xref: /linux/mm/shmem.c (revision b20624608f350c5dadd74577629e90715d351e2c)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include <linux/unicode.h>
44 #include "swap.h"
45 
46 static struct vfsmount *shm_mnt __ro_after_init;
47 
48 #ifdef CONFIG_SHMEM
49 /*
50  * This virtual memory filesystem is heavily based on the ramfs. It
51  * extends ramfs by the ability to use swap and honor resource limits
52  * which makes it a completely usable filesystem.
53  */
54 
55 #include <linux/xattr.h>
56 #include <linux/exportfs.h>
57 #include <linux/posix_acl.h>
58 #include <linux/posix_acl_xattr.h>
59 #include <linux/mman.h>
60 #include <linux/string.h>
61 #include <linux/slab.h>
62 #include <linux/backing-dev.h>
63 #include <linux/writeback.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/leafops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 #include <linux/quotaops.h>
83 #include <linux/rcupdate_wait.h>
84 
85 #include <linux/uaccess.h>
86 
87 #include "internal.h"
88 
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96 
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99 
100 /*
101  * shmem_fallocate communicates with shmem_fault or shmem_writeout via
102  * inode->i_private (with i_rwsem making sure that it has only one user at
103  * a time): we would prefer not to enlarge the shmem inode just for that.
104  */
105 struct shmem_falloc {
106 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 	pgoff_t start;		/* start of range currently being fallocated */
108 	pgoff_t next;		/* the next page offset to be fallocated */
109 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
110 	pgoff_t nr_unswapped;	/* how often writeout refused to swap out */
111 };
112 
113 struct shmem_options {
114 	unsigned long long blocks;
115 	unsigned long long inodes;
116 	struct mempolicy *mpol;
117 	kuid_t uid;
118 	kgid_t gid;
119 	umode_t mode;
120 	bool full_inums;
121 	int huge;
122 	int seen;
123 	bool noswap;
124 	unsigned short quota_types;
125 	struct shmem_quota_limits qlimits;
126 #if IS_ENABLED(CONFIG_UNICODE)
127 	struct unicode_map *encoding;
128 	bool strict_encoding;
129 #endif
130 #define SHMEM_SEEN_BLOCKS 1
131 #define SHMEM_SEEN_INODES 2
132 #define SHMEM_SEEN_HUGE 4
133 #define SHMEM_SEEN_INUMS 8
134 #define SHMEM_SEEN_QUOTA 16
135 };
136 
137 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
138 static unsigned long huge_shmem_orders_always __read_mostly;
139 static unsigned long huge_shmem_orders_madvise __read_mostly;
140 static unsigned long huge_shmem_orders_inherit __read_mostly;
141 static unsigned long huge_shmem_orders_within_size __read_mostly;
142 static bool shmem_orders_configured __initdata;
143 #endif
144 
145 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)146 static unsigned long shmem_default_max_blocks(void)
147 {
148 	return totalram_pages() / 2;
149 }
150 
shmem_default_max_inodes(void)151 static unsigned long shmem_default_max_inodes(void)
152 {
153 	unsigned long nr_pages = totalram_pages();
154 
155 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
156 			ULONG_MAX / BOGO_INODE_SIZE);
157 }
158 #endif
159 
160 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
161 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
162 			struct vm_area_struct *vma, vm_fault_t *fault_type);
163 
SHMEM_SB(struct super_block * sb)164 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
165 {
166 	return sb->s_fs_info;
167 }
168 
169 /*
170  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
171  * for shared memory and for shared anonymous (/dev/zero) mappings
172  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
173  * consistent with the pre-accounting of private mappings ...
174  */
shmem_acct_size(unsigned long flags,loff_t size)175 static inline int shmem_acct_size(unsigned long flags, loff_t size)
176 {
177 	return (flags & SHMEM_F_NORESERVE) ?
178 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
179 }
180 
shmem_unacct_size(unsigned long flags,loff_t size)181 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
182 {
183 	if (!(flags & SHMEM_F_NORESERVE))
184 		vm_unacct_memory(VM_ACCT(size));
185 }
186 
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)187 static inline int shmem_reacct_size(unsigned long flags,
188 		loff_t oldsize, loff_t newsize)
189 {
190 	if (!(flags & SHMEM_F_NORESERVE)) {
191 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
192 			return security_vm_enough_memory_mm(current->mm,
193 					VM_ACCT(newsize) - VM_ACCT(oldsize));
194 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
195 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
196 	}
197 	return 0;
198 }
199 
200 /*
201  * ... whereas tmpfs objects are accounted incrementally as
202  * pages are allocated, in order to allow large sparse files.
203  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
204  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
205  */
shmem_acct_blocks(unsigned long flags,long pages)206 static inline int shmem_acct_blocks(unsigned long flags, long pages)
207 {
208 	if (!(flags & SHMEM_F_NORESERVE))
209 		return 0;
210 
211 	return security_vm_enough_memory_mm(current->mm,
212 			pages * VM_ACCT(PAGE_SIZE));
213 }
214 
shmem_unacct_blocks(unsigned long flags,long pages)215 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
216 {
217 	if (flags & SHMEM_F_NORESERVE)
218 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
219 }
220 
shmem_inode_acct_blocks(struct inode * inode,long pages)221 int shmem_inode_acct_blocks(struct inode *inode, long pages)
222 {
223 	struct shmem_inode_info *info = SHMEM_I(inode);
224 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
225 	int err = -ENOSPC;
226 
227 	if (shmem_acct_blocks(info->flags, pages))
228 		return err;
229 
230 	might_sleep();	/* when quotas */
231 	if (sbinfo->max_blocks) {
232 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
233 						sbinfo->max_blocks, pages))
234 			goto unacct;
235 
236 		err = dquot_alloc_block_nodirty(inode, pages);
237 		if (err) {
238 			percpu_counter_sub(&sbinfo->used_blocks, pages);
239 			goto unacct;
240 		}
241 	} else {
242 		err = dquot_alloc_block_nodirty(inode, pages);
243 		if (err)
244 			goto unacct;
245 	}
246 
247 	return 0;
248 
249 unacct:
250 	shmem_unacct_blocks(info->flags, pages);
251 	return err;
252 }
253 
shmem_inode_unacct_blocks(struct inode * inode,long pages)254 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
255 {
256 	struct shmem_inode_info *info = SHMEM_I(inode);
257 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
258 
259 	might_sleep();	/* when quotas */
260 	dquot_free_block_nodirty(inode, pages);
261 
262 	if (sbinfo->max_blocks)
263 		percpu_counter_sub(&sbinfo->used_blocks, pages);
264 	shmem_unacct_blocks(info->flags, pages);
265 }
266 
267 static const struct super_operations shmem_ops;
268 static const struct address_space_operations shmem_aops;
269 static const struct file_operations shmem_file_operations;
270 static const struct inode_operations shmem_inode_operations;
271 static const struct inode_operations shmem_dir_inode_operations;
272 static const struct inode_operations shmem_special_inode_operations;
273 static const struct vm_operations_struct shmem_vm_ops;
274 static const struct vm_operations_struct shmem_anon_vm_ops;
275 static struct file_system_type shmem_fs_type;
276 
shmem_mapping(const struct address_space * mapping)277 bool shmem_mapping(const struct address_space *mapping)
278 {
279 	return mapping->a_ops == &shmem_aops;
280 }
281 EXPORT_SYMBOL_GPL(shmem_mapping);
282 
vma_is_anon_shmem(const struct vm_area_struct * vma)283 bool vma_is_anon_shmem(const struct vm_area_struct *vma)
284 {
285 	return vma->vm_ops == &shmem_anon_vm_ops;
286 }
287 
vma_is_shmem(const struct vm_area_struct * vma)288 bool vma_is_shmem(const struct vm_area_struct *vma)
289 {
290 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
291 }
292 
293 static LIST_HEAD(shmem_swaplist);
294 static DEFINE_SPINLOCK(shmem_swaplist_lock);
295 
296 #ifdef CONFIG_TMPFS_QUOTA
297 
shmem_enable_quotas(struct super_block * sb,unsigned short quota_types)298 static int shmem_enable_quotas(struct super_block *sb,
299 			       unsigned short quota_types)
300 {
301 	int type, err = 0;
302 
303 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
304 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
305 		if (!(quota_types & (1 << type)))
306 			continue;
307 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
308 					  DQUOT_USAGE_ENABLED |
309 					  DQUOT_LIMITS_ENABLED);
310 		if (err)
311 			goto out_err;
312 	}
313 	return 0;
314 
315 out_err:
316 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
317 		type, err);
318 	for (type--; type >= 0; type--)
319 		dquot_quota_off(sb, type);
320 	return err;
321 }
322 
shmem_disable_quotas(struct super_block * sb)323 static void shmem_disable_quotas(struct super_block *sb)
324 {
325 	int type;
326 
327 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
328 		dquot_quota_off(sb, type);
329 }
330 
shmem_get_dquots(struct inode * inode)331 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
332 {
333 	return SHMEM_I(inode)->i_dquot;
334 }
335 #endif /* CONFIG_TMPFS_QUOTA */
336 
337 /*
338  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
339  * produces a novel ino for the newly allocated inode.
340  *
341  * It may also be called when making a hard link to permit the space needed by
342  * each dentry. However, in that case, no new inode number is needed since that
343  * internally draws from another pool of inode numbers (currently global
344  * get_next_ino()). This case is indicated by passing NULL as inop.
345  */
346 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)347 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
348 {
349 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
350 	ino_t ino;
351 
352 	if (!(sb->s_flags & SB_KERNMOUNT)) {
353 		raw_spin_lock(&sbinfo->stat_lock);
354 		if (sbinfo->max_inodes) {
355 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
356 				raw_spin_unlock(&sbinfo->stat_lock);
357 				return -ENOSPC;
358 			}
359 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
360 		}
361 		if (inop) {
362 			ino = sbinfo->next_ino++;
363 			if (unlikely(is_zero_ino(ino)))
364 				ino = sbinfo->next_ino++;
365 			if (unlikely(!sbinfo->full_inums &&
366 				     ino > UINT_MAX)) {
367 				/*
368 				 * Emulate get_next_ino uint wraparound for
369 				 * compatibility
370 				 */
371 				if (IS_ENABLED(CONFIG_64BIT))
372 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
373 						__func__, MINOR(sb->s_dev));
374 				sbinfo->next_ino = 1;
375 				ino = sbinfo->next_ino++;
376 			}
377 			*inop = ino;
378 		}
379 		raw_spin_unlock(&sbinfo->stat_lock);
380 	} else if (inop) {
381 		/*
382 		 * __shmem_file_setup, one of our callers, is lock-free: it
383 		 * doesn't hold stat_lock in shmem_reserve_inode since
384 		 * max_inodes is always 0, and is called from potentially
385 		 * unknown contexts. As such, use a per-cpu batched allocator
386 		 * which doesn't require the per-sb stat_lock unless we are at
387 		 * the batch boundary.
388 		 *
389 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
390 		 * shmem mounts are not exposed to userspace, so we don't need
391 		 * to worry about things like glibc compatibility.
392 		 */
393 		ino_t *next_ino;
394 
395 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
396 		ino = *next_ino;
397 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
398 			raw_spin_lock(&sbinfo->stat_lock);
399 			ino = sbinfo->next_ino;
400 			sbinfo->next_ino += SHMEM_INO_BATCH;
401 			raw_spin_unlock(&sbinfo->stat_lock);
402 			if (unlikely(is_zero_ino(ino)))
403 				ino++;
404 		}
405 		*inop = ino;
406 		*next_ino = ++ino;
407 		put_cpu();
408 	}
409 
410 	return 0;
411 }
412 
shmem_free_inode(struct super_block * sb,size_t freed_ispace)413 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
414 {
415 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
416 	if (sbinfo->max_inodes) {
417 		raw_spin_lock(&sbinfo->stat_lock);
418 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
419 		raw_spin_unlock(&sbinfo->stat_lock);
420 	}
421 }
422 
423 /**
424  * shmem_recalc_inode - recalculate the block usage of an inode
425  * @inode: inode to recalc
426  * @alloced: the change in number of pages allocated to inode
427  * @swapped: the change in number of pages swapped from inode
428  *
429  * We have to calculate the free blocks since the mm can drop
430  * undirtied hole pages behind our back.
431  *
432  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
433  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
434  *
435  * Return: true if swapped was incremented from 0, for shmem_writeout().
436  */
shmem_recalc_inode(struct inode * inode,long alloced,long swapped)437 bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
438 {
439 	struct shmem_inode_info *info = SHMEM_I(inode);
440 	bool first_swapped = false;
441 	long freed;
442 
443 	spin_lock(&info->lock);
444 	info->alloced += alloced;
445 	info->swapped += swapped;
446 	freed = info->alloced - info->swapped -
447 		READ_ONCE(inode->i_mapping->nrpages);
448 	/*
449 	 * Special case: whereas normally shmem_recalc_inode() is called
450 	 * after i_mapping->nrpages has already been adjusted (up or down),
451 	 * shmem_writeout() has to raise swapped before nrpages is lowered -
452 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
453 	 * been freed.  Compensate here, to avoid the need for a followup call.
454 	 */
455 	if (swapped > 0) {
456 		if (info->swapped == swapped)
457 			first_swapped = true;
458 		freed += swapped;
459 	}
460 	if (freed > 0)
461 		info->alloced -= freed;
462 	spin_unlock(&info->lock);
463 
464 	/* The quota case may block */
465 	if (freed > 0)
466 		shmem_inode_unacct_blocks(inode, freed);
467 	return first_swapped;
468 }
469 
shmem_charge(struct inode * inode,long pages)470 bool shmem_charge(struct inode *inode, long pages)
471 {
472 	struct address_space *mapping = inode->i_mapping;
473 
474 	if (shmem_inode_acct_blocks(inode, pages))
475 		return false;
476 
477 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
478 	xa_lock_irq(&mapping->i_pages);
479 	mapping->nrpages += pages;
480 	xa_unlock_irq(&mapping->i_pages);
481 
482 	shmem_recalc_inode(inode, pages, 0);
483 	return true;
484 }
485 
shmem_uncharge(struct inode * inode,long pages)486 void shmem_uncharge(struct inode *inode, long pages)
487 {
488 	/* pages argument is currently unused: keep it to help debugging */
489 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
490 
491 	shmem_recalc_inode(inode, 0, 0);
492 }
493 
494 /*
495  * Replace item expected in xarray by a new item, while holding xa_lock.
496  */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)497 static int shmem_replace_entry(struct address_space *mapping,
498 			pgoff_t index, void *expected, void *replacement)
499 {
500 	XA_STATE(xas, &mapping->i_pages, index);
501 	void *item;
502 
503 	VM_BUG_ON(!expected);
504 	VM_BUG_ON(!replacement);
505 	item = xas_load(&xas);
506 	if (item != expected)
507 		return -ENOENT;
508 	xas_store(&xas, replacement);
509 	return 0;
510 }
511 
512 /*
513  * Sometimes, before we decide whether to proceed or to fail, we must check
514  * that an entry was not already brought back or split by a racing thread.
515  *
516  * Checking folio is not enough: by the time a swapcache folio is locked, it
517  * might be reused, and again be swapcache, using the same swap as before.
518  * Returns the swap entry's order if it still presents, else returns -1.
519  */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)520 static int shmem_confirm_swap(struct address_space *mapping, pgoff_t index,
521 			      swp_entry_t swap)
522 {
523 	XA_STATE(xas, &mapping->i_pages, index);
524 	int ret = -1;
525 	void *entry;
526 
527 	rcu_read_lock();
528 	do {
529 		entry = xas_load(&xas);
530 		if (entry == swp_to_radix_entry(swap))
531 			ret = xas_get_order(&xas);
532 	} while (xas_retry(&xas, entry));
533 	rcu_read_unlock();
534 	return ret;
535 }
536 
537 /*
538  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
539  *
540  * SHMEM_HUGE_NEVER:
541  *	disables huge pages for the mount;
542  * SHMEM_HUGE_ALWAYS:
543  *	enables huge pages for the mount;
544  * SHMEM_HUGE_WITHIN_SIZE:
545  *	only allocate huge pages if the page will be fully within i_size,
546  *	also respect madvise() hints;
547  * SHMEM_HUGE_ADVISE:
548  *	only allocate huge pages if requested with madvise();
549  */
550 
551 #define SHMEM_HUGE_NEVER	0
552 #define SHMEM_HUGE_ALWAYS	1
553 #define SHMEM_HUGE_WITHIN_SIZE	2
554 #define SHMEM_HUGE_ADVISE	3
555 
556 /*
557  * Special values.
558  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
559  *
560  * SHMEM_HUGE_DENY:
561  *	disables huge on shm_mnt and all mounts, for emergency use;
562  * SHMEM_HUGE_FORCE:
563  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
564  *
565  */
566 #define SHMEM_HUGE_DENY		(-1)
567 #define SHMEM_HUGE_FORCE	(-2)
568 
569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
570 /* ifdef here to avoid bloating shmem.o when not necessary */
571 
572 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_NEVER)
573 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER
574 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ALWAYS)
575 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ALWAYS
576 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_WITHIN_SIZE)
577 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE
578 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_SHMEM_HUGE_ADVISE)
579 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_ADVISE
580 #else
581 #define SHMEM_HUGE_DEFAULT SHMEM_HUGE_NEVER
582 #endif
583 
584 static int shmem_huge __read_mostly = SHMEM_HUGE_DEFAULT;
585 
586 #undef SHMEM_HUGE_DEFAULT
587 
588 #if defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_NEVER)
589 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER
590 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ALWAYS)
591 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ALWAYS
592 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_WITHIN_SIZE)
593 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_WITHIN_SIZE
594 #elif defined(CONFIG_TRANSPARENT_HUGEPAGE_TMPFS_HUGE_ADVISE)
595 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_ADVISE
596 #else
597 #define TMPFS_HUGE_DEFAULT SHMEM_HUGE_NEVER
598 #endif
599 
600 static int tmpfs_huge __read_mostly = TMPFS_HUGE_DEFAULT;
601 
602 #undef TMPFS_HUGE_DEFAULT
603 
shmem_get_orders_within_size(struct inode * inode,unsigned long within_size_orders,pgoff_t index,loff_t write_end)604 static unsigned int shmem_get_orders_within_size(struct inode *inode,
605 		unsigned long within_size_orders, pgoff_t index,
606 		loff_t write_end)
607 {
608 	pgoff_t aligned_index;
609 	unsigned long order;
610 	loff_t i_size;
611 
612 	order = highest_order(within_size_orders);
613 	while (within_size_orders) {
614 		aligned_index = round_up(index + 1, 1 << order);
615 		i_size = max(write_end, i_size_read(inode));
616 		i_size = round_up(i_size, PAGE_SIZE);
617 		if (i_size >> PAGE_SHIFT >= aligned_index)
618 			return within_size_orders;
619 
620 		order = next_order(&within_size_orders, order);
621 	}
622 
623 	return 0;
624 }
625 
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,vm_flags_t vm_flags)626 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
627 					      loff_t write_end, bool shmem_huge_force,
628 					      struct vm_area_struct *vma,
629 					      vm_flags_t vm_flags)
630 {
631 	unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ?
632 		0 : BIT(HPAGE_PMD_ORDER);
633 	unsigned long within_size_orders;
634 
635 	if (!S_ISREG(inode->i_mode))
636 		return 0;
637 	if (shmem_huge == SHMEM_HUGE_DENY)
638 		return 0;
639 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
640 		return maybe_pmd_order;
641 
642 	/*
643 	 * The huge order allocation for anon shmem is controlled through
644 	 * the mTHP interface, so we still use PMD-sized huge order to
645 	 * check whether global control is enabled.
646 	 *
647 	 * For tmpfs with 'huge=always' or 'huge=within_size' mount option,
648 	 * we will always try PMD-sized order first. If that failed, it will
649 	 * fall back to small large folios.
650 	 */
651 	switch (SHMEM_SB(inode->i_sb)->huge) {
652 	case SHMEM_HUGE_ALWAYS:
653 		return THP_ORDERS_ALL_FILE_DEFAULT;
654 	case SHMEM_HUGE_WITHIN_SIZE:
655 		within_size_orders = shmem_get_orders_within_size(inode,
656 				THP_ORDERS_ALL_FILE_DEFAULT, index, write_end);
657 		if (within_size_orders > 0)
658 			return within_size_orders;
659 
660 		fallthrough;
661 	case SHMEM_HUGE_ADVISE:
662 		if (vm_flags & VM_HUGEPAGE)
663 			return THP_ORDERS_ALL_FILE_DEFAULT;
664 		fallthrough;
665 	default:
666 		return 0;
667 	}
668 }
669 
shmem_parse_huge(const char * str)670 static int shmem_parse_huge(const char *str)
671 {
672 	int huge;
673 
674 	if (!str)
675 		return -EINVAL;
676 
677 	if (!strcmp(str, "never"))
678 		huge = SHMEM_HUGE_NEVER;
679 	else if (!strcmp(str, "always"))
680 		huge = SHMEM_HUGE_ALWAYS;
681 	else if (!strcmp(str, "within_size"))
682 		huge = SHMEM_HUGE_WITHIN_SIZE;
683 	else if (!strcmp(str, "advise"))
684 		huge = SHMEM_HUGE_ADVISE;
685 	else if (!strcmp(str, "deny"))
686 		huge = SHMEM_HUGE_DENY;
687 	else if (!strcmp(str, "force"))
688 		huge = SHMEM_HUGE_FORCE;
689 	else
690 		return -EINVAL;
691 
692 	if (!has_transparent_hugepage() &&
693 	    huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
694 		return -EINVAL;
695 
696 	/* Do not override huge allocation policy with non-PMD sized mTHP */
697 	if (huge == SHMEM_HUGE_FORCE &&
698 	    huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
699 		return -EINVAL;
700 
701 	return huge;
702 }
703 
704 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)705 static const char *shmem_format_huge(int huge)
706 {
707 	switch (huge) {
708 	case SHMEM_HUGE_NEVER:
709 		return "never";
710 	case SHMEM_HUGE_ALWAYS:
711 		return "always";
712 	case SHMEM_HUGE_WITHIN_SIZE:
713 		return "within_size";
714 	case SHMEM_HUGE_ADVISE:
715 		return "advise";
716 	case SHMEM_HUGE_DENY:
717 		return "deny";
718 	case SHMEM_HUGE_FORCE:
719 		return "force";
720 	default:
721 		VM_BUG_ON(1);
722 		return "bad_val";
723 	}
724 }
725 #endif
726 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)727 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
728 		struct shrink_control *sc, unsigned long nr_to_free)
729 {
730 	LIST_HEAD(list), *pos, *next;
731 	struct inode *inode;
732 	struct shmem_inode_info *info;
733 	struct folio *folio;
734 	unsigned long batch = sc ? sc->nr_to_scan : 128;
735 	unsigned long split = 0, freed = 0;
736 
737 	if (list_empty(&sbinfo->shrinklist))
738 		return SHRINK_STOP;
739 
740 	spin_lock(&sbinfo->shrinklist_lock);
741 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
742 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
743 
744 		/* pin the inode */
745 		inode = igrab(&info->vfs_inode);
746 
747 		/* inode is about to be evicted */
748 		if (!inode) {
749 			list_del_init(&info->shrinklist);
750 			goto next;
751 		}
752 
753 		list_move(&info->shrinklist, &list);
754 next:
755 		sbinfo->shrinklist_len--;
756 		if (!--batch)
757 			break;
758 	}
759 	spin_unlock(&sbinfo->shrinklist_lock);
760 
761 	list_for_each_safe(pos, next, &list) {
762 		pgoff_t next, end;
763 		loff_t i_size;
764 		int ret;
765 
766 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
767 		inode = &info->vfs_inode;
768 
769 		if (nr_to_free && freed >= nr_to_free)
770 			goto move_back;
771 
772 		i_size = i_size_read(inode);
773 		folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
774 		if (!folio || xa_is_value(folio))
775 			goto drop;
776 
777 		/* No large folio at the end of the file: nothing to split */
778 		if (!folio_test_large(folio)) {
779 			folio_put(folio);
780 			goto drop;
781 		}
782 
783 		/* Check if there is anything to gain from splitting */
784 		next = folio_next_index(folio);
785 		end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
786 		if (end <= folio->index || end >= next) {
787 			folio_put(folio);
788 			goto drop;
789 		}
790 
791 		/*
792 		 * Move the inode on the list back to shrinklist if we failed
793 		 * to lock the page at this time.
794 		 *
795 		 * Waiting for the lock may lead to deadlock in the
796 		 * reclaim path.
797 		 */
798 		if (!folio_trylock(folio)) {
799 			folio_put(folio);
800 			goto move_back;
801 		}
802 
803 		ret = split_folio(folio);
804 		folio_unlock(folio);
805 		folio_put(folio);
806 
807 		/* If split failed move the inode on the list back to shrinklist */
808 		if (ret)
809 			goto move_back;
810 
811 		freed += next - end;
812 		split++;
813 drop:
814 		list_del_init(&info->shrinklist);
815 		goto put;
816 move_back:
817 		/*
818 		 * Make sure the inode is either on the global list or deleted
819 		 * from any local list before iput() since it could be deleted
820 		 * in another thread once we put the inode (then the local list
821 		 * is corrupted).
