1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/sort.h>
41 #include <linux/completion.h>
42 #include <linux/suspend.h>
43 #include <linux/zswap.h>
44 #include <linux/plist.h>
45
46 #include <asm/tlbflush.h>
47 #include <linux/swapops.h>
48 #include <linux/swap_cgroup.h>
49 #include "internal.h"
50 #include "swap.h"
51
52 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
53 unsigned char);
54 static void free_swap_count_continuations(struct swap_info_struct *);
55 static void swap_entries_free(struct swap_info_struct *si,
56 struct swap_cluster_info *ci,
57 swp_entry_t entry, unsigned int nr_pages);
58 static void swap_range_alloc(struct swap_info_struct *si,
59 unsigned int nr_entries);
60 static bool folio_swapcache_freeable(struct folio *folio);
61 static struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
62 unsigned long offset);
63 static inline void unlock_cluster(struct swap_cluster_info *ci);
64
65 static DEFINE_SPINLOCK(swap_lock);
66 static unsigned int nr_swapfiles;
67 atomic_long_t nr_swap_pages;
68 /*
69 * Some modules use swappable objects and may try to swap them out under
70 * memory pressure (via the shrinker). Before doing so, they may wish to
71 * check to see if any swap space is available.
72 */
73 EXPORT_SYMBOL_GPL(nr_swap_pages);
74 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
75 long total_swap_pages;
76 static int least_priority = -1;
77 unsigned long swapfile_maximum_size;
78 #ifdef CONFIG_MIGRATION
79 bool swap_migration_ad_supported;
80 #endif /* CONFIG_MIGRATION */
81
82 static const char Bad_file[] = "Bad swap file entry ";
83 static const char Unused_file[] = "Unused swap file entry ";
84 static const char Bad_offset[] = "Bad swap offset entry ";
85 static const char Unused_offset[] = "Unused swap offset entry ";
86
87 /*
88 * all active swap_info_structs
89 * protected with swap_lock, and ordered by priority.
90 */
91 static PLIST_HEAD(swap_active_head);
92
93 /*
94 * all available (active, not full) swap_info_structs
95 * protected with swap_avail_lock, ordered by priority.
96 * This is used by folio_alloc_swap() instead of swap_active_head
97 * because swap_active_head includes all swap_info_structs,
98 * but folio_alloc_swap() doesn't need to look at full ones.
99 * This uses its own lock instead of swap_lock because when a
100 * swap_info_struct changes between not-full/full, it needs to
101 * add/remove itself to/from this list, but the swap_info_struct->lock
102 * is held and the locking order requires swap_lock to be taken
103 * before any swap_info_struct->lock.
104 */
105 static struct plist_head *swap_avail_heads;
106 static DEFINE_SPINLOCK(swap_avail_lock);
107
108 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
109
110 static DEFINE_MUTEX(swapon_mutex);
111
112 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
113 /* Activity counter to indicate that a swapon or swapoff has occurred */
114 static atomic_t proc_poll_event = ATOMIC_INIT(0);
115
116 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
117
118 struct percpu_swap_cluster {
119 struct swap_info_struct *si[SWAP_NR_ORDERS];
120 unsigned long offset[SWAP_NR_ORDERS];
121 local_lock_t lock;
122 };
123
124 static DEFINE_PER_CPU(struct percpu_swap_cluster, percpu_swap_cluster) = {
125 .si = { NULL },
126 .offset = { SWAP_ENTRY_INVALID },
127 .lock = INIT_LOCAL_LOCK(),
128 };
129
swap_type_to_swap_info(int type)130 static struct swap_info_struct *swap_type_to_swap_info(int type)
131 {
132 if (type >= MAX_SWAPFILES)
133 return NULL;
134
135 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
136 }
137
swap_count(unsigned char ent)138 static inline unsigned char swap_count(unsigned char ent)
139 {
140 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
141 }
142
143 /*
144 * Use the second highest bit of inuse_pages counter as the indicator
145 * if one swap device is on the available plist, so the atomic can
146 * still be updated arithmetically while having special data embedded.
147 *
148 * inuse_pages counter is the only thing indicating if a device should
149 * be on avail_lists or not (except swapon / swapoff). By embedding the
150 * off-list bit in the atomic counter, updates no longer need any lock
151 * to check the list status.
152 *
153 * This bit will be set if the device is not on the plist and not
154 * usable, will be cleared if the device is on the plist.
155 */
156 #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2))
157 #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT)
swap_usage_in_pages(struct swap_info_struct * si)158 static long swap_usage_in_pages(struct swap_info_struct *si)
159 {
160 return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK;
161 }
162
163 /* Reclaim the swap entry anyway if possible */
164 #define TTRS_ANYWAY 0x1
165 /*
166 * Reclaim the swap entry if there are no more mappings of the
167 * corresponding page
168 */
169 #define TTRS_UNMAPPED 0x2
170 /* Reclaim the swap entry if swap is getting full */
171 #define TTRS_FULL 0x4
172
swap_only_has_cache(struct swap_info_struct * si,unsigned long offset,int nr_pages)173 static bool swap_only_has_cache(struct swap_info_struct *si,
174 unsigned long offset, int nr_pages)
175 {
176 unsigned char *map = si->swap_map + offset;
177 unsigned char *map_end = map + nr_pages;
178
179 do {
180 VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
181 if (*map != SWAP_HAS_CACHE)
182 return false;
183 } while (++map < map_end);
184
185 return true;
186 }
187
swap_is_last_map(struct swap_info_struct * si,unsigned long offset,int nr_pages,bool * has_cache)188 static bool swap_is_last_map(struct swap_info_struct *si,
189 unsigned long offset, int nr_pages, bool *has_cache)
190 {
191 unsigned char *map = si->swap_map + offset;
192 unsigned char *map_end = map + nr_pages;
193 unsigned char count = *map;
194
195 if (swap_count(count) != 1 && swap_count(count) != SWAP_MAP_SHMEM)
196 return false;
197
198 while (++map < map_end) {
199 if (*map != count)
200 return false;
201 }
202
203 *has_cache = !!(count & SWAP_HAS_CACHE);
204 return true;
205 }
206
207 /*
208 * returns number of pages in the folio that backs the swap entry. If positive,
209 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
210 * folio was associated with the swap entry.
211 */
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset,unsigned long flags)212 static int __try_to_reclaim_swap(struct swap_info_struct *si,
213 unsigned long offset, unsigned long flags)
214 {
215 swp_entry_t entry = swp_entry(si->type, offset);
216 struct address_space *address_space = swap_address_space(entry);
217 struct swap_cluster_info *ci;
218 struct folio *folio;
219 int ret, nr_pages;
220 bool need_reclaim;
221
222 again:
223 folio = filemap_get_folio(address_space, swap_cache_index(entry));
224 if (IS_ERR(folio))
225 return 0;
226
227 nr_pages = folio_nr_pages(folio);
228 ret = -nr_pages;
229
230 /*
231 * When this function is called from scan_swap_map_slots() and it's
232 * called by vmscan.c at reclaiming folios. So we hold a folio lock
233 * here. We have to use trylock for avoiding deadlock. This is a special
234 * case and you should use folio_free_swap() with explicit folio_lock()
235 * in usual operations.
236 */
237 if (!folio_trylock(folio))
238 goto out;
239
240 /*
241 * Offset could point to the middle of a large folio, or folio
242 * may no longer point to the expected offset before it's locked.
243 */
244 entry = folio->swap;
245 if (offset < swp_offset(entry) || offset >= swp_offset(entry) + nr_pages) {
246 folio_unlock(folio);
247 folio_put(folio);
248 goto again;
249 }
250 offset = swp_offset(entry);
251
252 need_reclaim = ((flags & TTRS_ANYWAY) ||
253 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
254 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
255 if (!need_reclaim || !folio_swapcache_freeable(folio))
256 goto out_unlock;
257
258 /*
259 * It's safe to delete the folio from swap cache only if the folio's
260 * swap_map is HAS_CACHE only, which means the slots have no page table
261 * reference or pending writeback, and can't be allocated to others.
262 */
263 ci = lock_cluster(si, offset);
264 need_reclaim = swap_only_has_cache(si, offset, nr_pages);
265 unlock_cluster(ci);
266 if (!need_reclaim)
267 goto out_unlock;
268
269 delete_from_swap_cache(folio);
270 folio_set_dirty(folio);
271 ret = nr_pages;
272 out_unlock:
273 folio_unlock(folio);
274 out:
275 folio_put(folio);
276 return ret;
277 }
278
first_se(struct swap_info_struct * sis)279 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
280 {
281 struct rb_node *rb = rb_first(&sis->swap_extent_root);
282 return rb_entry(rb, struct swap_extent, rb_node);
283 }
284
next_se(struct swap_extent * se)285 static inline struct swap_extent *next_se(struct swap_extent *se)
286 {
287 struct rb_node *rb = rb_next(&se->rb_node);
288 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
289 }
290
291 /*
292 * swapon tell device that all the old swap contents can be discarded,
293 * to allow the swap device to optimize its wear-levelling.
294 */
discard_swap(struct swap_info_struct * si)295 static int discard_swap(struct swap_info_struct *si)
296 {
297 struct swap_extent *se;
298 sector_t start_block;
299 sector_t nr_blocks;
300 int err = 0;
301
302 /* Do not discard the swap header page! */
303 se = first_se(si);
304 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
305 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
306 if (nr_blocks) {
307 err = blkdev_issue_discard(si->bdev, start_block,
308 nr_blocks, GFP_KERNEL);
309 if (err)
310 return err;
311 cond_resched();
312 }
313
314 for (se = next_se(se); se; se = next_se(se)) {
315 start_block = se->start_block << (PAGE_SHIFT - 9);
316 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
317
318 err = blkdev_issue_discard(si->bdev, start_block,
319 nr_blocks, GFP_KERNEL);
320 if (err)
321 break;
322
323 cond_resched();
324 }
325 return err; /* That will often be -EOPNOTSUPP */
326 }
327
328 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct * sis,unsigned long offset)329 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
330 {
331 struct swap_extent *se;
332 struct rb_node *rb;
333
334 rb = sis->swap_extent_root.rb_node;
335 while (rb) {
336 se = rb_entry(rb, struct swap_extent, rb_node);
337 if (offset < se->start_page)
338 rb = rb->rb_left;
339 else if (offset >= se->start_page + se->nr_pages)
340 rb = rb->rb_right;
341 else
342 return se;
343 }
344 /* It *must* be present */
345 BUG();
346 }
347
swap_folio_sector(struct folio * folio)348 sector_t swap_folio_sector(struct folio *folio)
349 {
350 struct swap_info_struct *sis = swp_swap_info(folio->swap);
351 struct swap_extent *se;
352 sector_t sector;
353 pgoff_t offset;
354
355 offset = swp_offset(folio->swap);
356 se = offset_to_swap_extent(sis, offset);
357 sector = se->start_block + (offset - se->start_page);
358 return sector << (PAGE_SHIFT - 9);
359 }
360
361 /*
362 * swap allocation tell device that a cluster of swap can now be discarded,
363 * to allow the swap device to optimize its wear-levelling.
364 */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)365 static void discard_swap_cluster(struct swap_info_struct *si,
366 pgoff_t start_page, pgoff_t nr_pages)
367 {
368 struct swap_extent *se = offset_to_swap_extent(si, start_page);
369
370 while (nr_pages) {
371 pgoff_t offset = start_page - se->start_page;
372 sector_t start_block = se->start_block + offset;
373 sector_t nr_blocks = se->nr_pages - offset;
374
375 if (nr_blocks > nr_pages)
376 nr_blocks = nr_pages;
377 start_page += nr_blocks;
378 nr_pages -= nr_blocks;
379
380 start_block <<= PAGE_SHIFT - 9;
381 nr_blocks <<= PAGE_SHIFT - 9;
382 if (blkdev_issue_discard(si->bdev, start_block,
383 nr_blocks, GFP_NOIO))
384 break;
385
386 se = next_se(se);
387 }
388 }
389
390 #ifdef CONFIG_THP_SWAP
391 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
392
393 #define swap_entry_order(order) (order)
394 #else
395 #define SWAPFILE_CLUSTER 256
396
397 /*
398 * Define swap_entry_order() as constant to let compiler to optimize
399 * out some code if !CONFIG_THP_SWAP
400 */
401 #define swap_entry_order(order) 0
402 #endif
403 #define LATENCY_LIMIT 256
404
cluster_is_empty(struct swap_cluster_info * info)405 static inline bool cluster_is_empty(struct swap_cluster_info *info)
406 {
407 return info->count == 0;
408 }
409
cluster_is_discard(struct swap_cluster_info * info)410 static inline bool cluster_is_discard(struct swap_cluster_info *info)
411 {
412 return info->flags == CLUSTER_FLAG_DISCARD;
413 }
414
cluster_is_usable(struct swap_cluster_info * ci,int order)415 static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order)
416 {
417 if (unlikely(ci->flags > CLUSTER_FLAG_USABLE))
418 return false;
419 if (!order)
420 return true;
421 return cluster_is_empty(ci) || order == ci->order;
422 }
423
cluster_index(struct swap_info_struct * si,struct swap_cluster_info * ci)424 static inline unsigned int cluster_index(struct swap_info_struct *si,
425 struct swap_cluster_info *ci)
426 {
427 return ci - si->cluster_info;
428 }
429
offset_to_cluster(struct swap_info_struct * si,unsigned long offset)430 static inline struct swap_cluster_info *offset_to_cluster(struct swap_info_struct *si,
431 unsigned long offset)
432 {
433 return &si->cluster_info[offset / SWAPFILE_CLUSTER];
434 }
435
cluster_offset(struct swap_info_struct * si,struct swap_cluster_info * ci)436 static inline unsigned int cluster_offset(struct swap_info_struct *si,
437 struct swap_cluster_info *ci)
438 {
439 return cluster_index(si, ci) * SWAPFILE_CLUSTER;
440 }
441
lock_cluster(struct swap_info_struct * si,unsigned long offset)442 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
443 unsigned long offset)
444 {
445 struct swap_cluster_info *ci;
446
447 ci = offset_to_cluster(si, offset);
448 spin_lock(&ci->lock);
449
450 return ci;
451 }
452
unlock_cluster(struct swap_cluster_info * ci)453 static inline void unlock_cluster(struct swap_cluster_info *ci)
454 {
455 spin_unlock(&ci->lock);
456 }
457
move_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci,struct list_head * list,enum swap_cluster_flags new_flags)458 static void move_cluster(struct swap_info_struct *si,
459 struct swap_cluster_info *ci, struct list_head *list,
460 enum swap_cluster_flags new_flags)
461 {
462 VM_WARN_ON(ci->flags == new_flags);
463
464 BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX);
465 lockdep_assert_held(&ci->lock);
466
467 spin_lock(&si->lock);
468 if (ci->flags == CLUSTER_FLAG_NONE)
469 list_add_tail(&ci->list, list);
470 else
471 list_move_tail(&ci->list, list);
472 spin_unlock(&si->lock);
473
474 if (ci->flags == CLUSTER_FLAG_FRAG)
475 atomic_long_dec(&si->frag_cluster_nr[ci->order]);
476 else if (new_flags == CLUSTER_FLAG_FRAG)
477 atomic_long_inc(&si->frag_cluster_nr[ci->order]);
478 ci->flags = new_flags;
479 }
480
481 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,struct swap_cluster_info * ci)482 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
483 struct swap_cluster_info *ci)
484 {
485 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
486 move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD);
487 schedule_work(&si->discard_work);
488 }
489
__free_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)490 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
491 {
492 lockdep_assert_held(&ci->lock);
493 move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE);
494 ci->order = 0;
495 }
496
497 /*
498 * Isolate and lock the first cluster that is not contented on a list,
499 * clean its flag before taken off-list. Cluster flag must be in sync
500 * with list status, so cluster updaters can always know the cluster
501 * list status without touching si lock.
502 *
503 * Note it's possible that all clusters on a list are contented so
504 * this returns NULL for an non-empty list.
