xref: /linux/mm/swap_state.c (revision bcb6058a4b4596f12065276faeb9363dc4887ea9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/mempolicy.h>
14 #include <linux/swap.h>
15 #include <linux/leafops.h>
16 #include <linux/init.h>
17 #include <linux/pagemap.h>
18 #include <linux/pagevec.h>
19 #include <linux/backing-dev.h>
20 #include <linux/blkdev.h>
21 #include <linux/migrate.h>
22 #include <linux/vmalloc.h>
23 #include <linux/huge_mm.h>
24 #include <linux/shmem_fs.h>
25 #include "internal.h"
26 #include "swap_table.h"
27 #include "swap.h"
28 
29 /*
30  * swapper_space is a fiction, retained to simplify the path through
31  * vmscan's shrink_folio_list.
32  */
33 static const struct address_space_operations swap_aops = {
34 	.dirty_folio	= noop_dirty_folio,
35 #ifdef CONFIG_MIGRATION
36 	.migrate_folio	= migrate_folio,
37 #endif
38 };
39 
40 struct address_space swap_space __read_mostly = {
41 	.a_ops = &swap_aops,
42 };
43 
44 static bool enable_vma_readahead __read_mostly = true;
45 
46 #define SWAP_RA_ORDER_CEILING	5
47 
48 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
49 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
50 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
51 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
52 
53 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
54 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
55 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
56 
57 #define SWAP_RA_VAL(addr, win, hits)				\
58 	(((addr) & PAGE_MASK) |					\
59 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
60 	 ((hits) & SWAP_RA_HITS_MASK))
61 
62 /* Initial readahead hits is 4 to start up with a small window */
63 #define GET_SWAP_RA_VAL(vma)					\
64 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
65 
66 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
67 
show_swap_cache_info(void)68 void show_swap_cache_info(void)
69 {
70 	printk("%lu pages in swap cache\n", total_swapcache_pages());
71 	printk("Free swap  = %ldkB\n", K(get_nr_swap_pages()));
72 	printk("Total swap = %lukB\n", K(total_swap_pages));
73 }
74 
75 /**
76  * swap_cache_get_folio - Looks up a folio in the swap cache.
77  * @entry: swap entry used for the lookup.
78  *
79  * A found folio will be returned unlocked and with its refcount increased.
80  *
81  * Context: Caller must ensure @entry is valid and protect the swap device
82  * with reference count or locks.
83  * Return: Returns the found folio on success, NULL otherwise. The caller
84  * must lock nd check if the folio still matches the swap entry before
85  * use (e.g., folio_matches_swap_entry).
86  */
swap_cache_get_folio(swp_entry_t entry)87 struct folio *swap_cache_get_folio(swp_entry_t entry)
88 {
89 	unsigned long swp_tb;
90 	struct folio *folio;
91 
92 	for (;;) {
93 		swp_tb = swap_table_get(__swap_entry_to_cluster(entry),
94 					swp_cluster_offset(entry));
95 		if (!swp_tb_is_folio(swp_tb))
96 			return NULL;
97 		folio = swp_tb_to_folio(swp_tb);
98 		if (likely(folio_try_get(folio)))
99 			return folio;
100 	}
101 
102 	return NULL;
103 }
104 
105 /**
106  * swap_cache_get_shadow - Looks up a shadow in the swap cache.
107  * @entry: swap entry used for the lookup.
108  *
109  * Context: Caller must ensure @entry is valid and protect the swap device
110  * with reference count or locks.
111  * Return: Returns either NULL or an XA_VALUE (shadow).
112  */
swap_cache_get_shadow(swp_entry_t entry)113 void *swap_cache_get_shadow(swp_entry_t entry)
114 {
115 	unsigned long swp_tb;
116 
117 	swp_tb = swap_table_get(__swap_entry_to_cluster(entry),
118 				swp_cluster_offset(entry));
119 	if (swp_tb_is_shadow(swp_tb))
120 		return swp_tb_to_shadow(swp_tb);
121 	return NULL;
122 }
123 
124 /**
125  * swap_cache_add_folio - Add a folio into the swap cache.
126  * @folio: The folio to be added.
127  * @entry: The swap entry corresponding to the folio.
128  * @gfp: gfp_mask for XArray node allocation.
