xref: /linux/drivers/net/ethernet/samsung/sxgbe/sxgbe_main.c (revision 621cde16e49b3ecf7d59a8106a20aaebfb4a59a9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* 10G controller driver for Samsung SoCs
3  *
4  * Copyright (C) 2013 Samsung Electronics Co., Ltd.
5  *		http://www.samsung.com
6  *
7  * Author: Siva Reddy Kallam <siva.kallam@samsung.com>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/clk.h>
13 #include <linux/crc32.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/etherdevice.h>
16 #include <linux/ethtool.h>
17 #include <linux/if.h>
18 #include <linux/if_ether.h>
19 #include <linux/if_vlan.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/ip.h>
23 #include <linux/kernel.h>
24 #include <linux/mii.h>
25 #include <linux/module.h>
26 #include <linux/net_tstamp.h>
27 #include <linux/netdevice.h>
28 #include <linux/phy.h>
29 #include <linux/platform_device.h>
30 #include <linux/prefetch.h>
31 #include <linux/skbuff.h>
32 #include <linux/slab.h>
33 #include <linux/tcp.h>
34 #include <linux/sxgbe_platform.h>
35 
36 #include "sxgbe_common.h"
37 #include "sxgbe_desc.h"
38 #include "sxgbe_dma.h"
39 #include "sxgbe_mtl.h"
40 #include "sxgbe_reg.h"
41 
42 #define SXGBE_ALIGN(x)	L1_CACHE_ALIGN(x)
43 #define JUMBO_LEN	9000
44 
45 /* Module parameters */
46 #define TX_TIMEO	5000
47 #define DMA_TX_SIZE	512
48 #define DMA_RX_SIZE	1024
49 #define TC_DEFAULT	64
50 #define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
51 /* The default timer value as per the sxgbe specification 1 sec(1000 ms) */
52 #define SXGBE_DEFAULT_LPI_TIMER	1000
53 
54 static int debug = -1;
55 static int eee_timer = SXGBE_DEFAULT_LPI_TIMER;
56 
57 module_param(eee_timer, int, 0644);
58 
59 module_param(debug, int, 0644);
60 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
61 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
62 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
63 
64 static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id);
65 static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id);
66 static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id);
67 
68 #define SXGBE_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
69 
70 #define SXGBE_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))
71 
72 /**
73  * sxgbe_verify_args - verify the driver parameters.
74  * Description: it verifies if some wrong parameter is passed to the driver.
75  * Note that wrong parameters are replaced with the default values.
76  */
sxgbe_verify_args(void)77 static void sxgbe_verify_args(void)
78 {
79 	if (unlikely(eee_timer < 0))
80 		eee_timer = SXGBE_DEFAULT_LPI_TIMER;
81 }
82 
sxgbe_enable_eee_mode(const struct sxgbe_priv_data * priv)83 static void sxgbe_enable_eee_mode(const struct sxgbe_priv_data *priv)
84 {
85 	/* Check and enter in LPI mode */
86 	if (!priv->tx_path_in_lpi_mode)
87 		priv->hw->mac->set_eee_mode(priv->ioaddr);
88 }
89 
sxgbe_disable_eee_mode(struct sxgbe_priv_data * const priv)90 void sxgbe_disable_eee_mode(struct sxgbe_priv_data * const priv)
91 {
92 	/* Exit and disable EEE in case of we are in LPI state. */
93 	priv->hw->mac->reset_eee_mode(priv->ioaddr);
94 	del_timer_sync(&priv->eee_ctrl_timer);
95 	priv->tx_path_in_lpi_mode = false;
96 }
97 
98 /**
99  * sxgbe_eee_ctrl_timer
100  * @t: timer list containing a data
101  * Description:
102  *  If there is no data transfer and if we are not in LPI state,
103  *  then MAC Transmitter can be moved to LPI state.
104  */
sxgbe_eee_ctrl_timer(struct timer_list * t)105 static void sxgbe_eee_ctrl_timer(struct timer_list *t)
106 {
107 	struct sxgbe_priv_data *priv = from_timer(priv, t, eee_ctrl_timer);
108 
109 	sxgbe_enable_eee_mode(priv);
110 	mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer));
111 }
112 
113 /**
114  * sxgbe_eee_init
115  * @priv: private device pointer
116  * Description:
117  *  If the EEE support has been enabled while configuring the driver,
118  *  if the GMAC actually supports the EEE (from the HW cap reg) and the
119  *  phy can also manage EEE, so enable the LPI state and start the timer
120  *  to verify if the tx path can enter in LPI state.
121  */
sxgbe_eee_init(struct sxgbe_priv_data * const priv)122 bool sxgbe_eee_init(struct sxgbe_priv_data * const priv)
123 {
124 	struct net_device *ndev = priv->dev;
125 	bool ret = false;
126 
127 	/* MAC core supports the EEE feature. */
128 	if (priv->hw_cap.eee) {
129 		/* Check if the PHY supports EEE */
130 		if (phy_init_eee(ndev->phydev, true))
131 			return false;
132 
133 		timer_setup(&priv->eee_ctrl_timer, sxgbe_eee_ctrl_timer, 0);
134 		priv->eee_ctrl_timer.expires = SXGBE_LPI_TIMER(eee_timer);
135 		add_timer(&priv->eee_ctrl_timer);
136 
137 		priv->hw->mac->set_eee_timer(priv->ioaddr,
138 					     SXGBE_DEFAULT_LPI_TIMER,
139 					     priv->tx_lpi_timer);
140 
141 		pr_info("Energy-Efficient Ethernet initialized\n");
142 
143 		ret = true;
144 	}
145 
146 	return ret;
147 }
148 
sxgbe_eee_adjust(const struct sxgbe_priv_data * priv)149 static void sxgbe_eee_adjust(const struct sxgbe_priv_data *priv)
150 {
151 	struct net_device *ndev = priv->dev;
152 
153 	/* When the EEE has been already initialised we have to
154 	 * modify the PLS bit in the LPI ctrl & status reg according
155 	 * to the PHY link status. For this reason.
156 	 */
157 	if (priv->eee_enabled)
158 		priv->hw->mac->set_eee_pls(priv->ioaddr, ndev->phydev->link);
159 }
160 
161 /**
162  * sxgbe_clk_csr_set - dynamically set the MDC clock
163  * @priv: driver private structure
164  * Description: this is to dynamically set the MDC clock according to the csr
165  * clock input.
166  */
sxgbe_clk_csr_set(struct sxgbe_priv_data * priv)167 static void sxgbe_clk_csr_set(struct sxgbe_priv_data *priv)
168 {
169 	u32 clk_rate = clk_get_rate(priv->sxgbe_clk);
170 
171 	/* assign the proper divider, this will be used during
172 	 * mdio communication
173 	 */
174 	if (clk_rate < SXGBE_CSR_F_150M)
175 		priv->clk_csr = SXGBE_CSR_100_150M;
176 	else if (clk_rate <= SXGBE_CSR_F_250M)
177 		priv->clk_csr = SXGBE_CSR_150_250M;
178 	else if (clk_rate <= SXGBE_CSR_F_300M)
179 		priv->clk_csr = SXGBE_CSR_250_300M;
180 	else if (clk_rate <= SXGBE_CSR_F_350M)
181 		priv->clk_csr = SXGBE_CSR_300_350M;
182 	else if (clk_rate <= SXGBE_CSR_F_400M)
183 		priv->clk_csr = SXGBE_CSR_350_400M;
184 	else if (clk_rate <= SXGBE_CSR_F_500M)
185 		priv->clk_csr = SXGBE_CSR_400_500M;
186 }
187 
188 /* minimum number of free TX descriptors required to wake up TX process */
189 #define SXGBE_TX_THRESH(x)	(x->dma_tx_size/4)
190 
sxgbe_tx_avail(struct sxgbe_tx_queue * queue,int tx_qsize)191 static inline u32 sxgbe_tx_avail(struct sxgbe_tx_queue *queue, int tx_qsize)
192 {
193 	return queue->dirty_tx + tx_qsize - queue->cur_tx - 1;
194 }
195 
196 /**
197  * sxgbe_adjust_link
198  * @dev: net device structure
199  * Description: it adjusts the link parameters.
200  */
sxgbe_adjust_link(struct net_device * dev)201 static void sxgbe_adjust_link(struct net_device *dev)
202 {
203 	struct sxgbe_priv_data *priv = netdev_priv(dev);
204 	struct phy_device *phydev = dev->phydev;
205 	u8 new_state = 0;
206 	u8 speed = 0xff;
207 
208 	if (!phydev)
209 		return;
210 
211 	/* SXGBE is not supporting auto-negotiation and
212 	 * half duplex mode. so, not handling duplex change
213 	 * in this function. only handling speed and link status
214 	 */
215 	if (phydev->link) {
216 		if (phydev->speed != priv->speed) {
217 			new_state = 1;
218 			switch (phydev->speed) {
219 			case SPEED_10000:
220 				speed = SXGBE_SPEED_10G;
221 				break;
222 			case SPEED_2500:
223 				speed = SXGBE_SPEED_2_5G;
224 				break;
225 			case SPEED_1000:
226 				speed = SXGBE_SPEED_1G;
227 				break;
228 			default:
229 				netif_err(priv, link, dev,
230 					  "Speed (%d) not supported\n",
231 					  phydev->speed);
232 			}
233 
234 			priv->speed = phydev->speed;
235 			priv->hw->mac->set_speed(priv->ioaddr, speed);
236 		}
237 
238 		if (!priv->oldlink) {
239 			new_state = 1;
240 			priv->oldlink = 1;
241 		}
242 	} else if (priv->oldlink) {
243 		new_state = 1;
244 		priv->oldlink = 0;
245 		priv->speed = SPEED_UNKNOWN;
246 	}
247 
248 	if (new_state & netif_msg_link(priv))
249 		phy_print_status(phydev);
250 
251 	/* Alter the MAC settings for EEE */
252 	sxgbe_eee_adjust(priv);
253 }
254 
255 /**
256  * sxgbe_init_phy - PHY initialization
257  * @ndev: net device structure
258  * Description: it initializes the driver's PHY state, and attaches the PHY
259  * to the mac driver.
260  *  Return value:
261  *  0 on success
262  */
sxgbe_init_phy(struct net_device * ndev)263 static int sxgbe_init_phy(struct net_device *ndev)
264 {
265 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
266 	char bus_id[MII_BUS_ID_SIZE];
267 	struct phy_device *phydev;
268 	struct sxgbe_priv_data *priv = netdev_priv(ndev);
269 	int phy_iface = priv->plat->interface;
270 
271 	/* assign default link status */
272 	priv->oldlink = 0;
273 	priv->speed = SPEED_UNKNOWN;
274 	priv->oldduplex = DUPLEX_UNKNOWN;
275 
276 	if (priv->plat->phy_bus_name)
277 		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
278 			 priv->plat->phy_bus_name, priv->plat->bus_id);
279 	else
280 		snprintf(bus_id, MII_BUS_ID_SIZE, "sxgbe-%x",
281 			 priv->plat->bus_id);
282 
283 	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
284 		 priv->plat->phy_addr);
285 	netdev_dbg(ndev, "%s: trying to attach to %s\n", __func__, phy_id_fmt);
286 
287 	phydev = phy_connect(ndev, phy_id_fmt, &sxgbe_adjust_link, phy_iface);
288 
289 	if (IS_ERR(phydev)) {
290 		netdev_err(ndev, "Could not attach to PHY\n");
291 		return PTR_ERR(phydev);
292 	}
293 
294 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
295 	if ((phy_iface == PHY_INTERFACE_MODE_MII) ||
296 	    (phy_iface == PHY_INTERFACE_MODE_RMII))
297 		phy_set_max_speed(phydev, SPEED_1000);
298 
299 	if (phydev->phy_id == 0) {
300 		phy_disconnect(phydev);
301 		return -ENODEV;
302 	}
303 
304 	netdev_dbg(ndev, "%s: attached to PHY (UID 0x%x) Link = %d\n",
305 		   __func__, phydev->phy_id, phydev->link);
306 
307 	return 0;
308 }
309 
310 /**
311  * sxgbe_clear_descriptors: clear descriptors
312  * @priv: driver private structure
313  * Description: this function is called to clear the tx and rx descriptors
314  * in case of both basic and extended descriptors are used.