505 */
isolate_lock_cluster(struct swap_info_struct * si,struct list_head * list)506 static struct swap_cluster_info *isolate_lock_cluster(
507 struct swap_info_struct *si, struct list_head *list)
508 {
509 struct swap_cluster_info *ci, *ret = NULL;
510
511 spin_lock(&si->lock);
512
513 if (unlikely(!(si->flags & SWP_WRITEOK)))
514 goto out;
515
516 list_for_each_entry(ci, list, list) {
517 if (!spin_trylock(&ci->lock))
518 continue;
519
520 /* We may only isolate and clear flags of following lists */
521 VM_BUG_ON(!ci->flags);
522 VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE &&
523 ci->flags != CLUSTER_FLAG_FULL);
524
525 list_del(&ci->list);
526 ci->flags = CLUSTER_FLAG_NONE;
527 ret = ci;
528 break;
529 }
530 out:
531 spin_unlock(&si->lock);
532
533 return ret;
534 }
535
536 /*
537 * Doing discard actually. After a cluster discard is finished, the cluster
538 * will be added to free cluster list. Discard cluster is a bit special as
539 * they don't participate in allocation or reclaim, so clusters marked as
540 * CLUSTER_FLAG_DISCARD must remain off-list or on discard list.
541 */
swap_do_scheduled_discard(struct swap_info_struct * si)542 static bool swap_do_scheduled_discard(struct swap_info_struct *si)
543 {
544 struct swap_cluster_info *ci;
545 bool ret = false;
546 unsigned int idx;
547
548 spin_lock(&si->lock);
549 while (!list_empty(&si->discard_clusters)) {
550 ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
551 /*
552 * Delete the cluster from list to prepare for discard, but keep
553 * the CLUSTER_FLAG_DISCARD flag, percpu_swap_cluster could be
554 * pointing to it, or ran into by relocate_cluster.
555 */
556 list_del(&ci->list);
557 idx = cluster_index(si, ci);
558 spin_unlock(&si->lock);
559 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
560 SWAPFILE_CLUSTER);
561
562 spin_lock(&ci->lock);
563 /*
564 * Discard is done, clear its flags as it's off-list, then
565 * return the cluster to allocation list.
566 */
567 ci->flags = CLUSTER_FLAG_NONE;
568 __free_cluster(si, ci);
569 spin_unlock(&ci->lock);
570 ret = true;
571 spin_lock(&si->lock);
572 }
573 spin_unlock(&si->lock);
574 return ret;
575 }
576
swap_discard_work(struct work_struct * work)577 static void swap_discard_work(struct work_struct *work)
578 {
579 struct swap_info_struct *si;
580
581 si = container_of(work, struct swap_info_struct, discard_work);
582
583 swap_do_scheduled_discard(si);
584 }
585
swap_users_ref_free(struct percpu_ref * ref)586 static void swap_users_ref_free(struct percpu_ref *ref)
587 {
588 struct swap_info_struct *si;
589
590 si = container_of(ref, struct swap_info_struct, users);
591 complete(&si->comp);
592 }
593
594 /*
595 * Must be called after freeing if ci->count == 0, moves the cluster to free
596 * or discard list.
597 */
free_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)598 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
599 {
600 VM_BUG_ON(ci->count != 0);
601 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
602 lockdep_assert_held(&ci->lock);
603
604 /*
605 * If the swap is discardable, prepare discard the cluster
606 * instead of free it immediately. The cluster will be freed
607 * after discard.
608 */
609 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
610 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
611 swap_cluster_schedule_discard(si, ci);
612 return;
613 }
614
615 __free_cluster(si, ci);
616 }
617
618 /*
619 * Must be called after freeing if ci->count != 0, moves the cluster to
620 * nonfull list.
621 */
partial_free_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)622 static void partial_free_cluster(struct swap_info_struct *si,
623 struct swap_cluster_info *ci)
624 {
625 VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER);
626 lockdep_assert_held(&ci->lock);
627
628 if (ci->flags != CLUSTER_FLAG_NONFULL)
629 move_cluster(si, ci, &si->nonfull_clusters[ci->order],
630 CLUSTER_FLAG_NONFULL);
631 }
632
633 /*
634 * Must be called after allocation, moves the cluster to full or frag list.
635 * Note: allocation doesn't acquire si lock, and may drop the ci lock for
636 * reclaim, so the cluster could be any where when called.
637 */
relocate_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)638 static void relocate_cluster(struct swap_info_struct *si,
639 struct swap_cluster_info *ci)
640 {
641 lockdep_assert_held(&ci->lock);
642
643 /* Discard cluster must remain off-list or on discard list */
644 if (cluster_is_discard(ci))
645 return;
646
647 if (!ci->count) {
648 if (ci->flags != CLUSTER_FLAG_FREE)
649 free_cluster(si, ci);
650 } else if (ci->count != SWAPFILE_CLUSTER) {
651 if (ci->flags != CLUSTER_FLAG_FRAG)
652 move_cluster(si, ci, &si->frag_clusters[ci->order],
653 CLUSTER_FLAG_FRAG);
654 } else {
655 if (ci->flags != CLUSTER_FLAG_FULL)
656 move_cluster(si, ci, &si->full_clusters,
657 CLUSTER_FLAG_FULL);
658 }
659 }
660
661 /*
662 * The cluster corresponding to page_nr will be used. The cluster will not be
663 * added to free cluster list and its usage counter will be increased by 1.
664 * Only used for initialization.
665 */
inc_cluster_info_page(struct swap_info_struct * si,struct swap_cluster_info * cluster_info,unsigned long page_nr)666 static void inc_cluster_info_page(struct swap_info_struct *si,
667 struct swap_cluster_info *cluster_info, unsigned long page_nr)
668 {
669 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
670 struct swap_cluster_info *ci;
671
672 ci = cluster_info + idx;
673 ci->count++;
674
675 VM_BUG_ON(ci->count > SWAPFILE_CLUSTER);
676 VM_BUG_ON(ci->flags);
677 }
678
cluster_reclaim_range(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned long start,unsigned long end)679 static bool cluster_reclaim_range(struct swap_info_struct *si,
680 struct swap_cluster_info *ci,
681 unsigned long start, unsigned long end)
682 {
683 unsigned char *map = si->swap_map;
684 unsigned long offset = start;
685 int nr_reclaim;
686
687 spin_unlock(&ci->lock);
688 do {
689 switch (READ_ONCE(map[offset])) {
690 case 0:
691 offset++;
692 break;
693 case SWAP_HAS_CACHE:
694 nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
695 if (nr_reclaim > 0)
696 offset += nr_reclaim;
697 else
698 goto out;
699 break;
700 default:
701 goto out;
702 }
703 } while (offset < end);
704 out:
705 spin_lock(&ci->lock);
706 /*
707 * Recheck the range no matter reclaim succeeded or not, the slot
708 * could have been be freed while we are not holding the lock.
709 */
710 for (offset = start; offset < end; offset++)
711 if (READ_ONCE(map[offset]))
712 return false;
713
714 return true;
715 }
716
cluster_scan_range(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned long start,unsigned int nr_pages,bool * need_reclaim)717 static bool cluster_scan_range(struct swap_info_struct *si,
718 struct swap_cluster_info *ci,
719 unsigned long start, unsigned int nr_pages,
720 bool *need_reclaim)
721 {
722 unsigned long offset, end = start + nr_pages;
723 unsigned char *map = si->swap_map;
724
725 if (cluster_is_empty(ci))
726 return true;
727
728 for (offset = start; offset < end; offset++) {
729 switch (READ_ONCE(map[offset])) {
730 case 0:
731 continue;
732 case SWAP_HAS_CACHE:
733 if (!vm_swap_full())
734 return false;
735 *need_reclaim = true;
736 continue;
737 default:
738 return false;
739 }
740 }
741
742 return true;
743 }
744
cluster_alloc_range(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned int start,unsigned char usage,unsigned int order)745 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
746 unsigned int start, unsigned char usage,
747 unsigned int order)
748 {
749 unsigned int nr_pages = 1 << order;
750
751 lockdep_assert_held(&ci->lock);
752
753 if (!(si->flags & SWP_WRITEOK))
754 return false;
755
756 /*
757 * The first allocation in a cluster makes the
758 * cluster exclusive to this order
759 */
760 if (cluster_is_empty(ci))
761 ci->order = order;
762
763 memset(si->swap_map + start, usage, nr_pages);
764 swap_range_alloc(si, nr_pages);
765 ci->count += nr_pages;
766
767 return true;
768 }
769
770 /* Try use a new cluster for current CPU and allocate from it. */
alloc_swap_scan_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned long offset,unsigned int order,unsigned char usage)771 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si,
772 struct swap_cluster_info *ci,
773 unsigned long offset,
774 unsigned int order,
775 unsigned char usage)
776 {
777 unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
778 unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER);
779 unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
780 unsigned int nr_pages = 1 << order;
781 bool need_reclaim, ret;
782
783 lockdep_assert_held(&ci->lock);
784
785 if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER)
786 goto out;
787
788 for (end -= nr_pages; offset <= end; offset += nr_pages) {
789 need_reclaim = false;
790 if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim))
791 continue;
792 if (need_reclaim) {
793 ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages);
794 /*
795 * Reclaim drops ci->lock and cluster could be used
796 * by another order. Not checking flag as off-list
797 * cluster has no flag set, and change of list
798 * won't cause fragmentation.
799 */
800 if (!cluster_is_usable(ci, order))
801 goto out;
802 if (cluster_is_empty(ci))
803 offset = start;
804 /* Reclaim failed but cluster is usable, try next */
805 if (!ret)
806 continue;
807 }
808 if (!cluster_alloc_range(si, ci, offset, usage, order))
809 break;
810 found = offset;
811 offset += nr_pages;
812 if (ci->count < SWAPFILE_CLUSTER && offset <= end)
813 next = offset;
814 break;
815 }
816 out:
817 relocate_cluster(si, ci);
818 unlock_cluster(ci);
819 if (si->flags & SWP_SOLIDSTATE) {
820 this_cpu_write(percpu_swap_cluster.offset[order], next);
821 this_cpu_write(percpu_swap_cluster.si[order], si);
822 } else {
823 si->global_cluster->next[order] = next;
824 }
825 return found;
826 }
827
swap_reclaim_full_clusters(struct swap_info_struct * si,bool force)828 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force)
829 {
830 long to_scan = 1;
831 unsigned long offset, end;
832 struct swap_cluster_info *ci;
833 unsigned char *map = si->swap_map;
834 int nr_reclaim;
835
836 if (force)
837 to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER;
838
839 while ((ci = isolate_lock_cluster(si, &si->full_clusters))) {
840 offset = cluster_offset(si, ci);
841 end = min(si->max, offset + SWAPFILE_CLUSTER);
842 to_scan--;
843
844 while (offset < end) {
845 if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
846 spin_unlock(&ci->lock);
847 nr_reclaim = __try_to_reclaim_swap(si, offset,
848 TTRS_ANYWAY);
849 spin_lock(&ci->lock);
850 if (nr_reclaim) {
851 offset += abs(nr_reclaim);
852 continue;
853 }
854 }
855 offset++;
856 }
857
858 /* in case no swap cache is reclaimed */
859 if (ci->flags == CLUSTER_FLAG_NONE)
860 relocate_cluster(si, ci);
861
862 unlock_cluster(ci);
863 if (to_scan <= 0)
864 break;
865 }
866 }
867
swap_reclaim_work(struct work_struct * work)868 static void swap_reclaim_work(struct work_struct *work)
869 {
870 struct swap_info_struct *si;
871
872 si = container_of(work, struct swap_info_struct, reclaim_work);
873
874 swap_reclaim_full_clusters(si, true);
875 }
876
877 /*
878 * Try to allocate swap entries with specified order and try set a new
879 * cluster for current CPU too.
880 */
cluster_alloc_swap_entry(struct swap_info_struct * si,int order,unsigned char usage)881 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
882 unsigned char usage)
883 {
884 struct swap_cluster_info *ci;
885 unsigned int offset = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
886
887 /*
888 * Swapfile is not block device so unable
889 * to allocate large entries.
890 */
891 if (order && !(si->flags & SWP_BLKDEV))
892 return 0;
893
894 if (!(si->flags & SWP_SOLIDSTATE)) {
895 /* Serialize HDD SWAP allocation for each device. */
896 spin_lock(&si->global_cluster_lock);
897 offset = si->global_cluster->next[order];
898 if (offset == SWAP_ENTRY_INVALID)
899 goto new_cluster;
900
901 ci = lock_cluster(si, offset);
902 /* Cluster could have been used by another order */
903 if (cluster_is_usable(ci, order)) {
904 if (cluster_is_empty(ci))
905 offset = cluster_offset(si, ci);
906 found = alloc_swap_scan_cluster(si, ci, offset,
907 order, usage);
908 } else {
909 unlock_cluster(ci);
910 }
911 if (found)
912 goto done;
913 }
914
915 new_cluster:
916 ci = isolate_lock_cluster(si, &si->free_clusters);
917 if (ci) {
918 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
919 order, usage);
920 if (found)
921 goto done;
922 }
923
924 /* Try reclaim from full clusters if free clusters list is drained */
925 if (vm_swap_full())
926 swap_reclaim_full_clusters(si, false);
927
928 if (order < PMD_ORDER) {
929 unsigned int frags = 0, frags_existing;
930
931 while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[order]))) {
932 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
933 order, usage);
934 if (found)
935 goto done;
936 /* Clusters failed to allocate are moved to frag_clusters */
937 frags++;
938 }
939
940 frags_existing = atomic_long_read(&si->frag_cluster_nr[order]);
941 while (frags < frags_existing &&
942 (ci = isolate_lock_cluster(si, &si->frag_clusters[order]))) {
943 atomic_long_dec(&si->frag_cluster_nr[order]);
944 /*
945 * Rotate the frag list to iterate, they were all
946 * failing high order allocation or moved here due to
947 * per-CPU usage, but they could contain newly released
948 * reclaimable (eg. lazy-freed swap cache) slots.
949 */
950 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
951 order, usage);
952 if (found)
953 goto done;
954 frags++;
955 }
956 }
957
958 /*
959 * We don't have free cluster but have some clusters in
960 * discarding, do discard now and reclaim them, then
961 * reread cluster_next_cpu since we dropped si->lock
962 */
963 if ((si->flags & SWP_PAGE_DISCARD) && swap_do_scheduled_discard(si))
964 goto new_cluster;
965
966 if (order)
967 goto done;
968
969 /* Order 0 stealing from higher order */
970 for (int o = 1; o < SWAP_NR_ORDERS; o++) {
971 /*
972 * Clusters here have at least one usable slots and can't fail order 0
973 * allocation, but reclaim may drop si->lock and race with another user.
974 */
975 while ((ci = isolate_lock_cluster(si, &si->frag_clusters[o]))) {
976 atomic_long_dec(&si->frag_cluster_nr[o]);
977 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
978 0, usage);
979 if (found)
980 goto done;
981 }
982
983 while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[o]))) {
984 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
985 0, usage);
986 if (found)
987 goto done;
988 }
989 }
990 done:
991 if (!(si->flags & SWP_SOLIDSTATE))
992 spin_unlock(&si->global_cluster_lock);
993 return found;
994 }
995
996 /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */
del_from_avail_list(struct swap_info_struct * si,bool swapoff)997 static void del_from_avail_list(struct swap_info_struct *si, bool swapoff)
998 {
999 int nid;
1000 unsigned long pages;
1001
1002 spin_lock(&swap_avail_lock);
1003
1004 if (swapoff) {
1005 /*
1006 * Forcefully remove it. Clear the SWP_WRITEOK flags for
1007 * swapoff here so it's synchronized by both si->lock and
1008 * swap_avail_lock, to ensure the result can be seen by
1009 * add_to_avail_list.
1010 */
1011 lockdep_assert_held(&si->lock);
1012 si->flags &= ~SWP_WRITEOK;
1013 atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1014 } else {
1015 /*
1016 * If not called by swapoff, take it off-list only if it's
1017 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly
1018 * si->inuse_pages == pages), any concurrent slot freeing,
1019 * or device already removed from plist by someone else
1020 * will make this return false.
