1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44
45 static struct vfsmount *shm_mnt __ro_after_init;
46
47 #ifdef CONFIG_SHMEM
48 /*
49 * This virtual memory filesystem is heavily based on the ramfs. It
50 * extends ramfs by the ability to use swap and honor resource limits
51 * which makes it a completely usable filesystem.
52 */
53
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82 #include <linux/rcupdate_wait.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99
100 /*
101 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
102 * inode->i_private (with i_rwsem making sure that it has only one user at
103 * a time): we would prefer not to enlarge the shmem inode just for that.
104 */
105 struct shmem_falloc {
106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 pgoff_t start; /* start of range currently being fallocated */
108 pgoff_t next; /* the next page offset to be fallocated */
109 pgoff_t nr_falloced; /* how many new pages have been fallocated */
110 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
111 };
112
113 struct shmem_options {
114 unsigned long long blocks;
115 unsigned long long inodes;
116 struct mempolicy *mpol;
117 kuid_t uid;
118 kgid_t gid;
119 umode_t mode;
120 bool full_inums;
121 int huge;
122 int seen;
123 bool noswap;
124 unsigned short quota_types;
125 struct shmem_quota_limits qlimits;
126 #define SHMEM_SEEN_BLOCKS 1
127 #define SHMEM_SEEN_INODES 2
128 #define SHMEM_SEEN_HUGE 4
129 #define SHMEM_SEEN_INUMS 8
130 #define SHMEM_SEEN_NOSWAP 16
131 #define SHMEM_SEEN_QUOTA 32
132 };
133
134 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
135 static unsigned long huge_shmem_orders_always __read_mostly;
136 static unsigned long huge_shmem_orders_madvise __read_mostly;
137 static unsigned long huge_shmem_orders_inherit __read_mostly;
138 static unsigned long huge_shmem_orders_within_size __read_mostly;
139 #endif
140
141 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)142 static unsigned long shmem_default_max_blocks(void)
143 {
144 return totalram_pages() / 2;
145 }
146
shmem_default_max_inodes(void)147 static unsigned long shmem_default_max_inodes(void)
148 {
149 unsigned long nr_pages = totalram_pages();
150
151 return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
152 ULONG_MAX / BOGO_INODE_SIZE);
153 }
154 #endif
155
156 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
157 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
158 struct vm_area_struct *vma, vm_fault_t *fault_type);
159
SHMEM_SB(struct super_block * sb)160 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
161 {
162 return sb->s_fs_info;
163 }
164
165 /*
166 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
167 * for shared memory and for shared anonymous (/dev/zero) mappings
168 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
169 * consistent with the pre-accounting of private mappings ...
170 */
shmem_acct_size(unsigned long flags,loff_t size)171 static inline int shmem_acct_size(unsigned long flags, loff_t size)
172 {
173 return (flags & VM_NORESERVE) ?
174 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
175 }
176
shmem_unacct_size(unsigned long flags,loff_t size)177 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
178 {
179 if (!(flags & VM_NORESERVE))
180 vm_unacct_memory(VM_ACCT(size));
181 }
182
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)183 static inline int shmem_reacct_size(unsigned long flags,
184 loff_t oldsize, loff_t newsize)
185 {
186 if (!(flags & VM_NORESERVE)) {
187 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
188 return security_vm_enough_memory_mm(current->mm,
189 VM_ACCT(newsize) - VM_ACCT(oldsize));
190 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
191 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
192 }
193 return 0;
194 }
195
196 /*
197 * ... whereas tmpfs objects are accounted incrementally as
198 * pages are allocated, in order to allow large sparse files.
199 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
200 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
201 */
shmem_acct_blocks(unsigned long flags,long pages)202 static inline int shmem_acct_blocks(unsigned long flags, long pages)
203 {
204 if (!(flags & VM_NORESERVE))
205 return 0;
206
207 return security_vm_enough_memory_mm(current->mm,
208 pages * VM_ACCT(PAGE_SIZE));
209 }
210
shmem_unacct_blocks(unsigned long flags,long pages)211 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
212 {
213 if (flags & VM_NORESERVE)
214 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
215 }
216
shmem_inode_acct_blocks(struct inode * inode,long pages)217 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
218 {
219 struct shmem_inode_info *info = SHMEM_I(inode);
220 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
221 int err = -ENOSPC;
222
223 if (shmem_acct_blocks(info->flags, pages))
224 return err;
225
226 might_sleep(); /* when quotas */
227 if (sbinfo->max_blocks) {
228 if (!percpu_counter_limited_add(&sbinfo->used_blocks,
229 sbinfo->max_blocks, pages))
230 goto unacct;
231
232 err = dquot_alloc_block_nodirty(inode, pages);
233 if (err) {
234 percpu_counter_sub(&sbinfo->used_blocks, pages);
235 goto unacct;
236 }
237 } else {
238 err = dquot_alloc_block_nodirty(inode, pages);
239 if (err)
240 goto unacct;
241 }
242
243 return 0;
244
245 unacct:
246 shmem_unacct_blocks(info->flags, pages);
247 return err;
248 }
249
shmem_inode_unacct_blocks(struct inode * inode,long pages)250 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
251 {
252 struct shmem_inode_info *info = SHMEM_I(inode);
253 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
254
255 might_sleep(); /* when quotas */
256 dquot_free_block_nodirty(inode, pages);
257
258 if (sbinfo->max_blocks)
259 percpu_counter_sub(&sbinfo->used_blocks, pages);
260 shmem_unacct_blocks(info->flags, pages);
261 }
262
263 static const struct super_operations shmem_ops;
264 static const struct address_space_operations shmem_aops;
265 static const struct file_operations shmem_file_operations;
266 static const struct inode_operations shmem_inode_operations;
267 static const struct inode_operations shmem_dir_inode_operations;
268 static const struct inode_operations shmem_special_inode_operations;
269 static const struct vm_operations_struct shmem_vm_ops;
270 static const struct vm_operations_struct shmem_anon_vm_ops;
271 static struct file_system_type shmem_fs_type;
272
shmem_mapping(struct address_space * mapping)273 bool shmem_mapping(struct address_space *mapping)
274 {
275 return mapping->a_ops == &shmem_aops;
276 }
277 EXPORT_SYMBOL_GPL(shmem_mapping);
278
vma_is_anon_shmem(struct vm_area_struct * vma)279 bool vma_is_anon_shmem(struct vm_area_struct *vma)
280 {
281 return vma->vm_ops == &shmem_anon_vm_ops;
282 }
283
vma_is_shmem(struct vm_area_struct * vma)284 bool vma_is_shmem(struct vm_area_struct *vma)
285 {
286 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
287 }
288
289 static LIST_HEAD(shmem_swaplist);
290 static DEFINE_MUTEX(shmem_swaplist_mutex);
291
292 #ifdef CONFIG_TMPFS_QUOTA
293
shmem_enable_quotas(struct super_block * sb,unsigned short quota_types)294 static int shmem_enable_quotas(struct super_block *sb,
295 unsigned short quota_types)
296 {
297 int type, err = 0;
298
299 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
300 for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
301 if (!(quota_types & (1 << type)))
302 continue;
303 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
304 DQUOT_USAGE_ENABLED |
305 DQUOT_LIMITS_ENABLED);
306 if (err)
307 goto out_err;
308 }
309 return 0;
310
311 out_err:
312 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
313 type, err);
314 for (type--; type >= 0; type--)
315 dquot_quota_off(sb, type);
316 return err;
317 }
318
shmem_disable_quotas(struct super_block * sb)319 static void shmem_disable_quotas(struct super_block *sb)
320 {
321 int type;
322
323 for (type = 0; type < SHMEM_MAXQUOTAS; type++)
324 dquot_quota_off(sb, type);
325 }
326
shmem_get_dquots(struct inode * inode)327 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
328 {
329 return SHMEM_I(inode)->i_dquot;
330 }
331 #endif /* CONFIG_TMPFS_QUOTA */
332
333 /*
334 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
335 * produces a novel ino for the newly allocated inode.
336 *
337 * It may also be called when making a hard link to permit the space needed by
338 * each dentry. However, in that case, no new inode number is needed since that
339 * internally draws from another pool of inode numbers (currently global
340 * get_next_ino()). This case is indicated by passing NULL as inop.
341 */
342 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)343 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
344 {
345 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
346 ino_t ino;
347
348 if (!(sb->s_flags & SB_KERNMOUNT)) {
349 raw_spin_lock(&sbinfo->stat_lock);
350 if (sbinfo->max_inodes) {
351 if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
352 raw_spin_unlock(&sbinfo->stat_lock);
353 return -ENOSPC;
354 }
355 sbinfo->free_ispace -= BOGO_INODE_SIZE;
356 }
357 if (inop) {
358 ino = sbinfo->next_ino++;
359 if (unlikely(is_zero_ino(ino)))
360 ino = sbinfo->next_ino++;
361 if (unlikely(!sbinfo->full_inums &&
362 ino > UINT_MAX)) {
363 /*
364 * Emulate get_next_ino uint wraparound for
365 * compatibility
366 */
367 if (IS_ENABLED(CONFIG_64BIT))
368 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
369 __func__, MINOR(sb->s_dev));
370 sbinfo->next_ino = 1;
371 ino = sbinfo->next_ino++;
372 }
373 *inop = ino;
374 }
375 raw_spin_unlock(&sbinfo->stat_lock);
376 } else if (inop) {
377 /*
378 * __shmem_file_setup, one of our callers, is lock-free: it
379 * doesn't hold stat_lock in shmem_reserve_inode since
380 * max_inodes is always 0, and is called from potentially
381 * unknown contexts. As such, use a per-cpu batched allocator
382 * which doesn't require the per-sb stat_lock unless we are at
383 * the batch boundary.
384 *
385 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
386 * shmem mounts are not exposed to userspace, so we don't need
387 * to worry about things like glibc compatibility.
388 */
389 ino_t *next_ino;
390
391 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
392 ino = *next_ino;
393 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
394 raw_spin_lock(&sbinfo->stat_lock);
395 ino = sbinfo->next_ino;
396 sbinfo->next_ino += SHMEM_INO_BATCH;
397 raw_spin_unlock(&sbinfo->stat_lock);
398 if (unlikely(is_zero_ino(ino)))
399 ino++;
400 }
401 *inop = ino;
402 *next_ino = ++ino;
403 put_cpu();
404 }
405
406 return 0;
407 }
408
shmem_free_inode(struct super_block * sb,size_t freed_ispace)409 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
410 {
411 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
412 if (sbinfo->max_inodes) {
413 raw_spin_lock(&sbinfo->stat_lock);
414 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
415 raw_spin_unlock(&sbinfo->stat_lock);
416 }
417 }
418
419 /**
420 * shmem_recalc_inode - recalculate the block usage of an inode
421 * @inode: inode to recalc
422 * @alloced: the change in number of pages allocated to inode
423 * @swapped: the change in number of pages swapped from inode
424 *
425 * We have to calculate the free blocks since the mm can drop
426 * undirtied hole pages behind our back.
427 *
428 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
429 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
430 */
shmem_recalc_inode(struct inode * inode,long alloced,long swapped)431 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
432 {
433 struct shmem_inode_info *info = SHMEM_I(inode);
434 long freed;
435
436 spin_lock(&info->lock);
437 info->alloced += alloced;
438 info->swapped += swapped;
439 freed = info->alloced - info->swapped -
440 READ_ONCE(inode->i_mapping->nrpages);
441 /*
442 * Special case: whereas normally shmem_recalc_inode() is called
443 * after i_mapping->nrpages has already been adjusted (up or down),
444 * shmem_writepage() has to raise swapped before nrpages is lowered -
445 * to stop a racing shmem_recalc_inode() from thinking that a page has
446 * been freed. Compensate here, to avoid the need for a followup call.
447 */
448 if (swapped > 0)
449 freed += swapped;
450 if (freed > 0)
451 info->alloced -= freed;
452 spin_unlock(&info->lock);
453
454 /* The quota case may block */
455 if (freed > 0)
456 shmem_inode_unacct_blocks(inode, freed);
457 }
458
shmem_charge(struct inode * inode,long pages)459 bool shmem_charge(struct inode *inode, long pages)
460 {
461 struct address_space *mapping = inode->i_mapping;
462
463 if (shmem_inode_acct_blocks(inode, pages))
464 return false;
465
466 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
467 xa_lock_irq(&mapping->i_pages);
468 mapping->nrpages += pages;
469 xa_unlock_irq(&mapping->i_pages);
470
471 shmem_recalc_inode(inode, pages, 0);
472 return true;
473 }
474
shmem_uncharge(struct inode * inode,long pages)475 void shmem_uncharge(struct inode *inode, long pages)
476 {
477 /* pages argument is currently unused: keep it to help debugging */
478 /* nrpages adjustment done by __filemap_remove_folio() or caller */
479
480 shmem_recalc_inode(inode, 0, 0);
481 }
482
483 /*
484 * Replace item expected in xarray by a new item, while holding xa_lock.
485 */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)486 static int shmem_replace_entry(struct address_space *mapping,
487 pgoff_t index, void *expected, void *replacement)
488 {
489 XA_STATE(xas, &mapping->i_pages, index);
490 void *item;
491
492 VM_BUG_ON(!expected);
493 VM_BUG_ON(!replacement);
494 item = xas_load(&xas);
495 if (item != expected)
496 return -ENOENT;
497 xas_store(&xas, replacement);
498 return 0;
499 }
500
501 /*
502 * Sometimes, before we decide whether to proceed or to fail, we must check
503 * that an entry was not already brought back from swap by a racing thread.
504 *
505 * Checking folio is not enough: by the time a swapcache folio is locked, it
506 * might be reused, and again be swapcache, using the same swap as before.
507 */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)508 static bool shmem_confirm_swap(struct address_space *mapping,
509 pgoff_t index, swp_entry_t swap)
510 {
511 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
512 }
513
514 /*
515 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
516 *
517 * SHMEM_HUGE_NEVER:
518 * disables huge pages for the mount;
519 * SHMEM_HUGE_ALWAYS:
520 * enables huge pages for the mount;
521 * SHMEM_HUGE_WITHIN_SIZE:
522 * only allocate huge pages if the page will be fully within i_size,
523 * also respect fadvise()/madvise() hints;
524 * SHMEM_HUGE_ADVISE:
525 * only allocate huge pages if requested with fadvise()/madvise();
526 */
527
528 #define SHMEM_HUGE_NEVER 0
529 #define SHMEM_HUGE_ALWAYS 1
530 #define SHMEM_HUGE_WITHIN_SIZE 2
531 #define SHMEM_HUGE_ADVISE 3
532
533 /*
534 * Special values.
535 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
536 *
537 * SHMEM_HUGE_DENY:
538 * disables huge on shm_mnt and all mounts, for emergency use;
539 * SHMEM_HUGE_FORCE:
540 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
541 *
542 */
543 #define SHMEM_HUGE_DENY (-1)
544 #define SHMEM_HUGE_FORCE (-2)
545
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 /* ifdef here to avoid bloating shmem.o when not necessary */
548
549 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
550
__shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,unsigned long vm_flags)551 static bool __shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
552 loff_t write_end, bool shmem_huge_force,
553 struct vm_area_struct *vma,
554 unsigned long vm_flags)
555 {
556 struct mm_struct *mm = vma ? vma->vm_mm : NULL;
557 loff_t i_size;
558
559 if (!S_ISREG(inode->i_mode))
560 return false;
561 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
562 return false;
563 if (shmem_huge == SHMEM_HUGE_DENY)
564 return false;
565 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
566 return true;
567
568 switch (SHMEM_SB(inode->i_sb)->huge) {
569 case SHMEM_HUGE_ALWAYS:
570 return true;
571 case SHMEM_HUGE_WITHIN_SIZE:
572 index = round_up(index + 1, HPAGE_PMD_NR);
573 i_size = max(write_end, i_size_read(inode));
574 i_size = round_up(i_size, PAGE_SIZE);
575 if (i_size >> PAGE_SHIFT >= index)
576 return true;
577 fallthrough;
578 case SHMEM_HUGE_ADVISE:
579 if (mm && (vm_flags & VM_HUGEPAGE))
580 return true;
581 fallthrough;
582 default:
583 return false;
584 }
585 }
586
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,unsigned long vm_flags)587 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
588 loff_t write_end, bool shmem_huge_force,
589 struct vm_area_struct *vma, unsigned long vm_flags)
590 {
591 if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER)
592 return false;
593
594 return __shmem_huge_global_enabled(inode, index, write_end,
595 shmem_huge_force, vma, vm_flags);
596 }
597
598 #if defined(CONFIG_SYSFS)
shmem_parse_huge(const char * str)599 static int shmem_parse_huge(const char *str)
600 {
601 if (!strcmp(str, "never"))
602 return SHMEM_HUGE_NEVER;
603 if (!strcmp(str, "always"))
604 return SHMEM_HUGE_ALWAYS;
605 if (!strcmp(str, "within_size"))
606 return SHMEM_HUGE_WITHIN_SIZE;
607 if (!strcmp(str, "advise"))
608 return SHMEM_HUGE_ADVISE;
609 if (!strcmp(str, "deny"))
610 return SHMEM_HUGE_DENY;
611 if (!strcmp(str, "force"))
612 return SHMEM_HUGE_FORCE;
613 return -EINVAL;
614 }
615 #endif
616
617 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)618 static const char *shmem_format_huge(int huge)
619 {
620 switch (huge) {
621 case SHMEM_HUGE_NEVER:
622 return "never";
623 case SHMEM_HUGE_ALWAYS:
624 return "always";
625 case SHMEM_HUGE_WITHIN_SIZE:
626 return "within_size";
627 case SHMEM_HUGE_ADVISE:
628 return "advise";
629 case SHMEM_HUGE_DENY:
630 return "deny";
631 case SHMEM_HUGE_FORCE:
632 return "force";
633 default:
634 VM_BUG_ON(1);
635 return "bad_val";
636 }
637 }
638 #endif
639
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)640 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
641 struct shrink_control *sc, unsigned long nr_to_free)
642 {
643 LIST_HEAD(list), *pos, *next;
644 struct inode *inode;
645 struct shmem_inode_info *info;
646 struct folio *folio;
647 unsigned long batch = sc ? sc->nr_to_scan : 128;
648 unsigned long split = 0, freed = 0;
649
650 if (list_empty(&sbinfo->shrinklist))
651 return SHRINK_STOP;
652
653 spin_lock(&sbinfo->shrinklist_lock);
654 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
655 info = list_entry(pos, struct shmem_inode_info, shrinklist);
656
657 /* pin the inode */
658 inode = igrab(&info->vfs_inode);
659
660 /* inode is about to be evicted */
661 if (!inode) {
662 list_del_init(&info->shrinklist);
663 goto next;
664 }
665
666 list_move(&info->shrinklist, &list);
667 next:
668 sbinfo->shrinklist_len--;
669 if (!--batch)
670 break;
671 }
672 spin_unlock(&sbinfo->shrinklist_lock);
673
674 list_for_each_safe(pos, next, &list) {
675 pgoff_t next, end;
676 loff_t i_size;
677 int ret;
678
679 info = list_entry(pos, struct shmem_inode_info, shrinklist);
680 inode = &info->vfs_inode;
681
682 if (nr_to_free && freed >= nr_to_free)
683 goto move_back;
684
685 i_size = i_size_read(inode);
686 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
687 if (!folio || xa_is_value(folio))
688 goto drop;
689
690 /* No large folio at the end of the file: nothing to split */
691 if (!folio_test_large(folio)) {
692 folio_put(folio);
693 goto drop;
694 }
695
696 /* Check if there is anything to gain from splitting */
697 next = folio_next_index(folio);
698 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
699 if (end <= folio->index || end >= next) {
700 folio_put(folio);
701 goto drop;
702 }
703
704 /*
705 * Move the inode on the list back to shrinklist if we failed
706 * to lock the page at this time.
707 *
708 * Waiting for the lock may lead to deadlock in the
709 * reclaim path.
710 */
711 if (!folio_trylock(folio)) {
712 folio_put(folio);
713 goto move_back;
714 }
715
716 ret = split_folio(folio);
717 folio_unlock(folio);
718 folio_put(folio);
719
720 /* If split failed move the inode on the list back to shrinklist */
721 if (ret)
722 goto move_back;
723
724 freed += next - end;
725 split++;
726 drop:
727 list_del_init(&info->shrinklist);
728 goto put;
729 move_back:
730 /*
731 * Make sure the inode is either on the global list or deleted
732 * from any local list before iput() since it could be deleted
733 * in another thread once we put the inode (then the local list
734 * is corrupted).