822 		 */
823 		spin_lock(&sbinfo->shrinklist_lock);
824 		list_move(&info->shrinklist, &sbinfo->shrinklist);
825 		sbinfo->shrinklist_len++;
826 		spin_unlock(&sbinfo->shrinklist_lock);
827 put:
828 		iput(inode);
829 	}
830 
831 	return split;
832 }
833 
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)834 static long shmem_unused_huge_scan(struct super_block *sb,
835 		struct shrink_control *sc)
836 {
837 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
838 
839 	if (!READ_ONCE(sbinfo->shrinklist_len))
840 		return SHRINK_STOP;
841 
842 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
843 }
844 
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)845 static long shmem_unused_huge_count(struct super_block *sb,
846 		struct shrink_control *sc)
847 {
848 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
849 	return READ_ONCE(sbinfo->shrinklist_len);
850 }
851 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
852 
853 #define shmem_huge SHMEM_HUGE_DENY
854 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)855 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
856 		struct shrink_control *sc, unsigned long nr_to_free)
857 {
858 	return 0;
859 }
860 
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,vm_flags_t vm_flags)861 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
862 					      loff_t write_end, bool shmem_huge_force,
863 					      struct vm_area_struct *vma,
864 					      vm_flags_t vm_flags)
865 {
866 	return 0;
867 }
868 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
869 
shmem_update_stats(struct folio * folio,int nr_pages)870 static void shmem_update_stats(struct folio *folio, int nr_pages)
871 {
872 	if (folio_test_pmd_mappable(folio))
873 		lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages);
874 	lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
875 	lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages);
876 }
877 
878 /*
879  * Somewhat like filemap_add_folio, but error if expected item has gone.
880  */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp)881 int shmem_add_to_page_cache(struct folio *folio,
882 			    struct address_space *mapping,
883 			    pgoff_t index, void *expected, gfp_t gfp)
884 {
885 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
886 	unsigned long nr = folio_nr_pages(folio);
887 	swp_entry_t iter, swap;
888 	void *entry;
889 
890 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
891 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
892 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
893 
894 	folio_ref_add(folio, nr);
895 	folio->mapping = mapping;
896 	folio->index = index;
897 
898 	gfp &= GFP_RECLAIM_MASK;
899 	folio_throttle_swaprate(folio, gfp);
900 	swap = radix_to_swp_entry(expected);
901 
902 	do {
903 		iter = swap;
904 		xas_lock_irq(&xas);
905 		xas_for_each_conflict(&xas, entry) {
906 			/*
907 			 * The range must either be empty, or filled with
908 			 * expected swap entries. Shmem swap entries are never
909 			 * partially freed without split of both entry and
910 			 * folio, so there shouldn't be any holes.
911 			 */
912 			if (!expected || entry != swp_to_radix_entry(iter)) {
913 				xas_set_err(&xas, -EEXIST);
914 				goto unlock;
915 			}
916 			iter.val += 1 << xas_get_order(&xas);
917 		}
918 		if (expected && iter.val - nr != swap.val) {
919 			xas_set_err(&xas, -EEXIST);
920 			goto unlock;
921 		}
922 		xas_store(&xas, folio);
923 		if (xas_error(&xas))
924 			goto unlock;
925 		shmem_update_stats(folio, nr);
926 		mapping->nrpages += nr;
927 unlock:
928 		xas_unlock_irq(&xas);
929 	} while (xas_nomem(&xas, gfp));
930 
931 	if (xas_error(&xas)) {
932 		folio->mapping = NULL;
933 		folio_ref_sub(folio, nr);
934 		return xas_error(&xas);
935 	}
936 
937 	return 0;
938 }
939 
940 /*
941  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
942  */
shmem_delete_from_page_cache(struct folio * folio,void * radswap)943 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
944 {
945 	struct address_space *mapping = folio->mapping;
946 	long nr = folio_nr_pages(folio);
947 	int error;
948 
949 	xa_lock_irq(&mapping->i_pages);
950 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
951 	folio->mapping = NULL;
952 	mapping->nrpages -= nr;
953 	shmem_update_stats(folio, -nr);
954 	xa_unlock_irq(&mapping->i_pages);
955 	folio_put_refs(folio, nr);
956 	BUG_ON(error);
957 }
958 
959 /*
960  * Remove swap entry from page cache, free the swap and its page cache. Returns
961  * the number of pages being freed. 0 means entry not found in XArray (0 pages
962  * being freed).
963  */
shmem_free_swap(struct address_space * mapping,pgoff_t index,pgoff_t end,void * radswap)964 static long shmem_free_swap(struct address_space *mapping,
965 			    pgoff_t index, pgoff_t end, void *radswap)
966 {
967 	XA_STATE(xas, &mapping->i_pages, index);
968 	unsigned int nr_pages = 0;
969 	pgoff_t base;
970 	void *entry;
971 
972 	xas_lock_irq(&xas);
973 	entry = xas_load(&xas);
974 	if (entry == radswap) {
975 		nr_pages = 1 << xas_get_order(&xas);
976 		base = round_down(xas.xa_index, nr_pages);
977 		if (base < index || base + nr_pages - 1 > end)
978 			nr_pages = 0;
979 		else
980 			xas_store(&xas, NULL);
981 	}
982 	xas_unlock_irq(&xas);
983 
984 	if (nr_pages)
985 		free_swap_and_cache_nr(radix_to_swp_entry(radswap), nr_pages);
986 
987 	return nr_pages;
988 }
989 
990 /*
991  * Determine (in bytes) how many of the shmem object's pages mapped by the
992  * given offsets are swapped out.
993  *
994  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
995  * as long as the inode doesn't go away and racy results are not a problem.
996  */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)997 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
998 						pgoff_t start, pgoff_t end)
999 {
1000 	XA_STATE(xas, &mapping->i_pages, start);
1001 	struct folio *folio;
1002 	unsigned long swapped = 0;
1003 	unsigned long max = end - 1;
1004 
1005 	rcu_read_lock();
1006 	xas_for_each(&xas, folio, max) {
1007 		if (xas_retry(&xas, folio))
1008 			continue;
1009 		if (xa_is_value(folio))
1010 			swapped += 1 << xas_get_order(&xas);
1011 		if (xas.xa_index == max)
1012 			break;
1013 		if (need_resched()) {
1014 			xas_pause(&xas);
1015 			cond_resched_rcu();
1016 		}
1017 	}
1018 	rcu_read_unlock();
1019 
1020 	return swapped << PAGE_SHIFT;
1021 }
1022 
1023 /*
1024  * Determine (in bytes) how many of the shmem object's pages mapped by the
1025  * given vma is swapped out.
1026  *
1027  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
1028  * as long as the inode doesn't go away and racy results are not a problem.
1029  */
shmem_swap_usage(struct vm_area_struct * vma)1030 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
1031 {
1032 	struct inode *inode = file_inode(vma->vm_file);
1033 	struct shmem_inode_info *info = SHMEM_I(inode);
1034 	struct address_space *mapping = inode->i_mapping;
1035 	unsigned long swapped;
1036 
1037 	/* Be careful as we don't hold info->lock */
1038 	swapped = READ_ONCE(info->swapped);
1039 
1040 	/*
1041 	 * The easier cases are when the shmem object has nothing in swap, or
1042 	 * the vma maps it whole. Then we can simply use the stats that we
1043 	 * already track.
1044 	 */
1045 	if (!swapped)
1046 		return 0;
1047 
1048 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
1049 		return swapped << PAGE_SHIFT;
1050 
1051 	/* Here comes the more involved part */
1052 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
1053 					vma->vm_pgoff + vma_pages(vma));
1054 }
1055 
1056 /*
1057  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
1058  */
shmem_unlock_mapping(struct address_space * mapping)1059 void shmem_unlock_mapping(struct address_space *mapping)
1060 {
1061 	struct folio_batch fbatch;
1062 	pgoff_t index = 0;
1063 
1064 	folio_batch_init(&fbatch);
1065 	/*
1066 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
1067 	 */
1068 	while (!mapping_unevictable(mapping) &&
1069 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
1070 		check_move_unevictable_folios(&fbatch);
1071 		folio_batch_release(&fbatch);
1072 		cond_resched();
1073 	}
1074 }
1075 
shmem_get_partial_folio(struct inode * inode,pgoff_t index)1076 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
1077 {
1078 	struct folio *folio;
1079 
1080 	/*
1081 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
1082 	 * beyond i_size, and reports fallocated folios as holes.
1083 	 */
1084 	folio = filemap_get_entry(inode->i_mapping, index);
1085 	if (!folio)
1086 		return folio;
1087 	if (!xa_is_value(folio)) {
1088 		folio_lock(folio);
1089 		if (folio->mapping == inode->i_mapping)
1090 			return folio;
1091 		/* The folio has been swapped out */
1092 		folio_unlock(folio);
1093 		folio_put(folio);
1094 	}
1095 	/*
1096 	 * But read a folio back from swap if any of it is within i_size
1097 	 * (although in some cases this is just a waste of time).
1098 	 */
1099 	folio = NULL;
1100 	shmem_get_folio(inode, index, 0, &folio, SGP_READ);
1101 	return folio;
1102 }
1103 
1104 /*
1105  * Remove range of pages and swap entries from page cache, and free them.
1106  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
1107  */
shmem_undo_range(struct inode * inode,loff_t lstart,uoff_t lend,bool unfalloc)1108 static void shmem_undo_range(struct inode *inode, loff_t lstart, uoff_t lend,
1109 								 bool unfalloc)
1110 {
1111 	struct address_space *mapping = inode->i_mapping;
1112 	struct shmem_inode_info *info = SHMEM_I(inode);
1113 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1114 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1115 	struct folio_batch fbatch;
1116 	pgoff_t indices[PAGEVEC_SIZE];
1117 	struct folio *folio;
1118 	bool same_folio;
1119 	long nr_swaps_freed = 0;
1120 	pgoff_t index;
1121 	int i;
1122 
1123 	if (lend == -1)
1124 		end = -1;	/* unsigned, so actually very big */
1125 
1126 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1127 		info->fallocend = start;
1128 
1129 	folio_batch_init(&fbatch);
1130 	index = start;
1131 	while (index < end && find_lock_entries(mapping, &index, end - 1,
1132 			&fbatch, indices)) {
1133 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1134 			folio = fbatch.folios[i];
1135 
1136 			if (xa_is_value(folio)) {
1137 				if (unfalloc)
1138 					continue;
1139 				nr_swaps_freed += shmem_free_swap(mapping, indices[i],
1140 								  end - 1, folio);
1141 				continue;
1142 			}
1143 
1144 			if (!unfalloc || !folio_test_uptodate(folio))
1145 				truncate_inode_folio(mapping, folio);
1146 			folio_unlock(folio);
1147 		}
1148 		folio_batch_remove_exceptionals(&fbatch);
1149 		folio_batch_release(&fbatch);
1150 		cond_resched();
1151 	}
1152 
1153 	/*
1154 	 * When undoing a failed fallocate, we want none of the partial folio
1155 	 * zeroing and splitting below, but shall want to truncate the whole
1156 	 * folio when !uptodate indicates that it was added by this fallocate,
1157 	 * even when [lstart, lend] covers only a part of the folio.
1158 	 */
1159 	if (unfalloc)
1160 		goto whole_folios;
1161 
1162 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1163 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1164 	if (folio) {
1165 		same_folio = lend < folio_next_pos(folio);
1166 		folio_mark_dirty(folio);
1167 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1168 			start = folio_next_index(folio);
1169 			if (same_folio)
1170 				end = folio->index;
1171 		}
1172 		folio_unlock(folio);
1173 		folio_put(folio);
1174 		folio = NULL;
1175 	}
1176 
1177 	if (!same_folio)
1178 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1179 	if (folio) {
1180 		folio_mark_dirty(folio);
1181 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1182 			end = folio->index;
1183 		folio_unlock(folio);
1184 		folio_put(folio);
1185 	}
1186 
1187 whole_folios:
1188 
1189 	index = start;
1190 	while (index < end) {
1191 		cond_resched();
1192 
1193 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1194 				indices)) {
1195 			/* If all gone or hole-punch or unfalloc, we're done */
1196 			if (index == start || end != -1)
1197 				break;
1198 			/* But if truncating, restart to make sure all gone */
1199 			index = start;
1200 			continue;
1201 		}
1202 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1203 			folio = fbatch.folios[i];
1204 
1205 			if (xa_is_value(folio)) {
1206 				int order;
1207 				long swaps_freed;
1208 
1209 				if (unfalloc)
1210 					continue;
1211 				swaps_freed = shmem_free_swap(mapping, indices[i],
1212 							      end - 1, folio);
1213 				if (!swaps_freed) {
1214 					pgoff_t base = indices[i];
1215 
1216 					order = shmem_confirm_swap(mapping, indices[i],
1217 								   radix_to_swp_entry(folio));
1218 					/*
1219 					 * If found a large swap entry cross the end or start
1220 					 * border, skip it as the truncate_inode_partial_folio
1221 					 * above should have at least zerod its content once.
1222 					 */
1223 					if (order > 0) {
1224 						base = round_down(base, 1 << order);
1225 						if (base < start || base + (1 << order) > end)
1226 							continue;
1227 					}
1228 					/* Swap was replaced by page or extended, retry */
1229 					index = base;
1230 					break;
1231 				}
1232 				nr_swaps_freed += swaps_freed;
1233 				continue;
1234 			}
1235 
1236 			folio_lock(folio);
1237 
1238 			if (!unfalloc || !folio_test_uptodate(folio)) {
1239 				if (folio_mapping(folio) != mapping) {
1240 					/* Page was replaced by swap: retry */
1241 					folio_unlock(folio);
1242 					index = indices[i];
1243 					break;
1244 				}
1245 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1246 						folio);
1247 
1248 				if (!folio_test_large(folio)) {
1249 					truncate_inode_folio(mapping, folio);
1250 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1251 					/*
1252 					 * If we split a page, reset the loop so
1253 					 * that we pick up the new sub pages.
1254 					 * Otherwise the THP was entirely
1255 					 * dropped or the target range was
1256 					 * zeroed, so just continue the loop as
1257 					 * is.
1258 					 */
1259 					if (!folio_test_large(folio)) {
1260 						folio_unlock(folio);
1261 						index = start;
1262 						break;
1263 					}
1264 				}
1265 			}
1266 			folio_unlock(folio);
1267 		}
1268 		folio_batch_remove_exceptionals(&fbatch);
1269 		folio_batch_release(&fbatch);
1270 	}
1271 
1272 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1273 }
1274 
shmem_truncate_range(struct inode * inode,loff_t lstart,uoff_t lend)1275 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend)
1276 {
1277 	shmem_undo_range(inode, lstart, lend, false);
1278 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1279 	inode_inc_iversion(inode);
1280 }
1281 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1282 
shmem_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1283 static int shmem_getattr(struct mnt_idmap *idmap,
1284 			 const struct path *path, struct kstat *stat,
1285 			 u32 request_mask, unsigned int query_flags)
1286 {
1287 	struct inode *inode = path->dentry->d_inode;
1288 	struct shmem_inode_info *info = SHMEM_I(inode);
1289 
1290 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1291 		shmem_recalc_inode(inode, 0, 0);
1292 
1293 	if (info->fsflags & FS_APPEND_FL)
1294 		stat->attributes |= STATX_ATTR_APPEND;
1295 	if (info->fsflags & FS_IMMUTABLE_FL)
1296 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1297 	if (info->fsflags & FS_NODUMP_FL)
1298 		stat->attributes |= STATX_ATTR_NODUMP;
1299 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1300 			STATX_ATTR_IMMUTABLE |
1301 			STATX_ATTR_NODUMP);
1302 	generic_fillattr(idmap, request_mask, inode, stat);
1303 
1304 	if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
1305 		stat->blksize = HPAGE_PMD_SIZE;
1306 
1307 	if (request_mask & STATX_BTIME) {
1308 		stat->result_mask |= STATX_BTIME;
1309 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1310 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1311 	}
1312 
1313 	return 0;
1314 }
1315 
shmem_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1316 static int shmem_setattr(struct mnt_idmap *idmap,
1317 			 struct dentry *dentry, struct iattr *attr)
1318 {
1319 	struct inode *inode = d_inode(dentry);
1320 	struct shmem_inode_info *info = SHMEM_I(inode);
1321 	int error;
1322 	bool update_mtime = false;
1323 	bool update_ctime = true;
1324 
1325 	error = setattr_prepare(idmap, dentry, attr);
1326 	if (error)
1327 		return error;
1328 
1329 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1330 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1331 			return -EPERM;
1332 		}
1333 	}
1334 
1335 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1336 		loff_t oldsize = inode->i_size;
1337 		loff_t newsize = attr->ia_size;
1338 
1339 		/* protected by i_rwsem */
1340 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1341 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1342 			return -EPERM;
1343 
1344 		if (newsize != oldsize) {
1345 			if (info->flags & SHMEM_F_MAPPING_FROZEN)
1346 				return -EPERM;
1347 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1348 					oldsize, newsize);
1349 			if (error)
1350 				return error;
1351 			i_size_write(inode, newsize);
1352 			update_mtime = true;
1353 		} else {
1354 			update_ctime = false;
1355 		}
1356 		if (newsize <= oldsize) {
1357 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1358 			if (oldsize > holebegin)
1359 				unmap_mapping_range(inode->i_mapping,
1360 							holebegin, 0, 1);
1361 			if (info->alloced)
1362 				shmem_truncate_range(inode,
1363 							newsize, (loff_t)-1);
1364 			/* unmap again to remove racily COWed private pages */
1365 			if (oldsize > holebegin)
1366 				unmap_mapping_range(inode->i_mapping,
1367 							holebegin, 0, 1);
1368 		}
1369 	}
1370 
1371 	if (is_quota_modification(idmap, inode, attr)) {
1372 		error = dquot_initialize(inode);
1373 		if (error)
1374 			return error;
1375 	}
1376 
1377 	/* Transfer quota accounting */
1378 	if (i_uid_needs_update(idmap, attr, inode) ||
1379 	    i_gid_needs_update(idmap, attr, inode)) {
1380 		error = dquot_transfer(idmap, inode, attr);
1381 		if (error)
1382 			return error;
1383 	}
1384 
1385 	setattr_copy(idmap, inode, attr);
1386 	if (attr->ia_valid & ATTR_MODE)
1387 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1388 	if (!error && update_ctime) {
1389 		inode_set_ctime_current(inode);
1390 		if (update_mtime)
1391 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1392 		inode_inc_iversion(inode);
1393 	}
1394 	return error;
1395 }
1396 
shmem_evict_inode(struct inode * inode)1397 static void shmem_evict_inode(struct inode *inode)
1398 {
1399 	struct shmem_inode_info *info = SHMEM_I(inode);
1400 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1401 	size_t freed = 0;
1402 
1403 	if (shmem_mapping(inode->i_mapping)) {
1404 		shmem_unacct_size(info->flags, inode->i_size);
1405 		inode->i_size = 0;
1406 		mapping_set_exiting(inode->i_mapping);
1407 		shmem_truncate_range(inode, 0, (loff_t)-1);
1408 		if (!list_empty(&info->shrinklist)) {
1409 			spin_lock(&sbinfo->shrinklist_lock);
1410 			if (!list_empty(&info->shrinklist)) {
1411 				list_del_init(&info->shrinklist);
1412 				sbinfo->shrinklist_len--;
1413 			}
1414 			spin_unlock(&sbinfo->shrinklist_lock);
1415 		}
1416 		while (!list_empty(&info->swaplist)) {
1417 			/* Wait while shmem_unuse() is scanning this inode... */
1418 			wait_var_event(&info->stop_eviction,
1419 				       !atomic_read(&info->stop_eviction));
1420 			spin_lock(&shmem_swaplist_lock);
1421 			/* ...but beware of the race if we peeked too early */
1422 			if (!atomic_read(&info->stop_eviction))
1423 				list_del_init(&info->swaplist);
1424 			spin_unlock(&shmem_swaplist_lock);
1425 		}
1426 	}
1427 
1428 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1429 	shmem_free_inode(inode->i_sb, freed);
1430 	WARN_ON(inode->i_blocks);
1431 	clear_inode(inode);
1432 #ifdef CONFIG_TMPFS_QUOTA
1433 	dquot_free_inode(inode);
1434 	dquot_drop(inode);
1435 #endif
1436 }
1437 
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1438 static unsigned int shmem_find_swap_entries(struct address_space *mapping,
1439 				pgoff_t start, struct folio_batch *fbatch,
1440 				pgoff_t *indices, unsigned int type)
1441 {
1442 	XA_STATE(xas, &mapping->i_pages, start);
1443 	struct folio *folio;
1444 	swp_entry_t entry;
1445 
1446 	rcu_read_lock();
1447 	xas_for_each(&xas, folio, ULONG_MAX) {
1448 		if (xas_retry(&xas, folio))
1449 			continue;
1450 
1451 		if (!xa_is_value(folio))
1452 			continue;
1453 
1454 		entry = radix_to_swp_entry(folio);
1455 		/*
1456 		 * swapin error entries can be found in the mapping. But they're
1457 		 * deliberately ignored here as we've done everything we can do.
1458 		 */
1459 		if (swp_type(entry) != type)
1460 			continue;
1461 
1462 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1463 		if (!folio_batch_add(fbatch, folio))
1464 			break;
1465 
1466 		if (need_resched()) {
1467 			xas_pause(&xas);
1468 			cond_resched_rcu();
1469 		}
1470 	}
1471 	rcu_read_unlock();
1472 
1473 	return folio_batch_count(fbatch);
1474 }
1475 
1476 /*
1477  * Move the swapped pages for an inode to page cache. Returns the count
1478  * of pages swapped in, or the error in case of failure.
1479  */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1480 static int shmem_unuse_swap_entries(struct inode *inode,
1481 		struct folio_batch *fbatch, pgoff_t *indices)
1482 {
1483 	int i = 0;
1484 	int ret = 0;
1485 	int error = 0;
1486 	struct address_space *mapping = inode->i_mapping;
1487 
1488 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1489 		struct folio *folio = fbatch->folios[i];
1490 
1491 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1492 					mapping_gfp_mask(mapping), NULL, NULL);
1493 		if (error == 0) {
1494 			folio_unlock(folio);
1495 			folio_put(folio);
1496 			ret++;
1497 		}
1498 		if (error == -ENOMEM)
1499 			break;
1500 		error = 0;
1501 	}
1502 	return error ? error : ret;
1503 }
1504 
1505 /*
1506  * If swap found in inode, free it and move page from swapcache to filecache.
1507  */
shmem_unuse_inode(struct inode * inode,unsigned int type)1508 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1509 {
1510 	struct address_space *mapping = inode->i_mapping;
1511 	pgoff_t start = 0;
1512 	struct folio_batch fbatch;
1513 	pgoff_t indices[PAGEVEC_SIZE];
1514 	int ret = 0;
1515 
1516 	do {
1517 		folio_batch_init(&fbatch);
1518 		if (!shmem_find_swap_entries(mapping, start, &fbatch,
1519 					     indices, type)) {
1520 			ret = 0;
1521 			break;
1522 		}
1523 
1524 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1525 		if (ret < 0)
1526 			break;
1527 
1528 		start = indices[folio_batch_count(&fbatch) - 1];
1529 	} while (true);
1530 
1531 	return ret;
1532 }
1533 
1534 /*
1535  * Read all the shared memory data that resides in the swap
1536  * device 'type' back into memory, so the swap device can be
1537  * unused.
1538  */
shmem_unuse(unsigned int type)1539 int shmem_unuse(unsigned int type)
1540 {
1541 	struct shmem_inode_info *info, *next;
1542 	int error = 0;
1543 
1544 	if (list_empty(&shmem_swaplist))
1545 		return 0;
1546 
1547 	spin_lock(&shmem_swaplist_lock);
1548 start_over:
1549 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1550 		if (!info->swapped) {
1551 			list_del_init(&info->swaplist);
1552 			continue;
1553 		}
1554 		/*
1555 		 * Drop the swaplist mutex while searching the inode for swap;
1556 		 * but before doing so, make sure shmem_evict_inode() will not
1557 		 * remove placeholder inode from swaplist, nor let it be freed
1558 		 * (igrab() would protect from unlink, but not from unmount).
1559 		 */
1560 		atomic_inc(&info->stop_eviction);
1561 		spin_unlock(&shmem_swaplist_lock);
1562 
1563 		error = shmem_unuse_inode(&info->vfs_inode, type);
1564 		cond_resched();
1565 
1566 		spin_lock(&shmem_swaplist_lock);
1567 		if (atomic_dec_and_test(&info->stop_eviction))
1568 			wake_up_var(&info->stop_eviction);
1569 		if (error)
1570 			break;
1571 		if (list_empty(&info->swaplist))
1572 			goto start_over;
1573 		next = list_next_entry(info, swaplist);
1574 		if (!info->swapped)
1575 			list_del_init(&info->swaplist);
1576 	}
1577 	spin_unlock(&shmem_swaplist_lock);
1578 
1579 	return error;
1580 }
1581 
1582 /**
1583  * shmem_writeout - Write the folio to swap
1584  * @folio: The folio to write
1585  * @plug: swap plug
1586  * @folio_list: list to put back folios on split
1587  *
1588  * Move the folio from the page cache to the swap cache.
1589  */
shmem_writeout(struct folio * folio,struct swap_iocb ** plug,struct list_head * folio_list)1590 int shmem_writeout(struct folio *folio, struct swap_iocb **plug,
1591 		struct list_head *folio_list)
1592 {
1593 	struct address_space *mapping = folio->mapping;
1594 	struct inode *inode = mapping->host;
1595 	struct shmem_inode_info *info = SHMEM_I(inode);
1596 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1597 	pgoff_t index;
1598 	int nr_pages;
1599 	bool split = false;
1600 
1601 	if ((info->flags & SHMEM_F_LOCKED) || sbinfo->noswap)
1602 		goto redirty;
1603 
1604 	if (!total_swap_pages)
1605 		goto redirty;
1606 
1607 	/*
1608 	 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1609 	 * split when swapping.