129  * @shadowp: If a shadow is found, return the shadow.
130  *
131  * Context: Caller must ensure @entry is valid and protect the swap device
132  * with reference count or locks.
133  * The caller also needs to update the corresponding swap_map slots with
134  * SWAP_HAS_CACHE bit to avoid race or conflict.
135  */
swap_cache_add_folio(struct folio * folio,swp_entry_t entry,void ** shadowp)136 void swap_cache_add_folio(struct folio *folio, swp_entry_t entry, void **shadowp)
137 {
138 	void *shadow = NULL;
139 	unsigned long old_tb, new_tb;
140 	struct swap_cluster_info *ci;
141 	unsigned int ci_start, ci_off, ci_end;
142 	unsigned long nr_pages = folio_nr_pages(folio);
143 
144 	VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio);
145 	VM_WARN_ON_ONCE_FOLIO(folio_test_swapcache(folio), folio);
146 	VM_WARN_ON_ONCE_FOLIO(!folio_test_swapbacked(folio), folio);
147 
148 	new_tb = folio_to_swp_tb(folio);
149 	ci_start = swp_cluster_offset(entry);
150 	ci_end = ci_start + nr_pages;
151 	ci_off = ci_start;
152 	ci = swap_cluster_lock(__swap_entry_to_info(entry), swp_offset(entry));
153 	do {
154 		old_tb = __swap_table_xchg(ci, ci_off, new_tb);
155 		WARN_ON_ONCE(swp_tb_is_folio(old_tb));
156 		if (swp_tb_is_shadow(old_tb))
157 			shadow = swp_tb_to_shadow(old_tb);
158 	} while (++ci_off < ci_end);
159 
160 	folio_ref_add(folio, nr_pages);
161 	folio_set_swapcache(folio);
162 	folio->swap = entry;
163 	swap_cluster_unlock(ci);
164 
165 	node_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
166 	lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr_pages);
167 
168 	if (shadowp)
169 		*shadowp = shadow;
170 }
171 
172 /**
173  * __swap_cache_del_folio - Removes a folio from the swap cache.
174  * @ci: The locked swap cluster.
175  * @folio: The folio.
176  * @entry: The first swap entry that the folio corresponds to.
177  * @shadow: shadow value to be filled in the swap cache.
178  *
179  * Removes a folio from the swap cache and fills a shadow in place.
180  * This won't put the folio's refcount. The caller has to do that.
181  *
182  * Context: Caller must ensure the folio is locked and in the swap cache
183  * using the index of @entry, and lock the cluster that holds the entries.
184  */
__swap_cache_del_folio(struct swap_cluster_info * ci,struct folio * folio,swp_entry_t entry,void * shadow)185 void __swap_cache_del_folio(struct swap_cluster_info *ci, struct folio *folio,
186 			    swp_entry_t entry, void *shadow)
187 {
188 	unsigned long old_tb, new_tb;
189 	unsigned int ci_start, ci_off, ci_end;
190 	unsigned long nr_pages = folio_nr_pages(folio);
191 
192 	VM_WARN_ON_ONCE(__swap_entry_to_cluster(entry) != ci);
193 	VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio);
194 	VM_WARN_ON_ONCE_FOLIO(!folio_test_swapcache(folio), folio);
195 	VM_WARN_ON_ONCE_FOLIO(folio_test_writeback(folio), folio);
196 
197 	new_tb = shadow_swp_to_tb(shadow);
198 	ci_start = swp_cluster_offset(entry);
199 	ci_end = ci_start + nr_pages;
200 	ci_off = ci_start;
201 	do {
202 		/* If shadow is NULL, we sets an empty shadow */
203 		old_tb = __swap_table_xchg(ci, ci_off, new_tb);
204 		WARN_ON_ONCE(!swp_tb_is_folio(old_tb) ||
205 			     swp_tb_to_folio(old_tb) != folio);
206 	} while (++ci_off < ci_end);
207 
208 	folio->swap.val = 0;
209 	folio_clear_swapcache(folio);
210 	node_stat_mod_folio(folio, NR_FILE_PAGES, -nr_pages);
211 	lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr_pages);
212 }
213 
214 /**
215  * swap_cache_del_folio - Removes a folio from the swap cache.