1021 */
1022 pages = si->pages;
1023 if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1024 pages | SWAP_USAGE_OFFLIST_BIT))
1025 goto skip;
1026 }
1027
1028 for_each_node(nid)
1029 plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]);
1030
1031 skip:
1032 spin_unlock(&swap_avail_lock);
1033 }
1034
1035 /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */
add_to_avail_list(struct swap_info_struct * si,bool swapon)1036 static void add_to_avail_list(struct swap_info_struct *si, bool swapon)
1037 {
1038 int nid;
1039 long val;
1040 unsigned long pages;
1041
1042 spin_lock(&swap_avail_lock);
1043
1044 /* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */
1045 if (swapon) {
1046 lockdep_assert_held(&si->lock);
1047 si->flags |= SWP_WRITEOK;
1048 } else {
1049 if (!(READ_ONCE(si->flags) & SWP_WRITEOK))
1050 goto skip;
1051 }
1052
1053 if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT))
1054 goto skip;
1055
1056 val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1057
1058 /*
1059 * When device is full and device is on the plist, only one updater will
1060 * see (inuse_pages == si->pages) and will call del_from_avail_list. If
1061 * that updater happen to be here, just skip adding.
1062 */
1063 pages = si->pages;
1064 if (val == pages) {
1065 /* Just like the cmpxchg in del_from_avail_list */
1066 if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1067 pages | SWAP_USAGE_OFFLIST_BIT))
1068 goto skip;
1069 }
1070
1071 for_each_node(nid)
1072 plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]);
1073
1074 skip:
1075 spin_unlock(&swap_avail_lock);
1076 }
1077
1078 /*
1079 * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock
1080 * within each cluster, so the total contribution to the global counter should
1081 * always be positive and cannot exceed the total number of usable slots.
1082 */
swap_usage_add(struct swap_info_struct * si,unsigned int nr_entries)1083 static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries)
1084 {
1085 long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages);
1086
1087 /*
1088 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set,
1089 * remove it from the plist.
1090 */
1091 if (unlikely(val == si->pages)) {
1092 del_from_avail_list(si, false);
1093 return true;
1094 }
1095
1096 return false;
1097 }
1098
swap_usage_sub(struct swap_info_struct * si,unsigned int nr_entries)1099 static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries)
1100 {
1101 long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages);
1102
1103 /*
1104 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set,
1105 * add it to the plist.
1106 */
1107 if (unlikely(val & SWAP_USAGE_OFFLIST_BIT))
1108 add_to_avail_list(si, false);
1109 }
1110
swap_range_alloc(struct swap_info_struct * si,unsigned int nr_entries)1111 static void swap_range_alloc(struct swap_info_struct *si,
1112 unsigned int nr_entries)
1113 {
1114 if (swap_usage_add(si, nr_entries)) {
1115 if (vm_swap_full())
1116 schedule_work(&si->reclaim_work);
1117 }
1118 }
1119
swap_range_free(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)1120 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
1121 unsigned int nr_entries)
1122 {
1123 unsigned long begin = offset;
1124 unsigned long end = offset + nr_entries - 1;
1125 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
1126 unsigned int i;
1127
1128 /*
1129 * Use atomic clear_bit operations only on zeromap instead of non-atomic
1130 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
1131 */
1132 for (i = 0; i < nr_entries; i++) {
1133 clear_bit(offset + i, si->zeromap);
1134 zswap_invalidate(swp_entry(si->type, offset + i));
1135 }
1136
1137 if (si->flags & SWP_BLKDEV)
1138 swap_slot_free_notify =
1139 si->bdev->bd_disk->fops->swap_slot_free_notify;
1140 else
1141 swap_slot_free_notify = NULL;
1142 while (offset <= end) {
1143 arch_swap_invalidate_page(si->type, offset);
1144 if (swap_slot_free_notify)
1145 swap_slot_free_notify(si->bdev, offset);
1146 offset++;
1147 }
1148 clear_shadow_from_swap_cache(si->type, begin, end);
1149
1150 /*
1151 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
1152 * only after the above cleanups are done.
1153 */
1154 smp_wmb();
1155 atomic_long_add(nr_entries, &nr_swap_pages);
1156 swap_usage_sub(si, nr_entries);
1157 }
1158
get_swap_device_info(struct swap_info_struct * si)1159 static bool get_swap_device_info(struct swap_info_struct *si)
1160 {
1161 if (!percpu_ref_tryget_live(&si->users))
1162 return false;
1163 /*
1164 * Guarantee the si->users are checked before accessing other
1165 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is
1166 * up to dated.
1167 *
1168 * Paired with the spin_unlock() after setup_swap_info() in
1169 * enable_swap_info(), and smp_wmb() in swapoff.
1170 */
1171 smp_rmb();
1172 return true;
1173 }
1174
1175 /*
1176 * Fast path try to get swap entries with specified order from current
1177 * CPU's swap entry pool (a cluster).
1178 */
swap_alloc_fast(swp_entry_t * entry,int order)1179 static bool swap_alloc_fast(swp_entry_t *entry,
1180 int order)
1181 {
1182 struct swap_cluster_info *ci;
1183 struct swap_info_struct *si;
1184 unsigned int offset, found = SWAP_ENTRY_INVALID;
1185
1186 /*
1187 * Once allocated, swap_info_struct will never be completely freed,
1188 * so checking it's liveness by get_swap_device_info is enough.
1189 */
1190 si = this_cpu_read(percpu_swap_cluster.si[order]);
1191 offset = this_cpu_read(percpu_swap_cluster.offset[order]);
1192 if (!si || !offset || !get_swap_device_info(si))
1193 return false;
1194
1195 ci = lock_cluster(si, offset);
1196 if (cluster_is_usable(ci, order)) {
1197 if (cluster_is_empty(ci))
1198 offset = cluster_offset(si, ci);
1199 found = alloc_swap_scan_cluster(si, ci, offset, order, SWAP_HAS_CACHE);
1200 if (found)
1201 *entry = swp_entry(si->type, found);
1202 } else {
1203 unlock_cluster(ci);
1204 }
1205
1206 put_swap_device(si);
1207 return !!found;
1208 }
1209
1210 /* Rotate the device and switch to a new cluster */
swap_alloc_slow(swp_entry_t * entry,int order)1211 static bool swap_alloc_slow(swp_entry_t *entry,
1212 int order)
1213 {
1214 int node;
1215 unsigned long offset;
1216 struct swap_info_struct *si, *next;
1217
1218 node = numa_node_id();
1219 spin_lock(&swap_avail_lock);
1220 start_over:
1221 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1222 /* Rotate the device and switch to a new cluster */
1223 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1224 spin_unlock(&swap_avail_lock);
1225 if (get_swap_device_info(si)) {
1226 offset = cluster_alloc_swap_entry(si, order, SWAP_HAS_CACHE);
1227 put_swap_device(si);
1228 if (offset) {
1229 *entry = swp_entry(si->type, offset);
1230 return true;
1231 }
1232 if (order)
1233 return false;
1234 }
1235
1236 spin_lock(&swap_avail_lock);
1237 /*
1238 * if we got here, it's likely that si was almost full before,
1239 * and since scan_swap_map_slots() can drop the si->lock,
1240 * multiple callers probably all tried to get a page from the
1241 * same si and it filled up before we could get one; or, the si
1242 * filled up between us dropping swap_avail_lock and taking
1243 * si->lock. Since we dropped the swap_avail_lock, the
1244 * swap_avail_head list may have been modified; so if next is
1245 * still in the swap_avail_head list then try it, otherwise
1246 * start over if we have not gotten any slots.
1247 */
1248 if (plist_node_empty(&next->avail_lists[node]))
1249 goto start_over;
1250 }
1251 spin_unlock(&swap_avail_lock);
1252 return false;
1253 }
1254
1255 /**
1256 * folio_alloc_swap - allocate swap space for a folio
1257 * @folio: folio we want to move to swap
1258 * @gfp: gfp mask for shadow nodes
1259 *
1260 * Allocate swap space for the folio and add the folio to the
1261 * swap cache.
1262 *
1263 * Context: Caller needs to hold the folio lock.
1264 * Return: Whether the folio was added to the swap cache.
1265 */
folio_alloc_swap(struct folio * folio,gfp_t gfp)1266 int folio_alloc_swap(struct folio *folio, gfp_t gfp)
1267 {
1268 unsigned int order = folio_order(folio);
1269 unsigned int size = 1 << order;
1270 swp_entry_t entry = {};
1271
1272 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1273 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
1274
1275 if (order) {
1276 /*
1277 * Reject large allocation when THP_SWAP is disabled,
1278 * the caller should split the folio and try again.
1279 */
1280 if (!IS_ENABLED(CONFIG_THP_SWAP))
1281 return -EAGAIN;
1282
1283 /*
1284 * Allocation size should never exceed cluster size
1285 * (HPAGE_PMD_SIZE).
1286 */
1287 if (size > SWAPFILE_CLUSTER) {
1288 VM_WARN_ON_ONCE(1);
1289 return -EINVAL;
1290 }
1291 }
1292
1293 local_lock(&percpu_swap_cluster.lock);
1294 if (!swap_alloc_fast(&entry, order))
1295 swap_alloc_slow(&entry, order);
1296 local_unlock(&percpu_swap_cluster.lock);
1297
1298 /* Need to call this even if allocation failed, for MEMCG_SWAP_FAIL. */
1299 if (mem_cgroup_try_charge_swap(folio, entry))
1300 goto out_free;
1301
1302 if (!entry.val)
1303 return -ENOMEM;
1304
1305 /*
1306 * XArray node allocations from PF_MEMALLOC contexts could
1307 * completely exhaust the page allocator. __GFP_NOMEMALLOC
1308 * stops emergency reserves from being allocated.
1309 *
1310 * TODO: this could cause a theoretical memory reclaim
1311 * deadlock in the swap out path.
1312 */
1313 if (add_to_swap_cache(folio, entry, gfp | __GFP_NOMEMALLOC, NULL))
1314 goto out_free;
1315
1316 atomic_long_sub(size, &nr_swap_pages);
1317 return 0;
1318
1319 out_free:
1320 put_swap_folio(folio, entry);
1321 return -ENOMEM;
1322 }
1323
_swap_info_get(swp_entry_t entry)1324 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1325 {
1326 struct swap_info_struct *si;
1327 unsigned long offset;
1328
1329 if (!entry.val)
1330 goto out;
1331 si = swp_swap_info(entry);
1332 if (!si)
1333 goto bad_nofile;
1334 if (data_race(!(si->flags & SWP_USED)))
1335 goto bad_device;
1336 offset = swp_offset(entry);
1337 if (offset >= si->max)
1338 goto bad_offset;
1339 if (data_race(!si->swap_map[swp_offset(entry)]))
1340 goto bad_free;
1341 return si;
1342
1343 bad_free:
1344 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1345 goto out;
1346 bad_offset:
1347 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1348 goto out;
1349 bad_device:
1350 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1351 goto out;
1352 bad_nofile:
1353 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1354 out:
1355 return NULL;
1356 }
1357
swap_entry_put_locked(struct swap_info_struct * si,struct swap_cluster_info * ci,swp_entry_t entry,unsigned char usage)1358 static unsigned char swap_entry_put_locked(struct swap_info_struct *si,
1359 struct swap_cluster_info *ci,
1360 swp_entry_t entry,
1361 unsigned char usage)
1362 {
1363 unsigned long offset = swp_offset(entry);
1364 unsigned char count;
1365 unsigned char has_cache;
1366
1367 count = si->swap_map[offset];
1368
1369 has_cache = count & SWAP_HAS_CACHE;
1370 count &= ~SWAP_HAS_CACHE;
1371
1372 if (usage == SWAP_HAS_CACHE) {
1373 VM_BUG_ON(!has_cache);
1374 has_cache = 0;
1375 } else if (count == SWAP_MAP_SHMEM) {
1376 /*
1377 * Or we could insist on shmem.c using a special
1378 * swap_shmem_free() and free_shmem_swap_and_cache()...
1379 */
1380 count = 0;
1381 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1382 if (count == COUNT_CONTINUED) {
1383 if (swap_count_continued(si, offset, count))
1384 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1385 else
1386 count = SWAP_MAP_MAX;
1387 } else
1388 count--;
1389 }
1390
1391 usage = count | has_cache;
1392 if (usage)
1393 WRITE_ONCE(si->swap_map[offset], usage);
1394 else
1395 swap_entries_free(si, ci, entry, 1);
1396
1397 return usage;
1398 }
1399
1400 /*
1401 * When we get a swap entry, if there aren't some other ways to
1402 * prevent swapoff, such as the folio in swap cache is locked, RCU
1403 * reader side is locked, etc., the swap entry may become invalid
1404 * because of swapoff. Then, we need to enclose all swap related
1405 * functions with get_swap_device() and put_swap_device(), unless the
1406 * swap functions call get/put_swap_device() by themselves.
1407 *
1408 * RCU reader side lock (including any spinlock) is sufficient to
1409 * prevent swapoff, because synchronize_rcu() is called in swapoff()
1410 * before freeing data structures.
1411 *
1412 * Check whether swap entry is valid in the swap device. If so,
1413 * return pointer to swap_info_struct, and keep the swap entry valid
1414 * via preventing the swap device from being swapoff, until
1415 * put_swap_device() is called. Otherwise return NULL.
1416 *
1417 * Notice that swapoff or swapoff+swapon can still happen before the
1418 * percpu_ref_tryget_live() in get_swap_device() or after the
1419 * percpu_ref_put() in put_swap_device() if there isn't any other way
1420 * to prevent swapoff. The caller must be prepared for that. For
1421 * example, the following situation is possible.
1422 *
1423 * CPU1 CPU2
1424 * do_swap_page()
1425 * ... swapoff+swapon
1426 * __read_swap_cache_async()
1427 * swapcache_prepare()
1428 * __swap_duplicate()
1429 * // check swap_map
1430 * // verify PTE not changed
1431 *
1432 * In __swap_duplicate(), the swap_map need to be checked before
1433 * changing partly because the specified swap entry may be for another
1434 * swap device which has been swapoff. And in do_swap_page(), after
1435 * the page is read from the swap device, the PTE is verified not
1436 * changed with the page table locked to check whether the swap device
1437 * has been swapoff or swapoff+swapon.
1438 */
get_swap_device(swp_entry_t entry)1439 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1440 {
1441 struct swap_info_struct *si;
1442 unsigned long offset;
1443
1444 if (!entry.val)
1445 goto out;
1446 si = swp_swap_info(entry);
1447 if (!si)
1448 goto bad_nofile;
1449 if (!get_swap_device_info(si))
1450 goto out;
1451 offset = swp_offset(entry);
1452 if (offset >= si->max)
1453 goto put_out;
1454
1455 return si;
1456 bad_nofile:
1457 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1458 out:
1459 return NULL;
1460 put_out:
1461 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1462 percpu_ref_put(&si->users);
1463 return NULL;
1464 }
1465
swap_entries_put_cache(struct swap_info_struct * si,swp_entry_t entry,int nr)1466 static void swap_entries_put_cache(struct swap_info_struct *si,
1467 swp_entry_t entry, int nr)
1468 {
1469 unsigned long offset = swp_offset(entry);
1470 struct swap_cluster_info *ci;
1471
1472 ci = lock_cluster(si, offset);
1473 if (swap_only_has_cache(si, offset, nr))
1474 swap_entries_free(si, ci, entry, nr);
1475 else {
1476 for (int i = 0; i < nr; i++, entry.val++)
1477 swap_entry_put_locked(si, ci, entry, SWAP_HAS_CACHE);
1478 }
1479 unlock_cluster(ci);
1480 }
1481
swap_entries_put_map(struct swap_info_struct * si,swp_entry_t entry,int nr)1482 static bool swap_entries_put_map(struct swap_info_struct *si,
1483 swp_entry_t entry, int nr)
1484 {
1485 unsigned long offset = swp_offset(entry);
1486 struct swap_cluster_info *ci;
1487 bool has_cache = false;
1488 unsigned char count;
1489 int i;
1490
1491 if (nr <= 1)
1492 goto fallback;
1493 count = swap_count(data_race(si->swap_map[offset]));
1494 if (count != 1 && count != SWAP_MAP_SHMEM)
1495 goto fallback;
1496
1497 ci = lock_cluster(si, offset);
1498 if (!swap_is_last_map(si, offset, nr, &has_cache)) {
1499 goto locked_fallback;
1500 }
1501 if (!has_cache)
1502 swap_entries_free(si, ci, entry, nr);
1503 else
1504 for (i = 0; i < nr; i++)
1505 WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
1506 unlock_cluster(ci);
1507
1508 return has_cache;
1509
1510 fallback:
1511 ci = lock_cluster(si, offset);
1512 locked_fallback:
1513 for (i = 0; i < nr; i++, entry.val++) {
1514 count = swap_entry_put_locked(si, ci, entry, 1);
1515 if (count == SWAP_HAS_CACHE)
1516 has_cache = true;
1517 }
1518 unlock_cluster(ci);
1519 return has_cache;
1520
1521 }
1522
1523 /*
1524 * Only functions with "_nr" suffix are able to free entries spanning
1525 * cross multi clusters, so ensure the range is within a single cluster
1526 * when freeing entries with functions without "_nr" suffix.
