xref: /linux/net/ipv4/tcp_input.c (revision 27eddbf3449026a73d6ed52d55b192bfcf526a03)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/proto_memory.h>
76 #include <net/inet_common.h>
77 #include <linux/ipsec.h>
78 #include <linux/unaligned.h>
79 #include <linux/errqueue.h>
80 #include <trace/events/tcp.h>
81 #include <linux/jump_label_ratelimit.h>
82 #include <net/busy_poll.h>
83 #include <net/mptcp.h>
84 
85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
86 
87 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
88 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
89 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
90 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
91 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
92 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
93 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
94 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
95 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
96 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
97 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
98 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
99 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
100 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
101 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
102 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
103 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
104 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
105 
106 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
109 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
110 
111 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
112 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
113 
114 #define REXMIT_NONE	0 /* no loss recovery to do */
115 #define REXMIT_LOST	1 /* retransmit packets marked lost */
116 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
117 
118 #if IS_ENABLED(CONFIG_TLS_DEVICE)
119 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
120 
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))121 void clean_acked_data_enable(struct inet_connection_sock *icsk,
122 			     void (*cad)(struct sock *sk, u32 ack_seq))
123 {
124 	icsk->icsk_clean_acked = cad;
125 	static_branch_deferred_inc(&clean_acked_data_enabled);
126 }
127 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
128 
clean_acked_data_disable(struct inet_connection_sock * icsk)129 void clean_acked_data_disable(struct inet_connection_sock *icsk)
130 {
131 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
132 	icsk->icsk_clean_acked = NULL;
133 }
134 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
135 
clean_acked_data_flush(void)136 void clean_acked_data_flush(void)
137 {
138 	static_key_deferred_flush(&clean_acked_data_enabled);
139 }
140 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
141 #endif
142 
143 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)144 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
145 {
146 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
147 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
148 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
149 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
150 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
151 	struct bpf_sock_ops_kern sock_ops;
152 
153 	if (likely(!unknown_opt && !parse_all_opt))
154 		return;
155 
156 	/* The skb will be handled in the
157 	 * bpf_skops_established() or
158 	 * bpf_skops_write_hdr_opt().
159 	 */
160 	switch (sk->sk_state) {
161 	case TCP_SYN_RECV:
162 	case TCP_SYN_SENT:
163 	case TCP_LISTEN:
164 		return;
165 	}
166 
167 	sock_owned_by_me(sk);
168 
169 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
170 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
171 	sock_ops.is_fullsock = 1;
172 	sock_ops.sk = sk;
173 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
174 
175 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
176 }
177 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)178 static void bpf_skops_established(struct sock *sk, int bpf_op,
179 				  struct sk_buff *skb)
180 {
181 	struct bpf_sock_ops_kern sock_ops;
182 
183 	sock_owned_by_me(sk);
184 
185 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
186 	sock_ops.op = bpf_op;
187 	sock_ops.is_fullsock = 1;
188 	sock_ops.sk = sk;
189 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
190 	if (skb)
191 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
192 
193 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
194 }
195 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)196 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
197 {
198 }
199 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)200 static void bpf_skops_established(struct sock *sk, int bpf_op,
201 				  struct sk_buff *skb)
202 {
203 }
204 #endif
205 
tcp_gro_dev_warn(const struct sock * sk,const struct sk_buff * skb,unsigned int len)206 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
207 				    unsigned int len)
208 {
209 	struct net_device *dev;
210 
211 	rcu_read_lock();
212 	dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
213 	if (!dev || len >= READ_ONCE(dev->mtu))
214 		pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
215 			dev ? dev->name : "Unknown driver");
216 	rcu_read_unlock();
217 }
218 
219 /* Adapt the MSS value used to make delayed ack decision to the
220  * real world.
221  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)222 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
223 {
224 	struct inet_connection_sock *icsk = inet_csk(sk);
225 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
226 	unsigned int len;
227 
228 	icsk->icsk_ack.last_seg_size = 0;
229 
230 	/* skb->len may jitter because of SACKs, even if peer
231 	 * sends good full-sized frames.
232 	 */
233 	len = skb_shinfo(skb)->gso_size ? : skb->len;
234 	if (len >= icsk->icsk_ack.rcv_mss) {
235 		/* Note: divides are still a bit expensive.
236 		 * For the moment, only adjust scaling_ratio
237 		 * when we update icsk_ack.rcv_mss.
238 		 */
239 		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
240 			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
241 			u8 old_ratio = tcp_sk(sk)->scaling_ratio;
242 
243 			do_div(val, skb->truesize);
244 			tcp_sk(sk)->scaling_ratio = val ? val : 1;
245 
246 			if (old_ratio != tcp_sk(sk)->scaling_ratio) {
247 				struct tcp_sock *tp = tcp_sk(sk);
248 
249 				val = tcp_win_from_space(sk, sk->sk_rcvbuf);
250 				tcp_set_window_clamp(sk, val);
251 
252 				if (tp->window_clamp < tp->rcvq_space.space)
253 					tp->rcvq_space.space = tp->window_clamp;
254 			}
255 		}
256 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
257 					       tcp_sk(sk)->advmss);
258 		/* Account for possibly-removed options */
259 		DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
260 				tcp_gro_dev_warn, sk, skb, len);
261 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
262 		 * set then it is likely the end of an application write. So
263 		 * more data may not be arriving soon, and yet the data sender
264 		 * may be waiting for an ACK if cwnd-bound or using TX zero
265 		 * copy. So we set ICSK_ACK_PUSHED here so that
266 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
267 		 * reads all of the data and is not ping-pong. If len > MSS
268 		 * then this logic does not matter (and does not hurt) because
269 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
270 		 * reads data and there is more than an MSS of unACKed data.
271 		 */
272 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
273 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
274 	} else {
275 		/* Otherwise, we make more careful check taking into account,
276 		 * that SACKs block is variable.
277 		 *
278 		 * "len" is invariant segment length, including TCP header.
279 		 */
280 		len += skb->data - skb_transport_header(skb);
281 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
282 		    /* If PSH is not set, packet should be
283 		     * full sized, provided peer TCP is not badly broken.
284 		     * This observation (if it is correct 8)) allows
285 		     * to handle super-low mtu links fairly.
286 		     */
287 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
288 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
289 			/* Subtract also invariant (if peer is RFC compliant),
290 			 * tcp header plus fixed timestamp option length.
291 			 * Resulting "len" is MSS free of SACK jitter.
292 			 */
293 			len -= tcp_sk(sk)->tcp_header_len;
294 			icsk->icsk_ack.last_seg_size = len;
295 			if (len == lss) {
296 				icsk->icsk_ack.rcv_mss = len;
297 				return;
298 			}
299 		}
300 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
301 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
302 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
303 	}
304 }
305 
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)306 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
307 {
308 	struct inet_connection_sock *icsk = inet_csk(sk);
309 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
310 
311 	if (quickacks == 0)
312 		quickacks = 2;
313 	quickacks = min(quickacks, max_quickacks);
314 	if (quickacks > icsk->icsk_ack.quick)
315 		icsk->icsk_ack.quick = quickacks;
316 }
317 
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)318 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
319 {
320 	struct inet_connection_sock *icsk = inet_csk(sk);
321 
322 	tcp_incr_quickack(sk, max_quickacks);
323 	inet_csk_exit_pingpong_mode(sk);
324 	icsk->icsk_ack.ato = TCP_ATO_MIN;
325 }
326 
327 /* Send ACKs quickly, if "quick" count is not exhausted
328  * and the session is not interactive.
329  */
330 
tcp_in_quickack_mode(struct sock * sk)331 static bool tcp_in_quickack_mode(struct sock *sk)
332 {
333 	const struct inet_connection_sock *icsk = inet_csk(sk);
334 	const struct dst_entry *dst = __sk_dst_get(sk);
335 
336 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
337 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
338 }
339 
tcp_ecn_queue_cwr(struct tcp_sock * tp)340 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
341 {
342 	if (tp->ecn_flags & TCP_ECN_OK)
343 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
344 }
345 
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)346 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
347 {
348 	if (tcp_hdr(skb)->cwr) {
349 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
350 
351 		/* If the sender is telling us it has entered CWR, then its
352 		 * cwnd may be very low (even just 1 packet), so we should ACK
353 		 * immediately.
354 		 */
355 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
356 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
357 	}
358 }
359 
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)360 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
361 {
362 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
363 }
364 
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)365 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
366 {
367 	struct tcp_sock *tp = tcp_sk(sk);
368 
369 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
370 	case INET_ECN_NOT_ECT:
371 		/* Funny extension: if ECT is not set on a segment,
372 		 * and we already seen ECT on a previous segment,
373 		 * it is probably a retransmit.
374 		 */
375 		if (tp->ecn_flags & TCP_ECN_SEEN)
376 			tcp_enter_quickack_mode(sk, 2);
377 		break;
378 	case INET_ECN_CE:
379 		if (tcp_ca_needs_ecn(sk))
380 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
381 
382 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
383 			/* Better not delay acks, sender can have a very low cwnd */
384 			tcp_enter_quickack_mode(sk, 2);
385 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
386 		}
387 		tp->ecn_flags |= TCP_ECN_SEEN;
388 		break;
389 	default:
390 		if (tcp_ca_needs_ecn(sk))
391 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
392 		tp->ecn_flags |= TCP_ECN_SEEN;
393 		break;
394 	}
395 }
396 
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)397 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
398 {
399 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
400 		__tcp_ecn_check_ce(sk, skb);
401 }
402 
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)403 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
404 {
405 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
406 		tp->ecn_flags &= ~TCP_ECN_OK;
407 }
408 
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)409 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
410 {
411 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
412 		tp->ecn_flags &= ~TCP_ECN_OK;
413 }
414 
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)415 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
416 {
417 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
418 		return true;
419 	return false;
420 }
421 
422 /* Buffer size and advertised window tuning.
423  *
424  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
425  */
426 
tcp_sndbuf_expand(struct sock * sk)427 static void tcp_sndbuf_expand(struct sock *sk)
428 {
429 	const struct tcp_sock *tp = tcp_sk(sk);
430 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
431 	int sndmem, per_mss;
432 	u32 nr_segs;
433 
434 	/* Worst case is non GSO/TSO : each frame consumes one skb
435 	 * and skb->head is kmalloced using power of two area of memory
436 	 */
437 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
438 		  MAX_TCP_HEADER +
439 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
440 
441 	per_mss = roundup_pow_of_two(per_mss) +
442 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
443 
444 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
445 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
446 
447 	/* Fast Recovery (RFC 5681 3.2) :
448 	 * Cubic needs 1.7 factor, rounded to 2 to include
449 	 * extra cushion (application might react slowly to EPOLLOUT)
450 	 */
451 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
452 	sndmem *= nr_segs * per_mss;
453 
454 	if (sk->sk_sndbuf < sndmem)
455 		WRITE_ONCE(sk->sk_sndbuf,
456 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
457 }
458 
459 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
460  *
461  * All tcp_full_space() is split to two parts: "network" buffer, allocated
462  * forward and advertised in receiver window (tp->rcv_wnd) and
463  * "application buffer", required to isolate scheduling/application
464  * latencies from network.
465  * window_clamp is maximal advertised window. It can be less than
466  * tcp_full_space(), in this case tcp_full_space() - window_clamp
467  * is reserved for "application" buffer. The less window_clamp is
468  * the smoother our behaviour from viewpoint of network, but the lower
469  * throughput and the higher sensitivity of the connection to losses. 8)
470  *
471  * rcv_ssthresh is more strict window_clamp used at "slow start"
472  * phase to predict further behaviour of this connection.
473  * It is used for two goals:
474  * - to enforce header prediction at sender, even when application
475  *   requires some significant "application buffer". It is check #1.
476  * - to prevent pruning of receive queue because of misprediction
477  *   of receiver window. Check #2.
478  *
479  * The scheme does not work when sender sends good segments opening
480  * window and then starts to feed us spaghetti. But it should work
481  * in common situations. Otherwise, we have to rely on queue collapsing.
482  */
483 
484 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)485 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
486 			     unsigned int skbtruesize)
487 {
488 	const struct tcp_sock *tp = tcp_sk(sk);
489 	/* Optimize this! */
490 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
491 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
492 
493 	while (tp->rcv_ssthresh <= window) {
494 		if (truesize <= skb->len)
495 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
496 
497 		truesize >>= 1;
498 		window >>= 1;
499 	}
500 	return 0;
501 }
502 
503 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
504  * can play nice with us, as sk_buff and skb->head might be either
505  * freed or shared with up to MAX_SKB_FRAGS segments.
506  * Only give a boost to drivers using page frag(s) to hold the frame(s),
507  * and if no payload was pulled in skb->head before reaching us.
508  */
truesize_adjust(bool adjust,const struct sk_buff * skb)509 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
510 {
511 	u32 truesize = skb->truesize;
512 
513 	if (adjust && !skb_headlen(skb)) {
514 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
515 		/* paranoid check, some drivers might be buggy */
516 		if (unlikely((int)truesize < (int)skb->len))
517 			truesize = skb->truesize;
518 	}
519 	return truesize;
520 }
521 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)522 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
523 			    bool adjust)
524 {
525 	struct tcp_sock *tp = tcp_sk(sk);
526 	int room;
527 
528 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
529 
530 	if (room <= 0)
531 		return;
532 
533 	/* Check #1 */
534 	if (!tcp_under_memory_pressure(sk)) {
535 		unsigned int truesize = truesize_adjust(adjust, skb);
536 		int incr;
537 
538 		/* Check #2. Increase window, if skb with such overhead
539 		 * will fit to rcvbuf in future.
540 		 */
541 		if (tcp_win_from_space(sk, truesize) <= skb->len)
542 			incr = 2 * tp->advmss;
543 		else
544 			incr = __tcp_grow_window(sk, skb, truesize);
545 
546 		if (incr) {
547 			incr = max_t(int, incr, 2 * skb->len);
548 			tp->rcv_ssthresh += min(room, incr);
549 			inet_csk(sk)->icsk_ack.quick |= 1;
550 		}
551 	} else {
552 		/* Under pressure:
553 		 * Adjust rcv_ssthresh according to reserved mem
554 		 */
555 		tcp_adjust_rcv_ssthresh(sk);
556 	}
557 }
558 
559 /* 3. Try to fixup all. It is made immediately after connection enters
560  *    established state.
561  */
tcp_init_buffer_space(struct sock * sk)562 static void tcp_init_buffer_space(struct sock *sk)
563 {
564 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
565 	struct tcp_sock *tp = tcp_sk(sk);
566 	int maxwin;
567 
568 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
569 		tcp_sndbuf_expand(sk);
570 
571 	tcp_mstamp_refresh(tp);
572 	tp->rcvq_space.time = tp->tcp_mstamp;
573 	tp->rcvq_space.seq = tp->copied_seq;
574 
575 	maxwin = tcp_full_space(sk);
576 
577 	if (tp->window_clamp >= maxwin) {
578 		WRITE_ONCE(tp->window_clamp, maxwin);
579 
580 		if (tcp_app_win && maxwin > 4 * tp->advmss)
581 			WRITE_ONCE(tp->window_clamp,
582 				   max(maxwin - (maxwin >> tcp_app_win),
583 				       4 * tp->advmss));
584 	}
585 
586 	/* Force reservation of one segment. */
587 	if (tcp_app_win &&
588 	    tp->window_clamp > 2 * tp->advmss &&
589 	    tp->window_clamp + tp->advmss > maxwin)
590 		WRITE_ONCE(tp->window_clamp,
591 			   max(2 * tp->advmss, maxwin - tp->advmss));
592 
593 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
594 	tp->snd_cwnd_stamp = tcp_jiffies32;
595 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
596 				    (u32)TCP_INIT_CWND * tp->advmss);
597 }
598 
599 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)600 static void tcp_clamp_window(struct sock *sk)
601 {
602 	struct tcp_sock *tp = tcp_sk(sk);
603 	struct inet_connection_sock *icsk = inet_csk(sk);
604 	struct net *net = sock_net(sk);
605 	int rmem2;
606 
607 	icsk->icsk_ack.quick = 0;
608 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
609 
610 	if (sk->sk_rcvbuf < rmem2 &&
611 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
612 	    !tcp_under_memory_pressure(sk) &&
613 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
614 		WRITE_ONCE(sk->sk_rcvbuf,
615 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
616 	}
617 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
618 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
619 }
620 
621 /* Initialize RCV_MSS value.
622  * RCV_MSS is an our guess about MSS used by the peer.
623  * We haven't any direct information about the MSS.
624  * It's better to underestimate the RCV_MSS rather than overestimate.
625  * Overestimations make us ACKing less frequently than needed.
626  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
627  */
tcp_initialize_rcv_mss(struct sock * sk)628 void tcp_initialize_rcv_mss(struct sock *sk)
629 {
630 	const struct tcp_sock *tp = tcp_sk(sk);
631 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
632 
633 	hint = min(hint, tp->rcv_wnd / 2);
634 	hint = min(hint, TCP_MSS_DEFAULT);
635 	hint = max(hint, TCP_MIN_MSS);
636 
637 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
638 }
639 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
640 
641 /* Receiver "autotuning" code.
642  *
643  * The algorithm for RTT estimation w/o timestamps is based on
644  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
645  * <https://public.lanl.gov/radiant/pubs.html#DRS>
646  *
647  * More detail on this code can be found at
648  * <http://staff.psc.edu/jheffner/>,
649  * though this reference is out of date.  A new paper
650  * is pending.
651  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)652 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
653 {
654 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
655 	long m = sample;
656 
657 	if (new_sample != 0) {
658 		/* If we sample in larger samples in the non-timestamp
659 		 * case, we could grossly overestimate the RTT especially
660 		 * with chatty applications or bulk transfer apps which
661 		 * are stalled on filesystem I/O.
662 		 *
663 		 * Also, since we are only going for a minimum in the
664 		 * non-timestamp case, we do not smooth things out
665 		 * else with timestamps disabled convergence takes too
666 		 * long.
667 		 */
668 		if (!win_dep) {
669 			m -= (new_sample >> 3);
670 			new_sample += m;
671 		} else {
672 			m <<= 3;
673 			if (m < new_sample)
674 				new_sample = m;
675 		}
676 	} else {
677 		/* No previous measure. */
678 		new_sample = m << 3;
679 	}
680 
681 	tp->rcv_rtt_est.rtt_us = new_sample;
682 }
683 
tcp_rcv_rtt_measure(struct tcp_sock * tp)684 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
685 {
686 	u32 delta_us;
687 
688 	if (tp->rcv_rtt_est.time == 0)
689 		goto new_measure;
690 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
691 		return;
692 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
693 	if (!delta_us)
694 		delta_us = 1;
695 	tcp_rcv_rtt_update(tp, delta_us, 1);
696 
697 new_measure:
698 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
699 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
700 }
701 
tcp_rtt_tsopt_us(const struct tcp_sock * tp)702 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp)
703 {
704 	u32 delta, delta_us;
705 
706 	delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
707 	if (tp->tcp_usec_ts)
708 		return delta;
709 
710 	if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
711 		if (!delta)
712 			delta = 1;
713 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
714 		return delta_us;
715 	}
716 	return -1;
717 }
718 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)719 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
720 					  const struct sk_buff *skb)
721 {
722 	struct tcp_sock *tp = tcp_sk(sk);
723 
724 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
725 		return;
726 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
727 
728 	if (TCP_SKB_CB(skb)->end_seq -
729 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
730 		s32 delta = tcp_rtt_tsopt_us(tp);
731 
732 		if (delta >= 0)
733 			tcp_rcv_rtt_update(tp, delta, 0);
734 	}
735 }
736 
737 /*
738  * This function should be called every time data is copied to user space.
739  * It calculates the appropriate TCP receive buffer space.
740  */
tcp_rcv_space_adjust(struct sock * sk)741 void tcp_rcv_space_adjust(struct sock *sk)
742 {
743 	struct tcp_sock *tp = tcp_sk(sk);
744 	u32 copied;
745 	int time;
746 
747 	trace_tcp_rcv_space_adjust(sk);
748 
749 	tcp_mstamp_refresh(tp);
750 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
751 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
752 		return;
753 
754 	/* Number of bytes copied to user in last RTT */
755 	copied = tp->copied_seq - tp->rcvq_space.seq;
756 	if (copied <= tp->rcvq_space.space)
757 		goto new_measure;
758 
759 	/* A bit of theory :
760 	 * copied = bytes received in previous RTT, our base window
761 	 * To cope with packet losses, we need a 2x factor
762 	 * To cope with slow start, and sender growing its cwin by 100 %
763 	 * every RTT, we need a 4x factor, because the ACK we are sending
764 	 * now is for the next RTT, not the current one :
765 	 * <prev RTT . ><current RTT .. ><next RTT .... >
766 	 */
767 
768 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
769 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
770 		u64 rcvwin, grow;
771 		int rcvbuf;
772 
773 		/* minimal window to cope with packet losses, assuming
774 		 * steady state. Add some cushion because of small variations.
775 		 */
776 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
777 
778 		/* Accommodate for sender rate increase (eg. slow start) */
779 		grow = rcvwin * (copied - tp->rcvq_space.space);
780 		do_div(grow, tp->rcvq_space.space);
781 		rcvwin += (grow << 1);
782 
783 		rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
784 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
785 		if (rcvbuf > sk->sk_rcvbuf) {
786 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
787 
788 			/* Make the window clamp follow along.  */
789 			WRITE_ONCE(tp->window_clamp,
790 				   tcp_win_from_space(sk, rcvbuf));
791 		}
792 	}
793 	tp->rcvq_space.space = copied;
794 
795 new_measure:
796 	tp->rcvq_space.seq = tp->copied_seq;
797 	tp->rcvq_space.time = tp->tcp_mstamp;
798 }
799 
tcp_save_lrcv_flowlabel(struct sock * sk,const struct sk_buff * skb)800 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
801 {
802 #if IS_ENABLED(CONFIG_IPV6)
803 	struct inet_connection_sock *icsk = inet_csk(sk);
804 
805 	if (skb->protocol == htons(ETH_P_IPV6))
806 		icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
807 #endif
808 }
809 
810 /* There is something which you must keep in mind when you analyze the
811  * behavior of the tp->ato delayed ack timeout interval.  When a
812  * connection starts up, we want to ack as quickly as possible.  The
813  * problem is that "good" TCP's do slow start at the beginning of data
814  * transmission.  The means that until we send the first few ACK's the
815  * sender will sit on his end and only queue most of his data, because
816  * he can only send snd_cwnd unacked packets at any given time.  For
817  * each ACK we send, he increments snd_cwnd and transmits more of his
818  * queue.  -DaveM
819  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)820 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
821 {
822 	struct tcp_sock *tp = tcp_sk(sk);
823 	struct inet_connection_sock *icsk = inet_csk(sk);
824 	u32 now;
825 
826 	inet_csk_schedule_ack(sk);
827 
828 	tcp_measure_rcv_mss(sk, skb);
829 
830 	tcp_rcv_rtt_measure(tp);
831 
832 	now = tcp_jiffies32;
833 
834 	if (!icsk->icsk_ack.ato) {
835 		/* The _first_ data packet received, initialize
836 		 * delayed ACK engine.
837 		 */
838 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
839 		icsk->icsk_ack.ato = TCP_ATO_MIN;
840 	} else {
841 		int m = now - icsk->icsk_ack.lrcvtime;
842 
843 		if (m <= TCP_ATO_MIN / 2) {
844 			/* The fastest case is the first. */
845 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
846 		} else if (m < icsk->icsk_ack.ato) {
847 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
848 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
849 				icsk->icsk_ack.ato = icsk->icsk_rto;
850 		} else if (m > icsk->icsk_rto) {
851 			/* Too long gap. Apparently sender failed to
852 			 * restart window, so that we send ACKs quickly.
853 			 */
854 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
855 		}
856 	}
857 	icsk->icsk_ack.lrcvtime = now;
858 	tcp_save_lrcv_flowlabel(sk, skb);
859 
860 	tcp_ecn_check_ce(sk, skb);
861 
862 	if (skb->len >= 128)
863 		tcp_grow_window(sk, skb, true);
864 }
865 
866 /* Called to compute a smoothed rtt estimate. The data fed to this
867  * routine either comes from timestamps, or from segments that were
868  * known _not_ to have been retransmitted [see Karn/Partridge
869  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
870  * piece by Van Jacobson.
871  * NOTE: the next three routines used to be one big routine.
872  * To save cycles in the RFC 1323 implementation it was better to break
873  * it up into three procedures. -- erics
874  */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)875 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
876 {
877 	struct tcp_sock *tp = tcp_sk(sk);
878 	long m = mrtt_us; /* RTT */
879 	u32 srtt = tp->srtt_us;
880 
881 	/*	The following amusing code comes from Jacobson's
882 	 *	article in SIGCOMM '88.  Note that rtt and mdev
883 	 *	are scaled versions of rtt and mean deviation.
884 	 *	This is designed to be as fast as possible
885 	 *	m stands for "measurement".
886 	 *
887 	 *	On a 1990 paper the rto value is changed to:
888 	 *	RTO = rtt + 4 * mdev
889 	 *
890 	 * Funny. This algorithm seems to be very broken.
891 	 * These formulae increase RTO, when it should be decreased, increase
892 	 * too slowly, when it should be increased quickly, decrease too quickly
893 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
894 	 * does not matter how to _calculate_ it. Seems, it was trap
895 	 * that VJ failed to avoid. 8)
896 	 */
897 	if (srtt != 0) {
898 		m -= (srtt >> 3);	/* m is now error in rtt est */
899 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
900 		if (m < 0) {
901 			m = -m;		/* m is now abs(error) */
902 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
903 			/* This is similar to one of Eifel findings.
904 			 * Eifel blocks mdev updates when rtt decreases.
905 			 * This solution is a bit different: we use finer gain
906 			 * for mdev in this case (alpha*beta).
907 			 * Like Eifel it also prevents growth of rto,
908 			 * but also it limits too fast rto decreases,
909 			 * happening in pure Eifel.