216  * @folio: The folio.
217  *
218  * Same as __swap_cache_del_folio, but handles lock and refcount. The
219  * caller must ensure the folio is either clean or has a swap count
220  * equal to zero, or it may cause data loss.
221  *
222  * Context: Caller must ensure the folio is locked and in the swap cache.
223  */
swap_cache_del_folio(struct folio * folio)224 void swap_cache_del_folio(struct folio *folio)
225 {
226 	struct swap_cluster_info *ci;
227 	swp_entry_t entry = folio->swap;
228 
229 	ci = swap_cluster_lock(__swap_entry_to_info(entry), swp_offset(entry));
230 	__swap_cache_del_folio(ci, folio, entry, NULL);
231 	swap_cluster_unlock(ci);
232 
233 	put_swap_folio(folio, entry);
234 	folio_ref_sub(folio, folio_nr_pages(folio));
235 }
236 
237 /**
238  * __swap_cache_replace_folio - Replace a folio in the swap cache.
239  * @ci: The locked swap cluster.
240  * @old: The old folio to be replaced.
241  * @new: The new folio.
242  *
243  * Replace an existing folio in the swap cache with a new folio. The
244  * caller is responsible for setting up the new folio's flag and swap
245  * entries. Replacement will take the new folio's swap entry value as
246  * the starting offset to override all slots covered by the new folio.
247  *
248  * Context: Caller must ensure both folios are locked, and lock the
249  * cluster that holds the old folio to be replaced.
250  */
__swap_cache_replace_folio(struct swap_cluster_info * ci,struct folio * old,struct folio * new)251 void __swap_cache_replace_folio(struct swap_cluster_info *ci,
252 				struct folio *old, struct folio *new)
253 {
254 	swp_entry_t entry = new->swap;
255 	unsigned long nr_pages = folio_nr_pages(new);
256 	unsigned int ci_off = swp_cluster_offset(entry);
257 	unsigned int ci_end = ci_off + nr_pages;
258 	unsigned long old_tb, new_tb;
259 
260 	VM_WARN_ON_ONCE(!folio_test_swapcache(old) || !folio_test_swapcache(new));
261 	VM_WARN_ON_ONCE(!folio_test_locked(old) || !folio_test_locked(new));
262 	VM_WARN_ON_ONCE(!entry.val);
263 
264 	/* Swap cache still stores N entries instead of a high-order entry */
265 	new_tb = folio_to_swp_tb(new);
266 	do {
267 		old_tb = __swap_table_xchg(ci, ci_off, new_tb);
268 		WARN_ON_ONCE(!swp_tb_is_folio(old_tb) || swp_tb_to_folio(old_tb) != old);
269 	} while (++ci_off < ci_end);
270 
271 	/*
272 	 * If the old folio is partially replaced (e.g., splitting a large
273 	 * folio, the old folio is shrunk, and new split sub folios replace
274 	 * the shrunk part), ensure the new folio doesn't overlap it.
275 	 */
276 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
277 	    folio_order(old) != folio_order(new)) {
278 		ci_off = swp_cluster_offset(old->swap);
279 		ci_end = ci_off + folio_nr_pages(old);
280 		while (ci_off++ < ci_end)
281 			WARN_ON_ONCE(swp_tb_to_folio(__swap_table_get(ci, ci_off)) != old);
282 	}
283 }
284 
285 /**
286  * swap_cache_clear_shadow - Clears a set of shadows in the swap cache.
287  * @entry: The starting index entry.
288  * @nr_ents: How many slots need to be cleared.
289  *
290  * Context: Caller must ensure the range is valid, all in one single cluster,
291  * not occupied by any folio, and lock the cluster.
292  */
__swap_cache_clear_shadow(swp_entry_t entry,int nr_ents)293 void __swap_cache_clear_shadow(swp_entry_t entry, int nr_ents)
294 {
295 	struct swap_cluster_info *ci = __swap_entry_to_cluster(entry);
296 	unsigned int ci_off = swp_cluster_offset(entry), ci_end;
297 	unsigned long old;
298 
299 	ci_end = ci_off + nr_ents;
300 	do {
301 		old = __swap_table_xchg(ci, ci_off, null_to_swp_tb());
302 		WARN_ON_ONCE(swp_tb_is_folio(old));
303 	} while (++ci_off < ci_end);
304 }
305 
306 /*
307  * If we are the only user, then try to free up the swap cache.