735 */
736 spin_lock(&sbinfo->shrinklist_lock);
737 list_move(&info->shrinklist, &sbinfo->shrinklist);
738 sbinfo->shrinklist_len++;
739 spin_unlock(&sbinfo->shrinklist_lock);
740 put:
741 iput(inode);
742 }
743
744 return split;
745 }
746
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)747 static long shmem_unused_huge_scan(struct super_block *sb,
748 struct shrink_control *sc)
749 {
750 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
751
752 if (!READ_ONCE(sbinfo->shrinklist_len))
753 return SHRINK_STOP;
754
755 return shmem_unused_huge_shrink(sbinfo, sc, 0);
756 }
757
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)758 static long shmem_unused_huge_count(struct super_block *sb,
759 struct shrink_control *sc)
760 {
761 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
762 return READ_ONCE(sbinfo->shrinklist_len);
763 }
764 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
765
766 #define shmem_huge SHMEM_HUGE_DENY
767
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)768 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
769 struct shrink_control *sc, unsigned long nr_to_free)
770 {
771 return 0;
772 }
773
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,unsigned long vm_flags)774 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
775 loff_t write_end, bool shmem_huge_force,
776 struct vm_area_struct *vma, unsigned long vm_flags)
777 {
778 return false;
779 }
780 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
781
782 /*
783 * Somewhat like filemap_add_folio, but error if expected item has gone.
784 */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp)785 static int shmem_add_to_page_cache(struct folio *folio,
786 struct address_space *mapping,
787 pgoff_t index, void *expected, gfp_t gfp)
788 {
789 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
790 long nr = folio_nr_pages(folio);
791
792 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
793 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
794 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
795
796 folio_ref_add(folio, nr);
797 folio->mapping = mapping;
798 folio->index = index;
799
800 gfp &= GFP_RECLAIM_MASK;
801 folio_throttle_swaprate(folio, gfp);
802
803 do {
804 xas_lock_irq(&xas);
805 if (expected != xas_find_conflict(&xas)) {
806 xas_set_err(&xas, -EEXIST);
807 goto unlock;
808 }
809 if (expected && xas_find_conflict(&xas)) {
810 xas_set_err(&xas, -EEXIST);
811 goto unlock;
812 }
813 xas_store(&xas, folio);
814 if (xas_error(&xas))
815 goto unlock;
816 if (folio_test_pmd_mappable(folio))
817 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
818 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
819 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
820 mapping->nrpages += nr;
821 unlock:
822 xas_unlock_irq(&xas);
823 } while (xas_nomem(&xas, gfp));
824
825 if (xas_error(&xas)) {
826 folio->mapping = NULL;
827 folio_ref_sub(folio, nr);
828 return xas_error(&xas);
829 }
830
831 return 0;
832 }
833
834 /*
835 * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
836 */
shmem_delete_from_page_cache(struct folio * folio,void * radswap)837 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
838 {
839 struct address_space *mapping = folio->mapping;
840 long nr = folio_nr_pages(folio);
841 int error;
842
843 xa_lock_irq(&mapping->i_pages);
844 error = shmem_replace_entry(mapping, folio->index, folio, radswap);
845 folio->mapping = NULL;
846 mapping->nrpages -= nr;
847 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
848 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
849 xa_unlock_irq(&mapping->i_pages);
850 folio_put_refs(folio, nr);
851 BUG_ON(error);
852 }
853
854 /*
855 * Remove swap entry from page cache, free the swap and its page cache. Returns
856 * the number of pages being freed. 0 means entry not found in XArray (0 pages
857 * being freed).
858 */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)859 static long shmem_free_swap(struct address_space *mapping,
860 pgoff_t index, void *radswap)
861 {
862 int order = xa_get_order(&mapping->i_pages, index);
863 void *old;
864
865 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
866 if (old != radswap)
867 return 0;
868 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
869
870 return 1 << order;
871 }
872
873 /*
874 * Determine (in bytes) how many of the shmem object's pages mapped by the
875 * given offsets are swapped out.
876 *
877 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
878 * as long as the inode doesn't go away and racy results are not a problem.
879 */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)880 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
881 pgoff_t start, pgoff_t end)
882 {
883 XA_STATE(xas, &mapping->i_pages, start);
884 struct page *page;
885 unsigned long swapped = 0;
886 unsigned long max = end - 1;
887
888 rcu_read_lock();
889 xas_for_each(&xas, page, max) {
890 if (xas_retry(&xas, page))
891 continue;
892 if (xa_is_value(page))
893 swapped += 1 << xas_get_order(&xas);
894 if (xas.xa_index == max)
895 break;
896 if (need_resched()) {
897 xas_pause(&xas);
898 cond_resched_rcu();
899 }
900 }
901 rcu_read_unlock();
902
903 return swapped << PAGE_SHIFT;
904 }
905
906 /*
907 * Determine (in bytes) how many of the shmem object's pages mapped by the
908 * given vma is swapped out.
909 *
910 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
911 * as long as the inode doesn't go away and racy results are not a problem.
912 */
shmem_swap_usage(struct vm_area_struct * vma)913 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
914 {
915 struct inode *inode = file_inode(vma->vm_file);
916 struct shmem_inode_info *info = SHMEM_I(inode);
917 struct address_space *mapping = inode->i_mapping;
918 unsigned long swapped;
919
920 /* Be careful as we don't hold info->lock */
921 swapped = READ_ONCE(info->swapped);
922
923 /*
924 * The easier cases are when the shmem object has nothing in swap, or
925 * the vma maps it whole. Then we can simply use the stats that we
926 * already track.
927 */
928 if (!swapped)
929 return 0;
930
931 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
932 return swapped << PAGE_SHIFT;
933
934 /* Here comes the more involved part */
935 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
936 vma->vm_pgoff + vma_pages(vma));
937 }
938
939 /*
940 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
941 */
shmem_unlock_mapping(struct address_space * mapping)942 void shmem_unlock_mapping(struct address_space *mapping)
943 {
944 struct folio_batch fbatch;
945 pgoff_t index = 0;
946
947 folio_batch_init(&fbatch);
948 /*
949 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
950 */
951 while (!mapping_unevictable(mapping) &&
952 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
953 check_move_unevictable_folios(&fbatch);
954 folio_batch_release(&fbatch);
955 cond_resched();
956 }
957 }
958
shmem_get_partial_folio(struct inode * inode,pgoff_t index)959 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
960 {
961 struct folio *folio;
962
963 /*
964 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
965 * beyond i_size, and reports fallocated folios as holes.
966 */
967 folio = filemap_get_entry(inode->i_mapping, index);
968 if (!folio)
969 return folio;
970 if (!xa_is_value(folio)) {
971 folio_lock(folio);
972 if (folio->mapping == inode->i_mapping)
973 return folio;
974 /* The folio has been swapped out */
975 folio_unlock(folio);
976 folio_put(folio);
977 }
978 /*
979 * But read a folio back from swap if any of it is within i_size
980 * (although in some cases this is just a waste of time).
981 */
982 folio = NULL;
983 shmem_get_folio(inode, index, 0, &folio, SGP_READ);
984 return folio;
985 }
986
987 /*
988 * Remove range of pages and swap entries from page cache, and free them.
989 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
990 */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)991 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
992 bool unfalloc)
993 {
994 struct address_space *mapping = inode->i_mapping;
995 struct shmem_inode_info *info = SHMEM_I(inode);
996 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
997 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
998 struct folio_batch fbatch;
999 pgoff_t indices[PAGEVEC_SIZE];
1000 struct folio *folio;
1001 bool same_folio;
1002 long nr_swaps_freed = 0;
1003 pgoff_t index;
1004 int i;
1005
1006 if (lend == -1)
1007 end = -1; /* unsigned, so actually very big */
1008
1009 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1010 info->fallocend = start;
1011
1012 folio_batch_init(&fbatch);
1013 index = start;
1014 while (index < end && find_lock_entries(mapping, &index, end - 1,
1015 &fbatch, indices)) {
1016 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1017 folio = fbatch.folios[i];
1018
1019 if (xa_is_value(folio)) {
1020 if (unfalloc)
1021 continue;
1022 nr_swaps_freed += shmem_free_swap(mapping,
1023 indices[i], folio);
1024 continue;
1025 }
1026
1027 if (!unfalloc || !folio_test_uptodate(folio))
1028 truncate_inode_folio(mapping, folio);
1029 folio_unlock(folio);
1030 }
1031 folio_batch_remove_exceptionals(&fbatch);
1032 folio_batch_release(&fbatch);
1033 cond_resched();
1034 }
1035
1036 /*
1037 * When undoing a failed fallocate, we want none of the partial folio
1038 * zeroing and splitting below, but shall want to truncate the whole
1039 * folio when !uptodate indicates that it was added by this fallocate,
1040 * even when [lstart, lend] covers only a part of the folio.
1041 */
1042 if (unfalloc)
1043 goto whole_folios;
1044
1045 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1046 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1047 if (folio) {
1048 same_folio = lend < folio_pos(folio) + folio_size(folio);
1049 folio_mark_dirty(folio);
1050 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1051 start = folio_next_index(folio);
1052 if (same_folio)
1053 end = folio->index;
1054 }
1055 folio_unlock(folio);
1056 folio_put(folio);
1057 folio = NULL;
1058 }
1059
1060 if (!same_folio)
1061 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1062 if (folio) {
1063 folio_mark_dirty(folio);
1064 if (!truncate_inode_partial_folio(folio, lstart, lend))
1065 end = folio->index;
1066 folio_unlock(folio);
1067 folio_put(folio);
1068 }
1069
1070 whole_folios:
1071
1072 index = start;
1073 while (index < end) {
1074 cond_resched();
1075
1076 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1077 indices)) {
1078 /* If all gone or hole-punch or unfalloc, we're done */
1079 if (index == start || end != -1)
1080 break;
1081 /* But if truncating, restart to make sure all gone */
1082 index = start;
1083 continue;
1084 }
1085 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1086 folio = fbatch.folios[i];
1087
1088 if (xa_is_value(folio)) {
1089 long swaps_freed;
1090
1091 if (unfalloc)
1092 continue;
1093 swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1094 if (!swaps_freed) {
1095 /* Swap was replaced by page: retry */
1096 index = indices[i];
1097 break;
1098 }
1099 nr_swaps_freed += swaps_freed;
1100 continue;
1101 }
1102
1103 folio_lock(folio);
1104
1105 if (!unfalloc || !folio_test_uptodate(folio)) {
1106 if (folio_mapping(folio) != mapping) {
1107 /* Page was replaced by swap: retry */
1108 folio_unlock(folio);
1109 index = indices[i];
1110 break;
1111 }
1112 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1113 folio);
1114
1115 if (!folio_test_large(folio)) {
1116 truncate_inode_folio(mapping, folio);
1117 } else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1118 /*
1119 * If we split a page, reset the loop so
1120 * that we pick up the new sub pages.
1121 * Otherwise the THP was entirely
1122 * dropped or the target range was
1123 * zeroed, so just continue the loop as
1124 * is.
1125 */
1126 if (!folio_test_large(folio)) {
1127 folio_unlock(folio);
1128 index = start;
1129 break;
1130 }
1131 }
1132 }
1133 folio_unlock(folio);
1134 }
1135 folio_batch_remove_exceptionals(&fbatch);
1136 folio_batch_release(&fbatch);
1137 }
1138
1139 shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1140 }
1141
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1142 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1143 {
1144 shmem_undo_range(inode, lstart, lend, false);
1145 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1146 inode_inc_iversion(inode);
1147 }
1148 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1149
shmem_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1150 static int shmem_getattr(struct mnt_idmap *idmap,
1151 const struct path *path, struct kstat *stat,
1152 u32 request_mask, unsigned int query_flags)
1153 {
1154 struct inode *inode = path->dentry->d_inode;
1155 struct shmem_inode_info *info = SHMEM_I(inode);
1156
1157 if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1158 shmem_recalc_inode(inode, 0, 0);
1159
1160 if (info->fsflags & FS_APPEND_FL)
1161 stat->attributes |= STATX_ATTR_APPEND;
1162 if (info->fsflags & FS_IMMUTABLE_FL)
1163 stat->attributes |= STATX_ATTR_IMMUTABLE;
1164 if (info->fsflags & FS_NODUMP_FL)
1165 stat->attributes |= STATX_ATTR_NODUMP;
1166 stat->attributes_mask |= (STATX_ATTR_APPEND |
1167 STATX_ATTR_IMMUTABLE |
1168 STATX_ATTR_NODUMP);
1169 generic_fillattr(idmap, request_mask, inode, stat);
1170
1171 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
1172 stat->blksize = HPAGE_PMD_SIZE;
1173
1174 if (request_mask & STATX_BTIME) {
1175 stat->result_mask |= STATX_BTIME;
1176 stat->btime.tv_sec = info->i_crtime.tv_sec;
1177 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1178 }
1179
1180 return 0;
1181 }
1182
shmem_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1183 static int shmem_setattr(struct mnt_idmap *idmap,
1184 struct dentry *dentry, struct iattr *attr)
1185 {
1186 struct inode *inode = d_inode(dentry);
1187 struct shmem_inode_info *info = SHMEM_I(inode);
1188 int error;
1189 bool update_mtime = false;
1190 bool update_ctime = true;
1191
1192 error = setattr_prepare(idmap, dentry, attr);
1193 if (error)
1194 return error;
1195
1196 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1197 if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1198 return -EPERM;
1199 }
1200 }
1201
1202 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1203 loff_t oldsize = inode->i_size;
1204 loff_t newsize = attr->ia_size;
1205
1206 /* protected by i_rwsem */
1207 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1208 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1209 return -EPERM;
1210
1211 if (newsize != oldsize) {
1212 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1213 oldsize, newsize);
1214 if (error)
1215 return error;
1216 i_size_write(inode, newsize);
1217 update_mtime = true;
1218 } else {
1219 update_ctime = false;
1220 }
1221 if (newsize <= oldsize) {
1222 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1223 if (oldsize > holebegin)
1224 unmap_mapping_range(inode->i_mapping,
1225 holebegin, 0, 1);
1226 if (info->alloced)
1227 shmem_truncate_range(inode,
1228 newsize, (loff_t)-1);
1229 /* unmap again to remove racily COWed private pages */
1230 if (oldsize > holebegin)
1231 unmap_mapping_range(inode->i_mapping,
1232 holebegin, 0, 1);
1233 }
1234 }
1235
1236 if (is_quota_modification(idmap, inode, attr)) {
1237 error = dquot_initialize(inode);
1238 if (error)
1239 return error;
1240 }
1241
1242 /* Transfer quota accounting */
1243 if (i_uid_needs_update(idmap, attr, inode) ||
1244 i_gid_needs_update(idmap, attr, inode)) {
1245 error = dquot_transfer(idmap, inode, attr);
1246 if (error)
1247 return error;
1248 }
1249
1250 setattr_copy(idmap, inode, attr);
1251 if (attr->ia_valid & ATTR_MODE)
1252 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1253 if (!error && update_ctime) {
1254 inode_set_ctime_current(inode);
1255 if (update_mtime)
1256 inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1257 inode_inc_iversion(inode);
1258 }
1259 return error;
1260 }
1261
shmem_evict_inode(struct inode * inode)1262 static void shmem_evict_inode(struct inode *inode)
1263 {
1264 struct shmem_inode_info *info = SHMEM_I(inode);
1265 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1266 size_t freed = 0;
1267
1268 if (shmem_mapping(inode->i_mapping)) {
1269 shmem_unacct_size(info->flags, inode->i_size);
1270 inode->i_size = 0;
1271 mapping_set_exiting(inode->i_mapping);
1272 shmem_truncate_range(inode, 0, (loff_t)-1);
1273 if (!list_empty(&info->shrinklist)) {
1274 spin_lock(&sbinfo->shrinklist_lock);
1275 if (!list_empty(&info->shrinklist)) {
1276 list_del_init(&info->shrinklist);
1277 sbinfo->shrinklist_len--;
1278 }
1279 spin_unlock(&sbinfo->shrinklist_lock);
1280 }
1281 while (!list_empty(&info->swaplist)) {
1282 /* Wait while shmem_unuse() is scanning this inode... */
1283 wait_var_event(&info->stop_eviction,
1284 !atomic_read(&info->stop_eviction));
1285 mutex_lock(&shmem_swaplist_mutex);
1286 /* ...but beware of the race if we peeked too early */
1287 if (!atomic_read(&info->stop_eviction))
1288 list_del_init(&info->swaplist);
1289 mutex_unlock(&shmem_swaplist_mutex);
1290 }
1291 }
1292
1293 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1294 shmem_free_inode(inode->i_sb, freed);
1295 WARN_ON(inode->i_blocks);
1296 clear_inode(inode);
1297 #ifdef CONFIG_TMPFS_QUOTA
1298 dquot_free_inode(inode);
1299 dquot_drop(inode);
1300 #endif
1301 }
1302
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1303 static int shmem_find_swap_entries(struct address_space *mapping,
1304 pgoff_t start, struct folio_batch *fbatch,
1305 pgoff_t *indices, unsigned int type)
1306 {
1307 XA_STATE(xas, &mapping->i_pages, start);
1308 struct folio *folio;
1309 swp_entry_t entry;
1310
1311 rcu_read_lock();
1312 xas_for_each(&xas, folio, ULONG_MAX) {
1313 if (xas_retry(&xas, folio))
1314 continue;
1315
1316 if (!xa_is_value(folio))
1317 continue;
1318
1319 entry = radix_to_swp_entry(folio);
1320 /*
1321 * swapin error entries can be found in the mapping. But they're
1322 * deliberately ignored here as we've done everything we can do.
1323 */
1324 if (swp_type(entry) != type)
1325 continue;
1326
1327 indices[folio_batch_count(fbatch)] = xas.xa_index;
1328 if (!folio_batch_add(fbatch, folio))
1329 break;
1330
1331 if (need_resched()) {
1332 xas_pause(&xas);
1333 cond_resched_rcu();
1334 }
1335 }
1336 rcu_read_unlock();
1337
1338 return xas.xa_index;
1339 }
1340
1341 /*
1342 * Move the swapped pages for an inode to page cache. Returns the count
1343 * of pages swapped in, or the error in case of failure.
1344 */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1345 static int shmem_unuse_swap_entries(struct inode *inode,
1346 struct folio_batch *fbatch, pgoff_t *indices)
1347 {
1348 int i = 0;
1349 int ret = 0;
1350 int error = 0;
1351 struct address_space *mapping = inode->i_mapping;
1352
1353 for (i = 0; i < folio_batch_count(fbatch); i++) {
1354 struct folio *folio = fbatch->folios[i];
1355
1356 if (!xa_is_value(folio))
1357 continue;
1358 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1359 mapping_gfp_mask(mapping), NULL, NULL);
1360 if (error == 0) {
1361 folio_unlock(folio);
1362 folio_put(folio);
1363 ret++;
1364 }
1365 if (error == -ENOMEM)
1366 break;
1367 error = 0;
1368 }
1369 return error ? error : ret;
1370 }
1371
1372 /*
1373 * If swap found in inode, free it and move page from swapcache to filecache.
1374 */
shmem_unuse_inode(struct inode * inode,unsigned int type)1375 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1376 {
1377 struct address_space *mapping = inode->i_mapping;
1378 pgoff_t start = 0;
1379 struct folio_batch fbatch;
1380 pgoff_t indices[PAGEVEC_SIZE];
1381 int ret = 0;
1382
1383 do {
1384 folio_batch_init(&fbatch);
1385 shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1386 if (folio_batch_count(&fbatch) == 0) {
1387 ret = 0;
1388 break;
1389 }
1390
1391 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1392 if (ret < 0)
1393 break;
1394
1395 start = indices[folio_batch_count(&fbatch) - 1];
1396 } while (true);
1397
1398 return ret;
1399 }
1400
1401 /*
1402 * Read all the shared memory data that resides in the swap
1403 * device 'type' back into memory, so the swap device can be
1404 * unused.
1405 */
shmem_unuse(unsigned int type)1406 int shmem_unuse(unsigned int type)
1407 {
1408 struct shmem_inode_info *info, *next;
1409 int error = 0;
1410
1411 if (list_empty(&shmem_swaplist))
1412 return 0;
1413
1414 mutex_lock(&shmem_swaplist_mutex);
1415 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1416 if (!info->swapped) {
1417 list_del_init(&info->swaplist);
1418 continue;
1419 }
1420 /*
1421 * Drop the swaplist mutex while searching the inode for swap;
1422 * but before doing so, make sure shmem_evict_inode() will not
1423 * remove placeholder inode from swaplist, nor let it be freed
1424 * (igrab() would protect from unlink, but not from unmount).
1425 */
1426 atomic_inc(&info->stop_eviction);
1427 mutex_unlock(&shmem_swaplist_mutex);
1428
1429 error = shmem_unuse_inode(&info->vfs_inode, type);
1430 cond_resched();
1431
1432 mutex_lock(&shmem_swaplist_mutex);
1433 next = list_next_entry(info, swaplist);
1434 if (!info->swapped)
1435 list_del_init(&info->swaplist);
1436 if (atomic_dec_and_test(&info->stop_eviction))
1437 wake_up_var(&info->stop_eviction);
1438 if (error)
1439 break;
1440 }
1441 mutex_unlock(&shmem_swaplist_mutex);
1442
1443 return error;
1444 }
1445
1446 /*
1447 * Move the page from the page cache to the swap cache.