910 			 */
911 			if (m > 0)
912 				m >>= 3;
913 		} else {
914 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
915 		}
916 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
917 		if (tp->mdev_us > tp->mdev_max_us) {
918 			tp->mdev_max_us = tp->mdev_us;
919 			if (tp->mdev_max_us > tp->rttvar_us)
920 				tp->rttvar_us = tp->mdev_max_us;
921 		}
922 		if (after(tp->snd_una, tp->rtt_seq)) {
923 			if (tp->mdev_max_us < tp->rttvar_us)
924 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
925 			tp->rtt_seq = tp->snd_nxt;
926 			tp->mdev_max_us = tcp_rto_min_us(sk);
927 
928 			tcp_bpf_rtt(sk, mrtt_us, srtt);
929 		}
930 	} else {
931 		/* no previous measure. */
932 		srtt = m << 3;		/* take the measured time to be rtt */
933 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
934 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
935 		tp->mdev_max_us = tp->rttvar_us;
936 		tp->rtt_seq = tp->snd_nxt;
937 
938 		tcp_bpf_rtt(sk, mrtt_us, srtt);
939 	}
940 	tp->srtt_us = max(1U, srtt);
941 }
942 
tcp_update_pacing_rate(struct sock * sk)943 static void tcp_update_pacing_rate(struct sock *sk)
944 {
945 	const struct tcp_sock *tp = tcp_sk(sk);
946 	u64 rate;
947 
948 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
949 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
950 
951 	/* current rate is (cwnd * mss) / srtt
952 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
953 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
954 	 *
955 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
956 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
957 	 *	 end of slow start and should slow down.
958 	 */
959 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
960 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
961 	else
962 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
963 
964 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
965 
966 	if (likely(tp->srtt_us))
967 		do_div(rate, tp->srtt_us);
968 
969 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
970 	 * without any lock. We want to make sure compiler wont store
971 	 * intermediate values in this location.
972 	 */
973 	WRITE_ONCE(sk->sk_pacing_rate,
974 		   min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
975 }
976 
977 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
978  * routine referred to above.
979  */
tcp_set_rto(struct sock * sk)980 static void tcp_set_rto(struct sock *sk)
981 {
982 	const struct tcp_sock *tp = tcp_sk(sk);
983 	/* Old crap is replaced with new one. 8)
984 	 *
985 	 * More seriously:
986 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
987 	 *    It cannot be less due to utterly erratic ACK generation made
988 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
989 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
990 	 *    is invisible. Actually, Linux-2.4 also generates erratic
991 	 *    ACKs in some circumstances.
992 	 */
993 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
994 
995 	/* 2. Fixups made earlier cannot be right.
996 	 *    If we do not estimate RTO correctly without them,
997 	 *    all the algo is pure shit and should be replaced
998 	 *    with correct one. It is exactly, which we pretend to do.
999 	 */
1000 
1001 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
1002 	 * guarantees that rto is higher.
1003 	 */
1004 	tcp_bound_rto(sk);
1005 }
1006 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)1007 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1008 {
1009 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1010 
1011 	if (!cwnd)
1012 		cwnd = TCP_INIT_CWND;
1013 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1014 }
1015 
1016 struct tcp_sacktag_state {
1017 	/* Timestamps for earliest and latest never-retransmitted segment
1018 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1019 	 * but congestion control should still get an accurate delay signal.
1020 	 */
1021 	u64	first_sackt;
1022 	u64	last_sackt;
1023 	u32	reord;
1024 	u32	sack_delivered;
1025 	int	flag;
1026 	unsigned int mss_now;
1027 	struct rate_sample *rate;
1028 };
1029 
1030 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1031  * and spurious retransmission information if this DSACK is unlikely caused by
1032  * sender's action:
1033  * - DSACKed sequence range is larger than maximum receiver's window.
1034  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1035  */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)1036 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1037 			  u32 end_seq, struct tcp_sacktag_state *state)
1038 {
1039 	u32 seq_len, dup_segs = 1;
1040 
1041 	if (!before(start_seq, end_seq))
1042 		return 0;
1043 
1044 	seq_len = end_seq - start_seq;
1045 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1046 	if (seq_len > tp->max_window)
1047 		return 0;
1048 	if (seq_len > tp->mss_cache)
1049 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1050 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1051 		state->flag |= FLAG_DSACK_TLP;
1052 
1053 	tp->dsack_dups += dup_segs;
1054 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1055 	if (tp->dsack_dups > tp->total_retrans)
1056 		return 0;
1057 
1058 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1059 	/* We increase the RACK ordering window in rounds where we receive
1060 	 * DSACKs that may have been due to reordering causing RACK to trigger
1061 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1062 	 * without having seen reordering, or that match TLP probes (TLP
1063 	 * is timer-driven, not triggered by RACK).
1064 	 */
1065 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1066 		tp->rack.dsack_seen = 1;
1067 
1068 	state->flag |= FLAG_DSACKING_ACK;
1069 	/* A spurious retransmission is delivered */
1070 	state->sack_delivered += dup_segs;
1071 
1072 	return dup_segs;
1073 }
1074 
1075 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1076  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1077  * distance is approximated in full-mss packet distance ("reordering").
1078  */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1079 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1080 				      const int ts)
1081 {
1082 	struct tcp_sock *tp = tcp_sk(sk);
1083 	const u32 mss = tp->mss_cache;
1084 	u32 fack, metric;
1085 
1086 	fack = tcp_highest_sack_seq(tp);
1087 	if (!before(low_seq, fack))
1088 		return;
1089 
1090 	metric = fack - low_seq;
1091 	if ((metric > tp->reordering * mss) && mss) {
1092 #if FASTRETRANS_DEBUG > 1
1093 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1094 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1095 			 tp->reordering,
1096 			 0,
1097 			 tp->sacked_out,
1098 			 tp->undo_marker ? tp->undo_retrans : 0);
1099 #endif
1100 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1101 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1102 	}
1103 
1104 	/* This exciting event is worth to be remembered. 8) */
1105 	tp->reord_seen++;
1106 	NET_INC_STATS(sock_net(sk),
1107 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1108 }
1109 
1110  /* This must be called before lost_out or retrans_out are updated
1111   * on a new loss, because we want to know if all skbs previously
1112   * known to be lost have already been retransmitted, indicating
1113   * that this newly lost skb is our next skb to retransmit.
1114   */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1115 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1116 {
1117 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1118 	    (tp->retransmit_skb_hint &&
1119 	     before(TCP_SKB_CB(skb)->seq,
1120 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1121 		tp->retransmit_skb_hint = skb;
1122 }
1123 
1124 /* Sum the number of packets on the wire we have marked as lost, and
1125  * notify the congestion control module that the given skb was marked lost.
1126  */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1127 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1128 {
1129 	tp->lost += tcp_skb_pcount(skb);
1130 }
1131 
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1132 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1133 {
1134 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1135 	struct tcp_sock *tp = tcp_sk(sk);
1136 
1137 	if (sacked & TCPCB_SACKED_ACKED)
1138 		return;
1139 
1140 	tcp_verify_retransmit_hint(tp, skb);
1141 	if (sacked & TCPCB_LOST) {
1142 		if (sacked & TCPCB_SACKED_RETRANS) {
1143 			/* Account for retransmits that are lost again */
1144 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1145 			tp->retrans_out -= tcp_skb_pcount(skb);
1146 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1147 				      tcp_skb_pcount(skb));
1148 			tcp_notify_skb_loss_event(tp, skb);
1149 		}
1150 	} else {
1151 		tp->lost_out += tcp_skb_pcount(skb);
1152 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1153 		tcp_notify_skb_loss_event(tp, skb);
1154 	}
1155 }
1156 
1157 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1158 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1159 				bool ece_ack)
1160 {
1161 	tp->delivered += delivered;
1162 	if (ece_ack)
1163 		tp->delivered_ce += delivered;
1164 }
1165 
1166 /* This procedure tags the retransmission queue when SACKs arrive.
1167  *
1168  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1169  * Packets in queue with these bits set are counted in variables
1170  * sacked_out, retrans_out and lost_out, correspondingly.
1171  *
1172  * Valid combinations are:
1173  * Tag  InFlight	Description
1174  * 0	1		- orig segment is in flight.
1175  * S	0		- nothing flies, orig reached receiver.
1176  * L	0		- nothing flies, orig lost by net.
1177  * R	2		- both orig and retransmit are in flight.
1178  * L|R	1		- orig is lost, retransmit is in flight.
1179  * S|R  1		- orig reached receiver, retrans is still in flight.
1180  * (L|S|R is logically valid, it could occur when L|R is sacked,
1181  *  but it is equivalent to plain S and code short-circuits it to S.
1182  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1183  *
1184  * These 6 states form finite state machine, controlled by the following events:
1185  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1186  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1187  * 3. Loss detection event of two flavors:
1188  *	A. Scoreboard estimator decided the packet is lost.
1189  *	   A'. Reno "three dupacks" marks head of queue lost.
1190  *	B. SACK arrives sacking SND.NXT at the moment, when the
1191  *	   segment was retransmitted.
1192  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1193  *
1194  * It is pleasant to note, that state diagram turns out to be commutative,
1195  * so that we are allowed not to be bothered by order of our actions,
1196  * when multiple events arrive simultaneously. (see the function below).
1197  *
1198  * Reordering detection.
1199  * --------------------
1200  * Reordering metric is maximal distance, which a packet can be displaced
1201  * in packet stream. With SACKs we can estimate it:
1202  *
1203  * 1. SACK fills old hole and the corresponding segment was not
1204  *    ever retransmitted -> reordering. Alas, we cannot use it
1205  *    when segment was retransmitted.
1206  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1207  *    for retransmitted and already SACKed segment -> reordering..
1208  * Both of these heuristics are not used in Loss state, when we cannot
1209  * account for retransmits accurately.
1210  *
1211  * SACK block validation.
1212  * ----------------------
1213  *
1214  * SACK block range validation checks that the received SACK block fits to
1215  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1216  * Note that SND.UNA is not included to the range though being valid because
1217  * it means that the receiver is rather inconsistent with itself reporting
1218  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1219  * perfectly valid, however, in light of RFC2018 which explicitly states
1220  * that "SACK block MUST reflect the newest segment.  Even if the newest
1221  * segment is going to be discarded ...", not that it looks very clever
1222  * in case of head skb. Due to potentional receiver driven attacks, we
1223  * choose to avoid immediate execution of a walk in write queue due to
1224  * reneging and defer head skb's loss recovery to standard loss recovery
1225  * procedure that will eventually trigger (nothing forbids us doing this).
1226  *
1227  * Implements also blockage to start_seq wrap-around. Problem lies in the
1228  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1229  * there's no guarantee that it will be before snd_nxt (n). The problem
1230  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1231  * wrap (s_w):
1232  *
1233  *         <- outs wnd ->                          <- wrapzone ->
1234  *         u     e      n                         u_w   e_w  s n_w
1235  *         |     |      |                          |     |   |  |
1236  * |<------------+------+----- TCP seqno space --------------+---------->|
1237  * ...-- <2^31 ->|                                           |<--------...
1238  * ...---- >2^31 ------>|                                    |<--------...
1239  *
1240  * Current code wouldn't be vulnerable but it's better still to discard such
1241  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1242  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1243  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1244  * equal to the ideal case (infinite seqno space without wrap caused issues).
1245  *
1246  * With D-SACK the lower bound is extended to cover sequence space below
1247  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1248  * again, D-SACK block must not to go across snd_una (for the same reason as
1249  * for the normal SACK blocks, explained above). But there all simplicity
1250  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1251  * fully below undo_marker they do not affect behavior in anyway and can
1252  * therefore be safely ignored. In rare cases (which are more or less
1253  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1254  * fragmentation and packet reordering past skb's retransmission. To consider
1255  * them correctly, the acceptable range must be extended even more though
1256  * the exact amount is rather hard to quantify. However, tp->max_window can
1257  * be used as an exaggerated estimate.
1258  */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1259 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1260 				   u32 start_seq, u32 end_seq)
1261 {
1262 	/* Too far in future, or reversed (interpretation is ambiguous) */
1263 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1264 		return false;
1265 
1266 	/* Nasty start_seq wrap-around check (see comments above) */
1267 	if (!before(start_seq, tp->snd_nxt))
1268 		return false;
1269 
1270 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1271 	 * start_seq == snd_una is non-sensical (see comments above)
1272 	 */
1273 	if (after(start_seq, tp->snd_una))
1274 		return true;
1275 
1276 	if (!is_dsack || !tp->undo_marker)
1277 		return false;
1278 
1279 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1280 	if (after(end_seq, tp->snd_una))
1281 		return false;
1282 
1283 	if (!before(start_seq, tp->undo_marker))
1284 		return true;
1285 
1286 	/* Too old */
1287 	if (!after(end_seq, tp->undo_marker))
1288 		return false;
1289 
1290 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1291 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1292 	 */
1293 	return !before(start_seq, end_seq - tp->max_window);
1294 }
1295 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1296 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1297 			    struct tcp_sack_block_wire *sp, int num_sacks,
1298 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1299 {
1300 	struct tcp_sock *tp = tcp_sk(sk);
1301 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1302 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1303 	u32 dup_segs;
1304 
1305 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1306 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1307 	} else if (num_sacks > 1) {
1308 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1309 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1310 
1311 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1312 			return false;
1313 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1314 	} else {
1315 		return false;
1316 	}
1317 
1318 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1319 	if (!dup_segs) {	/* Skip dubious DSACK */
1320 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1321 		return false;
1322 	}
1323 
1324 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1325 
1326 	/* D-SACK for already forgotten data... Do dumb counting. */
1327 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1328 	    !after(end_seq_0, prior_snd_una) &&
1329 	    after(end_seq_0, tp->undo_marker))
1330 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1331 
1332 	return true;
1333 }
1334 
1335 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1336  * the incoming SACK may not exactly match but we can find smaller MSS
1337  * aligned portion of it that matches. Therefore we might need to fragment
1338  * which may fail and creates some hassle (caller must handle error case
1339  * returns).
1340  *
1341  * FIXME: this could be merged to shift decision code
1342  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1343 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1344 				  u32 start_seq, u32 end_seq)
1345 {
1346 	int err;
1347 	bool in_sack;
1348 	unsigned int pkt_len;
1349 	unsigned int mss;
1350 
1351 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1352 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1353 
1354 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1355 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1356 		mss = tcp_skb_mss(skb);
1357 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1358 
1359 		if (!in_sack) {
1360 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1361 			if (pkt_len < mss)
1362 				pkt_len = mss;
1363 		} else {
1364 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1365 			if (pkt_len < mss)
1366 				return -EINVAL;
1367 		}
1368 
1369 		/* Round if necessary so that SACKs cover only full MSSes
1370 		 * and/or the remaining small portion (if present)
1371 		 */
1372 		if (pkt_len > mss) {
1373 			unsigned int new_len = (pkt_len / mss) * mss;
1374 			if (!in_sack && new_len < pkt_len)
1375 				new_len += mss;
1376 			pkt_len = new_len;
1377 		}
1378 
1379 		if (pkt_len >= skb->len && !in_sack)
1380 			return 0;
1381 
1382 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1383 				   pkt_len, mss, GFP_ATOMIC);
1384 		if (err < 0)
1385 			return err;
1386 	}
1387 
1388 	return in_sack;
1389 }
1390 
1391 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1392 static u8 tcp_sacktag_one(struct sock *sk,
1393 			  struct tcp_sacktag_state *state, u8 sacked,
1394 			  u32 start_seq, u32 end_seq,
1395 			  int dup_sack, int pcount,
1396 			  u64 xmit_time)
1397 {
1398 	struct tcp_sock *tp = tcp_sk(sk);
1399 
1400 	/* Account D-SACK for retransmitted packet. */
1401 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1402 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1403 		    after(end_seq, tp->undo_marker))
1404 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1405 		if ((sacked & TCPCB_SACKED_ACKED) &&
1406 		    before(start_seq, state->reord))
1407 				state->reord = start_seq;
1408 	}
1409 
1410 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1411 	if (!after(end_seq, tp->snd_una))
1412 		return sacked;
1413 
1414 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1415 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1416 
1417 		if (sacked & TCPCB_SACKED_RETRANS) {
1418 			/* If the segment is not tagged as lost,
1419 			 * we do not clear RETRANS, believing
1420 			 * that retransmission is still in flight.
1421 			 */
1422 			if (sacked & TCPCB_LOST) {
1423 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1424 				tp->lost_out -= pcount;
1425 				tp->retrans_out -= pcount;
1426 			}
1427 		} else {
1428 			if (!(sacked & TCPCB_RETRANS)) {
1429 				/* New sack for not retransmitted frame,
1430 				 * which was in hole. It is reordering.
1431 				 */
1432 				if (before(start_seq,
1433 					   tcp_highest_sack_seq(tp)) &&
1434 				    before(start_seq, state->reord))
1435 					state->reord = start_seq;
1436 
1437 				if (!after(end_seq, tp->high_seq))
1438 					state->flag |= FLAG_ORIG_SACK_ACKED;
1439 				if (state->first_sackt == 0)
1440 					state->first_sackt = xmit_time;
1441 				state->last_sackt = xmit_time;
1442 			}
1443 
1444 			if (sacked & TCPCB_LOST) {
1445 				sacked &= ~TCPCB_LOST;
1446 				tp->lost_out -= pcount;
1447 			}
1448 		}
1449 
1450 		sacked |= TCPCB_SACKED_ACKED;
1451 		state->flag |= FLAG_DATA_SACKED;
1452 		tp->sacked_out += pcount;
1453 		/* Out-of-order packets delivered */
1454 		state->sack_delivered += pcount;
1455 
1456 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1457 		if (tp->lost_skb_hint &&
1458 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1459 			tp->lost_cnt_hint += pcount;
1460 	}
1461 
1462 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1463 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1464 	 * are accounted above as well.
1465 	 */
1466 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1467 		sacked &= ~TCPCB_SACKED_RETRANS;
1468 		tp->retrans_out -= pcount;
1469 	}
1470 
1471 	return sacked;
1472 }
1473 
1474 /* Shift newly-SACKed bytes from this skb to the immediately previous
1475  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1476  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1477 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1478 			    struct sk_buff *skb,
1479 			    struct tcp_sacktag_state *state,
1480 			    unsigned int pcount, int shifted, int mss,
1481 			    bool dup_sack)
1482 {
1483 	struct tcp_sock *tp = tcp_sk(sk);
1484 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1485 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1486 
1487 	BUG_ON(!pcount);
1488 
1489 	/* Adjust counters and hints for the newly sacked sequence
1490 	 * range but discard the return value since prev is already
1491 	 * marked. We must tag the range first because the seq
1492 	 * advancement below implicitly advances
1493 	 * tcp_highest_sack_seq() when skb is highest_sack.
1494 	 */
1495 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1496 			start_seq, end_seq, dup_sack, pcount,
1497 			tcp_skb_timestamp_us(skb));
1498 	tcp_rate_skb_delivered(sk, skb, state->rate);
1499 
1500 	if (skb == tp->lost_skb_hint)
1501 		tp->lost_cnt_hint += pcount;
1502 
1503 	TCP_SKB_CB(prev)->end_seq += shifted;
1504 	TCP_SKB_CB(skb)->seq += shifted;
1505 
1506 	tcp_skb_pcount_add(prev, pcount);
1507 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1508 	tcp_skb_pcount_add(skb, -pcount);
1509 
1510 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1511 	 * in theory this shouldn't be necessary but as long as DSACK
1512 	 * code can come after this skb later on it's better to keep
1513 	 * setting gso_size to something.
1514 	 */
1515 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1516 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1517 
1518 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1519 	if (tcp_skb_pcount(skb) <= 1)
1520 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1521 
1522 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1523 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1524 
1525 	if (skb->len > 0) {
1526 		BUG_ON(!tcp_skb_pcount(skb));
1527 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1528 		return false;
1529 	}
1530 
1531 	/* Whole SKB was eaten :-) */
1532 
1533 	if (skb == tp->retransmit_skb_hint)
1534 		tp->retransmit_skb_hint = prev;
1535 	if (skb == tp->lost_skb_hint) {
1536 		tp->lost_skb_hint = prev;
1537 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1538 	}
1539 
1540 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1541 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1542 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1543 		TCP_SKB_CB(prev)->end_seq++;
1544 
1545 	if (skb == tcp_highest_sack(sk))
1546 		tcp_advance_highest_sack(sk, skb);
1547 
1548 	tcp_skb_collapse_tstamp(prev, skb);
1549 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1550 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1551 
1552 	tcp_rtx_queue_unlink_and_free(skb, sk);
1553 
1554 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1555 
1556 	return true;
1557 }
1558 
1559 /* I wish gso_size would have a bit more sane initialization than
1560  * something-or-zero which complicates things
1561  */
tcp_skb_seglen(const struct sk_buff * skb)1562 static int tcp_skb_seglen(const struct sk_buff *skb)
1563 {
1564 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1565 }
1566 
1567 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1568 static int skb_can_shift(const struct sk_buff *skb)
1569 {
1570 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1571 }
1572 
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1573 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1574 		  int pcount, int shiftlen)
1575 {
1576 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1577 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1578 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1579 	 * even if current MSS is bigger.
1580 	 */
1581 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1582 		return 0;
1583 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1584 		return 0;
1585 	return skb_shift(to, from, shiftlen);
1586 }
1587 
1588 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1589  * skb.
1590  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1591 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1592 					  struct tcp_sacktag_state *state,
1593 					  u32 start_seq, u32 end_seq,
1594 					  bool dup_sack)
1595 {
1596 	struct tcp_sock *tp = tcp_sk(sk);
1597 	struct sk_buff *prev;
1598 	int mss;
1599 	int pcount = 0;
1600 	int len;
1601 	int in_sack;
1602 
1603 	/* Normally R but no L won't result in plain S */
1604 	if (!dup_sack &&
1605 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1606 		goto fallback;
1607 	if (!skb_can_shift(skb))
1608 		goto fallback;
1609 	/* This frame is about to be dropped (was ACKed). */
1610 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1611 		goto fallback;
1612 
1613 	/* Can only happen with delayed DSACK + discard craziness */
1614 	prev = skb_rb_prev(skb);
1615 	if (!prev)
1616 		goto fallback;
1617 
1618 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1619 		goto fallback;
1620 
1621 	if (!tcp_skb_can_collapse(prev, skb))
1622 		goto fallback;
1623 
1624 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1625 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1626 
1627 	if (in_sack) {
1628 		len = skb->len;
1629 		pcount = tcp_skb_pcount(skb);
1630 		mss = tcp_skb_seglen(skb);
1631 
1632 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1633 		 * drop this restriction as unnecessary
1634 		 */
1635 		if (mss != tcp_skb_seglen(prev))
1636 			goto fallback;
1637 	} else {
1638 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1639 			goto noop;
1640 		/* CHECKME: This is non-MSS split case only?, this will
1641 		 * cause skipped skbs due to advancing loop btw, original
1642 		 * has that feature too
1643 		 */
1644 		if (tcp_skb_pcount(skb) <= 1)
1645 			goto noop;
1646 
1647 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1648 		if (!in_sack) {
1649 			/* TODO: head merge to next could be attempted here
1650 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1651 			 * though it might not be worth of the additional hassle
1652 			 *
1653 			 * ...we can probably just fallback to what was done
1654 			 * previously. We could try merging non-SACKed ones
1655 			 * as well but it probably isn't going to buy off
1656 			 * because later SACKs might again split them, and
1657 			 * it would make skb timestamp tracking considerably
1658 			 * harder problem.
1659 			 */
1660 			goto fallback;
1661 		}
1662 
1663 		len = end_seq - TCP_SKB_CB(skb)->seq;
1664 		BUG_ON(len < 0);
1665 		BUG_ON(len > skb->len);
1666 
1667 		/* MSS boundaries should be honoured or else pcount will
1668 		 * severely break even though it makes things bit trickier.
1669 		 * Optimize common case to avoid most of the divides
1670 		 */
1671 		mss = tcp_skb_mss(skb);
1672 
1673 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1674 		 * drop this restriction as unnecessary
1675 		 */
1676 		if (mss != tcp_skb_seglen(prev))
1677 			goto fallback;
1678 
1679 		if (len == mss) {
1680 			pcount = 1;
1681 		} else if (len < mss) {
1682 			goto noop;
1683 		} else {
1684 			pcount = len / mss;
1685 			len = pcount * mss;
1686 		}
1687 	}
1688 
1689 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1690 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1691 		goto fallback;
1692 
1693 	if (!tcp_skb_shift(prev, skb, pcount, len))
1694 		goto fallback;
1695 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1696 		goto out;
1697 
1698 	/* Hole filled allows collapsing with the next as well, this is very
1699 	 * useful when hole on every nth skb pattern happens
1700 	 */
1701 	skb = skb_rb_next(prev);
1702 	if (!skb)
1703 		goto out;
1704 
1705 	if (!skb_can_shift(skb) ||
1706 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1707 	    (mss != tcp_skb_seglen(skb)))
1708 		goto out;
1709 
1710 	if (!tcp_skb_can_collapse(prev, skb))
1711 		goto out;
1712 	len = skb->len;
1713 	pcount = tcp_skb_pcount(skb);
1714 	if (tcp_skb_shift(prev, skb, pcount, len))
1715 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1716 				len, mss, 0);
1717 
1718 out:
1719 	return prev;
1720 
1721 noop:
1722 	return skb;
1723 
1724 fallback:
1725 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1726 	return NULL;
1727 }
1728 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1729 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1730 					struct tcp_sack_block *next_dup,
1731 					struct tcp_sacktag_state *state,
1732 					u32 start_seq, u32 end_seq,
1733 					bool dup_sack_in)
1734 {
1735 	struct tcp_sock *tp = tcp_sk(sk);
1736 	struct sk_buff *tmp;
1737 
1738 	skb_rbtree_walk_from(skb) {
1739 		int in_sack = 0;
1740 		bool dup_sack = dup_sack_in;
1741 
1742 		/* queue is in-order => we can short-circuit the walk early */
1743 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1744 			break;
1745 
1746 		if (next_dup  &&
1747 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1748 			in_sack = tcp_match_skb_to_sack(sk, skb,
1749 							next_dup->start_seq,
1750 							next_dup->end_seq);
1751 			if (in_sack > 0)
1752 				dup_sack = true;
1753 		}
1754 
1755 		/* skb reference here is a bit tricky to get right, since
1756 		 * shifting can eat and free both this skb and the next,
1757 		 * so not even _safe variant of the loop is enough.