1610 	 *
1611 	 * And shrinkage of pages beyond i_size does not split swap, so
1612 	 * swapout of a large folio crossing i_size needs to split too
1613 	 * (unless fallocate has been used to preallocate beyond EOF).
1614 	 */
1615 	if (folio_test_large(folio)) {
1616 		index = shmem_fallocend(inode,
1617 			DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1618 		if ((index > folio->index && index < folio_next_index(folio)) ||
1619 		    !IS_ENABLED(CONFIG_THP_SWAP))
1620 			split = true;
1621 	}
1622 
1623 	if (split) {
1624 try_split:
1625 		/* Ensure the subpages are still dirty */
1626 		folio_test_set_dirty(folio);
1627 		if (split_folio_to_list(folio, folio_list))
1628 			goto redirty;
1629 		folio_clear_dirty(folio);
1630 	}
1631 
1632 	index = folio->index;
1633 	nr_pages = folio_nr_pages(folio);
1634 
1635 	/*
1636 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1637 	 * value into swapfile.c, the only way we can correctly account for a
1638 	 * fallocated folio arriving here is now to initialize it and write it.
1639 	 *
1640 	 * That's okay for a folio already fallocated earlier, but if we have
1641 	 * not yet completed the fallocation, then (a) we want to keep track
1642 	 * of this folio in case we have to undo it, and (b) it may not be a
1643 	 * good idea to continue anyway, once we're pushing into swap.  So
1644 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1645 	 */
1646 	if (!folio_test_uptodate(folio)) {
1647 		if (inode->i_private) {
1648 			struct shmem_falloc *shmem_falloc;
1649 			spin_lock(&inode->i_lock);
1650 			shmem_falloc = inode->i_private;
1651 			if (shmem_falloc &&
1652 			    !shmem_falloc->waitq &&
1653 			    index >= shmem_falloc->start &&
1654 			    index < shmem_falloc->next)
1655 				shmem_falloc->nr_unswapped += nr_pages;
1656 			else
1657 				shmem_falloc = NULL;
1658 			spin_unlock(&inode->i_lock);
1659 			if (shmem_falloc)
1660 				goto redirty;
1661 		}
1662 		folio_zero_range(folio, 0, folio_size(folio));
1663 		flush_dcache_folio(folio);
1664 		folio_mark_uptodate(folio);
1665 	}
1666 
1667 	if (!folio_alloc_swap(folio)) {
1668 		bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages);
1669 		int error;
1670 
1671 		/*
1672 		 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1673 		 * if it's not already there.  Do it now before the folio is
1674 		 * removed from page cache, when its pagelock no longer
1675 		 * protects the inode from eviction.  And do it now, after
1676 		 * we've incremented swapped, because shmem_unuse() will
1677 		 * prune a !swapped inode from the swaplist.
1678 		 */
1679 		if (first_swapped) {
1680 			spin_lock(&shmem_swaplist_lock);
1681 			if (list_empty(&info->swaplist))
1682 				list_add(&info->swaplist, &shmem_swaplist);
1683 			spin_unlock(&shmem_swaplist_lock);
1684 		}
1685 
1686 		swap_shmem_alloc(folio->swap, nr_pages);
1687 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap));
1688 
1689 		BUG_ON(folio_mapped(folio));
1690 		error = swap_writeout(folio, plug);
1691 		if (error != AOP_WRITEPAGE_ACTIVATE) {
1692 			/* folio has been unlocked */
1693 			return error;
1694 		}
1695 
1696 		/*
1697 		 * The intention here is to avoid holding on to the swap when
1698 		 * zswap was unable to compress and unable to writeback; but
1699 		 * it will be appropriate if other reactivate cases are added.
1700 		 */
1701 		error = shmem_add_to_page_cache(folio, mapping, index,
1702 				swp_to_radix_entry(folio->swap),
1703 				__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
1704 		/* Swap entry might be erased by racing shmem_free_swap() */
1705 		if (!error) {
1706 			shmem_recalc_inode(inode, 0, -nr_pages);
1707 			swap_free_nr(folio->swap, nr_pages);
1708 		}
1709 
1710 		/*
1711 		 * The swap_cache_del_folio() below could be left for
1712 		 * shrink_folio_list()'s folio_free_swap() to dispose of;
1713 		 * but I'm a little nervous about letting this folio out of
1714 		 * shmem_writeout() in a hybrid half-tmpfs-half-swap state
1715 		 * e.g. folio_mapping(folio) might give an unexpected answer.
1716 		 */
1717 		swap_cache_del_folio(folio);
1718 		goto redirty;
1719 	}
1720 	if (nr_pages > 1)
1721 		goto try_split;
1722 redirty:
1723 	folio_mark_dirty(folio);
1724 	return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1725 }
1726 EXPORT_SYMBOL_GPL(shmem_writeout);
1727 
1728 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1729 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1730 {
1731 	char buffer[64];
1732 
1733 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1734 		return;		/* show nothing */
1735 
1736 	mpol_to_str(buffer, sizeof(buffer), mpol);
1737 
1738 	seq_printf(seq, ",mpol=%s", buffer);
1739 }
1740 
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1741 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1742 {
1743 	struct mempolicy *mpol = NULL;
1744 	if (sbinfo->mpol) {
1745 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1746 		mpol = sbinfo->mpol;
1747 		mpol_get(mpol);
1748 		raw_spin_unlock(&sbinfo->stat_lock);
1749 	}
1750 	return mpol;
1751 }
1752 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1753 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1754 {
1755 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1756 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1757 {
1758 	return NULL;
1759 }
1760 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1761 
1762 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1763 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1764 
shmem_swapin_cluster(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1765 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1766 			struct shmem_inode_info *info, pgoff_t index)
1767 {
1768 	struct mempolicy *mpol;
1769 	pgoff_t ilx;
1770 	struct folio *folio;
1771 
1772 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1773 	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1774 	mpol_cond_put(mpol);
1775 
1776 	return folio;
1777 }
1778 
1779 /*
1780  * Make sure huge_gfp is always more limited than limit_gfp.
1781  * Some of the flags set permissions, while others set limitations.
1782  */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1783 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1784 {
1785 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1786 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1787 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1788 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1789 
1790 	/* Allow allocations only from the originally specified zones. */
1791 	result |= zoneflags;
1792 
1793 	/*
1794 	 * Minimize the result gfp by taking the union with the deny flags,
1795 	 * and the intersection of the allow flags.
1796 	 */
1797 	result |= (limit_gfp & denyflags);
1798 	result |= (huge_gfp & limit_gfp) & allowflags;
1799 
1800 	return result;
1801 }
1802 
1803 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
shmem_hpage_pmd_enabled(void)1804 bool shmem_hpage_pmd_enabled(void)
1805 {
1806 	if (shmem_huge == SHMEM_HUGE_DENY)
1807 		return false;
1808 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1809 		return true;
1810 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1811 		return true;
1812 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1813 		return true;
1814 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1815 	    shmem_huge != SHMEM_HUGE_NEVER)
1816 		return true;
1817 
1818 	return false;
1819 }
1820 
shmem_allowable_huge_orders(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,loff_t write_end,bool shmem_huge_force)1821 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1822 				struct vm_area_struct *vma, pgoff_t index,
1823 				loff_t write_end, bool shmem_huge_force)
1824 {
1825 	unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1826 	unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1827 	vm_flags_t vm_flags = vma ? vma->vm_flags : 0;
1828 	unsigned int global_orders;
1829 
1830 	if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags, shmem_huge_force)))
1831 		return 0;
1832 
1833 	global_orders = shmem_huge_global_enabled(inode, index, write_end,
1834 						  shmem_huge_force, vma, vm_flags);
1835 	/* Tmpfs huge pages allocation */
1836 	if (!vma || !vma_is_anon_shmem(vma))
1837 		return global_orders;
1838 
1839 	/*
1840 	 * Following the 'deny' semantics of the top level, force the huge
1841 	 * option off from all mounts.
1842 	 */
1843 	if (shmem_huge == SHMEM_HUGE_DENY)
1844 		return 0;
1845 
1846 	/*
1847 	 * Only allow inherit orders if the top-level value is 'force', which
1848 	 * means non-PMD sized THP can not override 'huge' mount option now.
1849 	 */
1850 	if (shmem_huge == SHMEM_HUGE_FORCE)
1851 		return READ_ONCE(huge_shmem_orders_inherit);
1852 
1853 	/* Allow mTHP that will be fully within i_size. */
1854 	mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0);
1855 
1856 	if (vm_flags & VM_HUGEPAGE)
1857 		mask |= READ_ONCE(huge_shmem_orders_madvise);
1858 
1859 	if (global_orders > 0)
1860 		mask |= READ_ONCE(huge_shmem_orders_inherit);
1861 
1862 	return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1863 }
1864 
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1865 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1866 					   struct address_space *mapping, pgoff_t index,
1867 					   unsigned long orders)
1868 {
1869 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1870 	pgoff_t aligned_index;
1871 	unsigned long pages;
1872 	int order;
1873 
1874 	if (vma) {
1875 		orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1876 		if (!orders)
1877 			return 0;
1878 	}
1879 
1880 	/* Find the highest order that can add into the page cache */
1881 	order = highest_order(orders);
1882 	while (orders) {
1883 		pages = 1UL << order;
1884 		aligned_index = round_down(index, pages);
1885 		/*
1886 		 * Check for conflict before waiting on a huge allocation.
1887 		 * Conflict might be that a huge page has just been allocated
1888 		 * and added to page cache by a racing thread, or that there
1889 		 * is already at least one small page in the huge extent.
1890 		 * Be careful to retry when appropriate, but not forever!
1891 		 * Elsewhere -EEXIST would be the right code, but not here.
1892 		 */
1893 		if (!xa_find(&mapping->i_pages, &aligned_index,
1894 			     aligned_index + pages - 1, XA_PRESENT))
1895 			break;
1896 		order = next_order(&orders, order);
1897 	}
1898 
1899 	return orders;
1900 }
1901 #else
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1902 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1903 					   struct address_space *mapping, pgoff_t index,
1904 					   unsigned long orders)
1905 {
1906 	return 0;
1907 }
1908 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1909 
shmem_alloc_folio(gfp_t gfp,int order,struct shmem_inode_info * info,pgoff_t index)1910 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1911 		struct shmem_inode_info *info, pgoff_t index)
1912 {
1913 	struct mempolicy *mpol;
1914 	pgoff_t ilx;
1915 	struct folio *folio;
1916 
1917 	mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1918 	folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1919 	mpol_cond_put(mpol);
1920 
1921 	return folio;
1922 }
1923 
shmem_alloc_and_add_folio(struct vm_fault * vmf,gfp_t gfp,struct inode * inode,pgoff_t index,struct mm_struct * fault_mm,unsigned long orders)1924 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1925 		gfp_t gfp, struct inode *inode, pgoff_t index,
1926 		struct mm_struct *fault_mm, unsigned long orders)
1927 {
1928 	struct address_space *mapping = inode->i_mapping;
1929 	struct shmem_inode_info *info = SHMEM_I(inode);
1930 	unsigned long suitable_orders = 0;
1931 	struct folio *folio = NULL;
1932 	pgoff_t aligned_index;
1933 	long pages;
1934 	int error, order;
1935 
1936 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1937 		orders = 0;
1938 
1939 	if (orders > 0) {
1940 		suitable_orders = shmem_suitable_orders(inode, vmf,
1941 							mapping, index, orders);
1942 
1943 		order = highest_order(suitable_orders);
1944 		while (suitable_orders) {
1945 			pages = 1UL << order;
1946 			aligned_index = round_down(index, pages);
1947 			folio = shmem_alloc_folio(gfp, order, info, aligned_index);
1948 			if (folio) {
1949 				index = aligned_index;
1950 				goto allocated;
1951 			}
1952 
1953 			if (pages == HPAGE_PMD_NR)
1954 				count_vm_event(THP_FILE_FALLBACK);
1955 			count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1956 			order = next_order(&suitable_orders, order);
1957 		}
1958 	} else {
1959 		pages = 1;
1960 		folio = shmem_alloc_folio(gfp, 0, info, index);
1961 	}
1962 	if (!folio)
1963 		return ERR_PTR(-ENOMEM);
1964 
1965 allocated:
1966 	__folio_set_locked(folio);
1967 	__folio_set_swapbacked(folio);
1968 
1969 	gfp &= GFP_RECLAIM_MASK;
1970 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1971 	if (error) {
1972 		if (xa_find(&mapping->i_pages, &index,
1973 				index + pages - 1, XA_PRESENT)) {
1974 			error = -EEXIST;
1975 		} else if (pages > 1) {
1976 			if (pages == HPAGE_PMD_NR) {
1977 				count_vm_event(THP_FILE_FALLBACK);
1978 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
1979 			}
1980 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1981 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1982 		}
1983 		goto unlock;
1984 	}
1985 
1986 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1987 	if (error)
1988 		goto unlock;
1989 
1990 	error = shmem_inode_acct_blocks(inode, pages);
1991 	if (error) {
1992 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1993 		long freed;
1994 		/*
1995 		 * Try to reclaim some space by splitting a few
1996 		 * large folios beyond i_size on the filesystem.
1997 		 */
1998 		shmem_unused_huge_shrink(sbinfo, NULL, pages);
1999 		/*
2000 		 * And do a shmem_recalc_inode() to account for freed pages:
2001 		 * except our folio is there in cache, so not quite balanced.
2002 		 */
2003 		spin_lock(&info->lock);
2004 		freed = pages + info->alloced - info->swapped -
2005 			READ_ONCE(mapping->nrpages);
2006 		if (freed > 0)
2007 			info->alloced -= freed;
2008 		spin_unlock(&info->lock);
2009 		if (freed > 0)
2010 			shmem_inode_unacct_blocks(inode, freed);
2011 		error = shmem_inode_acct_blocks(inode, pages);
2012 		if (error) {
2013 			filemap_remove_folio(folio);
2014 			goto unlock;
2015 		}
2016 	}
2017 
2018 	shmem_recalc_inode(inode, pages, 0);
2019 	folio_add_lru(folio);
2020 	return folio;
2021 
2022 unlock:
2023 	folio_unlock(folio);
2024 	folio_put(folio);
2025 	return ERR_PTR(error);
2026 }
2027 
shmem_swap_alloc_folio(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,swp_entry_t entry,int order,gfp_t gfp)2028 static struct folio *shmem_swap_alloc_folio(struct inode *inode,
2029 		struct vm_area_struct *vma, pgoff_t index,
2030 		swp_entry_t entry, int order, gfp_t gfp)
2031 {
2032 	struct shmem_inode_info *info = SHMEM_I(inode);
2033 	int nr_pages = 1 << order;
2034 	struct folio *new;
2035 	gfp_t alloc_gfp;
2036 	void *shadow;
2037 
2038 	/*
2039 	 * We have arrived here because our zones are constrained, so don't
2040 	 * limit chance of success with further cpuset and node constraints.
2041 	 */
2042 	gfp &= ~GFP_CONSTRAINT_MASK;
2043 	alloc_gfp = gfp;
2044 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
2045 		if (WARN_ON_ONCE(order))
2046 			return ERR_PTR(-EINVAL);
2047 	} else if (order) {
2048 		/*
2049 		 * If uffd is active for the vma, we need per-page fault
2050 		 * fidelity to maintain the uffd semantics, then fallback
2051 		 * to swapin order-0 folio, as well as for zswap case.
2052 		 * Any existing sub folio in the swap cache also blocks
2053 		 * mTHP swapin.
2054 		 */
2055 		if ((vma && unlikely(userfaultfd_armed(vma))) ||
2056 		     !zswap_never_enabled() ||
2057 		     non_swapcache_batch(entry, nr_pages) != nr_pages)
2058 			goto fallback;
2059 
2060 		alloc_gfp = limit_gfp_mask(vma_thp_gfp_mask(vma), gfp);
2061 	}
2062 retry:
2063 	new = shmem_alloc_folio(alloc_gfp, order, info, index);
2064 	if (!new) {
2065 		new = ERR_PTR(-ENOMEM);
2066 		goto fallback;
2067 	}
2068 
2069 	if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL,
2070 					   alloc_gfp, entry)) {
2071 		folio_put(new);
2072 		new = ERR_PTR(-ENOMEM);
2073 		goto fallback;
2074 	}
2075 
2076 	/*
2077 	 * Prevent parallel swapin from proceeding with the swap cache flag.
2078 	 *
2079 	 * Of course there is another possible concurrent scenario as well,
2080 	 * that is to say, the swap cache flag of a large folio has already
2081 	 * been set by swapcache_prepare(), while another thread may have
2082 	 * already split the large swap entry stored in the shmem mapping.
2083 	 * In this case, shmem_add_to_page_cache() will help identify the
2084 	 * concurrent swapin and return -EEXIST.
2085 	 */
2086 	if (swapcache_prepare(entry, nr_pages)) {
2087 		folio_put(new);
2088 		new = ERR_PTR(-EEXIST);
2089 		/* Try smaller folio to avoid cache conflict */
2090 		goto fallback;
2091 	}
2092 
2093 	__folio_set_locked(new);
2094 	__folio_set_swapbacked(new);
2095 	new->swap = entry;
2096 
2097 	memcg1_swapin(entry, nr_pages);
2098 	shadow = swap_cache_get_shadow(entry);
2099 	if (shadow)
2100 		workingset_refault(new, shadow);
2101 	folio_add_lru(new);
2102 	swap_read_folio(new, NULL);
2103 	return new;
2104 fallback:
2105 	/* Order 0 swapin failed, nothing to fallback to, abort */
2106 	if (!order)
2107 		return new;
2108 	entry.val += index - round_down(index, nr_pages);
2109 	alloc_gfp = gfp;
2110 	nr_pages = 1;
2111 	order = 0;
2112 	goto retry;
2113 }
2114 
2115 /*
2116  * When a page is moved from swapcache to shmem filecache (either by the
2117  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
2118  * shmem_unuse_inode()), it may have been read in earlier from swap, in
2119  * ignorance of the mapping it belongs to.  If that mapping has special
2120  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
2121  * we may need to copy to a suitable page before moving to filecache.
2122  *
2123  * In a future release, this may well be extended to respect cpuset and
2124  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
2125  * but for now it is a simple matter of zone.
2126  */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)2127 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
2128 {
2129 	return folio_zonenum(folio) > gfp_zone(gfp);
2130 }
2131 
shmem_replace_folio(struct folio ** foliop,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index,struct vm_area_struct * vma)2132 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
2133 				struct shmem_inode_info *info, pgoff_t index,
2134 				struct vm_area_struct *vma)
2135 {
2136 	struct swap_cluster_info *ci;
2137 	struct folio *new, *old = *foliop;
2138 	swp_entry_t entry = old->swap;
2139 	int nr_pages = folio_nr_pages(old);
2140 	int error = 0;
2141 
2142 	/*
2143 	 * We have arrived here because our zones are constrained, so don't
2144 	 * limit chance of success by further cpuset and node constraints.
2145 	 */
2146 	gfp &= ~GFP_CONSTRAINT_MASK;
2147 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2148 	if (nr_pages > 1) {
2149 		gfp_t huge_gfp = vma_thp_gfp_mask(vma);
2150 
2151 		gfp = limit_gfp_mask(huge_gfp, gfp);
2152 	}
2153 #endif
2154 
2155 	new = shmem_alloc_folio(gfp, folio_order(old), info, index);
2156 	if (!new)
2157 		return -ENOMEM;
2158 
2159 	folio_ref_add(new, nr_pages);
2160 	folio_copy(new, old);
2161 	flush_dcache_folio(new);
2162 
2163 	__folio_set_locked(new);
2164 	__folio_set_swapbacked(new);
2165 	folio_mark_uptodate(new);
2166 	new->swap = entry;
2167 	folio_set_swapcache(new);
2168 
2169 	ci = swap_cluster_get_and_lock_irq(old);
2170 	__swap_cache_replace_folio(ci, old, new);
2171 	mem_cgroup_replace_folio(old, new);
2172 	shmem_update_stats(new, nr_pages);
2173 	shmem_update_stats(old, -nr_pages);
2174 	swap_cluster_unlock_irq(ci);
2175 
2176 	folio_add_lru(new);
2177 	*foliop = new;
2178 
2179 	folio_clear_swapcache(old);
2180 	old->private = NULL;
2181 
2182 	folio_unlock(old);
2183 	/*
2184 	 * The old folio are removed from swap cache, drop the 'nr_pages'
2185 	 * reference, as well as one temporary reference getting from swap
2186 	 * cache.
2187 	 */
2188 	folio_put_refs(old, nr_pages + 1);
2189 	return error;
2190 }
2191 
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap,bool skip_swapcache)2192 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
2193 					 struct folio *folio, swp_entry_t swap,
2194 					 bool skip_swapcache)
2195 {
2196 	struct address_space *mapping = inode->i_mapping;
2197 	swp_entry_t swapin_error;
2198 	void *old;
2199 	int nr_pages;
2200 
2201 	swapin_error = make_poisoned_swp_entry();
2202 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
2203 			     swp_to_radix_entry(swap),
2204 			     swp_to_radix_entry(swapin_error), 0);
2205 	if (old != swp_to_radix_entry(swap))
2206 		return;
2207 
2208 	nr_pages = folio_nr_pages(folio);
2209 	folio_wait_writeback(folio);
2210 	if (!skip_swapcache)
2211 		swap_cache_del_folio(folio);
2212 	/*
2213 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2214 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2215 	 * in shmem_evict_inode().
2216 	 */
2217 	shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2218 	swap_free_nr(swap, nr_pages);
2219 }
2220 
shmem_split_large_entry(struct inode * inode,pgoff_t index,swp_entry_t swap,gfp_t gfp)2221 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2222 				   swp_entry_t swap, gfp_t gfp)
2223 {
2224 	struct address_space *mapping = inode->i_mapping;
2225 	XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2226 	int split_order = 0;
2227 	int i;
2228 
2229 	/* Convert user data gfp flags to xarray node gfp flags */
2230 	gfp &= GFP_RECLAIM_MASK;
2231 
2232 	for (;;) {
2233 		void *old = NULL;
2234 		int cur_order;
2235 		pgoff_t swap_index;
2236 
2237 		xas_lock_irq(&xas);
2238 		old = xas_load(&xas);
2239 		if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2240 			xas_set_err(&xas, -EEXIST);
2241 			goto unlock;
2242 		}
2243 
2244 		cur_order = xas_get_order(&xas);
2245 		if (!cur_order)
2246 			goto unlock;
2247 
2248 		/* Try to split large swap entry in pagecache */
2249 		swap_index = round_down(index, 1 << cur_order);
2250 		split_order = xas_try_split_min_order(cur_order);
2251 
2252 		while (cur_order > 0) {
2253 			pgoff_t aligned_index =
2254 				round_down(index, 1 << cur_order);
2255 			pgoff_t swap_offset = aligned_index - swap_index;
2256 
2257 			xas_set_order(&xas, index, split_order);
2258 			xas_try_split(&xas, old, cur_order);
2259 			if (xas_error(&xas))
2260 				goto unlock;
2261 
2262 			/*
2263 			 * Re-set the swap entry after splitting, and the swap
2264 			 * offset of the original large entry must be continuous.
2265 			 */
2266 			for (i = 0; i < 1 << cur_order;
2267 			     i += (1 << split_order)) {
2268 				swp_entry_t tmp;
2269 
2270 				tmp = swp_entry(swp_type(swap),
2271 						swp_offset(swap) + swap_offset +
2272 							i);
2273 				__xa_store(&mapping->i_pages, aligned_index + i,
2274 					   swp_to_radix_entry(tmp), 0);
2275 			}
2276 			cur_order = split_order;
2277 			split_order = xas_try_split_min_order(split_order);
2278 		}
2279 
2280 unlock:
2281 		xas_unlock_irq(&xas);
2282 
2283 		if (!xas_nomem(&xas, gfp))
2284 			break;
2285 	}
2286 
2287 	if (xas_error(&xas))
2288 		return xas_error(&xas);
2289 
2290 	return 0;
2291 }
2292 
2293 /*
2294  * Swap in the folio pointed to by *foliop.
2295  * Caller has to make sure that *foliop contains a valid swapped folio.
2296  * Returns 0 and the folio in foliop if success. On failure, returns the
2297  * error code and NULL in *foliop.