1448 */
shmem_writepage(struct page * page,struct writeback_control * wbc)1449 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1450 {
1451 struct folio *folio = page_folio(page);
1452 struct address_space *mapping = folio->mapping;
1453 struct inode *inode = mapping->host;
1454 struct shmem_inode_info *info = SHMEM_I(inode);
1455 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1456 swp_entry_t swap;
1457 pgoff_t index;
1458 int nr_pages;
1459 bool split = false;
1460
1461 /*
1462 * Our capabilities prevent regular writeback or sync from ever calling
1463 * shmem_writepage; but a stacking filesystem might use ->writepage of
1464 * its underlying filesystem, in which case tmpfs should write out to
1465 * swap only in response to memory pressure, and not for the writeback
1466 * threads or sync.
1467 */
1468 if (WARN_ON_ONCE(!wbc->for_reclaim))
1469 goto redirty;
1470
1471 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1472 goto redirty;
1473
1474 if (!total_swap_pages)
1475 goto redirty;
1476
1477 /*
1478 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1479 * split when swapping.
1480 *
1481 * And shrinkage of pages beyond i_size does not split swap, so
1482 * swapout of a large folio crossing i_size needs to split too
1483 * (unless fallocate has been used to preallocate beyond EOF).
1484 */
1485 if (folio_test_large(folio)) {
1486 index = shmem_fallocend(inode,
1487 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1488 if ((index > folio->index && index < folio_next_index(folio)) ||
1489 !IS_ENABLED(CONFIG_THP_SWAP))
1490 split = true;
1491 }
1492
1493 if (split) {
1494 try_split:
1495 /* Ensure the subpages are still dirty */
1496 folio_test_set_dirty(folio);
1497 if (split_huge_page_to_list_to_order(page, wbc->list, 0))
1498 goto redirty;
1499 folio = page_folio(page);
1500 folio_clear_dirty(folio);
1501 }
1502
1503 index = folio->index;
1504 nr_pages = folio_nr_pages(folio);
1505
1506 /*
1507 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1508 * value into swapfile.c, the only way we can correctly account for a
1509 * fallocated folio arriving here is now to initialize it and write it.
1510 *
1511 * That's okay for a folio already fallocated earlier, but if we have
1512 * not yet completed the fallocation, then (a) we want to keep track
1513 * of this folio in case we have to undo it, and (b) it may not be a
1514 * good idea to continue anyway, once we're pushing into swap. So
1515 * reactivate the folio, and let shmem_fallocate() quit when too many.
1516 */
1517 if (!folio_test_uptodate(folio)) {
1518 if (inode->i_private) {
1519 struct shmem_falloc *shmem_falloc;
1520 spin_lock(&inode->i_lock);
1521 shmem_falloc = inode->i_private;
1522 if (shmem_falloc &&
1523 !shmem_falloc->waitq &&
1524 index >= shmem_falloc->start &&
1525 index < shmem_falloc->next)
1526 shmem_falloc->nr_unswapped++;
1527 else
1528 shmem_falloc = NULL;
1529 spin_unlock(&inode->i_lock);
1530 if (shmem_falloc)
1531 goto redirty;
1532 }
1533 folio_zero_range(folio, 0, folio_size(folio));
1534 flush_dcache_folio(folio);
1535 folio_mark_uptodate(folio);
1536 }
1537
1538 swap = folio_alloc_swap(folio);
1539 if (!swap.val) {
1540 if (nr_pages > 1)
1541 goto try_split;
1542
1543 goto redirty;
1544 }
1545
1546 /*
1547 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1548 * if it's not already there. Do it now before the folio is
1549 * moved to swap cache, when its pagelock no longer protects
1550 * the inode from eviction. But don't unlock the mutex until
1551 * we've incremented swapped, because shmem_unuse_inode() will
1552 * prune a !swapped inode from the swaplist under this mutex.
1553 */
1554 mutex_lock(&shmem_swaplist_mutex);
1555 if (list_empty(&info->swaplist))
1556 list_add(&info->swaplist, &shmem_swaplist);
1557
1558 if (add_to_swap_cache(folio, swap,
1559 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1560 NULL) == 0) {
1561 shmem_recalc_inode(inode, 0, nr_pages);
1562 swap_shmem_alloc(swap, nr_pages);
1563 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1564
1565 mutex_unlock(&shmem_swaplist_mutex);
1566 BUG_ON(folio_mapped(folio));
1567 return swap_writepage(&folio->page, wbc);
1568 }
1569
1570 mutex_unlock(&shmem_swaplist_mutex);
1571 put_swap_folio(folio, swap);
1572 redirty:
1573 folio_mark_dirty(folio);
1574 if (wbc->for_reclaim)
1575 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1576 folio_unlock(folio);
1577 return 0;
1578 }
1579
1580 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1581 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1582 {
1583 char buffer[64];
1584
1585 if (!mpol || mpol->mode == MPOL_DEFAULT)
1586 return; /* show nothing */
1587
1588 mpol_to_str(buffer, sizeof(buffer), mpol);
1589
1590 seq_printf(seq, ",mpol=%s", buffer);
1591 }
1592
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1593 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1594 {
1595 struct mempolicy *mpol = NULL;
1596 if (sbinfo->mpol) {
1597 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1598 mpol = sbinfo->mpol;
1599 mpol_get(mpol);
1600 raw_spin_unlock(&sbinfo->stat_lock);
1601 }
1602 return mpol;
1603 }
1604 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1605 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1606 {
1607 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1608 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1609 {
1610 return NULL;
1611 }
1612 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1613
1614 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1615 pgoff_t index, unsigned int order, pgoff_t *ilx);
1616
shmem_swapin_cluster(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1617 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1618 struct shmem_inode_info *info, pgoff_t index)
1619 {
1620 struct mempolicy *mpol;
1621 pgoff_t ilx;
1622 struct folio *folio;
1623
1624 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1625 folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1626 mpol_cond_put(mpol);
1627
1628 return folio;
1629 }
1630
1631 /*
1632 * Make sure huge_gfp is always more limited than limit_gfp.
1633 * Some of the flags set permissions, while others set limitations.
1634 */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1635 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1636 {
1637 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1638 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1639 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1640 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1641
1642 /* Allow allocations only from the originally specified zones. */
1643 result |= zoneflags;
1644
1645 /*
1646 * Minimize the result gfp by taking the union with the deny flags,
1647 * and the intersection of the allow flags.
1648 */
1649 result |= (limit_gfp & denyflags);
1650 result |= (huge_gfp & limit_gfp) & allowflags;
1651
1652 return result;
1653 }
1654
1655 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
shmem_allowable_huge_orders(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,loff_t write_end,bool shmem_huge_force)1656 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1657 struct vm_area_struct *vma, pgoff_t index,
1658 loff_t write_end, bool shmem_huge_force)
1659 {
1660 unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1661 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1662 unsigned long vm_flags = vma ? vma->vm_flags : 0;
1663 bool global_huge;
1664 loff_t i_size;
1665 int order;
1666
1667 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags)))
1668 return 0;
1669
1670 global_huge = shmem_huge_global_enabled(inode, index, write_end,
1671 shmem_huge_force, vma, vm_flags);
1672 if (!vma || !vma_is_anon_shmem(vma)) {
1673 /*
1674 * For tmpfs, we now only support PMD sized THP if huge page
1675 * is enabled, otherwise fallback to order 0.
1676 */
1677 return global_huge ? BIT(HPAGE_PMD_ORDER) : 0;
1678 }
1679
1680 /*
1681 * Following the 'deny' semantics of the top level, force the huge
1682 * option off from all mounts.
1683 */
1684 if (shmem_huge == SHMEM_HUGE_DENY)
1685 return 0;
1686
1687 /*
1688 * Only allow inherit orders if the top-level value is 'force', which
1689 * means non-PMD sized THP can not override 'huge' mount option now.
1690 */
1691 if (shmem_huge == SHMEM_HUGE_FORCE)
1692 return READ_ONCE(huge_shmem_orders_inherit);
1693
1694 /* Allow mTHP that will be fully within i_size. */
1695 order = highest_order(within_size_orders);
1696 while (within_size_orders) {
1697 index = round_up(index + 1, order);
1698 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1699 if (i_size >> PAGE_SHIFT >= index) {
1700 mask |= within_size_orders;
1701 break;
1702 }
1703
1704 order = next_order(&within_size_orders, order);
1705 }
1706
1707 if (vm_flags & VM_HUGEPAGE)
1708 mask |= READ_ONCE(huge_shmem_orders_madvise);
1709
1710 if (global_huge)
1711 mask |= READ_ONCE(huge_shmem_orders_inherit);
1712
1713 return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1714 }
1715
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1716 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1717 struct address_space *mapping, pgoff_t index,
1718 unsigned long orders)
1719 {
1720 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1721 pgoff_t aligned_index;
1722 unsigned long pages;
1723 int order;
1724
1725 if (vma) {
1726 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1727 if (!orders)
1728 return 0;
1729 }
1730
1731 /* Find the highest order that can add into the page cache */
1732 order = highest_order(orders);
1733 while (orders) {
1734 pages = 1UL << order;
1735 aligned_index = round_down(index, pages);
1736 /*
1737 * Check for conflict before waiting on a huge allocation.
1738 * Conflict might be that a huge page has just been allocated
1739 * and added to page cache by a racing thread, or that there
1740 * is already at least one small page in the huge extent.
1741 * Be careful to retry when appropriate, but not forever!
1742 * Elsewhere -EEXIST would be the right code, but not here.
1743 */
1744 if (!xa_find(&mapping->i_pages, &aligned_index,
1745 aligned_index + pages - 1, XA_PRESENT))
1746 break;
1747 order = next_order(&orders, order);
1748 }
1749
1750 return orders;
1751 }
1752 #else
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1753 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1754 struct address_space *mapping, pgoff_t index,
1755 unsigned long orders)
1756 {
1757 return 0;
1758 }
1759 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1760
shmem_alloc_folio(gfp_t gfp,int order,struct shmem_inode_info * info,pgoff_t index)1761 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1762 struct shmem_inode_info *info, pgoff_t index)
1763 {
1764 struct mempolicy *mpol;
1765 pgoff_t ilx;
1766 struct folio *folio;
1767
1768 mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1769 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1770 mpol_cond_put(mpol);
1771
1772 return folio;
1773 }
1774
shmem_alloc_and_add_folio(struct vm_fault * vmf,gfp_t gfp,struct inode * inode,pgoff_t index,struct mm_struct * fault_mm,unsigned long orders)1775 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1776 gfp_t gfp, struct inode *inode, pgoff_t index,
1777 struct mm_struct *fault_mm, unsigned long orders)
1778 {
1779 struct address_space *mapping = inode->i_mapping;
1780 struct shmem_inode_info *info = SHMEM_I(inode);
1781 unsigned long suitable_orders = 0;
1782 struct folio *folio = NULL;
1783 long pages;
1784 int error, order;
1785
1786 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1787 orders = 0;
1788
1789 if (orders > 0) {
1790 suitable_orders = shmem_suitable_orders(inode, vmf,
1791 mapping, index, orders);
1792
1793 order = highest_order(suitable_orders);
1794 while (suitable_orders) {
1795 pages = 1UL << order;
1796 index = round_down(index, pages);
1797 folio = shmem_alloc_folio(gfp, order, info, index);
1798 if (folio)
1799 goto allocated;
1800
1801 if (pages == HPAGE_PMD_NR)
1802 count_vm_event(THP_FILE_FALLBACK);
1803 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1804 order = next_order(&suitable_orders, order);
1805 }
1806 } else {
1807 pages = 1;
1808 folio = shmem_alloc_folio(gfp, 0, info, index);
1809 }
1810 if (!folio)
1811 return ERR_PTR(-ENOMEM);
1812
1813 allocated:
1814 __folio_set_locked(folio);
1815 __folio_set_swapbacked(folio);
1816
1817 gfp &= GFP_RECLAIM_MASK;
1818 error = mem_cgroup_charge(folio, fault_mm, gfp);
1819 if (error) {
1820 if (xa_find(&mapping->i_pages, &index,
1821 index + pages - 1, XA_PRESENT)) {
1822 error = -EEXIST;
1823 } else if (pages > 1) {
1824 if (pages == HPAGE_PMD_NR) {
1825 count_vm_event(THP_FILE_FALLBACK);
1826 count_vm_event(THP_FILE_FALLBACK_CHARGE);
1827 }
1828 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1829 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1830 }
1831 goto unlock;
1832 }
1833
1834 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1835 if (error)
1836 goto unlock;
1837
1838 error = shmem_inode_acct_blocks(inode, pages);
1839 if (error) {
1840 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1841 long freed;
1842 /*
1843 * Try to reclaim some space by splitting a few
1844 * large folios beyond i_size on the filesystem.
1845 */
1846 shmem_unused_huge_shrink(sbinfo, NULL, pages);
1847 /*
1848 * And do a shmem_recalc_inode() to account for freed pages:
1849 * except our folio is there in cache, so not quite balanced.
1850 */
1851 spin_lock(&info->lock);
1852 freed = pages + info->alloced - info->swapped -
1853 READ_ONCE(mapping->nrpages);
1854 if (freed > 0)
1855 info->alloced -= freed;
1856 spin_unlock(&info->lock);
1857 if (freed > 0)
1858 shmem_inode_unacct_blocks(inode, freed);
1859 error = shmem_inode_acct_blocks(inode, pages);
1860 if (error) {
1861 filemap_remove_folio(folio);
1862 goto unlock;
1863 }
1864 }
1865
1866 shmem_recalc_inode(inode, pages, 0);
1867 folio_add_lru(folio);
1868 return folio;
1869
1870 unlock:
1871 folio_unlock(folio);
1872 folio_put(folio);
1873 return ERR_PTR(error);
1874 }
1875
1876 /*
1877 * When a page is moved from swapcache to shmem filecache (either by the
1878 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1879 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1880 * ignorance of the mapping it belongs to. If that mapping has special
1881 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1882 * we may need to copy to a suitable page before moving to filecache.
1883 *
1884 * In a future release, this may well be extended to respect cpuset and
1885 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1886 * but for now it is a simple matter of zone.
1887 */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)1888 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1889 {
1890 return folio_zonenum(folio) > gfp_zone(gfp);
1891 }
1892
shmem_replace_folio(struct folio ** foliop,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index,struct vm_area_struct * vma)1893 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1894 struct shmem_inode_info *info, pgoff_t index,
1895 struct vm_area_struct *vma)
1896 {
1897 struct folio *new, *old = *foliop;
1898 swp_entry_t entry = old->swap;
1899 struct address_space *swap_mapping = swap_address_space(entry);
1900 pgoff_t swap_index = swap_cache_index(entry);
1901 XA_STATE(xas, &swap_mapping->i_pages, swap_index);
1902 int nr_pages = folio_nr_pages(old);
1903 int error = 0, i;
1904
1905 /*
1906 * We have arrived here because our zones are constrained, so don't
1907 * limit chance of success by further cpuset and node constraints.
1908 */
1909 gfp &= ~GFP_CONSTRAINT_MASK;
1910 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1911 if (nr_pages > 1) {
1912 gfp_t huge_gfp = vma_thp_gfp_mask(vma);
1913
1914 gfp = limit_gfp_mask(huge_gfp, gfp);
1915 }
1916 #endif
1917
1918 new = shmem_alloc_folio(gfp, folio_order(old), info, index);
1919 if (!new)
1920 return -ENOMEM;
1921
1922 folio_ref_add(new, nr_pages);
1923 folio_copy(new, old);
1924 flush_dcache_folio(new);
1925
1926 __folio_set_locked(new);
1927 __folio_set_swapbacked(new);
1928 folio_mark_uptodate(new);
1929 new->swap = entry;
1930 folio_set_swapcache(new);
1931
1932 /* Swap cache still stores N entries instead of a high-order entry */
1933 xa_lock_irq(&swap_mapping->i_pages);
1934 for (i = 0; i < nr_pages; i++) {
1935 void *item = xas_load(&xas);
1936
1937 if (item != old) {
1938 error = -ENOENT;
1939 break;
1940 }
1941
1942 xas_store(&xas, new);
1943 xas_next(&xas);
1944 }
1945 if (!error) {
1946 mem_cgroup_replace_folio(old, new);
1947 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, nr_pages);
1948 __lruvec_stat_mod_folio(new, NR_SHMEM, nr_pages);
1949 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -nr_pages);
1950 __lruvec_stat_mod_folio(old, NR_SHMEM, -nr_pages);
1951 }
1952 xa_unlock_irq(&swap_mapping->i_pages);
1953
1954 if (unlikely(error)) {
1955 /*
1956 * Is this possible? I think not, now that our callers
1957 * check both the swapcache flag and folio->private
1958 * after getting the folio lock; but be defensive.
1959 * Reverse old to newpage for clear and free.
1960 */
1961 old = new;
1962 } else {
1963 folio_add_lru(new);
1964 *foliop = new;
1965 }
1966
1967 folio_clear_swapcache(old);
1968 old->private = NULL;
1969
1970 folio_unlock(old);
1971 /*
1972 * The old folio are removed from swap cache, drop the 'nr_pages'
1973 * reference, as well as one temporary reference getting from swap
1974 * cache.
1975 */
1976 folio_put_refs(old, nr_pages + 1);
1977 return error;
1978 }
1979
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap)1980 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1981 struct folio *folio, swp_entry_t swap)
1982 {
1983 struct address_space *mapping = inode->i_mapping;
1984 swp_entry_t swapin_error;
1985 void *old;
1986 int nr_pages;
1987
1988 swapin_error = make_poisoned_swp_entry();
1989 old = xa_cmpxchg_irq(&mapping->i_pages, index,
1990 swp_to_radix_entry(swap),
1991 swp_to_radix_entry(swapin_error), 0);
1992 if (old != swp_to_radix_entry(swap))
1993 return;
1994
1995 nr_pages = folio_nr_pages(folio);
1996 folio_wait_writeback(folio);
1997 delete_from_swap_cache(folio);
1998 /*
1999 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2000 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2001 * in shmem_evict_inode().
2002 */
2003 shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2004 swap_free_nr(swap, nr_pages);
2005 }
2006
shmem_split_large_entry(struct inode * inode,pgoff_t index,swp_entry_t swap,gfp_t gfp)2007 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2008 swp_entry_t swap, gfp_t gfp)
2009 {
2010 struct address_space *mapping = inode->i_mapping;
2011 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2012 void *alloced_shadow = NULL;
2013 int alloced_order = 0, i;
2014
2015 /* Convert user data gfp flags to xarray node gfp flags */
2016 gfp &= GFP_RECLAIM_MASK;
2017
2018 for (;;) {
2019 int order = -1, split_order = 0;
2020 void *old = NULL;
2021
2022 xas_lock_irq(&xas);
2023 old = xas_load(&xas);
2024 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2025 xas_set_err(&xas, -EEXIST);
2026 goto unlock;
2027 }
2028
2029 order = xas_get_order(&xas);
2030
2031 /* Swap entry may have changed before we re-acquire the lock */
2032 if (alloced_order &&
2033 (old != alloced_shadow || order != alloced_order)) {
2034 xas_destroy(&xas);
2035 alloced_order = 0;
2036 }
2037
2038 /* Try to split large swap entry in pagecache */
2039 if (order > 0) {
2040 if (!alloced_order) {
2041 split_order = order;
2042 goto unlock;
2043 }
2044 xas_split(&xas, old, order);
2045
2046 /*
2047 * Re-set the swap entry after splitting, and the swap
2048 * offset of the original large entry must be continuous.
2049 */
2050 for (i = 0; i < 1 << order; i++) {
2051 pgoff_t aligned_index = round_down(index, 1 << order);
2052 swp_entry_t tmp;
2053
2054 tmp = swp_entry(swp_type(swap), swp_offset(swap) + i);
2055 __xa_store(&mapping->i_pages, aligned_index + i,
2056 swp_to_radix_entry(tmp), 0);
2057 }
2058 }
2059
2060 unlock:
2061 xas_unlock_irq(&xas);
2062
2063 /* split needed, alloc here and retry. */
2064 if (split_order) {
2065 xas_split_alloc(&xas, old, split_order, gfp);
2066 if (xas_error(&xas))
2067 goto error;
2068 alloced_shadow = old;
2069 alloced_order = split_order;
2070 xas_reset(&xas);
2071 continue;
2072 }
2073
2074 if (!xas_nomem(&xas, gfp))
2075 break;
2076 }
2077
2078 error:
2079 if (xas_error(&xas))
2080 return xas_error(&xas);
2081
2082 return alloced_order;
2083 }
2084
2085 /*
2086 * Swap in the folio pointed to by *foliop.
2087 * Caller has to make sure that *foliop contains a valid swapped folio.
2088 * Returns 0 and the folio in foliop if success. On failure, returns the
2089 * error code and NULL in *foliop.