315  */
sxgbe_clear_descriptors(struct sxgbe_priv_data * priv)316 static void sxgbe_clear_descriptors(struct sxgbe_priv_data *priv)
317 {
318 	int i, j;
319 	unsigned int txsize = priv->dma_tx_size;
320 	unsigned int rxsize = priv->dma_rx_size;
321 
322 	/* Clear the Rx/Tx descriptors */
323 	for (j = 0; j < SXGBE_RX_QUEUES; j++) {
324 		for (i = 0; i < rxsize; i++)
325 			priv->hw->desc->init_rx_desc(&priv->rxq[j]->dma_rx[i],
326 						     priv->use_riwt, priv->mode,
327 						     (i == rxsize - 1));
328 	}
329 
330 	for (j = 0; j < SXGBE_TX_QUEUES; j++) {
331 		for (i = 0; i < txsize; i++)
332 			priv->hw->desc->init_tx_desc(&priv->txq[j]->dma_tx[i]);
333 	}
334 }
335 
sxgbe_init_rx_buffers(struct net_device * dev,struct sxgbe_rx_norm_desc * p,int i,unsigned int dma_buf_sz,struct sxgbe_rx_queue * rx_ring)336 static int sxgbe_init_rx_buffers(struct net_device *dev,
337 				 struct sxgbe_rx_norm_desc *p, int i,
338 				 unsigned int dma_buf_sz,
339 				 struct sxgbe_rx_queue *rx_ring)
340 {
341 	struct sxgbe_priv_data *priv = netdev_priv(dev);
342 	struct sk_buff *skb;
343 
344 	skb = __netdev_alloc_skb_ip_align(dev, dma_buf_sz, GFP_KERNEL);
345 	if (!skb)
346 		return -ENOMEM;
347 
348 	rx_ring->rx_skbuff[i] = skb;
349 	rx_ring->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
350 						   dma_buf_sz, DMA_FROM_DEVICE);
351 
352 	if (dma_mapping_error(priv->device, rx_ring->rx_skbuff_dma[i])) {
353 		netdev_err(dev, "%s: DMA mapping error\n", __func__);
354 		dev_kfree_skb_any(skb);
355 		return -EINVAL;
356 	}
357 
358 	p->rdes23.rx_rd_des23.buf2_addr = rx_ring->rx_skbuff_dma[i];
359 
360 	return 0;
361 }
362 
363 /**
364  * sxgbe_free_rx_buffers - free what sxgbe_init_rx_buffers() allocated
365  * @dev: net device structure
366  * @p: dec pointer
367  * @i: index
368  * @dma_buf_sz: size
369  * @rx_ring: ring to be freed
370  *
371  * Description:  this function initializes the DMA RX descriptor
372  */
sxgbe_free_rx_buffers(struct net_device * dev,struct sxgbe_rx_norm_desc * p,int i,unsigned int dma_buf_sz,struct sxgbe_rx_queue * rx_ring)373 static void sxgbe_free_rx_buffers(struct net_device *dev,
374 				  struct sxgbe_rx_norm_desc *p, int i,
375 				  unsigned int dma_buf_sz,
376 				  struct sxgbe_rx_queue *rx_ring)
377 {
378 	struct sxgbe_priv_data *priv = netdev_priv(dev);
379 
380 	kfree_skb(rx_ring->rx_skbuff[i]);
381 	dma_unmap_single(priv->device, rx_ring->rx_skbuff_dma[i],
382 			 dma_buf_sz, DMA_FROM_DEVICE);
383 }
384 
385 /**
386  * init_tx_ring - init the TX descriptor ring
387  * @dev: net device structure
388  * @queue_no: queue
389  * @tx_ring: ring to be initialised
390  * @tx_rsize: ring size
391  * Description:  this function initializes the DMA TX descriptor
392  */
init_tx_ring(struct device * dev,u8 queue_no,struct sxgbe_tx_queue * tx_ring,int tx_rsize)393 static int init_tx_ring(struct device *dev, u8 queue_no,
394 			struct sxgbe_tx_queue *tx_ring,	int tx_rsize)
395 {
396 	/* TX ring is not allcoated */
397 	if (!tx_ring) {
398 		dev_err(dev, "No memory for TX queue of SXGBE\n");
399 		return -ENOMEM;
400 	}
401 
402 	/* allocate memory for TX descriptors */
403 	tx_ring->dma_tx = dma_alloc_coherent(dev,
404 					     tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
405 					     &tx_ring->dma_tx_phy, GFP_KERNEL);
406 	if (!tx_ring->dma_tx)
407 		return -ENOMEM;
408 
409 	/* allocate memory for TX skbuff array */
410 	tx_ring->tx_skbuff_dma = devm_kcalloc(dev, tx_rsize,
411 					      sizeof(dma_addr_t), GFP_KERNEL);
412 	if (!tx_ring->tx_skbuff_dma)
413 		goto dmamem_err;
414 
415 	tx_ring->tx_skbuff = devm_kcalloc(dev, tx_rsize,
416 					  sizeof(struct sk_buff *), GFP_KERNEL);
417 
418 	if (!tx_ring->tx_skbuff)
419 		goto dmamem_err;
420 
421 	/* assign queue number */
422 	tx_ring->queue_no = queue_no;
423 
424 	/* initialise counters */
425 	tx_ring->dirty_tx = 0;
426 	tx_ring->cur_tx = 0;
427 
428 	return 0;
429 
430 dmamem_err:
431 	dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
432 			  tx_ring->dma_tx, tx_ring->dma_tx_phy);
433 	return -ENOMEM;
434 }
435 
436 /**
437  * free_rx_ring - free the RX descriptor ring
438  * @dev: net device structure
439  * @rx_ring: ring to be initialised
440  * @rx_rsize: ring size
441  * Description:  this function initializes the DMA RX descriptor
442  */
free_rx_ring(struct device * dev,struct sxgbe_rx_queue * rx_ring,int rx_rsize)443 static void free_rx_ring(struct device *dev, struct sxgbe_rx_queue *rx_ring,
444 			 int rx_rsize)
445 {
446 	dma_free_coherent(dev, rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
447 			  rx_ring->dma_rx, rx_ring->dma_rx_phy);
448 	kfree(rx_ring->rx_skbuff_dma);
449 	kfree(rx_ring->rx_skbuff);
450 }
451 
452 /**
453  * init_rx_ring - init the RX descriptor ring
454  * @dev: net device structure
455  * @queue_no: queue
456  * @rx_ring: ring to be initialised
457  * @rx_rsize: ring size
458  * Description:  this function initializes the DMA RX descriptor
459  */
init_rx_ring(struct net_device * dev,u8 queue_no,struct sxgbe_rx_queue * rx_ring,int rx_rsize)460 static int init_rx_ring(struct net_device *dev, u8 queue_no,
461 			struct sxgbe_rx_queue *rx_ring,	int rx_rsize)
462 {
463 	struct sxgbe_priv_data *priv = netdev_priv(dev);
464 	int desc_index;
465 	unsigned int bfsize = 0;
466 	unsigned int ret = 0;
467 
468 	/* Set the max buffer size according to the MTU. */
469 	bfsize = ALIGN(dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN, 8);
470 
471 	netif_dbg(priv, probe, dev, "%s: bfsize %d\n", __func__, bfsize);
472 
473 	/* RX ring is not allcoated */
474 	if (rx_ring == NULL) {
475 		netdev_err(dev, "No memory for RX queue\n");
476 		return -ENOMEM;
477 	}
478 
479 	/* assign queue number */
480 	rx_ring->queue_no = queue_no;
481 
482 	/* allocate memory for RX descriptors */
483 	rx_ring->dma_rx = dma_alloc_coherent(priv->device,
484 					     rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
485 					     &rx_ring->dma_rx_phy, GFP_KERNEL);
486 
487 	if (rx_ring->dma_rx == NULL)
488 		return -ENOMEM;
489 
490 	/* allocate memory for RX skbuff array */
491 	rx_ring->rx_skbuff_dma = kmalloc_array(rx_rsize,
492 					       sizeof(dma_addr_t), GFP_KERNEL);
493 	if (!rx_ring->rx_skbuff_dma) {
494 		ret = -ENOMEM;
495 		goto err_free_dma_rx;
496 	}
497 
498 	rx_ring->rx_skbuff = kmalloc_array(rx_rsize,
499 					   sizeof(struct sk_buff *), GFP_KERNEL);
500 	if (!rx_ring->rx_skbuff) {
501 		ret = -ENOMEM;
502 		goto err_free_skbuff_dma;
503 	}
504 
505 	/* initialise the buffers */
506 	for (desc_index = 0; desc_index < rx_rsize; desc_index++) {
507 		struct sxgbe_rx_norm_desc *p;
508 		p = rx_ring->dma_rx + desc_index;
509 		ret = sxgbe_init_rx_buffers(dev, p, desc_index,
510 					    bfsize, rx_ring);
511 		if (ret)
512 			goto err_free_rx_buffers;
513 	}
514 
515 	/* initialise counters */
516 	rx_ring->cur_rx = 0;
517 	rx_ring->dirty_rx = (unsigned int)(desc_index - rx_rsize);
518 	priv->dma_buf_sz = bfsize;
519 
520 	return 0;
521 
522 err_free_rx_buffers:
523 	while (--desc_index >= 0) {
524 		struct sxgbe_rx_norm_desc *p;
525 
526 		p = rx_ring->dma_rx + desc_index;
527 		sxgbe_free_rx_buffers(dev, p, desc_index, bfsize, rx_ring);
528 	}
529 	kfree(rx_ring->rx_skbuff);
530 err_free_skbuff_dma:
531 	kfree(rx_ring->rx_skbuff_dma);
532 err_free_dma_rx:
533 	dma_free_coherent(priv->device,
534 			  rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
535 			  rx_ring->dma_rx, rx_ring->dma_rx_phy);
536 
537 	return ret;
538 }
539 /**
540  * free_tx_ring - free the TX descriptor ring
541  * @dev: net device structure
542  * @tx_ring: ring to be initialised
543  * @tx_rsize: ring size
544  * Description:  this function initializes the DMA TX descriptor
545  */
free_tx_ring(struct device * dev,struct sxgbe_tx_queue * tx_ring,int tx_rsize)546 static void free_tx_ring(struct device *dev, struct sxgbe_tx_queue *tx_ring,
547 			 int tx_rsize)
548 {
549 	dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
550 			  tx_ring->dma_tx, tx_ring->dma_tx_phy);
551 }
552 
553 /**
554  * init_dma_desc_rings - init the RX/TX descriptor rings
555  * @netd: net device structure
556  * Description:  this function initializes the DMA RX/TX descriptors
557  * and allocates the socket buffers. It suppors the chained and ring
558  * modes.