2298  */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)2299 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2300 			     struct folio **foliop, enum sgp_type sgp,
2301 			     gfp_t gfp, struct vm_area_struct *vma,
2302 			     vm_fault_t *fault_type)
2303 {
2304 	struct address_space *mapping = inode->i_mapping;
2305 	struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2306 	struct shmem_inode_info *info = SHMEM_I(inode);
2307 	swp_entry_t swap;
2308 	softleaf_t index_entry;
2309 	struct swap_info_struct *si;
2310 	struct folio *folio = NULL;
2311 	bool skip_swapcache = false;
2312 	int error, nr_pages, order;
2313 	pgoff_t offset;
2314 
2315 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2316 	index_entry = radix_to_swp_entry(*foliop);
2317 	swap = index_entry;
2318 	*foliop = NULL;
2319 
2320 	if (softleaf_is_poison_marker(index_entry))
2321 		return -EIO;
2322 
2323 	si = get_swap_device(index_entry);
2324 	order = shmem_confirm_swap(mapping, index, index_entry);
2325 	if (unlikely(!si)) {
2326 		if (order < 0)
2327 			return -EEXIST;
2328 		else
2329 			return -EINVAL;
2330 	}
2331 	if (unlikely(order < 0)) {
2332 		put_swap_device(si);
2333 		return -EEXIST;
2334 	}
2335 
2336 	/* index may point to the middle of a large entry, get the sub entry */
2337 	if (order) {
2338 		offset = index - round_down(index, 1 << order);
2339 		swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2340 	}
2341 
2342 	/* Look it up and read it in.. */
2343 	folio = swap_cache_get_folio(swap);
2344 	if (!folio) {
2345 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) {
2346 			/* Direct swapin skipping swap cache & readahead */
2347 			folio = shmem_swap_alloc_folio(inode, vma, index,
2348 						       index_entry, order, gfp);
2349 			if (IS_ERR(folio)) {
2350 				error = PTR_ERR(folio);
2351 				folio = NULL;
2352 				goto failed;
2353 			}
2354 			skip_swapcache = true;
2355 		} else {
2356 			/* Cached swapin only supports order 0 folio */
2357 			folio = shmem_swapin_cluster(swap, gfp, info, index);
2358 			if (!folio) {
2359 				error = -ENOMEM;
2360 				goto failed;
2361 			}
2362 		}
2363 		if (fault_type) {
2364 			*fault_type |= VM_FAULT_MAJOR;
2365 			count_vm_event(PGMAJFAULT);
2366 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
2367 		}
2368 	} else {
2369 		swap_update_readahead(folio, NULL, 0);
2370 	}
2371 
2372 	if (order > folio_order(folio)) {
2373 		/*
2374 		 * Swapin may get smaller folios due to various reasons:
2375 		 * It may fallback to order 0 due to memory pressure or race,
2376 		 * swap readahead may swap in order 0 folios into swapcache
2377 		 * asynchronously, while the shmem mapping can still stores
2378 		 * large swap entries. In such cases, we should split the
2379 		 * large swap entry to prevent possible data corruption.
2380 		 */
2381 		error = shmem_split_large_entry(inode, index, index_entry, gfp);
2382 		if (error)
2383 			goto failed_nolock;
2384 	}
2385 
2386 	/*
2387 	 * If the folio is large, round down swap and index by folio size.
2388 	 * No matter what race occurs, the swap layer ensures we either get
2389 	 * a valid folio that has its swap entry aligned by size, or a
2390 	 * temporarily invalid one which we'll abort very soon and retry.
2391 	 *
2392 	 * shmem_add_to_page_cache ensures the whole range contains expected
2393 	 * entries and prevents any corruption, so any race split is fine
2394 	 * too, it will succeed as long as the entries are still there.
2395 	 */
2396 	nr_pages = folio_nr_pages(folio);
2397 	if (nr_pages > 1) {
2398 		swap.val = round_down(swap.val, nr_pages);
2399 		index = round_down(index, nr_pages);
2400 	}
2401 
2402 	/*
2403 	 * We have to do this with the folio locked to prevent races.
2404 	 * The shmem_confirm_swap below only checks if the first swap
2405 	 * entry matches the folio, that's enough to ensure the folio
2406 	 * is not used outside of shmem, as shmem swap entries
2407 	 * and swap cache folios are never partially freed.
2408 	 */
2409 	folio_lock(folio);
2410 	if ((!skip_swapcache && !folio_test_swapcache(folio)) ||
2411 	    shmem_confirm_swap(mapping, index, swap) < 0 ||
2412 	    folio->swap.val != swap.val) {
2413 		error = -EEXIST;
2414 		goto unlock;
2415 	}
2416 	if (!folio_test_uptodate(folio)) {
2417 		error = -EIO;
2418 		goto failed;
2419 	}
2420 	folio_wait_writeback(folio);
2421 
2422 	/*
2423 	 * Some architectures may have to restore extra metadata to the
2424 	 * folio after reading from swap.
2425 	 */
2426 	arch_swap_restore(folio_swap(swap, folio), folio);
2427 
2428 	if (shmem_should_replace_folio(folio, gfp)) {
2429 		error = shmem_replace_folio(&folio, gfp, info, index, vma);
2430 		if (error)
2431 			goto failed;
2432 	}
2433 
2434 	error = shmem_add_to_page_cache(folio, mapping, index,
2435 					swp_to_radix_entry(swap), gfp);
2436 	if (error)
2437 		goto failed;
2438 
2439 	shmem_recalc_inode(inode, 0, -nr_pages);
2440 
2441 	if (sgp == SGP_WRITE)
2442 		folio_mark_accessed(folio);
2443 
2444 	if (skip_swapcache) {
2445 		folio->swap.val = 0;
2446 		swapcache_clear(si, swap, nr_pages);
2447 	} else {
2448 		swap_cache_del_folio(folio);
2449 	}
2450 	folio_mark_dirty(folio);
2451 	swap_free_nr(swap, nr_pages);
2452 	put_swap_device(si);
2453 
2454 	*foliop = folio;
2455 	return 0;
2456 failed:
2457 	if (shmem_confirm_swap(mapping, index, swap) < 0)
2458 		error = -EEXIST;
2459 	if (error == -EIO)
2460 		shmem_set_folio_swapin_error(inode, index, folio, swap,
2461 					     skip_swapcache);
2462 unlock:
2463 	if (folio)
2464 		folio_unlock(folio);
2465 failed_nolock:
2466 	if (skip_swapcache)
2467 		swapcache_clear(si, folio->swap, folio_nr_pages(folio));
2468 	if (folio)
2469 		folio_put(folio);
2470 	put_swap_device(si);
2471 
2472 	return error;
2473 }
2474 
2475 /*
2476  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2477  *
2478  * If we allocate a new one we do not mark it dirty. That's up to the
2479  * vm. If we swap it in we mark it dirty since we also free the swap
2480  * entry since a page cannot live in both the swap and page cache.
2481  *
2482  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2483  */
shmem_get_folio_gfp(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_fault * vmf,vm_fault_t * fault_type)2484 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2485 		loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2486 		gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2487 {
2488 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2489 	struct mm_struct *fault_mm;
2490 	struct folio *folio;
2491 	int error;
2492 	bool alloced;
2493 	unsigned long orders = 0;
2494 
2495 	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2496 		return -EINVAL;
2497 
2498 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2499 		return -EFBIG;
2500 repeat:
2501 	if (sgp <= SGP_CACHE &&
2502 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2503 		return -EINVAL;
2504 
2505 	alloced = false;
2506 	fault_mm = vma ? vma->vm_mm : NULL;
2507 
2508 	folio = filemap_get_entry(inode->i_mapping, index);
2509 	if (folio && vma && userfaultfd_minor(vma)) {
2510 		if (!xa_is_value(folio))
2511 			folio_put(folio);
2512 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2513 		return 0;
2514 	}
2515 
2516 	if (xa_is_value(folio)) {
2517 		error = shmem_swapin_folio(inode, index, &folio,
2518 					   sgp, gfp, vma, fault_type);
2519 		if (error == -EEXIST)
2520 			goto repeat;
2521 
2522 		*foliop = folio;
2523 		return error;
2524 	}
2525 
2526 	if (folio) {
2527 		folio_lock(folio);
2528 
2529 		/* Has the folio been truncated or swapped out? */
2530 		if (unlikely(folio->mapping != inode->i_mapping)) {
2531 			folio_unlock(folio);
2532 			folio_put(folio);
2533 			goto repeat;
2534 		}
2535 		if (sgp == SGP_WRITE)
2536 			folio_mark_accessed(folio);
2537 		if (folio_test_uptodate(folio))
2538 			goto out;
2539 		/* fallocated folio */
2540 		if (sgp != SGP_READ)
2541 			goto clear;
2542 		folio_unlock(folio);
2543 		folio_put(folio);
2544 	}
2545 
2546 	/*
2547 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2548 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2549 	 */
2550 	*foliop = NULL;
2551 	if (sgp == SGP_READ)
2552 		return 0;
2553 	if (sgp == SGP_NOALLOC)
2554 		return -ENOENT;
2555 
2556 	/*
2557 	 * Fast cache lookup and swap lookup did not find it: allocate.
2558 	 */
2559 
2560 	if (vma && userfaultfd_missing(vma)) {
2561 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2562 		return 0;
2563 	}
2564 
2565 	/* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2566 	orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2567 	if (orders > 0) {
2568 		gfp_t huge_gfp;
2569 
2570 		huge_gfp = vma_thp_gfp_mask(vma);
2571 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2572 		folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2573 				inode, index, fault_mm, orders);
2574 		if (!IS_ERR(folio)) {
2575 			if (folio_test_pmd_mappable(folio))
2576 				count_vm_event(THP_FILE_ALLOC);
2577 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2578 			goto alloced;
2579 		}
2580 		if (PTR_ERR(folio) == -EEXIST)
2581 			goto repeat;
2582 	}
2583 
2584 	folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2585 	if (IS_ERR(folio)) {
2586 		error = PTR_ERR(folio);
2587 		if (error == -EEXIST)
2588 			goto repeat;
2589 		folio = NULL;
2590 		goto unlock;
2591 	}
2592 
2593 alloced:
2594 	alloced = true;
2595 	if (folio_test_large(folio) &&
2596 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2597 					folio_next_index(folio)) {
2598 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2599 		struct shmem_inode_info *info = SHMEM_I(inode);
2600 		/*
2601 		 * Part of the large folio is beyond i_size: subject
2602 		 * to shrink under memory pressure.
2603 		 */
2604 		spin_lock(&sbinfo->shrinklist_lock);
2605 		/*
2606 		 * _careful to defend against unlocked access to
2607 		 * ->shrink_list in shmem_unused_huge_shrink()
2608 		 */
2609 		if (list_empty_careful(&info->shrinklist)) {
2610 			list_add_tail(&info->shrinklist,
2611 				      &sbinfo->shrinklist);
2612 			sbinfo->shrinklist_len++;
2613 		}
2614 		spin_unlock(&sbinfo->shrinklist_lock);
2615 	}
2616 
2617 	if (sgp == SGP_WRITE)
2618 		folio_set_referenced(folio);
2619 	/*
2620 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2621 	 */
2622 	if (sgp == SGP_FALLOC)
2623 		sgp = SGP_WRITE;
2624 clear:
2625 	/*
2626 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2627 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2628 	 * it now, lest undo on failure cancel our earlier guarantee.
2629 	 */
2630 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2631 		long i, n = folio_nr_pages(folio);
2632 
2633 		for (i = 0; i < n; i++)
2634 			clear_highpage(folio_page(folio, i));
2635 		flush_dcache_folio(folio);
2636 		folio_mark_uptodate(folio);
2637 	}
2638 
2639 	/* Perhaps the file has been truncated since we checked */
2640 	if (sgp <= SGP_CACHE &&
2641 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2642 		error = -EINVAL;
2643 		goto unlock;
2644 	}
2645 out:
2646 	*foliop = folio;
2647 	return 0;
2648 
2649 	/*
2650 	 * Error recovery.
2651 	 */
2652 unlock:
2653 	if (alloced)
2654 		filemap_remove_folio(folio);
2655 	shmem_recalc_inode(inode, 0, 0);
2656 	if (folio) {
2657 		folio_unlock(folio);
2658 		folio_put(folio);
2659 	}
2660 	return error;
2661 }
2662 
2663 /**
2664  * shmem_get_folio - find, and lock a shmem folio.
2665  * @inode:	inode to search
2666  * @index:	the page index.
2667  * @write_end:	end of a write, could extend inode size
2668  * @foliop:	pointer to the folio if found
2669  * @sgp:	SGP_* flags to control behavior
2670  *
2671  * Looks up the page cache entry at @inode & @index.  If a folio is
2672  * present, it is returned locked with an increased refcount.
2673  *
2674  * If the caller modifies data in the folio, it must call folio_mark_dirty()
2675  * before unlocking the folio to ensure that the folio is not reclaimed.
2676  * There is no need to reserve space before calling folio_mark_dirty().
2677  *
2678  * When no folio is found, the behavior depends on @sgp:
2679  *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2680  *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2681  *  - for all other flags a new folio is allocated, inserted into the
2682  *    page cache and returned locked in @foliop.
2683  *
2684  * Context: May sleep.
2685  * Return: 0 if successful, else a negative error code.
2686  */
shmem_get_folio(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp)2687 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2688 		    struct folio **foliop, enum sgp_type sgp)
2689 {
2690 	return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2691 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2692 }
2693 EXPORT_SYMBOL_GPL(shmem_get_folio);
2694 
2695 /*
2696  * This is like autoremove_wake_function, but it removes the wait queue
2697  * entry unconditionally - even if something else had already woken the
2698  * target.
2699  */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned int mode,int sync,void * key)2700 static int synchronous_wake_function(wait_queue_entry_t *wait,
2701 			unsigned int mode, int sync, void *key)
2702 {
2703 	int ret = default_wake_function(wait, mode, sync, key);
2704 	list_del_init(&wait->entry);
2705 	return ret;
2706 }
2707 
2708 /*
2709  * Trinity finds that probing a hole which tmpfs is punching can
2710  * prevent the hole-punch from ever completing: which in turn
2711  * locks writers out with its hold on i_rwsem.  So refrain from
2712  * faulting pages into the hole while it's being punched.  Although
2713  * shmem_undo_range() does remove the additions, it may be unable to
2714  * keep up, as each new page needs its own unmap_mapping_range() call,
2715  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2716  *
2717  * It does not matter if we sometimes reach this check just before the
2718  * hole-punch begins, so that one fault then races with the punch:
2719  * we just need to make racing faults a rare case.
2720  *
2721  * The implementation below would be much simpler if we just used a
2722  * standard mutex or completion: but we cannot take i_rwsem in fault,
2723  * and bloating every shmem inode for this unlikely case would be sad.
2724  */
shmem_falloc_wait(struct vm_fault * vmf,struct inode * inode)2725 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2726 {
2727 	struct shmem_falloc *shmem_falloc;
2728 	struct file *fpin = NULL;
2729 	vm_fault_t ret = 0;
2730 
2731 	spin_lock(&inode->i_lock);
2732 	shmem_falloc = inode->i_private;
2733 	if (shmem_falloc &&
2734 	    shmem_falloc->waitq &&
2735 	    vmf->pgoff >= shmem_falloc->start &&
2736 	    vmf->pgoff < shmem_falloc->next) {
2737 		wait_queue_head_t *shmem_falloc_waitq;
2738 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2739 
2740 		ret = VM_FAULT_NOPAGE;
2741 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2742 		shmem_falloc_waitq = shmem_falloc->waitq;
2743 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2744 				TASK_UNINTERRUPTIBLE);
2745 		spin_unlock(&inode->i_lock);
2746 		schedule();
2747 
2748 		/*
2749 		 * shmem_falloc_waitq points into the shmem_fallocate()
2750 		 * stack of the hole-punching task: shmem_falloc_waitq
2751 		 * is usually invalid by the time we reach here, but
2752 		 * finish_wait() does not dereference it in that case;
2753 		 * though i_lock needed lest racing with wake_up_all().
2754 		 */
2755 		spin_lock(&inode->i_lock);
2756 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2757 	}
2758 	spin_unlock(&inode->i_lock);
2759 	if (fpin) {
2760 		fput(fpin);
2761 		ret = VM_FAULT_RETRY;
2762 	}
2763 	return ret;
2764 }
2765 
shmem_fault(struct vm_fault * vmf)2766 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2767 {
2768 	struct inode *inode = file_inode(vmf->vma->vm_file);
2769 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2770 	struct folio *folio = NULL;
2771 	vm_fault_t ret = 0;
2772 	int err;
2773 
2774 	/*
2775 	 * Trinity finds that probing a hole which tmpfs is punching can
2776 	 * prevent the hole-punch from ever completing: noted in i_private.
2777 	 */
2778 	if (unlikely(inode->i_private)) {
2779 		ret = shmem_falloc_wait(vmf, inode);
2780 		if (ret)
2781 			return ret;
2782 	}
2783 
2784 	WARN_ON_ONCE(vmf->page != NULL);
2785 	err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2786 				  gfp, vmf, &ret);
2787 	if (err)
2788 		return vmf_error(err);
2789 	if (folio) {
2790 		vmf->page = folio_file_page(folio, vmf->pgoff);
2791 		ret |= VM_FAULT_LOCKED;
2792 	}
2793 	return ret;
2794 }
2795 
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2796 unsigned long shmem_get_unmapped_area(struct file *file,
2797 				      unsigned long uaddr, unsigned long len,
2798 				      unsigned long pgoff, unsigned long flags)
2799 {
2800 	unsigned long addr;
2801 	unsigned long offset;
2802 	unsigned long inflated_len;
2803 	unsigned long inflated_addr;
2804 	unsigned long inflated_offset;
2805 	unsigned long hpage_size;
2806 
2807 	if (len > TASK_SIZE)
2808 		return -ENOMEM;
2809 
2810 	addr = mm_get_unmapped_area(file, uaddr, len, pgoff, flags);
2811 
2812 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2813 		return addr;
2814 	if (IS_ERR_VALUE(addr))
2815 		return addr;
2816 	if (addr & ~PAGE_MASK)
2817 		return addr;
2818 	if (addr > TASK_SIZE - len)
2819 		return addr;
2820 
2821 	if (shmem_huge == SHMEM_HUGE_DENY)
2822 		return addr;
2823 	if (flags & MAP_FIXED)
2824 		return addr;
2825 	/*
2826 	 * Our priority is to support MAP_SHARED mapped hugely;
2827 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2828 	 * But if caller specified an address hint and we allocated area there
2829 	 * successfully, respect that as before.
2830 	 */
2831 	if (uaddr == addr)
2832 		return addr;
2833 
2834 	hpage_size = HPAGE_PMD_SIZE;
2835 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2836 		struct super_block *sb;
2837 		unsigned long __maybe_unused hpage_orders;
2838 		int order = 0;
2839 
2840 		if (file) {
2841 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2842 			sb = file_inode(file)->i_sb;
2843 		} else {
2844 			/*
2845 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2846 			 * for "/dev/zero", to create a shared anonymous object.
2847 			 */
2848 			if (IS_ERR(shm_mnt))
2849 				return addr;
2850 			sb = shm_mnt->mnt_sb;
2851 
2852 			/*
2853 			 * Find the highest mTHP order used for anonymous shmem to
2854 			 * provide a suitable alignment address.
2855 			 */
2856 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2857 			hpage_orders = READ_ONCE(huge_shmem_orders_always);
2858 			hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2859 			hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2860 			if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2861 				hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2862 
2863 			if (hpage_orders > 0) {
2864 				order = highest_order(hpage_orders);
2865 				hpage_size = PAGE_SIZE << order;
2866 			}
2867 #endif
2868 		}
2869 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2870 			return addr;
2871 	}
2872 
2873 	if (len < hpage_size)
2874 		return addr;
2875 
2876 	offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2877 	if (offset && offset + len < 2 * hpage_size)
2878 		return addr;
2879 	if ((addr & (hpage_size - 1)) == offset)
2880 		return addr;
2881 
2882 	inflated_len = len + hpage_size - PAGE_SIZE;
2883 	if (inflated_len > TASK_SIZE)
2884 		return addr;
2885 	if (inflated_len < len)
2886 		return addr;
2887 
2888 	inflated_addr = mm_get_unmapped_area(NULL, uaddr, inflated_len, 0, flags);
2889 	if (IS_ERR_VALUE(inflated_addr))
2890 		return addr;
2891 	if (inflated_addr & ~PAGE_MASK)
2892 		return addr;
2893 
2894 	inflated_offset = inflated_addr & (hpage_size - 1);
2895 	inflated_addr += offset - inflated_offset;
2896 	if (inflated_offset > offset)
2897 		inflated_addr += hpage_size;
2898 
2899 	if (inflated_addr > TASK_SIZE - len)
2900 		return addr;
2901 	return inflated_addr;
2902 }
2903 
2904 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2905 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2906 {
2907 	struct inode *inode = file_inode(vma->vm_file);
2908 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2909 }
2910 
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr,pgoff_t * ilx)2911 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2912 					  unsigned long addr, pgoff_t *ilx)
2913 {
2914 	struct inode *inode = file_inode(vma->vm_file);
2915 	pgoff_t index;
2916 
2917 	/*
2918 	 * Bias interleave by inode number to distribute better across nodes;
2919 	 * but this interface is independent of which page order is used, so
2920 	 * supplies only that bias, letting caller apply the offset (adjusted
2921 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2922 	 */
2923 	*ilx = inode->i_ino;
2924 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2925 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2926 }
2927 
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2928 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2929 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2930 {
2931 	struct mempolicy *mpol;
2932 
2933 	/* Bias interleave by inode number to distribute better across nodes */
2934 	*ilx = info->vfs_inode.i_ino + (index >> order);
2935 
2936 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2937 	return mpol ? mpol : get_task_policy(current);
2938 }
2939 #else
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2940 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2941 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2942 {
2943 	*ilx = 0;
2944 	return NULL;
2945 }
2946 #endif /* CONFIG_NUMA */
2947 
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2948 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2949 {
2950 	struct inode *inode = file_inode(file);
2951 	struct shmem_inode_info *info = SHMEM_I(inode);
2952 	int retval = -ENOMEM;
2953 
2954 	/*
2955 	 * What serializes the accesses to info->flags?
2956 	 * ipc_lock_object() when called from shmctl_do_lock(),
2957 	 * no serialization needed when called from shm_destroy().
2958 	 */
2959 	if (lock && !(info->flags & SHMEM_F_LOCKED)) {
2960 		if (!user_shm_lock(inode->i_size, ucounts))
2961 			goto out_nomem;
2962 		info->flags |= SHMEM_F_LOCKED;
2963 		mapping_set_unevictable(file->f_mapping);
2964 	}
2965 	if (!lock && (info->flags & SHMEM_F_LOCKED) && ucounts) {
2966 		user_shm_unlock(inode->i_size, ucounts);
2967 		info->flags &= ~SHMEM_F_LOCKED;
2968 		mapping_clear_unevictable(file->f_mapping);
2969 	}
2970 	retval = 0;
2971 
2972 out_nomem:
2973 	return retval;
2974 }
2975 
shmem_mmap_prepare(struct vm_area_desc * desc)2976 static int shmem_mmap_prepare(struct vm_area_desc *desc)
2977 {
2978 	struct file *file = desc->file;
2979 	struct inode *inode = file_inode(file);
2980 
2981 	file_accessed(file);
2982 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2983 	if (inode->i_nlink)
2984 		desc->vm_ops = &shmem_vm_ops;
2985 	else
2986 		desc->vm_ops = &shmem_anon_vm_ops;
2987 	return 0;
2988 }
2989 
shmem_file_open(struct inode * inode,struct file * file)2990 static int shmem_file_open(struct inode *inode, struct file *file)
2991 {
2992 	file->f_mode |= FMODE_CAN_ODIRECT;
2993 	return generic_file_open(inode, file);
2994 }
2995 
2996 #ifdef CONFIG_TMPFS_XATTR
2997 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2998 
2999 #if IS_ENABLED(CONFIG_UNICODE)
3000 /*
3001  * shmem_inode_casefold_flags - Deal with casefold file attribute flag
3002  *
3003  * The casefold file attribute needs some special checks. I can just be added to
3004  * an empty dir, and can't be removed from a non-empty dir.
3005  */
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)3006 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
3007 				      struct dentry *dentry, unsigned int *i_flags)
3008 {
3009 	unsigned int old = inode->i_flags;
3010 	struct super_block *sb = inode->i_sb;
3011 
3012 	if (fsflags & FS_CASEFOLD_FL) {
3013 		if (!(old & S_CASEFOLD)) {
3014 			if (!sb->s_encoding)
3015 				return -EOPNOTSUPP;
3016 
3017 			if (!S_ISDIR(inode->i_mode))
3018 				return -ENOTDIR;
3019 
3020 			if (dentry && !simple_empty(dentry))
3021 				return -ENOTEMPTY;
3022 		}
3023 
3024 		*i_flags = *i_flags | S_CASEFOLD;
3025 	} else if (old & S_CASEFOLD) {
3026 		if (dentry && !simple_empty(dentry))
3027 			return -ENOTEMPTY;
3028 	}
3029 
3030 	return 0;
3031 }
3032 #else
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)3033 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
3034 				      struct dentry *dentry, unsigned int *i_flags)
3035 {
3036 	if (fsflags & FS_CASEFOLD_FL)
3037 		return -EOPNOTSUPP;
3038 
3039 	return 0;
3040 }
3041 #endif
3042 
3043 /*
3044  * chattr's fsflags are unrelated to extended attributes,
3045  * but tmpfs has chosen to enable them under the same config option.
3046  */
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)3047 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3048 {
3049 	unsigned int i_flags = 0;
3050 	int ret;
3051 
3052 	ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags);
3053 	if (ret)
3054 		return ret;
3055 
3056 	if (fsflags & FS_NOATIME_FL)
3057 		i_flags |= S_NOATIME;
3058 	if (fsflags & FS_APPEND_FL)
3059 		i_flags |= S_APPEND;
3060 	if (fsflags & FS_IMMUTABLE_FL)
3061 		i_flags |= S_IMMUTABLE;
3062 	/*
3063 	 * But FS_NODUMP_FL does not require any action in i_flags.