1758 		 */
1759 		if (in_sack <= 0) {
1760 			tmp = tcp_shift_skb_data(sk, skb, state,
1761 						 start_seq, end_seq, dup_sack);
1762 			if (tmp) {
1763 				if (tmp != skb) {
1764 					skb = tmp;
1765 					continue;
1766 				}
1767 
1768 				in_sack = 0;
1769 			} else {
1770 				in_sack = tcp_match_skb_to_sack(sk, skb,
1771 								start_seq,
1772 								end_seq);
1773 			}
1774 		}
1775 
1776 		if (unlikely(in_sack < 0))
1777 			break;
1778 
1779 		if (in_sack) {
1780 			TCP_SKB_CB(skb)->sacked =
1781 				tcp_sacktag_one(sk,
1782 						state,
1783 						TCP_SKB_CB(skb)->sacked,
1784 						TCP_SKB_CB(skb)->seq,
1785 						TCP_SKB_CB(skb)->end_seq,
1786 						dup_sack,
1787 						tcp_skb_pcount(skb),
1788 						tcp_skb_timestamp_us(skb));
1789 			tcp_rate_skb_delivered(sk, skb, state->rate);
1790 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1791 				list_del_init(&skb->tcp_tsorted_anchor);
1792 
1793 			if (!before(TCP_SKB_CB(skb)->seq,
1794 				    tcp_highest_sack_seq(tp)))
1795 				tcp_advance_highest_sack(sk, skb);
1796 		}
1797 	}
1798 	return skb;
1799 }
1800 
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1801 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1802 {
1803 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1804 	struct sk_buff *skb;
1805 
1806 	while (*p) {
1807 		parent = *p;
1808 		skb = rb_to_skb(parent);
1809 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1810 			p = &parent->rb_left;
1811 			continue;
1812 		}
1813 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1814 			p = &parent->rb_right;
1815 			continue;
1816 		}
1817 		return skb;
1818 	}
1819 	return NULL;
1820 }
1821 
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1822 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1823 					u32 skip_to_seq)
1824 {
1825 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1826 		return skb;
1827 
1828 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1829 }
1830 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1831 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1832 						struct sock *sk,
1833 						struct tcp_sack_block *next_dup,
1834 						struct tcp_sacktag_state *state,
1835 						u32 skip_to_seq)
1836 {
1837 	if (!next_dup)
1838 		return skb;
1839 
1840 	if (before(next_dup->start_seq, skip_to_seq)) {
1841 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1842 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1843 				       next_dup->start_seq, next_dup->end_seq,
1844 				       1);
1845 	}
1846 
1847 	return skb;
1848 }
1849 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1850 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1851 {
1852 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1853 }
1854 
1855 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1856 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1857 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1858 {
1859 	struct tcp_sock *tp = tcp_sk(sk);
1860 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1861 				    TCP_SKB_CB(ack_skb)->sacked);
1862 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1863 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1864 	struct tcp_sack_block *cache;
1865 	struct sk_buff *skb;
1866 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1867 	int used_sacks;
1868 	bool found_dup_sack = false;
1869 	int i, j;
1870 	int first_sack_index;
1871 
1872 	state->flag = 0;
1873 	state->reord = tp->snd_nxt;
1874 
1875 	if (!tp->sacked_out)
1876 		tcp_highest_sack_reset(sk);
1877 
1878 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1879 					 num_sacks, prior_snd_una, state);
1880 
1881 	/* Eliminate too old ACKs, but take into
1882 	 * account more or less fresh ones, they can
1883 	 * contain valid SACK info.
1884 	 */
1885 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1886 		return 0;
1887 
1888 	if (!tp->packets_out)
1889 		goto out;
1890 
1891 	used_sacks = 0;
1892 	first_sack_index = 0;
1893 	for (i = 0; i < num_sacks; i++) {
1894 		bool dup_sack = !i && found_dup_sack;
1895 
1896 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1897 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1898 
1899 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1900 					    sp[used_sacks].start_seq,
1901 					    sp[used_sacks].end_seq)) {
1902 			int mib_idx;
1903 
1904 			if (dup_sack) {
1905 				if (!tp->undo_marker)
1906 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1907 				else
1908 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1909 			} else {
1910 				/* Don't count olds caused by ACK reordering */
1911 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1912 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1913 					continue;
1914 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1915 			}
1916 
1917 			NET_INC_STATS(sock_net(sk), mib_idx);
1918 			if (i == 0)
1919 				first_sack_index = -1;
1920 			continue;
1921 		}
1922 
1923 		/* Ignore very old stuff early */
1924 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1925 			if (i == 0)
1926 				first_sack_index = -1;
1927 			continue;
1928 		}
1929 
1930 		used_sacks++;
1931 	}
1932 
1933 	/* order SACK blocks to allow in order walk of the retrans queue */
1934 	for (i = used_sacks - 1; i > 0; i--) {
1935 		for (j = 0; j < i; j++) {
1936 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1937 				swap(sp[j], sp[j + 1]);
1938 
1939 				/* Track where the first SACK block goes to */
1940 				if (j == first_sack_index)
1941 					first_sack_index = j + 1;
1942 			}
1943 		}
1944 	}
1945 
1946 	state->mss_now = tcp_current_mss(sk);
1947 	skb = NULL;
1948 	i = 0;
1949 
1950 	if (!tp->sacked_out) {
1951 		/* It's already past, so skip checking against it */
1952 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1953 	} else {
1954 		cache = tp->recv_sack_cache;
1955 		/* Skip empty blocks in at head of the cache */
1956 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1957 		       !cache->end_seq)
1958 			cache++;
1959 	}
1960 
1961 	while (i < used_sacks) {
1962 		u32 start_seq = sp[i].start_seq;
1963 		u32 end_seq = sp[i].end_seq;
1964 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1965 		struct tcp_sack_block *next_dup = NULL;
1966 
1967 		if (found_dup_sack && ((i + 1) == first_sack_index))
1968 			next_dup = &sp[i + 1];
1969 
1970 		/* Skip too early cached blocks */
1971 		while (tcp_sack_cache_ok(tp, cache) &&
1972 		       !before(start_seq, cache->end_seq))
1973 			cache++;
1974 
1975 		/* Can skip some work by looking recv_sack_cache? */
1976 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1977 		    after(end_seq, cache->start_seq)) {
1978 
1979 			/* Head todo? */
1980 			if (before(start_seq, cache->start_seq)) {
1981 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1982 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1983 						       state,
1984 						       start_seq,
1985 						       cache->start_seq,
1986 						       dup_sack);
1987 			}
1988 
1989 			/* Rest of the block already fully processed? */
1990 			if (!after(end_seq, cache->end_seq))
1991 				goto advance_sp;
1992 
1993 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1994 						       state,
1995 						       cache->end_seq);
1996 
1997 			/* ...tail remains todo... */
1998 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1999 				/* ...but better entrypoint exists! */
2000 				skb = tcp_highest_sack(sk);
2001 				if (!skb)
2002 					break;
2003 				cache++;
2004 				goto walk;
2005 			}
2006 
2007 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
2008 			/* Check overlap against next cached too (past this one already) */
2009 			cache++;
2010 			continue;
2011 		}
2012 
2013 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2014 			skb = tcp_highest_sack(sk);
2015 			if (!skb)
2016 				break;
2017 		}
2018 		skb = tcp_sacktag_skip(skb, sk, start_seq);
2019 
2020 walk:
2021 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2022 				       start_seq, end_seq, dup_sack);
2023 
2024 advance_sp:
2025 		i++;
2026 	}
2027 
2028 	/* Clear the head of the cache sack blocks so we can skip it next time */
2029 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2030 		tp->recv_sack_cache[i].start_seq = 0;
2031 		tp->recv_sack_cache[i].end_seq = 0;
2032 	}
2033 	for (j = 0; j < used_sacks; j++)
2034 		tp->recv_sack_cache[i++] = sp[j];
2035 
2036 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2037 		tcp_check_sack_reordering(sk, state->reord, 0);
2038 
2039 	tcp_verify_left_out(tp);
2040 out:
2041 
2042 #if FASTRETRANS_DEBUG > 0
2043 	WARN_ON((int)tp->sacked_out < 0);
2044 	WARN_ON((int)tp->lost_out < 0);
2045 	WARN_ON((int)tp->retrans_out < 0);
2046 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2047 #endif
2048 	return state->flag;
2049 }
2050 
2051 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2052  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2053  */
tcp_limit_reno_sacked(struct tcp_sock * tp)2054 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2055 {
2056 	u32 holes;
2057 
2058 	holes = max(tp->lost_out, 1U);
2059 	holes = min(holes, tp->packets_out);
2060 
2061 	if ((tp->sacked_out + holes) > tp->packets_out) {
2062 		tp->sacked_out = tp->packets_out - holes;
2063 		return true;
2064 	}
2065 	return false;
2066 }
2067 
2068 /* If we receive more dupacks than we expected counting segments
2069  * in assumption of absent reordering, interpret this as reordering.
2070  * The only another reason could be bug in receiver TCP.
2071  */
tcp_check_reno_reordering(struct sock * sk,const int addend)2072 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2073 {
2074 	struct tcp_sock *tp = tcp_sk(sk);
2075 
2076 	if (!tcp_limit_reno_sacked(tp))
2077 		return;
2078 
2079 	tp->reordering = min_t(u32, tp->packets_out + addend,
2080 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2081 	tp->reord_seen++;
2082 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2083 }
2084 
2085 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2086 
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2087 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2088 {
2089 	if (num_dupack) {
2090 		struct tcp_sock *tp = tcp_sk(sk);
2091 		u32 prior_sacked = tp->sacked_out;
2092 		s32 delivered;
2093 
2094 		tp->sacked_out += num_dupack;
2095 		tcp_check_reno_reordering(sk, 0);
2096 		delivered = tp->sacked_out - prior_sacked;
2097 		if (delivered > 0)
2098 			tcp_count_delivered(tp, delivered, ece_ack);
2099 		tcp_verify_left_out(tp);
2100 	}
2101 }
2102 
2103 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2104 
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2105 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2106 {
2107 	struct tcp_sock *tp = tcp_sk(sk);
2108 
2109 	if (acked > 0) {
2110 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2111 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2112 				    ece_ack);
2113 		if (acked - 1 >= tp->sacked_out)
2114 			tp->sacked_out = 0;
2115 		else
2116 			tp->sacked_out -= acked - 1;
2117 	}
2118 	tcp_check_reno_reordering(sk, acked);
2119 	tcp_verify_left_out(tp);
2120 }
2121 
tcp_reset_reno_sack(struct tcp_sock * tp)2122 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2123 {
2124 	tp->sacked_out = 0;
2125 }
2126 
tcp_clear_retrans(struct tcp_sock * tp)2127 void tcp_clear_retrans(struct tcp_sock *tp)
2128 {
2129 	tp->retrans_out = 0;
2130 	tp->lost_out = 0;
2131 	tp->undo_marker = 0;
2132 	tp->undo_retrans = -1;
2133 	tp->sacked_out = 0;
2134 	tp->rto_stamp = 0;
2135 	tp->total_rto = 0;
2136 	tp->total_rto_recoveries = 0;
2137 	tp->total_rto_time = 0;
2138 }
2139 
tcp_init_undo(struct tcp_sock * tp)2140 static inline void tcp_init_undo(struct tcp_sock *tp)
2141 {
2142 	tp->undo_marker = tp->snd_una;
2143 
2144 	/* Retransmission still in flight may cause DSACKs later. */
2145 	/* First, account for regular retransmits in flight: */
2146 	tp->undo_retrans = tp->retrans_out;
2147 	/* Next, account for TLP retransmits in flight: */
2148 	if (tp->tlp_high_seq && tp->tlp_retrans)
2149 		tp->undo_retrans++;
2150 	/* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2151 	if (!tp->undo_retrans)
2152 		tp->undo_retrans = -1;
2153 }
2154 
tcp_is_rack(const struct sock * sk)2155 static bool tcp_is_rack(const struct sock *sk)
2156 {
2157 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2158 		TCP_RACK_LOSS_DETECTION;
2159 }
2160 
2161 /* If we detect SACK reneging, forget all SACK information
2162  * and reset tags completely, otherwise preserve SACKs. If receiver
2163  * dropped its ofo queue, we will know this due to reneging detection.
2164  */
tcp_timeout_mark_lost(struct sock * sk)2165 static void tcp_timeout_mark_lost(struct sock *sk)
2166 {
2167 	struct tcp_sock *tp = tcp_sk(sk);
2168 	struct sk_buff *skb, *head;
2169 	bool is_reneg;			/* is receiver reneging on SACKs? */
2170 
2171 	head = tcp_rtx_queue_head(sk);
2172 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2173 	if (is_reneg) {
2174 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2175 		tp->sacked_out = 0;
2176 		/* Mark SACK reneging until we recover from this loss event. */
2177 		tp->is_sack_reneg = 1;
2178 	} else if (tcp_is_reno(tp)) {
2179 		tcp_reset_reno_sack(tp);
2180 	}
2181 
2182 	skb = head;
2183 	skb_rbtree_walk_from(skb) {
2184 		if (is_reneg)
2185 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2186 		else if (tcp_is_rack(sk) && skb != head &&
2187 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2188 			continue; /* Don't mark recently sent ones lost yet */
2189 		tcp_mark_skb_lost(sk, skb);
2190 	}
2191 	tcp_verify_left_out(tp);
2192 	tcp_clear_all_retrans_hints(tp);
2193 }
2194 
2195 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2196 void tcp_enter_loss(struct sock *sk)
2197 {
2198 	const struct inet_connection_sock *icsk = inet_csk(sk);
2199 	struct tcp_sock *tp = tcp_sk(sk);
2200 	struct net *net = sock_net(sk);
2201 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2202 	u8 reordering;
2203 
2204 	tcp_timeout_mark_lost(sk);
2205 
2206 	/* Reduce ssthresh if it has not yet been made inside this window. */
2207 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2208 	    !after(tp->high_seq, tp->snd_una) ||
2209 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2210 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2211 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2212 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2213 		tcp_ca_event(sk, CA_EVENT_LOSS);
2214 		tcp_init_undo(tp);
2215 	}
2216 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2217 	tp->snd_cwnd_cnt   = 0;
2218 	tp->snd_cwnd_stamp = tcp_jiffies32;
2219 
2220 	/* Timeout in disordered state after receiving substantial DUPACKs
2221 	 * suggests that the degree of reordering is over-estimated.
2222 	 */
2223 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2224 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2225 	    tp->sacked_out >= reordering)
2226 		tp->reordering = min_t(unsigned int, tp->reordering,
2227 				       reordering);
2228 
2229 	tcp_set_ca_state(sk, TCP_CA_Loss);
2230 	tp->high_seq = tp->snd_nxt;
2231 	tp->tlp_high_seq = 0;
2232 	tcp_ecn_queue_cwr(tp);
2233 
2234 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2235 	 * loss recovery is underway except recurring timeout(s) on
2236 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2237 	 */
2238 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2239 		   (new_recovery || icsk->icsk_retransmits) &&
2240 		   !inet_csk(sk)->icsk_mtup.probe_size;
2241 }
2242 
2243 /* If ACK arrived pointing to a remembered SACK, it means that our
2244  * remembered SACKs do not reflect real state of receiver i.e.
2245  * receiver _host_ is heavily congested (or buggy).
2246  *
2247  * To avoid big spurious retransmission bursts due to transient SACK
2248  * scoreboard oddities that look like reneging, we give the receiver a
2249  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2250  * restore sanity to the SACK scoreboard. If the apparent reneging
2251  * persists until this RTO then we'll clear the SACK scoreboard.
2252  */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2253 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2254 {
2255 	if (*ack_flag & FLAG_SACK_RENEGING &&
2256 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2257 		struct tcp_sock *tp = tcp_sk(sk);
2258 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2259 					  msecs_to_jiffies(10));
2260 
2261 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2262 					  delay, TCP_RTO_MAX);
2263 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2264 		return true;
2265 	}
2266 	return false;
2267 }
2268 
2269 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2270  * counter when SACK is enabled (without SACK, sacked_out is used for
2271  * that purpose).
2272  *
2273  * With reordering, holes may still be in flight, so RFC3517 recovery
2274  * uses pure sacked_out (total number of SACKed segments) even though
2275  * it violates the RFC that uses duplicate ACKs, often these are equal
2276  * but when e.g. out-of-window ACKs or packet duplication occurs,
2277  * they differ. Since neither occurs due to loss, TCP should really
2278  * ignore them.
2279  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2280 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2281 {
2282 	return tp->sacked_out + 1;
2283 }
2284 
2285 /* Linux NewReno/SACK/ECN state machine.
2286  * --------------------------------------
2287  *
2288  * "Open"	Normal state, no dubious events, fast path.
2289  * "Disorder"   In all the respects it is "Open",
2290  *		but requires a bit more attention. It is entered when
2291  *		we see some SACKs or dupacks. It is split of "Open"
2292  *		mainly to move some processing from fast path to slow one.
2293  * "CWR"	CWND was reduced due to some Congestion Notification event.
2294  *		It can be ECN, ICMP source quench, local device congestion.
2295  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2296  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2297  *
2298  * tcp_fastretrans_alert() is entered:
2299  * - each incoming ACK, if state is not "Open"
2300  * - when arrived ACK is unusual, namely:
2301  *	* SACK
2302  *	* Duplicate ACK.
2303  *	* ECN ECE.
2304  *
2305  * Counting packets in flight is pretty simple.
2306  *
2307  *	in_flight = packets_out - left_out + retrans_out
2308  *
2309  *	packets_out is SND.NXT-SND.UNA counted in packets.
2310  *
2311  *	retrans_out is number of retransmitted segments.
2312  *
2313  *	left_out is number of segments left network, but not ACKed yet.
2314  *
2315  *		left_out = sacked_out + lost_out
2316  *
2317  *     sacked_out: Packets, which arrived to receiver out of order
2318  *		   and hence not ACKed. With SACKs this number is simply
2319  *		   amount of SACKed data. Even without SACKs
2320  *		   it is easy to give pretty reliable estimate of this number,
2321  *		   counting duplicate ACKs.
2322  *
2323  *       lost_out: Packets lost by network. TCP has no explicit
2324  *		   "loss notification" feedback from network (for now).
2325  *		   It means that this number can be only _guessed_.
2326  *		   Actually, it is the heuristics to predict lossage that
2327  *		   distinguishes different algorithms.
2328  *
2329  *	F.e. after RTO, when all the queue is considered as lost,
2330  *	lost_out = packets_out and in_flight = retrans_out.
2331  *
2332  *		Essentially, we have now a few algorithms detecting
2333  *		lost packets.
2334  *
2335  *		If the receiver supports SACK:
2336  *
2337  *		RFC6675/3517: It is the conventional algorithm. A packet is
2338  *		considered lost if the number of higher sequence packets
2339  *		SACKed is greater than or equal the DUPACK thoreshold
2340  *		(reordering). This is implemented in tcp_mark_head_lost and
2341  *		tcp_update_scoreboard.
2342  *
2343  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2344  *		(2017-) that checks timing instead of counting DUPACKs.
2345  *		Essentially a packet is considered lost if it's not S/ACKed
2346  *		after RTT + reordering_window, where both metrics are
2347  *		dynamically measured and adjusted. This is implemented in
2348  *		tcp_rack_mark_lost.
2349  *
2350  *		If the receiver does not support SACK:
2351  *
2352  *		NewReno (RFC6582): in Recovery we assume that one segment
2353  *		is lost (classic Reno). While we are in Recovery and
2354  *		a partial ACK arrives, we assume that one more packet
2355  *		is lost (NewReno). This heuristics are the same in NewReno
2356  *		and SACK.
2357  *
2358  * Really tricky (and requiring careful tuning) part of algorithm
2359  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2360  * The first determines the moment _when_ we should reduce CWND and,
2361  * hence, slow down forward transmission. In fact, it determines the moment
2362  * when we decide that hole is caused by loss, rather than by a reorder.
2363  *
2364  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2365  * holes, caused by lost packets.
2366  *
2367  * And the most logically complicated part of algorithm is undo
2368  * heuristics. We detect false retransmits due to both too early
2369  * fast retransmit (reordering) and underestimated RTO, analyzing
2370  * timestamps and D-SACKs. When we detect that some segments were
2371  * retransmitted by mistake and CWND reduction was wrong, we undo
2372  * window reduction and abort recovery phase. This logic is hidden
2373  * inside several functions named tcp_try_undo_<something>.
2374  */
2375 
2376 /* This function decides, when we should leave Disordered state
2377  * and enter Recovery phase, reducing congestion window.
2378  *
2379  * Main question: may we further continue forward transmission
2380  * with the same cwnd?
2381  */
tcp_time_to_recover(struct sock * sk,int flag)2382 static bool tcp_time_to_recover(struct sock *sk, int flag)
2383 {
2384 	struct tcp_sock *tp = tcp_sk(sk);
2385 
2386 	/* Trick#1: The loss is proven. */
2387 	if (tp->lost_out)
2388 		return true;
2389 
2390 	/* Not-A-Trick#2 : Classic rule... */
2391 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2392 		return true;
2393 
2394 	return false;
2395 }
2396 
2397 /* Detect loss in event "A" above by marking head of queue up as lost.
2398  * For RFC3517 SACK, a segment is considered lost if it
2399  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2400  * the maximum SACKed segments to pass before reaching this limit.
2401  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2402 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2403 {
2404 	struct tcp_sock *tp = tcp_sk(sk);
2405 	struct sk_buff *skb;
2406 	int cnt;
2407 	/* Use SACK to deduce losses of new sequences sent during recovery */
2408 	const u32 loss_high = tp->snd_nxt;
2409 
2410 	WARN_ON(packets > tp->packets_out);
2411 	skb = tp->lost_skb_hint;
2412 	if (skb) {
2413 		/* Head already handled? */
2414 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2415 			return;
2416 		cnt = tp->lost_cnt_hint;
2417 	} else {
2418 		skb = tcp_rtx_queue_head(sk);
2419 		cnt = 0;
2420 	}
2421 
2422 	skb_rbtree_walk_from(skb) {
2423 		/* TODO: do this better */
2424 		/* this is not the most efficient way to do this... */
2425 		tp->lost_skb_hint = skb;
2426 		tp->lost_cnt_hint = cnt;
2427 
2428 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2429 			break;
2430 
2431 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2432 			cnt += tcp_skb_pcount(skb);
2433 
2434 		if (cnt > packets)
2435 			break;
2436 
2437 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2438 			tcp_mark_skb_lost(sk, skb);
2439 
2440 		if (mark_head)
2441 			break;
2442 	}
2443 	tcp_verify_left_out(tp);
2444 }
2445 
2446 /* Account newly detected lost packet(s) */
2447 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2448 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2449 {
2450 	struct tcp_sock *tp = tcp_sk(sk);
2451 
2452 	if (tcp_is_sack(tp)) {
2453 		int sacked_upto = tp->sacked_out - tp->reordering;
2454 		if (sacked_upto >= 0)
2455 			tcp_mark_head_lost(sk, sacked_upto, 0);
2456 		else if (fast_rexmit)
2457 			tcp_mark_head_lost(sk, 1, 1);
2458 	}
2459 }
2460 
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2461 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2462 {
2463 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2464 	       before(tp->rx_opt.rcv_tsecr, when);
2465 }
2466 
2467 /* skb is spurious retransmitted if the returned timestamp echo
2468  * reply is prior to the skb transmission time
2469  */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2470 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2471 				     const struct sk_buff *skb)
2472 {
2473 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2474 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2475 }
2476 
2477 /* Nothing was retransmitted or returned timestamp is less
2478  * than timestamp of the first retransmission.
2479  */
tcp_packet_delayed(const struct tcp_sock * tp)2480 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2481 {
2482 	const struct sock *sk = (const struct sock *)tp;
2483 
2484 	if (tp->retrans_stamp &&
2485 	    tcp_tsopt_ecr_before(tp, tp->retrans_stamp))
2486 		return true;  /* got echoed TS before first retransmission */
2487 
2488 	/* Check if nothing was retransmitted (retrans_stamp==0), which may
2489 	 * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp
2490 	 * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear
2491 	 * retrans_stamp even if we had retransmitted the SYN.
2492 	 */
2493 	if (!tp->retrans_stamp &&	   /* no record of a retransmit/SYN? */
2494 	    sk->sk_state != TCP_SYN_SENT)  /* not the FLAG_SYN_ACKED case? */
2495 		return true;  /* nothing was retransmitted */
2496 
2497 	return false;
2498 }
2499 
2500 /* Undo procedures. */
2501 
2502 /* We can clear retrans_stamp when there are no retransmissions in the
2503  * window. It would seem that it is trivially available for us in
2504  * tp->retrans_out, however, that kind of assumptions doesn't consider
2505  * what will happen if errors occur when sending retransmission for the
2506  * second time. ...It could the that such segment has only
2507  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2508  * the head skb is enough except for some reneging corner cases that
2509  * are not worth the effort.
2510  *
2511  * Main reason for all this complexity is the fact that connection dying
2512  * time now depends on the validity of the retrans_stamp, in particular,
2513  * that successive retransmissions of a segment must not advance
2514  * retrans_stamp under any conditions.
2515  */
tcp_any_retrans_done(const struct sock * sk)2516 static bool tcp_any_retrans_done(const struct sock *sk)
2517 {
2518 	const struct tcp_sock *tp = tcp_sk(sk);
2519 	struct sk_buff *skb;
2520 
2521 	if (tp->retrans_out)
2522 		return true;
2523 
2524 	skb = tcp_rtx_queue_head(sk);
2525 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2526 		return true;
2527 
2528 	return false;
2529 }
2530 
2531 /* If loss recovery is finished and there are no retransmits out in the
2532  * network, then we clear retrans_stamp so that upon the next loss recovery
2533  * retransmits_timed_out() and timestamp-undo are using the correct value.