559  */
init_dma_desc_rings(struct net_device * netd)560 static int init_dma_desc_rings(struct net_device *netd)
561 {
562 	int queue_num, ret;
563 	struct sxgbe_priv_data *priv = netdev_priv(netd);
564 	int tx_rsize = priv->dma_tx_size;
565 	int rx_rsize = priv->dma_rx_size;
566 
567 	/* Allocate memory for queue structures and TX descs */
568 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
569 		ret = init_tx_ring(priv->device, queue_num,
570 				   priv->txq[queue_num], tx_rsize);
571 		if (ret) {
572 			dev_err(&netd->dev, "TX DMA ring allocation failed!\n");
573 			goto txalloc_err;
574 		}
575 
576 		/* save private pointer in each ring this
577 		 * pointer is needed during cleaing TX queue
578 		 */
579 		priv->txq[queue_num]->priv_ptr = priv;
580 	}
581 
582 	/* Allocate memory for queue structures and RX descs */
583 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
584 		ret = init_rx_ring(netd, queue_num,
585 				   priv->rxq[queue_num], rx_rsize);
586 		if (ret) {
587 			netdev_err(netd, "RX DMA ring allocation failed!!\n");
588 			goto rxalloc_err;
589 		}
590 
591 		/* save private pointer in each ring this
592 		 * pointer is needed during cleaing TX queue
593 		 */
594 		priv->rxq[queue_num]->priv_ptr = priv;
595 	}
596 
597 	sxgbe_clear_descriptors(priv);
598 
599 	return 0;
600 
601 txalloc_err:
602 	while (queue_num--)
603 		free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize);
604 	return ret;
605 
606 rxalloc_err:
607 	while (queue_num--)
608 		free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize);
609 	return ret;
610 }
611 
tx_free_ring_skbufs(struct sxgbe_tx_queue * txqueue)612 static void tx_free_ring_skbufs(struct sxgbe_tx_queue *txqueue)
613 {
614 	int dma_desc;
615 	struct sxgbe_priv_data *priv = txqueue->priv_ptr;
616 	int tx_rsize = priv->dma_tx_size;
617 
618 	for (dma_desc = 0; dma_desc < tx_rsize; dma_desc++) {
619 		struct sxgbe_tx_norm_desc *tdesc = txqueue->dma_tx + dma_desc;
620 
621 		if (txqueue->tx_skbuff_dma[dma_desc])
622 			dma_unmap_single(priv->device,
623 					 txqueue->tx_skbuff_dma[dma_desc],
624 					 priv->hw->desc->get_tx_len(tdesc),
625 					 DMA_TO_DEVICE);
626 
627 		dev_kfree_skb_any(txqueue->tx_skbuff[dma_desc]);
628 		txqueue->tx_skbuff[dma_desc] = NULL;
629 		txqueue->tx_skbuff_dma[dma_desc] = 0;
630 	}
631 }
632 
633 
dma_free_tx_skbufs(struct sxgbe_priv_data * priv)634 static void dma_free_tx_skbufs(struct sxgbe_priv_data *priv)
635 {
636 	int queue_num;
637 
638 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
639 		struct sxgbe_tx_queue *tqueue = priv->txq[queue_num];
640 		tx_free_ring_skbufs(tqueue);
641 	}
642 }
643 
free_dma_desc_resources(struct sxgbe_priv_data * priv)644 static void free_dma_desc_resources(struct sxgbe_priv_data *priv)
645 {
646 	int queue_num;
647 	int tx_rsize = priv->dma_tx_size;
648 	int rx_rsize = priv->dma_rx_size;
649 
650 	/* Release the DMA TX buffers */
651 	dma_free_tx_skbufs(priv);
652 
653 	/* Release the TX ring memory also */
654 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
655 		free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize);
656 	}
657 
658 	/* Release the RX ring memory also */
659 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
660 		free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize);
661 	}
662 }
663 
txring_mem_alloc(struct sxgbe_priv_data * priv)664 static int txring_mem_alloc(struct sxgbe_priv_data *priv)
665 {
666 	int queue_num;
667 
668 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
669 		priv->txq[queue_num] = devm_kmalloc(priv->device,
670 						    sizeof(struct sxgbe_tx_queue), GFP_KERNEL);
671 		if (!priv->txq[queue_num])
672 			return -ENOMEM;
673 	}
674 
675 	return 0;
676 }
677 
rxring_mem_alloc(struct sxgbe_priv_data * priv)678 static int rxring_mem_alloc(struct sxgbe_priv_data *priv)
679 {
680 	int queue_num;
681 
682 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
683 		priv->rxq[queue_num] = devm_kmalloc(priv->device,
684 						    sizeof(struct sxgbe_rx_queue), GFP_KERNEL);
685 		if (!priv->rxq[queue_num])
686 			return -ENOMEM;
687 	}
688 
689 	return 0;
690 }
691 
692 /**
693  *  sxgbe_mtl_operation_mode - HW MTL operation mode
694  *  @priv: driver private structure
695  *  Description: it sets the MTL operation mode: tx/rx MTL thresholds
696  *  or Store-And-Forward capability.
697  */
sxgbe_mtl_operation_mode(struct sxgbe_priv_data * priv)698 static void sxgbe_mtl_operation_mode(struct sxgbe_priv_data *priv)
699 {
700 	int queue_num;
701 
702 	/* TX/RX threshold control */
703 	if (likely(priv->plat->force_sf_dma_mode)) {
704 		/* set TC mode for TX QUEUES */
705 		SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num)
706 			priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num,
707 						       SXGBE_MTL_SFMODE);
708 		priv->tx_tc = SXGBE_MTL_SFMODE;
709 
710 		/* set TC mode for RX QUEUES */
711 		SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num)
712 			priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num,
713 						       SXGBE_MTL_SFMODE);
714 		priv->rx_tc = SXGBE_MTL_SFMODE;
715 	} else if (unlikely(priv->plat->force_thresh_dma_mode)) {
716 		/* set TC mode for TX QUEUES */
717 		SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num)
718 			priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num,
719 						       priv->tx_tc);
720 		/* set TC mode for RX QUEUES */
721 		SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num)
722 			priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num,
723 						       priv->rx_tc);
724 	} else {
725 		pr_err("ERROR: %s: Invalid TX threshold mode\n", __func__);
726 	}
727 }
728 
729 /**
730  * sxgbe_tx_queue_clean:
731  * @tqueue: queue pointer
732  * Description: it reclaims resources after transmission completes.
733  */
sxgbe_tx_queue_clean(struct sxgbe_tx_queue * tqueue)734 static void sxgbe_tx_queue_clean(struct sxgbe_tx_queue *tqueue)
735 {
736 	struct sxgbe_priv_data *priv = tqueue->priv_ptr;
737 	unsigned int tx_rsize = priv->dma_tx_size;
738 	struct netdev_queue *dev_txq;
739 	u8 queue_no = tqueue->queue_no;
740 
741 	dev_txq = netdev_get_tx_queue(priv->dev, queue_no);
742 
743 	__netif_tx_lock(dev_txq, smp_processor_id());
744 
745 	priv->xstats.tx_clean++;
746 	while (tqueue->dirty_tx != tqueue->cur_tx) {
747 		unsigned int entry = tqueue->dirty_tx % tx_rsize;
748 		struct sk_buff *skb = tqueue->tx_skbuff[entry];
749 		struct sxgbe_tx_norm_desc *p;
750 
751 		p = tqueue->dma_tx + entry;
752 
753 		/* Check if the descriptor is owned by the DMA. */
754 		if (priv->hw->desc->get_tx_owner(p))
755 			break;
756 
757 		if (netif_msg_tx_done(priv))
758 			pr_debug("%s: curr %d, dirty %d\n",
759 				 __func__, tqueue->cur_tx, tqueue->dirty_tx);
760 
761 		if (likely(tqueue->tx_skbuff_dma[entry])) {
762 			dma_unmap_single(priv->device,
763 					 tqueue->tx_skbuff_dma[entry],
764 					 priv->hw->desc->get_tx_len(p),
765 					 DMA_TO_DEVICE);
766 			tqueue->tx_skbuff_dma[entry] = 0;
767 		}
768 
769 		if (likely(skb)) {
770 			dev_kfree_skb(skb);
771 			tqueue->tx_skbuff[entry] = NULL;
772 		}
773 
774 		priv->hw->desc->release_tx_desc(p);
775 
776 		tqueue->dirty_tx++;
777 	}
778 
779 	/* wake up queue */
780 	if (unlikely(netif_tx_queue_stopped(dev_txq) &&
781 	    sxgbe_tx_avail(tqueue, tx_rsize) > SXGBE_TX_THRESH(priv))) {
782 		if (netif_msg_tx_done(priv))
783 			pr_debug("%s: restart transmit\n", __func__);
784 		netif_tx_wake_queue(dev_txq);
785 	}
786 
787 	__netif_tx_unlock(dev_txq);
788 }
789 
790 /**
791  * sxgbe_tx_all_clean:
792  * @priv: driver private structure
793  * Description: it reclaims resources after transmission completes.
794  */
sxgbe_tx_all_clean(struct sxgbe_priv_data * const priv)795 static void sxgbe_tx_all_clean(struct sxgbe_priv_data * const priv)
796 {
797 	u8 queue_num;
798 
799 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
800 		struct sxgbe_tx_queue *tqueue = priv->txq[queue_num];
801 
802 		sxgbe_tx_queue_clean(tqueue);
803 	}
804 
805 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
806 		sxgbe_enable_eee_mode(priv);
807 		mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer));
808 	}
809 }
810 
811 /**
812  * sxgbe_restart_tx_queue: irq tx error mng function
813  * @priv: driver private structure
814  * @queue_num: queue number
815  * Description: it cleans the descriptors and restarts the transmission
816  * in case of errors.
817  */
sxgbe_restart_tx_queue(struct sxgbe_priv_data * priv,int queue_num)818 static void sxgbe_restart_tx_queue(struct sxgbe_priv_data *priv, int queue_num)
819 {
820 	struct sxgbe_tx_queue *tx_ring = priv->txq[queue_num];
821 	struct netdev_queue *dev_txq = netdev_get_tx_queue(priv->dev,
822 							   queue_num);
823 
824 	/* stop the queue */
825 	netif_tx_stop_queue(dev_txq);
826 
827 	/* stop the tx dma */
828 	priv->hw->dma->stop_tx_queue(priv->ioaddr, queue_num);
829 
830 	/* free the skbuffs of the ring */
831 	tx_free_ring_skbufs(tx_ring);
832 
833 	/* initialise counters */
834 	tx_ring->cur_tx = 0;
835 	tx_ring->dirty_tx = 0;
836 
837 	/* start the tx dma */
838 	priv->hw->dma->start_tx_queue(priv->ioaddr, queue_num);
839 
840 	priv->dev->stats.tx_errors++;
841 
842 	/* wakeup the queue */
843 	netif_tx_wake_queue(dev_txq);
844 }
845 
846 /**
847  * sxgbe_reset_all_tx_queues: irq tx error mng function
848  * @priv: driver private structure
849  * Description: it cleans all the descriptors and
850  * restarts the transmission on all queues in case of errors.
851  */
sxgbe_reset_all_tx_queues(struct sxgbe_priv_data * priv)852 static void sxgbe_reset_all_tx_queues(struct sxgbe_priv_data *priv)
853 {
854 	int queue_num;
855 
856 	/* On TX timeout of net device, resetting of all queues
857 	 * may not be proper way, revisit this later if needed
858 	 */
859 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
860 		sxgbe_restart_tx_queue(priv, queue_num);
861 }
862 
863 /**
864  * sxgbe_get_hw_features: get XMAC capabilities from the HW cap. register.
865  * @priv: driver private structure
866  * Description:
867  *  new GMAC chip generations have a new register to indicate the
868  *  presence of the optional feature/functions.
869  *  This can be also used to override the value passed through the
870  *  platform and necessary for old MAC10/100 and GMAC chips.