1527 */
swap_entries_put_map_nr(struct swap_info_struct * si,swp_entry_t entry,int nr)1528 static bool swap_entries_put_map_nr(struct swap_info_struct *si,
1529 swp_entry_t entry, int nr)
1530 {
1531 int cluster_nr, cluster_rest;
1532 unsigned long offset = swp_offset(entry);
1533 bool has_cache = false;
1534
1535 cluster_rest = SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER;
1536 while (nr) {
1537 cluster_nr = min(nr, cluster_rest);
1538 has_cache |= swap_entries_put_map(si, entry, cluster_nr);
1539 cluster_rest = SWAPFILE_CLUSTER;
1540 nr -= cluster_nr;
1541 entry.val += cluster_nr;
1542 }
1543
1544 return has_cache;
1545 }
1546
1547 /*
1548 * Check if it's the last ref of swap entry in the freeing path.
1549 * Qualified vlaue includes 1, SWAP_HAS_CACHE or SWAP_MAP_SHMEM.
1550 */
swap_is_last_ref(unsigned char count)1551 static inline bool __maybe_unused swap_is_last_ref(unsigned char count)
1552 {
1553 return (count == SWAP_HAS_CACHE) || (count == 1) ||
1554 (count == SWAP_MAP_SHMEM);
1555 }
1556
1557 /*
1558 * Drop the last ref of swap entries, caller have to ensure all entries
1559 * belong to the same cgroup and cluster.
1560 */
swap_entries_free(struct swap_info_struct * si,struct swap_cluster_info * ci,swp_entry_t entry,unsigned int nr_pages)1561 static void swap_entries_free(struct swap_info_struct *si,
1562 struct swap_cluster_info *ci,
1563 swp_entry_t entry, unsigned int nr_pages)
1564 {
1565 unsigned long offset = swp_offset(entry);
1566 unsigned char *map = si->swap_map + offset;
1567 unsigned char *map_end = map + nr_pages;
1568
1569 /* It should never free entries across different clusters */
1570 VM_BUG_ON(ci != offset_to_cluster(si, offset + nr_pages - 1));
1571 VM_BUG_ON(cluster_is_empty(ci));
1572 VM_BUG_ON(ci->count < nr_pages);
1573
1574 ci->count -= nr_pages;
1575 do {
1576 VM_BUG_ON(!swap_is_last_ref(*map));
1577 *map = 0;
1578 } while (++map < map_end);
1579
1580 mem_cgroup_uncharge_swap(entry, nr_pages);
1581 swap_range_free(si, offset, nr_pages);
1582
1583 if (!ci->count)
1584 free_cluster(si, ci);
1585 else
1586 partial_free_cluster(si, ci);
1587 }
1588
1589 /*
1590 * Caller has made sure that the swap device corresponding to entry
1591 * is still around or has not been recycled.
1592 */
swap_free_nr(swp_entry_t entry,int nr_pages)1593 void swap_free_nr(swp_entry_t entry, int nr_pages)
1594 {
1595 int nr;
1596 struct swap_info_struct *sis;
1597 unsigned long offset = swp_offset(entry);
1598
1599 sis = _swap_info_get(entry);
1600 if (!sis)
1601 return;
1602
1603 while (nr_pages) {
1604 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1605 swap_entries_put_map(sis, swp_entry(sis->type, offset), nr);
1606 offset += nr;
1607 nr_pages -= nr;
1608 }
1609 }
1610
1611 /*
1612 * Called after dropping swapcache to decrease refcnt to swap entries.
1613 */
put_swap_folio(struct folio * folio,swp_entry_t entry)1614 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1615 {
1616 struct swap_info_struct *si;
1617 int size = 1 << swap_entry_order(folio_order(folio));
1618
1619 si = _swap_info_get(entry);
1620 if (!si)
1621 return;
1622
1623 swap_entries_put_cache(si, entry, size);
1624 }
1625
__swap_count(swp_entry_t entry)1626 int __swap_count(swp_entry_t entry)
1627 {
1628 struct swap_info_struct *si = swp_swap_info(entry);
1629 pgoff_t offset = swp_offset(entry);
1630
1631 return swap_count(si->swap_map[offset]);
1632 }
1633
1634 /*
1635 * How many references to @entry are currently swapped out?
1636 * This does not give an exact answer when swap count is continued,
1637 * but does include the high COUNT_CONTINUED flag to allow for that.
1638 */
swap_entry_swapped(struct swap_info_struct * si,swp_entry_t entry)1639 bool swap_entry_swapped(struct swap_info_struct *si, swp_entry_t entry)
1640 {
1641 pgoff_t offset = swp_offset(entry);
1642 struct swap_cluster_info *ci;
1643 int count;
1644
1645 ci = lock_cluster(si, offset);
1646 count = swap_count(si->swap_map[offset]);
1647 unlock_cluster(ci);
1648 return !!count;
1649 }
1650
1651 /*
1652 * How many references to @entry are currently swapped out?
1653 * This considers COUNT_CONTINUED so it returns exact answer.
1654 */
swp_swapcount(swp_entry_t entry)1655 int swp_swapcount(swp_entry_t entry)
1656 {
1657 int count, tmp_count, n;
1658 struct swap_info_struct *si;
1659 struct swap_cluster_info *ci;
1660 struct page *page;
1661 pgoff_t offset;
1662 unsigned char *map;
1663
1664 si = _swap_info_get(entry);
1665 if (!si)
1666 return 0;
1667
1668 offset = swp_offset(entry);
1669
1670 ci = lock_cluster(si, offset);
1671
1672 count = swap_count(si->swap_map[offset]);
1673 if (!(count & COUNT_CONTINUED))
1674 goto out;
1675
1676 count &= ~COUNT_CONTINUED;
1677 n = SWAP_MAP_MAX + 1;
1678
1679 page = vmalloc_to_page(si->swap_map + offset);
1680 offset &= ~PAGE_MASK;
1681 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1682
1683 do {
1684 page = list_next_entry(page, lru);
1685 map = kmap_local_page(page);
1686 tmp_count = map[offset];
1687 kunmap_local(map);
1688
1689 count += (tmp_count & ~COUNT_CONTINUED) * n;
1690 n *= (SWAP_CONT_MAX + 1);
1691 } while (tmp_count & COUNT_CONTINUED);
1692 out:
1693 unlock_cluster(ci);
1694 return count;
1695 }
1696
swap_page_trans_huge_swapped(struct swap_info_struct * si,swp_entry_t entry,int order)1697 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1698 swp_entry_t entry, int order)
1699 {
1700 struct swap_cluster_info *ci;
1701 unsigned char *map = si->swap_map;
1702 unsigned int nr_pages = 1 << order;
1703 unsigned long roffset = swp_offset(entry);
1704 unsigned long offset = round_down(roffset, nr_pages);
1705 int i;
1706 bool ret = false;
1707
1708 ci = lock_cluster(si, offset);
1709 if (nr_pages == 1) {
1710 if (swap_count(map[roffset]))
1711 ret = true;
1712 goto unlock_out;
1713 }
1714 for (i = 0; i < nr_pages; i++) {
1715 if (swap_count(map[offset + i])) {
1716 ret = true;
1717 break;
1718 }
1719 }
1720 unlock_out:
1721 unlock_cluster(ci);
1722 return ret;
1723 }
1724
folio_swapped(struct folio * folio)1725 static bool folio_swapped(struct folio *folio)
1726 {
1727 swp_entry_t entry = folio->swap;
1728 struct swap_info_struct *si = _swap_info_get(entry);
1729
1730 if (!si)
1731 return false;
1732
1733 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1734 return swap_entry_swapped(si, entry);
1735
1736 return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1737 }
1738
folio_swapcache_freeable(struct folio * folio)1739 static bool folio_swapcache_freeable(struct folio *folio)
1740 {
1741 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1742
1743 if (!folio_test_swapcache(folio))
1744 return false;
1745 if (folio_test_writeback(folio))
1746 return false;
1747
1748 /*
1749 * Once hibernation has begun to create its image of memory,
1750 * there's a danger that one of the calls to folio_free_swap()
1751 * - most probably a call from __try_to_reclaim_swap() while
1752 * hibernation is allocating its own swap pages for the image,
1753 * but conceivably even a call from memory reclaim - will free
1754 * the swap from a folio which has already been recorded in the
1755 * image as a clean swapcache folio, and then reuse its swap for
1756 * another page of the image. On waking from hibernation, the
1757 * original folio might be freed under memory pressure, then
1758 * later read back in from swap, now with the wrong data.
1759 *
1760 * Hibernation suspends storage while it is writing the image
1761 * to disk so check that here.
1762 */
1763 if (pm_suspended_storage())
1764 return false;
1765
1766 return true;
1767 }
1768
1769 /**
1770 * folio_free_swap() - Free the swap space used for this folio.
1771 * @folio: The folio to remove.
1772 *
1773 * If swap is getting full, or if there are no more mappings of this folio,
1774 * then call folio_free_swap to free its swap space.
1775 *
1776 * Return: true if we were able to release the swap space.
1777 */
folio_free_swap(struct folio * folio)1778 bool folio_free_swap(struct folio *folio)
1779 {
1780 if (!folio_swapcache_freeable(folio))
1781 return false;
1782 if (folio_swapped(folio))
1783 return false;
1784
1785 delete_from_swap_cache(folio);
1786 folio_set_dirty(folio);
1787 return true;
1788 }
1789
1790 /**
1791 * free_swap_and_cache_nr() - Release reference on range of swap entries and
1792 * reclaim their cache if no more references remain.
1793 * @entry: First entry of range.
1794 * @nr: Number of entries in range.
1795 *
1796 * For each swap entry in the contiguous range, release a reference. If any swap
1797 * entries become free, try to reclaim their underlying folios, if present. The
1798 * offset range is defined by [entry.offset, entry.offset + nr).
1799 */
free_swap_and_cache_nr(swp_entry_t entry,int nr)1800 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1801 {
1802 const unsigned long start_offset = swp_offset(entry);
1803 const unsigned long end_offset = start_offset + nr;
1804 struct swap_info_struct *si;
1805 bool any_only_cache = false;
1806 unsigned long offset;
1807
1808 si = get_swap_device(entry);
1809 if (!si)
1810 return;
1811
1812 if (WARN_ON(end_offset > si->max))
1813 goto out;
1814
1815 /*
1816 * First free all entries in the range.
1817 */
1818 any_only_cache = swap_entries_put_map_nr(si, entry, nr);
1819
1820 /*
1821 * Short-circuit the below loop if none of the entries had their
1822 * reference drop to zero.
1823 */
1824 if (!any_only_cache)
1825 goto out;
1826
1827 /*
1828 * Now go back over the range trying to reclaim the swap cache.
1829 */
1830 for (offset = start_offset; offset < end_offset; offset += nr) {
1831 nr = 1;
1832 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1833 /*
1834 * Folios are always naturally aligned in swap so
1835 * advance forward to the next boundary. Zero means no
1836 * folio was found for the swap entry, so advance by 1
1837 * in this case. Negative value means folio was found
1838 * but could not be reclaimed. Here we can still advance
1839 * to the next boundary.
1840 */
1841 nr = __try_to_reclaim_swap(si, offset,
1842 TTRS_UNMAPPED | TTRS_FULL);
1843 if (nr == 0)
1844 nr = 1;
1845 else if (nr < 0)
1846 nr = -nr;
1847 nr = ALIGN(offset + 1, nr) - offset;
1848 }
1849 }
1850
1851 out:
1852 put_swap_device(si);
1853 }
1854
1855 #ifdef CONFIG_HIBERNATION
1856
get_swap_page_of_type(int type)1857 swp_entry_t get_swap_page_of_type(int type)
1858 {
1859 struct swap_info_struct *si = swap_type_to_swap_info(type);
1860 unsigned long offset;
1861 swp_entry_t entry = {0};
1862
1863 if (!si)
1864 goto fail;
1865
1866 /* This is called for allocating swap entry, not cache */
1867 if (get_swap_device_info(si)) {
1868 if (si->flags & SWP_WRITEOK) {
1869 offset = cluster_alloc_swap_entry(si, 0, 1);
1870 if (offset) {
1871 entry = swp_entry(si->type, offset);
1872 atomic_long_dec(&nr_swap_pages);
1873 }
1874 }
1875 put_swap_device(si);
1876 }
1877 fail:
1878 return entry;
1879 }
1880
1881 /*
1882 * Find the swap type that corresponds to given device (if any).
1883 *
1884 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1885 * from 0, in which the swap header is expected to be located.
1886 *
1887 * This is needed for the suspend to disk (aka swsusp).
1888 */
swap_type_of(dev_t device,sector_t offset)1889 int swap_type_of(dev_t device, sector_t offset)
1890 {
1891 int type;
1892
1893 if (!device)
1894 return -1;
1895
1896 spin_lock(&swap_lock);
1897 for (type = 0; type < nr_swapfiles; type++) {
1898 struct swap_info_struct *sis = swap_info[type];
1899
1900 if (!(sis->flags & SWP_WRITEOK))
1901 continue;
1902
1903 if (device == sis->bdev->bd_dev) {
1904 struct swap_extent *se = first_se(sis);
1905
1906 if (se->start_block == offset) {
1907 spin_unlock(&swap_lock);
1908 return type;
1909 }
1910 }
1911 }
1912 spin_unlock(&swap_lock);
1913 return -ENODEV;
1914 }
1915
find_first_swap(dev_t * device)1916 int find_first_swap(dev_t *device)
1917 {
1918 int type;
1919
1920 spin_lock(&swap_lock);
1921 for (type = 0; type < nr_swapfiles; type++) {
1922 struct swap_info_struct *sis = swap_info[type];
1923
1924 if (!(sis->flags & SWP_WRITEOK))
1925 continue;
1926 *device = sis->bdev->bd_dev;
1927 spin_unlock(&swap_lock);
1928 return type;
1929 }
1930 spin_unlock(&swap_lock);
1931 return -ENODEV;
1932 }
1933
1934 /*
1935 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1936 * corresponding to given index in swap_info (swap type).