308  *
309  * Its ok to check the swapcache flag without the folio lock
310  * here because we are going to recheck again inside
311  * folio_free_swap() _with_ the lock.
312  * 					- Marcelo
313  */
free_swap_cache(struct folio * folio)314 void free_swap_cache(struct folio *folio)
315 {
316 	if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
317 	    folio_trylock(folio)) {
318 		folio_free_swap(folio);
319 		folio_unlock(folio);
320 	}
321 }
322 
323 /*
324  * Freeing a folio and also freeing any swap cache associated with
325  * this folio if it is the last user.
326  */
free_folio_and_swap_cache(struct folio * folio)327 void free_folio_and_swap_cache(struct folio *folio)
328 {
329 	free_swap_cache(folio);
330 	if (!is_huge_zero_folio(folio))
331 		folio_put(folio);
332 }
333 
334 /*
335  * Passed an array of pages, drop them all from swapcache and then release
336  * them.  They are removed from the LRU and freed if this is their last use.
337  */
free_pages_and_swap_cache(struct encoded_page ** pages,int nr)338 void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
339 {
340 	struct folio_batch folios;
341 	unsigned int refs[PAGEVEC_SIZE];
342 
343 	folio_batch_init(&folios);
344 	for (int i = 0; i < nr; i++) {
345 		struct folio *folio = page_folio(encoded_page_ptr(pages[i]));
346 
347 		free_swap_cache(folio);
348 		refs[folios.nr] = 1;
349 		if (unlikely(encoded_page_flags(pages[i]) &
350 			     ENCODED_PAGE_BIT_NR_PAGES_NEXT))
351 			refs[folios.nr] = encoded_nr_pages(pages[++i]);
352 
353 		if (folio_batch_add(&folios, folio) == 0)
354 			folios_put_refs(&folios, refs);
355 	}
356 	if (folios.nr)
357 		folios_put_refs(&folios, refs);
358 }
359 
swap_use_vma_readahead(void)360 static inline bool swap_use_vma_readahead(void)
361 {
362 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
363 }
364 
365 /**
366  * swap_update_readahead - Update the readahead statistics of VMA or globally.
367  * @folio: the swap cache folio that just got hit.
368  * @vma: the VMA that should be updated, could be NULL for global update.
369  * @addr: the addr that triggered the swapin, ignored if @vma is NULL.
370  */
swap_update_readahead(struct folio * folio,struct vm_area_struct * vma,unsigned long addr)371 void swap_update_readahead(struct folio *folio, struct vm_area_struct *vma,
372 			   unsigned long addr)
373 {
374 	bool readahead, vma_ra = swap_use_vma_readahead();
375 
376 	/*
377 	 * At the moment, we don't support PG_readahead for anon THP
378 	 * so let's bail out rather than confusing the readahead stat.
379 	 */
380 	if (unlikely(folio_test_large(folio)))
381 		return;
382 
383 	readahead = folio_test_clear_readahead(folio);
384 	if (vma && vma_ra) {
385 		unsigned long ra_val;
386 		int win, hits;
387 
388 		ra_val = GET_SWAP_RA_VAL(vma);
389 		win = SWAP_RA_WIN(ra_val);
390 		hits = SWAP_RA_HITS(ra_val);
391 		if (readahead)
392 			hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
393 		atomic_long_set(&vma->swap_readahead_info,
394 				SWAP_RA_VAL(addr, win, hits));
395 	}
396 
397 	if (readahead) {
398 		count_vm_event(SWAP_RA_HIT);
399 		if (!vma || !vma_ra)
400 			atomic_inc(&swapin_readahead_hits);
401 	}
402 }
403 
__read_swap_cache_async(swp_entry_t entry,gfp_t gfp_mask,struct mempolicy * mpol,pgoff_t ilx,bool * new_page_allocated,bool skip_if_exists)404 struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
405 		struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated,
406 		bool skip_if_exists)
407 {
408 	struct swap_info_struct *si = __swap_entry_to_info(entry);
409 	struct folio *folio;
410 	struct folio *new_folio = NULL;
411 	struct folio *result = NULL;
412 	void *shadow = NULL;
413 
414 	*new_page_allocated = false;
415 	for (;;) {
416 		int err;
417 
418 		/*
419 		 * Check the swap cache first, if a cached folio is found,
420 		 * return it unlocked. The caller will lock and check it.
