8993 	default:
8994 		break;
8995 	}
8996 #endif
8997 }
8998 
8999 #ifdef SYM_CONF_NVRAM_SUPPORT
9000 /*
9001  *  Get target set-up from Symbios format NVRAM.
9002  */
9003 static void
9004 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9005 {
9006 	tcb_p tp = &np->target[target];
9007 	Symbios_target *tn = &nvram->target[target];
9008 
9009 	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9010 	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9011 	tp->usrtags =
9012 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9013 
9014 	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9015 		tp->usrflags &= ~SYM_DISC_ENABLED;
9016 	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9017 		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9018 	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9019 		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9020 }
9021 
9022 /*
9023  *  Get target set-up from Tekram format NVRAM.
9024  */
9025 static void
9026 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9027 {
9028 	tcb_p tp = &np->target[target];
9029 	struct Tekram_target *tn = &nvram->target[target];
9030 	int i;
9031 
9032 	if (tn->flags & TEKRAM_SYNC_NEGO) {
9033 		i = tn->sync_index & 0xf;
9034 		tp->tinfo.user.period = Tekram_sync[i];
9035 	}
9036 
9037 	tp->tinfo.user.width =
9038 		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9039 
9040 	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9041 		tp->usrtags = 2 << nvram->max_tags_index;
9042 	}
9043 
9044 	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9045 		tp->usrflags |= SYM_DISC_ENABLED;
9046 
9047 	/* If any device does not support parity, we will not use this option */
9048 	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9049 		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9050 }
9051 
9052 #ifdef	SYM_CONF_DEBUG_NVRAM
9053 /*
9054  *  Dump Symbios format NVRAM for debugging purpose.
9055  */
9056 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9057 {
9058 	int i;
9059 
9060 	/* display Symbios nvram host data */
9061 	device_printf(np->device, "HOST ID=%d%s%s%s%s%s%s\n",
9062 	   nvram->host_id & 0x0f,
9063 	   (nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	: "",
9064 	   (nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	: "",
9065 	   (nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	: "",
9066 	   (nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	: "",
9067 	   (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)	? " NO_RESET"	: "",
9068 	   (nvram->flags1 & SYMBIOS_SCAN_HI_LO)		? " HI_LO"	: "");
9069 
9070 	/* display Symbios nvram drive data */
9071 	for (i = 0 ; i < 15 ; i++) {
9072 		struct Symbios_target *tn = &nvram->target[i];
9073 		printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9074 		sym_name(np), i,
9075 		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9076 		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9077 		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9078 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9079 		tn->bus_width,
9080 		tn->sync_period / 4,
9081 		tn->timeout);
9082 	}
9083 }
9084 
9085 /*
9086  *  Dump TEKRAM format NVRAM for debugging purpose.
9087  */
9088 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9089 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9090 {
9091 	int i, tags, boot_delay;
9092 	char *rem;
9093 
9094 	/* display Tekram nvram host data */
9095 	tags = 2 << nvram->max_tags_index;
9096 	boot_delay = 0;
9097 	if (nvram->boot_delay_index < 6)
9098 		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9099 	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9100 	default:
9101 	case 0:	rem = "";			break;
9102 	case 1: rem = " REMOVABLE=boot device";	break;
9103 	case 2: rem = " REMOVABLE=all";		break;
9104 	}
9105 
9106 	device_printf(np->device,
9107 	    "HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9108 	    nvram->host_id & 0x0f,
9109 	    (nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	: "",
9110 	    (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES)	? " >2DRIVES"	: "",
9111 	    (nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	: "",
9112 	    (nvram->flags & TEKRAM_RESET_ON_POWER_ON)	? " RESET"	: "",
9113 	    (nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	: "",
9114 	    (nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	: "",
9115 	    (nvram->flags & TEKRAM_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9116 	    (nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	: "",
9117 	    rem, boot_delay, tags);
9118 
9119 	/* display Tekram nvram drive data */
9120 	for (i = 0; i <= 15; i++) {
9121 		int sync, j;
9122 		struct Tekram_target *tn = &nvram->target[i];
9123 		j = tn->sync_index & 0xf;
9124 		sync = Tekram_sync[j];
9125 		printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9126 		sym_name(np), i,
9127 		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9128 		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9129 		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9130 		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9131 		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9132 		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9133 		sync);
9134 	}
9135 }
9136 #endif	/* SYM_CONF_DEBUG_NVRAM */
9137 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9138 
9139 /*
9140  *  Try reading Symbios or Tekram NVRAM
9141  */
9142 #ifdef SYM_CONF_NVRAM_SUPPORT
9143 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9144 static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9145 #endif
9146 
9147 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9148 {
9149 #ifdef SYM_CONF_NVRAM_SUPPORT
9150 	/*
9151 	 *  Try to read SYMBIOS nvram.