871  */
sxgbe_get_hw_features(struct sxgbe_priv_data * const priv)872 static int sxgbe_get_hw_features(struct sxgbe_priv_data * const priv)
873 {
874 	int rval = 0;
875 	struct sxgbe_hw_features *features = &priv->hw_cap;
876 
877 	/* Read First Capability Register CAP[0] */
878 	rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 0);
879 	if (rval) {
880 		features->pmt_remote_wake_up =
881 			SXGBE_HW_FEAT_PMT_TEMOTE_WOP(rval);
882 		features->pmt_magic_frame = SXGBE_HW_FEAT_PMT_MAGIC_PKT(rval);
883 		features->atime_stamp = SXGBE_HW_FEAT_IEEE1500_2008(rval);
884 		features->tx_csum_offload =
885 			SXGBE_HW_FEAT_TX_CSUM_OFFLOAD(rval);
886 		features->rx_csum_offload =
887 			SXGBE_HW_FEAT_RX_CSUM_OFFLOAD(rval);
888 		features->multi_macaddr = SXGBE_HW_FEAT_MACADDR_COUNT(rval);
889 		features->tstamp_srcselect = SXGBE_HW_FEAT_TSTMAP_SRC(rval);
890 		features->sa_vlan_insert = SXGBE_HW_FEAT_SRCADDR_VLAN(rval);
891 		features->eee = SXGBE_HW_FEAT_EEE(rval);
892 	}
893 
894 	/* Read First Capability Register CAP[1] */
895 	rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 1);
896 	if (rval) {
897 		features->rxfifo_size = SXGBE_HW_FEAT_RX_FIFO_SIZE(rval);
898 		features->txfifo_size = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval);
899 		features->atstmap_hword = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval);
900 		features->dcb_enable = SXGBE_HW_FEAT_DCB(rval);
901 		features->splithead_enable = SXGBE_HW_FEAT_SPLIT_HDR(rval);
902 		features->tcpseg_offload = SXGBE_HW_FEAT_TSO(rval);
903 		features->debug_mem = SXGBE_HW_FEAT_DEBUG_MEM_IFACE(rval);
904 		features->rss_enable = SXGBE_HW_FEAT_RSS(rval);
905 		features->hash_tsize = SXGBE_HW_FEAT_HASH_TABLE_SIZE(rval);
906 		features->l3l4_filer_size = SXGBE_HW_FEAT_L3L4_FILTER_NUM(rval);
907 	}
908 
909 	/* Read First Capability Register CAP[2] */
910 	rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 2);
911 	if (rval) {
912 		features->rx_mtl_queues = SXGBE_HW_FEAT_RX_MTL_QUEUES(rval);
913 		features->tx_mtl_queues = SXGBE_HW_FEAT_TX_MTL_QUEUES(rval);
914 		features->rx_dma_channels = SXGBE_HW_FEAT_RX_DMA_CHANNELS(rval);
915 		features->tx_dma_channels = SXGBE_HW_FEAT_TX_DMA_CHANNELS(rval);
916 		features->pps_output_count = SXGBE_HW_FEAT_PPS_OUTPUTS(rval);
917 		features->aux_input_count = SXGBE_HW_FEAT_AUX_SNAPSHOTS(rval);
918 	}
919 
920 	return rval;
921 }
922 
923 /**
924  * sxgbe_check_ether_addr: check if the MAC addr is valid
925  * @priv: driver private structure
926  * Description:
927  * it is to verify if the MAC address is valid, in case of failures it
928  * generates a random MAC address
929  */
sxgbe_check_ether_addr(struct sxgbe_priv_data * priv)930 static void sxgbe_check_ether_addr(struct sxgbe_priv_data *priv)
931 {
932 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
933 		u8 addr[ETH_ALEN];
934 
935 		priv->hw->mac->get_umac_addr((void __iomem *)
936 					     priv->ioaddr, addr, 0);
937 		if (is_valid_ether_addr(addr))
938 			eth_hw_addr_set(priv->dev, addr);
939 		else
940 			eth_hw_addr_random(priv->dev);
941 	}
942 	dev_info(priv->device, "device MAC address %pM\n",
943 		 priv->dev->dev_addr);
944 }
945 
946 /**
947  * sxgbe_init_dma_engine: DMA init.
948  * @priv: driver private structure
949  * Description:
950  * It inits the DMA invoking the specific SXGBE callback.
951  * Some DMA parameters can be passed from the platform;
952  * in case of these are not passed a default is kept for the MAC or GMAC.
953  */
sxgbe_init_dma_engine(struct sxgbe_priv_data * priv)954 static int sxgbe_init_dma_engine(struct sxgbe_priv_data *priv)
955 {
956 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_map = 0;
957 	int queue_num;
958 
959 	if (priv->plat->dma_cfg) {
960 		pbl = priv->plat->dma_cfg->pbl;
961 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
962 		burst_map = priv->plat->dma_cfg->burst_map;
963 	}
964 
965 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
966 		priv->hw->dma->cha_init(priv->ioaddr, queue_num,
967 					fixed_burst, pbl,
968 					(priv->txq[queue_num])->dma_tx_phy,
969 					(priv->rxq[queue_num])->dma_rx_phy,
970 					priv->dma_tx_size, priv->dma_rx_size);
971 
972 	return priv->hw->dma->init(priv->ioaddr, fixed_burst, burst_map);
973 }
974 
975 /**
976  * sxgbe_init_mtl_engine: MTL init.
977  * @priv: driver private structure
978  * Description:
979  * It inits the MTL invoking the specific SXGBE callback.
980  */
sxgbe_init_mtl_engine(struct sxgbe_priv_data * priv)981 static void sxgbe_init_mtl_engine(struct sxgbe_priv_data *priv)
982 {
983 	int queue_num;
984 
985 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
986 		priv->hw->mtl->mtl_set_txfifosize(priv->ioaddr, queue_num,
987 						  priv->hw_cap.tx_mtl_qsize);
988 		priv->hw->mtl->mtl_enable_txqueue(priv->ioaddr, queue_num);
989 	}
990 }
991 
992 /**
993  * sxgbe_disable_mtl_engine: MTL disable.
994  * @priv: driver private structure
995  * Description:
996  * It disables the MTL queues by invoking the specific SXGBE callback.
997  */
sxgbe_disable_mtl_engine(struct sxgbe_priv_data * priv)998 static void sxgbe_disable_mtl_engine(struct sxgbe_priv_data *priv)
999 {
1000 	int queue_num;
1001 
1002 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
1003 		priv->hw->mtl->mtl_disable_txqueue(priv->ioaddr, queue_num);
1004 }
1005 
1006 
1007 /**
1008  * sxgbe_tx_timer: mitigation sw timer for tx.
1009  * @t: timer pointer
1010  * Description:
1011  * This is the timer handler to directly invoke the sxgbe_tx_clean.
1012  */
sxgbe_tx_timer(struct timer_list * t)1013 static void sxgbe_tx_timer(struct timer_list *t)
1014 {
1015 	struct sxgbe_tx_queue *p = from_timer(p, t, txtimer);
1016 	sxgbe_tx_queue_clean(p);
1017 }
1018 
1019 /**
1020  * sxgbe_tx_init_coalesce: init tx mitigation options.
1021  * @priv: driver private structure
1022  * Description:
1023  * This inits the transmit coalesce parameters: i.e. timer rate,
1024  * timer handler and default threshold used for enabling the
1025  * interrupt on completion bit.
1026  */
sxgbe_tx_init_coalesce(struct sxgbe_priv_data * priv)1027 static void sxgbe_tx_init_coalesce(struct sxgbe_priv_data *priv)
1028 {
1029 	u8 queue_num;
1030 
1031 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1032 		struct sxgbe_tx_queue *p = priv->txq[queue_num];
1033 		p->tx_coal_frames =  SXGBE_TX_FRAMES;
1034 		p->tx_coal_timer = SXGBE_COAL_TX_TIMER;
1035 		timer_setup(&p->txtimer, sxgbe_tx_timer, 0);
1036 		p->txtimer.expires = SXGBE_COAL_TIMER(p->tx_coal_timer);
1037 		add_timer(&p->txtimer);
1038 	}
1039 }
1040 
sxgbe_tx_del_timer(struct sxgbe_priv_data * priv)1041 static void sxgbe_tx_del_timer(struct sxgbe_priv_data *priv)
1042 {
1043 	u8 queue_num;
1044 
1045 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1046 		struct sxgbe_tx_queue *p = priv->txq[queue_num];
1047 		del_timer_sync(&p->txtimer);
1048 	}
1049 }
1050 
1051 /**
1052  *  sxgbe_open - open entry point of the driver
1053  *  @dev : pointer to the device structure.
1054  *  Description:
1055  *  This function is the open entry point of the driver.
1056  *  Return value:
1057  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1058  *  file on failure.
1059  */
sxgbe_open(struct net_device * dev)1060 static int sxgbe_open(struct net_device *dev)
1061 {
1062 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1063 	int ret, queue_num;
1064 
1065 	clk_prepare_enable(priv->sxgbe_clk);
1066 
1067 	sxgbe_check_ether_addr(priv);
1068 
1069 	/* Init the phy */
1070 	ret = sxgbe_init_phy(dev);
1071 	if (ret) {
1072 		netdev_err(dev, "%s: Cannot attach to PHY (error: %d)\n",
1073 			   __func__, ret);
1074 		goto phy_error;
1075 	}
1076 
1077 	/* Create and initialize the TX/RX descriptors chains. */
1078 	priv->dma_tx_size = SXGBE_ALIGN(DMA_TX_SIZE);
1079 	priv->dma_rx_size = SXGBE_ALIGN(DMA_RX_SIZE);
1080 	priv->dma_buf_sz = SXGBE_ALIGN(DMA_BUFFER_SIZE);
1081 	priv->tx_tc = TC_DEFAULT;
1082 	priv->rx_tc = TC_DEFAULT;
1083 	init_dma_desc_rings(dev);
1084 
1085 	/* DMA initialization and SW reset */
1086 	ret = sxgbe_init_dma_engine(priv);
1087 	if (ret < 0) {
1088 		netdev_err(dev, "%s: DMA initialization failed\n", __func__);
1089 		goto init_error;
1090 	}
1091 
1092 	/*  MTL initialization */
1093 	sxgbe_init_mtl_engine(priv);
1094 
1095 	/* Copy the MAC addr into the HW  */
1096 	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1097 
1098 	/* Initialize the MAC Core */
1099 	priv->hw->mac->core_init(priv->ioaddr);
1100 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
1101 		priv->hw->mac->enable_rxqueue(priv->ioaddr, queue_num);
1102 	}
1103 
1104 	/* Request the IRQ lines */
1105 	ret = devm_request_irq(priv->device, priv->irq, sxgbe_common_interrupt,
1106 			       IRQF_SHARED, dev->name, dev);
1107 	if (unlikely(ret < 0)) {
1108 		netdev_err(dev, "%s: ERROR: allocating the IRQ %d (error: %d)\n",
1109 			   __func__, priv->irq, ret);
1110 		goto init_error;
1111 	}
1112 
1113 	/* If the LPI irq is different from the mac irq
1114 	 * register a dedicated handler
1115 	 */
1116 	if (priv->lpi_irq != dev->irq) {
1117 		ret = devm_request_irq(priv->device, priv->lpi_irq,
1118 				       sxgbe_common_interrupt,
1119 				       IRQF_SHARED, dev->name, dev);
1120 		if (unlikely(ret < 0)) {
1121 			netdev_err(dev, "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1122 				   __func__, priv->lpi_irq, ret);
1123 			goto init_error;
1124 		}
1125 	}
1126 
1127 	/* Request TX DMA irq lines */
1128 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1129 		ret = devm_request_irq(priv->device,
1130 				       (priv->txq[queue_num])->irq_no,
1131 				       sxgbe_tx_interrupt, 0,
1132 				       dev->name, priv->txq[queue_num]);
1133 		if (unlikely(ret < 0)) {
1134 			netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n",
1135 				   __func__, priv->irq, ret);
1136 			goto init_error;
1137 		}
1138 	}
1139 
1140 	/* Request RX DMA irq lines */
1141 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
1142 		ret = devm_request_irq(priv->device,
1143 				       (priv->rxq[queue_num])->irq_no,
1144 				       sxgbe_rx_interrupt, 0,
1145 				       dev->name, priv->rxq[queue_num]);
1146 		if (unlikely(ret < 0)) {
1147 			netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n",
1148 				   __func__, priv->irq, ret);
1149 			goto init_error;
1150 		}
1151 	}
1152 
1153 	/* Enable the MAC Rx/Tx */
1154 	priv->hw->mac->enable_tx(priv->ioaddr, true);
1155 	priv->hw->mac->enable_rx(priv->ioaddr, true);
1156 
1157 	/* Set the HW DMA mode and the COE */
1158 	sxgbe_mtl_operation_mode(priv);
1159 
1160 	/* Extra statistics */
1161 	memset(&priv->xstats, 0, sizeof(struct sxgbe_extra_stats));
1162 
1163 	priv->xstats.tx_threshold = priv->tx_tc;
1164 	priv->xstats.rx_threshold = priv->rx_tc;
1165 
1166 	/* Start the ball rolling... */
1167 	netdev_dbg(dev, "DMA RX/TX processes started...\n");
1168 	priv->hw->dma->start_tx(priv->ioaddr, SXGBE_TX_QUEUES);
1169 	priv->hw->dma->start_rx(priv->ioaddr, SXGBE_RX_QUEUES);
1170 
1171 	if (dev->phydev)
1172 		phy_start(dev->phydev);
1173 
1174 	/* initialise TX coalesce parameters */
1175 	sxgbe_tx_init_coalesce(priv);
1176 
1177 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1178 		priv->rx_riwt = SXGBE_MAX_DMA_RIWT;
1179 		priv->hw->dma->rx_watchdog(priv->ioaddr, SXGBE_MAX_DMA_RIWT);
1180 	}
1181 
1182 	priv->tx_lpi_timer = SXGBE_DEFAULT_LPI_TIMER;
1183 	priv->eee_enabled = sxgbe_eee_init(priv);
1184 
1185 	napi_enable(&priv->napi);
1186 	netif_start_queue(dev);
1187 
1188 	return 0;
1189 
1190 init_error:
1191 	free_dma_desc_resources(priv);
1192 	if (dev->phydev)
1193 		phy_disconnect(dev->phydev);
1194 phy_error:
1195 	clk_disable_unprepare(priv->sxgbe_clk);
1196 
1197 	return ret;
1198 }
1199 
1200 /**
1201  *  sxgbe_release - close entry point of the driver
1202  *  @dev : device pointer.