2534  */
tcp_retrans_stamp_cleanup(struct sock * sk)2535 static void tcp_retrans_stamp_cleanup(struct sock *sk)
2536 {
2537 	if (!tcp_any_retrans_done(sk))
2538 		tcp_sk(sk)->retrans_stamp = 0;
2539 }
2540 
DBGUNDO(struct sock * sk,const char * msg)2541 static void DBGUNDO(struct sock *sk, const char *msg)
2542 {
2543 #if FASTRETRANS_DEBUG > 1
2544 	struct tcp_sock *tp = tcp_sk(sk);
2545 	struct inet_sock *inet = inet_sk(sk);
2546 
2547 	if (sk->sk_family == AF_INET) {
2548 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2549 			 msg,
2550 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2551 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2552 			 tp->snd_ssthresh, tp->prior_ssthresh,
2553 			 tp->packets_out);
2554 	}
2555 #if IS_ENABLED(CONFIG_IPV6)
2556 	else if (sk->sk_family == AF_INET6) {
2557 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2558 			 msg,
2559 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2560 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2561 			 tp->snd_ssthresh, tp->prior_ssthresh,
2562 			 tp->packets_out);
2563 	}
2564 #endif
2565 #endif
2566 }
2567 
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2568 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2569 {
2570 	struct tcp_sock *tp = tcp_sk(sk);
2571 
2572 	if (unmark_loss) {
2573 		struct sk_buff *skb;
2574 
2575 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2576 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2577 		}
2578 		tp->lost_out = 0;
2579 		tcp_clear_all_retrans_hints(tp);
2580 	}
2581 
2582 	if (tp->prior_ssthresh) {
2583 		const struct inet_connection_sock *icsk = inet_csk(sk);
2584 
2585 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2586 
2587 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2588 			tp->snd_ssthresh = tp->prior_ssthresh;
2589 			tcp_ecn_withdraw_cwr(tp);
2590 		}
2591 	}
2592 	tp->snd_cwnd_stamp = tcp_jiffies32;
2593 	tp->undo_marker = 0;
2594 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2595 }
2596 
tcp_may_undo(const struct tcp_sock * tp)2597 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2598 {
2599 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2600 }
2601 
tcp_is_non_sack_preventing_reopen(struct sock * sk)2602 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2603 {
2604 	struct tcp_sock *tp = tcp_sk(sk);
2605 
2606 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2607 		/* Hold old state until something *above* high_seq
2608 		 * is ACKed. For Reno it is MUST to prevent false
2609 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2610 		if (!tcp_any_retrans_done(sk))
2611 			tp->retrans_stamp = 0;
2612 		return true;
2613 	}
2614 	return false;
2615 }
2616 
2617 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2618 static bool tcp_try_undo_recovery(struct sock *sk)
2619 {
2620 	struct tcp_sock *tp = tcp_sk(sk);
2621 
2622 	if (tcp_may_undo(tp)) {
2623 		int mib_idx;
2624 
2625 		/* Happy end! We did not retransmit anything
2626 		 * or our original transmission succeeded.
2627 		 */
2628 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2629 		tcp_undo_cwnd_reduction(sk, false);
2630 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2631 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2632 		else
2633 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2634 
2635 		NET_INC_STATS(sock_net(sk), mib_idx);
2636 	} else if (tp->rack.reo_wnd_persist) {
2637 		tp->rack.reo_wnd_persist--;
2638 	}
2639 	if (tcp_is_non_sack_preventing_reopen(sk))
2640 		return true;
2641 	tcp_set_ca_state(sk, TCP_CA_Open);
2642 	tp->is_sack_reneg = 0;
2643 	return false;
2644 }
2645 
2646 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2647 static bool tcp_try_undo_dsack(struct sock *sk)
2648 {
2649 	struct tcp_sock *tp = tcp_sk(sk);
2650 
2651 	if (tp->undo_marker && !tp->undo_retrans) {
2652 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2653 					       tp->rack.reo_wnd_persist + 1);
2654 		DBGUNDO(sk, "D-SACK");
2655 		tcp_undo_cwnd_reduction(sk, false);
2656 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2657 		return true;
2658 	}
2659 	return false;
2660 }
2661 
2662 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2663 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2664 {
2665 	struct tcp_sock *tp = tcp_sk(sk);
2666 
2667 	if (frto_undo || tcp_may_undo(tp)) {
2668 		tcp_undo_cwnd_reduction(sk, true);
2669 
2670 		DBGUNDO(sk, "partial loss");
2671 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2672 		if (frto_undo)
2673 			NET_INC_STATS(sock_net(sk),
2674 					LINUX_MIB_TCPSPURIOUSRTOS);
2675 		inet_csk(sk)->icsk_retransmits = 0;
2676 		if (tcp_is_non_sack_preventing_reopen(sk))
2677 			return true;
2678 		if (frto_undo || tcp_is_sack(tp)) {
2679 			tcp_set_ca_state(sk, TCP_CA_Open);
2680 			tp->is_sack_reneg = 0;
2681 		}
2682 		return true;
2683 	}
2684 	return false;
2685 }
2686 
2687 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2688  * It computes the number of packets to send (sndcnt) based on packets newly
2689  * delivered:
2690  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2691  *	cwnd reductions across a full RTT.
2692  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2693  *      But when SND_UNA is acked without further losses,
2694  *      slow starts cwnd up to ssthresh to speed up the recovery.
2695  */
tcp_init_cwnd_reduction(struct sock * sk)2696 static void tcp_init_cwnd_reduction(struct sock *sk)
2697 {
2698 	struct tcp_sock *tp = tcp_sk(sk);
2699 
2700 	tp->high_seq = tp->snd_nxt;
2701 	tp->tlp_high_seq = 0;
2702 	tp->snd_cwnd_cnt = 0;
2703 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2704 	tp->prr_delivered = 0;
2705 	tp->prr_out = 0;
2706 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2707 	tcp_ecn_queue_cwr(tp);
2708 }
2709 
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2710 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2711 {
2712 	struct tcp_sock *tp = tcp_sk(sk);
2713 	int sndcnt = 0;
2714 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2715 
2716 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2717 		return;
2718 
2719 	tp->prr_delivered += newly_acked_sacked;
2720 	if (delta < 0) {
2721 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2722 			       tp->prior_cwnd - 1;
2723 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2724 	} else {
2725 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2726 			       newly_acked_sacked);
2727 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2728 			sndcnt++;
2729 		sndcnt = min(delta, sndcnt);
2730 	}
2731 	/* Force a fast retransmit upon entering fast recovery */
2732 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2733 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2734 }
2735 
tcp_end_cwnd_reduction(struct sock * sk)2736 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2737 {
2738 	struct tcp_sock *tp = tcp_sk(sk);
2739 
2740 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2741 		return;
2742 
2743 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2744 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2745 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2746 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2747 		tp->snd_cwnd_stamp = tcp_jiffies32;
2748 	}
2749 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2750 }
2751 
2752 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2753 void tcp_enter_cwr(struct sock *sk)
2754 {
2755 	struct tcp_sock *tp = tcp_sk(sk);
2756 
2757 	tp->prior_ssthresh = 0;
2758 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2759 		tp->undo_marker = 0;
2760 		tcp_init_cwnd_reduction(sk);
2761 		tcp_set_ca_state(sk, TCP_CA_CWR);
2762 	}
2763 }
2764 EXPORT_SYMBOL(tcp_enter_cwr);
2765 
tcp_try_keep_open(struct sock * sk)2766 static void tcp_try_keep_open(struct sock *sk)
2767 {
2768 	struct tcp_sock *tp = tcp_sk(sk);
2769 	int state = TCP_CA_Open;
2770 
2771 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2772 		state = TCP_CA_Disorder;
2773 
2774 	if (inet_csk(sk)->icsk_ca_state != state) {
2775 		tcp_set_ca_state(sk, state);
2776 		tp->high_seq = tp->snd_nxt;
2777 	}
2778 }
2779 
tcp_try_to_open(struct sock * sk,int flag)2780 static void tcp_try_to_open(struct sock *sk, int flag)
2781 {
2782 	struct tcp_sock *tp = tcp_sk(sk);
2783 
2784 	tcp_verify_left_out(tp);
2785 
2786 	if (!tcp_any_retrans_done(sk))
2787 		tp->retrans_stamp = 0;
2788 
2789 	if (flag & FLAG_ECE)
2790 		tcp_enter_cwr(sk);
2791 
2792 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2793 		tcp_try_keep_open(sk);
2794 	}
2795 }
2796 
tcp_mtup_probe_failed(struct sock * sk)2797 static void tcp_mtup_probe_failed(struct sock *sk)
2798 {
2799 	struct inet_connection_sock *icsk = inet_csk(sk);
2800 
2801 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2802 	icsk->icsk_mtup.probe_size = 0;
2803 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2804 }
2805 
tcp_mtup_probe_success(struct sock * sk)2806 static void tcp_mtup_probe_success(struct sock *sk)
2807 {
2808 	struct tcp_sock *tp = tcp_sk(sk);
2809 	struct inet_connection_sock *icsk = inet_csk(sk);
2810 	u64 val;
2811 
2812 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2813 
2814 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2815 	do_div(val, icsk->icsk_mtup.probe_size);
2816 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2817 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2818 
2819 	tp->snd_cwnd_cnt = 0;
2820 	tp->snd_cwnd_stamp = tcp_jiffies32;
2821 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2822 
2823 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2824 	icsk->icsk_mtup.probe_size = 0;
2825 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2826 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2827 }
2828 
2829 /* Sometimes we deduce that packets have been dropped due to reasons other than
2830  * congestion, like path MTU reductions or failed client TFO attempts. In these
2831  * cases we call this function to retransmit as many packets as cwnd allows,
2832  * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2833  * non-zero value (and may do so in a later calling context due to TSQ), we
2834  * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2835  * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2836  * are using the correct retrans_stamp and don't declare ETIMEDOUT
2837  * prematurely).
2838  */
tcp_non_congestion_loss_retransmit(struct sock * sk)2839 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2840 {
2841 	const struct inet_connection_sock *icsk = inet_csk(sk);
2842 	struct tcp_sock *tp = tcp_sk(sk);
2843 
2844 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2845 		tp->high_seq = tp->snd_nxt;
2846 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2847 		tp->prior_ssthresh = 0;
2848 		tp->undo_marker = 0;
2849 		tcp_set_ca_state(sk, TCP_CA_Loss);
2850 	}
2851 	tcp_xmit_retransmit_queue(sk);
2852 }
2853 
2854 /* Do a simple retransmit without using the backoff mechanisms in
2855  * tcp_timer. This is used for path mtu discovery.
2856  * The socket is already locked here.
2857  */
tcp_simple_retransmit(struct sock * sk)2858 void tcp_simple_retransmit(struct sock *sk)
2859 {
2860 	struct tcp_sock *tp = tcp_sk(sk);
2861 	struct sk_buff *skb;
2862 	int mss;
2863 
2864 	/* A fastopen SYN request is stored as two separate packets within
2865 	 * the retransmit queue, this is done by tcp_send_syn_data().
2866 	 * As a result simply checking the MSS of the frames in the queue
2867 	 * will not work for the SYN packet.
2868 	 *
2869 	 * Us being here is an indication of a path MTU issue so we can
2870 	 * assume that the fastopen SYN was lost and just mark all the
2871 	 * frames in the retransmit queue as lost. We will use an MSS of
2872 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2873 	 */
2874 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2875 		mss = -1;
2876 	else
2877 		mss = tcp_current_mss(sk);
2878 
2879 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2880 		if (tcp_skb_seglen(skb) > mss)
2881 			tcp_mark_skb_lost(sk, skb);
2882 	}
2883 
2884 	tcp_clear_retrans_hints_partial(tp);
2885 
2886 	if (!tp->lost_out)
2887 		return;
2888 
2889 	if (tcp_is_reno(tp))
2890 		tcp_limit_reno_sacked(tp);
2891 
2892 	tcp_verify_left_out(tp);
2893 
2894 	/* Don't muck with the congestion window here.
2895 	 * Reason is that we do not increase amount of _data_
2896 	 * in network, but units changed and effective
2897 	 * cwnd/ssthresh really reduced now.
2898 	 */
2899 	tcp_non_congestion_loss_retransmit(sk);
2900 }
2901 EXPORT_SYMBOL(tcp_simple_retransmit);
2902 
tcp_enter_recovery(struct sock * sk,bool ece_ack)2903 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2904 {
2905 	struct tcp_sock *tp = tcp_sk(sk);
2906 	int mib_idx;
2907 
2908 	/* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2909 	tcp_retrans_stamp_cleanup(sk);
2910 
2911 	if (tcp_is_reno(tp))
2912 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2913 	else
2914 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2915 
2916 	NET_INC_STATS(sock_net(sk), mib_idx);
2917 
2918 	tp->prior_ssthresh = 0;
2919 	tcp_init_undo(tp);
2920 
2921 	if (!tcp_in_cwnd_reduction(sk)) {
2922 		if (!ece_ack)
2923 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2924 		tcp_init_cwnd_reduction(sk);
2925 	}
2926 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2927 }
2928 
tcp_update_rto_time(struct tcp_sock * tp)2929 static void tcp_update_rto_time(struct tcp_sock *tp)
2930 {
2931 	if (tp->rto_stamp) {
2932 		tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2933 		tp->rto_stamp = 0;
2934 	}
2935 }
2936 
2937 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2938  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2939  */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2940 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2941 			     int *rexmit)
2942 {
2943 	struct tcp_sock *tp = tcp_sk(sk);
2944 	bool recovered = !before(tp->snd_una, tp->high_seq);
2945 
2946 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2947 	    tcp_try_undo_loss(sk, false))
2948 		return;
2949 
2950 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2951 		/* Step 3.b. A timeout is spurious if not all data are
2952 		 * lost, i.e., never-retransmitted data are (s)acked.
2953 		 */
2954 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2955 		    tcp_try_undo_loss(sk, true))
2956 			return;
2957 
2958 		if (after(tp->snd_nxt, tp->high_seq)) {
2959 			if (flag & FLAG_DATA_SACKED || num_dupack)
2960 				tp->frto = 0; /* Step 3.a. loss was real */
2961 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2962 			tp->high_seq = tp->snd_nxt;
2963 			/* Step 2.b. Try send new data (but deferred until cwnd
2964 			 * is updated in tcp_ack()). Otherwise fall back to
2965 			 * the conventional recovery.
2966 			 */
2967 			if (!tcp_write_queue_empty(sk) &&
2968 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2969 				*rexmit = REXMIT_NEW;
2970 				return;
2971 			}
2972 			tp->frto = 0;
2973 		}
2974 	}
2975 
2976 	if (recovered) {
2977 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2978 		tcp_try_undo_recovery(sk);
2979 		return;
2980 	}
2981 	if (tcp_is_reno(tp)) {
2982 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2983 		 * delivered. Lower inflight to clock out (re)transmissions.
2984 		 */
2985 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2986 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2987 		else if (flag & FLAG_SND_UNA_ADVANCED)
2988 			tcp_reset_reno_sack(tp);
2989 	}
2990 	*rexmit = REXMIT_LOST;
2991 }
2992 
tcp_force_fast_retransmit(struct sock * sk)2993 static bool tcp_force_fast_retransmit(struct sock *sk)
2994 {
2995 	struct tcp_sock *tp = tcp_sk(sk);
2996 
2997 	return after(tcp_highest_sack_seq(tp),
2998 		     tp->snd_una + tp->reordering * tp->mss_cache);
2999 }
3000 
3001 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)3002 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
3003 				 bool *do_lost)
3004 {
3005 	struct tcp_sock *tp = tcp_sk(sk);
3006 
3007 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
3008 		/* Plain luck! Hole if filled with delayed
3009 		 * packet, rather than with a retransmit. Check reordering.
3010 		 */
3011 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
3012 
3013 		/* We are getting evidence that the reordering degree is higher
3014 		 * than we realized. If there are no retransmits out then we
3015 		 * can undo. Otherwise we clock out new packets but do not
3016 		 * mark more packets lost or retransmit more.
3017 		 */
3018 		if (tp->retrans_out)
3019 			return true;
3020 
3021 		if (!tcp_any_retrans_done(sk))
3022 			tp->retrans_stamp = 0;
3023 
3024 		DBGUNDO(sk, "partial recovery");
3025 		tcp_undo_cwnd_reduction(sk, true);
3026 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
3027 		tcp_try_keep_open(sk);
3028 	} else {
3029 		/* Partial ACK arrived. Force fast retransmit. */
3030 		*do_lost = tcp_force_fast_retransmit(sk);
3031 	}
3032 	return false;
3033 }
3034 
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)3035 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
3036 {
3037 	struct tcp_sock *tp = tcp_sk(sk);
3038 
3039 	if (tcp_rtx_queue_empty(sk))
3040 		return;
3041 
3042 	if (unlikely(tcp_is_reno(tp))) {
3043 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
3044 	} else if (tcp_is_rack(sk)) {
3045 		u32 prior_retrans = tp->retrans_out;
3046 
3047 		if (tcp_rack_mark_lost(sk))
3048 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
3049 		if (prior_retrans > tp->retrans_out)
3050 			*ack_flag |= FLAG_LOST_RETRANS;
3051 	}
3052 }
3053 
3054 /* Process an event, which can update packets-in-flight not trivially.
3055  * Main goal of this function is to calculate new estimate for left_out,
3056  * taking into account both packets sitting in receiver's buffer and
3057  * packets lost by network.
3058  *
3059  * Besides that it updates the congestion state when packet loss or ECN
3060  * is detected. But it does not reduce the cwnd, it is done by the
3061  * congestion control later.
3062  *
3063  * It does _not_ decide what to send, it is made in function
3064  * tcp_xmit_retransmit_queue().
3065  */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)3066 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3067 				  int num_dupack, int *ack_flag, int *rexmit)
3068 {
3069 	struct inet_connection_sock *icsk = inet_csk(sk);
3070 	struct tcp_sock *tp = tcp_sk(sk);
3071 	int fast_rexmit = 0, flag = *ack_flag;
3072 	bool ece_ack = flag & FLAG_ECE;
3073 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3074 				      tcp_force_fast_retransmit(sk));
3075 
3076 	if (!tp->packets_out && tp->sacked_out)
3077 		tp->sacked_out = 0;
3078 
3079 	/* Now state machine starts.
3080 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3081 	if (ece_ack)
3082 		tp->prior_ssthresh = 0;
3083 
3084 	/* B. In all the states check for reneging SACKs. */
3085 	if (tcp_check_sack_reneging(sk, ack_flag))
3086 		return;
3087 
3088 	/* C. Check consistency of the current state. */
3089 	tcp_verify_left_out(tp);
3090 
3091 	/* D. Check state exit conditions. State can be terminated
3092 	 *    when high_seq is ACKed. */
3093 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3094 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3095 		tp->retrans_stamp = 0;
3096 	} else if (!before(tp->snd_una, tp->high_seq)) {
3097 		switch (icsk->icsk_ca_state) {
3098 		case TCP_CA_CWR:
3099 			/* CWR is to be held something *above* high_seq
3100 			 * is ACKed for CWR bit to reach receiver. */
3101 			if (tp->snd_una != tp->high_seq) {
3102 				tcp_end_cwnd_reduction(sk);
3103 				tcp_set_ca_state(sk, TCP_CA_Open);
3104 			}
3105 			break;
3106 
3107 		case TCP_CA_Recovery:
3108 			if (tcp_is_reno(tp))
3109 				tcp_reset_reno_sack(tp);
3110 			if (tcp_try_undo_recovery(sk))
3111 				return;
3112 			tcp_end_cwnd_reduction(sk);
3113 			break;
3114 		}
3115 	}
3116 
3117 	/* E. Process state. */
3118 	switch (icsk->icsk_ca_state) {
3119 	case TCP_CA_Recovery:
3120 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3121 			if (tcp_is_reno(tp))
3122 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3123 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3124 			return;
3125 
3126 		if (tcp_try_undo_dsack(sk))
3127 			tcp_try_to_open(sk, flag);
3128 
3129 		tcp_identify_packet_loss(sk, ack_flag);
3130 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3131 			if (!tcp_time_to_recover(sk, flag))
3132 				return;
3133 			/* Undo reverts the recovery state. If loss is evident,
3134 			 * starts a new recovery (e.g. reordering then loss);
3135 			 */
3136 			tcp_enter_recovery(sk, ece_ack);
3137 		}
3138 		break;
3139 	case TCP_CA_Loss:
3140 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3141 		if (icsk->icsk_ca_state != TCP_CA_Loss)
3142 			tcp_update_rto_time(tp);
3143 		tcp_identify_packet_loss(sk, ack_flag);
3144 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3145 		      (*ack_flag & FLAG_LOST_RETRANS)))
3146 			return;
3147 		/* Change state if cwnd is undone or retransmits are lost */
3148 		fallthrough;
3149 	default:
3150 		if (tcp_is_reno(tp)) {
3151 			if (flag & FLAG_SND_UNA_ADVANCED)
3152 				tcp_reset_reno_sack(tp);
3153 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3154 		}
3155 
3156 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3157 			tcp_try_undo_dsack(sk);
3158 
3159 		tcp_identify_packet_loss(sk, ack_flag);
3160 		if (!tcp_time_to_recover(sk, flag)) {
3161 			tcp_try_to_open(sk, flag);
3162 			return;
3163 		}
3164 
3165 		/* MTU probe failure: don't reduce cwnd */
3166 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3167 		    icsk->icsk_mtup.probe_size &&
3168 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3169 			tcp_mtup_probe_failed(sk);
3170 			/* Restores the reduction we did in tcp_mtup_probe() */
3171 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3172 			tcp_simple_retransmit(sk);
3173 			return;
3174 		}
3175 
3176 		/* Otherwise enter Recovery state */
3177 		tcp_enter_recovery(sk, ece_ack);
3178 		fast_rexmit = 1;
3179 	}
3180 
3181 	if (!tcp_is_rack(sk) && do_lost)
3182 		tcp_update_scoreboard(sk, fast_rexmit);
3183 	*rexmit = REXMIT_LOST;
3184 }
3185 
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3186 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3187 {
3188 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3189 	struct tcp_sock *tp = tcp_sk(sk);
3190 
3191 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3192 		/* If the remote keeps returning delayed ACKs, eventually
3193 		 * the min filter would pick it up and overestimate the
3194 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3195 		 */
3196 		return;
3197 	}
3198 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3199 			   rtt_us ? : jiffies_to_usecs(1));
3200 }
3201 
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3202 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3203 			       long seq_rtt_us, long sack_rtt_us,
3204 			       long ca_rtt_us, struct rate_sample *rs)
3205 {
3206 	const struct tcp_sock *tp = tcp_sk(sk);
3207 
3208 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3209 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3210 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3211 	 * is acked (RFC6298).
3212 	 */
3213 	if (seq_rtt_us < 0)
3214 		seq_rtt_us = sack_rtt_us;
3215 
3216 	/* RTTM Rule: A TSecr value received in a segment is used to
3217 	 * update the averaged RTT measurement only if the segment
3218 	 * acknowledges some new data, i.e., only if it advances the
3219 	 * left edge of the send window.
3220 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3221 	 */
3222 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3223 	    tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3224 		seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp);
3225 
3226 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3227 	if (seq_rtt_us < 0)
3228 		return false;
3229 
3230 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3231 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3232 	 * values will be skipped with the seq_rtt_us < 0 check above.
3233 	 */
3234 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3235 	tcp_rtt_estimator(sk, seq_rtt_us);
3236 	tcp_set_rto(sk);
3237 
3238 	/* RFC6298: only reset backoff on valid RTT measurement. */
3239 	inet_csk(sk)->icsk_backoff = 0;
3240 	return true;
3241 }
3242 
3243 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3244 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3245 {
3246 	struct rate_sample rs;
3247 	long rtt_us = -1L;
3248 
3249 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3250 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3251 
3252 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3253 }
3254 
3255 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3256 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3257 {
3258 	const struct inet_connection_sock *icsk = inet_csk(sk);
3259 
3260 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3261 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3262 }
3263 
3264 /* Restart timer after forward progress on connection.
3265  * RFC2988 recommends to restart timer to now+rto.
3266  */
tcp_rearm_rto(struct sock * sk)3267 void tcp_rearm_rto(struct sock *sk)
3268 {
3269 	const struct inet_connection_sock *icsk = inet_csk(sk);
3270 	struct tcp_sock *tp = tcp_sk(sk);
3271 
3272 	/* If the retrans timer is currently being used by Fast Open
3273 	 * for SYN-ACK retrans purpose, stay put.
3274 	 */
3275 	if (rcu_access_pointer(tp->fastopen_rsk))
3276 		return;
3277 
3278 	if (!tp->packets_out) {
3279 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3280 	} else {
3281 		u32 rto = inet_csk(sk)->icsk_rto;
3282 		/* Offset the time elapsed after installing regular RTO */
3283 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3284 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3285 			s64 delta_us = tcp_rto_delta_us(sk);
3286 			/* delta_us may not be positive if the socket is locked
3287 			 * when the retrans timer fires and is rescheduled.
3288 			 */
3289 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3290 		}
3291 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3292 				     TCP_RTO_MAX);
3293 	}
3294 }
3295 
3296 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3297 static void tcp_set_xmit_timer(struct sock *sk)
3298 {
3299 	if (!tcp_schedule_loss_probe(sk, true))
3300 		tcp_rearm_rto(sk);
3301 }
3302 
3303 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3304 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3305 {
3306 	struct tcp_sock *tp = tcp_sk(sk);
3307 	u32 packets_acked;
3308 
3309 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3310 
3311 	packets_acked = tcp_skb_pcount(skb);
3312 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3313 		return 0;
3314 	packets_acked -= tcp_skb_pcount(skb);
3315 
3316 	if (packets_acked) {
3317 		BUG_ON(tcp_skb_pcount(skb) == 0);
3318 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3319 	}
3320 
3321 	return packets_acked;
3322 }
3323 
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3324 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3325 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3326 {
3327 	const struct skb_shared_info *shinfo;
3328 
3329 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3330 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3331 		return;
3332 
3333 	shinfo = skb_shinfo(skb);
3334 	if (!before(shinfo->tskey, prior_snd_una) &&
3335 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3336 		tcp_skb_tsorted_save(skb) {
3337 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3338 		} tcp_skb_tsorted_restore(skb);
3339 	}
3340 }
3341 
3342 /* Remove acknowledged frames from the retransmission queue. If our packet
3343  * is before the ack sequence we can discard it as it's confirmed to have
3344  * arrived at the other end.