9152 	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9153 	 */
9154 	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9155 		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9156 		nvp->type = SYM_SYMBIOS_NVRAM;
9157 #ifdef SYM_CONF_DEBUG_NVRAM
9158 		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9159 #endif
9160 	}
9161 	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9162 		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9163 		nvp->type = SYM_TEKRAM_NVRAM;
9164 #ifdef SYM_CONF_DEBUG_NVRAM
9165 		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9166 #endif
9167 	}
9168 	else
9169 		nvp->type = 0;
9170 #else
9171 	nvp->type = 0;
9172 #endif
9173 	return nvp->type;
9174 }
9175 
9176 #ifdef SYM_CONF_NVRAM_SUPPORT
9177 /*
9178  *  24C16 EEPROM reading.
9179  *
9180  *  GPOI0 - data in/data out
9181  *  GPIO1 - clock
9182  *  Symbios NVRAM wiring now also used by Tekram.
9183  */
9184 
9185 #define SET_BIT 0
9186 #define CLR_BIT 1
9187 #define SET_CLK 2
9188 #define CLR_CLK 3
9189 
9190 /*
9191  *  Set/clear data/clock bit in GPIO0
9192  */
9193 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9194 			  int bit_mode)
9195 {
9196 	UDELAY (5);
9197 	switch (bit_mode){
9198 	case SET_BIT:
9199 		*gpreg |= write_bit;
9200 		break;
9201 	case CLR_BIT:
9202 		*gpreg &= 0xfe;
9203 		break;
9204 	case SET_CLK:
9205 		*gpreg |= 0x02;
9206 		break;
9207 	case CLR_CLK:
9208 		*gpreg &= 0xfd;
9209 		break;
9210 	}
9211 	OUTB (nc_gpreg, *gpreg);
9212 	UDELAY (5);
9213 }
9214 
9215 /*
9216  *  Send START condition to NVRAM to wake it up.
9217  */
9218 static void S24C16_start(hcb_p np, u_char *gpreg)
9219 {
9220 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9221 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9222 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9223 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9224 }
9225 
9226 /*
9227  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9228  */
9229 static void S24C16_stop(hcb_p np, u_char *gpreg)
9230 {
9231 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9232 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9233 }
9234 
9235 /*
9236  *  Read or write a bit to the NVRAM,
9237  *  read if GPIO0 input else write if GPIO0 output
9238  */
9239 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
9240 			 u_char *gpreg)
9241 {
9242 	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
9243 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9244 	if (read_bit)
9245 		*read_bit = INB (nc_gpreg);
9246 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9247 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9248 }
9249 
9250 /*
9251  *  Output an ACK to the NVRAM after reading,
9252  *  change GPIO0 to output and when done back to an input
9253  */
9254 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
9255 			    u_char *gpcntl)
9256 {
9257 	OUTB (nc_gpcntl, *gpcntl & 0xfe);
9258 	S24C16_do_bit(np, 0, write_bit, gpreg);
9259 	OUTB (nc_gpcntl, *gpcntl);
9260 }
9261 
9262 /*
9263  *  Input an ACK from NVRAM after writing,
9264  *  change GPIO0 to input and when done back to an output
9265  */
9266 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
9267 			   u_char *gpcntl)
9268 {
9269 	OUTB (nc_gpcntl, *gpcntl | 0x01);
9270 	S24C16_do_bit(np, read_bit, 1, gpreg);
9271 	OUTB (nc_gpcntl, *gpcntl);
9272 }
9273 
9274 /*
9275  *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
9276  *  GPIO0 must already be set as an output
9277  */
9278 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
9279 			     u_char *gpreg, u_char *gpcntl)
9280 {
9281 	int x;
9282 
9283 	for (x = 0; x < 8; x++)
9284 		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
9285 
9286 	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
9287 }
9288 
9289 /*
9290  *  READ a byte from the NVRAM and then send an ACK to say we have got it,
9291  *  GPIO0 must already be set as an input
9292  */
9293 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
9294 			    u_char *gpreg, u_char *gpcntl)
9295 {
9296 	int x;
9297 	u_char read_bit;
9298 
9299 	*read_data = 0;
9300 	for (x = 0; x < 8; x++) {
9301 		S24C16_do_bit(np, &read_bit, 1, gpreg);
9302 		*read_data |= ((read_bit & 0x01) << (7 - x));
9303 	}
9304 
9305 	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
9306 }
9307 
9308 /*
9309  *  Read 'len' bytes starting at 'offset'.