3064 	 */
3065 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
3066 
3067 	return 0;
3068 }
3069 #else
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)3070 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3071 {
3072 }
3073 #define shmem_initxattrs NULL
3074 #endif
3075 
shmem_get_offset_ctx(struct inode * inode)3076 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
3077 {
3078 	return &SHMEM_I(inode)->dir_offsets;
3079 }
3080 
__shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3081 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
3082 					     struct super_block *sb,
3083 					     struct inode *dir, umode_t mode,
3084 					     dev_t dev, unsigned long flags)
3085 {
3086 	struct inode *inode;
3087 	struct shmem_inode_info *info;
3088 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3089 	ino_t ino;
3090 	int err;
3091 
3092 	err = shmem_reserve_inode(sb, &ino);
3093 	if (err)
3094 		return ERR_PTR(err);
3095 
3096 	inode = new_inode(sb);
3097 	if (!inode) {
3098 		shmem_free_inode(sb, 0);
3099 		return ERR_PTR(-ENOSPC);
3100 	}
3101 
3102 	inode->i_ino = ino;
3103 	inode_init_owner(idmap, inode, dir, mode);
3104 	inode->i_blocks = 0;
3105 	simple_inode_init_ts(inode);
3106 	inode->i_generation = get_random_u32();
3107 	info = SHMEM_I(inode);
3108 	memset(info, 0, (char *)inode - (char *)info);
3109 	spin_lock_init(&info->lock);
3110 	atomic_set(&info->stop_eviction, 0);
3111 	info->seals = F_SEAL_SEAL;
3112 	info->flags = (flags & VM_NORESERVE) ? SHMEM_F_NORESERVE : 0;
3113 	info->i_crtime = inode_get_mtime(inode);
3114 	info->fsflags = (dir == NULL) ? 0 :
3115 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
3116 	if (info->fsflags)
3117 		shmem_set_inode_flags(inode, info->fsflags, NULL);
3118 	INIT_LIST_HEAD(&info->shrinklist);
3119 	INIT_LIST_HEAD(&info->swaplist);
3120 	simple_xattrs_init(&info->xattrs);
3121 	cache_no_acl(inode);
3122 	if (sbinfo->noswap)
3123 		mapping_set_unevictable(inode->i_mapping);
3124 
3125 	/* Don't consider 'deny' for emergencies and 'force' for testing */
3126 	if (sbinfo->huge)
3127 		mapping_set_large_folios(inode->i_mapping);
3128 
3129 	switch (mode & S_IFMT) {
3130 	default:
3131 		inode->i_op = &shmem_special_inode_operations;
3132 		init_special_inode(inode, mode, dev);
3133 		break;
3134 	case S_IFREG:
3135 		inode->i_mapping->a_ops = &shmem_aops;
3136 		inode->i_op = &shmem_inode_operations;
3137 		inode->i_fop = &shmem_file_operations;
3138 		mpol_shared_policy_init(&info->policy,
3139 					 shmem_get_sbmpol(sbinfo));
3140 		break;
3141 	case S_IFDIR:
3142 		inc_nlink(inode);
3143 		/* Some things misbehave if size == 0 on a directory */
3144 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
3145 		inode->i_op = &shmem_dir_inode_operations;
3146 		inode->i_fop = &simple_offset_dir_operations;
3147 		simple_offset_init(shmem_get_offset_ctx(inode));
3148 		break;
3149 	case S_IFLNK:
3150 		/*
3151 		 * Must not load anything in the rbtree,
3152 		 * mpol_free_shared_policy will not be called.
3153 		 */
3154 		mpol_shared_policy_init(&info->policy, NULL);
3155 		break;
3156 	}
3157 
3158 	lockdep_annotate_inode_mutex_key(inode);
3159 	return inode;
3160 }
3161 
3162 #ifdef CONFIG_TMPFS_QUOTA
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3163 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3164 				     struct super_block *sb, struct inode *dir,
3165 				     umode_t mode, dev_t dev, unsigned long flags)
3166 {
3167 	int err;
3168 	struct inode *inode;
3169 
3170 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3171 	if (IS_ERR(inode))
3172 		return inode;
3173 
3174 	err = dquot_initialize(inode);
3175 	if (err)
3176 		goto errout;
3177 
3178 	err = dquot_alloc_inode(inode);
3179 	if (err) {
3180 		dquot_drop(inode);
3181 		goto errout;
3182 	}
3183 	return inode;
3184 
3185 errout:
3186 	inode->i_flags |= S_NOQUOTA;
3187 	iput(inode);
3188 	return ERR_PTR(err);
3189 }
3190 #else
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3191 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3192 				     struct super_block *sb, struct inode *dir,
3193 				     umode_t mode, dev_t dev, unsigned long flags)
3194 {
3195 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3196 }
3197 #endif /* CONFIG_TMPFS_QUOTA */
3198 
3199 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)3200 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
3201 			   struct vm_area_struct *dst_vma,
3202 			   unsigned long dst_addr,
3203 			   unsigned long src_addr,
3204 			   uffd_flags_t flags,
3205 			   struct folio **foliop)
3206 {
3207 	struct inode *inode = file_inode(dst_vma->vm_file);
3208 	struct shmem_inode_info *info = SHMEM_I(inode);
3209 	struct address_space *mapping = inode->i_mapping;
3210 	gfp_t gfp = mapping_gfp_mask(mapping);
3211 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
3212 	void *page_kaddr;
3213 	struct folio *folio;
3214 	int ret;
3215 	pgoff_t max_off;
3216 
3217 	if (shmem_inode_acct_blocks(inode, 1)) {
3218 		/*
3219 		 * We may have got a page, returned -ENOENT triggering a retry,
3220 		 * and now we find ourselves with -ENOMEM. Release the page, to
3221 		 * avoid a BUG_ON in our caller.
3222 		 */
3223 		if (unlikely(*foliop)) {
3224 			folio_put(*foliop);
3225 			*foliop = NULL;
3226 		}
3227 		return -ENOMEM;
3228 	}
3229 
3230 	if (!*foliop) {
3231 		ret = -ENOMEM;
3232 		folio = shmem_alloc_folio(gfp, 0, info, pgoff);
3233 		if (!folio)
3234 			goto out_unacct_blocks;
3235 
3236 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
3237 			page_kaddr = kmap_local_folio(folio, 0);
3238 			/*
3239 			 * The read mmap_lock is held here.  Despite the
3240 			 * mmap_lock being read recursive a deadlock is still
3241 			 * possible if a writer has taken a lock.  For example:
3242 			 *
3243 			 * process A thread 1 takes read lock on own mmap_lock
3244 			 * process A thread 2 calls mmap, blocks taking write lock
3245 			 * process B thread 1 takes page fault, read lock on own mmap lock
3246 			 * process B thread 2 calls mmap, blocks taking write lock
3247 			 * process A thread 1 blocks taking read lock on process B
3248 			 * process B thread 1 blocks taking read lock on process A
3249 			 *
3250 			 * Disable page faults to prevent potential deadlock
3251 			 * and retry the copy outside the mmap_lock.
3252 			 */
3253 			pagefault_disable();
3254 			ret = copy_from_user(page_kaddr,
3255 					     (const void __user *)src_addr,
3256 					     PAGE_SIZE);
3257 			pagefault_enable();
3258 			kunmap_local(page_kaddr);
3259 
3260 			/* fallback to copy_from_user outside mmap_lock */
3261 			if (unlikely(ret)) {
3262 				*foliop = folio;
3263 				ret = -ENOENT;
3264 				/* don't free the page */
3265 				goto out_unacct_blocks;
3266 			}
3267 
3268 			flush_dcache_folio(folio);
3269 		} else {		/* ZEROPAGE */
3270 			clear_user_highpage(&folio->page, dst_addr);
3271 		}
3272 	} else {
3273 		folio = *foliop;
3274 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3275 		*foliop = NULL;
3276 	}
3277 
3278 	VM_BUG_ON(folio_test_locked(folio));
3279 	VM_BUG_ON(folio_test_swapbacked(folio));
3280 	__folio_set_locked(folio);
3281 	__folio_set_swapbacked(folio);
3282 	__folio_mark_uptodate(folio);
3283 
3284 	ret = -EFAULT;
3285 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3286 	if (unlikely(pgoff >= max_off))
3287 		goto out_release;
3288 
3289 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3290 	if (ret)
3291 		goto out_release;
3292 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3293 	if (ret)
3294 		goto out_release;
3295 
3296 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3297 				       &folio->page, true, flags);
3298 	if (ret)
3299 		goto out_delete_from_cache;
3300 
3301 	shmem_recalc_inode(inode, 1, 0);
3302 	folio_unlock(folio);
3303 	return 0;
3304 out_delete_from_cache:
3305 	filemap_remove_folio(folio);
3306 out_release:
3307 	folio_unlock(folio);
3308 	folio_put(folio);
3309 out_unacct_blocks:
3310 	shmem_inode_unacct_blocks(inode, 1);
3311 	return ret;
3312 }
3313 #endif /* CONFIG_USERFAULTFD */
3314 
3315 #ifdef CONFIG_TMPFS
3316 static const struct inode_operations shmem_symlink_inode_operations;
3317 static const struct inode_operations shmem_short_symlink_operations;
3318 
3319 static int
shmem_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3320 shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping,
3321 		  loff_t pos, unsigned len,
3322 		  struct folio **foliop, void **fsdata)
3323 {
3324 	struct inode *inode = mapping->host;
3325 	struct shmem_inode_info *info = SHMEM_I(inode);
3326 	pgoff_t index = pos >> PAGE_SHIFT;
3327 	struct folio *folio;
3328 	int ret = 0;
3329 
3330 	/* i_rwsem is held by caller */
3331 	if (unlikely(info->seals & (F_SEAL_GROW |
3332 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3333 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3334 			return -EPERM;
3335 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3336 			return -EPERM;
3337 	}
3338 
3339 	if (unlikely((info->flags & SHMEM_F_MAPPING_FROZEN) &&
3340 		     pos + len > inode->i_size))
3341 		return -EPERM;
3342 
3343 	ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3344 	if (ret)
3345 		return ret;
3346 
3347 	if (folio_contain_hwpoisoned_page(folio)) {
3348 		folio_unlock(folio);
3349 		folio_put(folio);
3350 		return -EIO;
3351 	}
3352 
3353 	*foliop = folio;
3354 	return 0;
3355 }
3356 
3357 static int
shmem_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3358 shmem_write_end(const struct kiocb *iocb, struct address_space *mapping,
3359 		loff_t pos, unsigned len, unsigned copied,
3360 		struct folio *folio, void *fsdata)
3361 {
3362 	struct inode *inode = mapping->host;
3363 
3364 	if (pos + copied > inode->i_size)
3365 		i_size_write(inode, pos + copied);
3366 
3367 	if (!folio_test_uptodate(folio)) {
3368 		if (copied < folio_size(folio)) {
3369 			size_t from = offset_in_folio(folio, pos);
3370 			folio_zero_segments(folio, 0, from,
3371 					from + copied, folio_size(folio));
3372 		}
3373 		folio_mark_uptodate(folio);
3374 	}
3375 	folio_mark_dirty(folio);
3376 	folio_unlock(folio);
3377 	folio_put(folio);
3378 
3379 	return copied;
3380 }
3381 
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3382 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3383 {
3384 	struct file *file = iocb->ki_filp;
3385 	struct inode *inode = file_inode(file);
3386 	struct address_space *mapping = inode->i_mapping;
3387 	pgoff_t index;
3388 	unsigned long offset;
3389 	int error = 0;
3390 	ssize_t retval = 0;
3391 
3392 	for (;;) {
3393 		struct folio *folio = NULL;
3394 		struct page *page = NULL;
3395 		unsigned long nr, ret;
3396 		loff_t end_offset, i_size = i_size_read(inode);
3397 		bool fallback_page_copy = false;
3398 		size_t fsize;
3399 
3400 		if (unlikely(iocb->ki_pos >= i_size))
3401 			break;
3402 
3403 		index = iocb->ki_pos >> PAGE_SHIFT;
3404 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3405 		if (error) {
3406 			if (error == -EINVAL)
3407 				error = 0;
3408 			break;
3409 		}
3410 		if (folio) {
3411 			folio_unlock(folio);
3412 
3413 			page = folio_file_page(folio, index);
3414 			if (PageHWPoison(page)) {
3415 				folio_put(folio);
3416 				error = -EIO;
3417 				break;
3418 			}
3419 
3420 			if (folio_test_large(folio) &&
3421 			    folio_test_has_hwpoisoned(folio))
3422 				fallback_page_copy = true;
3423 		}
3424 
3425 		/*
3426 		 * We must evaluate after, since reads (unlike writes)
3427 		 * are called without i_rwsem protection against truncate
3428 		 */
3429 		i_size = i_size_read(inode);
3430 		if (unlikely(iocb->ki_pos >= i_size)) {
3431 			if (folio)
3432 				folio_put(folio);
3433 			break;
3434 		}
3435 		end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
3436 		if (folio && likely(!fallback_page_copy))
3437 			fsize = folio_size(folio);
3438 		else
3439 			fsize = PAGE_SIZE;
3440 		offset = iocb->ki_pos & (fsize - 1);
3441 		nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
3442 
3443 		if (folio) {
3444 			/*
3445 			 * If users can be writing to this page using arbitrary
3446 			 * virtual addresses, take care about potential aliasing
3447 			 * before reading the page on the kernel side.
3448 			 */
3449 			if (mapping_writably_mapped(mapping)) {
3450 				if (likely(!fallback_page_copy))
3451 					flush_dcache_folio(folio);
3452 				else
3453 					flush_dcache_page(page);
3454 			}
3455 
3456 			/*
3457 			 * Mark the folio accessed if we read the beginning.
3458 			 */
3459 			if (!offset)
3460 				folio_mark_accessed(folio);
3461 			/*
3462 			 * Ok, we have the page, and it's up-to-date, so
3463 			 * now we can copy it to user space...
3464 			 */
3465 			if (likely(!fallback_page_copy))
3466 				ret = copy_folio_to_iter(folio, offset, nr, to);
3467 			else
3468 				ret = copy_page_to_iter(page, offset, nr, to);
3469 			folio_put(folio);
3470 		} else if (user_backed_iter(to)) {
3471 			/*
3472 			 * Copy to user tends to be so well optimized, but
3473 			 * clear_user() not so much, that it is noticeably
3474 			 * faster to copy the zero page instead of clearing.
3475 			 */
3476 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3477 		} else {
3478 			/*
3479 			 * But submitting the same page twice in a row to
3480 			 * splice() - or others? - can result in confusion:
3481 			 * so don't attempt that optimization on pipes etc.
3482 			 */
3483 			ret = iov_iter_zero(nr, to);
3484 		}
3485 
3486 		retval += ret;
3487 		iocb->ki_pos += ret;
3488 
3489 		if (!iov_iter_count(to))
3490 			break;
3491 		if (ret < nr) {
3492 			error = -EFAULT;
3493 			break;
3494 		}
3495 		cond_resched();
3496 	}
3497 
3498 	file_accessed(file);
3499 	return retval ? retval : error;
3500 }
3501 
shmem_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3502 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3503 {
3504 	struct file *file = iocb->ki_filp;
3505 	struct inode *inode = file->f_mapping->host;
3506 	ssize_t ret;
3507 
3508 	inode_lock(inode);
3509 	ret = generic_write_checks(iocb, from);
3510 	if (ret <= 0)
3511 		goto unlock;
3512 	ret = file_remove_privs(file);
3513 	if (ret)
3514 		goto unlock;
3515 	ret = file_update_time(file);
3516 	if (ret)
3517 		goto unlock;
3518 	ret = generic_perform_write(iocb, from);
3519 unlock:
3520 	inode_unlock(inode);
3521 	return ret;
3522 }
3523 
zero_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3524 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3525 			      struct pipe_buffer *buf)
3526 {
3527 	return true;
3528 }
3529 
zero_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3530 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3531 				  struct pipe_buffer *buf)
3532 {
3533 }
3534 
zero_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3535 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3536 				    struct pipe_buffer *buf)
3537 {
3538 	return false;
3539 }
3540 
3541 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3542 	.release	= zero_pipe_buf_release,
3543 	.try_steal	= zero_pipe_buf_try_steal,
3544 	.get		= zero_pipe_buf_get,
3545 };
3546 
splice_zeropage_into_pipe(struct pipe_inode_info * pipe,loff_t fpos,size_t size)3547 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3548 					loff_t fpos, size_t size)
3549 {
3550 	size_t offset = fpos & ~PAGE_MASK;
3551 
3552 	size = min_t(size_t, size, PAGE_SIZE - offset);
3553 
3554 	if (!pipe_is_full(pipe)) {
3555 		struct pipe_buffer *buf = pipe_head_buf(pipe);
3556 
3557 		*buf = (struct pipe_buffer) {
3558 			.ops	= &zero_pipe_buf_ops,
3559 			.page	= ZERO_PAGE(0),
3560 			.offset	= offset,
3561 			.len	= size,
3562 		};
3563 		pipe->head++;
3564 	}
3565 
3566 	return size;
3567 }
3568 
shmem_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)3569 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3570 				      struct pipe_inode_info *pipe,
3571 				      size_t len, unsigned int flags)
3572 {
3573 	struct inode *inode = file_inode(in);
3574 	struct address_space *mapping = inode->i_mapping;
3575 	struct folio *folio = NULL;
3576 	size_t total_spliced = 0, used, npages, n, part;
3577 	loff_t isize;
3578 	int error = 0;
3579 
3580 	/* Work out how much data we can actually add into the pipe */
3581 	used = pipe_buf_usage(pipe);
3582 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
3583 	len = min_t(size_t, len, npages * PAGE_SIZE);
3584 
3585 	do {
3586 		bool fallback_page_splice = false;
3587 		struct page *page = NULL;
3588 		pgoff_t index;
3589 		size_t size;
3590 
3591 		if (*ppos >= i_size_read(inode))
3592 			break;
3593 
3594 		index = *ppos >> PAGE_SHIFT;
3595 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3596 		if (error) {
3597 			if (error == -EINVAL)
3598 				error = 0;
3599 			break;
3600 		}
3601 		if (folio) {
3602 			folio_unlock(folio);
3603 
3604 			page = folio_file_page(folio, index);
3605 			if (PageHWPoison(page)) {
3606 				error = -EIO;
3607 				break;
3608 			}
3609 
3610 			if (folio_test_large(folio) &&
3611 			    folio_test_has_hwpoisoned(folio))
3612 				fallback_page_splice = true;
3613 		}
3614 
3615 		/*
3616 		 * i_size must be checked after we know the pages are Uptodate.
3617 		 *
3618 		 * Checking i_size after the check allows us to calculate
3619 		 * the correct value for "nr", which means the zero-filled
3620 		 * part of the page is not copied back to userspace (unless
3621 		 * another truncate extends the file - this is desired though).
3622 		 */
3623 		isize = i_size_read(inode);
3624 		if (unlikely(*ppos >= isize))
3625 			break;
3626 		/*
3627 		 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
3628 		 * pages.
3629 		 */
3630 		size = len;
3631 		if (unlikely(fallback_page_splice)) {
3632 			size_t offset = *ppos & ~PAGE_MASK;
3633 
3634 			size = umin(size, PAGE_SIZE - offset);
3635 		}
3636 		part = min_t(loff_t, isize - *ppos, size);
3637 
3638 		if (folio) {
3639 			/*
3640 			 * If users can be writing to this page using arbitrary
3641 			 * virtual addresses, take care about potential aliasing
3642 			 * before reading the page on the kernel side.
3643 			 */
3644 			if (mapping_writably_mapped(mapping)) {
3645 				if (likely(!fallback_page_splice))
3646 					flush_dcache_folio(folio);
3647 				else
3648 					flush_dcache_page(page);
3649 			}
3650 			folio_mark_accessed(folio);
3651 			/*
3652 			 * Ok, we have the page, and it's up-to-date, so we can
3653 			 * now splice it into the pipe.
3654 			 */
3655 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3656 			folio_put(folio);
3657 			folio = NULL;
3658 		} else {
3659 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3660 		}
3661 
3662 		if (!n)
3663 			break;
3664 		len -= n;
3665 		total_spliced += n;
3666 		*ppos += n;
3667 		in->f_ra.prev_pos = *ppos;
3668 		if (pipe_is_full(pipe))
3669 			break;
3670 
3671 		cond_resched();
3672 	} while (len);
3673 
3674 	if (folio)
3675 		folio_put(folio);
3676 
3677 	file_accessed(in);
3678 	return total_spliced ? total_spliced : error;
3679 }
3680 
shmem_file_llseek(struct file * file,loff_t offset,int whence)3681 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3682 {
3683 	struct address_space *mapping = file->f_mapping;
3684 	struct inode *inode = mapping->host;
3685 
3686 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3687 		return generic_file_llseek_size(file, offset, whence,
3688 					MAX_LFS_FILESIZE, i_size_read(inode));
3689 	if (offset < 0)
3690 		return -ENXIO;
3691 
3692 	inode_lock(inode);
3693 	/* We're holding i_rwsem so we can access i_size directly */
3694 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3695 	if (offset >= 0)
3696 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3697 	inode_unlock(inode);
3698 	return offset;
3699 }
3700 
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3701 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3702 							 loff_t len)
3703 {
3704 	struct inode *inode = file_inode(file);
3705 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3706 	struct shmem_inode_info *info = SHMEM_I(inode);
3707 	struct shmem_falloc shmem_falloc;
3708 	pgoff_t start, index, end, undo_fallocend;
3709 	int error;
3710 
3711 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3712 		return -EOPNOTSUPP;
3713 
3714 	inode_lock(inode);
3715 
3716 	if (info->flags & SHMEM_F_MAPPING_FROZEN) {
3717 		error = -EPERM;
3718 		goto out;
3719 	}
3720 
3721 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3722 		struct address_space *mapping = file->f_mapping;
3723 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3724 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3725 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3726 
3727 		/* protected by i_rwsem */
3728 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3729 			error = -EPERM;
3730 			goto out;
3731 		}
3732 
3733 		shmem_falloc.waitq = &shmem_falloc_waitq;
3734 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3735 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3736 		spin_lock(&inode->i_lock);
3737 		inode->i_private = &shmem_falloc;
3738 		spin_unlock(&inode->i_lock);
3739 
3740 		if ((u64)unmap_end > (u64)unmap_start)
3741 			unmap_mapping_range(mapping, unmap_start,
3742 					    1 + unmap_end - unmap_start, 0);
3743 		shmem_truncate_range(inode, offset, offset + len - 1);
3744 		/* No need to unmap again: hole-punching leaves COWed pages */
3745 
3746 		spin_lock(&inode->i_lock);
3747 		inode->i_private = NULL;
3748 		wake_up_all(&shmem_falloc_waitq);
3749 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3750 		spin_unlock(&inode->i_lock);
3751 		error = 0;
3752 		goto out;
3753 	}
3754 
3755 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3756 	error = inode_newsize_ok(inode, offset + len);
3757 	if (error)
3758 		goto out;
3759 
3760 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3761 		error = -EPERM;
3762 		goto out;
3763 	}
3764 
3765 	start = offset >> PAGE_SHIFT;
3766 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3767 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3768 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3769 		error = -ENOSPC;
3770 		goto out;
3771 	}
3772 
3773 	shmem_falloc.waitq = NULL;
3774 	shmem_falloc.start = start;
3775 	shmem_falloc.next  = start;
3776 	shmem_falloc.nr_falloced = 0;
3777 	shmem_falloc.nr_unswapped = 0;
3778 	spin_lock(&inode->i_lock);
3779 	inode->i_private = &shmem_falloc;
3780 	spin_unlock(&inode->i_lock);
3781 
3782 	/*
3783 	 * info->fallocend is only relevant when huge pages might be
3784 	 * involved: to prevent split_huge_page() freeing fallocated
3785 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3786 	 */
3787 	undo_fallocend = info->fallocend;
3788 	if (info->fallocend < end)
3789 		info->fallocend = end;
3790 
3791 	for (index = start; index < end; ) {
3792 		struct folio *folio;
3793 
3794 		/*
3795 		 * Check for fatal signal so that we abort early in OOM
3796 		 * situations. We don't want to abort in case of non-fatal
3797 		 * signals as large fallocate can take noticeable time and
3798 		 * e.g. periodic timers may result in fallocate constantly
3799 		 * restarting.
3800 		 */
3801 		if (fatal_signal_pending(current))
3802 			error = -EINTR;
3803 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3804 			error = -ENOMEM;
3805 		else
3806 			error = shmem_get_folio(inode, index, offset + len,
3807 						&folio, SGP_FALLOC);
3808 		if (error) {
3809 			info->fallocend = undo_fallocend;
3810 			/* Remove the !uptodate folios we added */
3811 			if (index > start) {
3812 				shmem_undo_range(inode,
3813 				    (loff_t)start << PAGE_SHIFT,
3814 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3815 			}
3816 			goto undone;
3817 		}
3818 
3819 		/*
3820 		 * Here is a more important optimization than it appears:
3821 		 * a second SGP_FALLOC on the same large folio will clear it,
3822 		 * making it uptodate and un-undoable if we fail later.
3823 		 */
3824 		index = folio_next_index(folio);
3825 		/* Beware 32-bit wraparound */
3826 		if (!index)
3827 			index--;
3828 
3829 		/*
3830 		 * Inform shmem_writeout() how far we have reached.
3831 		 * No need for lock or barrier: we have the page lock.
3832 		 */
3833 		if (!folio_test_uptodate(folio))
3834 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3835 		shmem_falloc.next = index;
3836 
3837 		/*
3838 		 * If !uptodate, leave it that way so that freeable folios
3839 		 * can be recognized if we need to rollback on error later.
3840 		 * But mark it dirty so that memory pressure will swap rather
3841 		 * than free the folios we are allocating (and SGP_CACHE folios
3842 		 * might still be clean: we now need to mark those dirty too).