421 		 */
422 		folio = swap_cache_get_folio(entry);
423 		if (folio)
424 			goto got_folio;
425 
426 		/*
427 		 * Just skip read ahead for unused swap slot.
428 		 */
429 		if (!swap_entry_swapped(si, entry))
430 			goto put_and_return;
431 
432 		/*
433 		 * Get a new folio to read into from swap.  Allocate it now if
434 		 * new_folio not exist, before marking swap_map SWAP_HAS_CACHE,
435 		 * when -EEXIST will cause any racers to loop around until we
436 		 * add it to cache.
437 		 */
438 		if (!new_folio) {
439 			new_folio = folio_alloc_mpol(gfp_mask, 0, mpol, ilx, numa_node_id());
440 			if (!new_folio)
441 				goto put_and_return;
442 		}
443 
444 		/*
445 		 * Swap entry may have been freed since our caller observed it.
446 		 */
447 		err = swapcache_prepare(entry, 1);
448 		if (!err)
449 			break;
450 		else if (err != -EEXIST)
451 			goto put_and_return;
452 
453 		/*
454 		 * Protect against a recursive call to __read_swap_cache_async()
455 		 * on the same entry waiting forever here because SWAP_HAS_CACHE
456 		 * is set but the folio is not the swap cache yet. This can
457 		 * happen today if mem_cgroup_swapin_charge_folio() below
458 		 * triggers reclaim through zswap, which may call
459 		 * __read_swap_cache_async() in the writeback path.
460 		 */
461 		if (skip_if_exists)
462 			goto put_and_return;
463 
464 		/*
465 		 * We might race against __swap_cache_del_folio(), and
466 		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
467 		 * has not yet been cleared.  Or race against another
468 		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
469 		 * in swap_map, but not yet added its folio to swap cache.
470 		 */
471 		schedule_timeout_uninterruptible(1);
472 	}
473 
474 	/*
475 	 * The swap entry is ours to swap in. Prepare the new folio.
476 	 */
477 	__folio_set_locked(new_folio);
478 	__folio_set_swapbacked(new_folio);
479 
480 	if (mem_cgroup_swapin_charge_folio(new_folio, NULL, gfp_mask, entry))
481 		goto fail_unlock;
482 
483 	swap_cache_add_folio(new_folio, entry, &shadow);
484 	memcg1_swapin(entry, 1);
485 
486 	if (shadow)
487 		workingset_refault(new_folio, shadow);
488 
489 	/* Caller will initiate read into locked new_folio */
490 	folio_add_lru(new_folio);
491 	*new_page_allocated = true;
492 	folio = new_folio;
493 got_folio:
494 	result = folio;
495 	goto put_and_return;
496 
497 fail_unlock:
498 	put_swap_folio(new_folio, entry);
499 	folio_unlock(new_folio);
500 put_and_return:
501 	if (!(*new_page_allocated) && new_folio)
502 		folio_put(new_folio);
503 	return result;
504 }
505 
506 /*
507  * Locate a page of swap in physical memory, reserving swap cache space
508  * and reading the disk if it is not already cached.
509  * A failure return means that either the page allocation failed or that
510  * the swap entry is no longer in use.
511  */
read_swap_cache_async(swp_entry_t entry,gfp_t gfp_mask,struct vm_area_struct * vma,unsigned long addr,struct swap_iocb ** plug)512 struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
513 		struct vm_area_struct *vma, unsigned long addr,
514 		struct swap_iocb **plug)
515 {
516 	struct swap_info_struct *si;
517 	bool page_allocated;
518 	struct mempolicy *mpol;
519 	pgoff_t ilx;
520 	struct folio *folio;
521 
522 	si = get_swap_device(entry);
523 	if (!si)
524 		return NULL;
525 
526 	mpol = get_vma_policy(vma, addr, 0, &ilx);
527 	folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
528 					&page_allocated, false);
529 	mpol_cond_put(mpol);
530 
531 	if (page_allocated)
532 		swap_read_folio(folio, plug);
533 
534 	put_swap_device(si);
535 	return folio;
536 }
537 
__swapin_nr_pages(unsigned long prev_offset,unsigned long offset,int hits,int max_pages,int prev_win)538 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
539 				      unsigned long offset,
540 				      int hits,
541 				      int max_pages,
542 				      int prev_win)
543 {
544 	unsigned int pages, last_ra;
545 
546 	/*
547 	 * This heuristic has been found to work well on both sequential and
548 	 * random loads, swapping to hard disk or to SSD: please don't ask
549 	 * what the "+ 2" means, it just happens to work well, that's all.