3345  */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3346 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3347 			       u32 prior_fack, u32 prior_snd_una,
3348 			       struct tcp_sacktag_state *sack, bool ece_ack)
3349 {
3350 	const struct inet_connection_sock *icsk = inet_csk(sk);
3351 	u64 first_ackt, last_ackt;
3352 	struct tcp_sock *tp = tcp_sk(sk);
3353 	u32 prior_sacked = tp->sacked_out;
3354 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3355 	struct sk_buff *skb, *next;
3356 	bool fully_acked = true;
3357 	long sack_rtt_us = -1L;
3358 	long seq_rtt_us = -1L;
3359 	long ca_rtt_us = -1L;
3360 	u32 pkts_acked = 0;
3361 	bool rtt_update;
3362 	int flag = 0;
3363 
3364 	first_ackt = 0;
3365 
3366 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3367 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3368 		const u32 start_seq = scb->seq;
3369 		u8 sacked = scb->sacked;
3370 		u32 acked_pcount;
3371 
3372 		/* Determine how many packets and what bytes were acked, tso and else */
3373 		if (after(scb->end_seq, tp->snd_una)) {
3374 			if (tcp_skb_pcount(skb) == 1 ||
3375 			    !after(tp->snd_una, scb->seq))
3376 				break;
3377 
3378 			acked_pcount = tcp_tso_acked(sk, skb);
3379 			if (!acked_pcount)
3380 				break;
3381 			fully_acked = false;
3382 		} else {
3383 			acked_pcount = tcp_skb_pcount(skb);
3384 		}
3385 
3386 		if (unlikely(sacked & TCPCB_RETRANS)) {
3387 			if (sacked & TCPCB_SACKED_RETRANS)
3388 				tp->retrans_out -= acked_pcount;
3389 			flag |= FLAG_RETRANS_DATA_ACKED;
3390 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3391 			last_ackt = tcp_skb_timestamp_us(skb);
3392 			WARN_ON_ONCE(last_ackt == 0);
3393 			if (!first_ackt)
3394 				first_ackt = last_ackt;
3395 
3396 			if (before(start_seq, reord))
3397 				reord = start_seq;
3398 			if (!after(scb->end_seq, tp->high_seq))
3399 				flag |= FLAG_ORIG_SACK_ACKED;
3400 		}
3401 
3402 		if (sacked & TCPCB_SACKED_ACKED) {
3403 			tp->sacked_out -= acked_pcount;
3404 		} else if (tcp_is_sack(tp)) {
3405 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3406 			if (!tcp_skb_spurious_retrans(tp, skb))
3407 				tcp_rack_advance(tp, sacked, scb->end_seq,
3408 						 tcp_skb_timestamp_us(skb));
3409 		}
3410 		if (sacked & TCPCB_LOST)
3411 			tp->lost_out -= acked_pcount;
3412 
3413 		tp->packets_out -= acked_pcount;
3414 		pkts_acked += acked_pcount;
3415 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3416 
3417 		/* Initial outgoing SYN's get put onto the write_queue
3418 		 * just like anything else we transmit.  It is not
3419 		 * true data, and if we misinform our callers that
3420 		 * this ACK acks real data, we will erroneously exit
3421 		 * connection startup slow start one packet too
3422 		 * quickly.  This is severely frowned upon behavior.
3423 		 */
3424 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3425 			flag |= FLAG_DATA_ACKED;
3426 		} else {
3427 			flag |= FLAG_SYN_ACKED;
3428 			tp->retrans_stamp = 0;
3429 		}
3430 
3431 		if (!fully_acked)
3432 			break;
3433 
3434 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3435 
3436 		next = skb_rb_next(skb);
3437 		if (unlikely(skb == tp->retransmit_skb_hint))
3438 			tp->retransmit_skb_hint = NULL;
3439 		if (unlikely(skb == tp->lost_skb_hint))
3440 			tp->lost_skb_hint = NULL;
3441 		tcp_highest_sack_replace(sk, skb, next);
3442 		tcp_rtx_queue_unlink_and_free(skb, sk);
3443 	}
3444 
3445 	if (!skb)
3446 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3447 
3448 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3449 		tp->snd_up = tp->snd_una;
3450 
3451 	if (skb) {
3452 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3453 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3454 			flag |= FLAG_SACK_RENEGING;
3455 	}
3456 
3457 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3458 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3459 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3460 
3461 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3462 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3463 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3464 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3465 			/* Conservatively mark a delayed ACK. It's typically
3466 			 * from a lone runt packet over the round trip to
3467 			 * a receiver w/o out-of-order or CE events.
3468 			 */
3469 			flag |= FLAG_ACK_MAYBE_DELAYED;
3470 		}
3471 	}
3472 	if (sack->first_sackt) {
3473 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3474 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3475 	}
3476 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3477 					ca_rtt_us, sack->rate);
3478 
3479 	if (flag & FLAG_ACKED) {
3480 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3481 		if (unlikely(icsk->icsk_mtup.probe_size &&
3482 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3483 			tcp_mtup_probe_success(sk);
3484 		}
3485 
3486 		if (tcp_is_reno(tp)) {
3487 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3488 
3489 			/* If any of the cumulatively ACKed segments was
3490 			 * retransmitted, non-SACK case cannot confirm that
3491 			 * progress was due to original transmission due to
3492 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3493 			 * the packets may have been never retransmitted.
3494 			 */
3495 			if (flag & FLAG_RETRANS_DATA_ACKED)
3496 				flag &= ~FLAG_ORIG_SACK_ACKED;
3497 		} else {
3498 			int delta;
3499 
3500 			/* Non-retransmitted hole got filled? That's reordering */
3501 			if (before(reord, prior_fack))
3502 				tcp_check_sack_reordering(sk, reord, 0);
3503 
3504 			delta = prior_sacked - tp->sacked_out;
3505 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3506 		}
3507 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3508 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3509 						    tcp_skb_timestamp_us(skb))) {
3510 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3511 		 * after when the head was last (re)transmitted. Otherwise the
3512 		 * timeout may continue to extend in loss recovery.
3513 		 */
3514 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3515 	}
3516 
3517 	if (icsk->icsk_ca_ops->pkts_acked) {
3518 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3519 					     .rtt_us = sack->rate->rtt_us };
3520 
3521 		sample.in_flight = tp->mss_cache *
3522 			(tp->delivered - sack->rate->prior_delivered);
3523 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3524 	}
3525 
3526 #if FASTRETRANS_DEBUG > 0
3527 	WARN_ON((int)tp->sacked_out < 0);
3528 	WARN_ON((int)tp->lost_out < 0);
3529 	WARN_ON((int)tp->retrans_out < 0);
3530 	if (!tp->packets_out && tcp_is_sack(tp)) {
3531 		icsk = inet_csk(sk);
3532 		if (tp->lost_out) {
3533 			pr_debug("Leak l=%u %d\n",
3534 				 tp->lost_out, icsk->icsk_ca_state);
3535 			tp->lost_out = 0;
3536 		}
3537 		if (tp->sacked_out) {
3538 			pr_debug("Leak s=%u %d\n",
3539 				 tp->sacked_out, icsk->icsk_ca_state);
3540 			tp->sacked_out = 0;
3541 		}
3542 		if (tp->retrans_out) {
3543 			pr_debug("Leak r=%u %d\n",
3544 				 tp->retrans_out, icsk->icsk_ca_state);
3545 			tp->retrans_out = 0;
3546 		}
3547 	}
3548 #endif
3549 	return flag;
3550 }
3551 
tcp_ack_probe(struct sock * sk)3552 static void tcp_ack_probe(struct sock *sk)
3553 {
3554 	struct inet_connection_sock *icsk = inet_csk(sk);
3555 	struct sk_buff *head = tcp_send_head(sk);
3556 	const struct tcp_sock *tp = tcp_sk(sk);
3557 
3558 	/* Was it a usable window open? */
3559 	if (!head)
3560 		return;
3561 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3562 		icsk->icsk_backoff = 0;
3563 		icsk->icsk_probes_tstamp = 0;
3564 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3565 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3566 		 * This function is not for random using!
3567 		 */
3568 	} else {
3569 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3570 
3571 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3572 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3573 	}
3574 }
3575 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3576 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3577 {
3578 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3579 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3580 }
3581 
3582 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3583 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3584 {
3585 	/* If reordering is high then always grow cwnd whenever data is
3586 	 * delivered regardless of its ordering. Otherwise stay conservative
3587 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3588 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3589 	 * cwnd in tcp_fastretrans_alert() based on more states.
3590 	 */
3591 	if (tcp_sk(sk)->reordering >
3592 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3593 		return flag & FLAG_FORWARD_PROGRESS;
3594 
3595 	return flag & FLAG_DATA_ACKED;
3596 }
3597 
3598 /* The "ultimate" congestion control function that aims to replace the rigid
3599  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3600  * It's called toward the end of processing an ACK with precise rate
3601  * information. All transmission or retransmission are delayed afterwards.
3602  */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3603 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3604 			     int flag, const struct rate_sample *rs)
3605 {
3606 	const struct inet_connection_sock *icsk = inet_csk(sk);
3607 
3608 	if (icsk->icsk_ca_ops->cong_control) {
3609 		icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs);
3610 		return;
3611 	}
3612 
3613 	if (tcp_in_cwnd_reduction(sk)) {
3614 		/* Reduce cwnd if state mandates */
3615 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3616 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3617 		/* Advance cwnd if state allows */
3618 		tcp_cong_avoid(sk, ack, acked_sacked);
3619 	}
3620 	tcp_update_pacing_rate(sk);
3621 }
3622 
3623 /* Check that window update is acceptable.
3624  * The function assumes that snd_una<=ack<=snd_next.
3625  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3626 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3627 					const u32 ack, const u32 ack_seq,
3628 					const u32 nwin)
3629 {
3630 	return	after(ack, tp->snd_una) ||
3631 		after(ack_seq, tp->snd_wl1) ||
3632 		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3633 }
3634 
tcp_snd_sne_update(struct tcp_sock * tp,u32 ack)3635 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3636 {
3637 #ifdef CONFIG_TCP_AO
3638 	struct tcp_ao_info *ao;
3639 
3640 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3641 		return;
3642 
3643 	ao = rcu_dereference_protected(tp->ao_info,
3644 				       lockdep_sock_is_held((struct sock *)tp));
3645 	if (ao && ack < tp->snd_una) {
3646 		ao->snd_sne++;
3647 		trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne);
3648 	}
3649 #endif
3650 }
3651 
3652 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3653 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3654 {
3655 	u32 delta = ack - tp->snd_una;
3656 
3657 	sock_owned_by_me((struct sock *)tp);
3658 	tp->bytes_acked += delta;
3659 	tcp_snd_sne_update(tp, ack);
3660 	tp->snd_una = ack;
3661 }
3662 
tcp_rcv_sne_update(struct tcp_sock * tp,u32 seq)3663 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3664 {
3665 #ifdef CONFIG_TCP_AO
3666 	struct tcp_ao_info *ao;
3667 
3668 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3669 		return;
3670 
3671 	ao = rcu_dereference_protected(tp->ao_info,
3672 				       lockdep_sock_is_held((struct sock *)tp));
3673 	if (ao && seq < tp->rcv_nxt) {
3674 		ao->rcv_sne++;
3675 		trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne);
3676 	}
3677 #endif
3678 }
3679 
3680 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3681 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3682 {
3683 	u32 delta = seq - tp->rcv_nxt;
3684 
3685 	sock_owned_by_me((struct sock *)tp);
3686 	tp->bytes_received += delta;
3687 	tcp_rcv_sne_update(tp, seq);
3688 	WRITE_ONCE(tp->rcv_nxt, seq);
3689 }
3690 
3691 /* Update our send window.
3692  *
3693  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3694  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3695  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3696 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3697 				 u32 ack_seq)
3698 {
3699 	struct tcp_sock *tp = tcp_sk(sk);
3700 	int flag = 0;
3701 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3702 
3703 	if (likely(!tcp_hdr(skb)->syn))
3704 		nwin <<= tp->rx_opt.snd_wscale;
3705 
3706 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3707 		flag |= FLAG_WIN_UPDATE;
3708 		tcp_update_wl(tp, ack_seq);
3709 
3710 		if (tp->snd_wnd != nwin) {
3711 			tp->snd_wnd = nwin;
3712 
3713 			/* Note, it is the only place, where
3714 			 * fast path is recovered for sending TCP.
3715 			 */
3716 			tp->pred_flags = 0;
3717 			tcp_fast_path_check(sk);
3718 
3719 			if (!tcp_write_queue_empty(sk))
3720 				tcp_slow_start_after_idle_check(sk);
3721 
3722 			if (nwin > tp->max_window) {
3723 				tp->max_window = nwin;
3724 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3725 			}
3726 		}
3727 	}
3728 
3729 	tcp_snd_una_update(tp, ack);
3730 
3731 	return flag;
3732 }
3733 
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3734 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3735 				   u32 *last_oow_ack_time)
3736 {
3737 	/* Paired with the WRITE_ONCE() in this function. */
3738 	u32 val = READ_ONCE(*last_oow_ack_time);
3739 
3740 	if (val) {
3741 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3742 
3743 		if (0 <= elapsed &&
3744 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3745 			NET_INC_STATS(net, mib_idx);
3746 			return true;	/* rate-limited: don't send yet! */
3747 		}
3748 	}
3749 
3750 	/* Paired with the prior READ_ONCE() and with itself,
3751 	 * as we might be lockless.
3752 	 */
3753 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3754 
3755 	return false;	/* not rate-limited: go ahead, send dupack now! */
3756 }
3757 
3758 /* Return true if we're currently rate-limiting out-of-window ACKs and
3759  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3760  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3761  * attacks that send repeated SYNs or ACKs for the same connection. To
3762  * do this, we do not send a duplicate SYNACK or ACK if the remote
3763  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3764  */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3765 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3766 			  int mib_idx, u32 *last_oow_ack_time)
3767 {
3768 	/* Data packets without SYNs are not likely part of an ACK loop. */
3769 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3770 	    !tcp_hdr(skb)->syn)
3771 		return false;
3772 
3773 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3774 }
3775 
3776 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk)3777 static void tcp_send_challenge_ack(struct sock *sk)
3778 {
3779 	struct tcp_sock *tp = tcp_sk(sk);
3780 	struct net *net = sock_net(sk);
3781 	u32 count, now, ack_limit;
3782 
3783 	/* First check our per-socket dupack rate limit. */
3784 	if (__tcp_oow_rate_limited(net,
3785 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3786 				   &tp->last_oow_ack_time))
3787 		return;
3788 
3789 	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3790 	if (ack_limit == INT_MAX)
3791 		goto send_ack;
3792 
3793 	/* Then check host-wide RFC 5961 rate limit. */
3794 	now = jiffies / HZ;
3795 	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3796 		u32 half = (ack_limit + 1) >> 1;
3797 
3798 		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3799 		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3800 			   get_random_u32_inclusive(half, ack_limit + half - 1));
3801 	}
3802 	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3803 	if (count > 0) {
3804 		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3805 send_ack:
3806 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3807 		tcp_send_ack(sk);
3808 	}
3809 }
3810 
tcp_store_ts_recent(struct tcp_sock * tp)3811 static void tcp_store_ts_recent(struct tcp_sock *tp)
3812 {
3813 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3814 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3815 }
3816 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3817 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3818 {
3819 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3820 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3821 		 * extra check below makes sure this can only happen
3822 		 * for pure ACK frames.  -DaveM
3823 		 *
3824 		 * Not only, also it occurs for expired timestamps.
3825 		 */
3826 
3827 		if (tcp_paws_check(&tp->rx_opt, 0))
3828 			tcp_store_ts_recent(tp);
3829 	}
3830 }
3831 
3832 /* This routine deals with acks during a TLP episode and ends an episode by
3833  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3834  */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3835 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3836 {
3837 	struct tcp_sock *tp = tcp_sk(sk);
3838 
3839 	if (before(ack, tp->tlp_high_seq))
3840 		return;
3841 
3842 	if (!tp->tlp_retrans) {
3843 		/* TLP of new data has been acknowledged */
3844 		tp->tlp_high_seq = 0;
3845 	} else if (flag & FLAG_DSACK_TLP) {
3846 		/* This DSACK means original and TLP probe arrived; no loss */
3847 		tp->tlp_high_seq = 0;
3848 	} else if (after(ack, tp->tlp_high_seq)) {
3849 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3850 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3851 		 */
3852 		tcp_init_cwnd_reduction(sk);
3853 		tcp_set_ca_state(sk, TCP_CA_CWR);
3854 		tcp_end_cwnd_reduction(sk);
3855 		tcp_try_keep_open(sk);
3856 		NET_INC_STATS(sock_net(sk),
3857 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3858 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3859 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3860 		/* Pure dupack: original and TLP probe arrived; no loss */
3861 		tp->tlp_high_seq = 0;
3862 	}
3863 }
3864 
tcp_in_ack_event(struct sock * sk,u32 flags)3865 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3866 {
3867 	const struct inet_connection_sock *icsk = inet_csk(sk);
3868 
3869 	if (icsk->icsk_ca_ops->in_ack_event)
3870 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3871 }
3872 
3873 /* Congestion control has updated the cwnd already. So if we're in
3874  * loss recovery then now we do any new sends (for FRTO) or
3875  * retransmits (for CA_Loss or CA_recovery) that make sense.
3876  */
tcp_xmit_recovery(struct sock * sk,int rexmit)3877 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3878 {
3879 	struct tcp_sock *tp = tcp_sk(sk);
3880 
3881 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3882 		return;
3883 
3884 	if (unlikely(rexmit == REXMIT_NEW)) {
3885 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3886 					  TCP_NAGLE_OFF);
3887 		if (after(tp->snd_nxt, tp->high_seq))
3888 			return;
3889 		tp->frto = 0;
3890 	}
3891 	tcp_xmit_retransmit_queue(sk);
3892 }
3893 
3894 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3895 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3896 {
3897 	const struct net *net = sock_net(sk);
3898 	struct tcp_sock *tp = tcp_sk(sk);
3899 	u32 delivered;
3900 
3901 	delivered = tp->delivered - prior_delivered;
3902 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3903 	if (flag & FLAG_ECE)
3904 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3905 
3906 	return delivered;
3907 }
3908 
3909 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3910 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3911 {
3912 	struct inet_connection_sock *icsk = inet_csk(sk);
3913 	struct tcp_sock *tp = tcp_sk(sk);
3914 	struct tcp_sacktag_state sack_state;
3915 	struct rate_sample rs = { .prior_delivered = 0 };
3916 	u32 prior_snd_una = tp->snd_una;
3917 	bool is_sack_reneg = tp->is_sack_reneg;
3918 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3919 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3920 	int num_dupack = 0;
3921 	int prior_packets = tp->packets_out;
3922 	u32 delivered = tp->delivered;
3923 	u32 lost = tp->lost;
3924 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3925 	u32 prior_fack;
3926 
3927 	sack_state.first_sackt = 0;
3928 	sack_state.rate = &rs;
3929 	sack_state.sack_delivered = 0;
3930 
3931 	/* We very likely will need to access rtx queue. */
3932 	prefetch(sk->tcp_rtx_queue.rb_node);
3933 
3934 	/* If the ack is older than previous acks
3935 	 * then we can probably ignore it.
3936 	 */
3937 	if (before(ack, prior_snd_una)) {
3938 		u32 max_window;
3939 
3940 		/* do not accept ACK for bytes we never sent. */
3941 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3942 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3943 		if (before(ack, prior_snd_una - max_window)) {
3944 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3945 				tcp_send_challenge_ack(sk);
3946 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3947 		}
3948 		goto old_ack;
3949 	}
3950 
3951 	/* If the ack includes data we haven't sent yet, discard
3952 	 * this segment (RFC793 Section 3.9).
3953 	 */
3954 	if (after(ack, tp->snd_nxt))
3955 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3956 
3957 	if (after(ack, prior_snd_una)) {
3958 		flag |= FLAG_SND_UNA_ADVANCED;
3959 		icsk->icsk_retransmits = 0;
3960 
3961 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3962 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3963 			if (icsk->icsk_clean_acked)
3964 				icsk->icsk_clean_acked(sk, ack);
3965 #endif
3966 	}
3967 
3968 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3969 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3970 
3971 	/* ts_recent update must be made after we are sure that the packet
3972 	 * is in window.
3973 	 */
3974 	if (flag & FLAG_UPDATE_TS_RECENT)
3975 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3976 
3977 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3978 	    FLAG_SND_UNA_ADVANCED) {
3979 		/* Window is constant, pure forward advance.
3980 		 * No more checks are required.
3981 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3982 		 */
3983 		tcp_update_wl(tp, ack_seq);
3984 		tcp_snd_una_update(tp, ack);
3985 		flag |= FLAG_WIN_UPDATE;
3986 
3987 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3988 
3989 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3990 	} else {
3991 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3992 
3993 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3994 			flag |= FLAG_DATA;
3995 		else
3996 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3997 
3998 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3999 
4000 		if (TCP_SKB_CB(skb)->sacked)
4001 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4002 							&sack_state);
4003 
4004 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
4005 			flag |= FLAG_ECE;
4006 			ack_ev_flags |= CA_ACK_ECE;
4007 		}
4008 
4009 		if (sack_state.sack_delivered)
4010 			tcp_count_delivered(tp, sack_state.sack_delivered,
4011 					    flag & FLAG_ECE);
4012 
4013 		if (flag & FLAG_WIN_UPDATE)
4014 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
4015 
4016 		tcp_in_ack_event(sk, ack_ev_flags);
4017 	}
4018 
4019 	/* This is a deviation from RFC3168 since it states that:
4020 	 * "When the TCP data sender is ready to set the CWR bit after reducing
4021 	 * the congestion window, it SHOULD set the CWR bit only on the first
4022 	 * new data packet that it transmits."
4023 	 * We accept CWR on pure ACKs to be more robust
4024 	 * with widely-deployed TCP implementations that do this.
4025 	 */
4026 	tcp_ecn_accept_cwr(sk, skb);
4027 
4028 	/* We passed data and got it acked, remove any soft error
4029 	 * log. Something worked...
4030 	 */
4031 	WRITE_ONCE(sk->sk_err_soft, 0);
4032 	icsk->icsk_probes_out = 0;
4033 	tp->rcv_tstamp = tcp_jiffies32;
4034 	if (!prior_packets)
4035 		goto no_queue;
4036 
4037 	/* See if we can take anything off of the retransmit queue. */
4038 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
4039 				    &sack_state, flag & FLAG_ECE);
4040 
4041 	tcp_rack_update_reo_wnd(sk, &rs);
4042 
4043 	if (tp->tlp_high_seq)
4044 		tcp_process_tlp_ack(sk, ack, flag);
4045 
4046 	if (tcp_ack_is_dubious(sk, flag)) {
4047 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
4048 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
4049 			num_dupack = 1;
4050 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
4051 			if (!(flag & FLAG_DATA))
4052 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4053 		}
4054 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4055 				      &rexmit);
4056 	}
4057 
4058 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
4059 	if (flag & FLAG_SET_XMIT_TIMER)
4060 		tcp_set_xmit_timer(sk);
4061 
4062 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
4063 		sk_dst_confirm(sk);
4064 
4065 	delivered = tcp_newly_delivered(sk, delivered, flag);
4066 	lost = tp->lost - lost;			/* freshly marked lost */
4067 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4068 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4069 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4070 	tcp_xmit_recovery(sk, rexmit);
4071 	return 1;
4072 
4073 no_queue:
4074 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
4075 	if (flag & FLAG_DSACKING_ACK) {
4076 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4077 				      &rexmit);
4078 		tcp_newly_delivered(sk, delivered, flag);
4079 	}
4080 	/* If this ack opens up a zero window, clear backoff.  It was
4081 	 * being used to time the probes, and is probably far higher than
4082 	 * it needs to be for normal retransmission.
4083 	 */
4084 	tcp_ack_probe(sk);
4085 
4086 	if (tp->tlp_high_seq)
4087 		tcp_process_tlp_ack(sk, ack, flag);
4088 	return 1;
4089 
4090 old_ack:
4091 	/* If data was SACKed, tag it and see if we should send more data.
4092 	 * If data was DSACKed, see if we can undo a cwnd reduction.
4093 	 */
4094 	if (TCP_SKB_CB(skb)->sacked) {
4095 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4096 						&sack_state);
4097 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4098 				      &rexmit);
4099 		tcp_newly_delivered(sk, delivered, flag);
4100 		tcp_xmit_recovery(sk, rexmit);
4101 	}
4102 
4103 	return 0;
4104 }
4105 
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)4106 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4107 				      bool syn, struct tcp_fastopen_cookie *foc,
4108 				      bool exp_opt)
4109 {
4110 	/* Valid only in SYN or SYN-ACK with an even length.  */
4111 	if (!foc || !syn || len < 0 || (len & 1))
4112 		return;
4113 
4114 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4115 	    len <= TCP_FASTOPEN_COOKIE_MAX)
4116 		memcpy(foc->val, cookie, len);
4117 	else if (len != 0)
4118 		len = -1;
4119 	foc->len = len;
4120 	foc->exp = exp_opt;
4121 }
4122 
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)4123 static bool smc_parse_options(const struct tcphdr *th,
4124 			      struct tcp_options_received *opt_rx,
4125 			      const unsigned char *ptr,
4126 			      int opsize)
4127 {
4128 #if IS_ENABLED(CONFIG_SMC)
4129 	if (static_branch_unlikely(&tcp_have_smc)) {
4130 		if (th->syn && !(opsize & 1) &&
4131 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4132 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4133 			opt_rx->smc_ok = 1;
4134 			return true;
4135 		}
4136 	}
4137 #endif
4138 	return false;
4139 }
4140 
4141 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4142  * value on success.