3843 		 */
3844 		folio_mark_dirty(folio);
3845 		folio_unlock(folio);
3846 		folio_put(folio);
3847 		cond_resched();
3848 	}
3849 
3850 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3851 		i_size_write(inode, offset + len);
3852 undone:
3853 	spin_lock(&inode->i_lock);
3854 	inode->i_private = NULL;
3855 	spin_unlock(&inode->i_lock);
3856 out:
3857 	if (!error)
3858 		file_modified(file);
3859 	inode_unlock(inode);
3860 	return error;
3861 }
3862 
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)3863 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3864 {
3865 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3866 
3867 	buf->f_type = TMPFS_MAGIC;
3868 	buf->f_bsize = PAGE_SIZE;
3869 	buf->f_namelen = NAME_MAX;
3870 	if (sbinfo->max_blocks) {
3871 		buf->f_blocks = sbinfo->max_blocks;
3872 		buf->f_bavail =
3873 		buf->f_bfree  = sbinfo->max_blocks -
3874 				percpu_counter_sum(&sbinfo->used_blocks);
3875 	}
3876 	if (sbinfo->max_inodes) {
3877 		buf->f_files = sbinfo->max_inodes;
3878 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3879 	}
3880 	/* else leave those fields 0 like simple_statfs */
3881 
3882 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3883 
3884 	return 0;
3885 }
3886 
3887 /*
3888  * File creation. Allocate an inode, and we're done..
3889  */
3890 static int
shmem_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3891 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3892 	    struct dentry *dentry, umode_t mode, dev_t dev)
3893 {
3894 	struct inode *inode;
3895 	int error;
3896 
3897 	if (!generic_ci_validate_strict_name(dir, &dentry->d_name))
3898 		return -EINVAL;
3899 
3900 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3901 	if (IS_ERR(inode))
3902 		return PTR_ERR(inode);
3903 
3904 	error = simple_acl_create(dir, inode);
3905 	if (error)
3906 		goto out_iput;
3907 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3908 					     shmem_initxattrs, NULL);
3909 	if (error && error != -EOPNOTSUPP)
3910 		goto out_iput;
3911 
3912 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3913 	if (error)
3914 		goto out_iput;
3915 
3916 	dir->i_size += BOGO_DIRENT_SIZE;
3917 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3918 	inode_inc_iversion(dir);
3919 
3920 	d_make_persistent(dentry, inode);
3921 	return error;
3922 
3923 out_iput:
3924 	iput(inode);
3925 	return error;
3926 }
3927 
3928 static int
shmem_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)3929 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3930 	      struct file *file, umode_t mode)
3931 {
3932 	struct inode *inode;
3933 	int error;
3934 
3935 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3936 	if (IS_ERR(inode)) {
3937 		error = PTR_ERR(inode);
3938 		goto err_out;
3939 	}
3940 	error = security_inode_init_security(inode, dir, NULL,
3941 					     shmem_initxattrs, NULL);
3942 	if (error && error != -EOPNOTSUPP)
3943 		goto out_iput;
3944 	error = simple_acl_create(dir, inode);
3945 	if (error)
3946 		goto out_iput;
3947 	d_tmpfile(file, inode);
3948 
3949 err_out:
3950 	return finish_open_simple(file, error);
3951 out_iput:
3952 	iput(inode);
3953 	return error;
3954 }
3955 
shmem_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)3956 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3957 				  struct dentry *dentry, umode_t mode)
3958 {
3959 	int error;
3960 
3961 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3962 	if (error)
3963 		return ERR_PTR(error);
3964 	inc_nlink(dir);
3965 	return NULL;
3966 }
3967 
shmem_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)3968 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3969 			struct dentry *dentry, umode_t mode, bool excl)
3970 {
3971 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3972 }
3973 
3974 /*
3975  * Link a file..
3976  */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3977 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3978 		      struct dentry *dentry)
3979 {
3980 	struct inode *inode = d_inode(old_dentry);
3981 	int ret;
3982 
3983 	/*
3984 	 * No ordinary (disk based) filesystem counts links as inodes;
3985 	 * but each new link needs a new dentry, pinning lowmem, and
3986 	 * tmpfs dentries cannot be pruned until they are unlinked.
3987 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3988 	 * first link must skip that, to get the accounting right.
3989 	 */
3990 	if (inode->i_nlink) {
3991 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3992 		if (ret)
3993 			return ret;
3994 	}
3995 
3996 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3997 	if (ret) {
3998 		if (inode->i_nlink)
3999 			shmem_free_inode(inode->i_sb, 0);
4000 		return ret;
4001 	}
4002 
4003 	dir->i_size += BOGO_DIRENT_SIZE;
4004 	inode_inc_iversion(dir);
4005 	return simple_link(old_dentry, dir, dentry);
4006 }
4007 
shmem_unlink(struct inode * dir,struct dentry * dentry)4008 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
4009 {
4010 	struct inode *inode = d_inode(dentry);
4011 
4012 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
4013 		shmem_free_inode(inode->i_sb, 0);
4014 
4015 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
4016 
4017 	dir->i_size -= BOGO_DIRENT_SIZE;
4018 	inode_inc_iversion(dir);
4019 	simple_unlink(dir, dentry);
4020 
4021 	/*
4022 	 * For now, VFS can't deal with case-insensitive negative dentries, so
4023 	 * we invalidate them
4024 	 */
4025 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
4026 		d_invalidate(dentry);
4027 
4028 	return 0;
4029 }
4030 
shmem_rmdir(struct inode * dir,struct dentry * dentry)4031 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
4032 {
4033 	if (!simple_empty(dentry))
4034 		return -ENOTEMPTY;
4035 
4036 	drop_nlink(d_inode(dentry));
4037 	drop_nlink(dir);
4038 	return shmem_unlink(dir, dentry);
4039 }
4040 
shmem_whiteout(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry)4041 static int shmem_whiteout(struct mnt_idmap *idmap,
4042 			  struct inode *old_dir, struct dentry *old_dentry)
4043 {
4044 	struct dentry *whiteout;
4045 	int error;
4046 
4047 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
4048 	if (!whiteout)
4049 		return -ENOMEM;
4050 	error = shmem_mknod(idmap, old_dir, whiteout,
4051 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4052 	dput(whiteout);
4053 	return error;
4054 }
4055 
4056 /*
4057  * The VFS layer already does all the dentry stuff for rename,
4058  * we just have to decrement the usage count for the target if
4059  * it exists so that the VFS layer correctly free's it when it
4060  * gets overwritten.
4061  */
shmem_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)4062 static int shmem_rename2(struct mnt_idmap *idmap,
4063 			 struct inode *old_dir, struct dentry *old_dentry,
4064 			 struct inode *new_dir, struct dentry *new_dentry,
4065 			 unsigned int flags)
4066 {
4067 	struct inode *inode = d_inode(old_dentry);
4068 	int they_are_dirs = S_ISDIR(inode->i_mode);
4069 	bool had_offset = false;
4070 	int error;
4071 
4072 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4073 		return -EINVAL;
4074 
4075 	if (flags & RENAME_EXCHANGE)
4076 		return simple_offset_rename_exchange(old_dir, old_dentry,
4077 						     new_dir, new_dentry);
4078 
4079 	if (!simple_empty(new_dentry))
4080 		return -ENOTEMPTY;
4081 
4082 	error = simple_offset_add(shmem_get_offset_ctx(new_dir), new_dentry);
4083 	if (error == -EBUSY)
4084 		had_offset = true;
4085 	else if (unlikely(error))
4086 		return error;
4087 
4088 	if (flags & RENAME_WHITEOUT) {
4089 		error = shmem_whiteout(idmap, old_dir, old_dentry);
4090 		if (error) {
4091 			if (!had_offset)
4092 				simple_offset_remove(shmem_get_offset_ctx(new_dir),
4093 						     new_dentry);
4094 			return error;
4095 		}
4096 	}
4097 
4098 	simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
4099 	if (d_really_is_positive(new_dentry)) {
4100 		(void) shmem_unlink(new_dir, new_dentry);
4101 		if (they_are_dirs) {
4102 			drop_nlink(d_inode(new_dentry));
4103 			drop_nlink(old_dir);
4104 		}
4105 	} else if (they_are_dirs) {
4106 		drop_nlink(old_dir);
4107 		inc_nlink(new_dir);
4108 	}
4109 
4110 	old_dir->i_size -= BOGO_DIRENT_SIZE;
4111 	new_dir->i_size += BOGO_DIRENT_SIZE;
4112 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
4113 	inode_inc_iversion(old_dir);
4114 	inode_inc_iversion(new_dir);
4115 	return 0;
4116 }
4117 
shmem_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)4118 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
4119 			 struct dentry *dentry, const char *symname)
4120 {
4121 	int error;
4122 	int len;
4123 	struct inode *inode;
4124 	struct folio *folio;
4125 	char *link;
4126 
4127 	len = strlen(symname) + 1;
4128 	if (len > PAGE_SIZE)
4129 		return -ENAMETOOLONG;
4130 
4131 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
4132 				VM_NORESERVE);
4133 	if (IS_ERR(inode))
4134 		return PTR_ERR(inode);
4135 
4136 	error = security_inode_init_security(inode, dir, &dentry->d_name,
4137 					     shmem_initxattrs, NULL);
4138 	if (error && error != -EOPNOTSUPP)
4139 		goto out_iput;
4140 
4141 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
4142 	if (error)
4143 		goto out_iput;
4144 
4145 	inode->i_size = len-1;
4146 	if (len <= SHORT_SYMLINK_LEN) {
4147 		link = kmemdup(symname, len, GFP_KERNEL);
4148 		if (!link) {
4149 			error = -ENOMEM;
4150 			goto out_remove_offset;
4151 		}
4152 		inode->i_op = &shmem_short_symlink_operations;
4153 		inode_set_cached_link(inode, link, len - 1);
4154 	} else {
4155 		inode_nohighmem(inode);
4156 		inode->i_mapping->a_ops = &shmem_aops;
4157 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
4158 		if (error)
4159 			goto out_remove_offset;
4160 		inode->i_op = &shmem_symlink_inode_operations;
4161 		memcpy(folio_address(folio), symname, len);
4162 		folio_mark_uptodate(folio);
4163 		folio_mark_dirty(folio);
4164 		folio_unlock(folio);
4165 		folio_put(folio);
4166 	}
4167 	dir->i_size += BOGO_DIRENT_SIZE;
4168 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
4169 	inode_inc_iversion(dir);
4170 	d_make_persistent(dentry, inode);
4171 	return 0;
4172 
4173 out_remove_offset:
4174 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
4175 out_iput:
4176 	iput(inode);
4177 	return error;
4178 }
4179 
shmem_put_link(void * arg)4180 static void shmem_put_link(void *arg)
4181 {
4182 	folio_mark_accessed(arg);
4183 	folio_put(arg);
4184 }
4185 
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)4186 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
4187 				  struct delayed_call *done)
4188 {
4189 	struct folio *folio = NULL;
4190 	int error;
4191 
4192 	if (!dentry) {
4193 		folio = filemap_get_folio(inode->i_mapping, 0);
4194 		if (IS_ERR(folio))
4195 			return ERR_PTR(-ECHILD);
4196 		if (PageHWPoison(folio_page(folio, 0)) ||
4197 		    !folio_test_uptodate(folio)) {
4198 			folio_put(folio);
4199 			return ERR_PTR(-ECHILD);
4200 		}
4201 	} else {
4202 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
4203 		if (error)
4204 			return ERR_PTR(error);
4205 		if (!folio)
4206 			return ERR_PTR(-ECHILD);
4207 		if (PageHWPoison(folio_page(folio, 0))) {
4208 			folio_unlock(folio);
4209 			folio_put(folio);
4210 			return ERR_PTR(-ECHILD);
4211 		}
4212 		folio_unlock(folio);
4213 	}
4214 	set_delayed_call(done, shmem_put_link, folio);
4215 	return folio_address(folio);
4216 }
4217 
4218 #ifdef CONFIG_TMPFS_XATTR
4219 
shmem_fileattr_get(struct dentry * dentry,struct file_kattr * fa)4220 static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa)
4221 {
4222 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4223 
4224 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
4225 
4226 	return 0;
4227 }
4228 
shmem_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct file_kattr * fa)4229 static int shmem_fileattr_set(struct mnt_idmap *idmap,
4230 			      struct dentry *dentry, struct file_kattr *fa)
4231 {
4232 	struct inode *inode = d_inode(dentry);
4233 	struct shmem_inode_info *info = SHMEM_I(inode);
4234 	int ret, flags;
4235 
4236 	if (fileattr_has_fsx(fa))
4237 		return -EOPNOTSUPP;
4238 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
4239 		return -EOPNOTSUPP;
4240 
4241 	flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
4242 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
4243 
4244 	ret = shmem_set_inode_flags(inode, flags, dentry);
4245 
4246 	if (ret)
4247 		return ret;
4248 
4249 	info->fsflags = flags;
4250 
4251 	inode_set_ctime_current(inode);
4252 	inode_inc_iversion(inode);
4253 	return 0;
4254 }
4255 
4256 /*
4257  * Superblocks without xattr inode operations may get some security.* xattr
4258  * support from the LSM "for free". As soon as we have any other xattrs
4259  * like ACLs, we also need to implement the security.* handlers at
4260  * filesystem level, though.
4261  */
4262 
4263 /*
4264  * Callback for security_inode_init_security() for acquiring xattrs.
4265  */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)4266 static int shmem_initxattrs(struct inode *inode,
4267 			    const struct xattr *xattr_array, void *fs_info)
4268 {
4269 	struct shmem_inode_info *info = SHMEM_I(inode);
4270 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4271 	const struct xattr *xattr;
4272 	struct simple_xattr *new_xattr;
4273 	size_t ispace = 0;
4274 	size_t len;
4275 
4276 	if (sbinfo->max_inodes) {
4277 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4278 			ispace += simple_xattr_space(xattr->name,
4279 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
4280 		}
4281 		if (ispace) {
4282 			raw_spin_lock(&sbinfo->stat_lock);
4283 			if (sbinfo->free_ispace < ispace)
4284 				ispace = 0;
4285 			else
4286 				sbinfo->free_ispace -= ispace;
4287 			raw_spin_unlock(&sbinfo->stat_lock);
4288 			if (!ispace)
4289 				return -ENOSPC;
4290 		}
4291 	}
4292 
4293 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4294 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
4295 		if (!new_xattr)
4296 			break;
4297 
4298 		len = strlen(xattr->name) + 1;
4299 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
4300 					  GFP_KERNEL_ACCOUNT);
4301 		if (!new_xattr->name) {
4302 			kvfree(new_xattr);
4303 			break;
4304 		}
4305 
4306 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4307 		       XATTR_SECURITY_PREFIX_LEN);
4308 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4309 		       xattr->name, len);
4310 
4311 		simple_xattr_add(&info->xattrs, new_xattr);
4312 	}
4313 
4314 	if (xattr->name != NULL) {
4315 		if (ispace) {
4316 			raw_spin_lock(&sbinfo->stat_lock);
4317 			sbinfo->free_ispace += ispace;
4318 			raw_spin_unlock(&sbinfo->stat_lock);
4319 		}
4320 		simple_xattrs_free(&info->xattrs, NULL);
4321 		return -ENOMEM;
4322 	}
4323 
4324 	return 0;
4325 }
4326 
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)4327 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4328 				   struct dentry *unused, struct inode *inode,
4329 				   const char *name, void *buffer, size_t size)
4330 {
4331 	struct shmem_inode_info *info = SHMEM_I(inode);
4332 
4333 	name = xattr_full_name(handler, name);
4334 	return simple_xattr_get(&info->xattrs, name, buffer, size);
4335 }
4336 
shmem_xattr_handler_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)4337 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4338 				   struct mnt_idmap *idmap,
4339 				   struct dentry *unused, struct inode *inode,
4340 				   const char *name, const void *value,
4341 				   size_t size, int flags)
4342 {
4343 	struct shmem_inode_info *info = SHMEM_I(inode);
4344 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4345 	struct simple_xattr *old_xattr;
4346 	size_t ispace = 0;
4347 
4348 	name = xattr_full_name(handler, name);
4349 	if (value && sbinfo->max_inodes) {
4350 		ispace = simple_xattr_space(name, size);
4351 		raw_spin_lock(&sbinfo->stat_lock);
4352 		if (sbinfo->free_ispace < ispace)
4353 			ispace = 0;
4354 		else
4355 			sbinfo->free_ispace -= ispace;
4356 		raw_spin_unlock(&sbinfo->stat_lock);
4357 		if (!ispace)
4358 			return -ENOSPC;
4359 	}
4360 
4361 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4362 	if (!IS_ERR(old_xattr)) {
4363 		ispace = 0;
4364 		if (old_xattr && sbinfo->max_inodes)
4365 			ispace = simple_xattr_space(old_xattr->name,
4366 						    old_xattr->size);
4367 		simple_xattr_free(old_xattr);
4368 		old_xattr = NULL;
4369 		inode_set_ctime_current(inode);
4370 		inode_inc_iversion(inode);
4371 	}
4372 	if (ispace) {
4373 		raw_spin_lock(&sbinfo->stat_lock);
4374 		sbinfo->free_ispace += ispace;
4375 		raw_spin_unlock(&sbinfo->stat_lock);
4376 	}
4377 	return PTR_ERR(old_xattr);
4378 }
4379 
4380 static const struct xattr_handler shmem_security_xattr_handler = {
4381 	.prefix = XATTR_SECURITY_PREFIX,
4382 	.get = shmem_xattr_handler_get,
4383 	.set = shmem_xattr_handler_set,
4384 };
4385 
4386 static const struct xattr_handler shmem_trusted_xattr_handler = {
4387 	.prefix = XATTR_TRUSTED_PREFIX,
4388 	.get = shmem_xattr_handler_get,
4389 	.set = shmem_xattr_handler_set,
4390 };
4391 
4392 static const struct xattr_handler shmem_user_xattr_handler = {
4393 	.prefix = XATTR_USER_PREFIX,
4394 	.get = shmem_xattr_handler_get,
4395 	.set = shmem_xattr_handler_set,
4396 };
4397 
4398 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4399 	&shmem_security_xattr_handler,
4400 	&shmem_trusted_xattr_handler,
4401 	&shmem_user_xattr_handler,
4402 	NULL
4403 };
4404 
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)4405 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4406 {
4407 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4408 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4409 }
4410 #endif /* CONFIG_TMPFS_XATTR */
4411 
4412 static const struct inode_operations shmem_short_symlink_operations = {
4413 	.getattr	= shmem_getattr,
4414 	.setattr	= shmem_setattr,
4415 	.get_link	= simple_get_link,
4416 #ifdef CONFIG_TMPFS_XATTR
4417 	.listxattr	= shmem_listxattr,
4418 #endif
4419 };
4420 
4421 static const struct inode_operations shmem_symlink_inode_operations = {
4422 	.getattr	= shmem_getattr,
4423 	.setattr	= shmem_setattr,
4424 	.get_link	= shmem_get_link,
4425 #ifdef CONFIG_TMPFS_XATTR
4426 	.listxattr	= shmem_listxattr,
4427 #endif
4428 };
4429 
shmem_get_parent(struct dentry * child)4430 static struct dentry *shmem_get_parent(struct dentry *child)
4431 {
4432 	return ERR_PTR(-ESTALE);
4433 }
4434 
shmem_match(struct inode * ino,void * vfh)4435 static int shmem_match(struct inode *ino, void *vfh)
4436 {
4437 	__u32 *fh = vfh;
4438 	__u64 inum = fh[2];
4439 	inum = (inum << 32) | fh[1];
4440 	return ino->i_ino == inum && fh[0] == ino->i_generation;
4441 }
4442 
4443 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)4444 static struct dentry *shmem_find_alias(struct inode *inode)
4445 {
4446 	struct dentry *alias = d_find_alias(inode);
4447 
4448 	return alias ?: d_find_any_alias(inode);
4449 }
4450 
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)4451 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4452 		struct fid *fid, int fh_len, int fh_type)
4453 {
4454 	struct inode *inode;
4455 	struct dentry *dentry = NULL;
4456 	u64 inum;
4457 
4458 	if (fh_len < 3)
4459 		return NULL;
4460 
4461 	inum = fid->raw[2];
4462 	inum = (inum << 32) | fid->raw[1];
4463 
4464 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4465 			shmem_match, fid->raw);
4466 	if (inode) {
4467 		dentry = shmem_find_alias(inode);
4468 		iput(inode);
4469 	}
4470 
4471 	return dentry;
4472 }
4473 
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)4474 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4475 				struct inode *parent)
4476 {
4477 	if (*len < 3) {
4478 		*len = 3;
4479 		return FILEID_INVALID;
4480 	}
4481 
4482 	if (inode_unhashed(inode)) {
4483 		/* Unfortunately insert_inode_hash is not idempotent,
4484 		 * so as we hash inodes here rather than at creation
4485 		 * time, we need a lock to ensure we only try
4486 		 * to do it once
4487 		 */
4488 		static DEFINE_SPINLOCK(lock);
4489 		spin_lock(&lock);
4490 		if (inode_unhashed(inode))
4491 			__insert_inode_hash(inode,
4492 					    inode->i_ino + inode->i_generation);
4493 		spin_unlock(&lock);
4494 	}
4495 
4496 	fh[0] = inode->i_generation;
4497 	fh[1] = inode->i_ino;
4498 	fh[2] = ((__u64)inode->i_ino) >> 32;
4499 
4500 	*len = 3;
4501 	return 1;
4502 }
4503 
4504 static const struct export_operations shmem_export_ops = {
4505 	.get_parent     = shmem_get_parent,
4506 	.encode_fh      = shmem_encode_fh,
4507 	.fh_to_dentry	= shmem_fh_to_dentry,
4508 };
4509 
4510 enum shmem_param {
4511 	Opt_gid,
4512 	Opt_huge,
4513 	Opt_mode,
4514 	Opt_mpol,
4515 	Opt_nr_blocks,
4516 	Opt_nr_inodes,
4517 	Opt_size,
4518 	Opt_uid,
4519 	Opt_inode32,
4520 	Opt_inode64,
4521 	Opt_noswap,
4522 	Opt_quota,
4523 	Opt_usrquota,
4524 	Opt_grpquota,
4525 	Opt_usrquota_block_hardlimit,
4526 	Opt_usrquota_inode_hardlimit,
4527 	Opt_grpquota_block_hardlimit,
4528 	Opt_grpquota_inode_hardlimit,
4529 	Opt_casefold_version,
4530 	Opt_casefold,
4531 	Opt_strict_encoding,
4532 };
4533 
4534 static const struct constant_table shmem_param_enums_huge[] = {
4535 	{"never",	SHMEM_HUGE_NEVER },
4536 	{"always",	SHMEM_HUGE_ALWAYS },
4537 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
4538 	{"advise",	SHMEM_HUGE_ADVISE },
4539 	{}
4540 };
4541 
4542 const struct fs_parameter_spec shmem_fs_parameters[] = {
4543 	fsparam_gid   ("gid",		Opt_gid),
4544 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
4545 	fsparam_u32oct("mode",		Opt_mode),
4546 	fsparam_string("mpol",		Opt_mpol),
4547 	fsparam_string("nr_blocks",	Opt_nr_blocks),
4548 	fsparam_string("nr_inodes",	Opt_nr_inodes),
4549 	fsparam_string("size",		Opt_size),
4550 	fsparam_uid   ("uid",		Opt_uid),
4551 	fsparam_flag  ("inode32",	Opt_inode32),
4552 	fsparam_flag  ("inode64",	Opt_inode64),
4553 	fsparam_flag  ("noswap",	Opt_noswap),
4554 #ifdef CONFIG_TMPFS_QUOTA
4555 	fsparam_flag  ("quota",		Opt_quota),
4556 	fsparam_flag  ("usrquota",	Opt_usrquota),
4557 	fsparam_flag  ("grpquota",	Opt_grpquota),
4558 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4559 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4560 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4561 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4562 #endif
4563 	fsparam_string("casefold",	Opt_casefold_version),
4564 	fsparam_flag  ("casefold",	Opt_casefold),
4565 	fsparam_flag  ("strict_encoding", Opt_strict_encoding),
4566 	{}
4567 };
4568 
4569 #if IS_ENABLED(CONFIG_UNICODE)
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4570 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4571 				    bool latest_version)
4572 {
4573 	struct shmem_options *ctx = fc->fs_private;
4574 	int version = UTF8_LATEST;
4575 	struct unicode_map *encoding;
4576 	char *version_str = param->string + 5;
4577 
4578 	if (!latest_version) {
4579 		if (strncmp(param->string, "utf8-", 5))
4580 			return invalfc(fc, "Only UTF-8 encodings are supported "
4581 				       "in the format: utf8-<version number>");
4582 
4583 		version = utf8_parse_version(version_str);
4584 		if (version < 0)
4585 			return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
4586 	}
4587 
4588 	encoding = utf8_load(version);
4589 
4590 	if (IS_ERR(encoding)) {
4591 		return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
4592 			       unicode_major(version), unicode_minor(version),
4593 			       unicode_rev(version));
4594 	}
4595 
4596 	pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
4597 		unicode_major(version), unicode_minor(version), unicode_rev(version));
4598 
4599 	ctx->encoding = encoding;
4600 
4601 	return 0;
4602 }
4603 #else
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4604 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4605 				    bool latest_version)
4606 {
4607 	return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4608 }
4609 #endif
4610 
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)4611 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4612 {
4613 	struct shmem_options *ctx = fc->fs_private;
4614 	struct fs_parse_result result;
4615 	unsigned long long size;
4616 	char *rest;
4617 	int opt;
4618 	kuid_t kuid;
4619 	kgid_t kgid;
4620 
4621 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4622 	if (opt < 0)
4623 		return opt;
4624 
4625 	switch (opt) {
4626 	case Opt_size:
4627 		size = memparse(param->string, &rest);
4628 		if (*rest == '%') {
4629 			size <<= PAGE_SHIFT;
4630 			size *= totalram_pages();
4631 			do_div(size, 100);
4632 			rest++;
4633 		}
4634 		if (*rest)
4635 			goto bad_value;
4636 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4637 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4638 		break;
4639 	case Opt_nr_blocks:
4640 		ctx->blocks = memparse(param->string, &rest);
4641 		if (*rest || ctx->blocks > LONG_MAX)
4642 			goto bad_value;
4643 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4644 		break;
4645 	case Opt_nr_inodes:
4646 		ctx->inodes = memparse(param->string, &rest);
4647 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4648 			goto bad_value;
4649 		ctx->seen |= SHMEM_SEEN_INODES;
4650 		break;
4651 	case Opt_mode:
4652 		ctx->mode = result.uint_32 & 07777;
4653 		break;
4654 	case Opt_uid:
4655 		kuid = result.uid;
4656 
4657 		/*
4658 		 * The requested uid must be representable in the
4659 		 * filesystem's idmapping.