550 	 */
551 	pages = hits + 2;
552 	if (pages == 2) {
553 		/*
554 		 * We can have no readahead hits to judge by: but must not get
555 		 * stuck here forever, so check for an adjacent offset instead
556 		 * (and don't even bother to check whether swap type is same).
557 		 */
558 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
559 			pages = 1;
560 	} else {
561 		unsigned int roundup = 4;
562 		while (roundup < pages)
563 			roundup <<= 1;
564 		pages = roundup;
565 	}
566 
567 	if (pages > max_pages)
568 		pages = max_pages;
569 
570 	/* Don't shrink readahead too fast */
571 	last_ra = prev_win / 2;
572 	if (pages < last_ra)
573 		pages = last_ra;
574 
575 	return pages;
576 }
577 
swapin_nr_pages(unsigned long offset)578 static unsigned long swapin_nr_pages(unsigned long offset)
579 {
580 	static unsigned long prev_offset;
581 	unsigned int hits, pages, max_pages;
582 	static atomic_t last_readahead_pages;
583 
584 	max_pages = 1 << READ_ONCE(page_cluster);
585 	if (max_pages <= 1)
586 		return 1;
587 
588 	hits = atomic_xchg(&swapin_readahead_hits, 0);
589 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
590 				  max_pages,
591 				  atomic_read(&last_readahead_pages));
592 	if (!hits)
593 		WRITE_ONCE(prev_offset, offset);
594 	atomic_set(&last_readahead_pages, pages);
595 
596 	return pages;
597 }
598 
599 /**
600  * swap_cluster_readahead - swap in pages in hope we need them soon
601  * @entry: swap entry of this memory
602  * @gfp_mask: memory allocation flags
603  * @mpol: NUMA memory allocation policy to be applied
604  * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
605  *
606  * Returns the struct folio for entry and addr, after queueing swapin.
607  *
608  * Primitive swap readahead code. We simply read an aligned block of
609  * (1 << page_cluster) entries in the swap area. This method is chosen
610  * because it doesn't cost us any seek time.  We also make sure to queue
611  * the 'original' request together with the readahead ones...
612  *
613  * Note: it is intentional that the same NUMA policy and interleave index
614  * are used for every page of the readahead: neighbouring pages on swap
615  * are fairly likely to have been swapped out from the same node.
616  */
swap_cluster_readahead(swp_entry_t entry,gfp_t gfp_mask,struct mempolicy * mpol,pgoff_t ilx)617 struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
618 				    struct mempolicy *mpol, pgoff_t ilx)
619 {
620 	struct folio *folio;
621 	unsigned long entry_offset = swp_offset(entry);
622 	unsigned long offset = entry_offset;
623 	unsigned long start_offset, end_offset;
624 	unsigned long mask;
625 	struct swap_info_struct *si = __swap_entry_to_info(entry);
626 	struct blk_plug plug;
627 	struct swap_iocb *splug = NULL;
628 	bool page_allocated;
629 
630 	mask = swapin_nr_pages(offset) - 1;
631 	if (!mask)
632 		goto skip;
633 
634 	/* Read a page_cluster sized and aligned cluster around offset. */
635 	start_offset = offset & ~mask;
636 	end_offset = offset | mask;
637 	if (!start_offset)	/* First page is swap header. */
638 		start_offset++;
639 	if (end_offset >= si->max)
640 		end_offset = si->max - 1;
641 
642 	blk_start_plug(&plug);
643 	for (offset = start_offset; offset <= end_offset ; offset++) {
644 		/* Ok, do the async read-ahead now */
645 		folio = __read_swap_cache_async(
646 				swp_entry(swp_type(entry), offset),
647 				gfp_mask, mpol, ilx, &page_allocated, false);
648 		if (!folio)
649 			continue;
650 		if (page_allocated) {
651 			swap_read_folio(folio, &splug);
652 			if (offset != entry_offset) {
653 				folio_set_readahead(folio);
654 				count_vm_event(SWAP_RA);