1203  *  Description:
1204  *  This is the stop entry point of the driver.
1205  */
sxgbe_release(struct net_device * dev)1206 static int sxgbe_release(struct net_device *dev)
1207 {
1208 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1209 
1210 	if (priv->eee_enabled)
1211 		del_timer_sync(&priv->eee_ctrl_timer);
1212 
1213 	/* Stop and disconnect the PHY */
1214 	if (dev->phydev) {
1215 		phy_stop(dev->phydev);
1216 		phy_disconnect(dev->phydev);
1217 	}
1218 
1219 	netif_tx_stop_all_queues(dev);
1220 
1221 	napi_disable(&priv->napi);
1222 
1223 	/* delete TX timers */
1224 	sxgbe_tx_del_timer(priv);
1225 
1226 	/* Stop TX/RX DMA and clear the descriptors */
1227 	priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES);
1228 	priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES);
1229 
1230 	/* disable MTL queue */
1231 	sxgbe_disable_mtl_engine(priv);
1232 
1233 	/* Release and free the Rx/Tx resources */
1234 	free_dma_desc_resources(priv);
1235 
1236 	/* Disable the MAC Rx/Tx */
1237 	priv->hw->mac->enable_tx(priv->ioaddr, false);
1238 	priv->hw->mac->enable_rx(priv->ioaddr, false);
1239 
1240 	clk_disable_unprepare(priv->sxgbe_clk);
1241 
1242 	return 0;
1243 }
1244 /* Prepare first Tx descriptor for doing TSO operation */
sxgbe_tso_prepare(struct sxgbe_priv_data * priv,struct sxgbe_tx_norm_desc * first_desc,struct sk_buff * skb)1245 static void sxgbe_tso_prepare(struct sxgbe_priv_data *priv,
1246 			      struct sxgbe_tx_norm_desc *first_desc,
1247 			      struct sk_buff *skb)
1248 {
1249 	unsigned int total_hdr_len, tcp_hdr_len;
1250 
1251 	/* Write first Tx descriptor with appropriate value */
1252 	tcp_hdr_len = tcp_hdrlen(skb);
1253 	total_hdr_len = skb_transport_offset(skb) + tcp_hdr_len;
1254 
1255 	first_desc->tdes01 = dma_map_single(priv->device, skb->data,
1256 					    total_hdr_len, DMA_TO_DEVICE);
1257 	if (dma_mapping_error(priv->device, first_desc->tdes01))
1258 		pr_err("%s: TX dma mapping failed!!\n", __func__);
1259 
1260 	first_desc->tdes23.tx_rd_des23.first_desc = 1;
1261 	priv->hw->desc->tx_desc_enable_tse(first_desc, 1, total_hdr_len,
1262 					   tcp_hdr_len,
1263 					   skb->len - total_hdr_len);
1264 }
1265 
1266 /**
1267  *  sxgbe_xmit: Tx entry point of the driver
1268  *  @skb : the socket buffer
1269  *  @dev : device pointer
1270  *  Description : this is the tx entry point of the driver.
1271  *  It programs the chain or the ring and supports oversized frames
1272  *  and SG feature.
1273  */
sxgbe_xmit(struct sk_buff * skb,struct net_device * dev)1274 static netdev_tx_t sxgbe_xmit(struct sk_buff *skb, struct net_device *dev)
1275 {
1276 	unsigned int entry, frag_num;
1277 	int cksum_flag = 0;
1278 	struct netdev_queue *dev_txq;
1279 	unsigned txq_index = skb_get_queue_mapping(skb);
1280 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1281 	unsigned int tx_rsize = priv->dma_tx_size;
1282 	struct sxgbe_tx_queue *tqueue = priv->txq[txq_index];
1283 	struct sxgbe_tx_norm_desc *tx_desc, *first_desc;
1284 	struct sxgbe_tx_ctxt_desc *ctxt_desc = NULL;
1285 	int nr_frags = skb_shinfo(skb)->nr_frags;
1286 	int no_pagedlen = skb_headlen(skb);
1287 	int is_jumbo = 0;
1288 	u16 cur_mss = skb_shinfo(skb)->gso_size;
1289 	u32 ctxt_desc_req = 0;
1290 
1291 	/* get the TX queue handle */
1292 	dev_txq = netdev_get_tx_queue(dev, txq_index);
1293 
1294 	if (unlikely(skb_is_gso(skb) && tqueue->prev_mss != cur_mss))
1295 		ctxt_desc_req = 1;
1296 
1297 	if (unlikely(skb_vlan_tag_present(skb) ||
1298 		     ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1299 		      tqueue->hwts_tx_en)))
1300 		ctxt_desc_req = 1;
1301 
1302 	if (priv->tx_path_in_lpi_mode)
1303 		sxgbe_disable_eee_mode(priv);
1304 
1305 	if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) < nr_frags + 1)) {
1306 		if (!netif_tx_queue_stopped(dev_txq)) {
1307 			netif_tx_stop_queue(dev_txq);
1308 			netdev_err(dev, "%s: Tx Ring is full when %d queue is awake\n",
1309 				   __func__, txq_index);
1310 		}
1311 		return NETDEV_TX_BUSY;
1312 	}
1313 
1314 	entry = tqueue->cur_tx % tx_rsize;
1315 	tx_desc = tqueue->dma_tx + entry;
1316 
1317 	first_desc = tx_desc;
1318 	if (ctxt_desc_req)
1319 		ctxt_desc = (struct sxgbe_tx_ctxt_desc *)first_desc;
1320 
1321 	/* save the skb address */
1322 	tqueue->tx_skbuff[entry] = skb;
1323 
1324 	if (!is_jumbo) {
1325 		if (likely(skb_is_gso(skb))) {
1326 			/* TSO support */
1327 			if (unlikely(tqueue->prev_mss != cur_mss)) {
1328 				priv->hw->desc->tx_ctxt_desc_set_mss(
1329 						ctxt_desc, cur_mss);
1330 				priv->hw->desc->tx_ctxt_desc_set_tcmssv(
1331 						ctxt_desc);
1332 				priv->hw->desc->tx_ctxt_desc_reset_ostc(
1333 						ctxt_desc);
1334 				priv->hw->desc->tx_ctxt_desc_set_ctxt(
1335 						ctxt_desc);
1336 				priv->hw->desc->tx_ctxt_desc_set_owner(
1337 						ctxt_desc);
1338 
1339 				entry = (++tqueue->cur_tx) % tx_rsize;
1340 				first_desc = tqueue->dma_tx + entry;
1341 
1342 				tqueue->prev_mss = cur_mss;
1343 			}
1344 			sxgbe_tso_prepare(priv, first_desc, skb);
1345 		} else {
1346 			tx_desc->tdes01 = dma_map_single(priv->device,
1347 							 skb->data, no_pagedlen, DMA_TO_DEVICE);
1348 			if (dma_mapping_error(priv->device, tx_desc->tdes01))
1349 				netdev_err(dev, "%s: TX dma mapping failed!!\n",
1350 					   __func__);
1351 
1352 			priv->hw->desc->prepare_tx_desc(tx_desc, 1, no_pagedlen,
1353 							no_pagedlen, cksum_flag);
1354 		}
1355 	}
1356 
1357 	for (frag_num = 0; frag_num < nr_frags; frag_num++) {
1358 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_num];
1359 		int len = skb_frag_size(frag);
1360 
1361 		entry = (++tqueue->cur_tx) % tx_rsize;
1362 		tx_desc = tqueue->dma_tx + entry;
1363 		tx_desc->tdes01 = skb_frag_dma_map(priv->device, frag, 0, len,
1364 						   DMA_TO_DEVICE);
1365 
1366 		tqueue->tx_skbuff_dma[entry] = tx_desc->tdes01;
1367 		tqueue->tx_skbuff[entry] = NULL;
1368 
1369 		/* prepare the descriptor */
1370 		priv->hw->desc->prepare_tx_desc(tx_desc, 0, len,
1371 						len, cksum_flag);
1372 		/* memory barrier to flush descriptor */
1373 		wmb();
1374 
1375 		/* set the owner */
1376 		priv->hw->desc->set_tx_owner(tx_desc);
1377 	}
1378 
1379 	/* close the descriptors */
1380 	priv->hw->desc->close_tx_desc(tx_desc);
1381 
1382 	/* memory barrier to flush descriptor */
1383 	wmb();
1384 
1385 	tqueue->tx_count_frames += nr_frags + 1;
1386 	if (tqueue->tx_count_frames > tqueue->tx_coal_frames) {
1387 		priv->hw->desc->clear_tx_ic(tx_desc);
1388 		priv->xstats.tx_reset_ic_bit++;
1389 		mod_timer(&tqueue->txtimer,
1390 			  SXGBE_COAL_TIMER(tqueue->tx_coal_timer));
1391 	} else {
1392 		tqueue->tx_count_frames = 0;
1393 	}
1394 
1395 	/* set owner for first desc */
1396 	priv->hw->desc->set_tx_owner(first_desc);
1397 
1398 	/* memory barrier to flush descriptor */
1399 	wmb();
1400 
1401 	tqueue->cur_tx++;
1402 
1403 	/* display current ring */
1404 	netif_dbg(priv, pktdata, dev, "%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d\n",
1405 		  __func__, tqueue->cur_tx % tx_rsize,
1406 		  tqueue->dirty_tx % tx_rsize, entry,
1407 		  first_desc, nr_frags);
1408 
1409 	if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) <= (MAX_SKB_FRAGS + 1))) {
1410 		netif_dbg(priv, hw, dev, "%s: stop transmitted packets\n",
1411 			  __func__);
1412 		netif_tx_stop_queue(dev_txq);
1413 	}
1414 
1415 	dev->stats.tx_bytes += skb->len;
1416 
1417 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1418 		     tqueue->hwts_tx_en)) {
1419 		/* declare that device is doing timestamping */
1420 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1421 		priv->hw->desc->tx_enable_tstamp(first_desc);
1422 	}
1423 
1424 	skb_tx_timestamp(skb);
1425 
1426 	priv->hw->dma->enable_dma_transmission(priv->ioaddr, txq_index);
1427 
1428 	return NETDEV_TX_OK;
1429 }
1430 
1431 /**
1432  * sxgbe_rx_refill: refill used skb preallocated buffers
1433  * @priv: driver private structure
1434  * Description : this is to reallocate the skb for the reception process
1435  * that is based on zero-copy.