4660 		 */
4661 		if (!kuid_has_mapping(fc->user_ns, kuid))
4662 			goto bad_value;
4663 
4664 		ctx->uid = kuid;
4665 		break;
4666 	case Opt_gid:
4667 		kgid = result.gid;
4668 
4669 		/*
4670 		 * The requested gid must be representable in the
4671 		 * filesystem's idmapping.
4672 		 */
4673 		if (!kgid_has_mapping(fc->user_ns, kgid))
4674 			goto bad_value;
4675 
4676 		ctx->gid = kgid;
4677 		break;
4678 	case Opt_huge:
4679 		ctx->huge = result.uint_32;
4680 		if (ctx->huge != SHMEM_HUGE_NEVER &&
4681 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4682 		      has_transparent_hugepage()))
4683 			goto unsupported_parameter;
4684 		ctx->seen |= SHMEM_SEEN_HUGE;
4685 		break;
4686 	case Opt_mpol:
4687 		if (IS_ENABLED(CONFIG_NUMA)) {
4688 			mpol_put(ctx->mpol);
4689 			ctx->mpol = NULL;
4690 			if (mpol_parse_str(param->string, &ctx->mpol))
4691 				goto bad_value;
4692 			break;
4693 		}
4694 		goto unsupported_parameter;
4695 	case Opt_inode32:
4696 		ctx->full_inums = false;
4697 		ctx->seen |= SHMEM_SEEN_INUMS;
4698 		break;
4699 	case Opt_inode64:
4700 		if (sizeof(ino_t) < 8) {
4701 			return invalfc(fc,
4702 				       "Cannot use inode64 with <64bit inums in kernel\n");
4703 		}
4704 		ctx->full_inums = true;
4705 		ctx->seen |= SHMEM_SEEN_INUMS;
4706 		break;
4707 	case Opt_noswap:
4708 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4709 			return invalfc(fc,
4710 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4711 		}
4712 		ctx->noswap = true;
4713 		break;
4714 	case Opt_quota:
4715 		if (fc->user_ns != &init_user_ns)
4716 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4717 		ctx->seen |= SHMEM_SEEN_QUOTA;
4718 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4719 		break;
4720 	case Opt_usrquota:
4721 		if (fc->user_ns != &init_user_ns)
4722 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4723 		ctx->seen |= SHMEM_SEEN_QUOTA;
4724 		ctx->quota_types |= QTYPE_MASK_USR;
4725 		break;
4726 	case Opt_grpquota:
4727 		if (fc->user_ns != &init_user_ns)
4728 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4729 		ctx->seen |= SHMEM_SEEN_QUOTA;
4730 		ctx->quota_types |= QTYPE_MASK_GRP;
4731 		break;
4732 	case Opt_usrquota_block_hardlimit:
4733 		size = memparse(param->string, &rest);
4734 		if (*rest || !size)
4735 			goto bad_value;
4736 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4737 			return invalfc(fc,
4738 				       "User quota block hardlimit too large.");
4739 		ctx->qlimits.usrquota_bhardlimit = size;
4740 		break;
4741 	case Opt_grpquota_block_hardlimit:
4742 		size = memparse(param->string, &rest);
4743 		if (*rest || !size)
4744 			goto bad_value;
4745 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4746 			return invalfc(fc,
4747 				       "Group quota block hardlimit too large.");
4748 		ctx->qlimits.grpquota_bhardlimit = size;
4749 		break;
4750 	case Opt_usrquota_inode_hardlimit:
4751 		size = memparse(param->string, &rest);
4752 		if (*rest || !size)
4753 			goto bad_value;
4754 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4755 			return invalfc(fc,
4756 				       "User quota inode hardlimit too large.");
4757 		ctx->qlimits.usrquota_ihardlimit = size;
4758 		break;
4759 	case Opt_grpquota_inode_hardlimit:
4760 		size = memparse(param->string, &rest);
4761 		if (*rest || !size)
4762 			goto bad_value;
4763 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4764 			return invalfc(fc,
4765 				       "Group quota inode hardlimit too large.");
4766 		ctx->qlimits.grpquota_ihardlimit = size;
4767 		break;
4768 	case Opt_casefold_version:
4769 		return shmem_parse_opt_casefold(fc, param, false);
4770 	case Opt_casefold:
4771 		return shmem_parse_opt_casefold(fc, param, true);
4772 	case Opt_strict_encoding:
4773 #if IS_ENABLED(CONFIG_UNICODE)
4774 		ctx->strict_encoding = true;
4775 		break;
4776 #else
4777 		return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4778 #endif
4779 	}
4780 	return 0;
4781 
4782 unsupported_parameter:
4783 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4784 bad_value:
4785 	return invalfc(fc, "Bad value for '%s'", param->key);
4786 }
4787 
shmem_next_opt(char ** s)4788 static char *shmem_next_opt(char **s)
4789 {
4790 	char *sbegin = *s;
4791 	char *p;
4792 
4793 	if (sbegin == NULL)
4794 		return NULL;
4795 
4796 	/*
4797 	 * NUL-terminate this option: unfortunately,
4798 	 * mount options form a comma-separated list,
4799 	 * but mpol's nodelist may also contain commas.
4800 	 */
4801 	for (;;) {
4802 		p = strchr(*s, ',');
4803 		if (p == NULL)
4804 			break;
4805 		*s = p + 1;
4806 		if (!isdigit(*(p+1))) {
4807 			*p = '\0';
4808 			return sbegin;
4809 		}
4810 	}
4811 
4812 	*s = NULL;
4813 	return sbegin;
4814 }
4815 
shmem_parse_monolithic(struct fs_context * fc,void * data)4816 static int shmem_parse_monolithic(struct fs_context *fc, void *data)
4817 {
4818 	return vfs_parse_monolithic_sep(fc, data, shmem_next_opt);
4819 }
4820 
4821 /*
4822  * Reconfigure a shmem filesystem.
4823  */
shmem_reconfigure(struct fs_context * fc)4824 static int shmem_reconfigure(struct fs_context *fc)
4825 {
4826 	struct shmem_options *ctx = fc->fs_private;
4827 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4828 	unsigned long used_isp;
4829 	struct mempolicy *mpol = NULL;
4830 	const char *err;
4831 
4832 	raw_spin_lock(&sbinfo->stat_lock);
4833 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4834 
4835 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4836 		if (!sbinfo->max_blocks) {
4837 			err = "Cannot retroactively limit size";
4838 			goto out;
4839 		}
4840 		if (percpu_counter_compare(&sbinfo->used_blocks,
4841 					   ctx->blocks) > 0) {
4842 			err = "Too small a size for current use";
4843 			goto out;
4844 		}
4845 	}
4846 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4847 		if (!sbinfo->max_inodes) {
4848 			err = "Cannot retroactively limit inodes";
4849 			goto out;
4850 		}
4851 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4852 			err = "Too few inodes for current use";
4853 			goto out;
4854 		}
4855 	}
4856 
4857 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4858 	    sbinfo->next_ino > UINT_MAX) {
4859 		err = "Current inum too high to switch to 32-bit inums";
4860 		goto out;
4861 	}
4862 
4863 	/*
4864 	 * "noswap" doesn't use fsparam_flag_no, i.e. there's no "swap"
4865 	 * counterpart for (re-)enabling swap.
4866 	 */
4867 	if (ctx->noswap && !sbinfo->noswap) {
4868 		err = "Cannot disable swap on remount";
4869 		goto out;
4870 	}
4871 
4872 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4873 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4874 		err = "Cannot enable quota on remount";
4875 		goto out;
4876 	}
4877 
4878 #ifdef CONFIG_TMPFS_QUOTA
4879 #define CHANGED_LIMIT(name)						\
4880 	(ctx->qlimits.name## hardlimit &&				\
4881 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4882 
4883 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4884 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4885 		err = "Cannot change global quota limit on remount";
4886 		goto out;
4887 	}
4888 #endif /* CONFIG_TMPFS_QUOTA */
4889 
4890 	if (ctx->seen & SHMEM_SEEN_HUGE)
4891 		sbinfo->huge = ctx->huge;
4892 	if (ctx->seen & SHMEM_SEEN_INUMS)
4893 		sbinfo->full_inums = ctx->full_inums;
4894 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4895 		sbinfo->max_blocks  = ctx->blocks;
4896 	if (ctx->seen & SHMEM_SEEN_INODES) {
4897 		sbinfo->max_inodes  = ctx->inodes;
4898 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4899 	}
4900 
4901 	/*
4902 	 * Preserve previous mempolicy unless mpol remount option was specified.
4903 	 */
4904 	if (ctx->mpol) {
4905 		mpol = sbinfo->mpol;
4906 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4907 		ctx->mpol = NULL;
4908 	}
4909 
4910 	if (ctx->noswap)
4911 		sbinfo->noswap = true;
4912 
4913 	raw_spin_unlock(&sbinfo->stat_lock);
4914 	mpol_put(mpol);
4915 	return 0;
4916 out:
4917 	raw_spin_unlock(&sbinfo->stat_lock);
4918 	return invalfc(fc, "%s", err);
4919 }
4920 
shmem_show_options(struct seq_file * seq,struct dentry * root)4921 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4922 {
4923 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4924 	struct mempolicy *mpol;
4925 
4926 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4927 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4928 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4929 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4930 	if (sbinfo->mode != (0777 | S_ISVTX))
4931 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4932 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4933 		seq_printf(seq, ",uid=%u",
4934 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4935 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4936 		seq_printf(seq, ",gid=%u",
4937 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4938 
4939 	/*
4940 	 * Showing inode{64,32} might be useful even if it's the system default,
4941 	 * since then people don't have to resort to checking both here and
4942 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4943 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4944 	 *
4945 	 * We hide it when inode64 isn't the default and we are using 32-bit
4946 	 * inodes, since that probably just means the feature isn't even under
4947 	 * consideration.
4948 	 *
4949 	 * As such:
4950 	 *
4951 	 *                     +-----------------+-----------------+
4952 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4953 	 *  +------------------+-----------------+-----------------+
4954 	 *  | full_inums=true  | show            | show            |
4955 	 *  | full_inums=false | show            | hide            |
4956 	 *  +------------------+-----------------+-----------------+
4957 	 *
4958 	 */
4959 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4960 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4961 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4962 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4963 	if (sbinfo->huge)
4964 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4965 #endif
4966 	mpol = shmem_get_sbmpol(sbinfo);
4967 	shmem_show_mpol(seq, mpol);
4968 	mpol_put(mpol);
4969 	if (sbinfo->noswap)
4970 		seq_printf(seq, ",noswap");
4971 #ifdef CONFIG_TMPFS_QUOTA
4972 	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4973 		seq_printf(seq, ",usrquota");
4974 	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4975 		seq_printf(seq, ",grpquota");
4976 	if (sbinfo->qlimits.usrquota_bhardlimit)
4977 		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4978 			   sbinfo->qlimits.usrquota_bhardlimit);
4979 	if (sbinfo->qlimits.grpquota_bhardlimit)
4980 		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4981 			   sbinfo->qlimits.grpquota_bhardlimit);
4982 	if (sbinfo->qlimits.usrquota_ihardlimit)
4983 		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4984 			   sbinfo->qlimits.usrquota_ihardlimit);
4985 	if (sbinfo->qlimits.grpquota_ihardlimit)
4986 		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4987 			   sbinfo->qlimits.grpquota_ihardlimit);
4988 #endif
4989 	return 0;
4990 }
4991 
4992 #endif /* CONFIG_TMPFS */
4993 
shmem_put_super(struct super_block * sb)4994 static void shmem_put_super(struct super_block *sb)
4995 {
4996 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4997 
4998 #if IS_ENABLED(CONFIG_UNICODE)
4999 	if (sb->s_encoding)
5000 		utf8_unload(sb->s_encoding);
5001 #endif
5002 
5003 #ifdef CONFIG_TMPFS_QUOTA
5004 	shmem_disable_quotas(sb);
5005 #endif
5006 	free_percpu(sbinfo->ino_batch);
5007 	percpu_counter_destroy(&sbinfo->used_blocks);
5008 	mpol_put(sbinfo->mpol);
5009 	kfree(sbinfo);
5010 	sb->s_fs_info = NULL;
5011 }
5012 
5013 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
5014 static const struct dentry_operations shmem_ci_dentry_ops = {
5015 	.d_hash = generic_ci_d_hash,
5016 	.d_compare = generic_ci_d_compare,
5017 };
5018 #endif
5019 
shmem_fill_super(struct super_block * sb,struct fs_context * fc)5020 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
5021 {
5022 	struct shmem_options *ctx = fc->fs_private;
5023 	struct inode *inode;
5024 	struct shmem_sb_info *sbinfo;
5025 	int error = -ENOMEM;
5026 
5027 	/* Round up to L1_CACHE_BYTES to resist false sharing */
5028 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
5029 				L1_CACHE_BYTES), GFP_KERNEL);
5030 	if (!sbinfo)
5031 		return error;
5032 
5033 	sb->s_fs_info = sbinfo;
5034 
5035 #ifdef CONFIG_TMPFS
5036 	/*
5037 	 * Per default we only allow half of the physical ram per
5038 	 * tmpfs instance, limiting inodes to one per page of lowmem;
5039 	 * but the internal instance is left unlimited.
5040 	 */
5041 	if (!(sb->s_flags & SB_KERNMOUNT)) {
5042 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
5043 			ctx->blocks = shmem_default_max_blocks();
5044 		if (!(ctx->seen & SHMEM_SEEN_INODES))
5045 			ctx->inodes = shmem_default_max_inodes();
5046 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
5047 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
5048 		sbinfo->noswap = ctx->noswap;
5049 	} else {
5050 		sb->s_flags |= SB_NOUSER;
5051 	}
5052 	sb->s_export_op = &shmem_export_ops;
5053 	sb->s_flags |= SB_NOSEC;
5054 
5055 #if IS_ENABLED(CONFIG_UNICODE)
5056 	if (!ctx->encoding && ctx->strict_encoding) {
5057 		pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
5058 		error = -EINVAL;
5059 		goto failed;
5060 	}
5061 
5062 	if (ctx->encoding) {
5063 		sb->s_encoding = ctx->encoding;
5064 		set_default_d_op(sb, &shmem_ci_dentry_ops);
5065 		if (ctx->strict_encoding)
5066 			sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
5067 	}
5068 #endif
5069 
5070 #else
5071 	sb->s_flags |= SB_NOUSER;
5072 #endif /* CONFIG_TMPFS */
5073 	sb->s_d_flags |= DCACHE_DONTCACHE;
5074 	sbinfo->max_blocks = ctx->blocks;
5075 	sbinfo->max_inodes = ctx->inodes;
5076 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
5077 	if (sb->s_flags & SB_KERNMOUNT) {
5078 		sbinfo->ino_batch = alloc_percpu(ino_t);
5079 		if (!sbinfo->ino_batch)
5080 			goto failed;
5081 	}
5082 	sbinfo->uid = ctx->uid;
5083 	sbinfo->gid = ctx->gid;
5084 	sbinfo->full_inums = ctx->full_inums;
5085 	sbinfo->mode = ctx->mode;
5086 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5087 	if (ctx->seen & SHMEM_SEEN_HUGE)
5088 		sbinfo->huge = ctx->huge;
5089 	else
5090 		sbinfo->huge = tmpfs_huge;
5091 #endif
5092 	sbinfo->mpol = ctx->mpol;
5093 	ctx->mpol = NULL;
5094 
5095 	raw_spin_lock_init(&sbinfo->stat_lock);
5096 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
5097 		goto failed;
5098 	spin_lock_init(&sbinfo->shrinklist_lock);
5099 	INIT_LIST_HEAD(&sbinfo->shrinklist);
5100 
5101 	sb->s_maxbytes = MAX_LFS_FILESIZE;
5102 	sb->s_blocksize = PAGE_SIZE;
5103 	sb->s_blocksize_bits = PAGE_SHIFT;
5104 	sb->s_magic = TMPFS_MAGIC;
5105 	sb->s_op = &shmem_ops;
5106 	sb->s_time_gran = 1;
5107 #ifdef CONFIG_TMPFS_XATTR
5108 	sb->s_xattr = shmem_xattr_handlers;
5109 #endif
5110 #ifdef CONFIG_TMPFS_POSIX_ACL
5111 	sb->s_flags |= SB_POSIXACL;
5112 #endif
5113 	uuid_t uuid;
5114 	uuid_gen(&uuid);
5115 	super_set_uuid(sb, uuid.b, sizeof(uuid));
5116 
5117 #ifdef CONFIG_TMPFS_QUOTA
5118 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
5119 		sb->dq_op = &shmem_quota_operations;
5120 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5121 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
5122 
5123 		/* Copy the default limits from ctx into sbinfo */
5124 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
5125 		       sizeof(struct shmem_quota_limits));
5126 
5127 		if (shmem_enable_quotas(sb, ctx->quota_types))
5128 			goto failed;
5129 	}
5130 #endif /* CONFIG_TMPFS_QUOTA */
5131 
5132 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
5133 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
5134 	if (IS_ERR(inode)) {
5135 		error = PTR_ERR(inode);
5136 		goto failed;
5137 	}
5138 	inode->i_uid = sbinfo->uid;
5139 	inode->i_gid = sbinfo->gid;
5140 	sb->s_root = d_make_root(inode);
5141 	if (!sb->s_root)
5142 		goto failed;
5143 	return 0;
5144 
5145 failed:
5146 	shmem_put_super(sb);
5147 	return error;
5148 }
5149 
shmem_get_tree(struct fs_context * fc)5150 static int shmem_get_tree(struct fs_context *fc)
5151 {
5152 	return get_tree_nodev(fc, shmem_fill_super);
5153 }
5154 
shmem_free_fc(struct fs_context * fc)5155 static void shmem_free_fc(struct fs_context *fc)
5156 {
5157 	struct shmem_options *ctx = fc->fs_private;
5158 
5159 	if (ctx) {
5160 		mpol_put(ctx->mpol);
5161 		kfree(ctx);
5162 	}
5163 }
5164 
5165 static const struct fs_context_operations shmem_fs_context_ops = {
5166 	.free			= shmem_free_fc,
5167 	.get_tree		= shmem_get_tree,
5168 #ifdef CONFIG_TMPFS
5169 	.parse_monolithic	= shmem_parse_monolithic,
5170 	.parse_param		= shmem_parse_one,
5171 	.reconfigure		= shmem_reconfigure,
5172 #endif
5173 };
5174 
5175 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
5176 
shmem_alloc_inode(struct super_block * sb)5177 static struct inode *shmem_alloc_inode(struct super_block *sb)
5178 {
5179 	struct shmem_inode_info *info;
5180 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
5181 	if (!info)
5182 		return NULL;
5183 	return &info->vfs_inode;
5184 }
5185 
shmem_free_in_core_inode(struct inode * inode)5186 static void shmem_free_in_core_inode(struct inode *inode)
5187 {
5188 	if (S_ISLNK(inode->i_mode))
5189 		kfree(inode->i_link);
5190 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
5191 }
5192 
shmem_destroy_inode(struct inode * inode)5193 static void shmem_destroy_inode(struct inode *inode)
5194 {
5195 	if (S_ISREG(inode->i_mode))
5196 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
5197 	if (S_ISDIR(inode->i_mode))
5198 		simple_offset_destroy(shmem_get_offset_ctx(inode));
5199 }
5200 
shmem_init_inode(void * foo)5201 static void shmem_init_inode(void *foo)
5202 {
5203 	struct shmem_inode_info *info = foo;
5204 	inode_init_once(&info->vfs_inode);
5205 }
5206 
shmem_init_inodecache(void)5207 static void __init shmem_init_inodecache(void)
5208 {
5209 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
5210 				sizeof(struct shmem_inode_info),
5211 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
5212 }
5213 
shmem_destroy_inodecache(void)5214 static void __init shmem_destroy_inodecache(void)
5215 {
5216 	kmem_cache_destroy(shmem_inode_cachep);
5217 }
5218 
5219 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_folio(struct address_space * mapping,struct folio * folio)5220 static int shmem_error_remove_folio(struct address_space *mapping,
5221 				   struct folio *folio)
5222 {
5223 	return 0;
5224 }
5225 
5226 static const struct address_space_operations shmem_aops = {
5227 	.dirty_folio	= noop_dirty_folio,
5228 #ifdef CONFIG_TMPFS
5229 	.write_begin	= shmem_write_begin,
5230 	.write_end	= shmem_write_end,
5231 #endif
5232 #ifdef CONFIG_MIGRATION
5233 	.migrate_folio	= migrate_folio,
5234 #endif
5235 	.error_remove_folio = shmem_error_remove_folio,
5236 };
5237 
5238 static const struct file_operations shmem_file_operations = {
5239 	.mmap_prepare	= shmem_mmap_prepare,
5240 	.open		= shmem_file_open,
5241 	.get_unmapped_area = shmem_get_unmapped_area,
5242 #ifdef CONFIG_TMPFS
5243 	.llseek		= shmem_file_llseek,
5244 	.read_iter	= shmem_file_read_iter,
5245 	.write_iter	= shmem_file_write_iter,
5246 	.fsync		= noop_fsync,
5247 	.splice_read	= shmem_file_splice_read,
5248 	.splice_write	= iter_file_splice_write,
5249 	.fallocate	= shmem_fallocate,
5250 #endif
5251 };
5252 
5253 static const struct inode_operations shmem_inode_operations = {
5254 	.getattr	= shmem_getattr,
5255 	.setattr	= shmem_setattr,
5256 #ifdef CONFIG_TMPFS_XATTR
5257 	.listxattr	= shmem_listxattr,
5258 	.set_acl	= simple_set_acl,
5259 	.fileattr_get	= shmem_fileattr_get,
5260 	.fileattr_set	= shmem_fileattr_set,
5261 #endif
5262 };
5263 
5264 static const struct inode_operations shmem_dir_inode_operations = {
5265 #ifdef CONFIG_TMPFS
5266 	.getattr	= shmem_getattr,
5267 	.create		= shmem_create,
5268 	.lookup		= simple_lookup,
5269 	.link		= shmem_link,
5270 	.unlink		= shmem_unlink,
5271 	.symlink	= shmem_symlink,
5272 	.mkdir		= shmem_mkdir,
5273 	.rmdir		= shmem_rmdir,
5274 	.mknod		= shmem_mknod,
5275 	.rename		= shmem_rename2,
5276 	.tmpfile	= shmem_tmpfile,
5277 	.get_offset_ctx	= shmem_get_offset_ctx,
5278 #endif
5279 #ifdef CONFIG_TMPFS_XATTR
5280 	.listxattr	= shmem_listxattr,
5281 	.fileattr_get	= shmem_fileattr_get,
5282 	.fileattr_set	= shmem_fileattr_set,
5283 #endif
5284 #ifdef CONFIG_TMPFS_POSIX_ACL
5285 	.setattr	= shmem_setattr,
5286 	.set_acl	= simple_set_acl,
5287 #endif
5288 };
5289 
5290 static const struct inode_operations shmem_special_inode_operations = {
5291 	.getattr	= shmem_getattr,
5292 #ifdef CONFIG_TMPFS_XATTR
5293 	.listxattr	= shmem_listxattr,
5294 #endif
5295 #ifdef CONFIG_TMPFS_POSIX_ACL
5296 	.setattr	= shmem_setattr,
5297 	.set_acl	= simple_set_acl,
5298 #endif
5299 };
5300 
5301 static const struct super_operations shmem_ops = {
5302 	.alloc_inode	= shmem_alloc_inode,
5303 	.free_inode	= shmem_free_in_core_inode,
5304 	.destroy_inode	= shmem_destroy_inode,
5305 #ifdef CONFIG_TMPFS
5306 	.statfs		= shmem_statfs,
5307 	.show_options	= shmem_show_options,
5308 #endif
5309 #ifdef CONFIG_TMPFS_QUOTA
5310 	.get_dquots	= shmem_get_dquots,
5311 #endif
5312 	.evict_inode	= shmem_evict_inode,
5313 	.drop_inode	= inode_just_drop,
5314 	.put_super	= shmem_put_super,
5315 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5316 	.nr_cached_objects	= shmem_unused_huge_count,
5317 	.free_cached_objects	= shmem_unused_huge_scan,
5318 #endif
5319 };
5320 
5321 static const struct vm_operations_struct shmem_vm_ops = {
5322 	.fault		= shmem_fault,
5323 	.map_pages	= filemap_map_pages,
5324 #ifdef CONFIG_NUMA
5325 	.set_policy     = shmem_set_policy,
5326 	.get_policy     = shmem_get_policy,
5327 #endif
5328 };
5329 
5330 static const struct vm_operations_struct shmem_anon_vm_ops = {
5331 	.fault		= shmem_fault,
5332 	.map_pages	= filemap_map_pages,
5333 #ifdef CONFIG_NUMA
5334 	.set_policy     = shmem_set_policy,
5335 	.get_policy     = shmem_get_policy,
5336 #endif
5337 };
5338 
shmem_init_fs_context(struct fs_context * fc)5339 int shmem_init_fs_context(struct fs_context *fc)
5340 {
5341 	struct shmem_options *ctx;
5342 
5343 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
5344 	if (!ctx)
5345 		return -ENOMEM;
5346 
5347 	ctx->mode = 0777 | S_ISVTX;
5348 	ctx->uid = current_fsuid();
5349 	ctx->gid = current_fsgid();
5350 
5351 #if IS_ENABLED(CONFIG_UNICODE)
5352 	ctx->encoding = NULL;
5353 #endif
5354 
5355 	fc->fs_private = ctx;
5356 	fc->ops = &shmem_fs_context_ops;
5357 #ifdef CONFIG_TMPFS
5358 	fc->sb_flags |= SB_I_VERSION;
5359 #endif
5360 	return 0;
5361 }
5362 
5363 static struct file_system_type shmem_fs_type = {
5364 	.owner		= THIS_MODULE,
5365 	.name		= "tmpfs",
5366 	.init_fs_context = shmem_init_fs_context,
5367 #ifdef CONFIG_TMPFS
5368 	.parameters	= shmem_fs_parameters,
5369 #endif
5370 	.kill_sb	= kill_anon_super,
5371 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
5372 };
5373 
5374 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5375 
5376 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store)			\
5377 {									\
5378 	.attr	= { .name = __stringify(_name), .mode = _mode },	\
5379 	.show	= _show,						\
5380 	.store	= _store,						\
5381 }
5382 
5383 #define TMPFS_ATTR_W(_name, _store)				\
5384 	static struct kobj_attribute tmpfs_attr_##_name =	\
5385 			__INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
5386 
5387 #define TMPFS_ATTR_RW(_name, _show, _store)			\
5388 	static struct kobj_attribute tmpfs_attr_##_name =	\
5389 			__INIT_KOBJ_ATTR(_name, 0644, _show, _store)
5390 
5391 #define TMPFS_ATTR_RO(_name, _show)				\
5392 	static struct kobj_attribute tmpfs_attr_##_name =	\
5393 			__INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
5394 
5395 #if IS_ENABLED(CONFIG_UNICODE)
casefold_show(struct kobject * kobj,struct kobj_attribute * a,char * buf)5396 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
5397 			char *buf)
5398 {
5399 		return sysfs_emit(buf, "supported\n");
5400 }
5401 TMPFS_ATTR_RO(casefold, casefold_show);
5402 #endif
5403 
5404 static struct attribute *tmpfs_attributes[] = {
5405 #if IS_ENABLED(CONFIG_UNICODE)
5406 	&tmpfs_attr_casefold.attr,
5407 #endif
5408 	NULL
5409 };
5410 
5411 static const struct attribute_group tmpfs_attribute_group = {
5412 	.attrs = tmpfs_attributes,
5413 	.name = "features"
5414 };
5415 
5416 static struct kobject *tmpfs_kobj;
5417 
tmpfs_sysfs_init(void)5418 static int __init tmpfs_sysfs_init(void)
5419 {
5420 	int ret;
5421 
5422 	tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj);
5423 	if (!tmpfs_kobj)
5424 		return -ENOMEM;
5425 
5426 	ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group);
5427 	if (ret)
5428 		kobject_put(tmpfs_kobj);
5429 
5430 	return ret;
5431 }
5432 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */
5433 
shmem_init(void)5434 void __init shmem_init(void)
5435 {
5436 	int error;
5437 
5438 	shmem_init_inodecache();
5439 
5440 #ifdef CONFIG_TMPFS_QUOTA
5441 	register_quota_format(&shmem_quota_format);
5442 #endif
5443 
5444 	error = register_filesystem(&shmem_fs_type);
5445 	if (error) {
5446 		pr_err("Could not register tmpfs\n");
5447 		goto out2;
5448 	}
5449 
5450 	shm_mnt = kern_mount(&shmem_fs_type);
5451 	if (IS_ERR(shm_mnt)) {
5452 		error = PTR_ERR(shm_mnt);
5453 		pr_err("Could not kern_mount tmpfs\n");
5454 		goto out1;
5455 	}
5456 
5457 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5458 	error = tmpfs_sysfs_init();
5459 	if (error) {
5460 		pr_err("Could not init tmpfs sysfs\n");
5461 		goto out1;
5462 	}
5463 #endif
5464 
5465 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5466 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5467 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5468 	else
5469 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5470 
5471 	/*
5472 	 * Default to setting PMD-sized THP to inherit the global setting and
5473 	 * disable all other multi-size THPs.