2090 */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)2091 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2092 struct folio **foliop, enum sgp_type sgp,
2093 gfp_t gfp, struct vm_area_struct *vma,
2094 vm_fault_t *fault_type)
2095 {
2096 struct address_space *mapping = inode->i_mapping;
2097 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2098 struct shmem_inode_info *info = SHMEM_I(inode);
2099 struct swap_info_struct *si;
2100 struct folio *folio = NULL;
2101 swp_entry_t swap;
2102 int error, nr_pages;
2103
2104 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2105 swap = radix_to_swp_entry(*foliop);
2106 *foliop = NULL;
2107
2108 if (is_poisoned_swp_entry(swap))
2109 return -EIO;
2110
2111 si = get_swap_device(swap);
2112 if (!si) {
2113 if (!shmem_confirm_swap(mapping, index, swap))
2114 return -EEXIST;
2115 else
2116 return -EINVAL;
2117 }
2118
2119 /* Look it up and read it in.. */
2120 folio = swap_cache_get_folio(swap, NULL, 0);
2121 if (!folio) {
2122 int split_order;
2123
2124 /* Or update major stats only when swapin succeeds?? */
2125 if (fault_type) {
2126 *fault_type |= VM_FAULT_MAJOR;
2127 count_vm_event(PGMAJFAULT);
2128 count_memcg_event_mm(fault_mm, PGMAJFAULT);
2129 }
2130
2131 /*
2132 * Now swap device can only swap in order 0 folio, then we
2133 * should split the large swap entry stored in the pagecache
2134 * if necessary.
2135 */
2136 split_order = shmem_split_large_entry(inode, index, swap, gfp);
2137 if (split_order < 0) {
2138 error = split_order;
2139 goto failed;
2140 }
2141
2142 /*
2143 * If the large swap entry has already been split, it is
2144 * necessary to recalculate the new swap entry based on
2145 * the old order alignment.
2146 */
2147 if (split_order > 0) {
2148 pgoff_t offset = index - round_down(index, 1 << split_order);
2149
2150 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2151 }
2152
2153 /* Here we actually start the io */
2154 folio = shmem_swapin_cluster(swap, gfp, info, index);
2155 if (!folio) {
2156 error = -ENOMEM;
2157 goto failed;
2158 }
2159 }
2160
2161 /* We have to do this with folio locked to prevent races */
2162 folio_lock(folio);
2163 if (!folio_test_swapcache(folio) ||
2164 folio->swap.val != swap.val ||
2165 !shmem_confirm_swap(mapping, index, swap)) {
2166 error = -EEXIST;
2167 goto unlock;
2168 }
2169 if (!folio_test_uptodate(folio)) {
2170 error = -EIO;
2171 goto failed;
2172 }
2173 folio_wait_writeback(folio);
2174 nr_pages = folio_nr_pages(folio);
2175
2176 /*
2177 * Some architectures may have to restore extra metadata to the
2178 * folio after reading from swap.
2179 */
2180 arch_swap_restore(folio_swap(swap, folio), folio);
2181
2182 if (shmem_should_replace_folio(folio, gfp)) {
2183 error = shmem_replace_folio(&folio, gfp, info, index, vma);
2184 if (error)
2185 goto failed;
2186 }
2187
2188 error = shmem_add_to_page_cache(folio, mapping,
2189 round_down(index, nr_pages),
2190 swp_to_radix_entry(swap), gfp);
2191 if (error)
2192 goto failed;
2193
2194 shmem_recalc_inode(inode, 0, -nr_pages);
2195
2196 if (sgp == SGP_WRITE)
2197 folio_mark_accessed(folio);
2198
2199 delete_from_swap_cache(folio);
2200 folio_mark_dirty(folio);
2201 swap_free_nr(swap, nr_pages);
2202 put_swap_device(si);
2203
2204 *foliop = folio;
2205 return 0;
2206 failed:
2207 if (!shmem_confirm_swap(mapping, index, swap))
2208 error = -EEXIST;
2209 if (error == -EIO)
2210 shmem_set_folio_swapin_error(inode, index, folio, swap);
2211 unlock:
2212 if (folio) {
2213 folio_unlock(folio);
2214 folio_put(folio);
2215 }
2216 put_swap_device(si);
2217
2218 return error;
2219 }
2220
2221 /*
2222 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2223 *
2224 * If we allocate a new one we do not mark it dirty. That's up to the
2225 * vm. If we swap it in we mark it dirty since we also free the swap
2226 * entry since a page cannot live in both the swap and page cache.
2227 *
2228 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2229 */
shmem_get_folio_gfp(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_fault * vmf,vm_fault_t * fault_type)2230 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2231 loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2232 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2233 {
2234 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2235 struct mm_struct *fault_mm;
2236 struct folio *folio;
2237 int error;
2238 bool alloced;
2239 unsigned long orders = 0;
2240
2241 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2242 return -EINVAL;
2243
2244 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2245 return -EFBIG;
2246 repeat:
2247 if (sgp <= SGP_CACHE &&
2248 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2249 return -EINVAL;
2250
2251 alloced = false;
2252 fault_mm = vma ? vma->vm_mm : NULL;
2253
2254 folio = filemap_get_entry(inode->i_mapping, index);
2255 if (folio && vma && userfaultfd_minor(vma)) {
2256 if (!xa_is_value(folio))
2257 folio_put(folio);
2258 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2259 return 0;
2260 }
2261
2262 if (xa_is_value(folio)) {
2263 error = shmem_swapin_folio(inode, index, &folio,
2264 sgp, gfp, vma, fault_type);
2265 if (error == -EEXIST)
2266 goto repeat;
2267
2268 *foliop = folio;
2269 return error;
2270 }
2271
2272 if (folio) {
2273 folio_lock(folio);
2274
2275 /* Has the folio been truncated or swapped out? */
2276 if (unlikely(folio->mapping != inode->i_mapping)) {
2277 folio_unlock(folio);
2278 folio_put(folio);
2279 goto repeat;
2280 }
2281 if (sgp == SGP_WRITE)
2282 folio_mark_accessed(folio);
2283 if (folio_test_uptodate(folio))
2284 goto out;
2285 /* fallocated folio */
2286 if (sgp != SGP_READ)
2287 goto clear;
2288 folio_unlock(folio);
2289 folio_put(folio);
2290 }
2291
2292 /*
2293 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2294 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2295 */
2296 *foliop = NULL;
2297 if (sgp == SGP_READ)
2298 return 0;
2299 if (sgp == SGP_NOALLOC)
2300 return -ENOENT;
2301
2302 /*
2303 * Fast cache lookup and swap lookup did not find it: allocate.
2304 */
2305
2306 if (vma && userfaultfd_missing(vma)) {
2307 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2308 return 0;
2309 }
2310
2311 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2312 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2313 if (orders > 0) {
2314 gfp_t huge_gfp;
2315
2316 huge_gfp = vma_thp_gfp_mask(vma);
2317 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2318 folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2319 inode, index, fault_mm, orders);
2320 if (!IS_ERR(folio)) {
2321 if (folio_test_pmd_mappable(folio))
2322 count_vm_event(THP_FILE_ALLOC);
2323 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2324 goto alloced;
2325 }
2326 if (PTR_ERR(folio) == -EEXIST)
2327 goto repeat;
2328 }
2329
2330 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2331 if (IS_ERR(folio)) {
2332 error = PTR_ERR(folio);
2333 if (error == -EEXIST)
2334 goto repeat;
2335 folio = NULL;
2336 goto unlock;
2337 }
2338
2339 alloced:
2340 alloced = true;
2341 if (folio_test_large(folio) &&
2342 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2343 folio_next_index(folio)) {
2344 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2345 struct shmem_inode_info *info = SHMEM_I(inode);
2346 /*
2347 * Part of the large folio is beyond i_size: subject
2348 * to shrink under memory pressure.
2349 */
2350 spin_lock(&sbinfo->shrinklist_lock);
2351 /*
2352 * _careful to defend against unlocked access to
2353 * ->shrink_list in shmem_unused_huge_shrink()
2354 */
2355 if (list_empty_careful(&info->shrinklist)) {
2356 list_add_tail(&info->shrinklist,
2357 &sbinfo->shrinklist);
2358 sbinfo->shrinklist_len++;
2359 }
2360 spin_unlock(&sbinfo->shrinklist_lock);
2361 }
2362
2363 if (sgp == SGP_WRITE)
2364 folio_set_referenced(folio);
2365 /*
2366 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2367 */
2368 if (sgp == SGP_FALLOC)
2369 sgp = SGP_WRITE;
2370 clear:
2371 /*
2372 * Let SGP_WRITE caller clear ends if write does not fill folio;
2373 * but SGP_FALLOC on a folio fallocated earlier must initialize
2374 * it now, lest undo on failure cancel our earlier guarantee.
2375 */
2376 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2377 long i, n = folio_nr_pages(folio);
2378
2379 for (i = 0; i < n; i++)
2380 clear_highpage(folio_page(folio, i));
2381 flush_dcache_folio(folio);
2382 folio_mark_uptodate(folio);
2383 }
2384
2385 /* Perhaps the file has been truncated since we checked */
2386 if (sgp <= SGP_CACHE &&
2387 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2388 error = -EINVAL;
2389 goto unlock;
2390 }
2391 out:
2392 *foliop = folio;
2393 return 0;
2394
2395 /*
2396 * Error recovery.
2397 */
2398 unlock:
2399 if (alloced)
2400 filemap_remove_folio(folio);
2401 shmem_recalc_inode(inode, 0, 0);
2402 if (folio) {
2403 folio_unlock(folio);
2404 folio_put(folio);
2405 }
2406 return error;
2407 }
2408
2409 /**
2410 * shmem_get_folio - find, and lock a shmem folio.
2411 * @inode: inode to search
2412 * @index: the page index.
2413 * @write_end: end of a write, could extend inode size
2414 * @foliop: pointer to the folio if found
2415 * @sgp: SGP_* flags to control behavior
2416 *
2417 * Looks up the page cache entry at @inode & @index. If a folio is
2418 * present, it is returned locked with an increased refcount.
2419 *
2420 * If the caller modifies data in the folio, it must call folio_mark_dirty()
2421 * before unlocking the folio to ensure that the folio is not reclaimed.
2422 * There is no need to reserve space before calling folio_mark_dirty().
2423 *
2424 * When no folio is found, the behavior depends on @sgp:
2425 * - for SGP_READ, *@foliop is %NULL and 0 is returned
2426 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2427 * - for all other flags a new folio is allocated, inserted into the
2428 * page cache and returned locked in @foliop.
2429 *
2430 * Context: May sleep.
2431 * Return: 0 if successful, else a negative error code.
2432 */
shmem_get_folio(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp)2433 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2434 struct folio **foliop, enum sgp_type sgp)
2435 {
2436 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2437 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2438 }
2439 EXPORT_SYMBOL_GPL(shmem_get_folio);
2440
2441 /*
2442 * This is like autoremove_wake_function, but it removes the wait queue
2443 * entry unconditionally - even if something else had already woken the
2444 * target.
2445 */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned int mode,int sync,void * key)2446 static int synchronous_wake_function(wait_queue_entry_t *wait,
2447 unsigned int mode, int sync, void *key)
2448 {
2449 int ret = default_wake_function(wait, mode, sync, key);
2450 list_del_init(&wait->entry);
2451 return ret;
2452 }
2453
2454 /*
2455 * Trinity finds that probing a hole which tmpfs is punching can
2456 * prevent the hole-punch from ever completing: which in turn
2457 * locks writers out with its hold on i_rwsem. So refrain from
2458 * faulting pages into the hole while it's being punched. Although
2459 * shmem_undo_range() does remove the additions, it may be unable to
2460 * keep up, as each new page needs its own unmap_mapping_range() call,
2461 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2462 *
2463 * It does not matter if we sometimes reach this check just before the
2464 * hole-punch begins, so that one fault then races with the punch:
2465 * we just need to make racing faults a rare case.
2466 *
2467 * The implementation below would be much simpler if we just used a
2468 * standard mutex or completion: but we cannot take i_rwsem in fault,
2469 * and bloating every shmem inode for this unlikely case would be sad.
2470 */
shmem_falloc_wait(struct vm_fault * vmf,struct inode * inode)2471 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2472 {
2473 struct shmem_falloc *shmem_falloc;
2474 struct file *fpin = NULL;
2475 vm_fault_t ret = 0;
2476
2477 spin_lock(&inode->i_lock);
2478 shmem_falloc = inode->i_private;
2479 if (shmem_falloc &&
2480 shmem_falloc->waitq &&
2481 vmf->pgoff >= shmem_falloc->start &&
2482 vmf->pgoff < shmem_falloc->next) {
2483 wait_queue_head_t *shmem_falloc_waitq;
2484 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2485
2486 ret = VM_FAULT_NOPAGE;
2487 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2488 shmem_falloc_waitq = shmem_falloc->waitq;
2489 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2490 TASK_UNINTERRUPTIBLE);
2491 spin_unlock(&inode->i_lock);
2492 schedule();
2493
2494 /*
2495 * shmem_falloc_waitq points into the shmem_fallocate()
2496 * stack of the hole-punching task: shmem_falloc_waitq
2497 * is usually invalid by the time we reach here, but
2498 * finish_wait() does not dereference it in that case;
2499 * though i_lock needed lest racing with wake_up_all().
2500 */
2501 spin_lock(&inode->i_lock);
2502 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2503 }
2504 spin_unlock(&inode->i_lock);
2505 if (fpin) {
2506 fput(fpin);
2507 ret = VM_FAULT_RETRY;
2508 }
2509 return ret;
2510 }
2511
shmem_fault(struct vm_fault * vmf)2512 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2513 {
2514 struct inode *inode = file_inode(vmf->vma->vm_file);
2515 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2516 struct folio *folio = NULL;
2517 vm_fault_t ret = 0;
2518 int err;
2519
2520 /*
2521 * Trinity finds that probing a hole which tmpfs is punching can
2522 * prevent the hole-punch from ever completing: noted in i_private.
2523 */
2524 if (unlikely(inode->i_private)) {
2525 ret = shmem_falloc_wait(vmf, inode);
2526 if (ret)
2527 return ret;
2528 }
2529
2530 WARN_ON_ONCE(vmf->page != NULL);
2531 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2532 gfp, vmf, &ret);
2533 if (err)
2534 return vmf_error(err);
2535 if (folio) {
2536 vmf->page = folio_file_page(folio, vmf->pgoff);
2537 ret |= VM_FAULT_LOCKED;
2538 }
2539 return ret;
2540 }
2541
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2542 unsigned long shmem_get_unmapped_area(struct file *file,
2543 unsigned long uaddr, unsigned long len,
2544 unsigned long pgoff, unsigned long flags)
2545 {
2546 unsigned long addr;
2547 unsigned long offset;
2548 unsigned long inflated_len;
2549 unsigned long inflated_addr;
2550 unsigned long inflated_offset;
2551 unsigned long hpage_size;
2552
2553 if (len > TASK_SIZE)
2554 return -ENOMEM;
2555
2556 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2557 flags);
2558
2559 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2560 return addr;
2561 if (IS_ERR_VALUE(addr))
2562 return addr;
2563 if (addr & ~PAGE_MASK)
2564 return addr;
2565 if (addr > TASK_SIZE - len)
2566 return addr;
2567
2568 if (shmem_huge == SHMEM_HUGE_DENY)
2569 return addr;
2570 if (flags & MAP_FIXED)
2571 return addr;
2572 /*
2573 * Our priority is to support MAP_SHARED mapped hugely;
2574 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2575 * But if caller specified an address hint and we allocated area there
2576 * successfully, respect that as before.
2577 */
2578 if (uaddr == addr)
2579 return addr;
2580
2581 hpage_size = HPAGE_PMD_SIZE;
2582 if (shmem_huge != SHMEM_HUGE_FORCE) {
2583 struct super_block *sb;
2584 unsigned long __maybe_unused hpage_orders;
2585 int order = 0;
2586
2587 if (file) {
2588 VM_BUG_ON(file->f_op != &shmem_file_operations);
2589 sb = file_inode(file)->i_sb;
2590 } else {
2591 /*
2592 * Called directly from mm/mmap.c, or drivers/char/mem.c
2593 * for "/dev/zero", to create a shared anonymous object.
2594 */
2595 if (IS_ERR(shm_mnt))
2596 return addr;
2597 sb = shm_mnt->mnt_sb;
2598
2599 /*
2600 * Find the highest mTHP order used for anonymous shmem to
2601 * provide a suitable alignment address.
2602 */
2603 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2604 hpage_orders = READ_ONCE(huge_shmem_orders_always);
2605 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2606 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2607 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2608 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2609
2610 if (hpage_orders > 0) {
2611 order = highest_order(hpage_orders);
2612 hpage_size = PAGE_SIZE << order;
2613 }
2614 #endif
2615 }
2616 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2617 return addr;
2618 }
2619
2620 if (len < hpage_size)
2621 return addr;
2622
2623 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2624 if (offset && offset + len < 2 * hpage_size)
2625 return addr;
2626 if ((addr & (hpage_size - 1)) == offset)
2627 return addr;
2628
2629 inflated_len = len + hpage_size - PAGE_SIZE;
2630 if (inflated_len > TASK_SIZE)
2631 return addr;
2632 if (inflated_len < len)
2633 return addr;
2634
2635 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2636 inflated_len, 0, flags);
2637 if (IS_ERR_VALUE(inflated_addr))
2638 return addr;
2639 if (inflated_addr & ~PAGE_MASK)
2640 return addr;
2641
2642 inflated_offset = inflated_addr & (hpage_size - 1);
2643 inflated_addr += offset - inflated_offset;
2644 if (inflated_offset > offset)
2645 inflated_addr += hpage_size;
2646
2647 if (inflated_addr > TASK_SIZE - len)
2648 return addr;
2649 return inflated_addr;
2650 }
2651
2652 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2653 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2654 {
2655 struct inode *inode = file_inode(vma->vm_file);
2656 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2657 }
2658
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr,pgoff_t * ilx)2659 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2660 unsigned long addr, pgoff_t *ilx)
2661 {
2662 struct inode *inode = file_inode(vma->vm_file);
2663 pgoff_t index;
2664
2665 /*
2666 * Bias interleave by inode number to distribute better across nodes;
2667 * but this interface is independent of which page order is used, so
2668 * supplies only that bias, letting caller apply the offset (adjusted
2669 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2670 */
2671 *ilx = inode->i_ino;
2672 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2673 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2674 }
2675
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2676 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2677 pgoff_t index, unsigned int order, pgoff_t *ilx)
2678 {
2679 struct mempolicy *mpol;
2680
2681 /* Bias interleave by inode number to distribute better across nodes */
2682 *ilx = info->vfs_inode.i_ino + (index >> order);
2683
2684 mpol = mpol_shared_policy_lookup(&info->policy, index);
2685 return mpol ? mpol : get_task_policy(current);
2686 }
2687 #else
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2688 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2689 pgoff_t index, unsigned int order, pgoff_t *ilx)
2690 {
2691 *ilx = 0;
2692 return NULL;
2693 }
2694 #endif /* CONFIG_NUMA */
2695
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2696 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2697 {
2698 struct inode *inode = file_inode(file);
2699 struct shmem_inode_info *info = SHMEM_I(inode);
2700 int retval = -ENOMEM;
2701
2702 /*
2703 * What serializes the accesses to info->flags?
2704 * ipc_lock_object() when called from shmctl_do_lock(),
2705 * no serialization needed when called from shm_destroy().
2706 */
2707 if (lock && !(info->flags & VM_LOCKED)) {
2708 if (!user_shm_lock(inode->i_size, ucounts))
2709 goto out_nomem;
2710 info->flags |= VM_LOCKED;
2711 mapping_set_unevictable(file->f_mapping);
2712 }
2713 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2714 user_shm_unlock(inode->i_size, ucounts);
2715 info->flags &= ~VM_LOCKED;
2716 mapping_clear_unevictable(file->f_mapping);
2717 }
2718 retval = 0;
2719
2720 out_nomem:
2721 return retval;
2722 }
2723
shmem_mmap(struct file * file,struct vm_area_struct * vma)2724 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2725 {
2726 struct inode *inode = file_inode(file);
2727 struct shmem_inode_info *info = SHMEM_I(inode);
2728 int ret;
2729
2730 ret = seal_check_write(info->seals, vma);
2731 if (ret)
2732 return ret;
2733
2734 file_accessed(file);
2735 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2736 if (inode->i_nlink)
2737 vma->vm_ops = &shmem_vm_ops;
2738 else
2739 vma->vm_ops = &shmem_anon_vm_ops;
2740 return 0;
2741 }
2742
shmem_file_open(struct inode * inode,struct file * file)2743 static int shmem_file_open(struct inode *inode, struct file *file)
2744 {
2745 file->f_mode |= FMODE_CAN_ODIRECT;
2746 return generic_file_open(inode, file);
2747 }
2748
2749 #ifdef CONFIG_TMPFS_XATTR
2750 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2751
2752 /*
2753 * chattr's fsflags are unrelated to extended attributes,
2754 * but tmpfs has chosen to enable them under the same config option.
2755 */
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags)2756 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2757 {
2758 unsigned int i_flags = 0;
2759
2760 if (fsflags & FS_NOATIME_FL)
2761 i_flags |= S_NOATIME;
2762 if (fsflags & FS_APPEND_FL)
2763 i_flags |= S_APPEND;
2764 if (fsflags & FS_IMMUTABLE_FL)
2765 i_flags |= S_IMMUTABLE;
2766 /*
2767 * But FS_NODUMP_FL does not require any action in i_flags.