1436  */
sxgbe_rx_refill(struct sxgbe_priv_data * priv)1437 static void sxgbe_rx_refill(struct sxgbe_priv_data *priv)
1438 {
1439 	unsigned int rxsize = priv->dma_rx_size;
1440 	int bfsize = priv->dma_buf_sz;
1441 	u8 qnum = priv->cur_rx_qnum;
1442 
1443 	for (; priv->rxq[qnum]->cur_rx - priv->rxq[qnum]->dirty_rx > 0;
1444 	     priv->rxq[qnum]->dirty_rx++) {
1445 		unsigned int entry = priv->rxq[qnum]->dirty_rx % rxsize;
1446 		struct sxgbe_rx_norm_desc *p;
1447 
1448 		p = priv->rxq[qnum]->dma_rx + entry;
1449 
1450 		if (likely(priv->rxq[qnum]->rx_skbuff[entry] == NULL)) {
1451 			struct sk_buff *skb;
1452 
1453 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1454 
1455 			if (unlikely(skb == NULL))
1456 				break;
1457 
1458 			priv->rxq[qnum]->rx_skbuff[entry] = skb;
1459 			priv->rxq[qnum]->rx_skbuff_dma[entry] =
1460 				dma_map_single(priv->device, skb->data, bfsize,
1461 					       DMA_FROM_DEVICE);
1462 
1463 			p->rdes23.rx_rd_des23.buf2_addr =
1464 				priv->rxq[qnum]->rx_skbuff_dma[entry];
1465 		}
1466 
1467 		/* Added memory barrier for RX descriptor modification */
1468 		wmb();
1469 		priv->hw->desc->set_rx_owner(p);
1470 		priv->hw->desc->set_rx_int_on_com(p);
1471 		/* Added memory barrier for RX descriptor modification */
1472 		wmb();
1473 	}
1474 }
1475 
1476 /**
1477  * sxgbe_rx: receive the frames from the remote host
1478  * @priv: driver private structure
1479  * @limit: napi bugget.
1480  * Description :  this the function called by the napi poll method.
1481  * It gets all the frames inside the ring.
1482  */
sxgbe_rx(struct sxgbe_priv_data * priv,int limit)1483 static int sxgbe_rx(struct sxgbe_priv_data *priv, int limit)
1484 {
1485 	u8 qnum = priv->cur_rx_qnum;
1486 	unsigned int rxsize = priv->dma_rx_size;
1487 	unsigned int entry = priv->rxq[qnum]->cur_rx;
1488 	unsigned int next_entry = 0;
1489 	unsigned int count = 0;
1490 	int checksum;
1491 	int status;
1492 
1493 	while (count < limit) {
1494 		struct sxgbe_rx_norm_desc *p;
1495 		struct sk_buff *skb;
1496 		int frame_len;
1497 
1498 		p = priv->rxq[qnum]->dma_rx + entry;
1499 
1500 		if (priv->hw->desc->get_rx_owner(p))
1501 			break;
1502 
1503 		count++;
1504 
1505 		next_entry = (++priv->rxq[qnum]->cur_rx) % rxsize;
1506 		prefetch(priv->rxq[qnum]->dma_rx + next_entry);
1507 
1508 		/* Read the status of the incoming frame and also get checksum
1509 		 * value based on whether it is enabled in SXGBE hardware or
1510 		 * not.
1511 		 */
1512 		status = priv->hw->desc->rx_wbstatus(p, &priv->xstats,
1513 						     &checksum);
1514 		if (unlikely(status < 0)) {
1515 			entry = next_entry;
1516 			continue;
1517 		}
1518 		if (unlikely(!priv->rxcsum_insertion))
1519 			checksum = CHECKSUM_NONE;
1520 
1521 		skb = priv->rxq[qnum]->rx_skbuff[entry];
1522 
1523 		if (unlikely(!skb))
1524 			netdev_err(priv->dev, "rx descriptor is not consistent\n");
1525 
1526 		prefetch(skb->data - NET_IP_ALIGN);
1527 		priv->rxq[qnum]->rx_skbuff[entry] = NULL;
1528 
1529 		frame_len = priv->hw->desc->get_rx_frame_len(p);
1530 
1531 		skb_put(skb, frame_len);
1532 
1533 		skb->ip_summed = checksum;
1534 		if (checksum == CHECKSUM_NONE)
1535 			netif_receive_skb(skb);
1536 		else
1537 			napi_gro_receive(&priv->napi, skb);
1538 
1539 		entry = next_entry;
1540 	}
1541 
1542 	sxgbe_rx_refill(priv);
1543 
1544 	return count;
1545 }
1546 
1547 /**
1548  *  sxgbe_poll - sxgbe poll method (NAPI)
1549  *  @napi : pointer to the napi structure.
1550  *  @budget : maximum number of packets that the current CPU can receive from
1551  *	      all interfaces.
1552  *  Description :
1553  *  To look at the incoming frames and clear the tx resources.
1554  */
sxgbe_poll(struct napi_struct * napi,int budget)1555 static int sxgbe_poll(struct napi_struct *napi, int budget)
1556 {
1557 	struct sxgbe_priv_data *priv = container_of(napi,
1558 						    struct sxgbe_priv_data, napi);
1559 	int work_done = 0;
1560 	u8 qnum = priv->cur_rx_qnum;
1561 
1562 	priv->xstats.napi_poll++;
1563 	/* first, clean the tx queues */
1564 	sxgbe_tx_all_clean(priv);
1565 
1566 	work_done = sxgbe_rx(priv, budget);
1567 	if (work_done < budget) {
1568 		napi_complete_done(napi, work_done);
1569 		priv->hw->dma->enable_dma_irq(priv->ioaddr, qnum);
1570 	}
1571 
1572 	return work_done;
1573 }
1574 
1575 /**
1576  *  sxgbe_tx_timeout
1577  *  @dev : Pointer to net device structure
1578  *  @txqueue: index of the hanging queue
1579  *  Description: this function is called when a packet transmission fails to
1580  *   complete within a reasonable time. The driver will mark the error in the
1581  *   netdev structure and arrange for the device to be reset to a sane state
1582  *   in order to transmit a new packet.
1583  */
sxgbe_tx_timeout(struct net_device * dev,unsigned int txqueue)1584 static void sxgbe_tx_timeout(struct net_device *dev, unsigned int txqueue)
1585 {
1586 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1587 
1588 	sxgbe_reset_all_tx_queues(priv);
1589 }
1590 
1591 /**
1592  *  sxgbe_common_interrupt - main ISR
1593  *  @irq: interrupt number.
1594  *  @dev_id: to pass the net device pointer.
1595  *  Description: this is the main driver interrupt service routine.
1596  *  It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
1597  *  interrupts.
1598  */
sxgbe_common_interrupt(int irq,void * dev_id)1599 static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id)
1600 {
1601 	struct net_device *netdev = (struct net_device *)dev_id;
1602 	struct sxgbe_priv_data *priv = netdev_priv(netdev);
1603 	int status;
1604 
1605 	status = priv->hw->mac->host_irq_status(priv->ioaddr, &priv->xstats);
1606 	/* For LPI we need to save the tx status */
1607 	if (status & TX_ENTRY_LPI_MODE) {
1608 		priv->xstats.tx_lpi_entry_n++;
1609 		priv->tx_path_in_lpi_mode = true;
1610 	}
1611 	if (status & TX_EXIT_LPI_MODE) {
1612 		priv->xstats.tx_lpi_exit_n++;
1613 		priv->tx_path_in_lpi_mode = false;
1614 	}
1615 	if (status & RX_ENTRY_LPI_MODE)
1616 		priv->xstats.rx_lpi_entry_n++;
1617 	if (status & RX_EXIT_LPI_MODE)
1618 		priv->xstats.rx_lpi_exit_n++;
1619 
1620 	return IRQ_HANDLED;
1621 }
1622 
1623 /**
1624  *  sxgbe_tx_interrupt - TX DMA ISR
1625  *  @irq: interrupt number.
1626  *  @dev_id: to pass the net device pointer.
1627  *  Description: this is the tx dma interrupt service routine.
1628  */
sxgbe_tx_interrupt(int irq,void * dev_id)1629 static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id)
1630 {
1631 	int status;
1632 	struct sxgbe_tx_queue *txq = (struct sxgbe_tx_queue *)dev_id;
1633 	struct sxgbe_priv_data *priv = txq->priv_ptr;
1634 
1635 	/* get the channel status */
1636 	status = priv->hw->dma->tx_dma_int_status(priv->ioaddr, txq->queue_no,
1637 						  &priv->xstats);
1638 	/* check for normal path */
1639 	if (likely((status & handle_tx)))
1640 		napi_schedule(&priv->napi);
1641 
1642 	/* check for unrecoverable error */
1643 	if (unlikely((status & tx_hard_error)))
1644 		sxgbe_restart_tx_queue(priv, txq->queue_no);
1645 
1646 	/* check for TC configuration change */
1647 	if (unlikely((status & tx_bump_tc) &&
1648 		     (priv->tx_tc != SXGBE_MTL_SFMODE) &&
1649 		     (priv->tx_tc < 512))) {
1650 		/* step of TX TC is 32 till 128, otherwise 64 */
1651 		priv->tx_tc += (priv->tx_tc < 128) ? 32 : 64;
1652 		priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr,
1653 					       txq->queue_no, priv->tx_tc);
1654 		priv->xstats.tx_threshold = priv->tx_tc;
1655 	}
1656 
1657 	return IRQ_HANDLED;
1658 }
1659 
1660 /**
1661  *  sxgbe_rx_interrupt - RX DMA ISR
1662  *  @irq: interrupt number.
1663  *  @dev_id: to pass the net device pointer.
1664  *  Description: this is the rx dma interrupt service routine.
1665  */
sxgbe_rx_interrupt(int irq,void * dev_id)1666 static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id)
1667 {
1668 	int status;
1669 	struct sxgbe_rx_queue *rxq = (struct sxgbe_rx_queue *)dev_id;
1670 	struct sxgbe_priv_data *priv = rxq->priv_ptr;
1671 
1672 	/* get the channel status */
1673 	status = priv->hw->dma->rx_dma_int_status(priv->ioaddr, rxq->queue_no,
1674 						  &priv->xstats);
1675 
1676 	if (likely((status & handle_rx) && (napi_schedule_prep(&priv->napi)))) {
1677 		priv->hw->dma->disable_dma_irq(priv->ioaddr, rxq->queue_no);
1678 		__napi_schedule(&priv->napi);
1679 	}
1680 
1681 	/* check for TC configuration change */
1682 	if (unlikely((status & rx_bump_tc) &&
1683 		     (priv->rx_tc != SXGBE_MTL_SFMODE) &&
1684 		     (priv->rx_tc < 128))) {
1685 		/* step of TC is 32 */
1686 		priv->rx_tc += 32;
1687 		priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr,
1688 					       rxq->queue_no, priv->rx_tc);
1689 		priv->xstats.rx_threshold = priv->rx_tc;
1690 	}
1691 
1692 	return IRQ_HANDLED;
1693 }
1694 
sxgbe_get_stat64(void __iomem * ioaddr,int reg_lo,int reg_hi)1695 static inline u64 sxgbe_get_stat64(void __iomem *ioaddr, int reg_lo, int reg_hi)
1696 {
1697 	u64 val = readl(ioaddr + reg_lo);
1698 
1699 	val |= ((u64)readl(ioaddr + reg_hi)) << 32;
1700 
1701 	return val;
1702 }
1703 
1704 
1705 /*  sxgbe_get_stats64 - entry point to see statistical information of device
1706  *  @dev : device pointer.
1707  *  @stats : pointer to hold all the statistical information of device.
1708  *  Description:
1709  *  This function is a driver entry point whenever ifconfig command gets
1710  *  executed to see device statistics. Statistics are number of
1711  *  bytes sent or received, errors occurred etc.