1937 */
swapdev_block(int type,pgoff_t offset)1938 sector_t swapdev_block(int type, pgoff_t offset)
1939 {
1940 struct swap_info_struct *si = swap_type_to_swap_info(type);
1941 struct swap_extent *se;
1942
1943 if (!si || !(si->flags & SWP_WRITEOK))
1944 return 0;
1945 se = offset_to_swap_extent(si, offset);
1946 return se->start_block + (offset - se->start_page);
1947 }
1948
1949 /*
1950 * Return either the total number of swap pages of given type, or the number
1951 * of free pages of that type (depending on @free)
1952 *
1953 * This is needed for software suspend
1954 */
count_swap_pages(int type,int free)1955 unsigned int count_swap_pages(int type, int free)
1956 {
1957 unsigned int n = 0;
1958
1959 spin_lock(&swap_lock);
1960 if ((unsigned int)type < nr_swapfiles) {
1961 struct swap_info_struct *sis = swap_info[type];
1962
1963 spin_lock(&sis->lock);
1964 if (sis->flags & SWP_WRITEOK) {
1965 n = sis->pages;
1966 if (free)
1967 n -= swap_usage_in_pages(sis);
1968 }
1969 spin_unlock(&sis->lock);
1970 }
1971 spin_unlock(&swap_lock);
1972 return n;
1973 }
1974 #endif /* CONFIG_HIBERNATION */
1975
pte_same_as_swp(pte_t pte,pte_t swp_pte)1976 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1977 {
1978 return pte_same(pte_swp_clear_flags(pte), swp_pte);
1979 }
1980
1981 /*
1982 * No need to decide whether this PTE shares the swap entry with others,
1983 * just let do_wp_page work it out if a write is requested later - to
1984 * force COW, vm_page_prot omits write permission from any private vma.
1985 */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct folio * folio)1986 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1987 unsigned long addr, swp_entry_t entry, struct folio *folio)
1988 {
1989 struct page *page;
1990 struct folio *swapcache;
1991 spinlock_t *ptl;
1992 pte_t *pte, new_pte, old_pte;
1993 bool hwpoisoned = false;
1994 int ret = 1;
1995
1996 swapcache = folio;
1997 folio = ksm_might_need_to_copy(folio, vma, addr);
1998 if (unlikely(!folio))
1999 return -ENOMEM;
2000 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
2001 hwpoisoned = true;
2002 folio = swapcache;
2003 }
2004
2005 page = folio_file_page(folio, swp_offset(entry));
2006 if (PageHWPoison(page))
2007 hwpoisoned = true;
2008
2009 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
2010 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
2011 swp_entry_to_pte(entry)))) {
2012 ret = 0;
2013 goto out;
2014 }
2015
2016 old_pte = ptep_get(pte);
2017
2018 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
2019 swp_entry_t swp_entry;
2020
2021 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2022 if (hwpoisoned) {
2023 swp_entry = make_hwpoison_entry(page);
2024 } else {
2025 swp_entry = make_poisoned_swp_entry();
2026 }
2027 new_pte = swp_entry_to_pte(swp_entry);
2028 ret = 0;
2029 goto setpte;
2030 }
2031
2032 /*
2033 * Some architectures may have to restore extra metadata to the page
2034 * when reading from swap. This metadata may be indexed by swap entry
2035 * so this must be called before swap_free().
2036 */
2037 arch_swap_restore(folio_swap(entry, folio), folio);
2038
2039 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2040 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
2041 folio_get(folio);
2042 if (folio == swapcache) {
2043 rmap_t rmap_flags = RMAP_NONE;
2044
2045 /*
2046 * See do_swap_page(): writeback would be problematic.
2047 * However, we do a folio_wait_writeback() just before this
2048 * call and have the folio locked.
2049 */
2050 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
2051 if (pte_swp_exclusive(old_pte))
2052 rmap_flags |= RMAP_EXCLUSIVE;
2053 /*
2054 * We currently only expect small !anon folios, which are either
2055 * fully exclusive or fully shared. If we ever get large folios
2056 * here, we have to be careful.
2057 */
2058 if (!folio_test_anon(folio)) {
2059 VM_WARN_ON_ONCE(folio_test_large(folio));
2060 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2061 folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
2062 } else {
2063 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
2064 }
2065 } else { /* ksm created a completely new copy */
2066 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
2067 folio_add_lru_vma(folio, vma);
2068 }
2069 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
2070 if (pte_swp_soft_dirty(old_pte))
2071 new_pte = pte_mksoft_dirty(new_pte);
2072 if (pte_swp_uffd_wp(old_pte))
2073 new_pte = pte_mkuffd_wp(new_pte);
2074 setpte:
2075 set_pte_at(vma->vm_mm, addr, pte, new_pte);
2076 swap_free(entry);
2077 out:
2078 if (pte)
2079 pte_unmap_unlock(pte, ptl);
2080 if (folio != swapcache) {
2081 folio_unlock(folio);
2082 folio_put(folio);
2083 }
2084 return ret;
2085 }
2086
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned int type)2087 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
2088 unsigned long addr, unsigned long end,
2089 unsigned int type)
2090 {
2091 pte_t *pte = NULL;
2092 struct swap_info_struct *si;
2093
2094 si = swap_info[type];
2095 do {
2096 struct folio *folio;
2097 unsigned long offset;
2098 unsigned char swp_count;
2099 swp_entry_t entry;
2100 int ret;
2101 pte_t ptent;
2102
2103 if (!pte++) {
2104 pte = pte_offset_map(pmd, addr);
2105 if (!pte)
2106 break;
2107 }
2108
2109 ptent = ptep_get_lockless(pte);
2110
2111 if (!is_swap_pte(ptent))
2112 continue;
2113
2114 entry = pte_to_swp_entry(ptent);
2115 if (swp_type(entry) != type)
2116 continue;
2117
2118 offset = swp_offset(entry);
2119 pte_unmap(pte);
2120 pte = NULL;
2121
2122 folio = swap_cache_get_folio(entry, vma, addr);
2123 if (!folio) {
2124 struct vm_fault vmf = {
2125 .vma = vma,
2126 .address = addr,
2127 .real_address = addr,
2128 .pmd = pmd,
2129 };
2130
2131 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2132 &vmf);
2133 }
2134 if (!folio) {
2135 swp_count = READ_ONCE(si->swap_map[offset]);
2136 if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2137 continue;
2138 return -ENOMEM;
2139 }
2140
2141 folio_lock(folio);
2142 folio_wait_writeback(folio);
2143 ret = unuse_pte(vma, pmd, addr, entry, folio);
2144 if (ret < 0) {
2145 folio_unlock(folio);
2146 folio_put(folio);
2147 return ret;
2148 }
2149
2150 folio_free_swap(folio);
2151 folio_unlock(folio);
2152 folio_put(folio);
2153 } while (addr += PAGE_SIZE, addr != end);
2154
2155 if (pte)
2156 pte_unmap(pte);
2157 return 0;
2158 }
2159
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,unsigned int type)2160 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2161 unsigned long addr, unsigned long end,
2162 unsigned int type)
2163 {
2164 pmd_t *pmd;
2165 unsigned long next;
2166 int ret;
2167
2168 pmd = pmd_offset(pud, addr);
2169 do {
2170 cond_resched();
2171 next = pmd_addr_end(addr, end);
2172 ret = unuse_pte_range(vma, pmd, addr, next, type);
2173 if (ret)
2174 return ret;
2175 } while (pmd++, addr = next, addr != end);
2176 return 0;
2177 }
2178
unuse_pud_range(struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned int type)2179 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2180 unsigned long addr, unsigned long end,
2181 unsigned int type)
2182 {
2183 pud_t *pud;
2184 unsigned long next;
2185 int ret;
2186
2187 pud = pud_offset(p4d, addr);
2188 do {
2189 next = pud_addr_end(addr, end);
2190 if (pud_none_or_clear_bad(pud))
2191 continue;
2192 ret = unuse_pmd_range(vma, pud, addr, next, type);
2193 if (ret)
2194 return ret;
2195 } while (pud++, addr = next, addr != end);
2196 return 0;
2197 }
2198
unuse_p4d_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned int type)2199 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2200 unsigned long addr, unsigned long end,
2201 unsigned int type)
2202 {
2203 p4d_t *p4d;
2204 unsigned long next;
2205 int ret;
2206
2207 p4d = p4d_offset(pgd, addr);
2208 do {
2209 next = p4d_addr_end(addr, end);
2210 if (p4d_none_or_clear_bad(p4d))
2211 continue;
2212 ret = unuse_pud_range(vma, p4d, addr, next, type);
2213 if (ret)
2214 return ret;
2215 } while (p4d++, addr = next, addr != end);
2216 return 0;
2217 }
2218
unuse_vma(struct vm_area_struct * vma,unsigned int type)2219 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2220 {
2221 pgd_t *pgd;
2222 unsigned long addr, end, next;
2223 int ret;
2224
2225 addr = vma->vm_start;
2226 end = vma->vm_end;
2227
2228 pgd = pgd_offset(vma->vm_mm, addr);
2229 do {
2230 next = pgd_addr_end(addr, end);
2231 if (pgd_none_or_clear_bad(pgd))
2232 continue;
2233 ret = unuse_p4d_range(vma, pgd, addr, next, type);
2234 if (ret)
2235 return ret;
2236 } while (pgd++, addr = next, addr != end);
2237 return 0;
2238 }
2239
unuse_mm(struct mm_struct * mm,unsigned int type)2240 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2241 {
2242 struct vm_area_struct *vma;
2243 int ret = 0;
2244 VMA_ITERATOR(vmi, mm, 0);
2245
2246 mmap_read_lock(mm);
2247 for_each_vma(vmi, vma) {
2248 if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2249 ret = unuse_vma(vma, type);
2250 if (ret)
2251 break;
2252 }
2253
2254 cond_resched();
2255 }
2256 mmap_read_unlock(mm);
2257 return ret;
2258 }
2259
2260 /*
2261 * Scan swap_map from current position to next entry still in use.
2262 * Return 0 if there are no inuse entries after prev till end of
2263 * the map.
2264 */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev)2265 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2266 unsigned int prev)
2267 {
2268 unsigned int i;
2269 unsigned char count;
2270
2271 /*
2272 * No need for swap_lock here: we're just looking
2273 * for whether an entry is in use, not modifying it; false
2274 * hits are okay, and sys_swapoff() has already prevented new
2275 * allocations from this area (while holding swap_lock).
2276 */
2277 for (i = prev + 1; i < si->max; i++) {
2278 count = READ_ONCE(si->swap_map[i]);
2279 if (count && swap_count(count) != SWAP_MAP_BAD)
2280 break;
2281 if ((i % LATENCY_LIMIT) == 0)
2282 cond_resched();
2283 }
2284
2285 if (i == si->max)
2286 i = 0;
2287
2288 return i;
2289 }
2290
try_to_unuse(unsigned int type)2291 static int try_to_unuse(unsigned int type)
2292 {
2293 struct mm_struct *prev_mm;
2294 struct mm_struct *mm;
2295 struct list_head *p;
2296 int retval = 0;
2297 struct swap_info_struct *si = swap_info[type];
2298 struct folio *folio;
2299 swp_entry_t entry;
2300 unsigned int i;
2301
2302 if (!swap_usage_in_pages(si))
2303 goto success;
2304
2305 retry:
2306 retval = shmem_unuse(type);
2307 if (retval)
2308 return retval;
2309
2310 prev_mm = &init_mm;
2311 mmget(prev_mm);
2312
2313 spin_lock(&mmlist_lock);
2314 p = &init_mm.mmlist;
2315 while (swap_usage_in_pages(si) &&
2316 !signal_pending(current) &&
2317 (p = p->next) != &init_mm.mmlist) {
2318
2319 mm = list_entry(p, struct mm_struct, mmlist);
2320 if (!mmget_not_zero(mm))
2321 continue;
2322 spin_unlock(&mmlist_lock);
2323 mmput(prev_mm);
2324 prev_mm = mm;
2325 retval = unuse_mm(mm, type);
2326 if (retval) {
2327 mmput(prev_mm);
2328 return retval;
2329 }
2330
2331 /*
2332 * Make sure that we aren't completely killing
2333 * interactive performance.
2334 */
2335 cond_resched();
2336 spin_lock(&mmlist_lock);
2337 }
2338 spin_unlock(&mmlist_lock);
2339
2340 mmput(prev_mm);
2341
2342 i = 0;
2343 while (swap_usage_in_pages(si) &&
2344 !signal_pending(current) &&
2345 (i = find_next_to_unuse(si, i)) != 0) {
2346
2347 entry = swp_entry(type, i);
2348 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2349 if (IS_ERR(folio))
2350 continue;
2351
2352 /*
2353 * It is conceivable that a racing task removed this folio from
2354 * swap cache just before we acquired the page lock. The folio
2355 * might even be back in swap cache on another swap area. But
2356 * that is okay, folio_free_swap() only removes stale folios.
2357 */
2358 folio_lock(folio);
2359 folio_wait_writeback(folio);
2360 folio_free_swap(folio);
2361 folio_unlock(folio);
2362 folio_put(folio);
2363 }
2364
2365 /*
2366 * Lets check again to see if there are still swap entries in the map.
2367 * If yes, we would need to do retry the unuse logic again.
2368 * Under global memory pressure, swap entries can be reinserted back
2369 * into process space after the mmlist loop above passes over them.
2370 *
2371 * Limit the number of retries? No: when mmget_not_zero()
2372 * above fails, that mm is likely to be freeing swap from
2373 * exit_mmap(), which proceeds at its own independent pace;
2374 * and even shmem_writeout() could have been preempted after
2375 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2376 * and robust (though cpu-intensive) just to keep retrying.
2377 */
2378 if (swap_usage_in_pages(si)) {
2379 if (!signal_pending(current))
2380 goto retry;
2381 return -EINTR;
2382 }
2383
2384 success:
2385 /*
2386 * Make sure that further cleanups after try_to_unuse() returns happen
2387 * after swap_range_free() reduces si->inuse_pages to 0.
2388 */
2389 smp_mb();
2390 return 0;
2391 }
2392
2393 /*
2394 * After a successful try_to_unuse, if no swap is now in use, we know
2395 * we can empty the mmlist. swap_lock must be held on entry and exit.
2396 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2397 * added to the mmlist just after page_duplicate - before would be racy.
2398 */
drain_mmlist(void)2399 static void drain_mmlist(void)
2400 {
2401 struct list_head *p, *next;
2402 unsigned int type;
2403
2404 for (type = 0; type < nr_swapfiles; type++)
2405 if (swap_usage_in_pages(swap_info[type]))
2406 return;
2407 spin_lock(&mmlist_lock);
2408 list_for_each_safe(p, next, &init_mm.mmlist)
2409 list_del_init(p);
2410 spin_unlock(&mmlist_lock);
2411 }
2412
2413 /*
2414 * Free all of a swapdev's extent information
2415 */
destroy_swap_extents(struct swap_info_struct * sis)2416 static void destroy_swap_extents(struct swap_info_struct *sis)
2417 {
2418 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2419 struct rb_node *rb = sis->swap_extent_root.rb_node;
2420 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2421
2422 rb_erase(rb, &sis->swap_extent_root);
2423 kfree(se);
2424 }
2425
2426 if (sis->flags & SWP_ACTIVATED) {
2427 struct file *swap_file = sis->swap_file;
2428 struct address_space *mapping = swap_file->f_mapping;
2429
2430 sis->flags &= ~SWP_ACTIVATED;
2431 if (mapping->a_ops->swap_deactivate)
2432 mapping->a_ops->swap_deactivate(swap_file);
2433 }
2434 }
2435
2436 /*
2437 * Add a block range (and the corresponding page range) into this swapdev's
2438 * extent tree.
2439 *
2440 * This function rather assumes that it is called in ascending page order.
2441 */
2442 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)2443 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2444 unsigned long nr_pages, sector_t start_block)
2445 {
2446 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2447 struct swap_extent *se;
2448 struct swap_extent *new_se;
2449
2450 /*
2451 * place the new node at the right most since the
2452 * function is called in ascending page order.
2453 */
2454 while (*link) {
2455 parent = *link;
2456 link = &parent->rb_right;
2457 }
2458
2459 if (parent) {
2460 se = rb_entry(parent, struct swap_extent, rb_node);
2461 BUG_ON(se->start_page + se->nr_pages != start_page);
2462 if (se->start_block + se->nr_pages == start_block) {
2463 /* Merge it */
2464 se->nr_pages += nr_pages;
2465 return 0;
2466 }
2467 }
2468
2469 /* No merge, insert a new extent. */
2470 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2471 if (new_se == NULL)
2472 return -ENOMEM;
2473 new_se->start_page = start_page;
2474 new_se->nr_pages = nr_pages;
2475 new_se->start_block = start_block;
2476
2477 rb_link_node(&new_se->rb_node, parent, link);
2478 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2479 return 1;
2480 }
2481 EXPORT_SYMBOL_GPL(add_swap_extent);
2482
2483 /*
2484 * A `swap extent' is a simple thing which maps a contiguous range of pages
2485 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2486 * built at swapon time and is then used at swap_writepage/swap_read_folio
2487 * time for locating where on disk a page belongs.