4143  */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)4144 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4145 {
4146 	const unsigned char *ptr = (const unsigned char *)(th + 1);
4147 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4148 	u16 mss = 0;
4149 
4150 	while (length > 0) {
4151 		int opcode = *ptr++;
4152 		int opsize;
4153 
4154 		switch (opcode) {
4155 		case TCPOPT_EOL:
4156 			return mss;
4157 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4158 			length--;
4159 			continue;
4160 		default:
4161 			if (length < 2)
4162 				return mss;
4163 			opsize = *ptr++;
4164 			if (opsize < 2) /* "silly options" */
4165 				return mss;
4166 			if (opsize > length)
4167 				return mss;	/* fail on partial options */
4168 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4169 				u16 in_mss = get_unaligned_be16(ptr);
4170 
4171 				if (in_mss) {
4172 					if (user_mss && user_mss < in_mss)
4173 						in_mss = user_mss;
4174 					mss = in_mss;
4175 				}
4176 			}
4177 			ptr += opsize - 2;
4178 			length -= opsize;
4179 		}
4180 	}
4181 	return mss;
4182 }
4183 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4184 
4185 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4186  * But, this can also be called on packets in the established flow when
4187  * the fast version below fails.
4188  */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4189 void tcp_parse_options(const struct net *net,
4190 		       const struct sk_buff *skb,
4191 		       struct tcp_options_received *opt_rx, int estab,
4192 		       struct tcp_fastopen_cookie *foc)
4193 {
4194 	const unsigned char *ptr;
4195 	const struct tcphdr *th = tcp_hdr(skb);
4196 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4197 
4198 	ptr = (const unsigned char *)(th + 1);
4199 	opt_rx->saw_tstamp = 0;
4200 	opt_rx->saw_unknown = 0;
4201 
4202 	while (length > 0) {
4203 		int opcode = *ptr++;
4204 		int opsize;
4205 
4206 		switch (opcode) {
4207 		case TCPOPT_EOL:
4208 			return;
4209 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4210 			length--;
4211 			continue;
4212 		default:
4213 			if (length < 2)
4214 				return;
4215 			opsize = *ptr++;
4216 			if (opsize < 2) /* "silly options" */
4217 				return;
4218 			if (opsize > length)
4219 				return;	/* don't parse partial options */
4220 			switch (opcode) {
4221 			case TCPOPT_MSS:
4222 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4223 					u16 in_mss = get_unaligned_be16(ptr);
4224 					if (in_mss) {
4225 						if (opt_rx->user_mss &&
4226 						    opt_rx->user_mss < in_mss)
4227 							in_mss = opt_rx->user_mss;
4228 						opt_rx->mss_clamp = in_mss;
4229 					}
4230 				}
4231 				break;
4232 			case TCPOPT_WINDOW:
4233 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4234 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4235 					__u8 snd_wscale = *(__u8 *)ptr;
4236 					opt_rx->wscale_ok = 1;
4237 					if (snd_wscale > TCP_MAX_WSCALE) {
4238 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4239 								     __func__,
4240 								     snd_wscale,
4241 								     TCP_MAX_WSCALE);
4242 						snd_wscale = TCP_MAX_WSCALE;
4243 					}
4244 					opt_rx->snd_wscale = snd_wscale;
4245 				}
4246 				break;
4247 			case TCPOPT_TIMESTAMP:
4248 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4249 				    ((estab && opt_rx->tstamp_ok) ||
4250 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4251 					opt_rx->saw_tstamp = 1;
4252 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4253 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4254 				}
4255 				break;
4256 			case TCPOPT_SACK_PERM:
4257 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4258 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4259 					opt_rx->sack_ok = TCP_SACK_SEEN;
4260 					tcp_sack_reset(opt_rx);
4261 				}
4262 				break;
4263 
4264 			case TCPOPT_SACK:
4265 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4266 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4267 				   opt_rx->sack_ok) {
4268 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4269 				}
4270 				break;
4271 #ifdef CONFIG_TCP_MD5SIG
4272 			case TCPOPT_MD5SIG:
4273 				/* The MD5 Hash has already been
4274 				 * checked (see tcp_v{4,6}_rcv()).
4275 				 */
4276 				break;
4277 #endif
4278 #ifdef CONFIG_TCP_AO
4279 			case TCPOPT_AO:
4280 				/* TCP AO has already been checked
4281 				 * (see tcp_inbound_ao_hash()).
4282 				 */
4283 				break;
4284 #endif
4285 			case TCPOPT_FASTOPEN:
4286 				tcp_parse_fastopen_option(
4287 					opsize - TCPOLEN_FASTOPEN_BASE,
4288 					ptr, th->syn, foc, false);
4289 				break;
4290 
4291 			case TCPOPT_EXP:
4292 				/* Fast Open option shares code 254 using a
4293 				 * 16 bits magic number.
4294 				 */
4295 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4296 				    get_unaligned_be16(ptr) ==
4297 				    TCPOPT_FASTOPEN_MAGIC) {
4298 					tcp_parse_fastopen_option(opsize -
4299 						TCPOLEN_EXP_FASTOPEN_BASE,
4300 						ptr + 2, th->syn, foc, true);
4301 					break;
4302 				}
4303 
4304 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4305 					break;
4306 
4307 				opt_rx->saw_unknown = 1;
4308 				break;
4309 
4310 			default:
4311 				opt_rx->saw_unknown = 1;
4312 			}
4313 			ptr += opsize-2;
4314 			length -= opsize;
4315 		}
4316 	}
4317 }
4318 EXPORT_SYMBOL(tcp_parse_options);
4319 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4320 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4321 {
4322 	const __be32 *ptr = (const __be32 *)(th + 1);
4323 
4324 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4325 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4326 		tp->rx_opt.saw_tstamp = 1;
4327 		++ptr;
4328 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4329 		++ptr;
4330 		if (*ptr)
4331 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4332 		else
4333 			tp->rx_opt.rcv_tsecr = 0;
4334 		return true;
4335 	}
4336 	return false;
4337 }
4338 
4339 /* Fast parse options. This hopes to only see timestamps.
4340  * If it is wrong it falls back on tcp_parse_options().
4341  */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4342 static bool tcp_fast_parse_options(const struct net *net,
4343 				   const struct sk_buff *skb,
4344 				   const struct tcphdr *th, struct tcp_sock *tp)
4345 {
4346 	/* In the spirit of fast parsing, compare doff directly to constant
4347 	 * values.  Because equality is used, short doff can be ignored here.
4348 	 */
4349 	if (th->doff == (sizeof(*th) / 4)) {
4350 		tp->rx_opt.saw_tstamp = 0;
4351 		return false;
4352 	} else if (tp->rx_opt.tstamp_ok &&
4353 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4354 		if (tcp_parse_aligned_timestamp(tp, th))
4355 			return true;
4356 	}
4357 
4358 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4359 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4360 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4361 
4362 	return true;
4363 }
4364 
4365 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4366 /*
4367  * Parse Signature options
4368  */
tcp_do_parse_auth_options(const struct tcphdr * th,const u8 ** md5_hash,const u8 ** ao_hash)4369 int tcp_do_parse_auth_options(const struct tcphdr *th,
4370 			      const u8 **md5_hash, const u8 **ao_hash)
4371 {
4372 	int length = (th->doff << 2) - sizeof(*th);
4373 	const u8 *ptr = (const u8 *)(th + 1);
4374 	unsigned int minlen = TCPOLEN_MD5SIG;
4375 
4376 	if (IS_ENABLED(CONFIG_TCP_AO))
4377 		minlen = sizeof(struct tcp_ao_hdr) + 1;
4378 
4379 	*md5_hash = NULL;
4380 	*ao_hash = NULL;
4381 
4382 	/* If not enough data remaining, we can short cut */
4383 	while (length >= minlen) {
4384 		int opcode = *ptr++;
4385 		int opsize;
4386 
4387 		switch (opcode) {
4388 		case TCPOPT_EOL:
4389 			return 0;
4390 		case TCPOPT_NOP:
4391 			length--;
4392 			continue;
4393 		default:
4394 			opsize = *ptr++;
4395 			if (opsize < 2 || opsize > length)
4396 				return -EINVAL;
4397 			if (opcode == TCPOPT_MD5SIG) {
4398 				if (opsize != TCPOLEN_MD5SIG)
4399 					return -EINVAL;
4400 				if (unlikely(*md5_hash || *ao_hash))
4401 					return -EEXIST;
4402 				*md5_hash = ptr;
4403 			} else if (opcode == TCPOPT_AO) {
4404 				if (opsize <= sizeof(struct tcp_ao_hdr))
4405 					return -EINVAL;
4406 				if (unlikely(*md5_hash || *ao_hash))
4407 					return -EEXIST;
4408 				*ao_hash = ptr;
4409 			}
4410 		}
4411 		ptr += opsize - 2;
4412 		length -= opsize;
4413 	}
4414 	return 0;
4415 }
4416 EXPORT_SYMBOL(tcp_do_parse_auth_options);
4417 #endif
4418 
4419 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4420  *
4421  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4422  * it can pass through stack. So, the following predicate verifies that
4423  * this segment is not used for anything but congestion avoidance or
4424  * fast retransmit. Moreover, we even are able to eliminate most of such
4425  * second order effects, if we apply some small "replay" window (~RTO)
4426  * to timestamp space.
4427  *
4428  * All these measures still do not guarantee that we reject wrapped ACKs
4429  * on networks with high bandwidth, when sequence space is recycled fastly,
4430  * but it guarantees that such events will be very rare and do not affect
4431  * connection seriously. This doesn't look nice, but alas, PAWS is really
4432  * buggy extension.
4433  *
4434  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4435  * states that events when retransmit arrives after original data are rare.
4436  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4437  * the biggest problem on large power networks even with minor reordering.
4438  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4439  * up to bandwidth of 18Gigabit/sec. 8) ]
4440  */
4441 
4442 /* Estimates max number of increments of remote peer TSval in
4443  * a replay window (based on our current RTO estimation).
4444  */
tcp_tsval_replay(const struct sock * sk)4445 static u32 tcp_tsval_replay(const struct sock *sk)
4446 {
4447 	/* If we use usec TS resolution,
4448 	 * then expect the remote peer to use the same resolution.
4449 	 */
4450 	if (tcp_sk(sk)->tcp_usec_ts)
4451 		return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4452 
4453 	/* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4454 	 * We know that some OS (including old linux) can use 1200 Hz.
4455 	 */
4456 	return inet_csk(sk)->icsk_rto * 1200 / HZ;
4457 }
4458 
tcp_disordered_ack_check(const struct sock * sk,const struct sk_buff * skb)4459 static enum skb_drop_reason tcp_disordered_ack_check(const struct sock *sk,
4460 						     const struct sk_buff *skb)
4461 {
4462 	const struct tcp_sock *tp = tcp_sk(sk);
4463 	const struct tcphdr *th = tcp_hdr(skb);
4464 	SKB_DR_INIT(reason, TCP_RFC7323_PAWS);
4465 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4466 	u32 seq = TCP_SKB_CB(skb)->seq;
4467 
4468 	/* 1. Is this not a pure ACK ? */
4469 	if (!th->ack || seq != TCP_SKB_CB(skb)->end_seq)
4470 		return reason;
4471 
4472 	/* 2. Is its sequence not the expected one ? */
4473 	if (seq != tp->rcv_nxt)
4474 		return before(seq, tp->rcv_nxt) ?
4475 			SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK :
4476 			reason;
4477 
4478 	/* 3. Is this not a duplicate ACK ? */
4479 	if (ack != tp->snd_una)
4480 		return reason;
4481 
4482 	/* 4. Is this updating the window ? */
4483 	if (tcp_may_update_window(tp, ack, seq, ntohs(th->window) <<
4484 						tp->rx_opt.snd_wscale))
4485 		return reason;
4486 
4487 	/* 5. Is this not in the replay window ? */
4488 	if ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) >
4489 	    tcp_tsval_replay(sk))
4490 		return reason;
4491 
4492 	return 0;
4493 }
4494 
4495 /* Check segment sequence number for validity.
4496  *
4497  * Segment controls are considered valid, if the segment
4498  * fits to the window after truncation to the window. Acceptability
4499  * of data (and SYN, FIN, of course) is checked separately.
4500  * See tcp_data_queue(), for example.
4501  *
4502  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4503  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4504  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4505  * (borrowed from freebsd)
4506  */
4507 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4508 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4509 					 u32 seq, u32 end_seq)
4510 {
4511 	if (before(end_seq, tp->rcv_wup))
4512 		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4513 
4514 	if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4515 		return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4516 
4517 	return SKB_NOT_DROPPED_YET;
4518 }
4519 
4520 
tcp_done_with_error(struct sock * sk,int err)4521 void tcp_done_with_error(struct sock *sk, int err)
4522 {
4523 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4524 	WRITE_ONCE(sk->sk_err, err);
4525 	smp_wmb();
4526 
4527 	tcp_write_queue_purge(sk);
4528 	tcp_done(sk);
4529 
4530 	if (!sock_flag(sk, SOCK_DEAD))
4531 		sk_error_report(sk);
4532 }
4533 EXPORT_SYMBOL(tcp_done_with_error);
4534 
4535 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4536 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4537 {
4538 	int err;
4539 
4540 	trace_tcp_receive_reset(sk);
4541 
4542 	/* mptcp can't tell us to ignore reset pkts,
4543 	 * so just ignore the return value of mptcp_incoming_options().
4544 	 */
4545 	if (sk_is_mptcp(sk))
4546 		mptcp_incoming_options(sk, skb);
4547 
4548 	/* We want the right error as BSD sees it (and indeed as we do). */
4549 	switch (sk->sk_state) {
4550 	case TCP_SYN_SENT:
4551 		err = ECONNREFUSED;
4552 		break;
4553 	case TCP_CLOSE_WAIT:
4554 		err = EPIPE;
4555 		break;
4556 	case TCP_CLOSE:
4557 		return;
4558 	default:
4559 		err = ECONNRESET;
4560 	}
4561 	tcp_done_with_error(sk, err);
4562 }
4563 
4564 /*
4565  * 	Process the FIN bit. This now behaves as it is supposed to work
4566  *	and the FIN takes effect when it is validly part of sequence
4567  *	space. Not before when we get holes.
4568  *
4569  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4570  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4571  *	TIME-WAIT)
4572  *
4573  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4574  *	close and we go into CLOSING (and later onto TIME-WAIT)
4575  *
4576  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4577  */
tcp_fin(struct sock * sk)4578 void tcp_fin(struct sock *sk)
4579 {
4580 	struct tcp_sock *tp = tcp_sk(sk);
4581 
4582 	inet_csk_schedule_ack(sk);
4583 
4584 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4585 	sock_set_flag(sk, SOCK_DONE);
4586 
4587 	switch (sk->sk_state) {
4588 	case TCP_SYN_RECV:
4589 	case TCP_ESTABLISHED:
4590 		/* Move to CLOSE_WAIT */
4591 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4592 		inet_csk_enter_pingpong_mode(sk);
4593 		break;
4594 
4595 	case TCP_CLOSE_WAIT:
4596 	case TCP_CLOSING:
4597 		/* Received a retransmission of the FIN, do
4598 		 * nothing.
4599 		 */
4600 		break;
4601 	case TCP_LAST_ACK:
4602 		/* RFC793: Remain in the LAST-ACK state. */
4603 		break;
4604 
4605 	case TCP_FIN_WAIT1:
4606 		/* This case occurs when a simultaneous close
4607 		 * happens, we must ack the received FIN and
4608 		 * enter the CLOSING state.
4609 		 */
4610 		tcp_send_ack(sk);
4611 		tcp_set_state(sk, TCP_CLOSING);
4612 		break;
4613 	case TCP_FIN_WAIT2:
4614 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4615 		tcp_send_ack(sk);
4616 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4617 		break;
4618 	default:
4619 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4620 		 * cases we should never reach this piece of code.
4621 		 */
4622 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4623 		       __func__, sk->sk_state);
4624 		break;
4625 	}
4626 
4627 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4628 	 * Probably, we should reset in this case. For now drop them.
4629 	 */
4630 	skb_rbtree_purge(&tp->out_of_order_queue);
4631 	if (tcp_is_sack(tp))
4632 		tcp_sack_reset(&tp->rx_opt);
4633 
4634 	if (!sock_flag(sk, SOCK_DEAD)) {
4635 		sk->sk_state_change(sk);
4636 
4637 		/* Do not send POLL_HUP for half duplex close. */
4638 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4639 		    sk->sk_state == TCP_CLOSE)
4640 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4641 		else
4642 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4643 	}
4644 }
4645 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4646 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4647 				  u32 end_seq)
4648 {
4649 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4650 		if (before(seq, sp->start_seq))
4651 			sp->start_seq = seq;
4652 		if (after(end_seq, sp->end_seq))
4653 			sp->end_seq = end_seq;
4654 		return true;
4655 	}
4656 	return false;
4657 }
4658 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4659 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4660 {
4661 	struct tcp_sock *tp = tcp_sk(sk);
4662 
4663 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4664 		int mib_idx;
4665 
4666 		if (before(seq, tp->rcv_nxt))
4667 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4668 		else
4669 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4670 
4671 		NET_INC_STATS(sock_net(sk), mib_idx);
4672 
4673 		tp->rx_opt.dsack = 1;
4674 		tp->duplicate_sack[0].start_seq = seq;
4675 		tp->duplicate_sack[0].end_seq = end_seq;
4676 	}
4677 }
4678 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4679 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4680 {
4681 	struct tcp_sock *tp = tcp_sk(sk);
4682 
4683 	if (!tp->rx_opt.dsack)
4684 		tcp_dsack_set(sk, seq, end_seq);
4685 	else
4686 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4687 }
4688 
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4689 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4690 {
4691 	/* When the ACK path fails or drops most ACKs, the sender would
4692 	 * timeout and spuriously retransmit the same segment repeatedly.
4693 	 * If it seems our ACKs are not reaching the other side,
4694 	 * based on receiving a duplicate data segment with new flowlabel
4695 	 * (suggesting the sender suffered an RTO), and we are not already
4696 	 * repathing due to our own RTO, then rehash the socket to repath our
4697 	 * packets.
4698 	 */
4699 #if IS_ENABLED(CONFIG_IPV6)
4700 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4701 	    skb->protocol == htons(ETH_P_IPV6) &&
4702 	    (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4703 	     ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4704 	    sk_rethink_txhash(sk))
4705 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4706 
4707 	/* Save last flowlabel after a spurious retrans. */
4708 	tcp_save_lrcv_flowlabel(sk, skb);
4709 #endif
4710 }
4711 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4712 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4713 {
4714 	struct tcp_sock *tp = tcp_sk(sk);
4715 
4716 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4717 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4718 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4719 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4720 
4721 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4722 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4723 
4724 			tcp_rcv_spurious_retrans(sk, skb);
4725 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4726 				end_seq = tp->rcv_nxt;
4727 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4728 		}
4729 	}
4730 
4731 	tcp_send_ack(sk);
4732 }
4733 
4734 /* These routines update the SACK block as out-of-order packets arrive or
4735  * in-order packets close up the sequence space.
4736  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4737 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4738 {
4739 	int this_sack;
4740 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4741 	struct tcp_sack_block *swalk = sp + 1;
4742 
4743 	/* See if the recent change to the first SACK eats into
4744 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4745 	 */
4746 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4747 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4748 			int i;
4749 
4750 			/* Zap SWALK, by moving every further SACK up by one slot.
4751 			 * Decrease num_sacks.
4752 			 */
4753 			tp->rx_opt.num_sacks--;
4754 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4755 				sp[i] = sp[i + 1];
4756 			continue;
4757 		}
4758 		this_sack++;
4759 		swalk++;
4760 	}
4761 }
4762 
tcp_sack_compress_send_ack(struct sock * sk)4763 void tcp_sack_compress_send_ack(struct sock *sk)
4764 {
4765 	struct tcp_sock *tp = tcp_sk(sk);
4766 
4767 	if (!tp->compressed_ack)
4768 		return;
4769 
4770 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4771 		__sock_put(sk);
4772 
4773 	/* Since we have to send one ack finally,
4774 	 * substract one from tp->compressed_ack to keep
4775 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4776 	 */
4777 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4778 		      tp->compressed_ack - 1);
4779 
4780 	tp->compressed_ack = 0;
4781 	tcp_send_ack(sk);
4782 }
4783 
4784 /* Reasonable amount of sack blocks included in TCP SACK option
4785  * The max is 4, but this becomes 3 if TCP timestamps are there.
4786  * Given that SACK packets might be lost, be conservative and use 2.
4787  */
4788 #define TCP_SACK_BLOCKS_EXPECTED 2
4789 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4790 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4791 {
4792 	struct tcp_sock *tp = tcp_sk(sk);
4793 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4794 	int cur_sacks = tp->rx_opt.num_sacks;
4795 	int this_sack;
4796 
4797 	if (!cur_sacks)
4798 		goto new_sack;
4799 
4800 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4801 		if (tcp_sack_extend(sp, seq, end_seq)) {
4802 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4803 				tcp_sack_compress_send_ack(sk);
4804 			/* Rotate this_sack to the first one. */
4805 			for (; this_sack > 0; this_sack--, sp--)
4806 				swap(*sp, *(sp - 1));
4807 			if (cur_sacks > 1)
4808 				tcp_sack_maybe_coalesce(tp);
4809 			return;
4810 		}
4811 	}
4812 
4813 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4814 		tcp_sack_compress_send_ack(sk);
4815 
4816 	/* Could not find an adjacent existing SACK, build a new one,
4817 	 * put it at the front, and shift everyone else down.  We
4818 	 * always know there is at least one SACK present already here.
4819 	 *
4820 	 * If the sack array is full, forget about the last one.
4821 	 */
4822 	if (this_sack >= TCP_NUM_SACKS) {
4823 		this_sack--;
4824 		tp->rx_opt.num_sacks--;
4825 		sp--;
4826 	}
4827 	for (; this_sack > 0; this_sack--, sp--)
4828 		*sp = *(sp - 1);
4829 
4830 new_sack:
4831 	/* Build the new head SACK, and we're done. */
4832 	sp->start_seq = seq;
4833 	sp->end_seq = end_seq;
4834 	tp->rx_opt.num_sacks++;
4835 }
4836 
4837 /* RCV.NXT advances, some SACKs should be eaten. */
4838 
tcp_sack_remove(struct tcp_sock * tp)4839 static void tcp_sack_remove(struct tcp_sock *tp)
4840 {
4841 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4842 	int num_sacks = tp->rx_opt.num_sacks;
4843 	int this_sack;
4844 
4845 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4846 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4847 		tp->rx_opt.num_sacks = 0;
4848 		return;
4849 	}
4850 
4851 	for (this_sack = 0; this_sack < num_sacks;) {
4852 		/* Check if the start of the sack is covered by RCV.NXT. */
4853 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4854 			int i;
4855 
4856 			/* RCV.NXT must cover all the block! */
4857 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4858 
4859 			/* Zap this SACK, by moving forward any other SACKS. */
4860 			for (i = this_sack+1; i < num_sacks; i++)
4861 				tp->selective_acks[i-1] = tp->selective_acks[i];
4862 			num_sacks--;
4863 			continue;
4864 		}
4865 		this_sack++;
4866 		sp++;
4867 	}
4868 	tp->rx_opt.num_sacks = num_sacks;
4869 }
4870 
4871 /**
4872  * tcp_try_coalesce - try to merge skb to prior one
4873  * @sk: socket
4874  * @to: prior buffer
4875  * @from: buffer to add in queue
4876  * @fragstolen: pointer to boolean
4877  *
4878  * Before queueing skb @from after @to, try to merge them
4879  * to reduce overall memory use and queue lengths, if cost is small.
4880  * Packets in ofo or receive queues can stay a long time.
4881  * Better try to coalesce them right now to avoid future collapses.
4882  * Returns true if caller should free @from instead of queueing it
4883  */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4884 static bool tcp_try_coalesce(struct sock *sk,
4885 			     struct sk_buff *to,
4886 			     struct sk_buff *from,
4887 			     bool *fragstolen)
4888 {
4889 	int delta;
4890 
4891 	*fragstolen = false;
4892 
4893 	/* Its possible this segment overlaps with prior segment in queue */
4894 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4895 		return false;
4896 
4897 	if (!tcp_skb_can_collapse_rx(to, from))
4898 		return false;
4899 
4900 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4901 		return false;
4902 
4903 	atomic_add(delta, &sk->sk_rmem_alloc);
4904 	sk_mem_charge(sk, delta);
4905 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4906 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4907 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4908 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4909 
4910 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4911 		TCP_SKB_CB(to)->has_rxtstamp = true;
4912 		to->tstamp = from->tstamp;
4913 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4914 	}
4915 
4916 	return true;
4917 }
4918 
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4919 static bool tcp_ooo_try_coalesce(struct sock *sk,
4920 			     struct sk_buff *to,
4921 			     struct sk_buff *from,
4922 			     bool *fragstolen)
4923 {
4924 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4925 
4926 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4927 	if (res) {
4928 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4929 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4930 
4931 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4932 	}
4933 	return res;
4934 }
4935 
4936 noinline_for_tracing static void
tcp_drop_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)4937 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
4938 {
4939 	sk_drops_add(sk, skb);
4940 	sk_skb_reason_drop(sk, skb, reason);
4941 }
4942 
4943 /* This one checks to see if we can put data from the
4944  * out_of_order queue into the receive_queue.
4945  */
tcp_ofo_queue(struct sock * sk)4946 static void tcp_ofo_queue(struct sock *sk)
4947 {
4948 	struct tcp_sock *tp = tcp_sk(sk);
4949 	__u32 dsack_high = tp->rcv_nxt;
4950 	bool fin, fragstolen, eaten;
4951 	struct sk_buff *skb, *tail;
4952 	struct rb_node *p;
4953 
4954 	p = rb_first(&tp->out_of_order_queue);
4955 	while (p) {
4956 		skb = rb_to_skb(p);
4957 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4958 			break;
4959 
4960 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4961 			__u32 dsack = dsack_high;
4962 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4963 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4964 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4965 		}
4966 		p = rb_next(p);
4967 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4968 
4969 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4970 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4971 			continue;
4972 		}
4973 
4974 		tail = skb_peek_tail(&sk->sk_receive_queue);
4975 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4976 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4977 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4978 		if (!eaten)
4979 			tcp_add_receive_queue(sk, skb);
4980 		else
4981 			kfree_skb_partial(skb, fragstolen);
4982 
4983 		if (unlikely(fin)) {
4984 			tcp_fin(sk);
4985 			/* tcp_fin() purges tp->out_of_order_queue,
4986 			 * so we must end this loop right now.