655 			}
656 		}
657 		folio_put(folio);
658 	}
659 	blk_finish_plug(&plug);
660 	swap_read_unplug(splug);
661 	lru_add_drain();	/* Push any new pages onto the LRU now */
662 skip:
663 	/* The page was likely read above, so no need for plugging here */
664 	folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
665 					&page_allocated, false);
666 	if (unlikely(page_allocated))
667 		swap_read_folio(folio, NULL);
668 	return folio;
669 }
670 
swap_vma_ra_win(struct vm_fault * vmf,unsigned long * start,unsigned long * end)671 static int swap_vma_ra_win(struct vm_fault *vmf, unsigned long *start,
672 			   unsigned long *end)
673 {
674 	struct vm_area_struct *vma = vmf->vma;
675 	unsigned long ra_val;
676 	unsigned long faddr, prev_faddr, left, right;
677 	unsigned int max_win, hits, prev_win, win;
678 
679 	max_win = 1 << min(READ_ONCE(page_cluster), SWAP_RA_ORDER_CEILING);
680 	if (max_win == 1)
681 		return 1;
682 
683 	faddr = vmf->address;
684 	ra_val = GET_SWAP_RA_VAL(vma);
685 	prev_faddr = SWAP_RA_ADDR(ra_val);
686 	prev_win = SWAP_RA_WIN(ra_val);
687 	hits = SWAP_RA_HITS(ra_val);
688 	win = __swapin_nr_pages(PFN_DOWN(prev_faddr), PFN_DOWN(faddr), hits,
689 				max_win, prev_win);
690 	atomic_long_set(&vma->swap_readahead_info, SWAP_RA_VAL(faddr, win, 0));
691 	if (win == 1)
692 		return 1;
693 
694 	if (faddr == prev_faddr + PAGE_SIZE)
695 		left = faddr;
696 	else if (prev_faddr == faddr + PAGE_SIZE)
697 		left = faddr - (win << PAGE_SHIFT) + PAGE_SIZE;
698 	else
699 		left = faddr - (((win - 1) / 2) << PAGE_SHIFT);
700 	right = left + (win << PAGE_SHIFT);
701 	if ((long)left < 0)
702 		left = 0;
703 	*start = max3(left, vma->vm_start, faddr & PMD_MASK);
704 	*end = min3(right, vma->vm_end, (faddr & PMD_MASK) + PMD_SIZE);
705 
706 	return win;
707 }
708 
709 /**
710  * swap_vma_readahead - swap in pages in hope we need them soon
711  * @targ_entry: swap entry of the targeted memory
712  * @gfp_mask: memory allocation flags
713  * @mpol: NUMA memory allocation policy to be applied
714  * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
715  * @vmf: fault information
716  *
717  * Returns the struct folio for entry and addr, after queueing swapin.
718  *
719  * Primitive swap readahead code. We simply read in a few pages whose
720  * virtual addresses are around the fault address in the same vma.
721  *
722  * Caller must hold read mmap_lock if vmf->vma is not NULL.
723  *
724  */
swap_vma_readahead(swp_entry_t targ_entry,gfp_t gfp_mask,struct mempolicy * mpol,pgoff_t targ_ilx,struct vm_fault * vmf)725 static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask,
726 		struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf)
727 {
728 	struct blk_plug plug;
729 	struct swap_iocb *splug = NULL;
730 	struct folio *folio;
731 	pte_t *pte = NULL, pentry;
732 	int win;
733 	unsigned long start, end, addr;
734 	pgoff_t ilx;
735 	bool page_allocated;
736 
737 	win = swap_vma_ra_win(vmf, &start, &end);
738 	if (win == 1)
739 		goto skip;
740 
741 	ilx = targ_ilx - PFN_DOWN(vmf->address - start);
742 
743 	blk_start_plug(&plug);
744 	for (addr = start; addr < end; ilx++, addr += PAGE_SIZE) {
745 		struct swap_info_struct *si = NULL;
746 		softleaf_t entry;
747 
748 		if (!pte++) {
749 			pte = pte_offset_map(vmf->pmd, addr);
750 			if (!pte)
751 				break;
752 		}
753 		pentry = ptep_get_lockless(pte);
754 		entry = softleaf_from_pte(pentry);
755 
756 		if (!softleaf_is_swap(entry))
757 			continue;
758 		pte_unmap(pte);
759 		pte = NULL;
760 		/*
761 		 * Readahead entry may come from a device that we are not
762 		 * holding a reference to, try to grab a reference, or skip.