2488 *
2489 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2490 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2491 * swap files identically.
2492 *
2493 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2494 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2495 * swapfiles are handled *identically* after swapon time.
2496 *
2497 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2498 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2499 * blocks are found which do not fall within the PAGE_SIZE alignment
2500 * requirements, they are simply tossed out - we will never use those blocks
2501 * for swapping.
2502 *
2503 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2504 * prevents users from writing to the swap device, which will corrupt memory.
2505 *
2506 * The amount of disk space which a single swap extent represents varies.
2507 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2508 * extents in the rbtree. - akpm.
2509 */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)2510 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2511 {
2512 struct file *swap_file = sis->swap_file;
2513 struct address_space *mapping = swap_file->f_mapping;
2514 struct inode *inode = mapping->host;
2515 int ret;
2516
2517 if (S_ISBLK(inode->i_mode)) {
2518 ret = add_swap_extent(sis, 0, sis->max, 0);
2519 *span = sis->pages;
2520 return ret;
2521 }
2522
2523 if (mapping->a_ops->swap_activate) {
2524 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2525 if (ret < 0)
2526 return ret;
2527 sis->flags |= SWP_ACTIVATED;
2528 if ((sis->flags & SWP_FS_OPS) &&
2529 sio_pool_init() != 0) {
2530 destroy_swap_extents(sis);
2531 return -ENOMEM;
2532 }
2533 return ret;
2534 }
2535
2536 return generic_swapfile_activate(sis, swap_file, span);
2537 }
2538
swap_node(struct swap_info_struct * si)2539 static int swap_node(struct swap_info_struct *si)
2540 {
2541 struct block_device *bdev;
2542
2543 if (si->bdev)
2544 bdev = si->bdev;
2545 else
2546 bdev = si->swap_file->f_inode->i_sb->s_bdev;
2547
2548 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2549 }
2550
setup_swap_info(struct swap_info_struct * si,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * zeromap)2551 static void setup_swap_info(struct swap_info_struct *si, int prio,
2552 unsigned char *swap_map,
2553 struct swap_cluster_info *cluster_info,
2554 unsigned long *zeromap)
2555 {
2556 int i;
2557
2558 if (prio >= 0)
2559 si->prio = prio;
2560 else
2561 si->prio = --least_priority;
2562 /*
2563 * the plist prio is negated because plist ordering is
2564 * low-to-high, while swap ordering is high-to-low
2565 */
2566 si->list.prio = -si->prio;
2567 for_each_node(i) {
2568 if (si->prio >= 0)
2569 si->avail_lists[i].prio = -si->prio;
2570 else {
2571 if (swap_node(si) == i)
2572 si->avail_lists[i].prio = 1;
2573 else
2574 si->avail_lists[i].prio = -si->prio;
2575 }
2576 }
2577 si->swap_map = swap_map;
2578 si->cluster_info = cluster_info;
2579 si->zeromap = zeromap;
2580 }
2581
_enable_swap_info(struct swap_info_struct * si)2582 static void _enable_swap_info(struct swap_info_struct *si)
2583 {
2584 atomic_long_add(si->pages, &nr_swap_pages);
2585 total_swap_pages += si->pages;
2586
2587 assert_spin_locked(&swap_lock);
2588 /*
2589 * both lists are plists, and thus priority ordered.
2590 * swap_active_head needs to be priority ordered for swapoff(),
2591 * which on removal of any swap_info_struct with an auto-assigned
2592 * (i.e. negative) priority increments the auto-assigned priority
2593 * of any lower-priority swap_info_structs.
2594 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2595 * which allocates swap pages from the highest available priority
2596 * swap_info_struct.
2597 */
2598 plist_add(&si->list, &swap_active_head);
2599
2600 /* Add back to available list */
2601 add_to_avail_list(si, true);
2602 }
2603
enable_swap_info(struct swap_info_struct * si,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * zeromap)2604 static void enable_swap_info(struct swap_info_struct *si, int prio,
2605 unsigned char *swap_map,
2606 struct swap_cluster_info *cluster_info,
2607 unsigned long *zeromap)
2608 {
2609 spin_lock(&swap_lock);
2610 spin_lock(&si->lock);
2611 setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
2612 spin_unlock(&si->lock);
2613 spin_unlock(&swap_lock);
2614 /*
2615 * Finished initializing swap device, now it's safe to reference it.
2616 */
2617 percpu_ref_resurrect(&si->users);
2618 spin_lock(&swap_lock);
2619 spin_lock(&si->lock);
2620 _enable_swap_info(si);
2621 spin_unlock(&si->lock);
2622 spin_unlock(&swap_lock);
2623 }
2624
reinsert_swap_info(struct swap_info_struct * si)2625 static void reinsert_swap_info(struct swap_info_struct *si)
2626 {
2627 spin_lock(&swap_lock);
2628 spin_lock(&si->lock);
2629 setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
2630 _enable_swap_info(si);
2631 spin_unlock(&si->lock);
2632 spin_unlock(&swap_lock);
2633 }
2634
2635 /*
2636 * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range
2637 * see the updated flags, so there will be no more allocations.
2638 */
wait_for_allocation(struct swap_info_struct * si)2639 static void wait_for_allocation(struct swap_info_struct *si)
2640 {
2641 unsigned long offset;
2642 unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER);
2643 struct swap_cluster_info *ci;
2644
2645 BUG_ON(si->flags & SWP_WRITEOK);
2646
2647 for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) {
2648 ci = lock_cluster(si, offset);
2649 unlock_cluster(ci);
2650 }
2651 }
2652
2653 /*
2654 * Called after swap device's reference count is dead, so
2655 * neither scan nor allocation will use it.
2656 */
flush_percpu_swap_cluster(struct swap_info_struct * si)2657 static void flush_percpu_swap_cluster(struct swap_info_struct *si)
2658 {
2659 int cpu, i;
2660 struct swap_info_struct **pcp_si;
2661
2662 for_each_possible_cpu(cpu) {
2663 pcp_si = per_cpu_ptr(percpu_swap_cluster.si, cpu);
2664 /*
2665 * Invalidate the percpu swap cluster cache, si->users
2666 * is dead, so no new user will point to it, just flush
2667 * any existing user.
2668 */
2669 for (i = 0; i < SWAP_NR_ORDERS; i++)
2670 cmpxchg(&pcp_si[i], si, NULL);
2671 }
2672 }
2673
2674
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)2675 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2676 {
2677 struct swap_info_struct *p = NULL;
2678 unsigned char *swap_map;
2679 unsigned long *zeromap;
2680 struct swap_cluster_info *cluster_info;
2681 struct file *swap_file, *victim;
2682 struct address_space *mapping;
2683 struct inode *inode;
2684 struct filename *pathname;
2685 int err, found = 0;
2686
2687 if (!capable(CAP_SYS_ADMIN))
2688 return -EPERM;
2689
2690 BUG_ON(!current->mm);
2691
2692 pathname = getname(specialfile);
2693 if (IS_ERR(pathname))
2694 return PTR_ERR(pathname);
2695
2696 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2697 err = PTR_ERR(victim);
2698 if (IS_ERR(victim))
2699 goto out;
2700
2701 mapping = victim->f_mapping;
2702 spin_lock(&swap_lock);
2703 plist_for_each_entry(p, &swap_active_head, list) {
2704 if (p->flags & SWP_WRITEOK) {
2705 if (p->swap_file->f_mapping == mapping) {
2706 found = 1;
2707 break;
2708 }
2709 }
2710 }
2711 if (!found) {
2712 err = -EINVAL;
2713 spin_unlock(&swap_lock);
2714 goto out_dput;
2715 }
2716 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2717 vm_unacct_memory(p->pages);
2718 else {
2719 err = -ENOMEM;
2720 spin_unlock(&swap_lock);
2721 goto out_dput;
2722 }
2723 spin_lock(&p->lock);
2724 del_from_avail_list(p, true);
2725 if (p->prio < 0) {
2726 struct swap_info_struct *si = p;
2727 int nid;
2728
2729 plist_for_each_entry_continue(si, &swap_active_head, list) {
2730 si->prio++;
2731 si->list.prio--;
2732 for_each_node(nid) {
2733 if (si->avail_lists[nid].prio != 1)
2734 si->avail_lists[nid].prio--;
2735 }
2736 }
2737 least_priority++;
2738 }
2739 plist_del(&p->list, &swap_active_head);
2740 atomic_long_sub(p->pages, &nr_swap_pages);
2741 total_swap_pages -= p->pages;
2742 spin_unlock(&p->lock);
2743 spin_unlock(&swap_lock);
2744
2745 wait_for_allocation(p);
2746
2747 set_current_oom_origin();
2748 err = try_to_unuse(p->type);
2749 clear_current_oom_origin();
2750
2751 if (err) {
2752 /* re-insert swap space back into swap_list */
2753 reinsert_swap_info(p);
2754 goto out_dput;
2755 }
2756
2757 /*
2758 * Wait for swap operations protected by get/put_swap_device()
2759 * to complete. Because of synchronize_rcu() here, all swap
2760 * operations protected by RCU reader side lock (including any
2761 * spinlock) will be waited too. This makes it easy to
2762 * prevent folio_test_swapcache() and the following swap cache
2763 * operations from racing with swapoff.
2764 */
2765 percpu_ref_kill(&p->users);
2766 synchronize_rcu();
2767 wait_for_completion(&p->comp);
2768
2769 flush_work(&p->discard_work);
2770 flush_work(&p->reclaim_work);
2771 flush_percpu_swap_cluster(p);
2772
2773 destroy_swap_extents(p);
2774 if (p->flags & SWP_CONTINUED)
2775 free_swap_count_continuations(p);
2776
2777 if (!p->bdev || !bdev_nonrot(p->bdev))
2778 atomic_dec(&nr_rotate_swap);
2779
2780 mutex_lock(&swapon_mutex);
2781 spin_lock(&swap_lock);
2782 spin_lock(&p->lock);
2783 drain_mmlist();
2784
2785 swap_file = p->swap_file;
2786 p->swap_file = NULL;
2787 p->max = 0;
2788 swap_map = p->swap_map;
2789 p->swap_map = NULL;
2790 zeromap = p->zeromap;
2791 p->zeromap = NULL;
2792 cluster_info = p->cluster_info;
2793 p->cluster_info = NULL;
2794 spin_unlock(&p->lock);
2795 spin_unlock(&swap_lock);
2796 arch_swap_invalidate_area(p->type);
2797 zswap_swapoff(p->type);
2798 mutex_unlock(&swapon_mutex);
2799 kfree(p->global_cluster);
2800 p->global_cluster = NULL;
2801 vfree(swap_map);
2802 kvfree(zeromap);
2803 kvfree(cluster_info);
2804 /* Destroy swap account information */
2805 swap_cgroup_swapoff(p->type);
2806 exit_swap_address_space(p->type);
2807
2808 inode = mapping->host;
2809
2810 inode_lock(inode);
2811 inode->i_flags &= ~S_SWAPFILE;
2812 inode_unlock(inode);
2813 filp_close(swap_file, NULL);
2814
2815 /*
2816 * Clear the SWP_USED flag after all resources are freed so that swapon
2817 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2818 * not hold p->lock after we cleared its SWP_WRITEOK.
2819 */
2820 spin_lock(&swap_lock);
2821 p->flags = 0;
2822 spin_unlock(&swap_lock);
2823
2824 err = 0;
2825 atomic_inc(&proc_poll_event);
2826 wake_up_interruptible(&proc_poll_wait);
2827
2828 out_dput:
2829 filp_close(victim, NULL);
2830 out:
2831 putname(pathname);
2832 return err;
2833 }
2834
2835 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)2836 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2837 {
2838 struct seq_file *seq = file->private_data;
2839
2840 poll_wait(file, &proc_poll_wait, wait);
2841
2842 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2843 seq->poll_event = atomic_read(&proc_poll_event);
2844 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2845 }
2846
2847 return EPOLLIN | EPOLLRDNORM;
2848 }
2849
2850 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)2851 static void *swap_start(struct seq_file *swap, loff_t *pos)
2852 {
2853 struct swap_info_struct *si;
2854 int type;
2855 loff_t l = *pos;
2856
2857 mutex_lock(&swapon_mutex);
2858
2859 if (!l)
2860 return SEQ_START_TOKEN;
2861
2862 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2863 if (!(si->flags & SWP_USED) || !si->swap_map)
2864 continue;
2865 if (!--l)
2866 return si;
2867 }
2868
2869 return NULL;
2870 }
2871
swap_next(struct seq_file * swap,void * v,loff_t * pos)2872 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2873 {
2874 struct swap_info_struct *si = v;
2875 int type;
2876
2877 if (v == SEQ_START_TOKEN)
2878 type = 0;
2879 else
2880 type = si->type + 1;
2881
2882 ++(*pos);
2883 for (; (si = swap_type_to_swap_info(type)); type++) {
2884 if (!(si->flags & SWP_USED) || !si->swap_map)
2885 continue;
2886 return si;
2887 }
2888
2889 return NULL;
2890 }
2891
swap_stop(struct seq_file * swap,void * v)2892 static void swap_stop(struct seq_file *swap, void *v)
2893 {
2894 mutex_unlock(&swapon_mutex);
2895 }
2896
swap_show(struct seq_file * swap,void * v)2897 static int swap_show(struct seq_file *swap, void *v)
2898 {
2899 struct swap_info_struct *si = v;
2900 struct file *file;
2901 int len;
2902 unsigned long bytes, inuse;
2903
2904 if (si == SEQ_START_TOKEN) {
2905 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2906 return 0;
2907 }
2908
2909 bytes = K(si->pages);
2910 inuse = K(swap_usage_in_pages(si));
2911
2912 file = si->swap_file;
2913 len = seq_file_path(swap, file, " \t\n\\");
2914 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2915 len < 40 ? 40 - len : 1, " ",
2916 S_ISBLK(file_inode(file)->i_mode) ?
2917 "partition" : "file\t",
2918 bytes, bytes < 10000000 ? "\t" : "",
2919 inuse, inuse < 10000000 ? "\t" : "",
2920 si->prio);
2921 return 0;
2922 }
2923
2924 static const struct seq_operations swaps_op = {
2925 .start = swap_start,
2926 .next = swap_next,
2927 .stop = swap_stop,
2928 .show = swap_show
2929 };
2930
swaps_open(struct inode * inode,struct file * file)2931 static int swaps_open(struct inode *inode, struct file *file)
2932 {
2933 struct seq_file *seq;
2934 int ret;
2935
2936 ret = seq_open(file, &swaps_op);
2937 if (ret)
2938 return ret;
2939
2940 seq = file->private_data;
2941 seq->poll_event = atomic_read(&proc_poll_event);
2942 return 0;
2943 }
2944
2945 static const struct proc_ops swaps_proc_ops = {
2946 .proc_flags = PROC_ENTRY_PERMANENT,
2947 .proc_open = swaps_open,
2948 .proc_read = seq_read,
2949 .proc_lseek = seq_lseek,
2950 .proc_release = seq_release,
2951 .proc_poll = swaps_poll,
2952 };
2953
procswaps_init(void)2954 static int __init procswaps_init(void)
2955 {
2956 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2957 return 0;
2958 }
2959 __initcall(procswaps_init);
2960 #endif /* CONFIG_PROC_FS */
2961
2962 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)2963 static int __init max_swapfiles_check(void)
2964 {
2965 MAX_SWAPFILES_CHECK();
2966 return 0;
2967 }
2968 late_initcall(max_swapfiles_check);
2969 #endif
2970
alloc_swap_info(void)2971 static struct swap_info_struct *alloc_swap_info(void)
2972 {
2973 struct swap_info_struct *p;
2974 struct swap_info_struct *defer = NULL;
2975 unsigned int type;
2976 int i;
2977
2978 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2979 if (!p)
2980 return ERR_PTR(-ENOMEM);
2981
2982 if (percpu_ref_init(&p->users, swap_users_ref_free,
2983 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2984 kvfree(p);
2985 return ERR_PTR(-ENOMEM);
2986 }
2987
2988 spin_lock(&swap_lock);
2989 for (type = 0; type < nr_swapfiles; type++) {
2990 if (!(swap_info[type]->flags & SWP_USED))
2991 break;
2992 }
2993 if (type >= MAX_SWAPFILES) {
2994 spin_unlock(&swap_lock);
2995 percpu_ref_exit(&p->users);
2996 kvfree(p);
2997 return ERR_PTR(-EPERM);
2998 }
2999 if (type >= nr_swapfiles) {
3000 p->type = type;
3001 /*
3002 * Publish the swap_info_struct after initializing it.