4987 			 */
4988 			break;
4989 		}
4990 	}
4991 }
4992 
4993 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4994 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4995 
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4996 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4997 				 unsigned int size)
4998 {
4999 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
5000 	    !sk_rmem_schedule(sk, skb, size)) {
5001 
5002 		if (tcp_prune_queue(sk, skb) < 0)
5003 			return -1;
5004 
5005 		while (!sk_rmem_schedule(sk, skb, size)) {
5006 			if (!tcp_prune_ofo_queue(sk, skb))
5007 				return -1;
5008 		}
5009 	}
5010 	return 0;
5011 }
5012 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)5013 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
5014 {
5015 	struct tcp_sock *tp = tcp_sk(sk);
5016 	struct rb_node **p, *parent;
5017 	struct sk_buff *skb1;
5018 	u32 seq, end_seq;
5019 	bool fragstolen;
5020 
5021 	tcp_save_lrcv_flowlabel(sk, skb);
5022 	tcp_ecn_check_ce(sk, skb);
5023 
5024 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
5025 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
5026 		sk->sk_data_ready(sk);
5027 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
5028 		return;
5029 	}
5030 
5031 	/* Disable header prediction. */
5032 	tp->pred_flags = 0;
5033 	inet_csk_schedule_ack(sk);
5034 
5035 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
5036 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
5037 	seq = TCP_SKB_CB(skb)->seq;
5038 	end_seq = TCP_SKB_CB(skb)->end_seq;
5039 
5040 	p = &tp->out_of_order_queue.rb_node;
5041 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5042 		/* Initial out of order segment, build 1 SACK. */
5043 		if (tcp_is_sack(tp)) {
5044 			tp->rx_opt.num_sacks = 1;
5045 			tp->selective_acks[0].start_seq = seq;
5046 			tp->selective_acks[0].end_seq = end_seq;
5047 		}
5048 		rb_link_node(&skb->rbnode, NULL, p);
5049 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5050 		tp->ooo_last_skb = skb;
5051 		goto end;
5052 	}
5053 
5054 	/* In the typical case, we are adding an skb to the end of the list.
5055 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
5056 	 */
5057 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
5058 				 skb, &fragstolen)) {
5059 coalesce_done:
5060 		/* For non sack flows, do not grow window to force DUPACK
5061 		 * and trigger fast retransmit.
5062 		 */
5063 		if (tcp_is_sack(tp))
5064 			tcp_grow_window(sk, skb, true);
5065 		kfree_skb_partial(skb, fragstolen);
5066 		skb = NULL;
5067 		goto add_sack;
5068 	}
5069 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
5070 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
5071 		parent = &tp->ooo_last_skb->rbnode;
5072 		p = &parent->rb_right;
5073 		goto insert;
5074 	}
5075 
5076 	/* Find place to insert this segment. Handle overlaps on the way. */
5077 	parent = NULL;
5078 	while (*p) {
5079 		parent = *p;
5080 		skb1 = rb_to_skb(parent);
5081 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
5082 			p = &parent->rb_left;
5083 			continue;
5084 		}
5085 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
5086 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5087 				/* All the bits are present. Drop. */
5088 				NET_INC_STATS(sock_net(sk),
5089 					      LINUX_MIB_TCPOFOMERGE);
5090 				tcp_drop_reason(sk, skb,
5091 						SKB_DROP_REASON_TCP_OFOMERGE);
5092 				skb = NULL;
5093 				tcp_dsack_set(sk, seq, end_seq);
5094 				goto add_sack;
5095 			}
5096 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5097 				/* Partial overlap. */
5098 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5099 			} else {
5100 				/* skb's seq == skb1's seq and skb covers skb1.
5101 				 * Replace skb1 with skb.
5102 				 */
5103 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
5104 						&tp->out_of_order_queue);
5105 				tcp_dsack_extend(sk,
5106 						 TCP_SKB_CB(skb1)->seq,
5107 						 TCP_SKB_CB(skb1)->end_seq);
5108 				NET_INC_STATS(sock_net(sk),
5109 					      LINUX_MIB_TCPOFOMERGE);
5110 				tcp_drop_reason(sk, skb1,
5111 						SKB_DROP_REASON_TCP_OFOMERGE);
5112 				goto merge_right;
5113 			}
5114 		} else if (tcp_ooo_try_coalesce(sk, skb1,
5115 						skb, &fragstolen)) {
5116 			goto coalesce_done;
5117 		}
5118 		p = &parent->rb_right;
5119 	}
5120 insert:
5121 	/* Insert segment into RB tree. */
5122 	rb_link_node(&skb->rbnode, parent, p);
5123 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5124 
5125 merge_right:
5126 	/* Remove other segments covered by skb. */
5127 	while ((skb1 = skb_rb_next(skb)) != NULL) {
5128 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5129 			break;
5130 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5131 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5132 					 end_seq);
5133 			break;
5134 		}
5135 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5136 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5137 				 TCP_SKB_CB(skb1)->end_seq);
5138 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5139 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5140 	}
5141 	/* If there is no skb after us, we are the last_skb ! */
5142 	if (!skb1)
5143 		tp->ooo_last_skb = skb;
5144 
5145 add_sack:
5146 	if (tcp_is_sack(tp))
5147 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
5148 end:
5149 	if (skb) {
5150 		/* For non sack flows, do not grow window to force DUPACK
5151 		 * and trigger fast retransmit.
5152 		 */
5153 		if (tcp_is_sack(tp))
5154 			tcp_grow_window(sk, skb, false);
5155 		skb_condense(skb);
5156 		skb_set_owner_r(skb, sk);
5157 	}
5158 }
5159 
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)5160 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5161 				      bool *fragstolen)
5162 {
5163 	int eaten;
5164 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5165 
5166 	eaten = (tail &&
5167 		 tcp_try_coalesce(sk, tail,
5168 				  skb, fragstolen)) ? 1 : 0;
5169 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5170 	if (!eaten) {
5171 		tcp_add_receive_queue(sk, skb);
5172 		skb_set_owner_r(skb, sk);
5173 	}
5174 	return eaten;
5175 }
5176 
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)5177 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5178 {
5179 	struct sk_buff *skb;
5180 	int err = -ENOMEM;
5181 	int data_len = 0;
5182 	bool fragstolen;
5183 
5184 	if (size == 0)
5185 		return 0;
5186 
5187 	if (size > PAGE_SIZE) {
5188 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5189 
5190 		data_len = npages << PAGE_SHIFT;
5191 		size = data_len + (size & ~PAGE_MASK);
5192 	}
5193 	skb = alloc_skb_with_frags(size - data_len, data_len,
5194 				   PAGE_ALLOC_COSTLY_ORDER,
5195 				   &err, sk->sk_allocation);
5196 	if (!skb)
5197 		goto err;
5198 
5199 	skb_put(skb, size - data_len);
5200 	skb->data_len = data_len;
5201 	skb->len = size;
5202 
5203 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5204 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5205 		goto err_free;
5206 	}
5207 
5208 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5209 	if (err)
5210 		goto err_free;
5211 
5212 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5213 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5214 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5215 
5216 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5217 		WARN_ON_ONCE(fragstolen); /* should not happen */
5218 		__kfree_skb(skb);
5219 	}
5220 	return size;
5221 
5222 err_free:
5223 	kfree_skb(skb);
5224 err:
5225 	return err;
5226 
5227 }
5228 
tcp_data_ready(struct sock * sk)5229 void tcp_data_ready(struct sock *sk)
5230 {
5231 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5232 		sk->sk_data_ready(sk);
5233 }
5234 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5235 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5236 {
5237 	struct tcp_sock *tp = tcp_sk(sk);
5238 	enum skb_drop_reason reason;
5239 	bool fragstolen;
5240 	int eaten;
5241 
5242 	/* If a subflow has been reset, the packet should not continue
5243 	 * to be processed, drop the packet.
5244 	 */
5245 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5246 		__kfree_skb(skb);
5247 		return;
5248 	}
5249 
5250 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5251 		__kfree_skb(skb);
5252 		return;
5253 	}
5254 	tcp_cleanup_skb(skb);
5255 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5256 
5257 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5258 	tp->rx_opt.dsack = 0;
5259 
5260 	/*  Queue data for delivery to the user.
5261 	 *  Packets in sequence go to the receive queue.
5262 	 *  Out of sequence packets to the out_of_order_queue.
5263 	 */
5264 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5265 		if (tcp_receive_window(tp) == 0) {
5266 			/* Some stacks are known to send bare FIN packets
5267 			 * in a loop even if we send RWIN 0 in our ACK.
5268 			 * Accepting this FIN does not hurt memory pressure
5269 			 * because the FIN flag will simply be merged to the
5270 			 * receive queue tail skb in most cases.
5271 			 */
5272 			if (!skb->len &&
5273 			    (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
5274 				goto queue_and_out;
5275 
5276 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5277 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5278 			goto out_of_window;
5279 		}
5280 
5281 		/* Ok. In sequence. In window. */
5282 queue_and_out:
5283 		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5284 			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5285 			inet_csk(sk)->icsk_ack.pending |=
5286 					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5287 			inet_csk_schedule_ack(sk);
5288 			sk->sk_data_ready(sk);
5289 
5290 			if (skb_queue_len(&sk->sk_receive_queue) && skb->len) {
5291 				reason = SKB_DROP_REASON_PROTO_MEM;
5292 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5293 				goto drop;
5294 			}
5295 			sk_forced_mem_schedule(sk, skb->truesize);
5296 		}
5297 
5298 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5299 		if (skb->len)
5300 			tcp_event_data_recv(sk, skb);
5301 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5302 			tcp_fin(sk);
5303 
5304 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5305 			tcp_ofo_queue(sk);
5306 
5307 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5308 			 * gap in queue is filled.
5309 			 */
5310 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5311 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5312 		}
5313 
5314 		if (tp->rx_opt.num_sacks)
5315 			tcp_sack_remove(tp);
5316 
5317 		tcp_fast_path_check(sk);
5318 
5319 		if (eaten > 0)
5320 			kfree_skb_partial(skb, fragstolen);
5321 		if (!sock_flag(sk, SOCK_DEAD))
5322 			tcp_data_ready(sk);
5323 		return;
5324 	}
5325 
5326 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5327 		tcp_rcv_spurious_retrans(sk, skb);
5328 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5329 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5330 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5331 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5332 
5333 out_of_window:
5334 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5335 		inet_csk_schedule_ack(sk);
5336 drop:
5337 		tcp_drop_reason(sk, skb, reason);
5338 		return;
5339 	}
5340 
5341 	/* Out of window. F.e. zero window probe. */
5342 	if (!before(TCP_SKB_CB(skb)->seq,
5343 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5344 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5345 		goto out_of_window;
5346 	}
5347 
5348 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5349 		/* Partial packet, seq < rcv_next < end_seq */
5350 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5351 
5352 		/* If window is closed, drop tail of packet. But after
5353 		 * remembering D-SACK for its head made in previous line.
5354 		 */
5355 		if (!tcp_receive_window(tp)) {
5356 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5357 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5358 			goto out_of_window;
5359 		}
5360 		goto queue_and_out;
5361 	}
5362 
5363 	tcp_data_queue_ofo(sk, skb);
5364 }
5365 
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5366 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5367 {
5368 	if (list)
5369 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5370 
5371 	return skb_rb_next(skb);
5372 }
5373 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5374 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5375 					struct sk_buff_head *list,
5376 					struct rb_root *root)
5377 {
5378 	struct sk_buff *next = tcp_skb_next(skb, list);
5379 
5380 	if (list)
5381 		__skb_unlink(skb, list);
5382 	else
5383 		rb_erase(&skb->rbnode, root);
5384 
5385 	__kfree_skb(skb);
5386 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5387 
5388 	return next;
5389 }
5390 
5391 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5392 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5393 {
5394 	struct rb_node **p = &root->rb_node;
5395 	struct rb_node *parent = NULL;
5396 	struct sk_buff *skb1;
5397 
5398 	while (*p) {
5399 		parent = *p;
5400 		skb1 = rb_to_skb(parent);
5401 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5402 			p = &parent->rb_left;
5403 		else
5404 			p = &parent->rb_right;
5405 	}
5406 	rb_link_node(&skb->rbnode, parent, p);
5407 	rb_insert_color(&skb->rbnode, root);
5408 }
5409 
5410 /* Collapse contiguous sequence of skbs head..tail with
5411  * sequence numbers start..end.
5412  *
5413  * If tail is NULL, this means until the end of the queue.
5414  *
5415  * Segments with FIN/SYN are not collapsed (only because this
5416  * simplifies code)
5417  */
5418 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5419 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5420 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5421 {
5422 	struct sk_buff *skb = head, *n;
5423 	struct sk_buff_head tmp;
5424 	bool end_of_skbs;
5425 
5426 	/* First, check that queue is collapsible and find
5427 	 * the point where collapsing can be useful.
5428 	 */
5429 restart:
5430 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5431 		n = tcp_skb_next(skb, list);
5432 
5433 		if (!skb_frags_readable(skb))
5434 			goto skip_this;
5435 
5436 		/* No new bits? It is possible on ofo queue. */
5437 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5438 			skb = tcp_collapse_one(sk, skb, list, root);
5439 			if (!skb)
5440 				break;
5441 			goto restart;
5442 		}
5443 
5444 		/* The first skb to collapse is:
5445 		 * - not SYN/FIN and
5446 		 * - bloated or contains data before "start" or
5447 		 *   overlaps to the next one and mptcp allow collapsing.
5448 		 */
5449 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5450 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5451 		     before(TCP_SKB_CB(skb)->seq, start))) {
5452 			end_of_skbs = false;
5453 			break;
5454 		}
5455 
5456 		if (n && n != tail && skb_frags_readable(n) &&
5457 		    tcp_skb_can_collapse_rx(skb, n) &&
5458 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5459 			end_of_skbs = false;
5460 			break;
5461 		}
5462 
5463 skip_this:
5464 		/* Decided to skip this, advance start seq. */
5465 		start = TCP_SKB_CB(skb)->end_seq;
5466 	}
5467 	if (end_of_skbs ||
5468 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5469 	    !skb_frags_readable(skb))
5470 		return;
5471 
5472 	__skb_queue_head_init(&tmp);
5473 
5474 	while (before(start, end)) {
5475 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5476 		struct sk_buff *nskb;
5477 
5478 		nskb = alloc_skb(copy, GFP_ATOMIC);
5479 		if (!nskb)
5480 			break;
5481 
5482 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5483 		skb_copy_decrypted(nskb, skb);
5484 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5485 		if (list)
5486 			__skb_queue_before(list, skb, nskb);
5487 		else
5488 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5489 		skb_set_owner_r(nskb, sk);
5490 		mptcp_skb_ext_move(nskb, skb);
5491 
5492 		/* Copy data, releasing collapsed skbs. */
5493 		while (copy > 0) {
5494 			int offset = start - TCP_SKB_CB(skb)->seq;
5495 			int size = TCP_SKB_CB(skb)->end_seq - start;
5496 
5497 			BUG_ON(offset < 0);
5498 			if (size > 0) {
5499 				size = min(copy, size);
5500 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5501 					BUG();
5502 				TCP_SKB_CB(nskb)->end_seq += size;
5503 				copy -= size;
5504 				start += size;
5505 			}
5506 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5507 				skb = tcp_collapse_one(sk, skb, list, root);
5508 				if (!skb ||
5509 				    skb == tail ||
5510 				    !tcp_skb_can_collapse_rx(nskb, skb) ||
5511 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5512 				    !skb_frags_readable(skb))
5513 					goto end;
5514 			}
5515 		}
5516 	}
5517 end:
5518 	skb_queue_walk_safe(&tmp, skb, n)
5519 		tcp_rbtree_insert(root, skb);
5520 }
5521 
5522 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5523  * and tcp_collapse() them until all the queue is collapsed.
5524  */
tcp_collapse_ofo_queue(struct sock * sk)5525 static void tcp_collapse_ofo_queue(struct sock *sk)
5526 {
5527 	struct tcp_sock *tp = tcp_sk(sk);
5528 	u32 range_truesize, sum_tiny = 0;
5529 	struct sk_buff *skb, *head;
5530 	u32 start, end;
5531 
5532 	skb = skb_rb_first(&tp->out_of_order_queue);
5533 new_range:
5534 	if (!skb) {
5535 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5536 		return;
5537 	}
5538 	start = TCP_SKB_CB(skb)->seq;
5539 	end = TCP_SKB_CB(skb)->end_seq;
5540 	range_truesize = skb->truesize;
5541 
5542 	for (head = skb;;) {
5543 		skb = skb_rb_next(skb);
5544 
5545 		/* Range is terminated when we see a gap or when
5546 		 * we are at the queue end.
5547 		 */
5548 		if (!skb ||
5549 		    after(TCP_SKB_CB(skb)->seq, end) ||
5550 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5551 			/* Do not attempt collapsing tiny skbs */
5552 			if (range_truesize != head->truesize ||
5553 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5554 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5555 					     head, skb, start, end);
5556 			} else {
5557 				sum_tiny += range_truesize;
5558 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5559 					return;
5560 			}
5561 			goto new_range;
5562 		}
5563 
5564 		range_truesize += skb->truesize;
5565 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5566 			start = TCP_SKB_CB(skb)->seq;
5567 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5568 			end = TCP_SKB_CB(skb)->end_seq;
5569 	}
5570 }
5571 
5572 /*
5573  * Clean the out-of-order queue to make room.
5574  * We drop high sequences packets to :
5575  * 1) Let a chance for holes to be filled.
5576  *    This means we do not drop packets from ooo queue if their sequence
5577  *    is before incoming packet sequence.
5578  * 2) not add too big latencies if thousands of packets sit there.
5579  *    (But if application shrinks SO_RCVBUF, we could still end up
5580  *     freeing whole queue here)
5581  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5582  *
5583  * Return true if queue has shrunk.
5584  */
tcp_prune_ofo_queue(struct sock * sk,const struct sk_buff * in_skb)5585 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5586 {
5587 	struct tcp_sock *tp = tcp_sk(sk);
5588 	struct rb_node *node, *prev;
5589 	bool pruned = false;
5590 	int goal;
5591 
5592 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5593 		return false;
5594 
5595 	goal = sk->sk_rcvbuf >> 3;
5596 	node = &tp->ooo_last_skb->rbnode;
5597 
5598 	do {
5599 		struct sk_buff *skb = rb_to_skb(node);
5600 
5601 		/* If incoming skb would land last in ofo queue, stop pruning. */
5602 		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5603 			break;
5604 		pruned = true;
5605 		prev = rb_prev(node);
5606 		rb_erase(node, &tp->out_of_order_queue);
5607 		goal -= skb->truesize;
5608 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5609 		tp->ooo_last_skb = rb_to_skb(prev);
5610 		if (!prev || goal <= 0) {
5611 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5612 			    !tcp_under_memory_pressure(sk))
5613 				break;
5614 			goal = sk->sk_rcvbuf >> 3;
5615 		}
5616 		node = prev;
5617 	} while (node);
5618 
5619 	if (pruned) {
5620 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5621 		/* Reset SACK state.  A conforming SACK implementation will
5622 		 * do the same at a timeout based retransmit.  When a connection
5623 		 * is in a sad state like this, we care only about integrity
5624 		 * of the connection not performance.
5625 		 */
5626 		if (tp->rx_opt.sack_ok)
5627 			tcp_sack_reset(&tp->rx_opt);
5628 	}
5629 	return pruned;
5630 }
5631 
5632 /* Reduce allocated memory if we can, trying to get
5633  * the socket within its memory limits again.
5634  *
5635  * Return less than zero if we should start dropping frames
5636  * until the socket owning process reads some of the data
5637  * to stabilize the situation.
5638  */
tcp_prune_queue(struct sock * sk,const struct sk_buff * in_skb)5639 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5640 {
5641 	struct tcp_sock *tp = tcp_sk(sk);
5642 
5643 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5644 
5645 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5646 		tcp_clamp_window(sk);
5647 	else if (tcp_under_memory_pressure(sk))
5648 		tcp_adjust_rcv_ssthresh(sk);
5649 
5650 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5651 		return 0;
5652 
5653 	tcp_collapse_ofo_queue(sk);
5654 	if (!skb_queue_empty(&sk->sk_receive_queue))
5655 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5656 			     skb_peek(&sk->sk_receive_queue),
5657 			     NULL,
5658 			     tp->copied_seq, tp->rcv_nxt);
5659 
5660 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5661 		return 0;
5662 
5663 	/* Collapsing did not help, destructive actions follow.
5664 	 * This must not ever occur. */
5665 
5666 	tcp_prune_ofo_queue(sk, in_skb);
5667 
5668 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5669 		return 0;
5670 
5671 	/* If we are really being abused, tell the caller to silently
5672 	 * drop receive data on the floor.  It will get retransmitted
5673 	 * and hopefully then we'll have sufficient space.
5674 	 */
5675 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5676 
5677 	/* Massive buffer overcommit. */
5678 	tp->pred_flags = 0;
5679 	return -1;
5680 }
5681 
tcp_should_expand_sndbuf(struct sock * sk)5682 static bool tcp_should_expand_sndbuf(struct sock *sk)
5683 {
5684 	const struct tcp_sock *tp = tcp_sk(sk);
5685 
5686 	/* If the user specified a specific send buffer setting, do
5687 	 * not modify it.
5688 	 */
5689 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5690 		return false;
5691 
5692 	/* If we are under global TCP memory pressure, do not expand.  */
5693 	if (tcp_under_memory_pressure(sk)) {
5694 		int unused_mem = sk_unused_reserved_mem(sk);
5695 
5696 		/* Adjust sndbuf according to reserved mem. But make sure
5697 		 * it never goes below SOCK_MIN_SNDBUF.
5698 		 * See sk_stream_moderate_sndbuf() for more details.
5699 		 */
5700 		if (unused_mem > SOCK_MIN_SNDBUF)
5701 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5702 
5703 		return false;
5704 	}
5705 
5706 	/* If we are under soft global TCP memory pressure, do not expand.  */
5707 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5708 		return false;
5709 
5710 	/* If we filled the congestion window, do not expand.  */
5711 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5712 		return false;
5713 
5714 	return true;
5715 }
5716 
tcp_new_space(struct sock * sk)5717 static void tcp_new_space(struct sock *sk)
5718 {
5719 	struct tcp_sock *tp = tcp_sk(sk);
5720 
5721 	if (tcp_should_expand_sndbuf(sk)) {
5722 		tcp_sndbuf_expand(sk);
5723 		tp->snd_cwnd_stamp = tcp_jiffies32;
5724 	}
5725 
5726 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5727 }
5728 
5729 /* Caller made space either from:
5730  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5731  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5732  *
5733  * We might be able to generate EPOLLOUT to the application if:
5734  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5735  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5736  *    small enough that tcp_stream_memory_free() decides it
5737  *    is time to generate EPOLLOUT.
5738  */
tcp_check_space(struct sock * sk)5739 void tcp_check_space(struct sock *sk)
5740 {
5741 	/* pairs with tcp_poll() */
5742 	smp_mb();
5743 	if (sk->sk_socket &&
5744 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5745 		tcp_new_space(sk);
5746 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5747 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5748 	}
5749 }
5750 
tcp_data_snd_check(struct sock * sk)5751 static inline void tcp_data_snd_check(struct sock *sk)
5752 {
5753 	tcp_push_pending_frames(sk);
5754 	tcp_check_space(sk);
5755 }
5756 
5757 /*
5758  * Check if sending an ack is needed.
5759  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5760 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5761 {
5762 	struct tcp_sock *tp = tcp_sk(sk);
5763 	unsigned long rtt, delay;
5764 
5765 	    /* More than one full frame received... */
5766 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5767 	     /* ... and right edge of window advances far enough.
5768 	      * (tcp_recvmsg() will send ACK otherwise).
5769 	      * If application uses SO_RCVLOWAT, we want send ack now if
5770 	      * we have not received enough bytes to satisfy the condition.
5771 	      */
5772 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5773 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5774 	    /* We ACK each frame or... */
5775 	    tcp_in_quickack_mode(sk) ||
5776 	    /* Protocol state mandates a one-time immediate ACK */
5777 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5778 		/* If we are running from __release_sock() in user context,
5779 		 * Defer the ack until tcp_release_cb().
5780 		 */
5781 		if (sock_owned_by_user_nocheck(sk) &&
5782 		    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5783 			set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5784 			return;
5785 		}
5786 send_now:
5787 		tcp_send_ack(sk);
5788 		return;
5789 	}
5790 
5791 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5792 		tcp_send_delayed_ack(sk);
5793 		return;
5794 	}
5795 
5796 	if (!tcp_is_sack(tp) ||
5797 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5798 		goto send_now;
5799 
5800 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5801 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5802 		tp->dup_ack_counter = 0;
5803 	}
5804 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5805 		tp->dup_ack_counter++;
5806 		goto send_now;
5807 	}
5808 	tp->compressed_ack++;
5809 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5810 		return;
5811 
5812 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5813 
5814 	rtt = tp->rcv_rtt_est.rtt_us;
5815 	if (tp->srtt_us && tp->srtt_us < rtt)
5816 		rtt = tp->srtt_us;
5817 
5818 	delay = min_t(unsigned long,
5819 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5820 		      rtt * (NSEC_PER_USEC >> 3)/20);
5821 	sock_hold(sk);
5822 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5823 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5824 			       HRTIMER_MODE_REL_PINNED_SOFT);
5825 }
5826 
tcp_ack_snd_check(struct sock * sk)5827 static inline void tcp_ack_snd_check(struct sock *sk)
5828 {
5829 	if (!inet_csk_ack_scheduled(sk)) {
5830 		/* We sent a data segment already. */
5831 		return;
5832 	}
5833 	__tcp_ack_snd_check(sk, 1);
5834 }
5835 
5836 /*
5837  *	This routine is only called when we have urgent data
5838  *	signaled. Its the 'slow' part of tcp_urg. It could be
5839  *	moved inline now as tcp_urg is only called from one
5840  *	place. We handle URGent data wrong. We have to - as
5841  *	BSD still doesn't use the correction from RFC961.