2768 */
2769 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2770 }
2771 #else
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags)2772 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2773 {
2774 }
2775 #define shmem_initxattrs NULL
2776 #endif
2777
shmem_get_offset_ctx(struct inode * inode)2778 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2779 {
2780 return &SHMEM_I(inode)->dir_offsets;
2781 }
2782
__shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2783 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2784 struct super_block *sb,
2785 struct inode *dir, umode_t mode,
2786 dev_t dev, unsigned long flags)
2787 {
2788 struct inode *inode;
2789 struct shmem_inode_info *info;
2790 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2791 ino_t ino;
2792 int err;
2793
2794 err = shmem_reserve_inode(sb, &ino);
2795 if (err)
2796 return ERR_PTR(err);
2797
2798 inode = new_inode(sb);
2799 if (!inode) {
2800 shmem_free_inode(sb, 0);
2801 return ERR_PTR(-ENOSPC);
2802 }
2803
2804 inode->i_ino = ino;
2805 inode_init_owner(idmap, inode, dir, mode);
2806 inode->i_blocks = 0;
2807 simple_inode_init_ts(inode);
2808 inode->i_generation = get_random_u32();
2809 info = SHMEM_I(inode);
2810 memset(info, 0, (char *)inode - (char *)info);
2811 spin_lock_init(&info->lock);
2812 atomic_set(&info->stop_eviction, 0);
2813 info->seals = F_SEAL_SEAL;
2814 info->flags = flags & VM_NORESERVE;
2815 info->i_crtime = inode_get_mtime(inode);
2816 info->fsflags = (dir == NULL) ? 0 :
2817 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2818 if (info->fsflags)
2819 shmem_set_inode_flags(inode, info->fsflags);
2820 INIT_LIST_HEAD(&info->shrinklist);
2821 INIT_LIST_HEAD(&info->swaplist);
2822 simple_xattrs_init(&info->xattrs);
2823 cache_no_acl(inode);
2824 if (sbinfo->noswap)
2825 mapping_set_unevictable(inode->i_mapping);
2826 mapping_set_large_folios(inode->i_mapping);
2827
2828 switch (mode & S_IFMT) {
2829 default:
2830 inode->i_op = &shmem_special_inode_operations;
2831 init_special_inode(inode, mode, dev);
2832 break;
2833 case S_IFREG:
2834 inode->i_mapping->a_ops = &shmem_aops;
2835 inode->i_op = &shmem_inode_operations;
2836 inode->i_fop = &shmem_file_operations;
2837 mpol_shared_policy_init(&info->policy,
2838 shmem_get_sbmpol(sbinfo));
2839 break;
2840 case S_IFDIR:
2841 inc_nlink(inode);
2842 /* Some things misbehave if size == 0 on a directory */
2843 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2844 inode->i_op = &shmem_dir_inode_operations;
2845 inode->i_fop = &simple_offset_dir_operations;
2846 simple_offset_init(shmem_get_offset_ctx(inode));
2847 break;
2848 case S_IFLNK:
2849 /*
2850 * Must not load anything in the rbtree,
2851 * mpol_free_shared_policy will not be called.
2852 */
2853 mpol_shared_policy_init(&info->policy, NULL);
2854 break;
2855 }
2856
2857 lockdep_annotate_inode_mutex_key(inode);
2858 return inode;
2859 }
2860
2861 #ifdef CONFIG_TMPFS_QUOTA
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2862 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2863 struct super_block *sb, struct inode *dir,
2864 umode_t mode, dev_t dev, unsigned long flags)
2865 {
2866 int err;
2867 struct inode *inode;
2868
2869 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2870 if (IS_ERR(inode))
2871 return inode;
2872
2873 err = dquot_initialize(inode);
2874 if (err)
2875 goto errout;
2876
2877 err = dquot_alloc_inode(inode);
2878 if (err) {
2879 dquot_drop(inode);
2880 goto errout;
2881 }
2882 return inode;
2883
2884 errout:
2885 inode->i_flags |= S_NOQUOTA;
2886 iput(inode);
2887 return ERR_PTR(err);
2888 }
2889 #else
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2890 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2891 struct super_block *sb, struct inode *dir,
2892 umode_t mode, dev_t dev, unsigned long flags)
2893 {
2894 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2895 }
2896 #endif /* CONFIG_TMPFS_QUOTA */
2897
2898 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)2899 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2900 struct vm_area_struct *dst_vma,
2901 unsigned long dst_addr,
2902 unsigned long src_addr,
2903 uffd_flags_t flags,
2904 struct folio **foliop)
2905 {
2906 struct inode *inode = file_inode(dst_vma->vm_file);
2907 struct shmem_inode_info *info = SHMEM_I(inode);
2908 struct address_space *mapping = inode->i_mapping;
2909 gfp_t gfp = mapping_gfp_mask(mapping);
2910 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2911 void *page_kaddr;
2912 struct folio *folio;
2913 int ret;
2914 pgoff_t max_off;
2915
2916 if (shmem_inode_acct_blocks(inode, 1)) {
2917 /*
2918 * We may have got a page, returned -ENOENT triggering a retry,
2919 * and now we find ourselves with -ENOMEM. Release the page, to
2920 * avoid a BUG_ON in our caller.
2921 */
2922 if (unlikely(*foliop)) {
2923 folio_put(*foliop);
2924 *foliop = NULL;
2925 }
2926 return -ENOMEM;
2927 }
2928
2929 if (!*foliop) {
2930 ret = -ENOMEM;
2931 folio = shmem_alloc_folio(gfp, 0, info, pgoff);
2932 if (!folio)
2933 goto out_unacct_blocks;
2934
2935 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2936 page_kaddr = kmap_local_folio(folio, 0);
2937 /*
2938 * The read mmap_lock is held here. Despite the
2939 * mmap_lock being read recursive a deadlock is still
2940 * possible if a writer has taken a lock. For example:
2941 *
2942 * process A thread 1 takes read lock on own mmap_lock
2943 * process A thread 2 calls mmap, blocks taking write lock
2944 * process B thread 1 takes page fault, read lock on own mmap lock
2945 * process B thread 2 calls mmap, blocks taking write lock
2946 * process A thread 1 blocks taking read lock on process B
2947 * process B thread 1 blocks taking read lock on process A
2948 *
2949 * Disable page faults to prevent potential deadlock
2950 * and retry the copy outside the mmap_lock.
2951 */
2952 pagefault_disable();
2953 ret = copy_from_user(page_kaddr,
2954 (const void __user *)src_addr,
2955 PAGE_SIZE);
2956 pagefault_enable();
2957 kunmap_local(page_kaddr);
2958
2959 /* fallback to copy_from_user outside mmap_lock */
2960 if (unlikely(ret)) {
2961 *foliop = folio;
2962 ret = -ENOENT;
2963 /* don't free the page */
2964 goto out_unacct_blocks;
2965 }
2966
2967 flush_dcache_folio(folio);
2968 } else { /* ZEROPAGE */
2969 clear_user_highpage(&folio->page, dst_addr);
2970 }
2971 } else {
2972 folio = *foliop;
2973 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2974 *foliop = NULL;
2975 }
2976
2977 VM_BUG_ON(folio_test_locked(folio));
2978 VM_BUG_ON(folio_test_swapbacked(folio));
2979 __folio_set_locked(folio);
2980 __folio_set_swapbacked(folio);
2981 __folio_mark_uptodate(folio);
2982
2983 ret = -EFAULT;
2984 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2985 if (unlikely(pgoff >= max_off))
2986 goto out_release;
2987
2988 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
2989 if (ret)
2990 goto out_release;
2991 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
2992 if (ret)
2993 goto out_release;
2994
2995 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2996 &folio->page, true, flags);
2997 if (ret)
2998 goto out_delete_from_cache;
2999
3000 shmem_recalc_inode(inode, 1, 0);
3001 folio_unlock(folio);
3002 return 0;
3003 out_delete_from_cache:
3004 filemap_remove_folio(folio);
3005 out_release:
3006 folio_unlock(folio);
3007 folio_put(folio);
3008 out_unacct_blocks:
3009 shmem_inode_unacct_blocks(inode, 1);
3010 return ret;
3011 }
3012 #endif /* CONFIG_USERFAULTFD */
3013
3014 #ifdef CONFIG_TMPFS
3015 static const struct inode_operations shmem_symlink_inode_operations;
3016 static const struct inode_operations shmem_short_symlink_operations;
3017
3018 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3019 shmem_write_begin(struct file *file, struct address_space *mapping,
3020 loff_t pos, unsigned len,
3021 struct folio **foliop, void **fsdata)
3022 {
3023 struct inode *inode = mapping->host;
3024 struct shmem_inode_info *info = SHMEM_I(inode);
3025 pgoff_t index = pos >> PAGE_SHIFT;
3026 struct folio *folio;
3027 int ret = 0;
3028
3029 /* i_rwsem is held by caller */
3030 if (unlikely(info->seals & (F_SEAL_GROW |
3031 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3032 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3033 return -EPERM;
3034 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3035 return -EPERM;
3036 }
3037
3038 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3039 if (ret)
3040 return ret;
3041
3042 if (folio_test_hwpoison(folio) ||
3043 (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) {
3044 folio_unlock(folio);
3045 folio_put(folio);
3046 return -EIO;
3047 }
3048
3049 *foliop = folio;
3050 return 0;
3051 }
3052
3053 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3054 shmem_write_end(struct file *file, struct address_space *mapping,
3055 loff_t pos, unsigned len, unsigned copied,
3056 struct folio *folio, void *fsdata)
3057 {
3058 struct inode *inode = mapping->host;
3059
3060 if (pos + copied > inode->i_size)
3061 i_size_write(inode, pos + copied);
3062
3063 if (!folio_test_uptodate(folio)) {
3064 if (copied < folio_size(folio)) {
3065 size_t from = offset_in_folio(folio, pos);
3066 folio_zero_segments(folio, 0, from,
3067 from + copied, folio_size(folio));
3068 }
3069 folio_mark_uptodate(folio);
3070 }
3071 folio_mark_dirty(folio);
3072 folio_unlock(folio);
3073 folio_put(folio);
3074
3075 return copied;
3076 }
3077
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3078 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3079 {
3080 struct file *file = iocb->ki_filp;
3081 struct inode *inode = file_inode(file);
3082 struct address_space *mapping = inode->i_mapping;
3083 pgoff_t index;
3084 unsigned long offset;
3085 int error = 0;
3086 ssize_t retval = 0;
3087 loff_t *ppos = &iocb->ki_pos;
3088
3089 index = *ppos >> PAGE_SHIFT;
3090 offset = *ppos & ~PAGE_MASK;
3091
3092 for (;;) {
3093 struct folio *folio = NULL;
3094 struct page *page = NULL;
3095 pgoff_t end_index;
3096 unsigned long nr, ret;
3097 loff_t i_size = i_size_read(inode);
3098
3099 end_index = i_size >> PAGE_SHIFT;
3100 if (index > end_index)
3101 break;
3102 if (index == end_index) {
3103 nr = i_size & ~PAGE_MASK;
3104 if (nr <= offset)
3105 break;
3106 }
3107
3108 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3109 if (error) {
3110 if (error == -EINVAL)
3111 error = 0;
3112 break;
3113 }
3114 if (folio) {
3115 folio_unlock(folio);
3116
3117 page = folio_file_page(folio, index);
3118 if (PageHWPoison(page)) {
3119 folio_put(folio);
3120 error = -EIO;
3121 break;
3122 }
3123 }
3124
3125 /*
3126 * We must evaluate after, since reads (unlike writes)
3127 * are called without i_rwsem protection against truncate
3128 */
3129 nr = PAGE_SIZE;
3130 i_size = i_size_read(inode);
3131 end_index = i_size >> PAGE_SHIFT;
3132 if (index == end_index) {
3133 nr = i_size & ~PAGE_MASK;
3134 if (nr <= offset) {
3135 if (folio)
3136 folio_put(folio);
3137 break;
3138 }
3139 }
3140 nr -= offset;
3141
3142 if (folio) {
3143 /*
3144 * If users can be writing to this page using arbitrary
3145 * virtual addresses, take care about potential aliasing
3146 * before reading the page on the kernel side.
3147 */
3148 if (mapping_writably_mapped(mapping))
3149 flush_dcache_page(page);
3150 /*
3151 * Mark the page accessed if we read the beginning.
3152 */
3153 if (!offset)
3154 folio_mark_accessed(folio);
3155 /*
3156 * Ok, we have the page, and it's up-to-date, so
3157 * now we can copy it to user space...
3158 */
3159 ret = copy_page_to_iter(page, offset, nr, to);
3160 folio_put(folio);
3161
3162 } else if (user_backed_iter(to)) {
3163 /*
3164 * Copy to user tends to be so well optimized, but
3165 * clear_user() not so much, that it is noticeably
3166 * faster to copy the zero page instead of clearing.
3167 */
3168 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3169 } else {
3170 /*
3171 * But submitting the same page twice in a row to
3172 * splice() - or others? - can result in confusion:
3173 * so don't attempt that optimization on pipes etc.
3174 */
3175 ret = iov_iter_zero(nr, to);
3176 }
3177
3178 retval += ret;
3179 offset += ret;
3180 index += offset >> PAGE_SHIFT;
3181 offset &= ~PAGE_MASK;
3182
3183 if (!iov_iter_count(to))
3184 break;
3185 if (ret < nr) {
3186 error = -EFAULT;
3187 break;
3188 }
3189 cond_resched();
3190 }
3191
3192 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
3193 file_accessed(file);
3194 return retval ? retval : error;
3195 }
3196
shmem_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3197 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3198 {
3199 struct file *file = iocb->ki_filp;
3200 struct inode *inode = file->f_mapping->host;
3201 ssize_t ret;
3202
3203 inode_lock(inode);
3204 ret = generic_write_checks(iocb, from);
3205 if (ret <= 0)
3206 goto unlock;
3207 ret = file_remove_privs(file);
3208 if (ret)
3209 goto unlock;
3210 ret = file_update_time(file);
3211 if (ret)
3212 goto unlock;
3213 ret = generic_perform_write(iocb, from);
3214 unlock:
3215 inode_unlock(inode);
3216 return ret;
3217 }
3218
zero_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3219 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3220 struct pipe_buffer *buf)
3221 {
3222 return true;
3223 }
3224
zero_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3225 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3226 struct pipe_buffer *buf)
3227 {
3228 }
3229
zero_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3230 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3231 struct pipe_buffer *buf)
3232 {
3233 return false;
3234 }
3235
3236 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3237 .release = zero_pipe_buf_release,
3238 .try_steal = zero_pipe_buf_try_steal,
3239 .get = zero_pipe_buf_get,
3240 };
3241
splice_zeropage_into_pipe(struct pipe_inode_info * pipe,loff_t fpos,size_t size)3242 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3243 loff_t fpos, size_t size)
3244 {
3245 size_t offset = fpos & ~PAGE_MASK;
3246
3247 size = min_t(size_t, size, PAGE_SIZE - offset);
3248
3249 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
3250 struct pipe_buffer *buf = pipe_head_buf(pipe);
3251
3252 *buf = (struct pipe_buffer) {
3253 .ops = &zero_pipe_buf_ops,
3254 .page = ZERO_PAGE(0),
3255 .offset = offset,
3256 .len = size,
3257 };
3258 pipe->head++;
3259 }
3260
3261 return size;
3262 }
3263
shmem_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)3264 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3265 struct pipe_inode_info *pipe,
3266 size_t len, unsigned int flags)
3267 {
3268 struct inode *inode = file_inode(in);
3269 struct address_space *mapping = inode->i_mapping;
3270 struct folio *folio = NULL;
3271 size_t total_spliced = 0, used, npages, n, part;
3272 loff_t isize;
3273 int error = 0;
3274
3275 /* Work out how much data we can actually add into the pipe */
3276 used = pipe_occupancy(pipe->head, pipe->tail);
3277 npages = max_t(ssize_t, pipe->max_usage - used, 0);
3278 len = min_t(size_t, len, npages * PAGE_SIZE);
3279
3280 do {
3281 if (*ppos >= i_size_read(inode))
3282 break;
3283
3284 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, 0, &folio,
3285 SGP_READ);
3286 if (error) {
3287 if (error == -EINVAL)
3288 error = 0;
3289 break;
3290 }
3291 if (folio) {
3292 folio_unlock(folio);
3293
3294 if (folio_test_hwpoison(folio) ||
3295 (folio_test_large(folio) &&
3296 folio_test_has_hwpoisoned(folio))) {
3297 error = -EIO;
3298 break;
3299 }
3300 }
3301
3302 /*
3303 * i_size must be checked after we know the pages are Uptodate.
3304 *
3305 * Checking i_size after the check allows us to calculate
3306 * the correct value for "nr", which means the zero-filled
3307 * part of the page is not copied back to userspace (unless
3308 * another truncate extends the file - this is desired though).
3309 */
3310 isize = i_size_read(inode);
3311 if (unlikely(*ppos >= isize))
3312 break;
3313 part = min_t(loff_t, isize - *ppos, len);
3314
3315 if (folio) {
3316 /*
3317 * If users can be writing to this page using arbitrary
3318 * virtual addresses, take care about potential aliasing
3319 * before reading the page on the kernel side.
3320 */
3321 if (mapping_writably_mapped(mapping))
3322 flush_dcache_folio(folio);
3323 folio_mark_accessed(folio);
3324 /*
3325 * Ok, we have the page, and it's up-to-date, so we can
3326 * now splice it into the pipe.
3327 */
3328 n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3329 folio_put(folio);
3330 folio = NULL;
3331 } else {
3332 n = splice_zeropage_into_pipe(pipe, *ppos, part);
3333 }
3334
3335 if (!n)
3336 break;
3337 len -= n;
3338 total_spliced += n;
3339 *ppos += n;
3340 in->f_ra.prev_pos = *ppos;
3341 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3342 break;
3343
3344 cond_resched();
3345 } while (len);
3346
3347 if (folio)
3348 folio_put(folio);
3349
3350 file_accessed(in);
3351 return total_spliced ? total_spliced : error;
3352 }
3353
shmem_file_llseek(struct file * file,loff_t offset,int whence)3354 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3355 {
3356 struct address_space *mapping = file->f_mapping;
3357 struct inode *inode = mapping->host;
3358
3359 if (whence != SEEK_DATA && whence != SEEK_HOLE)
3360 return generic_file_llseek_size(file, offset, whence,
3361 MAX_LFS_FILESIZE, i_size_read(inode));
3362 if (offset < 0)
3363 return -ENXIO;
3364
3365 inode_lock(inode);
3366 /* We're holding i_rwsem so we can access i_size directly */
3367 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3368 if (offset >= 0)
3369 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3370 inode_unlock(inode);
3371 return offset;
3372 }
3373
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3374 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3375 loff_t len)
3376 {
3377 struct inode *inode = file_inode(file);
3378 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3379 struct shmem_inode_info *info = SHMEM_I(inode);
3380 struct shmem_falloc shmem_falloc;
3381 pgoff_t start, index, end, undo_fallocend;
3382 int error;
3383
3384 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3385 return -EOPNOTSUPP;
3386
3387 inode_lock(inode);
3388
3389 if (mode & FALLOC_FL_PUNCH_HOLE) {
3390 struct address_space *mapping = file->f_mapping;
3391 loff_t unmap_start = round_up(offset, PAGE_SIZE);
3392 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3393 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3394
3395 /* protected by i_rwsem */
3396 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3397 error = -EPERM;
3398 goto out;
3399 }
3400
3401 shmem_falloc.waitq = &shmem_falloc_waitq;
3402 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3403 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3404 spin_lock(&inode->i_lock);
3405 inode->i_private = &shmem_falloc;
3406 spin_unlock(&inode->i_lock);
3407
3408 if ((u64)unmap_end > (u64)unmap_start)
3409 unmap_mapping_range(mapping, unmap_start,
3410 1 + unmap_end - unmap_start, 0);
3411 shmem_truncate_range(inode, offset, offset + len - 1);
3412 /* No need to unmap again: hole-punching leaves COWed pages */
3413
3414 spin_lock(&inode->i_lock);
3415 inode->i_private = NULL;
3416 wake_up_all(&shmem_falloc_waitq);
3417 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3418 spin_unlock(&inode->i_lock);
3419 error = 0;
3420 goto out;
3421 }
3422
3423 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3424 error = inode_newsize_ok(inode, offset + len);
3425 if (error)
3426 goto out;
3427
3428 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3429 error = -EPERM;
3430 goto out;
3431 }
3432
3433 start = offset >> PAGE_SHIFT;
3434 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3435 /* Try to avoid a swapstorm if len is impossible to satisfy */
3436 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3437 error = -ENOSPC;
3438 goto out;
3439 }
3440
3441 shmem_falloc.waitq = NULL;
3442 shmem_falloc.start = start;
3443 shmem_falloc.next = start;
3444 shmem_falloc.nr_falloced = 0;
3445 shmem_falloc.nr_unswapped = 0;
3446 spin_lock(&inode->i_lock);
3447 inode->i_private = &shmem_falloc;
3448 spin_unlock(&inode->i_lock);
3449
3450 /*
3451 * info->fallocend is only relevant when huge pages might be
3452 * involved: to prevent split_huge_page() freeing fallocated
3453 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3454 */
3455 undo_fallocend = info->fallocend;
3456 if (info->fallocend < end)
3457 info->fallocend = end;
3458
3459 for (index = start; index < end; ) {
3460 struct folio *folio;
3461
3462 /*
3463 * Check for fatal signal so that we abort early in OOM
3464 * situations. We don't want to abort in case of non-fatal
3465 * signals as large fallocate can take noticeable time and
3466 * e.g. periodic timers may result in fallocate constantly
3467 * restarting.