763 		 */
764 		if (swp_type(entry) != swp_type(targ_entry)) {
765 			si = get_swap_device(entry);
766 			if (!si)
767 				continue;
768 		}
769 		folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
770 						&page_allocated, false);
771 		if (si)
772 			put_swap_device(si);
773 		if (!folio)
774 			continue;
775 		if (page_allocated) {
776 			swap_read_folio(folio, &splug);
777 			if (addr != vmf->address) {
778 				folio_set_readahead(folio);
779 				count_vm_event(SWAP_RA);
780 			}
781 		}
782 		folio_put(folio);
783 	}
784 	if (pte)
785 		pte_unmap(pte);
786 	blk_finish_plug(&plug);
787 	swap_read_unplug(splug);
788 	lru_add_drain();
789 skip:
790 	/* The folio was likely read above, so no need for plugging here */
791 	folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx,
792 					&page_allocated, false);
793 	if (unlikely(page_allocated))
794 		swap_read_folio(folio, NULL);
795 	return folio;
796 }
797 
798 /**
799  * swapin_readahead - swap in pages in hope we need them soon
800  * @entry: swap entry of this memory
801  * @gfp_mask: memory allocation flags
802  * @vmf: fault information
803  *
804  * Returns the struct folio for entry and addr, after queueing swapin.
805  *
806  * It's a main entry function for swap readahead. By the configuration,
807  * it will read ahead blocks by cluster-based(ie, physical disk based)
808  * or vma-based(ie, virtual address based on faulty address) readahead.
809  */
swapin_readahead(swp_entry_t entry,gfp_t gfp_mask,struct vm_fault * vmf)810 struct folio *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
811 				struct vm_fault *vmf)
812 {
813 	struct mempolicy *mpol;
814 	pgoff_t ilx;
815 	struct folio *folio;
816 
817 	mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx);
818 	folio = swap_use_vma_readahead() ?
819 		swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) :
820 		swap_cluster_readahead(entry, gfp_mask, mpol, ilx);
821 	mpol_cond_put(mpol);
822 
823 	return folio;
824 }
825 
826 #ifdef CONFIG_SYSFS
vma_ra_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)827 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
828 				     struct kobj_attribute *attr, char *buf)
829 {
830 	return sysfs_emit(buf, "%s\n", str_true_false(enable_vma_readahead));
831 }
vma_ra_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)832 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
833 				      struct kobj_attribute *attr,
834 				      const char *buf, size_t count)
835 {
836 	ssize_t ret;
837 
838 	ret = kstrtobool(buf, &enable_vma_readahead);
839 	if (ret)
840 		return ret;
841 
842 	return count;
843 }
844 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
845 
846 static struct attribute *swap_attrs[] = {
847 	&vma_ra_enabled_attr.attr,
848 	NULL,
849 };
850 
851 static const struct attribute_group swap_attr_group = {
852 	.attrs = swap_attrs,
853 };
854 
swap_init(void)855 static int __init swap_init(void)
856 {
857 	int err;
858 	struct kobject *swap_kobj;
859 
860 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
861 	if (!swap_kobj) {
862 		pr_err("failed to create swap kobject\n");
863 		return -ENOMEM;
864 	}
865 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
866 	if (err) {
867 		pr_err("failed to register swap group\n");
868 		goto delete_obj;
869 	}
870 	/* Swap cache writeback is LRU based, no tags for it */
871 	mapping_set_no_writeback_tags(&swap_space);
872 	return 0;
873 
874 delete_obj:
875 	kobject_put(swap_kobj);
876 	return err;
877 }
878 subsys_initcall(swap_init);
879 #endif
880