3003 * Note that kvzalloc() above zeroes all its fields.
3004 */
3005 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
3006 nr_swapfiles++;
3007 } else {
3008 defer = p;
3009 p = swap_info[type];
3010 /*
3011 * Do not memset this entry: a racing procfs swap_next()
3012 * would be relying on p->type to remain valid.
3013 */
3014 }
3015 p->swap_extent_root = RB_ROOT;
3016 plist_node_init(&p->list, 0);
3017 for_each_node(i)
3018 plist_node_init(&p->avail_lists[i], 0);
3019 p->flags = SWP_USED;
3020 spin_unlock(&swap_lock);
3021 if (defer) {
3022 percpu_ref_exit(&defer->users);
3023 kvfree(defer);
3024 }
3025 spin_lock_init(&p->lock);
3026 spin_lock_init(&p->cont_lock);
3027 atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT);
3028 init_completion(&p->comp);
3029
3030 return p;
3031 }
3032
claim_swapfile(struct swap_info_struct * si,struct inode * inode)3033 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
3034 {
3035 if (S_ISBLK(inode->i_mode)) {
3036 si->bdev = I_BDEV(inode);
3037 /*
3038 * Zoned block devices contain zones that have a sequential
3039 * write only restriction. Hence zoned block devices are not
3040 * suitable for swapping. Disallow them here.
3041 */
3042 if (bdev_is_zoned(si->bdev))
3043 return -EINVAL;
3044 si->flags |= SWP_BLKDEV;
3045 } else if (S_ISREG(inode->i_mode)) {
3046 si->bdev = inode->i_sb->s_bdev;
3047 }
3048
3049 return 0;
3050 }
3051
3052
3053 /*
3054 * Find out how many pages are allowed for a single swap device. There
3055 * are two limiting factors:
3056 * 1) the number of bits for the swap offset in the swp_entry_t type, and
3057 * 2) the number of bits in the swap pte, as defined by the different
3058 * architectures.
3059 *
3060 * In order to find the largest possible bit mask, a swap entry with
3061 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3062 * decoded to a swp_entry_t again, and finally the swap offset is
3063 * extracted.
3064 *
3065 * This will mask all the bits from the initial ~0UL mask that can't
3066 * be encoded in either the swp_entry_t or the architecture definition
3067 * of a swap pte.
3068 */
generic_max_swapfile_size(void)3069 unsigned long generic_max_swapfile_size(void)
3070 {
3071 return swp_offset(pte_to_swp_entry(
3072 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3073 }
3074
3075 /* Can be overridden by an architecture for additional checks. */
arch_max_swapfile_size(void)3076 __weak unsigned long arch_max_swapfile_size(void)
3077 {
3078 return generic_max_swapfile_size();
3079 }
3080
read_swap_header(struct swap_info_struct * si,union swap_header * swap_header,struct inode * inode)3081 static unsigned long read_swap_header(struct swap_info_struct *si,
3082 union swap_header *swap_header,
3083 struct inode *inode)
3084 {
3085 int i;
3086 unsigned long maxpages;
3087 unsigned long swapfilepages;
3088 unsigned long last_page;
3089
3090 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3091 pr_err("Unable to find swap-space signature\n");
3092 return 0;
3093 }
3094
3095 /* swap partition endianness hack... */
3096 if (swab32(swap_header->info.version) == 1) {
3097 swab32s(&swap_header->info.version);
3098 swab32s(&swap_header->info.last_page);
3099 swab32s(&swap_header->info.nr_badpages);
3100 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3101 return 0;
3102 for (i = 0; i < swap_header->info.nr_badpages; i++)
3103 swab32s(&swap_header->info.badpages[i]);
3104 }
3105 /* Check the swap header's sub-version */
3106 if (swap_header->info.version != 1) {
3107 pr_warn("Unable to handle swap header version %d\n",
3108 swap_header->info.version);
3109 return 0;
3110 }
3111
3112 maxpages = swapfile_maximum_size;
3113 last_page = swap_header->info.last_page;
3114 if (!last_page) {
3115 pr_warn("Empty swap-file\n");
3116 return 0;
3117 }
3118 if (last_page > maxpages) {
3119 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3120 K(maxpages), K(last_page));
3121 }
3122 if (maxpages > last_page) {
3123 maxpages = last_page + 1;
3124 /* p->max is an unsigned int: don't overflow it */
3125 if ((unsigned int)maxpages == 0)
3126 maxpages = UINT_MAX;
3127 }
3128
3129 if (!maxpages)
3130 return 0;
3131 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3132 if (swapfilepages && maxpages > swapfilepages) {
3133 pr_warn("Swap area shorter than signature indicates\n");
3134 return 0;
3135 }
3136 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3137 return 0;
3138 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3139 return 0;
3140
3141 return maxpages;
3142 }
3143
setup_swap_map_and_extents(struct swap_info_struct * si,union swap_header * swap_header,unsigned char * swap_map,unsigned long maxpages,sector_t * span)3144 static int setup_swap_map_and_extents(struct swap_info_struct *si,
3145 union swap_header *swap_header,
3146 unsigned char *swap_map,
3147 unsigned long maxpages,
3148 sector_t *span)
3149 {
3150 unsigned int nr_good_pages;
3151 unsigned long i;
3152 int nr_extents;
3153
3154 nr_good_pages = maxpages - 1; /* omit header page */
3155
3156 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3157 unsigned int page_nr = swap_header->info.badpages[i];
3158 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3159 return -EINVAL;
3160 if (page_nr < maxpages) {
3161 swap_map[page_nr] = SWAP_MAP_BAD;
3162 nr_good_pages--;
3163 }
3164 }
3165
3166 if (nr_good_pages) {
3167 swap_map[0] = SWAP_MAP_BAD;
3168 si->max = maxpages;
3169 si->pages = nr_good_pages;
3170 nr_extents = setup_swap_extents(si, span);
3171 if (nr_extents < 0)
3172 return nr_extents;
3173 nr_good_pages = si->pages;
3174 }
3175 if (!nr_good_pages) {
3176 pr_warn("Empty swap-file\n");
3177 return -EINVAL;
3178 }
3179
3180 return nr_extents;
3181 }
3182
3183 #define SWAP_CLUSTER_INFO_COLS \
3184 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3185 #define SWAP_CLUSTER_SPACE_COLS \
3186 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3187 #define SWAP_CLUSTER_COLS \
3188 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3189
setup_clusters(struct swap_info_struct * si,union swap_header * swap_header,unsigned long maxpages)3190 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
3191 union swap_header *swap_header,
3192 unsigned long maxpages)
3193 {
3194 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3195 struct swap_cluster_info *cluster_info;
3196 unsigned long i, j, idx;
3197 int err = -ENOMEM;
3198
3199 cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
3200 if (!cluster_info)
3201 goto err;
3202
3203 for (i = 0; i < nr_clusters; i++)
3204 spin_lock_init(&cluster_info[i].lock);
3205
3206 if (!(si->flags & SWP_SOLIDSTATE)) {
3207 si->global_cluster = kmalloc(sizeof(*si->global_cluster),
3208 GFP_KERNEL);
3209 if (!si->global_cluster)
3210 goto err_free;
3211 for (i = 0; i < SWAP_NR_ORDERS; i++)
3212 si->global_cluster->next[i] = SWAP_ENTRY_INVALID;
3213 spin_lock_init(&si->global_cluster_lock);
3214 }
3215
3216 /*
3217 * Mark unusable pages as unavailable. The clusters aren't
3218 * marked free yet, so no list operations are involved yet.
3219 *
3220 * See setup_swap_map_and_extents(): header page, bad pages,
3221 * and the EOF part of the last cluster.
3222 */
3223 inc_cluster_info_page(si, cluster_info, 0);
3224 for (i = 0; i < swap_header->info.nr_badpages; i++)
3225 inc_cluster_info_page(si, cluster_info,
3226 swap_header->info.badpages[i]);
3227 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3228 inc_cluster_info_page(si, cluster_info, i);
3229
3230 INIT_LIST_HEAD(&si->free_clusters);
3231 INIT_LIST_HEAD(&si->full_clusters);
3232 INIT_LIST_HEAD(&si->discard_clusters);
3233
3234 for (i = 0; i < SWAP_NR_ORDERS; i++) {
3235 INIT_LIST_HEAD(&si->nonfull_clusters[i]);
3236 INIT_LIST_HEAD(&si->frag_clusters[i]);
3237 atomic_long_set(&si->frag_cluster_nr[i], 0);
3238 }
3239
3240 /*
3241 * Reduce false cache line sharing between cluster_info and
3242 * sharing same address space.
3243 */
3244 for (j = 0; j < SWAP_CLUSTER_COLS; j++) {
3245 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3246 struct swap_cluster_info *ci;
3247 idx = i * SWAP_CLUSTER_COLS + j;
3248 ci = cluster_info + idx;
3249 if (idx >= nr_clusters)
3250 continue;
3251 if (ci->count) {
3252 ci->flags = CLUSTER_FLAG_NONFULL;
3253 list_add_tail(&ci->list, &si->nonfull_clusters[0]);
3254 continue;
3255 }
3256 ci->flags = CLUSTER_FLAG_FREE;
3257 list_add_tail(&ci->list, &si->free_clusters);
3258 }
3259 }
3260
3261 return cluster_info;
3262
3263 err_free:
3264 kvfree(cluster_info);
3265 err:
3266 return ERR_PTR(err);
3267 }
3268
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)3269 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3270 {
3271 struct swap_info_struct *si;
3272 struct filename *name;
3273 struct file *swap_file = NULL;
3274 struct address_space *mapping;
3275 struct dentry *dentry;
3276 int prio;
3277 int error;
3278 union swap_header *swap_header;
3279 int nr_extents;
3280 sector_t span;
3281 unsigned long maxpages;
3282 unsigned char *swap_map = NULL;
3283 unsigned long *zeromap = NULL;
3284 struct swap_cluster_info *cluster_info = NULL;
3285 struct folio *folio = NULL;
3286 struct inode *inode = NULL;
3287 bool inced_nr_rotate_swap = false;
3288
3289 if (swap_flags & ~SWAP_FLAGS_VALID)
3290 return -EINVAL;
3291
3292 if (!capable(CAP_SYS_ADMIN))
3293 return -EPERM;
3294
3295 if (!swap_avail_heads)
3296 return -ENOMEM;
3297
3298 si = alloc_swap_info();
3299 if (IS_ERR(si))
3300 return PTR_ERR(si);
3301
3302 INIT_WORK(&si->discard_work, swap_discard_work);
3303 INIT_WORK(&si->reclaim_work, swap_reclaim_work);
3304
3305 name = getname(specialfile);
3306 if (IS_ERR(name)) {
3307 error = PTR_ERR(name);
3308 name = NULL;
3309 goto bad_swap;
3310 }
3311 swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3312 if (IS_ERR(swap_file)) {
3313 error = PTR_ERR(swap_file);
3314 swap_file = NULL;
3315 goto bad_swap;
3316 }
3317
3318 si->swap_file = swap_file;
3319 mapping = swap_file->f_mapping;
3320 dentry = swap_file->f_path.dentry;
3321 inode = mapping->host;
3322
3323 error = claim_swapfile(si, inode);
3324 if (unlikely(error))
3325 goto bad_swap;
3326
3327 inode_lock(inode);
3328 if (d_unlinked(dentry) || cant_mount(dentry)) {
3329 error = -ENOENT;
3330 goto bad_swap_unlock_inode;
3331 }
3332 if (IS_SWAPFILE(inode)) {
3333 error = -EBUSY;
3334 goto bad_swap_unlock_inode;
3335 }
3336
3337 /*
3338 * The swap subsystem needs a major overhaul to support this.
3339 * It doesn't work yet so just disable it for now.
3340 */
3341 if (mapping_min_folio_order(mapping) > 0) {
3342 error = -EINVAL;
3343 goto bad_swap_unlock_inode;
3344 }
3345
3346 /*
3347 * Read the swap header.
3348 */
3349 if (!mapping->a_ops->read_folio) {
3350 error = -EINVAL;
3351 goto bad_swap_unlock_inode;
3352 }
3353 folio = read_mapping_folio(mapping, 0, swap_file);
3354 if (IS_ERR(folio)) {
3355 error = PTR_ERR(folio);
3356 goto bad_swap_unlock_inode;
3357 }
3358 swap_header = kmap_local_folio(folio, 0);
3359
3360 maxpages = read_swap_header(si, swap_header, inode);
3361 if (unlikely(!maxpages)) {
3362 error = -EINVAL;
3363 goto bad_swap_unlock_inode;
3364 }
3365
3366 /* OK, set up the swap map and apply the bad block list */
3367 swap_map = vzalloc(maxpages);
3368 if (!swap_map) {
3369 error = -ENOMEM;
3370 goto bad_swap_unlock_inode;
3371 }
3372
3373 error = swap_cgroup_swapon(si->type, maxpages);
3374 if (error)
3375 goto bad_swap_unlock_inode;
3376
3377 nr_extents = setup_swap_map_and_extents(si, swap_header, swap_map,
3378 maxpages, &span);
3379 if (unlikely(nr_extents < 0)) {
3380 error = nr_extents;
3381 goto bad_swap_unlock_inode;
3382 }
3383
3384 /*
3385 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3386 * be above MAX_PAGE_ORDER incase of a large swap file.
3387 */
3388 zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
3389 GFP_KERNEL | __GFP_ZERO);
3390 if (!zeromap) {
3391 error = -ENOMEM;
3392 goto bad_swap_unlock_inode;
3393 }
3394
3395 if (si->bdev && bdev_stable_writes(si->bdev))
3396 si->flags |= SWP_STABLE_WRITES;
3397
3398 if (si->bdev && bdev_synchronous(si->bdev))
3399 si->flags |= SWP_SYNCHRONOUS_IO;
3400
3401 if (si->bdev && bdev_nonrot(si->bdev)) {
3402 si->flags |= SWP_SOLIDSTATE;
3403 } else {
3404 atomic_inc(&nr_rotate_swap);
3405 inced_nr_rotate_swap = true;
3406 }
3407
3408 cluster_info = setup_clusters(si, swap_header, maxpages);
3409 if (IS_ERR(cluster_info)) {
3410 error = PTR_ERR(cluster_info);
3411 cluster_info = NULL;
3412 goto bad_swap_unlock_inode;
3413 }
3414
3415 if ((swap_flags & SWAP_FLAG_DISCARD) &&
3416 si->bdev && bdev_max_discard_sectors(si->bdev)) {
3417 /*
3418 * When discard is enabled for swap with no particular
3419 * policy flagged, we set all swap discard flags here in
3420 * order to sustain backward compatibility with older
3421 * swapon(8) releases.
3422 */
3423 si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3424 SWP_PAGE_DISCARD);
3425
3426 /*
3427 * By flagging sys_swapon, a sysadmin can tell us to
3428 * either do single-time area discards only, or to just
3429 * perform discards for released swap page-clusters.
3430 * Now it's time to adjust the p->flags accordingly.