3468 */
3469 if (fatal_signal_pending(current))
3470 error = -EINTR;
3471 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3472 error = -ENOMEM;
3473 else
3474 error = shmem_get_folio(inode, index, offset + len,
3475 &folio, SGP_FALLOC);
3476 if (error) {
3477 info->fallocend = undo_fallocend;
3478 /* Remove the !uptodate folios we added */
3479 if (index > start) {
3480 shmem_undo_range(inode,
3481 (loff_t)start << PAGE_SHIFT,
3482 ((loff_t)index << PAGE_SHIFT) - 1, true);
3483 }
3484 goto undone;
3485 }
3486
3487 /*
3488 * Here is a more important optimization than it appears:
3489 * a second SGP_FALLOC on the same large folio will clear it,
3490 * making it uptodate and un-undoable if we fail later.
3491 */
3492 index = folio_next_index(folio);
3493 /* Beware 32-bit wraparound */
3494 if (!index)
3495 index--;
3496
3497 /*
3498 * Inform shmem_writepage() how far we have reached.
3499 * No need for lock or barrier: we have the page lock.
3500 */
3501 if (!folio_test_uptodate(folio))
3502 shmem_falloc.nr_falloced += index - shmem_falloc.next;
3503 shmem_falloc.next = index;
3504
3505 /*
3506 * If !uptodate, leave it that way so that freeable folios
3507 * can be recognized if we need to rollback on error later.
3508 * But mark it dirty so that memory pressure will swap rather
3509 * than free the folios we are allocating (and SGP_CACHE folios
3510 * might still be clean: we now need to mark those dirty too).
3511 */
3512 folio_mark_dirty(folio);
3513 folio_unlock(folio);
3514 folio_put(folio);
3515 cond_resched();
3516 }
3517
3518 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3519 i_size_write(inode, offset + len);
3520 undone:
3521 spin_lock(&inode->i_lock);
3522 inode->i_private = NULL;
3523 spin_unlock(&inode->i_lock);
3524 out:
3525 if (!error)
3526 file_modified(file);
3527 inode_unlock(inode);
3528 return error;
3529 }
3530
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)3531 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3532 {
3533 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3534
3535 buf->f_type = TMPFS_MAGIC;
3536 buf->f_bsize = PAGE_SIZE;
3537 buf->f_namelen = NAME_MAX;
3538 if (sbinfo->max_blocks) {
3539 buf->f_blocks = sbinfo->max_blocks;
3540 buf->f_bavail =
3541 buf->f_bfree = sbinfo->max_blocks -
3542 percpu_counter_sum(&sbinfo->used_blocks);
3543 }
3544 if (sbinfo->max_inodes) {
3545 buf->f_files = sbinfo->max_inodes;
3546 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3547 }
3548 /* else leave those fields 0 like simple_statfs */
3549
3550 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3551
3552 return 0;
3553 }
3554
3555 /*
3556 * File creation. Allocate an inode, and we're done..
3557 */
3558 static int
shmem_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3559 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3560 struct dentry *dentry, umode_t mode, dev_t dev)
3561 {
3562 struct inode *inode;
3563 int error;
3564
3565 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3566 if (IS_ERR(inode))
3567 return PTR_ERR(inode);
3568
3569 error = simple_acl_create(dir, inode);
3570 if (error)
3571 goto out_iput;
3572 error = security_inode_init_security(inode, dir, &dentry->d_name,
3573 shmem_initxattrs, NULL);
3574 if (error && error != -EOPNOTSUPP)
3575 goto out_iput;
3576
3577 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3578 if (error)
3579 goto out_iput;
3580
3581 dir->i_size += BOGO_DIRENT_SIZE;
3582 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3583 inode_inc_iversion(dir);
3584 d_instantiate(dentry, inode);
3585 dget(dentry); /* Extra count - pin the dentry in core */
3586 return error;
3587
3588 out_iput:
3589 iput(inode);
3590 return error;
3591 }
3592
3593 static int
shmem_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)3594 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3595 struct file *file, umode_t mode)
3596 {
3597 struct inode *inode;
3598 int error;
3599
3600 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3601 if (IS_ERR(inode)) {
3602 error = PTR_ERR(inode);
3603 goto err_out;
3604 }
3605 error = security_inode_init_security(inode, dir, NULL,
3606 shmem_initxattrs, NULL);
3607 if (error && error != -EOPNOTSUPP)
3608 goto out_iput;
3609 error = simple_acl_create(dir, inode);
3610 if (error)
3611 goto out_iput;
3612 d_tmpfile(file, inode);
3613
3614 err_out:
3615 return finish_open_simple(file, error);
3616 out_iput:
3617 iput(inode);
3618 return error;
3619 }
3620
shmem_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)3621 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3622 struct dentry *dentry, umode_t mode)
3623 {
3624 int error;
3625
3626 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3627 if (error)
3628 return error;
3629 inc_nlink(dir);
3630 return 0;
3631 }
3632
shmem_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)3633 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3634 struct dentry *dentry, umode_t mode, bool excl)
3635 {
3636 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3637 }
3638
3639 /*
3640 * Link a file..
3641 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3642 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3643 struct dentry *dentry)
3644 {
3645 struct inode *inode = d_inode(old_dentry);
3646 int ret = 0;
3647
3648 /*
3649 * No ordinary (disk based) filesystem counts links as inodes;
3650 * but each new link needs a new dentry, pinning lowmem, and
3651 * tmpfs dentries cannot be pruned until they are unlinked.
3652 * But if an O_TMPFILE file is linked into the tmpfs, the
3653 * first link must skip that, to get the accounting right.
3654 */
3655 if (inode->i_nlink) {
3656 ret = shmem_reserve_inode(inode->i_sb, NULL);
3657 if (ret)
3658 goto out;
3659 }
3660
3661 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3662 if (ret) {
3663 if (inode->i_nlink)
3664 shmem_free_inode(inode->i_sb, 0);
3665 goto out;
3666 }
3667
3668 dir->i_size += BOGO_DIRENT_SIZE;
3669 inode_set_mtime_to_ts(dir,
3670 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3671 inode_inc_iversion(dir);
3672 inc_nlink(inode);
3673 ihold(inode); /* New dentry reference */
3674 dget(dentry); /* Extra pinning count for the created dentry */
3675 d_instantiate(dentry, inode);
3676 out:
3677 return ret;
3678 }
3679
shmem_unlink(struct inode * dir,struct dentry * dentry)3680 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3681 {
3682 struct inode *inode = d_inode(dentry);
3683
3684 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3685 shmem_free_inode(inode->i_sb, 0);
3686
3687 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3688
3689 dir->i_size -= BOGO_DIRENT_SIZE;
3690 inode_set_mtime_to_ts(dir,
3691 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3692 inode_inc_iversion(dir);
3693 drop_nlink(inode);
3694 dput(dentry); /* Undo the count from "create" - does all the work */
3695 return 0;
3696 }
3697
shmem_rmdir(struct inode * dir,struct dentry * dentry)3698 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3699 {
3700 if (!simple_offset_empty(dentry))
3701 return -ENOTEMPTY;
3702
3703 drop_nlink(d_inode(dentry));
3704 drop_nlink(dir);
3705 return shmem_unlink(dir, dentry);
3706 }
3707
shmem_whiteout(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry)3708 static int shmem_whiteout(struct mnt_idmap *idmap,
3709 struct inode *old_dir, struct dentry *old_dentry)
3710 {
3711 struct dentry *whiteout;
3712 int error;
3713
3714 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3715 if (!whiteout)
3716 return -ENOMEM;
3717
3718 error = shmem_mknod(idmap, old_dir, whiteout,
3719 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3720 dput(whiteout);
3721 if (error)
3722 return error;
3723
3724 /*
3725 * Cheat and hash the whiteout while the old dentry is still in
3726 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3727 *
3728 * d_lookup() will consistently find one of them at this point,
3729 * not sure which one, but that isn't even important.
3730 */
3731 d_rehash(whiteout);
3732 return 0;
3733 }
3734
3735 /*
3736 * The VFS layer already does all the dentry stuff for rename,
3737 * we just have to decrement the usage count for the target if
3738 * it exists so that the VFS layer correctly free's it when it
3739 * gets overwritten.
3740 */
shmem_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3741 static int shmem_rename2(struct mnt_idmap *idmap,
3742 struct inode *old_dir, struct dentry *old_dentry,
3743 struct inode *new_dir, struct dentry *new_dentry,
3744 unsigned int flags)
3745 {
3746 struct inode *inode = d_inode(old_dentry);
3747 int they_are_dirs = S_ISDIR(inode->i_mode);
3748 int error;
3749
3750 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3751 return -EINVAL;
3752
3753 if (flags & RENAME_EXCHANGE)
3754 return simple_offset_rename_exchange(old_dir, old_dentry,
3755 new_dir, new_dentry);
3756
3757 if (!simple_offset_empty(new_dentry))
3758 return -ENOTEMPTY;
3759
3760 if (flags & RENAME_WHITEOUT) {
3761 error = shmem_whiteout(idmap, old_dir, old_dentry);
3762 if (error)
3763 return error;
3764 }
3765
3766 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
3767 if (error)
3768 return error;
3769
3770 if (d_really_is_positive(new_dentry)) {
3771 (void) shmem_unlink(new_dir, new_dentry);
3772 if (they_are_dirs) {
3773 drop_nlink(d_inode(new_dentry));
3774 drop_nlink(old_dir);
3775 }
3776 } else if (they_are_dirs) {
3777 drop_nlink(old_dir);
3778 inc_nlink(new_dir);
3779 }
3780
3781 old_dir->i_size -= BOGO_DIRENT_SIZE;
3782 new_dir->i_size += BOGO_DIRENT_SIZE;
3783 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3784 inode_inc_iversion(old_dir);
3785 inode_inc_iversion(new_dir);
3786 return 0;
3787 }
3788
shmem_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)3789 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3790 struct dentry *dentry, const char *symname)
3791 {
3792 int error;
3793 int len;
3794 struct inode *inode;
3795 struct folio *folio;
3796
3797 len = strlen(symname) + 1;
3798 if (len > PAGE_SIZE)
3799 return -ENAMETOOLONG;
3800
3801 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3802 VM_NORESERVE);
3803 if (IS_ERR(inode))
3804 return PTR_ERR(inode);
3805
3806 error = security_inode_init_security(inode, dir, &dentry->d_name,
3807 shmem_initxattrs, NULL);
3808 if (error && error != -EOPNOTSUPP)
3809 goto out_iput;
3810
3811 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3812 if (error)
3813 goto out_iput;
3814
3815 inode->i_size = len-1;
3816 if (len <= SHORT_SYMLINK_LEN) {
3817 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3818 if (!inode->i_link) {
3819 error = -ENOMEM;
3820 goto out_remove_offset;
3821 }
3822 inode->i_op = &shmem_short_symlink_operations;
3823 } else {
3824 inode_nohighmem(inode);
3825 inode->i_mapping->a_ops = &shmem_aops;
3826 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
3827 if (error)
3828 goto out_remove_offset;
3829 inode->i_op = &shmem_symlink_inode_operations;
3830 memcpy(folio_address(folio), symname, len);
3831 folio_mark_uptodate(folio);
3832 folio_mark_dirty(folio);
3833 folio_unlock(folio);
3834 folio_put(folio);
3835 }
3836 dir->i_size += BOGO_DIRENT_SIZE;
3837 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3838 inode_inc_iversion(dir);
3839 d_instantiate(dentry, inode);
3840 dget(dentry);
3841 return 0;
3842
3843 out_remove_offset:
3844 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3845 out_iput:
3846 iput(inode);
3847 return error;
3848 }
3849
shmem_put_link(void * arg)3850 static void shmem_put_link(void *arg)
3851 {
3852 folio_mark_accessed(arg);
3853 folio_put(arg);
3854 }
3855
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3856 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3857 struct delayed_call *done)
3858 {
3859 struct folio *folio = NULL;
3860 int error;
3861
3862 if (!dentry) {
3863 folio = filemap_get_folio(inode->i_mapping, 0);
3864 if (IS_ERR(folio))
3865 return ERR_PTR(-ECHILD);
3866 if (PageHWPoison(folio_page(folio, 0)) ||
3867 !folio_test_uptodate(folio)) {
3868 folio_put(folio);
3869 return ERR_PTR(-ECHILD);
3870 }
3871 } else {
3872 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
3873 if (error)
3874 return ERR_PTR(error);
3875 if (!folio)
3876 return ERR_PTR(-ECHILD);
3877 if (PageHWPoison(folio_page(folio, 0))) {
3878 folio_unlock(folio);
3879 folio_put(folio);
3880 return ERR_PTR(-ECHILD);
3881 }
3882 folio_unlock(folio);
3883 }
3884 set_delayed_call(done, shmem_put_link, folio);
3885 return folio_address(folio);
3886 }
3887
3888 #ifdef CONFIG_TMPFS_XATTR
3889
shmem_fileattr_get(struct dentry * dentry,struct fileattr * fa)3890 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3891 {
3892 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3893
3894 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3895
3896 return 0;
3897 }
3898
shmem_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)3899 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3900 struct dentry *dentry, struct fileattr *fa)
3901 {
3902 struct inode *inode = d_inode(dentry);
3903 struct shmem_inode_info *info = SHMEM_I(inode);
3904
3905 if (fileattr_has_fsx(fa))
3906 return -EOPNOTSUPP;
3907 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3908 return -EOPNOTSUPP;
3909
3910 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3911 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
3912
3913 shmem_set_inode_flags(inode, info->fsflags);
3914 inode_set_ctime_current(inode);
3915 inode_inc_iversion(inode);
3916 return 0;
3917 }
3918
3919 /*
3920 * Superblocks without xattr inode operations may get some security.* xattr
3921 * support from the LSM "for free". As soon as we have any other xattrs
3922 * like ACLs, we also need to implement the security.* handlers at
3923 * filesystem level, though.
3924 */
3925
3926 /*
3927 * Callback for security_inode_init_security() for acquiring xattrs.
3928 */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)3929 static int shmem_initxattrs(struct inode *inode,
3930 const struct xattr *xattr_array, void *fs_info)
3931 {
3932 struct shmem_inode_info *info = SHMEM_I(inode);
3933 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3934 const struct xattr *xattr;
3935 struct simple_xattr *new_xattr;
3936 size_t ispace = 0;
3937 size_t len;
3938
3939 if (sbinfo->max_inodes) {
3940 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3941 ispace += simple_xattr_space(xattr->name,
3942 xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3943 }
3944 if (ispace) {
3945 raw_spin_lock(&sbinfo->stat_lock);
3946 if (sbinfo->free_ispace < ispace)
3947 ispace = 0;
3948 else
3949 sbinfo->free_ispace -= ispace;
3950 raw_spin_unlock(&sbinfo->stat_lock);
3951 if (!ispace)
3952 return -ENOSPC;
3953 }
3954 }
3955
3956 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3957 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3958 if (!new_xattr)
3959 break;
3960
3961 len = strlen(xattr->name) + 1;
3962 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3963 GFP_KERNEL_ACCOUNT);
3964 if (!new_xattr->name) {
3965 kvfree(new_xattr);
3966 break;
3967 }
3968
3969 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3970 XATTR_SECURITY_PREFIX_LEN);
3971 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3972 xattr->name, len);
3973
3974 simple_xattr_add(&info->xattrs, new_xattr);
3975 }
3976
3977 if (xattr->name != NULL) {
3978 if (ispace) {
3979 raw_spin_lock(&sbinfo->stat_lock);
3980 sbinfo->free_ispace += ispace;
3981 raw_spin_unlock(&sbinfo->stat_lock);
3982 }
3983 simple_xattrs_free(&info->xattrs, NULL);
3984 return -ENOMEM;
3985 }
3986
3987 return 0;
3988 }
3989
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)3990 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3991 struct dentry *unused, struct inode *inode,
3992 const char *name, void *buffer, size_t size)
3993 {
3994 struct shmem_inode_info *info = SHMEM_I(inode);
3995
3996 name = xattr_full_name(handler, name);
3997 return simple_xattr_get(&info->xattrs, name, buffer, size);
3998 }
3999
shmem_xattr_handler_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)4000 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4001 struct mnt_idmap *idmap,
4002 struct dentry *unused, struct inode *inode,
4003 const char *name, const void *value,
4004 size_t size, int flags)
4005 {
4006 struct shmem_inode_info *info = SHMEM_I(inode);
4007 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4008 struct simple_xattr *old_xattr;
4009 size_t ispace = 0;
4010
4011 name = xattr_full_name(handler, name);
4012 if (value && sbinfo->max_inodes) {
4013 ispace = simple_xattr_space(name, size);
4014 raw_spin_lock(&sbinfo->stat_lock);
4015 if (sbinfo->free_ispace < ispace)
4016 ispace = 0;
4017 else
4018 sbinfo->free_ispace -= ispace;
4019 raw_spin_unlock(&sbinfo->stat_lock);
4020 if (!ispace)
4021 return -ENOSPC;
4022 }
4023
4024 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4025 if (!IS_ERR(old_xattr)) {
4026 ispace = 0;
4027 if (old_xattr && sbinfo->max_inodes)
4028 ispace = simple_xattr_space(old_xattr->name,
4029 old_xattr->size);
4030 simple_xattr_free(old_xattr);
4031 old_xattr = NULL;
4032 inode_set_ctime_current(inode);
4033 inode_inc_iversion(inode);
4034 }
4035 if (ispace) {
4036 raw_spin_lock(&sbinfo->stat_lock);
4037 sbinfo->free_ispace += ispace;
4038 raw_spin_unlock(&sbinfo->stat_lock);
4039 }
4040 return PTR_ERR(old_xattr);
4041 }
4042
4043 static const struct xattr_handler shmem_security_xattr_handler = {
4044 .prefix = XATTR_SECURITY_PREFIX,
4045 .get = shmem_xattr_handler_get,
4046 .set = shmem_xattr_handler_set,
4047 };
4048
4049 static const struct xattr_handler shmem_trusted_xattr_handler = {
4050 .prefix = XATTR_TRUSTED_PREFIX,
4051 .get = shmem_xattr_handler_get,
4052 .set = shmem_xattr_handler_set,
4053 };
4054
4055 static const struct xattr_handler shmem_user_xattr_handler = {
4056 .prefix = XATTR_USER_PREFIX,
4057 .get = shmem_xattr_handler_get,
4058 .set = shmem_xattr_handler_set,
4059 };
4060
4061 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4062 &shmem_security_xattr_handler,
4063 &shmem_trusted_xattr_handler,
4064 &shmem_user_xattr_handler,
4065 NULL
4066 };
4067
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)4068 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4069 {
4070 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4071 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4072 }
4073 #endif /* CONFIG_TMPFS_XATTR */
4074
4075 static const struct inode_operations shmem_short_symlink_operations = {
4076 .getattr = shmem_getattr,
4077 .setattr = shmem_setattr,
4078 .get_link = simple_get_link,
4079 #ifdef CONFIG_TMPFS_XATTR
4080 .listxattr = shmem_listxattr,
4081 #endif
4082 };
4083
4084 static const struct inode_operations shmem_symlink_inode_operations = {
4085 .getattr = shmem_getattr,
4086 .setattr = shmem_setattr,
4087 .get_link = shmem_get_link,
4088 #ifdef CONFIG_TMPFS_XATTR
4089 .listxattr = shmem_listxattr,
4090 #endif
4091 };
4092
shmem_get_parent(struct dentry * child)4093 static struct dentry *shmem_get_parent(struct dentry *child)
4094 {
4095 return ERR_PTR(-ESTALE);
4096 }
4097
shmem_match(struct inode * ino,void * vfh)4098 static int shmem_match(struct inode *ino, void *vfh)
4099 {
4100 __u32 *fh = vfh;
4101 __u64 inum = fh[2];
4102 inum = (inum << 32) | fh[1];
4103 return ino->i_ino == inum && fh[0] == ino->i_generation;
4104 }
4105
4106 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)4107 static struct dentry *shmem_find_alias(struct inode *inode)
4108 {
4109 struct dentry *alias = d_find_alias(inode);
4110
4111 return alias ?: d_find_any_alias(inode);
4112 }
4113
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)4114 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4115 struct fid *fid, int fh_len, int fh_type)
4116 {
4117 struct inode *inode;
4118 struct dentry *dentry = NULL;
4119 u64 inum;
4120
4121 if (fh_len < 3)
4122 return NULL;
4123
4124 inum = fid->raw[2];
4125 inum = (inum << 32) | fid->raw[1];
4126
4127 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4128 shmem_match, fid->raw);
4129 if (inode) {
4130 dentry = shmem_find_alias(inode);
4131 iput(inode);
4132 }
4133
4134 return dentry;
4135 }
4136
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)4137 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4138 struct inode *parent)
4139 {
4140 if (*len < 3) {
4141 *len = 3;
4142 return FILEID_INVALID;
4143 }
4144
4145 if (inode_unhashed(inode)) {
4146 /* Unfortunately insert_inode_hash is not idempotent,
4147 * so as we hash inodes here rather than at creation
4148 * time, we need a lock to ensure we only try
4149 * to do it once
4150 */
4151 static DEFINE_SPINLOCK(lock);
4152 spin_lock(&lock);
4153 if (inode_unhashed(inode))
4154 __insert_inode_hash(inode,
4155 inode->i_ino + inode->i_generation);
4156 spin_unlock(&lock);
4157 }
4158
4159 fh[0] = inode->i_generation;
4160 fh[1] = inode->i_ino;
4161 fh[2] = ((__u64)inode->i_ino) >> 32;
4162
4163 *len = 3;
4164 return 1;
4165 }
4166
4167 static const struct export_operations shmem_export_ops = {
4168 .get_parent = shmem_get_parent,
4169 .encode_fh = shmem_encode_fh,
4170 .fh_to_dentry = shmem_fh_to_dentry,
4171 };
4172
4173 enum shmem_param {
4174 Opt_gid,
4175 Opt_huge,
4176 Opt_mode,
4177 Opt_mpol,
4178 Opt_nr_blocks,
4179 Opt_nr_inodes,
4180 Opt_size,
4181 Opt_uid,
4182 Opt_inode32,
4183 Opt_inode64,
4184 Opt_noswap,
4185 Opt_quota,
4186 Opt_usrquota,
4187 Opt_grpquota,
4188 Opt_usrquota_block_hardlimit,
4189 Opt_usrquota_inode_hardlimit,
4190 Opt_grpquota_block_hardlimit,
4191 Opt_grpquota_inode_hardlimit,
4192 };
4193
4194 static const struct constant_table shmem_param_enums_huge[] = {
4195 {"never", SHMEM_HUGE_NEVER },
4196 {"always", SHMEM_HUGE_ALWAYS },
4197 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
4198 {"advise", SHMEM_HUGE_ADVISE },
4199 {}
4200 };
4201
4202 const struct fs_parameter_spec shmem_fs_parameters[] = {
4203 fsparam_gid ("gid", Opt_gid),
4204 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
4205 fsparam_u32oct("mode", Opt_mode),
4206 fsparam_string("mpol", Opt_mpol),
4207 fsparam_string("nr_blocks", Opt_nr_blocks),
4208 fsparam_string("nr_inodes", Opt_nr_inodes),
4209 fsparam_string("size", Opt_size),
4210 fsparam_uid ("uid", Opt_uid),
4211 fsparam_flag ("inode32", Opt_inode32),
4212 fsparam_flag ("inode64", Opt_inode64),
4213 fsparam_flag ("noswap", Opt_noswap),
4214 #ifdef CONFIG_TMPFS_QUOTA
4215 fsparam_flag ("quota", Opt_quota),
4216 fsparam_flag ("usrquota", Opt_usrquota),
4217 fsparam_flag ("grpquota", Opt_grpquota),
4218 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4219 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4220 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4221 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4222 #endif
4223 {}
4224 };
4225
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)4226 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4227 {
4228 struct shmem_options *ctx = fc->fs_private;
4229 struct fs_parse_result result;
4230 unsigned long long size;
4231 char *rest;
4232 int opt;
4233 kuid_t kuid;
4234 kgid_t kgid;
4235
4236 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4237 if (opt < 0)
4238 return opt;
4239
4240 switch (opt) {
4241 case Opt_size:
4242 size = memparse(param->string, &rest);
4243 if (*rest == '%') {
4244 size <<= PAGE_SHIFT;
4245 size *= totalram_pages();
4246 do_div(size, 100);
4247 rest++;
4248 }
4249 if (*rest)
4250 goto bad_value;
4251 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4252 ctx->seen |= SHMEM_SEEN_BLOCKS;
4253 break;
4254 case Opt_nr_blocks:
4255 ctx->blocks = memparse(param->string, &rest);
4256 if (*rest || ctx->blocks > LONG_MAX)
4257 goto bad_value;
4258 ctx->seen |= SHMEM_SEEN_BLOCKS;
4259 break;
4260 case Opt_nr_inodes:
4261 ctx->inodes = memparse(param->string, &rest);
4262 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4263 goto bad_value;
4264 ctx->seen |= SHMEM_SEEN_INODES;
4265 break;
4266 case Opt_mode:
4267 ctx->mode = result.uint_32 & 07777;
4268 break;
4269 case Opt_uid:
4270 kuid = result.uid;
4271
4272 /*
4273 * The requested uid must be representable in the
4274 * filesystem's idmapping.