9310  */
9311 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
9312 {
9313 	u_char	gpcntl, gpreg;
9314 	u_char	old_gpcntl, old_gpreg;
9315 	u_char	ack_data;
9316 	int	retv = 1;
9317 	int	x;
9318 
9319 	/* save current state of GPCNTL and GPREG */
9320 	old_gpreg	= INB (nc_gpreg);
9321 	old_gpcntl	= INB (nc_gpcntl);
9322 	gpcntl		= old_gpcntl & 0x1c;
9323 
9324 	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
9325 	OUTB (nc_gpreg,  old_gpreg);
9326 	OUTB (nc_gpcntl, gpcntl);
9327 
9328 	/* this is to set NVRAM into a known state with GPIO0/1 both low */
9329 	gpreg = old_gpreg;
9330 	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
9331 	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
9332 
9333 	/* now set NVRAM inactive with GPIO0/1 both high */
9334 	S24C16_stop(np, &gpreg);
9335 
9336 	/* activate NVRAM */
9337 	S24C16_start(np, &gpreg);
9338 
9339 	/* write device code and random address MSB */
9340 	S24C16_write_byte(np, &ack_data,
9341 		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9342 	if (ack_data & 0x01)
9343 		goto out;
9344 
9345 	/* write random address LSB */
9346 	S24C16_write_byte(np, &ack_data,
9347 		offset & 0xff, &gpreg, &gpcntl);
9348 	if (ack_data & 0x01)
9349 		goto out;
9350 
9351 	/* regenerate START state to set up for reading */
9352 	S24C16_start(np, &gpreg);
9353 
9354 	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
9355 	S24C16_write_byte(np, &ack_data,
9356 		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9357 	if (ack_data & 0x01)
9358 		goto out;
9359 
9360 	/* now set up GPIO0 for inputting data */
9361 	gpcntl |= 0x01;
9362 	OUTB (nc_gpcntl, gpcntl);
9363 
9364 	/* input all requested data - only part of total NVRAM */
9365 	for (x = 0; x < len; x++)
9366 		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
9367 
9368 	/* finally put NVRAM back in inactive mode */
9369 	gpcntl &= 0xfe;
9370 	OUTB (nc_gpcntl, gpcntl);
9371 	S24C16_stop(np, &gpreg);
9372 	retv = 0;
9373 out:
9374 	/* return GPIO0/1 to original states after having accessed NVRAM */
9375 	OUTB (nc_gpcntl, old_gpcntl);
9376 	OUTB (nc_gpreg,  old_gpreg);
9377 
9378 	return retv;
9379 }
9380 
9381 #undef SET_BIT /* 0 */
9382 #undef CLR_BIT /* 1 */
9383 #undef SET_CLK /* 2 */
9384 #undef CLR_CLK /* 3 */
9385 
9386 /*
9387  *  Try reading Symbios NVRAM.
9388  *  Return 0 if OK.
9389  */
9390 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
9391 {
9392 	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
9393 	u_char *data = (u_char *) nvram;
9394 	int len  = sizeof(*nvram);
9395 	u_short	csum;
9396 	int x;
9397 
9398 	/* probe the 24c16 and read the SYMBIOS 24c16 area */
9399 	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
9400 		return 1;
9401 
9402 	/* check valid NVRAM signature, verify byte count and checksum */
9403 	if (nvram->type != 0 ||
9404 	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
9405 	    nvram->byte_count != len - 12)
9406 		return 1;
9407 
9408 	/* verify checksum */
9409 	for (x = 6, csum = 0; x < len - 6; x++)
9410 		csum += data[x];
9411 	if (csum != nvram->checksum)
9412 		return 1;
9413 
9414 	return 0;
9415 }
9416 
9417 /*
9418  *  93C46 EEPROM reading.
9419  *
9420  *  GPOI0 - data in
9421  *  GPIO1 - data out
9422  *  GPIO2 - clock
9423  *  GPIO4 - chip select
9424  *
9425  *  Used by Tekram.