1712  */
sxgbe_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)1713 static void sxgbe_get_stats64(struct net_device *dev,
1714 			      struct rtnl_link_stats64 *stats)
1715 {
1716 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1717 	void __iomem *ioaddr = priv->ioaddr;
1718 	u64 count;
1719 
1720 	spin_lock(&priv->stats_lock);
1721 	/* Freeze the counter registers before reading value otherwise it may
1722 	 * get updated by hardware while we are reading them
1723 	 */
1724 	writel(SXGBE_MMC_CTRL_CNT_FRZ, ioaddr + SXGBE_MMC_CTL_REG);
1725 
1726 	stats->rx_bytes = sxgbe_get_stat64(ioaddr,
1727 					   SXGBE_MMC_RXOCTETLO_GCNT_REG,
1728 					   SXGBE_MMC_RXOCTETHI_GCNT_REG);
1729 
1730 	stats->rx_packets = sxgbe_get_stat64(ioaddr,
1731 					     SXGBE_MMC_RXFRAMELO_GBCNT_REG,
1732 					     SXGBE_MMC_RXFRAMEHI_GBCNT_REG);
1733 
1734 	stats->multicast = sxgbe_get_stat64(ioaddr,
1735 					    SXGBE_MMC_RXMULTILO_GCNT_REG,
1736 					    SXGBE_MMC_RXMULTIHI_GCNT_REG);
1737 
1738 	stats->rx_crc_errors = sxgbe_get_stat64(ioaddr,
1739 						SXGBE_MMC_RXCRCERRLO_REG,
1740 						SXGBE_MMC_RXCRCERRHI_REG);
1741 
1742 	stats->rx_length_errors = sxgbe_get_stat64(ioaddr,
1743 						  SXGBE_MMC_RXLENERRLO_REG,
1744 						  SXGBE_MMC_RXLENERRHI_REG);
1745 
1746 	stats->rx_missed_errors = sxgbe_get_stat64(ioaddr,
1747 						   SXGBE_MMC_RXFIFOOVERFLOWLO_GBCNT_REG,
1748 						   SXGBE_MMC_RXFIFOOVERFLOWHI_GBCNT_REG);
1749 
1750 	stats->tx_bytes = sxgbe_get_stat64(ioaddr,
1751 					   SXGBE_MMC_TXOCTETLO_GCNT_REG,
1752 					   SXGBE_MMC_TXOCTETHI_GCNT_REG);
1753 
1754 	count = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GBCNT_REG,
1755 				 SXGBE_MMC_TXFRAMEHI_GBCNT_REG);
1756 
1757 	stats->tx_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GCNT_REG,
1758 					    SXGBE_MMC_TXFRAMEHI_GCNT_REG);
1759 	stats->tx_errors = count - stats->tx_errors;
1760 	stats->tx_packets = count;
1761 	stats->tx_fifo_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXUFLWLO_GBCNT_REG,
1762 						 SXGBE_MMC_TXUFLWHI_GBCNT_REG);
1763 	writel(0, ioaddr + SXGBE_MMC_CTL_REG);
1764 	spin_unlock(&priv->stats_lock);
1765 }
1766 
1767 /*  sxgbe_set_features - entry point to set offload features of the device.
1768  *  @dev : device pointer.
1769  *  @features : features which are required to be set.
1770  *  Description:
1771  *  This function is a driver entry point and called by Linux kernel whenever
1772  *  any device features are set or reset by user.
1773  *  Return value:
1774  *  This function returns 0 after setting or resetting device features.
1775  */
sxgbe_set_features(struct net_device * dev,netdev_features_t features)1776 static int sxgbe_set_features(struct net_device *dev,
1777 			      netdev_features_t features)
1778 {
1779 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1780 	netdev_features_t changed = dev->features ^ features;
1781 
1782 	if (changed & NETIF_F_RXCSUM) {
1783 		if (features & NETIF_F_RXCSUM) {
1784 			priv->hw->mac->enable_rx_csum(priv->ioaddr);
1785 			priv->rxcsum_insertion = true;
1786 		} else {
1787 			priv->hw->mac->disable_rx_csum(priv->ioaddr);
1788 			priv->rxcsum_insertion = false;
1789 		}
1790 	}
1791 
1792 	return 0;
1793 }
1794 
1795 /*  sxgbe_change_mtu - entry point to change MTU size for the device.
1796  *  @dev : device pointer.
1797  *  @new_mtu : the new MTU size for the device.
1798  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
1799  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
1800  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
1801  *  Return value:
1802  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1803  *  file on failure.
1804  */
sxgbe_change_mtu(struct net_device * dev,int new_mtu)1805 static int sxgbe_change_mtu(struct net_device *dev, int new_mtu)
1806 {
1807 	WRITE_ONCE(dev->mtu, new_mtu);
1808 
1809 	if (!netif_running(dev))
1810 		return 0;
1811 
1812 	/* Recevice ring buffer size is needed to be set based on MTU. If MTU is
1813 	 * changed then reinitilisation of the receive ring buffers need to be
1814 	 * done. Hence bring interface down and bring interface back up
1815 	 */
1816 	sxgbe_release(dev);
1817 	return sxgbe_open(dev);
1818 }
1819 
sxgbe_set_umac_addr(void __iomem * ioaddr,unsigned char * addr,unsigned int reg_n)1820 static void sxgbe_set_umac_addr(void __iomem *ioaddr, unsigned char *addr,
1821 				unsigned int reg_n)
1822 {
1823 	unsigned long data;
1824 
1825 	data = (addr[5] << 8) | addr[4];
1826 	/* For MAC Addr registers se have to set the Address Enable (AE)
1827 	 * bit that has no effect on the High Reg 0 where the bit 31 (MO)
1828 	 * is RO.
1829 	 */
1830 	writel(data | SXGBE_HI_REG_AE, ioaddr + SXGBE_ADDR_HIGH(reg_n));
1831 	data = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
1832 	writel(data, ioaddr + SXGBE_ADDR_LOW(reg_n));
1833 }
1834 
1835 /**
1836  * sxgbe_set_rx_mode - entry point for setting different receive mode of
1837  * a device. unicast, multicast addressing
1838  * @dev : pointer to the device structure
1839  * Description:
1840  * This function is a driver entry point which gets called by the kernel
1841  * whenever different receive mode like unicast, multicast and promiscuous
1842  * must be enabled/disabled.
1843  * Return value:
1844  * void.
1845  */
sxgbe_set_rx_mode(struct net_device * dev)1846 static void sxgbe_set_rx_mode(struct net_device *dev)
1847 {
1848 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1849 	void __iomem *ioaddr = (void __iomem *)priv->ioaddr;
1850 	unsigned int value = 0;
1851 	u32 mc_filter[2];
1852 	struct netdev_hw_addr *ha;
1853 	int reg = 1;
1854 
1855 	netdev_dbg(dev, "%s: # mcasts %d, # unicast %d\n",
1856 		   __func__, netdev_mc_count(dev), netdev_uc_count(dev));
1857 
1858 	if (dev->flags & IFF_PROMISC) {
1859 		value = SXGBE_FRAME_FILTER_PR;
1860 
1861 	} else if ((netdev_mc_count(dev) > SXGBE_HASH_TABLE_SIZE) ||
1862 		   (dev->flags & IFF_ALLMULTI)) {
1863 		value = SXGBE_FRAME_FILTER_PM;	/* pass all multi */
1864 		writel(0xffffffff, ioaddr + SXGBE_HASH_HIGH);
1865 		writel(0xffffffff, ioaddr + SXGBE_HASH_LOW);
1866 
1867 	} else if (!netdev_mc_empty(dev)) {
1868 		/* Hash filter for multicast */
1869 		value = SXGBE_FRAME_FILTER_HMC;
1870 
1871 		memset(mc_filter, 0, sizeof(mc_filter));
1872 		netdev_for_each_mc_addr(ha, dev) {
1873 			/* The upper 6 bits of the calculated CRC are used to
1874 			 * index the contens of the hash table
1875 			 */
1876 			int bit_nr = bitrev32(~crc32_le(~0, ha->addr, 6)) >> 26;
1877 
1878 			/* The most significant bit determines the register to
1879 			 * use (H/L) while the other 5 bits determine the bit
1880 			 * within the register.
1881 			 */
1882 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1883 		}
1884 		writel(mc_filter[0], ioaddr + SXGBE_HASH_LOW);
1885 		writel(mc_filter[1], ioaddr + SXGBE_HASH_HIGH);
1886 	}
1887 
1888 	/* Handle multiple unicast addresses (perfect filtering) */
1889 	if (netdev_uc_count(dev) > SXGBE_MAX_PERFECT_ADDRESSES)
1890 		/* Switch to promiscuous mode if more than 16 addrs
1891 		 * are required
1892 		 */
1893 		value |= SXGBE_FRAME_FILTER_PR;
1894 	else {
1895 		netdev_for_each_uc_addr(ha, dev) {
1896 			sxgbe_set_umac_addr(ioaddr, ha->addr, reg);
1897 			reg++;
1898 		}
1899 	}
1900 #ifdef FRAME_FILTER_DEBUG
1901 	/* Enable Receive all mode (to debug filtering_fail errors) */
1902 	value |= SXGBE_FRAME_FILTER_RA;
1903 #endif
1904 	writel(value, ioaddr + SXGBE_FRAME_FILTER);
1905 
1906 	netdev_dbg(dev, "Filter: 0x%08x\n\tHash: HI 0x%08x, LO 0x%08x\n",
1907 		   readl(ioaddr + SXGBE_FRAME_FILTER),
1908 		   readl(ioaddr + SXGBE_HASH_HIGH),
1909 		   readl(ioaddr + SXGBE_HASH_LOW));
1910 }
1911 
1912 #ifdef CONFIG_NET_POLL_CONTROLLER
1913 /**
1914  * sxgbe_poll_controller - entry point for polling receive by device
1915  * @dev : pointer to the device structure
1916  * Description:
1917  * This function is used by NETCONSOLE and other diagnostic tools
1918  * to allow network I/O with interrupts disabled.
1919  * Return value:
1920  * Void.
1921  */
sxgbe_poll_controller(struct net_device * dev)1922 static void sxgbe_poll_controller(struct net_device *dev)
1923 {
1924 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1925 
1926 	disable_irq(priv->irq);
1927 	sxgbe_rx_interrupt(priv->irq, dev);
1928 	enable_irq(priv->irq);
1929 }
1930 #endif
1931 
1932 /*  sxgbe_ioctl - Entry point for the Ioctl
1933  *  @dev: Device pointer.
1934  *  @rq: An IOCTL specefic structure, that can contain a pointer to
1935  *  a proprietary structure used to pass information to the driver.
1936  *  @cmd: IOCTL command
1937  *  Description:
1938  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
1939  */
sxgbe_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1940 static int sxgbe_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1941 {
1942 	int ret = -EOPNOTSUPP;
1943 
1944 	if (!netif_running(dev))
1945 		return -EINVAL;
1946 
1947 	switch (cmd) {
1948 	case SIOCGMIIPHY:
1949 	case SIOCGMIIREG:
1950 	case SIOCSMIIREG:
1951 		ret = phy_do_ioctl(dev, rq, cmd);
1952 		break;
1953 	default:
1954 		break;
1955 	}
1956 
1957 	return ret;
1958 }
1959 
1960 static const struct net_device_ops sxgbe_netdev_ops = {
1961 	.ndo_open		= sxgbe_open,
1962 	.ndo_start_xmit		= sxgbe_xmit,
1963 	.ndo_stop		= sxgbe_release,
1964 	.ndo_get_stats64	= sxgbe_get_stats64,
1965 	.ndo_change_mtu		= sxgbe_change_mtu,
1966 	.ndo_set_features	= sxgbe_set_features,
1967 	.ndo_set_rx_mode	= sxgbe_set_rx_mode,
1968 	.ndo_tx_timeout		= sxgbe_tx_timeout,
1969 	.ndo_eth_ioctl		= sxgbe_ioctl,
1970 #ifdef CONFIG_NET_POLL_CONTROLLER
1971 	.ndo_poll_controller	= sxgbe_poll_controller,
1972 #endif
1973 	.ndo_set_mac_address	= eth_mac_addr,
1974 };
1975 
1976 /* Get the hardware ops */
sxgbe_get_ops(struct sxgbe_ops * const ops_ptr)1977 static void sxgbe_get_ops(struct sxgbe_ops * const ops_ptr)
1978 {
1979 	ops_ptr->mac		= sxgbe_get_core_ops();
1980 	ops_ptr->desc		= sxgbe_get_desc_ops();
1981 	ops_ptr->dma		= sxgbe_get_dma_ops();
1982 	ops_ptr->mtl		= sxgbe_get_mtl_ops();
1983 
1984 	/* set the MDIO communication Address/Data regisers */
1985 	ops_ptr->mii.addr	= SXGBE_MDIO_SCMD_ADD_REG;
1986 	ops_ptr->mii.data	= SXGBE_MDIO_SCMD_DATA_REG;
1987 
1988 	/* Assigning the default link settings
1989 	 * no SXGBE defined default values to be set in registers,
1990 	 * so assigning as 0 for port and duplex
1991 	 */
1992 	ops_ptr->link.port	= 0;
1993 	ops_ptr->link.duplex	= 0;
1994 	ops_ptr->link.speed	= SXGBE_SPEED_10G;
1995 }
1996 
1997 /**
1998  *  sxgbe_hw_init - Init the GMAC device
1999  *  @priv: driver private structure
2000  *  Description: this function checks the HW capability
2001  *  (if supported) and sets the driver's features.