4275 */
4276 if (!kuid_has_mapping(fc->user_ns, kuid))
4277 goto bad_value;
4278
4279 ctx->uid = kuid;
4280 break;
4281 case Opt_gid:
4282 kgid = result.gid;
4283
4284 /*
4285 * The requested gid must be representable in the
4286 * filesystem's idmapping.
4287 */
4288 if (!kgid_has_mapping(fc->user_ns, kgid))
4289 goto bad_value;
4290
4291 ctx->gid = kgid;
4292 break;
4293 case Opt_huge:
4294 ctx->huge = result.uint_32;
4295 if (ctx->huge != SHMEM_HUGE_NEVER &&
4296 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4297 has_transparent_hugepage()))
4298 goto unsupported_parameter;
4299 ctx->seen |= SHMEM_SEEN_HUGE;
4300 break;
4301 case Opt_mpol:
4302 if (IS_ENABLED(CONFIG_NUMA)) {
4303 mpol_put(ctx->mpol);
4304 ctx->mpol = NULL;
4305 if (mpol_parse_str(param->string, &ctx->mpol))
4306 goto bad_value;
4307 break;
4308 }
4309 goto unsupported_parameter;
4310 case Opt_inode32:
4311 ctx->full_inums = false;
4312 ctx->seen |= SHMEM_SEEN_INUMS;
4313 break;
4314 case Opt_inode64:
4315 if (sizeof(ino_t) < 8) {
4316 return invalfc(fc,
4317 "Cannot use inode64 with <64bit inums in kernel\n");
4318 }
4319 ctx->full_inums = true;
4320 ctx->seen |= SHMEM_SEEN_INUMS;
4321 break;
4322 case Opt_noswap:
4323 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4324 return invalfc(fc,
4325 "Turning off swap in unprivileged tmpfs mounts unsupported");
4326 }
4327 ctx->noswap = true;
4328 ctx->seen |= SHMEM_SEEN_NOSWAP;
4329 break;
4330 case Opt_quota:
4331 if (fc->user_ns != &init_user_ns)
4332 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4333 ctx->seen |= SHMEM_SEEN_QUOTA;
4334 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4335 break;
4336 case Opt_usrquota:
4337 if (fc->user_ns != &init_user_ns)
4338 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4339 ctx->seen |= SHMEM_SEEN_QUOTA;
4340 ctx->quota_types |= QTYPE_MASK_USR;
4341 break;
4342 case Opt_grpquota:
4343 if (fc->user_ns != &init_user_ns)
4344 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4345 ctx->seen |= SHMEM_SEEN_QUOTA;
4346 ctx->quota_types |= QTYPE_MASK_GRP;
4347 break;
4348 case Opt_usrquota_block_hardlimit:
4349 size = memparse(param->string, &rest);
4350 if (*rest || !size)
4351 goto bad_value;
4352 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4353 return invalfc(fc,
4354 "User quota block hardlimit too large.");
4355 ctx->qlimits.usrquota_bhardlimit = size;
4356 break;
4357 case Opt_grpquota_block_hardlimit:
4358 size = memparse(param->string, &rest);
4359 if (*rest || !size)
4360 goto bad_value;
4361 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4362 return invalfc(fc,
4363 "Group quota block hardlimit too large.");
4364 ctx->qlimits.grpquota_bhardlimit = size;
4365 break;
4366 case Opt_usrquota_inode_hardlimit:
4367 size = memparse(param->string, &rest);
4368 if (*rest || !size)
4369 goto bad_value;
4370 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4371 return invalfc(fc,
4372 "User quota inode hardlimit too large.");
4373 ctx->qlimits.usrquota_ihardlimit = size;
4374 break;
4375 case Opt_grpquota_inode_hardlimit:
4376 size = memparse(param->string, &rest);
4377 if (*rest || !size)
4378 goto bad_value;
4379 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4380 return invalfc(fc,
4381 "Group quota inode hardlimit too large.");
4382 ctx->qlimits.grpquota_ihardlimit = size;
4383 break;
4384 }
4385 return 0;
4386
4387 unsupported_parameter:
4388 return invalfc(fc, "Unsupported parameter '%s'", param->key);
4389 bad_value:
4390 return invalfc(fc, "Bad value for '%s'", param->key);
4391 }
4392
shmem_parse_options(struct fs_context * fc,void * data)4393 static int shmem_parse_options(struct fs_context *fc, void *data)
4394 {
4395 char *options = data;
4396
4397 if (options) {
4398 int err = security_sb_eat_lsm_opts(options, &fc->security);
4399 if (err)
4400 return err;
4401 }
4402
4403 while (options != NULL) {
4404 char *this_char = options;
4405 for (;;) {
4406 /*
4407 * NUL-terminate this option: unfortunately,
4408 * mount options form a comma-separated list,
4409 * but mpol's nodelist may also contain commas.
4410 */
4411 options = strchr(options, ',');
4412 if (options == NULL)
4413 break;
4414 options++;
4415 if (!isdigit(*options)) {
4416 options[-1] = '\0';
4417 break;
4418 }
4419 }
4420 if (*this_char) {
4421 char *value = strchr(this_char, '=');
4422 size_t len = 0;
4423 int err;
4424
4425 if (value) {
4426 *value++ = '\0';
4427 len = strlen(value);
4428 }
4429 err = vfs_parse_fs_string(fc, this_char, value, len);
4430 if (err < 0)
4431 return err;
4432 }
4433 }
4434 return 0;
4435 }
4436
4437 /*
4438 * Reconfigure a shmem filesystem.
4439 */
shmem_reconfigure(struct fs_context * fc)4440 static int shmem_reconfigure(struct fs_context *fc)
4441 {
4442 struct shmem_options *ctx = fc->fs_private;
4443 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4444 unsigned long used_isp;
4445 struct mempolicy *mpol = NULL;
4446 const char *err;
4447
4448 raw_spin_lock(&sbinfo->stat_lock);
4449 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4450
4451 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4452 if (!sbinfo->max_blocks) {
4453 err = "Cannot retroactively limit size";
4454 goto out;
4455 }
4456 if (percpu_counter_compare(&sbinfo->used_blocks,
4457 ctx->blocks) > 0) {
4458 err = "Too small a size for current use";
4459 goto out;
4460 }
4461 }
4462 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4463 if (!sbinfo->max_inodes) {
4464 err = "Cannot retroactively limit inodes";
4465 goto out;
4466 }
4467 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4468 err = "Too few inodes for current use";
4469 goto out;
4470 }
4471 }
4472
4473 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4474 sbinfo->next_ino > UINT_MAX) {
4475 err = "Current inum too high to switch to 32-bit inums";
4476 goto out;
4477 }
4478 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4479 err = "Cannot disable swap on remount";
4480 goto out;
4481 }
4482 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4483 err = "Cannot enable swap on remount if it was disabled on first mount";
4484 goto out;
4485 }
4486
4487 if (ctx->seen & SHMEM_SEEN_QUOTA &&
4488 !sb_any_quota_loaded(fc->root->d_sb)) {
4489 err = "Cannot enable quota on remount";
4490 goto out;
4491 }
4492
4493 #ifdef CONFIG_TMPFS_QUOTA
4494 #define CHANGED_LIMIT(name) \
4495 (ctx->qlimits.name## hardlimit && \
4496 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4497
4498 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4499 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4500 err = "Cannot change global quota limit on remount";
4501 goto out;
4502 }
4503 #endif /* CONFIG_TMPFS_QUOTA */
4504
4505 if (ctx->seen & SHMEM_SEEN_HUGE)
4506 sbinfo->huge = ctx->huge;
4507 if (ctx->seen & SHMEM_SEEN_INUMS)
4508 sbinfo->full_inums = ctx->full_inums;
4509 if (ctx->seen & SHMEM_SEEN_BLOCKS)
4510 sbinfo->max_blocks = ctx->blocks;
4511 if (ctx->seen & SHMEM_SEEN_INODES) {
4512 sbinfo->max_inodes = ctx->inodes;
4513 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4514 }
4515
4516 /*
4517 * Preserve previous mempolicy unless mpol remount option was specified.
4518 */
4519 if (ctx->mpol) {
4520 mpol = sbinfo->mpol;
4521 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
4522 ctx->mpol = NULL;
4523 }
4524
4525 if (ctx->noswap)
4526 sbinfo->noswap = true;
4527
4528 raw_spin_unlock(&sbinfo->stat_lock);
4529 mpol_put(mpol);
4530 return 0;
4531 out:
4532 raw_spin_unlock(&sbinfo->stat_lock);
4533 return invalfc(fc, "%s", err);
4534 }
4535
shmem_show_options(struct seq_file * seq,struct dentry * root)4536 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4537 {
4538 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4539 struct mempolicy *mpol;
4540
4541 if (sbinfo->max_blocks != shmem_default_max_blocks())
4542 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4543 if (sbinfo->max_inodes != shmem_default_max_inodes())
4544 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4545 if (sbinfo->mode != (0777 | S_ISVTX))
4546 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4547 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4548 seq_printf(seq, ",uid=%u",
4549 from_kuid_munged(&init_user_ns, sbinfo->uid));
4550 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4551 seq_printf(seq, ",gid=%u",
4552 from_kgid_munged(&init_user_ns, sbinfo->gid));
4553
4554 /*
4555 * Showing inode{64,32} might be useful even if it's the system default,
4556 * since then people don't have to resort to checking both here and
4557 * /proc/config.gz to confirm 64-bit inums were successfully applied
4558 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4559 *
4560 * We hide it when inode64 isn't the default and we are using 32-bit
4561 * inodes, since that probably just means the feature isn't even under
4562 * consideration.
4563 *
4564 * As such:
4565 *
4566 * +-----------------+-----------------+
4567 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
4568 * +------------------+-----------------+-----------------+
4569 * | full_inums=true | show | show |
4570 * | full_inums=false | show | hide |
4571 * +------------------+-----------------+-----------------+
4572 *
4573 */
4574 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4575 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4576 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4577 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4578 if (sbinfo->huge)
4579 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4580 #endif
4581 mpol = shmem_get_sbmpol(sbinfo);
4582 shmem_show_mpol(seq, mpol);
4583 mpol_put(mpol);
4584 if (sbinfo->noswap)
4585 seq_printf(seq, ",noswap");
4586 #ifdef CONFIG_TMPFS_QUOTA
4587 if (sb_has_quota_active(root->d_sb, USRQUOTA))
4588 seq_printf(seq, ",usrquota");
4589 if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4590 seq_printf(seq, ",grpquota");
4591 if (sbinfo->qlimits.usrquota_bhardlimit)
4592 seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4593 sbinfo->qlimits.usrquota_bhardlimit);
4594 if (sbinfo->qlimits.grpquota_bhardlimit)
4595 seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4596 sbinfo->qlimits.grpquota_bhardlimit);
4597 if (sbinfo->qlimits.usrquota_ihardlimit)
4598 seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4599 sbinfo->qlimits.usrquota_ihardlimit);
4600 if (sbinfo->qlimits.grpquota_ihardlimit)
4601 seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4602 sbinfo->qlimits.grpquota_ihardlimit);
4603 #endif
4604 return 0;
4605 }
4606
4607 #endif /* CONFIG_TMPFS */
4608
shmem_put_super(struct super_block * sb)4609 static void shmem_put_super(struct super_block *sb)
4610 {
4611 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4612
4613 #ifdef CONFIG_TMPFS_QUOTA
4614 shmem_disable_quotas(sb);
4615 #endif
4616 free_percpu(sbinfo->ino_batch);
4617 percpu_counter_destroy(&sbinfo->used_blocks);
4618 mpol_put(sbinfo->mpol);
4619 kfree(sbinfo);
4620 sb->s_fs_info = NULL;
4621 }
4622
shmem_fill_super(struct super_block * sb,struct fs_context * fc)4623 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4624 {
4625 struct shmem_options *ctx = fc->fs_private;
4626 struct inode *inode;
4627 struct shmem_sb_info *sbinfo;
4628 int error = -ENOMEM;
4629
4630 /* Round up to L1_CACHE_BYTES to resist false sharing */
4631 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4632 L1_CACHE_BYTES), GFP_KERNEL);
4633 if (!sbinfo)
4634 return error;
4635
4636 sb->s_fs_info = sbinfo;
4637
4638 #ifdef CONFIG_TMPFS
4639 /*
4640 * Per default we only allow half of the physical ram per
4641 * tmpfs instance, limiting inodes to one per page of lowmem;
4642 * but the internal instance is left unlimited.