9426  */
9427 
9428 /*
9429  *  Pulse clock bit in GPIO0
9430  */
9431 static void T93C46_Clk(hcb_p np, u_char *gpreg)
9432 {
9433 	OUTB (nc_gpreg, *gpreg | 0x04);
9434 	UDELAY (2);
9435 	OUTB (nc_gpreg, *gpreg);
9436 }
9437 
9438 /*
9439  *  Read bit from NVRAM
9440  */
9441 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
9442 {
9443 	UDELAY (2);
9444 	T93C46_Clk(np, gpreg);
9445 	*read_bit = INB (nc_gpreg);
9446 }
9447 
9448 /*
9449  *  Write bit to GPIO0
9450  */
9451 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
9452 {
9453 	if (write_bit & 0x01)
9454 		*gpreg |= 0x02;
9455 	else
9456 		*gpreg &= 0xfd;
9457 
9458 	*gpreg |= 0x10;
9459 
9460 	OUTB (nc_gpreg, *gpreg);
9461 	UDELAY (2);
9462 
9463 	T93C46_Clk(np, gpreg);
9464 }
9465 
9466 /*
9467  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
9468  */
9469 static void T93C46_Stop(hcb_p np, u_char *gpreg)
9470 {
9471 	*gpreg &= 0xef;
9472 	OUTB (nc_gpreg, *gpreg);
9473 	UDELAY (2);
9474 
9475 	T93C46_Clk(np, gpreg);
9476 }
9477 
9478 /*
9479  *  Send read command and address to NVRAM
9480  */
9481 static void T93C46_Send_Command(hcb_p np, u_short write_data,
9482 				u_char *read_bit, u_char *gpreg)
9483 {
9484 	int x;
9485 
9486 	/* send 9 bits, start bit (1), command (2), address (6)  */
9487 	for (x = 0; x < 9; x++)
9488 		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
9489 
9490 	*read_bit = INB (nc_gpreg);
9491 }
9492 
9493 /*
9494  *  READ 2 bytes from the NVRAM
9495  */
9496 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
9497 {
9498 	int x;
9499 	u_char read_bit;
9500 
9501 	*nvram_data = 0;
9502 	for (x = 0; x < 16; x++) {
9503 		T93C46_Read_Bit(np, &read_bit, gpreg);
9504 
9505 		if (read_bit & 0x01)
9506 			*nvram_data |=  (0x01 << (15 - x));
9507 		else
9508 			*nvram_data &= ~(0x01 << (15 - x));
9509 	}
9510 }
9511 
9512 /*
9513  *  Read Tekram NvRAM data.
9514  */
9515 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
9516 {
9517 	u_char	read_bit;
9518 	int	x;
9519 
9520 	for (x = 0; x < len; x++)  {
9521 		/* output read command and address */
9522 		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
9523 		if (read_bit & 0x01)
9524 			return 1; /* Bad */
9525 		T93C46_Read_Word(np, &data[x], gpreg);
9526 		T93C46_Stop(np, gpreg);
9527 	}
9528 
9529 	return 0;
9530 }
9531 
9532 /*
9533  *  Try reading 93C46 Tekram NVRAM.
9534  */
9535 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
9536 {
9537 	u_char gpcntl, gpreg;
9538 	u_char old_gpcntl, old_gpreg;
9539 	int retv = 1;
9540 
9541 	/* save current state of GPCNTL and GPREG */
9542 	old_gpreg	= INB (nc_gpreg);
9543 	old_gpcntl	= INB (nc_gpcntl);
9544 
9545 	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
9546 	   1/2/4 out */
9547 	gpreg = old_gpreg & 0xe9;
9548 	OUTB (nc_gpreg, gpreg);
9549 	gpcntl = (old_gpcntl & 0xe9) | 0x09;
9550 	OUTB (nc_gpcntl, gpcntl);
9551 
9552 	/* input all of NVRAM, 64 words */
9553 	retv = T93C46_Read_Data(np, (u_short *) nvram,
9554 				sizeof(*nvram) / sizeof(short), &gpreg);
9555 
9556 	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
9557 	OUTB (nc_gpcntl, old_gpcntl);
9558 	OUTB (nc_gpreg,  old_gpreg);
9559 
9560 	return retv;
9561 }
9562 
9563 /*
9564  *  Try reading Tekram NVRAM.
9565  *  Return 0 if OK.
9566  */
9567 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
9568 {
9569 	u_char *data = (u_char *) nvram;
9570 	int len = sizeof(*nvram);
9571 	u_short	csum;
9572 	int x;
9573 
9574 	switch (np->device_id) {
9575 	case PCI_ID_SYM53C885:
9576 	case PCI_ID_SYM53C895:
9577 	case PCI_ID_SYM53C896:
9578 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9579 					  data, len);
9580 		break;
9581 	case PCI_ID_SYM53C875:
9582 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9583 					  data, len);
9584 		if (!x)
9585 			break;
9586 	default:
9587 		x = sym_read_T93C46_nvram(np, nvram);
9588 		break;
9589 	}
9590 	if (x)
9591 		return 1;
9592 
9593 	/* verify checksum */
9594 	for (x = 0, csum = 0; x < len - 1; x += 2)
9595 		csum += data[x] + (data[x+1] << 8);
9596 	if (csum != 0x1234)
9597 		return 1;
9598 
9599 	return 0;
9600 }
9601 
9602 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9603