3431 */
3432 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3433 si->flags &= ~SWP_PAGE_DISCARD;
3434 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3435 si->flags &= ~SWP_AREA_DISCARD;
3436
3437 /* issue a swapon-time discard if it's still required */
3438 if (si->flags & SWP_AREA_DISCARD) {
3439 int err = discard_swap(si);
3440 if (unlikely(err))
3441 pr_err("swapon: discard_swap(%p): %d\n",
3442 si, err);
3443 }
3444 }
3445
3446 error = init_swap_address_space(si->type, maxpages);
3447 if (error)
3448 goto bad_swap_unlock_inode;
3449
3450 error = zswap_swapon(si->type, maxpages);
3451 if (error)
3452 goto free_swap_address_space;
3453
3454 /*
3455 * Flush any pending IO and dirty mappings before we start using this
3456 * swap device.
3457 */
3458 inode->i_flags |= S_SWAPFILE;
3459 error = inode_drain_writes(inode);
3460 if (error) {
3461 inode->i_flags &= ~S_SWAPFILE;
3462 goto free_swap_zswap;
3463 }
3464
3465 mutex_lock(&swapon_mutex);
3466 prio = -1;
3467 if (swap_flags & SWAP_FLAG_PREFER)
3468 prio = swap_flags & SWAP_FLAG_PRIO_MASK;
3469 enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
3470
3471 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3472 K(si->pages), name->name, si->prio, nr_extents,
3473 K((unsigned long long)span),
3474 (si->flags & SWP_SOLIDSTATE) ? "SS" : "",
3475 (si->flags & SWP_DISCARDABLE) ? "D" : "",
3476 (si->flags & SWP_AREA_DISCARD) ? "s" : "",
3477 (si->flags & SWP_PAGE_DISCARD) ? "c" : "");
3478
3479 mutex_unlock(&swapon_mutex);
3480 atomic_inc(&proc_poll_event);
3481 wake_up_interruptible(&proc_poll_wait);
3482
3483 error = 0;
3484 goto out;
3485 free_swap_zswap:
3486 zswap_swapoff(si->type);
3487 free_swap_address_space:
3488 exit_swap_address_space(si->type);
3489 bad_swap_unlock_inode:
3490 inode_unlock(inode);
3491 bad_swap:
3492 kfree(si->global_cluster);
3493 si->global_cluster = NULL;
3494 inode = NULL;
3495 destroy_swap_extents(si);
3496 swap_cgroup_swapoff(si->type);
3497 spin_lock(&swap_lock);
3498 si->swap_file = NULL;
3499 si->flags = 0;
3500 spin_unlock(&swap_lock);
3501 vfree(swap_map);
3502 kvfree(zeromap);
3503 kvfree(cluster_info);
3504 if (inced_nr_rotate_swap)
3505 atomic_dec(&nr_rotate_swap);
3506 if (swap_file)
3507 filp_close(swap_file, NULL);
3508 out:
3509 if (!IS_ERR_OR_NULL(folio))
3510 folio_release_kmap(folio, swap_header);
3511 if (name)
3512 putname(name);
3513 if (inode)
3514 inode_unlock(inode);
3515 return error;
3516 }
3517
si_swapinfo(struct sysinfo * val)3518 void si_swapinfo(struct sysinfo *val)
3519 {
3520 unsigned int type;
3521 unsigned long nr_to_be_unused = 0;
3522
3523 spin_lock(&swap_lock);
3524 for (type = 0; type < nr_swapfiles; type++) {
3525 struct swap_info_struct *si = swap_info[type];
3526
3527 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3528 nr_to_be_unused += swap_usage_in_pages(si);
3529 }
3530 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3531 val->totalswap = total_swap_pages + nr_to_be_unused;
3532 spin_unlock(&swap_lock);
3533 }
3534
3535 /*
3536 * Verify that nr swap entries are valid and increment their swap map counts.
3537 *
3538 * Returns error code in following case.
3539 * - success -> 0
3540 * - swp_entry is invalid -> EINVAL
3541 * - swap-cache reference is requested but there is already one. -> EEXIST
3542 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3543 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3544 */
__swap_duplicate(swp_entry_t entry,unsigned char usage,int nr)3545 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3546 {
3547 struct swap_info_struct *si;
3548 struct swap_cluster_info *ci;
3549 unsigned long offset;
3550 unsigned char count;
3551 unsigned char has_cache;
3552 int err, i;
3553
3554 si = swp_swap_info(entry);
3555 if (WARN_ON_ONCE(!si)) {
3556 pr_err("%s%08lx\n", Bad_file, entry.val);
3557 return -EINVAL;
3558 }
3559
3560 offset = swp_offset(entry);
3561 VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3562 VM_WARN_ON(usage == 1 && nr > 1);
3563 ci = lock_cluster(si, offset);
3564
3565 err = 0;
3566 for (i = 0; i < nr; i++) {
3567 count = si->swap_map[offset + i];
3568
3569 /*
3570 * swapin_readahead() doesn't check if a swap entry is valid, so the
3571 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3572 */
3573 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3574 err = -ENOENT;
3575 goto unlock_out;
3576 }
3577
3578 has_cache = count & SWAP_HAS_CACHE;
3579 count &= ~SWAP_HAS_CACHE;
3580
3581 if (!count && !has_cache) {
3582 err = -ENOENT;
3583 } else if (usage == SWAP_HAS_CACHE) {
3584 if (has_cache)
3585 err = -EEXIST;
3586 } else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3587 err = -EINVAL;
3588 }
3589
3590 if (err)
3591 goto unlock_out;
3592 }
3593
3594 for (i = 0; i < nr; i++) {
3595 count = si->swap_map[offset + i];
3596 has_cache = count & SWAP_HAS_CACHE;
3597 count &= ~SWAP_HAS_CACHE;
3598
3599 if (usage == SWAP_HAS_CACHE)
3600 has_cache = SWAP_HAS_CACHE;
3601 else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3602 count += usage;
3603 else if (swap_count_continued(si, offset + i, count))
3604 count = COUNT_CONTINUED;
3605 else {
3606 /*
3607 * Don't need to rollback changes, because if
3608 * usage == 1, there must be nr == 1.
3609 */
3610 err = -ENOMEM;
3611 goto unlock_out;
3612 }
3613
3614 WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
3615 }
3616
3617 unlock_out:
3618 unlock_cluster(ci);
3619 return err;
3620 }
3621
3622 /*
3623 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3624 * (in which case its reference count is never incremented).
3625 */
swap_shmem_alloc(swp_entry_t entry,int nr)3626 void swap_shmem_alloc(swp_entry_t entry, int nr)
3627 {
3628 __swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
3629 }
3630
3631 /*
3632 * Increase reference count of swap entry by 1.
3633 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3634 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3635 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3636 * might occur if a page table entry has got corrupted.
3637 */
swap_duplicate(swp_entry_t entry)3638 int swap_duplicate(swp_entry_t entry)
3639 {
3640 int err = 0;
3641
3642 while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3643 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3644 return err;
3645 }
3646
3647 /*
3648 * @entry: first swap entry from which we allocate nr swap cache.
3649 *
3650 * Called when allocating swap cache for existing swap entries,
3651 * This can return error codes. Returns 0 at success.
3652 * -EEXIST means there is a swap cache.
3653 * Note: return code is different from swap_duplicate().
3654 */
swapcache_prepare(swp_entry_t entry,int nr)3655 int swapcache_prepare(swp_entry_t entry, int nr)
3656 {
3657 return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3658 }
3659
3660 /*
3661 * Caller should ensure entries belong to the same folio so
3662 * the entries won't span cross cluster boundary.
3663 */
swapcache_clear(struct swap_info_struct * si,swp_entry_t entry,int nr)3664 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3665 {
3666 swap_entries_put_cache(si, entry, nr);
3667 }
3668
swp_swap_info(swp_entry_t entry)3669 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3670 {
3671 return swap_type_to_swap_info(swp_type(entry));
3672 }
3673
3674 /*
3675 * add_swap_count_continuation - called when a swap count is duplicated
3676 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3677 * page of the original vmalloc'ed swap_map, to hold the continuation count
3678 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3679 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3680 *
3681 * These continuation pages are seldom referenced: the common paths all work
3682 * on the original swap_map, only referring to a continuation page when the
3683 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3684 *
3685 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3686 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3687 * can be called after dropping locks.
3688 */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)3689 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3690 {
3691 struct swap_info_struct *si;
3692 struct swap_cluster_info *ci;
3693 struct page *head;
3694 struct page *page;
3695 struct page *list_page;
3696 pgoff_t offset;
3697 unsigned char count;
3698 int ret = 0;
3699
3700 /*
3701 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3702 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3703 */
3704 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3705
3706 si = get_swap_device(entry);
3707 if (!si) {
3708 /*
3709 * An acceptable race has occurred since the failing
3710 * __swap_duplicate(): the swap device may be swapoff
3711 */
3712 goto outer;
3713 }
3714
3715 offset = swp_offset(entry);
3716
3717 ci = lock_cluster(si, offset);
3718
3719 count = swap_count(si->swap_map[offset]);
3720
3721 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3722 /*
3723 * The higher the swap count, the more likely it is that tasks
3724 * will race to add swap count continuation: we need to avoid
3725 * over-provisioning.
3726 */
3727 goto out;
3728 }
3729
3730 if (!page) {
3731 ret = -ENOMEM;
3732 goto out;
3733 }
3734
3735 head = vmalloc_to_page(si->swap_map + offset);
3736 offset &= ~PAGE_MASK;
3737
3738 spin_lock(&si->cont_lock);
3739 /*
3740 * Page allocation does not initialize the page's lru field,
3741 * but it does always reset its private field.
3742 */
3743 if (!page_private(head)) {
3744 BUG_ON(count & COUNT_CONTINUED);
3745 INIT_LIST_HEAD(&head->lru);
3746 set_page_private(head, SWP_CONTINUED);
3747 si->flags |= SWP_CONTINUED;
3748 }
3749
3750 list_for_each_entry(list_page, &head->lru, lru) {
3751 unsigned char *map;
3752
3753 /*
3754 * If the previous map said no continuation, but we've found
3755 * a continuation page, free our allocation and use this one.
3756 */
3757 if (!(count & COUNT_CONTINUED))
3758 goto out_unlock_cont;
3759
3760 map = kmap_local_page(list_page) + offset;
3761 count = *map;
3762 kunmap_local(map);
3763
3764 /*
3765 * If this continuation count now has some space in it,
3766 * free our allocation and use this one.
3767 */
3768 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3769 goto out_unlock_cont;
3770 }
3771
3772 list_add_tail(&page->lru, &head->lru);
3773 page = NULL; /* now it's attached, don't free it */
3774 out_unlock_cont:
3775 spin_unlock(&si->cont_lock);
3776 out:
3777 unlock_cluster(ci);
3778 put_swap_device(si);
3779 outer:
3780 if (page)
3781 __free_page(page);
3782 return ret;
3783 }
3784
3785 /*
3786 * swap_count_continued - when the original swap_map count is incremented
3787 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3788 * into, carry if so, or else fail until a new continuation page is allocated;
3789 * when the original swap_map count is decremented from 0 with continuation,
3790 * borrow from the continuation and report whether it still holds more.
3791 * Called while __swap_duplicate() or caller of swap_entry_put_locked()
3792 * holds cluster lock.
3793 */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)3794 static bool swap_count_continued(struct swap_info_struct *si,
3795 pgoff_t offset, unsigned char count)
3796 {
3797 struct page *head;
3798 struct page *page;
3799 unsigned char *map;
3800 bool ret;
3801
3802 head = vmalloc_to_page(si->swap_map + offset);
3803 if (page_private(head) != SWP_CONTINUED) {
3804 BUG_ON(count & COUNT_CONTINUED);
3805 return false; /* need to add count continuation */
3806 }
3807
3808 spin_lock(&si->cont_lock);
3809 offset &= ~PAGE_MASK;
3810 page = list_next_entry(head, lru);
3811 map = kmap_local_page(page) + offset;
3812
3813 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3814 goto init_map; /* jump over SWAP_CONT_MAX checks */
3815
3816 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3817 /*
3818 * Think of how you add 1 to 999
3819 */
3820 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3821 kunmap_local(map);
3822 page = list_next_entry(page, lru);
3823 BUG_ON(page == head);
3824 map = kmap_local_page(page) + offset;
3825 }
3826 if (*map == SWAP_CONT_MAX) {
3827 kunmap_local(map);
3828 page = list_next_entry(page, lru);
3829 if (page == head) {
3830 ret = false; /* add count continuation */
3831 goto out;
3832 }
3833 map = kmap_local_page(page) + offset;
3834 init_map: *map = 0; /* we didn't zero the page */
3835 }
3836 *map += 1;
3837 kunmap_local(map);
3838 while ((page = list_prev_entry(page, lru)) != head) {
3839 map = kmap_local_page(page) + offset;
3840 *map = COUNT_CONTINUED;
3841 kunmap_local(map);
3842 }
3843 ret = true; /* incremented */
3844
3845 } else { /* decrementing */
3846 /*
3847 * Think of how you subtract 1 from 1000
3848 */
3849 BUG_ON(count != COUNT_CONTINUED);
3850 while (*map == COUNT_CONTINUED) {
3851 kunmap_local(map);
3852 page = list_next_entry(page, lru);
3853 BUG_ON(page == head);
3854 map = kmap_local_page(page) + offset;
3855 }
3856 BUG_ON(*map == 0);
3857 *map -= 1;
3858 if (*map == 0)
3859 count = 0;
3860 kunmap_local(map);
3861 while ((page = list_prev_entry(page, lru)) != head) {
3862 map = kmap_local_page(page) + offset;
3863 *map = SWAP_CONT_MAX | count;
3864 count = COUNT_CONTINUED;
3865 kunmap_local(map);
3866 }
3867 ret = count == COUNT_CONTINUED;
3868 }
3869 out:
3870 spin_unlock(&si->cont_lock);
3871 return ret;
3872 }
3873
3874 /*
3875 * free_swap_count_continuations - swapoff free all the continuation pages
3876 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3877 */
free_swap_count_continuations(struct swap_info_struct * si)3878 static void free_swap_count_continuations(struct swap_info_struct *si)
3879 {
3880 pgoff_t offset;
3881
3882 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3883 struct page *head;
3884 head = vmalloc_to_page(si->swap_map + offset);
3885 if (page_private(head)) {
3886 struct page *page, *next;
3887
3888 list_for_each_entry_safe(page, next, &head->lru, lru) {
3889 list_del(&page->lru);
3890 __free_page(page);
3891 }
3892 }
3893 }
3894 }
3895
3896 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
__has_usable_swap(void)3897 static bool __has_usable_swap(void)
3898 {
3899 return !plist_head_empty(&swap_active_head);
3900 }
3901
__folio_throttle_swaprate(struct folio * folio,gfp_t gfp)3902 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3903 {
3904 struct swap_info_struct *si, *next;
3905 int nid = folio_nid(folio);
3906
3907 if (!(gfp & __GFP_IO))
3908 return;
3909
3910 if (!__has_usable_swap())
3911 return;
3912
3913 if (!blk_cgroup_congested())
3914 return;
3915
3916 /*
3917 * We've already scheduled a throttle, avoid taking the global swap
3918 * lock.
3919 */
3920 if (current->throttle_disk)
3921 return;
3922
3923 spin_lock(&swap_avail_lock);
3924 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3925 avail_lists[nid]) {
3926 if (si->bdev) {
3927 blkcg_schedule_throttle(si->bdev->bd_disk, true);
3928 break;
3929 }
3930 }
3931 spin_unlock(&swap_avail_lock);
3932 }
3933 #endif
3934
swapfile_init(void)3935 static int __init swapfile_init(void)
3936 {
3937 int nid;
3938
3939 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3940 GFP_KERNEL);
3941 if (!swap_avail_heads) {
3942 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3943 return -ENOMEM;
3944 }
3945
3946 for_each_node(nid)
3947 plist_head_init(&swap_avail_heads[nid]);
3948
3949 swapfile_maximum_size = arch_max_swapfile_size();
3950
3951 #ifdef CONFIG_MIGRATION
3952 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3953 swap_migration_ad_supported = true;
3954 #endif /* CONFIG_MIGRATION */
3955
3956 return 0;
3957 }
3958 subsys_initcall(swapfile_init);
3959