4643 */
4644 if (!(sb->s_flags & SB_KERNMOUNT)) {
4645 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4646 ctx->blocks = shmem_default_max_blocks();
4647 if (!(ctx->seen & SHMEM_SEEN_INODES))
4648 ctx->inodes = shmem_default_max_inodes();
4649 if (!(ctx->seen & SHMEM_SEEN_INUMS))
4650 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4651 sbinfo->noswap = ctx->noswap;
4652 } else {
4653 sb->s_flags |= SB_NOUSER;
4654 }
4655 sb->s_export_op = &shmem_export_ops;
4656 sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4657 #else
4658 sb->s_flags |= SB_NOUSER;
4659 #endif
4660 sbinfo->max_blocks = ctx->blocks;
4661 sbinfo->max_inodes = ctx->inodes;
4662 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4663 if (sb->s_flags & SB_KERNMOUNT) {
4664 sbinfo->ino_batch = alloc_percpu(ino_t);
4665 if (!sbinfo->ino_batch)
4666 goto failed;
4667 }
4668 sbinfo->uid = ctx->uid;
4669 sbinfo->gid = ctx->gid;
4670 sbinfo->full_inums = ctx->full_inums;
4671 sbinfo->mode = ctx->mode;
4672 sbinfo->huge = ctx->huge;
4673 sbinfo->mpol = ctx->mpol;
4674 ctx->mpol = NULL;
4675
4676 raw_spin_lock_init(&sbinfo->stat_lock);
4677 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4678 goto failed;
4679 spin_lock_init(&sbinfo->shrinklist_lock);
4680 INIT_LIST_HEAD(&sbinfo->shrinklist);
4681
4682 sb->s_maxbytes = MAX_LFS_FILESIZE;
4683 sb->s_blocksize = PAGE_SIZE;
4684 sb->s_blocksize_bits = PAGE_SHIFT;
4685 sb->s_magic = TMPFS_MAGIC;
4686 sb->s_op = &shmem_ops;
4687 sb->s_time_gran = 1;
4688 #ifdef CONFIG_TMPFS_XATTR
4689 sb->s_xattr = shmem_xattr_handlers;
4690 #endif
4691 #ifdef CONFIG_TMPFS_POSIX_ACL
4692 sb->s_flags |= SB_POSIXACL;
4693 #endif
4694 uuid_t uuid;
4695 uuid_gen(&uuid);
4696 super_set_uuid(sb, uuid.b, sizeof(uuid));
4697
4698 #ifdef CONFIG_TMPFS_QUOTA
4699 if (ctx->seen & SHMEM_SEEN_QUOTA) {
4700 sb->dq_op = &shmem_quota_operations;
4701 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4702 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4703
4704 /* Copy the default limits from ctx into sbinfo */
4705 memcpy(&sbinfo->qlimits, &ctx->qlimits,
4706 sizeof(struct shmem_quota_limits));
4707
4708 if (shmem_enable_quotas(sb, ctx->quota_types))
4709 goto failed;
4710 }
4711 #endif /* CONFIG_TMPFS_QUOTA */
4712
4713 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4714 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4715 if (IS_ERR(inode)) {
4716 error = PTR_ERR(inode);
4717 goto failed;
4718 }
4719 inode->i_uid = sbinfo->uid;
4720 inode->i_gid = sbinfo->gid;
4721 sb->s_root = d_make_root(inode);
4722 if (!sb->s_root)
4723 goto failed;
4724 return 0;
4725
4726 failed:
4727 shmem_put_super(sb);
4728 return error;
4729 }
4730
shmem_get_tree(struct fs_context * fc)4731 static int shmem_get_tree(struct fs_context *fc)
4732 {
4733 return get_tree_nodev(fc, shmem_fill_super);
4734 }
4735
shmem_free_fc(struct fs_context * fc)4736 static void shmem_free_fc(struct fs_context *fc)
4737 {
4738 struct shmem_options *ctx = fc->fs_private;
4739
4740 if (ctx) {
4741 mpol_put(ctx->mpol);
4742 kfree(ctx);
4743 }
4744 }
4745
4746 static const struct fs_context_operations shmem_fs_context_ops = {
4747 .free = shmem_free_fc,
4748 .get_tree = shmem_get_tree,
4749 #ifdef CONFIG_TMPFS
4750 .parse_monolithic = shmem_parse_options,
4751 .parse_param = shmem_parse_one,
4752 .reconfigure = shmem_reconfigure,
4753 #endif
4754 };
4755
4756 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4757
shmem_alloc_inode(struct super_block * sb)4758 static struct inode *shmem_alloc_inode(struct super_block *sb)
4759 {
4760 struct shmem_inode_info *info;
4761 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4762 if (!info)
4763 return NULL;
4764 return &info->vfs_inode;
4765 }
4766
shmem_free_in_core_inode(struct inode * inode)4767 static void shmem_free_in_core_inode(struct inode *inode)
4768 {
4769 if (S_ISLNK(inode->i_mode))
4770 kfree(inode->i_link);
4771 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4772 }
4773
shmem_destroy_inode(struct inode * inode)4774 static void shmem_destroy_inode(struct inode *inode)
4775 {
4776 if (S_ISREG(inode->i_mode))
4777 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4778 if (S_ISDIR(inode->i_mode))
4779 simple_offset_destroy(shmem_get_offset_ctx(inode));
4780 }
4781
shmem_init_inode(void * foo)4782 static void shmem_init_inode(void *foo)
4783 {
4784 struct shmem_inode_info *info = foo;
4785 inode_init_once(&info->vfs_inode);
4786 }
4787
shmem_init_inodecache(void)4788 static void __init shmem_init_inodecache(void)
4789 {
4790 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4791 sizeof(struct shmem_inode_info),
4792 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4793 }
4794
shmem_destroy_inodecache(void)4795 static void __init shmem_destroy_inodecache(void)
4796 {
4797 kmem_cache_destroy(shmem_inode_cachep);
4798 }
4799
4800 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_folio(struct address_space * mapping,struct folio * folio)4801 static int shmem_error_remove_folio(struct address_space *mapping,
4802 struct folio *folio)
4803 {
4804 return 0;
4805 }
4806
4807 static const struct address_space_operations shmem_aops = {
4808 .writepage = shmem_writepage,
4809 .dirty_folio = noop_dirty_folio,
4810 #ifdef CONFIG_TMPFS
4811 .write_begin = shmem_write_begin,
4812 .write_end = shmem_write_end,
4813 #endif
4814 #ifdef CONFIG_MIGRATION
4815 .migrate_folio = migrate_folio,
4816 #endif
4817 .error_remove_folio = shmem_error_remove_folio,
4818 };
4819
4820 static const struct file_operations shmem_file_operations = {
4821 .mmap = shmem_mmap,
4822 .open = shmem_file_open,
4823 .get_unmapped_area = shmem_get_unmapped_area,
4824 #ifdef CONFIG_TMPFS
4825 .llseek = shmem_file_llseek,
4826 .read_iter = shmem_file_read_iter,
4827 .write_iter = shmem_file_write_iter,
4828 .fsync = noop_fsync,
4829 .splice_read = shmem_file_splice_read,
4830 .splice_write = iter_file_splice_write,
4831 .fallocate = shmem_fallocate,
4832 #endif
4833 };
4834
4835 static const struct inode_operations shmem_inode_operations = {
4836 .getattr = shmem_getattr,
4837 .setattr = shmem_setattr,
4838 #ifdef CONFIG_TMPFS_XATTR
4839 .listxattr = shmem_listxattr,
4840 .set_acl = simple_set_acl,
4841 .fileattr_get = shmem_fileattr_get,
4842 .fileattr_set = shmem_fileattr_set,
4843 #endif
4844 };
4845
4846 static const struct inode_operations shmem_dir_inode_operations = {
4847 #ifdef CONFIG_TMPFS
4848 .getattr = shmem_getattr,
4849 .create = shmem_create,
4850 .lookup = simple_lookup,
4851 .link = shmem_link,
4852 .unlink = shmem_unlink,
4853 .symlink = shmem_symlink,
4854 .mkdir = shmem_mkdir,
4855 .rmdir = shmem_rmdir,
4856 .mknod = shmem_mknod,
4857 .rename = shmem_rename2,
4858 .tmpfile = shmem_tmpfile,
4859 .get_offset_ctx = shmem_get_offset_ctx,
4860 #endif
4861 #ifdef CONFIG_TMPFS_XATTR
4862 .listxattr = shmem_listxattr,
4863 .fileattr_get = shmem_fileattr_get,
4864 .fileattr_set = shmem_fileattr_set,
4865 #endif
4866 #ifdef CONFIG_TMPFS_POSIX_ACL
4867 .setattr = shmem_setattr,
4868 .set_acl = simple_set_acl,
4869 #endif
4870 };
4871
4872 static const struct inode_operations shmem_special_inode_operations = {
4873 .getattr = shmem_getattr,
4874 #ifdef CONFIG_TMPFS_XATTR
4875 .listxattr = shmem_listxattr,
4876 #endif
4877 #ifdef CONFIG_TMPFS_POSIX_ACL
4878 .setattr = shmem_setattr,
4879 .set_acl = simple_set_acl,
4880 #endif
4881 };
4882
4883 static const struct super_operations shmem_ops = {
4884 .alloc_inode = shmem_alloc_inode,
4885 .free_inode = shmem_free_in_core_inode,
4886 .destroy_inode = shmem_destroy_inode,
4887 #ifdef CONFIG_TMPFS
4888 .statfs = shmem_statfs,
4889 .show_options = shmem_show_options,
4890 #endif
4891 #ifdef CONFIG_TMPFS_QUOTA
4892 .get_dquots = shmem_get_dquots,
4893 #endif
4894 .evict_inode = shmem_evict_inode,
4895 .drop_inode = generic_delete_inode,
4896 .put_super = shmem_put_super,
4897 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4898 .nr_cached_objects = shmem_unused_huge_count,
4899 .free_cached_objects = shmem_unused_huge_scan,
4900 #endif
4901 };
4902
4903 static const struct vm_operations_struct shmem_vm_ops = {
4904 .fault = shmem_fault,
4905 .map_pages = filemap_map_pages,
4906 #ifdef CONFIG_NUMA
4907 .set_policy = shmem_set_policy,
4908 .get_policy = shmem_get_policy,
4909 #endif
4910 };
4911
4912 static const struct vm_operations_struct shmem_anon_vm_ops = {
4913 .fault = shmem_fault,
4914 .map_pages = filemap_map_pages,
4915 #ifdef CONFIG_NUMA
4916 .set_policy = shmem_set_policy,
4917 .get_policy = shmem_get_policy,
4918 #endif
4919 };
4920
shmem_init_fs_context(struct fs_context * fc)4921 int shmem_init_fs_context(struct fs_context *fc)
4922 {
4923 struct shmem_options *ctx;
4924
4925 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4926 if (!ctx)
4927 return -ENOMEM;
4928
4929 ctx->mode = 0777 | S_ISVTX;
4930 ctx->uid = current_fsuid();
4931 ctx->gid = current_fsgid();
4932
4933 fc->fs_private = ctx;
4934 fc->ops = &shmem_fs_context_ops;
4935 return 0;
4936 }
4937
4938 static struct file_system_type shmem_fs_type = {
4939 .owner = THIS_MODULE,
4940 .name = "tmpfs",
4941 .init_fs_context = shmem_init_fs_context,
4942 #ifdef CONFIG_TMPFS
4943 .parameters = shmem_fs_parameters,
4944 #endif
4945 .kill_sb = kill_litter_super,
4946 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4947 };
4948
shmem_init(void)4949 void __init shmem_init(void)
4950 {
4951 int error;
4952
4953 shmem_init_inodecache();
4954
4955 #ifdef CONFIG_TMPFS_QUOTA
4956 register_quota_format(&shmem_quota_format);
4957 #endif
4958
4959 error = register_filesystem(&shmem_fs_type);
4960 if (error) {
4961 pr_err("Could not register tmpfs\n");
4962 goto out2;
4963 }
4964
4965 shm_mnt = kern_mount(&shmem_fs_type);
4966 if (IS_ERR(shm_mnt)) {
4967 error = PTR_ERR(shm_mnt);
4968 pr_err("Could not kern_mount tmpfs\n");
4969 goto out1;
4970 }
4971
4972 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4973 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4974 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4975 else
4976 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4977
4978 /*
4979 * Default to setting PMD-sized THP to inherit the global setting and
4980 * disable all other multi-size THPs.
4981 */
4982 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
4983 #endif
4984 return;
4985
4986 out1:
4987 unregister_filesystem(&shmem_fs_type);
4988 out2:
4989 #ifdef CONFIG_TMPFS_QUOTA
4990 unregister_quota_format(&shmem_quota_format);
4991 #endif
4992 shmem_destroy_inodecache();
4993 shm_mnt = ERR_PTR(error);
4994 }
4995
4996 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4997 static ssize_t shmem_enabled_show(struct kobject *kobj,
4998 struct kobj_attribute *attr, char *buf)
4999 {
5000 static const int values[] = {
5001 SHMEM_HUGE_ALWAYS,
5002 SHMEM_HUGE_WITHIN_SIZE,
5003 SHMEM_HUGE_ADVISE,
5004 SHMEM_HUGE_NEVER,
5005 SHMEM_HUGE_DENY,
5006 SHMEM_HUGE_FORCE,
5007 };
5008 int len = 0;
5009 int i;
5010
5011 for (i = 0; i < ARRAY_SIZE(values); i++) {
5012 len += sysfs_emit_at(buf, len,
5013 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5014 i ? " " : "", shmem_format_huge(values[i]));
5015 }
5016 len += sysfs_emit_at(buf, len, "\n");
5017
5018 return len;
5019 }
5020
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5021 static ssize_t shmem_enabled_store(struct kobject *kobj,
5022 struct kobj_attribute *attr, const char *buf, size_t count)
5023 {
5024 char tmp[16];
5025 int huge;
5026
5027 if (count + 1 > sizeof(tmp))
5028 return -EINVAL;
5029 memcpy(tmp, buf, count);
5030 tmp[count] = '\0';
5031 if (count && tmp[count - 1] == '\n')
5032 tmp[count - 1] = '\0';
5033
5034 huge = shmem_parse_huge(tmp);
5035 if (huge == -EINVAL)
5036 return -EINVAL;
5037 if (!has_transparent_hugepage() &&
5038 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
5039 return -EINVAL;
5040
5041 /* Do not override huge allocation policy with non-PMD sized mTHP */
5042 if (huge == SHMEM_HUGE_FORCE &&
5043 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
5044 return -EINVAL;
5045
5046 shmem_huge = huge;
5047 if (shmem_huge > SHMEM_HUGE_DENY)
5048 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5049 return count;
5050 }
5051
5052 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5053 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5054
thpsize_shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5055 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5056 struct kobj_attribute *attr, char *buf)
5057 {
5058 int order = to_thpsize(kobj)->order;
5059 const char *output;
5060
5061 if (test_bit(order, &huge_shmem_orders_always))
5062 output = "[always] inherit within_size advise never";
5063 else if (test_bit(order, &huge_shmem_orders_inherit))
5064 output = "always [inherit] within_size advise never";
5065 else if (test_bit(order, &huge_shmem_orders_within_size))
5066 output = "always inherit [within_size] advise never";
5067 else if (test_bit(order, &huge_shmem_orders_madvise))
5068 output = "always inherit within_size [advise] never";
5069 else
5070 output = "always inherit within_size advise [never]";
5071
5072 return sysfs_emit(buf, "%s\n", output);
5073 }
5074
thpsize_shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5075 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5076 struct kobj_attribute *attr,
5077 const char *buf, size_t count)
5078 {
5079 int order = to_thpsize(kobj)->order;
5080 ssize_t ret = count;
5081
5082 if (sysfs_streq(buf, "always")) {
5083 spin_lock(&huge_shmem_orders_lock);
5084 clear_bit(order, &huge_shmem_orders_inherit);
5085 clear_bit(order, &huge_shmem_orders_madvise);
5086 clear_bit(order, &huge_shmem_orders_within_size);
5087 set_bit(order, &huge_shmem_orders_always);
5088 spin_unlock(&huge_shmem_orders_lock);
5089 } else if (sysfs_streq(buf, "inherit")) {
5090 /* Do not override huge allocation policy with non-PMD sized mTHP */
5091 if (shmem_huge == SHMEM_HUGE_FORCE &&
5092 order != HPAGE_PMD_ORDER)
5093 return -EINVAL;
5094
5095 spin_lock(&huge_shmem_orders_lock);
5096 clear_bit(order, &huge_shmem_orders_always);
5097 clear_bit(order, &huge_shmem_orders_madvise);
5098 clear_bit(order, &huge_shmem_orders_within_size);
5099 set_bit(order, &huge_shmem_orders_inherit);
5100 spin_unlock(&huge_shmem_orders_lock);
5101 } else if (sysfs_streq(buf, "within_size")) {
5102 spin_lock(&huge_shmem_orders_lock);
5103 clear_bit(order, &huge_shmem_orders_always);
5104 clear_bit(order, &huge_shmem_orders_inherit);
5105 clear_bit(order, &huge_shmem_orders_madvise);
5106 set_bit(order, &huge_shmem_orders_within_size);
5107 spin_unlock(&huge_shmem_orders_lock);
5108 } else if (sysfs_streq(buf, "advise")) {
5109 spin_lock(&huge_shmem_orders_lock);
5110 clear_bit(order, &huge_shmem_orders_always);
5111 clear_bit(order, &huge_shmem_orders_inherit);
5112 clear_bit(order, &huge_shmem_orders_within_size);
5113 set_bit(order, &huge_shmem_orders_madvise);
5114 spin_unlock(&huge_shmem_orders_lock);
5115 } else if (sysfs_streq(buf, "never")) {
5116 spin_lock(&huge_shmem_orders_lock);
5117 clear_bit(order, &huge_shmem_orders_always);
5118 clear_bit(order, &huge_shmem_orders_inherit);
5119 clear_bit(order, &huge_shmem_orders_within_size);
5120 clear_bit(order, &huge_shmem_orders_madvise);
5121 spin_unlock(&huge_shmem_orders_lock);
5122 } else {
5123 ret = -EINVAL;
5124 }
5125
5126 return ret;
5127 }
5128
5129 struct kobj_attribute thpsize_shmem_enabled_attr =
5130 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5131 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5132
5133 #else /* !CONFIG_SHMEM */
5134
5135 /*
5136 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5137 *
5138 * This is intended for small system where the benefits of the full
5139 * shmem code (swap-backed and resource-limited) are outweighed by
5140 * their complexity. On systems without swap this code should be
5141 * effectively equivalent, but much lighter weight.
5142 */
5143
5144 static struct file_system_type shmem_fs_type = {
5145 .name = "tmpfs",
5146 .init_fs_context = ramfs_init_fs_context,
5147 .parameters = ramfs_fs_parameters,
5148 .kill_sb = ramfs_kill_sb,
5149 .fs_flags = FS_USERNS_MOUNT,
5150 };
5151
shmem_init(void)5152 void __init shmem_init(void)
5153 {
5154 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5155
5156 shm_mnt = kern_mount(&shmem_fs_type);
5157 BUG_ON(IS_ERR(shm_mnt));
5158 }
5159
shmem_unuse(unsigned int type)5160 int shmem_unuse(unsigned int type)
5161 {
5162 return 0;
5163 }
5164
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)5165 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5166 {
5167 return 0;
5168 }
5169
shmem_unlock_mapping(struct address_space * mapping)5170 void shmem_unlock_mapping(struct address_space *mapping)
5171 {
5172 }
5173
5174 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)5175 unsigned long shmem_get_unmapped_area(struct file *file,
5176 unsigned long addr, unsigned long len,
5177 unsigned long pgoff, unsigned long flags)
5178 {
5179 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5180 }
5181 #endif
5182
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)5183 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5184 {
5185 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5186 }
5187 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5188
5189 #define shmem_vm_ops generic_file_vm_ops
5190 #define shmem_anon_vm_ops generic_file_vm_ops
5191 #define shmem_file_operations ramfs_file_operations
5192 #define shmem_acct_size(flags, size) 0
5193 #define shmem_unacct_size(flags, size) do {} while (0)
5194
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)5195 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5196 struct super_block *sb, struct inode *dir,
5197 umode_t mode, dev_t dev, unsigned long flags)
5198 {
5199 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5200 return inode ? inode : ERR_PTR(-ENOSPC);
5201 }
5202
5203 #endif /* CONFIG_SHMEM */
5204
5205 /* common code */
5206
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)5207 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5208 loff_t size, unsigned long flags, unsigned int i_flags)
5209 {
5210 struct inode *inode;
5211 struct file *res;
5212
5213 if (IS_ERR(mnt))
5214 return ERR_CAST(mnt);
5215
5216 if (size < 0 || size > MAX_LFS_FILESIZE)
5217 return ERR_PTR(-EINVAL);
5218
5219 if (shmem_acct_size(flags, size))
5220 return ERR_PTR(-ENOMEM);
5221
5222 if (is_idmapped_mnt(mnt))
5223 return ERR_PTR(-EINVAL);
5224
5225 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5226 S_IFREG | S_IRWXUGO, 0, flags);
5227 if (IS_ERR(inode)) {
5228 shmem_unacct_size(flags, size);
5229 return ERR_CAST(inode);
5230 }
5231 inode->i_flags |= i_flags;
5232 inode->i_size = size;
5233 clear_nlink(inode); /* It is unlinked */
5234 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5235 if (!IS_ERR(res))
5236 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5237 &shmem_file_operations);
5238 if (IS_ERR(res))
5239 iput(inode);
5240 return res;
5241 }
5242
5243 /**
5244 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5245 * kernel internal. There will be NO LSM permission checks against the
5246 * underlying inode. So users of this interface must do LSM checks at a
5247 * higher layer. The users are the big_key and shm implementations. LSM
5248 * checks are provided at the key or shm level rather than the inode.
5249 * @name: name for dentry (to be seen in /proc/<pid>/maps
5250 * @size: size to be set for the file
5251 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5252 */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)5253 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5254 {
5255 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5256 }
5257 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5258
5259 /**
5260 * shmem_file_setup - get an unlinked file living in tmpfs
5261 * @name: name for dentry (to be seen in /proc/<pid>/maps
5262 * @size: size to be set for the file
5263 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5264 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)5265 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5266 {
5267 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5268 }
5269 EXPORT_SYMBOL_GPL(shmem_file_setup);
5270
5271 /**
5272 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5273 * @mnt: the tmpfs mount where the file will be created
5274 * @name: name for dentry (to be seen in /proc/<pid>/maps
5275 * @size: size to be set for the file
5276 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5277 */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)5278 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5279 loff_t size, unsigned long flags)
5280 {
5281 return __shmem_file_setup(mnt, name, size, flags, 0);
5282 }
5283 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5284
5285 /**
5286 * shmem_zero_setup - setup a shared anonymous mapping
5287 * @vma: the vma to be mmapped is prepared by do_mmap
5288 */
shmem_zero_setup(struct vm_area_struct * vma)5289 int shmem_zero_setup(struct vm_area_struct *vma)
5290 {
5291 struct file *file;
5292 loff_t size = vma->vm_end - vma->vm_start;
5293
5294 /*
5295 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5296 * between XFS directory reading and selinux: since this file is only
5297 * accessible to the user through its mapping, use S_PRIVATE flag to
5298 * bypass file security, in the same way as shmem_kernel_file_setup().
5299 */
5300 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5301 if (IS_ERR(file))
5302 return PTR_ERR(file);
5303
5304 if (vma->vm_file)
5305 fput(vma->vm_file);
5306 vma->vm_file = file;
5307 vma->vm_ops = &shmem_anon_vm_ops;
5308
5309 return 0;
5310 }
5311
5312 /**
5313 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5314 * @mapping: the folio's address_space
5315 * @index: the folio index
5316 * @gfp: the page allocator flags to use if allocating
5317 *
5318 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5319 * with any new page allocations done using the specified allocation flags.
5320 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5321 * suit tmpfs, since it may have pages in swapcache, and needs to find those
5322 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5323 *
5324 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5325 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5326 */
shmem_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5327 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5328 pgoff_t index, gfp_t gfp)
5329 {
5330 #ifdef CONFIG_SHMEM
5331 struct inode *inode = mapping->host;
5332 struct folio *folio;
5333 int error;
5334
5335 error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE,
5336 gfp, NULL, NULL);
5337 if (error)
5338 return ERR_PTR(error);
5339
5340 folio_unlock(folio);
5341 return folio;
5342 #else
5343 /*
5344 * The tiny !SHMEM case uses ramfs without swap
5345 */
5346 return mapping_read_folio_gfp(mapping, index, gfp);
5347 #endif
5348 }
5349 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5350
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5351 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5352 pgoff_t index, gfp_t gfp)
5353 {
5354 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5355 struct page *page;
5356
5357 if (IS_ERR(folio))
5358 return &folio->page;
5359
5360 page = folio_file_page(folio, index);
5361 if (PageHWPoison(page)) {
5362 folio_put(folio);
5363 return ERR_PTR(-EIO);
5364 }
5365
5366 return page;
5367 }
5368 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5369