2002  */
sxgbe_hw_init(struct sxgbe_priv_data * const priv)2003 static int sxgbe_hw_init(struct sxgbe_priv_data * const priv)
2004 {
2005 	u32 ctrl_ids;
2006 
2007 	priv->hw = kmalloc(sizeof(*priv->hw), GFP_KERNEL);
2008 	if(!priv->hw)
2009 		return -ENOMEM;
2010 
2011 	/* get the hardware ops */
2012 	sxgbe_get_ops(priv->hw);
2013 
2014 	/* get the controller id */
2015 	ctrl_ids = priv->hw->mac->get_controller_version(priv->ioaddr);
2016 	priv->hw->ctrl_uid = (ctrl_ids & 0x00ff0000) >> 16;
2017 	priv->hw->ctrl_id = (ctrl_ids & 0x000000ff);
2018 	pr_info("user ID: 0x%x, Controller ID: 0x%x\n",
2019 		priv->hw->ctrl_uid, priv->hw->ctrl_id);
2020 
2021 	/* get the H/W features */
2022 	if (!sxgbe_get_hw_features(priv))
2023 		pr_info("Hardware features not found\n");
2024 
2025 	if (priv->hw_cap.tx_csum_offload)
2026 		pr_info("TX Checksum offload supported\n");
2027 
2028 	if (priv->hw_cap.rx_csum_offload)
2029 		pr_info("RX Checksum offload supported\n");
2030 
2031 	return 0;
2032 }
2033 
sxgbe_sw_reset(void __iomem * addr)2034 static int sxgbe_sw_reset(void __iomem *addr)
2035 {
2036 	int retry_count = 10;
2037 
2038 	writel(SXGBE_DMA_SOFT_RESET, addr + SXGBE_DMA_MODE_REG);
2039 	while (retry_count--) {
2040 		if (!(readl(addr + SXGBE_DMA_MODE_REG) &
2041 		      SXGBE_DMA_SOFT_RESET))
2042 			break;
2043 		mdelay(10);
2044 	}
2045 
2046 	if (retry_count < 0)
2047 		return -EBUSY;
2048 
2049 	return 0;
2050 }
2051 
2052 /**
2053  * sxgbe_drv_probe
2054  * @device: device pointer
2055  * @plat_dat: platform data pointer
2056  * @addr: iobase memory address
2057  * Description: this is the main probe function used to
2058  * call the alloc_etherdev, allocate the priv structure.
2059  */
sxgbe_drv_probe(struct device * device,struct sxgbe_plat_data * plat_dat,void __iomem * addr)2060 struct sxgbe_priv_data *sxgbe_drv_probe(struct device *device,
2061 					struct sxgbe_plat_data *plat_dat,
2062 					void __iomem *addr)
2063 {
2064 	struct sxgbe_priv_data *priv;
2065 	struct net_device *ndev;
2066 	int ret;
2067 	u8 queue_num;
2068 
2069 	ndev = alloc_etherdev_mqs(sizeof(struct sxgbe_priv_data),
2070 				  SXGBE_TX_QUEUES, SXGBE_RX_QUEUES);
2071 	if (!ndev)
2072 		return NULL;
2073 
2074 	SET_NETDEV_DEV(ndev, device);
2075 
2076 	priv = netdev_priv(ndev);
2077 	priv->device = device;
2078 	priv->dev = ndev;
2079 
2080 	sxgbe_set_ethtool_ops(ndev);
2081 	priv->plat = plat_dat;
2082 	priv->ioaddr = addr;
2083 
2084 	ret = sxgbe_sw_reset(priv->ioaddr);
2085 	if (ret)
2086 		goto error_free_netdev;
2087 
2088 	/* Verify driver arguments */
2089 	sxgbe_verify_args();
2090 
2091 	/* Init MAC and get the capabilities */
2092 	ret = sxgbe_hw_init(priv);
2093 	if (ret)
2094 		goto error_free_netdev;
2095 
2096 	/* allocate memory resources for Descriptor rings */
2097 	ret = txring_mem_alloc(priv);
2098 	if (ret)
2099 		goto error_free_hw;
2100 
2101 	ret = rxring_mem_alloc(priv);
2102 	if (ret)
2103 		goto error_free_hw;
2104 
2105 	ndev->netdev_ops = &sxgbe_netdev_ops;
2106 
2107 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2108 		NETIF_F_RXCSUM | NETIF_F_TSO | NETIF_F_TSO6 |
2109 		NETIF_F_GRO;
2110 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2111 	ndev->watchdog_timeo = msecs_to_jiffies(TX_TIMEO);
2112 
2113 	/* assign filtering support */
2114 	ndev->priv_flags |= IFF_UNICAST_FLT;
2115 
2116 	/* MTU range: 68 - 9000 */
2117 	ndev->min_mtu = MIN_MTU;
2118 	ndev->max_mtu = MAX_MTU;
2119 
2120 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2121 
2122 	/* Enable TCP segmentation offload for all DMA channels */
2123 	if (priv->hw_cap.tcpseg_offload) {
2124 		SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
2125 			priv->hw->dma->enable_tso(priv->ioaddr, queue_num);
2126 		}
2127 	}
2128 
2129 	/* Enable Rx checksum offload */
2130 	if (priv->hw_cap.rx_csum_offload) {
2131 		priv->hw->mac->enable_rx_csum(priv->ioaddr);
2132 		priv->rxcsum_insertion = true;
2133 	}
2134 
2135 	/* Initialise pause frame settings */
2136 	priv->rx_pause = 1;
2137 	priv->tx_pause = 1;
2138 
2139 	/* Rx Watchdog is available, enable depend on platform data */
2140 	if (!priv->plat->riwt_off) {
2141 		priv->use_riwt = 1;
2142 		pr_info("Enable RX Mitigation via HW Watchdog Timer\n");
2143 	}
2144 
2145 	netif_napi_add(ndev, &priv->napi, sxgbe_poll);
2146 
2147 	spin_lock_init(&priv->stats_lock);
2148 
2149 	priv->sxgbe_clk = clk_get(priv->device, SXGBE_RESOURCE_NAME);
2150 	if (IS_ERR(priv->sxgbe_clk)) {
2151 		netdev_warn(ndev, "%s: warning: cannot get CSR clock\n",
2152 			    __func__);
2153 		goto error_napi_del;
2154 	}
2155 
2156 	/* If a specific clk_csr value is passed from the platform
2157 	 * this means that the CSR Clock Range selection cannot be
2158 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2159 	 * set the MDC clock dynamically according to the csr actual
2160 	 * clock input.
2161 	 */
2162 	if (!priv->plat->clk_csr)
2163 		sxgbe_clk_csr_set(priv);
2164 	else
2165 		priv->clk_csr = priv->plat->clk_csr;
2166 
2167 	/* MDIO bus Registration */
2168 	ret = sxgbe_mdio_register(ndev);
2169 	if (ret < 0) {
2170 		netdev_dbg(ndev, "%s: MDIO bus (id: %d) registration failed\n",
2171 			   __func__, priv->plat->bus_id);
2172 		goto error_clk_put;
2173 	}
2174 
2175 	ret = register_netdev(ndev);
2176 	if (ret) {
2177 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2178 		goto error_mdio_unregister;
2179 	}
2180 
2181 	sxgbe_check_ether_addr(priv);
2182 
2183 	return priv;
2184 
2185 error_mdio_unregister:
2186 	sxgbe_mdio_unregister(ndev);
2187 error_clk_put:
2188 	clk_put(priv->sxgbe_clk);
2189 error_napi_del:
2190 	netif_napi_del(&priv->napi);
2191 error_free_hw:
2192 	kfree(priv->hw);
2193 error_free_netdev:
2194 	free_netdev(ndev);
2195 
2196 	return NULL;
2197 }
2198 
2199 /**
2200  * sxgbe_drv_remove
2201  * @ndev: net device pointer
2202  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2203  * changes the link status, releases the DMA descriptor rings.
2204  */
sxgbe_drv_remove(struct net_device * ndev)2205 void sxgbe_drv_remove(struct net_device *ndev)
2206 {
2207 	struct sxgbe_priv_data *priv = netdev_priv(ndev);
2208 	u8 queue_num;
2209 
2210 	netdev_info(ndev, "%s: removing driver\n", __func__);
2211 
2212 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
2213 		priv->hw->mac->disable_rxqueue(priv->ioaddr, queue_num);
2214 	}
2215 
2216 	priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES);
2217 	priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES);
2218 
2219 	priv->hw->mac->enable_tx(priv->ioaddr, false);
2220 	priv->hw->mac->enable_rx(priv->ioaddr, false);
2221 
2222 	unregister_netdev(ndev);
2223 
2224 	sxgbe_mdio_unregister(ndev);
2225 
2226 	clk_put(priv->sxgbe_clk);
2227 
2228 	netif_napi_del(&priv->napi);
2229 
2230 	kfree(priv->hw);
2231 
2232 	free_netdev(ndev);
2233 }
2234 
2235 #ifdef CONFIG_PM
sxgbe_suspend(struct net_device * ndev)2236 int sxgbe_suspend(struct net_device *ndev)
2237 {
2238 	return 0;
2239 }
2240 
sxgbe_resume(struct net_device * ndev)2241 int sxgbe_resume(struct net_device *ndev)
2242 {
2243 	return 0;
2244 }
2245 
sxgbe_freeze(struct net_device * ndev)2246 int sxgbe_freeze(struct net_device *ndev)
2247 {
2248 	return -ENOSYS;
2249 }
2250 
sxgbe_restore(struct net_device * ndev)2251 int sxgbe_restore(struct net_device *ndev)
2252 {
2253 	return -ENOSYS;
2254 }
2255 #endif /* CONFIG_PM */
2256 
2257 /* Driver is configured as Platform driver */
sxgbe_init(void)2258 static int __init sxgbe_init(void)
2259 {
2260 	int ret;
2261 
2262 	ret = sxgbe_register_platform();
2263 	if (ret)
2264 		goto err;
2265 	return 0;
2266 err:
2267 	pr_err("driver registration failed\n");
2268 	return ret;
2269 }
2270 
sxgbe_exit(void)2271 static void __exit sxgbe_exit(void)
2272 {
2273 	sxgbe_unregister_platform();
2274 }
2275 
2276 module_init(sxgbe_init);
2277 module_exit(sxgbe_exit);
2278 
2279 #ifndef MODULE
sxgbe_cmdline_opt(char * str)2280 static int __init sxgbe_cmdline_opt(char *str)
2281 {
2282 	char *opt;
2283 
2284 	if (!str || !*str)
2285 		return 1;
2286 	while ((opt = strsep(&str, ",")) != NULL) {
2287 		if (!strncmp(opt, "eee_timer:", 10)) {
2288 			if (kstrtoint(opt + 10, 0, &eee_timer))
2289 				goto err;
2290 		}
2291 	}
2292 	return 1;
2293 
2294 err:
2295 	pr_err("%s: ERROR broken module parameter conversion\n", __func__);
2296 	return 1;
2297 }
2298 
2299 __setup("sxgbeeth=", sxgbe_cmdline_opt);
2300 #endif /* MODULE */
2301 
2302 
2303 
2304 MODULE_DESCRIPTION("Samsung 10G/2.5G/1G Ethernet PLATFORM driver");
2305 
2306 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
2307 MODULE_PARM_DESC(eee_timer, "EEE-LPI Default LS timer value");
2308 
2309 MODULE_AUTHOR("Siva Reddy Kallam <siva.kallam@samsung.com>");
2310 MODULE_AUTHOR("ByungHo An <bh74.an@samsung.com>");
2311 MODULE_AUTHOR("Girish K S <ks.giri@samsung.com>");
2312 MODULE_AUTHOR("Vipul Pandya <vipul.pandya@samsung.com>");
2313 
2314 MODULE_LICENSE("GPL");
2315