5474 	 */
5475 	if (!shmem_orders_configured)
5476 		huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5477 #endif
5478 	return;
5479 
5480 out1:
5481 	unregister_filesystem(&shmem_fs_type);
5482 out2:
5483 #ifdef CONFIG_TMPFS_QUOTA
5484 	unregister_quota_format(&shmem_quota_format);
5485 #endif
5486 	shmem_destroy_inodecache();
5487 	shm_mnt = ERR_PTR(error);
5488 }
5489 
5490 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5491 static ssize_t shmem_enabled_show(struct kobject *kobj,
5492 				  struct kobj_attribute *attr, char *buf)
5493 {
5494 	static const int values[] = {
5495 		SHMEM_HUGE_ALWAYS,
5496 		SHMEM_HUGE_WITHIN_SIZE,
5497 		SHMEM_HUGE_ADVISE,
5498 		SHMEM_HUGE_NEVER,
5499 		SHMEM_HUGE_DENY,
5500 		SHMEM_HUGE_FORCE,
5501 	};
5502 	int len = 0;
5503 	int i;
5504 
5505 	for (i = 0; i < ARRAY_SIZE(values); i++) {
5506 		len += sysfs_emit_at(buf, len,
5507 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5508 				i ? " " : "", shmem_format_huge(values[i]));
5509 	}
5510 	len += sysfs_emit_at(buf, len, "\n");
5511 
5512 	return len;
5513 }
5514 
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5515 static ssize_t shmem_enabled_store(struct kobject *kobj,
5516 		struct kobj_attribute *attr, const char *buf, size_t count)
5517 {
5518 	char tmp[16];
5519 	int huge, err;
5520 
5521 	if (count + 1 > sizeof(tmp))
5522 		return -EINVAL;
5523 	memcpy(tmp, buf, count);
5524 	tmp[count] = '\0';
5525 	if (count && tmp[count - 1] == '\n')
5526 		tmp[count - 1] = '\0';
5527 
5528 	huge = shmem_parse_huge(tmp);
5529 	if (huge == -EINVAL)
5530 		return huge;
5531 
5532 	shmem_huge = huge;
5533 	if (shmem_huge > SHMEM_HUGE_DENY)
5534 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5535 
5536 	err = start_stop_khugepaged();
5537 	return err ? err : count;
5538 }
5539 
5540 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5541 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5542 
thpsize_shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5543 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5544 					  struct kobj_attribute *attr, char *buf)
5545 {
5546 	int order = to_thpsize(kobj)->order;
5547 	const char *output;
5548 
5549 	if (test_bit(order, &huge_shmem_orders_always))
5550 		output = "[always] inherit within_size advise never";
5551 	else if (test_bit(order, &huge_shmem_orders_inherit))
5552 		output = "always [inherit] within_size advise never";
5553 	else if (test_bit(order, &huge_shmem_orders_within_size))
5554 		output = "always inherit [within_size] advise never";
5555 	else if (test_bit(order, &huge_shmem_orders_madvise))
5556 		output = "always inherit within_size [advise] never";
5557 	else
5558 		output = "always inherit within_size advise [never]";
5559 
5560 	return sysfs_emit(buf, "%s\n", output);
5561 }
5562 
thpsize_shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5563 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5564 					   struct kobj_attribute *attr,
5565 					   const char *buf, size_t count)
5566 {
5567 	int order = to_thpsize(kobj)->order;
5568 	ssize_t ret = count;
5569 
5570 	if (sysfs_streq(buf, "always")) {
5571 		spin_lock(&huge_shmem_orders_lock);
5572 		clear_bit(order, &huge_shmem_orders_inherit);
5573 		clear_bit(order, &huge_shmem_orders_madvise);
5574 		clear_bit(order, &huge_shmem_orders_within_size);
5575 		set_bit(order, &huge_shmem_orders_always);
5576 		spin_unlock(&huge_shmem_orders_lock);
5577 	} else if (sysfs_streq(buf, "inherit")) {
5578 		/* Do not override huge allocation policy with non-PMD sized mTHP */
5579 		if (shmem_huge == SHMEM_HUGE_FORCE &&
5580 		    order != HPAGE_PMD_ORDER)
5581 			return -EINVAL;
5582 
5583 		spin_lock(&huge_shmem_orders_lock);
5584 		clear_bit(order, &huge_shmem_orders_always);
5585 		clear_bit(order, &huge_shmem_orders_madvise);
5586 		clear_bit(order, &huge_shmem_orders_within_size);
5587 		set_bit(order, &huge_shmem_orders_inherit);
5588 		spin_unlock(&huge_shmem_orders_lock);
5589 	} else if (sysfs_streq(buf, "within_size")) {
5590 		spin_lock(&huge_shmem_orders_lock);
5591 		clear_bit(order, &huge_shmem_orders_always);
5592 		clear_bit(order, &huge_shmem_orders_inherit);
5593 		clear_bit(order, &huge_shmem_orders_madvise);
5594 		set_bit(order, &huge_shmem_orders_within_size);
5595 		spin_unlock(&huge_shmem_orders_lock);
5596 	} else if (sysfs_streq(buf, "advise")) {
5597 		spin_lock(&huge_shmem_orders_lock);
5598 		clear_bit(order, &huge_shmem_orders_always);
5599 		clear_bit(order, &huge_shmem_orders_inherit);
5600 		clear_bit(order, &huge_shmem_orders_within_size);
5601 		set_bit(order, &huge_shmem_orders_madvise);
5602 		spin_unlock(&huge_shmem_orders_lock);
5603 	} else if (sysfs_streq(buf, "never")) {
5604 		spin_lock(&huge_shmem_orders_lock);
5605 		clear_bit(order, &huge_shmem_orders_always);
5606 		clear_bit(order, &huge_shmem_orders_inherit);
5607 		clear_bit(order, &huge_shmem_orders_within_size);
5608 		clear_bit(order, &huge_shmem_orders_madvise);
5609 		spin_unlock(&huge_shmem_orders_lock);
5610 	} else {
5611 		ret = -EINVAL;
5612 	}
5613 
5614 	if (ret > 0) {
5615 		int err = start_stop_khugepaged();
5616 
5617 		if (err)
5618 			ret = err;
5619 	}
5620 	return ret;
5621 }
5622 
5623 struct kobj_attribute thpsize_shmem_enabled_attr =
5624 	__ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5625 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5626 
5627 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
5628 
setup_transparent_hugepage_shmem(char * str)5629 static int __init setup_transparent_hugepage_shmem(char *str)
5630 {
5631 	int huge;
5632 
5633 	huge = shmem_parse_huge(str);
5634 	if (huge == -EINVAL) {
5635 		pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n");
5636 		return huge;
5637 	}
5638 
5639 	shmem_huge = huge;
5640 	return 1;
5641 }
5642 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem);
5643 
setup_transparent_hugepage_tmpfs(char * str)5644 static int __init setup_transparent_hugepage_tmpfs(char *str)
5645 {
5646 	int huge;
5647 
5648 	huge = shmem_parse_huge(str);
5649 	if (huge < 0) {
5650 		pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n");
5651 		return huge;
5652 	}
5653 
5654 	tmpfs_huge = huge;
5655 	return 1;
5656 }
5657 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs);
5658 
5659 static char str_dup[PAGE_SIZE] __initdata;
setup_thp_shmem(char * str)5660 static int __init setup_thp_shmem(char *str)
5661 {
5662 	char *token, *range, *policy, *subtoken;
5663 	unsigned long always, inherit, madvise, within_size;
5664 	char *start_size, *end_size;
5665 	int start, end, nr;
5666 	char *p;
5667 
5668 	if (!str || strlen(str) + 1 > PAGE_SIZE)
5669 		goto err;
5670 	strscpy(str_dup, str);
5671 
5672 	always = huge_shmem_orders_always;
5673 	inherit = huge_shmem_orders_inherit;
5674 	madvise = huge_shmem_orders_madvise;
5675 	within_size = huge_shmem_orders_within_size;
5676 	p = str_dup;
5677 	while ((token = strsep(&p, ";")) != NULL) {
5678 		range = strsep(&token, ":");
5679 		policy = token;
5680 
5681 		if (!policy)
5682 			goto err;
5683 
5684 		while ((subtoken = strsep(&range, ",")) != NULL) {
5685 			if (strchr(subtoken, '-')) {
5686 				start_size = strsep(&subtoken, "-");
5687 				end_size = subtoken;
5688 
5689 				start = get_order_from_str(start_size,
5690 							   THP_ORDERS_ALL_FILE_DEFAULT);
5691 				end = get_order_from_str(end_size,
5692 							 THP_ORDERS_ALL_FILE_DEFAULT);
5693 			} else {
5694 				start_size = end_size = subtoken;
5695 				start = end = get_order_from_str(subtoken,
5696 								 THP_ORDERS_ALL_FILE_DEFAULT);
5697 			}
5698 
5699 			if (start < 0) {
5700 				pr_err("invalid size %s in thp_shmem boot parameter\n",
5701 				       start_size);
5702 				goto err;
5703 			}
5704 
5705 			if (end < 0) {
5706 				pr_err("invalid size %s in thp_shmem boot parameter\n",
5707 				       end_size);
5708 				goto err;
5709 			}
5710 
5711 			if (start > end)
5712 				goto err;
5713 
5714 			nr = end - start + 1;
5715 			if (!strcmp(policy, "always")) {
5716 				bitmap_set(&always, start, nr);
5717 				bitmap_clear(&inherit, start, nr);
5718 				bitmap_clear(&madvise, start, nr);
5719 				bitmap_clear(&within_size, start, nr);
5720 			} else if (!strcmp(policy, "advise")) {
5721 				bitmap_set(&madvise, start, nr);
5722 				bitmap_clear(&inherit, start, nr);
5723 				bitmap_clear(&always, start, nr);
5724 				bitmap_clear(&within_size, start, nr);
5725 			} else if (!strcmp(policy, "inherit")) {
5726 				bitmap_set(&inherit, start, nr);
5727 				bitmap_clear(&madvise, start, nr);
5728 				bitmap_clear(&always, start, nr);
5729 				bitmap_clear(&within_size, start, nr);
5730 			} else if (!strcmp(policy, "within_size")) {
5731 				bitmap_set(&within_size, start, nr);
5732 				bitmap_clear(&inherit, start, nr);
5733 				bitmap_clear(&madvise, start, nr);
5734 				bitmap_clear(&always, start, nr);
5735 			} else if (!strcmp(policy, "never")) {
5736 				bitmap_clear(&inherit, start, nr);
5737 				bitmap_clear(&madvise, start, nr);
5738 				bitmap_clear(&always, start, nr);
5739 				bitmap_clear(&within_size, start, nr);
5740 			} else {
5741 				pr_err("invalid policy %s in thp_shmem boot parameter\n", policy);
5742 				goto err;
5743 			}
5744 		}
5745 	}
5746 
5747 	huge_shmem_orders_always = always;
5748 	huge_shmem_orders_madvise = madvise;
5749 	huge_shmem_orders_inherit = inherit;
5750 	huge_shmem_orders_within_size = within_size;
5751 	shmem_orders_configured = true;
5752 	return 1;
5753 
5754 err:
5755 	pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str);
5756 	return 0;
5757 }
5758 __setup("thp_shmem=", setup_thp_shmem);
5759 
5760 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5761 
5762 #else /* !CONFIG_SHMEM */
5763 
5764 /*
5765  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5766  *
5767  * This is intended for small system where the benefits of the full
5768  * shmem code (swap-backed and resource-limited) are outweighed by
5769  * their complexity. On systems without swap this code should be
5770  * effectively equivalent, but much lighter weight.
5771  */
5772 
5773 static struct file_system_type shmem_fs_type = {
5774 	.name		= "tmpfs",
5775 	.init_fs_context = ramfs_init_fs_context,
5776 	.parameters	= ramfs_fs_parameters,
5777 	.kill_sb	= ramfs_kill_sb,
5778 	.fs_flags	= FS_USERNS_MOUNT,
5779 };
5780 
shmem_init(void)5781 void __init shmem_init(void)
5782 {
5783 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5784 
5785 	shm_mnt = kern_mount(&shmem_fs_type);
5786 	BUG_ON(IS_ERR(shm_mnt));
5787 }
5788 
shmem_unuse(unsigned int type)5789 int shmem_unuse(unsigned int type)
5790 {
5791 	return 0;
5792 }
5793 
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)5794 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5795 {
5796 	return 0;
5797 }
5798 
shmem_unlock_mapping(struct address_space * mapping)5799 void shmem_unlock_mapping(struct address_space *mapping)
5800 {
5801 }
5802 
5803 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)5804 unsigned long shmem_get_unmapped_area(struct file *file,
5805 				      unsigned long addr, unsigned long len,
5806 				      unsigned long pgoff, unsigned long flags)
5807 {
5808 	return mm_get_unmapped_area(file, addr, len, pgoff, flags);
5809 }
5810 #endif
5811 
shmem_truncate_range(struct inode * inode,loff_t lstart,uoff_t lend)5812 void shmem_truncate_range(struct inode *inode, loff_t lstart, uoff_t lend)
5813 {
5814 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5815 }
5816 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5817 
5818 #define shmem_vm_ops				generic_file_vm_ops
5819 #define shmem_anon_vm_ops			generic_file_vm_ops
5820 #define shmem_file_operations			ramfs_file_operations
5821 
shmem_acct_size(unsigned long flags,loff_t size)5822 static inline int shmem_acct_size(unsigned long flags, loff_t size)
5823 {
5824 	return 0;
5825 }
5826 
shmem_unacct_size(unsigned long flags,loff_t size)5827 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
5828 {
5829 }
5830 
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)5831 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5832 				struct super_block *sb, struct inode *dir,
5833 				umode_t mode, dev_t dev, unsigned long flags)
5834 {
5835 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5836 	return inode ? inode : ERR_PTR(-ENOSPC);
5837 }
5838 
5839 #endif /* CONFIG_SHMEM */
5840 
5841 /* common code */
5842 
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long vm_flags,unsigned int i_flags)5843 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5844 				       loff_t size, unsigned long vm_flags,
5845 				       unsigned int i_flags)
5846 {
5847 	unsigned long flags = (vm_flags & VM_NORESERVE) ? SHMEM_F_NORESERVE : 0;
5848 	struct inode *inode;
5849 	struct file *res;
5850 
5851 	if (IS_ERR(mnt))
5852 		return ERR_CAST(mnt);
5853 
5854 	if (size < 0 || size > MAX_LFS_FILESIZE)
5855 		return ERR_PTR(-EINVAL);
5856 
5857 	if (is_idmapped_mnt(mnt))
5858 		return ERR_PTR(-EINVAL);
5859 
5860 	if (shmem_acct_size(flags, size))
5861 		return ERR_PTR(-ENOMEM);
5862 
5863 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5864 				S_IFREG | S_IRWXUGO, 0, vm_flags);
5865 	if (IS_ERR(inode)) {
5866 		shmem_unacct_size(flags, size);
5867 		return ERR_CAST(inode);
5868 	}
5869 	inode->i_flags |= i_flags;
5870 	inode->i_size = size;
5871 	clear_nlink(inode);	/* It is unlinked */
5872 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5873 	if (!IS_ERR(res))
5874 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5875 				&shmem_file_operations);
5876 	if (IS_ERR(res))
5877 		iput(inode);
5878 	return res;
5879 }
5880 
5881 /**
5882  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5883  * 	kernel internal.  There will be NO LSM permission checks against the
5884  * 	underlying inode.  So users of this interface must do LSM checks at a
5885  *	higher layer.  The users are the big_key and shm implementations.  LSM
5886  *	checks are provided at the key or shm level rather than the inode.
5887  * @name: name for dentry (to be seen in /proc/<pid>/maps)
5888  * @size: size to be set for the file
5889  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5890  */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)5891 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5892 {
5893 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5894 }
5895 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5896 
5897 /**
5898  * shmem_file_setup - get an unlinked file living in tmpfs
5899  * @name: name for dentry (to be seen in /proc/<pid>/maps)
5900  * @size: size to be set for the file
5901  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5902  */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)5903 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5904 {
5905 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5906 }
5907 EXPORT_SYMBOL_GPL(shmem_file_setup);
5908 
5909 /**
5910  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5911  * @mnt: the tmpfs mount where the file will be created
5912  * @name: name for dentry (to be seen in /proc/<pid>/maps)
5913  * @size: size to be set for the file
5914  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5915  */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)5916 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5917 				       loff_t size, unsigned long flags)
5918 {
5919 	return __shmem_file_setup(mnt, name, size, flags, 0);
5920 }
5921 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5922 
__shmem_zero_setup(unsigned long start,unsigned long end,vm_flags_t vm_flags)5923 static struct file *__shmem_zero_setup(unsigned long start, unsigned long end, vm_flags_t vm_flags)
5924 {
5925 	loff_t size = end - start;
5926 
5927 	/*
5928 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5929 	 * between XFS directory reading and selinux: since this file is only
5930 	 * accessible to the user through its mapping, use S_PRIVATE flag to
5931 	 * bypass file security, in the same way as shmem_kernel_file_setup().
5932 	 */
5933 	return shmem_kernel_file_setup("dev/zero", size, vm_flags);
5934 }
5935 
5936 /**
5937  * shmem_zero_setup - setup a shared anonymous mapping
5938  * @vma: the vma to be mmapped is prepared by do_mmap
5939  * Returns: 0 on success, or error
5940  */
shmem_zero_setup(struct vm_area_struct * vma)5941 int shmem_zero_setup(struct vm_area_struct *vma)
5942 {
5943 	struct file *file = __shmem_zero_setup(vma->vm_start, vma->vm_end, vma->vm_flags);
5944 
5945 	if (IS_ERR(file))
5946 		return PTR_ERR(file);
5947 
5948 	if (vma->vm_file)
5949 		fput(vma->vm_file);
5950 	vma->vm_file = file;
5951 	vma->vm_ops = &shmem_anon_vm_ops;
5952 
5953 	return 0;
5954 }
5955 
5956 /**
5957  * shmem_zero_setup_desc - same as shmem_zero_setup, but determined by VMA
5958  * descriptor for convenience.
5959  * @desc: Describes VMA
5960  * Returns: 0 on success, or error
5961  */
shmem_zero_setup_desc(struct vm_area_desc * desc)5962 int shmem_zero_setup_desc(struct vm_area_desc *desc)
5963 {
5964 	struct file *file = __shmem_zero_setup(desc->start, desc->end, desc->vm_flags);
5965 
5966 	if (IS_ERR(file))
5967 		return PTR_ERR(file);
5968 
5969 	desc->vm_file = file;
5970 	desc->vm_ops = &shmem_anon_vm_ops;
5971 
5972 	return 0;
5973 }
5974 
5975 /**
5976  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5977  * @mapping:	the folio's address_space
5978  * @index:	the folio index
5979  * @gfp:	the page allocator flags to use if allocating
5980  *
5981  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5982  * with any new page allocations done using the specified allocation flags.
5983  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5984  * suit tmpfs, since it may have pages in swapcache, and needs to find those
5985  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5986  *
5987  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5988  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5989  */
shmem_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5990 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5991 		pgoff_t index, gfp_t gfp)
5992 {
5993 #ifdef CONFIG_SHMEM
5994 	struct inode *inode = mapping->host;
5995 	struct folio *folio;
5996 	int error;
5997 
5998 	error = shmem_get_folio_gfp(inode, index, i_size_read(inode),
5999 				    &folio, SGP_CACHE, gfp, NULL, NULL);
6000 	if (error)
6001 		return ERR_PTR(error);
6002 
6003 	folio_unlock(folio);
6004 	return folio;
6005 #else
6006 	/*
6007 	 * The tiny !SHMEM case uses ramfs without swap
6008 	 */
6009 	return mapping_read_folio_gfp(mapping, index, gfp);
6010 #endif
6011 }
6012 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
6013 
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)6014 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
6015 					 pgoff_t index, gfp_t gfp)
6016 {
6017 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
6018 	struct page *page;
6019 
6020 	if (IS_ERR(folio))
6021 		return &folio->page;
6022 
6023 	page = folio_file_page(folio, index);
6024 	if (PageHWPoison(page)) {
6025 		folio_put(folio);
6026 		return ERR_PTR(-EIO);
6027 	}
6028 
6029 	return page;
6030 }
6031 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
6032