5842  *	For 1003.1g we should support a new option TCP_STDURG to permit
5843  *	either form (or just set the sysctl tcp_stdurg).
5844  */
5845 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5846 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5847 {
5848 	struct tcp_sock *tp = tcp_sk(sk);
5849 	u32 ptr = ntohs(th->urg_ptr);
5850 
5851 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5852 		ptr--;
5853 	ptr += ntohl(th->seq);
5854 
5855 	/* Ignore urgent data that we've already seen and read. */
5856 	if (after(tp->copied_seq, ptr))
5857 		return;
5858 
5859 	/* Do not replay urg ptr.
5860 	 *
5861 	 * NOTE: interesting situation not covered by specs.
5862 	 * Misbehaving sender may send urg ptr, pointing to segment,
5863 	 * which we already have in ofo queue. We are not able to fetch
5864 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5865 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5866 	 * situations. But it is worth to think about possibility of some
5867 	 * DoSes using some hypothetical application level deadlock.
5868 	 */
5869 	if (before(ptr, tp->rcv_nxt))
5870 		return;
5871 
5872 	/* Do we already have a newer (or duplicate) urgent pointer? */
5873 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5874 		return;
5875 
5876 	/* Tell the world about our new urgent pointer. */
5877 	sk_send_sigurg(sk);
5878 
5879 	/* We may be adding urgent data when the last byte read was
5880 	 * urgent. To do this requires some care. We cannot just ignore
5881 	 * tp->copied_seq since we would read the last urgent byte again
5882 	 * as data, nor can we alter copied_seq until this data arrives
5883 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5884 	 *
5885 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5886 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5887 	 * and expect that both A and B disappear from stream. This is _wrong_.
5888 	 * Though this happens in BSD with high probability, this is occasional.
5889 	 * Any application relying on this is buggy. Note also, that fix "works"
5890 	 * only in this artificial test. Insert some normal data between A and B and we will
5891 	 * decline of BSD again. Verdict: it is better to remove to trap
5892 	 * buggy users.
5893 	 */
5894 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5895 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5896 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5897 		tp->copied_seq++;
5898 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5899 			__skb_unlink(skb, &sk->sk_receive_queue);
5900 			__kfree_skb(skb);
5901 		}
5902 	}
5903 
5904 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5905 	WRITE_ONCE(tp->urg_seq, ptr);
5906 
5907 	/* Disable header prediction. */
5908 	tp->pred_flags = 0;
5909 }
5910 
5911 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5912 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5913 {
5914 	struct tcp_sock *tp = tcp_sk(sk);
5915 
5916 	/* Check if we get a new urgent pointer - normally not. */
5917 	if (unlikely(th->urg))
5918 		tcp_check_urg(sk, th);
5919 
5920 	/* Do we wait for any urgent data? - normally not... */
5921 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5922 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5923 			  th->syn;
5924 
5925 		/* Is the urgent pointer pointing into this packet? */
5926 		if (ptr < skb->len) {
5927 			u8 tmp;
5928 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5929 				BUG();
5930 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5931 			if (!sock_flag(sk, SOCK_DEAD))
5932 				sk->sk_data_ready(sk);
5933 		}
5934 	}
5935 }
5936 
5937 /* Accept RST for rcv_nxt - 1 after a FIN.
5938  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5939  * FIN is sent followed by a RST packet. The RST is sent with the same
5940  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5941  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5942  * ACKs on the closed socket. In addition middleboxes can drop either the
5943  * challenge ACK or a subsequent RST.
5944  */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5945 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5946 {
5947 	const struct tcp_sock *tp = tcp_sk(sk);
5948 
5949 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5950 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5951 					       TCPF_CLOSING));
5952 }
5953 
5954 /* Does PAWS and seqno based validation of an incoming segment, flags will
5955  * play significant role here.
5956  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5957 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5958 				  const struct tcphdr *th, int syn_inerr)
5959 {
5960 	struct tcp_sock *tp = tcp_sk(sk);
5961 	SKB_DR(reason);
5962 
5963 	/* RFC1323: H1. Apply PAWS check first. */
5964 	if (!tcp_fast_parse_options(sock_net(sk), skb, th, tp) ||
5965 	    !tp->rx_opt.saw_tstamp ||
5966 	    tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW))
5967 		goto step1;
5968 
5969 	reason = tcp_disordered_ack_check(sk, skb);
5970 	if (!reason)
5971 		goto step1;
5972 	/* Reset is accepted even if it did not pass PAWS. */
5973 	if (th->rst)
5974 		goto step1;
5975 	if (unlikely(th->syn))
5976 		goto syn_challenge;
5977 
5978 	/* Old ACK are common, increment PAWS_OLD_ACK
5979 	 * and do not send a dupack.
5980 	 */
5981 	if (reason == SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK) {
5982 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWS_OLD_ACK);
5983 		goto discard;
5984 	}
5985 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5986 	if (!tcp_oow_rate_limited(sock_net(sk), skb,
5987 				  LINUX_MIB_TCPACKSKIPPEDPAWS,
5988 				  &tp->last_oow_ack_time))
5989 		tcp_send_dupack(sk, skb);
5990 	goto discard;
5991 
5992 step1:
5993 	/* Step 1: check sequence number */
5994 	reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5995 	if (reason) {
5996 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5997 		 * (RST) segments are validated by checking their SEQ-fields."
5998 		 * And page 69: "If an incoming segment is not acceptable,
5999 		 * an acknowledgment should be sent in reply (unless the RST
6000 		 * bit is set, if so drop the segment and return)".
6001 		 */
6002 		if (!th->rst) {
6003 			if (th->syn)
6004 				goto syn_challenge;
6005 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
6006 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
6007 						  &tp->last_oow_ack_time))
6008 				tcp_send_dupack(sk, skb);
6009 		} else if (tcp_reset_check(sk, skb)) {
6010 			goto reset;
6011 		}
6012 		goto discard;
6013 	}
6014 
6015 	/* Step 2: check RST bit */
6016 	if (th->rst) {
6017 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
6018 		 * FIN and SACK too if available):
6019 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
6020 		 * the right-most SACK block,
6021 		 * then
6022 		 *     RESET the connection
6023 		 * else
6024 		 *     Send a challenge ACK
6025 		 */
6026 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
6027 		    tcp_reset_check(sk, skb))
6028 			goto reset;
6029 
6030 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
6031 			struct tcp_sack_block *sp = &tp->selective_acks[0];
6032 			int max_sack = sp[0].end_seq;
6033 			int this_sack;
6034 
6035 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
6036 			     ++this_sack) {
6037 				max_sack = after(sp[this_sack].end_seq,
6038 						 max_sack) ?
6039 					sp[this_sack].end_seq : max_sack;
6040 			}
6041 
6042 			if (TCP_SKB_CB(skb)->seq == max_sack)
6043 				goto reset;
6044 		}
6045 
6046 		/* Disable TFO if RST is out-of-order
6047 		 * and no data has been received
6048 		 * for current active TFO socket
6049 		 */
6050 		if (tp->syn_fastopen && !tp->data_segs_in &&
6051 		    sk->sk_state == TCP_ESTABLISHED)
6052 			tcp_fastopen_active_disable(sk);
6053 		tcp_send_challenge_ack(sk);
6054 		SKB_DR_SET(reason, TCP_RESET);
6055 		goto discard;
6056 	}
6057 
6058 	/* step 3: check security and precedence [ignored] */
6059 
6060 	/* step 4: Check for a SYN
6061 	 * RFC 5961 4.2 : Send a challenge ack
6062 	 */
6063 	if (th->syn) {
6064 		if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
6065 		    TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
6066 		    TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
6067 		    TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
6068 			goto pass;
6069 syn_challenge:
6070 		if (syn_inerr)
6071 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6072 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
6073 		tcp_send_challenge_ack(sk);
6074 		SKB_DR_SET(reason, TCP_INVALID_SYN);
6075 		goto discard;
6076 	}
6077 
6078 pass:
6079 	bpf_skops_parse_hdr(sk, skb);
6080 
6081 	return true;
6082 
6083 discard:
6084 	tcp_drop_reason(sk, skb, reason);
6085 	return false;
6086 
6087 reset:
6088 	tcp_reset(sk, skb);
6089 	__kfree_skb(skb);
6090 	return false;
6091 }
6092 
6093 /*
6094  *	TCP receive function for the ESTABLISHED state.
6095  *
6096  *	It is split into a fast path and a slow path. The fast path is
6097  * 	disabled when:
6098  *	- A zero window was announced from us - zero window probing
6099  *        is only handled properly in the slow path.
6100  *	- Out of order segments arrived.
6101  *	- Urgent data is expected.
6102  *	- There is no buffer space left
6103  *	- Unexpected TCP flags/window values/header lengths are received
6104  *	  (detected by checking the TCP header against pred_flags)
6105  *	- Data is sent in both directions. Fast path only supports pure senders
6106  *	  or pure receivers (this means either the sequence number or the ack
6107  *	  value must stay constant)
6108  *	- Unexpected TCP option.
6109  *
6110  *	When these conditions are not satisfied it drops into a standard
6111  *	receive procedure patterned after RFC793 to handle all cases.
6112  *	The first three cases are guaranteed by proper pred_flags setting,
6113  *	the rest is checked inline. Fast processing is turned on in
6114  *	tcp_data_queue when everything is OK.
6115  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)6116 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
6117 {
6118 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6119 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
6120 	struct tcp_sock *tp = tcp_sk(sk);
6121 	unsigned int len = skb->len;
6122 
6123 	/* TCP congestion window tracking */
6124 	trace_tcp_probe(sk, skb);
6125 
6126 	tcp_mstamp_refresh(tp);
6127 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6128 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6129 	/*
6130 	 *	Header prediction.
6131 	 *	The code loosely follows the one in the famous
6132 	 *	"30 instruction TCP receive" Van Jacobson mail.
6133 	 *
6134 	 *	Van's trick is to deposit buffers into socket queue
6135 	 *	on a device interrupt, to call tcp_recv function
6136 	 *	on the receive process context and checksum and copy
6137 	 *	the buffer to user space. smart...
6138 	 *
6139 	 *	Our current scheme is not silly either but we take the
6140 	 *	extra cost of the net_bh soft interrupt processing...
6141 	 *	We do checksum and copy also but from device to kernel.
6142 	 */
6143 
6144 	tp->rx_opt.saw_tstamp = 0;
6145 
6146 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
6147 	 *	if header_prediction is to be made
6148 	 *	'S' will always be tp->tcp_header_len >> 2
6149 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
6150 	 *  turn it off	(when there are holes in the receive
6151 	 *	 space for instance)
6152 	 *	PSH flag is ignored.
6153 	 */
6154 
6155 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6156 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6157 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6158 		int tcp_header_len = tp->tcp_header_len;
6159 
6160 		/* Timestamp header prediction: tcp_header_len
6161 		 * is automatically equal to th->doff*4 due to pred_flags
6162 		 * match.
6163 		 */
6164 
6165 		/* Check timestamp */
6166 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6167 			/* No? Slow path! */
6168 			if (!tcp_parse_aligned_timestamp(tp, th))
6169 				goto slow_path;
6170 
6171 			/* If PAWS failed, check it more carefully in slow path */
6172 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6173 				goto slow_path;
6174 
6175 			/* DO NOT update ts_recent here, if checksum fails
6176 			 * and timestamp was corrupted part, it will result
6177 			 * in a hung connection since we will drop all
6178 			 * future packets due to the PAWS test.
6179 			 */
6180 		}
6181 
6182 		if (len <= tcp_header_len) {
6183 			/* Bulk data transfer: sender */
6184 			if (len == tcp_header_len) {
6185 				/* Predicted packet is in window by definition.
6186 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6187 				 * Hence, check seq<=rcv_wup reduces to:
6188 				 */
6189 				if (tcp_header_len ==
6190 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6191 				    tp->rcv_nxt == tp->rcv_wup)
6192 					tcp_store_ts_recent(tp);
6193 
6194 				/* We know that such packets are checksummed
6195 				 * on entry.
6196 				 */
6197 				tcp_ack(sk, skb, 0);
6198 				__kfree_skb(skb);
6199 				tcp_data_snd_check(sk);
6200 				/* When receiving pure ack in fast path, update
6201 				 * last ts ecr directly instead of calling
6202 				 * tcp_rcv_rtt_measure_ts()
6203 				 */
6204 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6205 				return;
6206 			} else { /* Header too small */
6207 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6208 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6209 				goto discard;
6210 			}
6211 		} else {
6212 			int eaten = 0;
6213 			bool fragstolen = false;
6214 
6215 			if (tcp_checksum_complete(skb))
6216 				goto csum_error;
6217 
6218 			if ((int)skb->truesize > sk->sk_forward_alloc)
6219 				goto step5;
6220 
6221 			/* Predicted packet is in window by definition.
6222 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6223 			 * Hence, check seq<=rcv_wup reduces to:
6224 			 */
6225 			if (tcp_header_len ==
6226 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6227 			    tp->rcv_nxt == tp->rcv_wup)
6228 				tcp_store_ts_recent(tp);
6229 
6230 			tcp_rcv_rtt_measure_ts(sk, skb);
6231 
6232 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6233 
6234 			/* Bulk data transfer: receiver */
6235 			tcp_cleanup_skb(skb);
6236 			__skb_pull(skb, tcp_header_len);
6237 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6238 
6239 			tcp_event_data_recv(sk, skb);
6240 
6241 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6242 				/* Well, only one small jumplet in fast path... */
6243 				tcp_ack(sk, skb, FLAG_DATA);
6244 				tcp_data_snd_check(sk);
6245 				if (!inet_csk_ack_scheduled(sk))
6246 					goto no_ack;
6247 			} else {
6248 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6249 			}
6250 
6251 			__tcp_ack_snd_check(sk, 0);
6252 no_ack:
6253 			if (eaten)
6254 				kfree_skb_partial(skb, fragstolen);
6255 			tcp_data_ready(sk);
6256 			return;
6257 		}
6258 	}
6259 
6260 slow_path:
6261 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6262 		goto csum_error;
6263 
6264 	if (!th->ack && !th->rst && !th->syn) {
6265 		reason = SKB_DROP_REASON_TCP_FLAGS;
6266 		goto discard;
6267 	}
6268 
6269 	/*
6270 	 *	Standard slow path.
6271 	 */
6272 
6273 	if (!tcp_validate_incoming(sk, skb, th, 1))
6274 		return;
6275 
6276 step5:
6277 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6278 	if ((int)reason < 0) {
6279 		reason = -reason;
6280 		goto discard;
6281 	}
6282 	tcp_rcv_rtt_measure_ts(sk, skb);
6283 
6284 	/* Process urgent data. */
6285 	tcp_urg(sk, skb, th);
6286 
6287 	/* step 7: process the segment text */
6288 	tcp_data_queue(sk, skb);
6289 
6290 	tcp_data_snd_check(sk);
6291 	tcp_ack_snd_check(sk);
6292 	return;
6293 
6294 csum_error:
6295 	reason = SKB_DROP_REASON_TCP_CSUM;
6296 	trace_tcp_bad_csum(skb);
6297 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6298 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6299 
6300 discard:
6301 	tcp_drop_reason(sk, skb, reason);
6302 }
6303 EXPORT_SYMBOL(tcp_rcv_established);
6304 
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)6305 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6306 {
6307 	struct inet_connection_sock *icsk = inet_csk(sk);
6308 	struct tcp_sock *tp = tcp_sk(sk);
6309 
6310 	tcp_mtup_init(sk);
6311 	icsk->icsk_af_ops->rebuild_header(sk);
6312 	tcp_init_metrics(sk);
6313 
6314 	/* Initialize the congestion window to start the transfer.
6315 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6316 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6317 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6318 	 * retransmission has occurred.
6319 	 */
6320 	if (tp->total_retrans > 1 && tp->undo_marker)
6321 		tcp_snd_cwnd_set(tp, 1);
6322 	else
6323 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6324 	tp->snd_cwnd_stamp = tcp_jiffies32;
6325 
6326 	bpf_skops_established(sk, bpf_op, skb);
6327 	/* Initialize congestion control unless BPF initialized it already: */
6328 	if (!icsk->icsk_ca_initialized)
6329 		tcp_init_congestion_control(sk);
6330 	tcp_init_buffer_space(sk);
6331 }
6332 
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6333 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6334 {
6335 	struct tcp_sock *tp = tcp_sk(sk);
6336 	struct inet_connection_sock *icsk = inet_csk(sk);
6337 
6338 	tcp_ao_finish_connect(sk, skb);
6339 	tcp_set_state(sk, TCP_ESTABLISHED);
6340 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6341 
6342 	if (skb) {
6343 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6344 		security_inet_conn_established(sk, skb);
6345 		sk_mark_napi_id(sk, skb);
6346 	}
6347 
6348 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6349 
6350 	/* Prevent spurious tcp_cwnd_restart() on first data
6351 	 * packet.
6352 	 */
6353 	tp->lsndtime = tcp_jiffies32;
6354 
6355 	if (sock_flag(sk, SOCK_KEEPOPEN))
6356 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6357 
6358 	if (!tp->rx_opt.snd_wscale)
6359 		__tcp_fast_path_on(tp, tp->snd_wnd);
6360 	else
6361 		tp->pred_flags = 0;
6362 }
6363 
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6364 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6365 				    struct tcp_fastopen_cookie *cookie)
6366 {
6367 	struct tcp_sock *tp = tcp_sk(sk);
6368 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6369 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6370 	bool syn_drop = false;
6371 
6372 	if (mss == tp->rx_opt.user_mss) {
6373 		struct tcp_options_received opt;
6374 
6375 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6376 		tcp_clear_options(&opt);
6377 		opt.user_mss = opt.mss_clamp = 0;
6378 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6379 		mss = opt.mss_clamp;
6380 	}
6381 
6382 	if (!tp->syn_fastopen) {
6383 		/* Ignore an unsolicited cookie */
6384 		cookie->len = -1;
6385 	} else if (tp->total_retrans) {
6386 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6387 		 * acknowledges data. Presumably the remote received only
6388 		 * the retransmitted (regular) SYNs: either the original
6389 		 * SYN-data or the corresponding SYN-ACK was dropped.
6390 		 */
6391 		syn_drop = (cookie->len < 0 && data);
6392 	} else if (cookie->len < 0 && !tp->syn_data) {
6393 		/* We requested a cookie but didn't get it. If we did not use
6394 		 * the (old) exp opt format then try so next time (try_exp=1).
6395 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6396 		 */
6397 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6398 	}
6399 
6400 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6401 
6402 	if (data) { /* Retransmit unacked data in SYN */
6403 		if (tp->total_retrans)
6404 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6405 		else
6406 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6407 		skb_rbtree_walk_from(data)
6408 			 tcp_mark_skb_lost(sk, data);
6409 		tcp_non_congestion_loss_retransmit(sk);
6410 		NET_INC_STATS(sock_net(sk),
6411 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6412 		return true;
6413 	}
6414 	tp->syn_data_acked = tp->syn_data;
6415 	if (tp->syn_data_acked) {
6416 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6417 		/* SYN-data is counted as two separate packets in tcp_ack() */
6418 		if (tp->delivered > 1)
6419 			--tp->delivered;
6420 	}
6421 
6422 	tcp_fastopen_add_skb(sk, synack);
6423 
6424 	return false;
6425 }
6426 
smc_check_reset_syn(struct tcp_sock * tp)6427 static void smc_check_reset_syn(struct tcp_sock *tp)
6428 {
6429 #if IS_ENABLED(CONFIG_SMC)
6430 	if (static_branch_unlikely(&tcp_have_smc)) {
6431 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6432 			tp->syn_smc = 0;
6433 	}
6434 #endif
6435 }
6436 
tcp_try_undo_spurious_syn(struct sock * sk)6437 static void tcp_try_undo_spurious_syn(struct sock *sk)
6438 {
6439 	struct tcp_sock *tp = tcp_sk(sk);
6440 	u32 syn_stamp;
6441 
6442 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6443 	 * spurious if the ACK's timestamp option echo value matches the
6444 	 * original SYN timestamp.
6445 	 */
6446 	syn_stamp = tp->retrans_stamp;
6447 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6448 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6449 		tp->undo_marker = 0;
6450 }
6451 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6452 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6453 					 const struct tcphdr *th)
6454 {
6455 	struct inet_connection_sock *icsk = inet_csk(sk);
6456 	struct tcp_sock *tp = tcp_sk(sk);
6457 	struct tcp_fastopen_cookie foc = { .len = -1 };
6458 	int saved_clamp = tp->rx_opt.mss_clamp;
6459 	bool fastopen_fail;
6460 	SKB_DR(reason);
6461 
6462 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6463 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6464 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6465 
6466 	if (th->ack) {
6467 		/* rfc793:
6468 		 * "If the state is SYN-SENT then
6469 		 *    first check the ACK bit
6470 		 *      If the ACK bit is set
6471 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6472 		 *        a reset (unless the RST bit is set, if so drop
6473 		 *        the segment and return)"
6474 		 */
6475 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6476 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6477 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6478 			if (icsk->icsk_retransmits == 0)
6479 				inet_csk_reset_xmit_timer(sk,
6480 						ICSK_TIME_RETRANS,
6481 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6482 			SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE);
6483 			goto reset_and_undo;
6484 		}
6485 
6486 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6487 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6488 			     tcp_time_stamp_ts(tp))) {
6489 			NET_INC_STATS(sock_net(sk),
6490 					LINUX_MIB_PAWSACTIVEREJECTED);
6491 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6492 			goto reset_and_undo;
6493 		}
6494 
6495 		/* Now ACK is acceptable.
6496 		 *
6497 		 * "If the RST bit is set
6498 		 *    If the ACK was acceptable then signal the user "error:
6499 		 *    connection reset", drop the segment, enter CLOSED state,
6500 		 *    delete TCB, and return."
6501 		 */
6502 
6503 		if (th->rst) {
6504 			tcp_reset(sk, skb);
6505 consume:
6506 			__kfree_skb(skb);
6507 			return 0;
6508 		}
6509 
6510 		/* rfc793:
6511 		 *   "fifth, if neither of the SYN or RST bits is set then
6512 		 *    drop the segment and return."
6513 		 *
6514 		 *    See note below!
6515 		 *                                        --ANK(990513)
6516 		 */
6517 		if (!th->syn) {
6518 			SKB_DR_SET(reason, TCP_FLAGS);
6519 			goto discard_and_undo;
6520 		}
6521 		/* rfc793:
6522 		 *   "If the SYN bit is on ...
6523 		 *    are acceptable then ...
6524 		 *    (our SYN has been ACKed), change the connection
6525 		 *    state to ESTABLISHED..."
6526 		 */
6527 
6528 		tcp_ecn_rcv_synack(tp, th);
6529 
6530 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6531 		tcp_try_undo_spurious_syn(sk);
6532 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6533 
6534 		/* Ok.. it's good. Set up sequence numbers and
6535 		 * move to established.
6536 		 */
6537 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6538 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6539 
6540 		/* RFC1323: The window in SYN & SYN/ACK segments is
6541 		 * never scaled.
6542 		 */
6543 		tp->snd_wnd = ntohs(th->window);
6544 
6545 		if (!tp->rx_opt.wscale_ok) {
6546 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6547 			WRITE_ONCE(tp->window_clamp,
6548 				   min(tp->window_clamp, 65535U));
6549 		}
6550 
6551 		if (tp->rx_opt.saw_tstamp) {
6552 			tp->rx_opt.tstamp_ok	   = 1;
6553 			tp->tcp_header_len =
6554 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6555 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6556 			tcp_store_ts_recent(tp);
6557 		} else {
6558 			tp->tcp_header_len = sizeof(struct tcphdr);
6559 		}
6560 
6561 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6562 		tcp_initialize_rcv_mss(sk);
6563 
6564 		/* Remember, tcp_poll() does not lock socket!
6565 		 * Change state from SYN-SENT only after copied_seq
6566 		 * is initialized. */
6567 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6568 
6569 		smc_check_reset_syn(tp);
6570 
6571 		smp_mb();
6572 
6573 		tcp_finish_connect(sk, skb);
6574 
6575 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6576 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6577 
6578 		if (!sock_flag(sk, SOCK_DEAD)) {
6579 			sk->sk_state_change(sk);
6580 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6581 		}
6582 		if (fastopen_fail)
6583 			return -1;
6584 		if (sk->sk_write_pending ||
6585 		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6586 		    inet_csk_in_pingpong_mode(sk)) {
6587 			/* Save one ACK. Data will be ready after
6588 			 * several ticks, if write_pending is set.
6589 			 *
6590 			 * It may be deleted, but with this feature tcpdumps
6591 			 * look so _wonderfully_ clever, that I was not able
6592 			 * to stand against the temptation 8)     --ANK
6593 			 */
6594 			inet_csk_schedule_ack(sk);
6595 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6596 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6597 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6598 			goto consume;
6599 		}
6600 		tcp_send_ack(sk);
6601 		return -1;
6602 	}
6603 
6604 	/* No ACK in the segment */
6605 
6606 	if (th->rst) {
6607 		/* rfc793:
6608 		 * "If the RST bit is set
6609 		 *
6610 		 *      Otherwise (no ACK) drop the segment and return."
6611 		 */
6612 		SKB_DR_SET(reason, TCP_RESET);
6613 		goto discard_and_undo;
6614 	}
6615 
6616 	/* PAWS check. */
6617 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6618 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6619 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6620 		goto discard_and_undo;
6621 	}
6622 	if (th->syn) {
6623 		/* We see SYN without ACK. It is attempt of
6624 		 * simultaneous connect with crossed SYNs.
6625 		 * Particularly, it can be connect to self.
6626 		 */
6627 #ifdef CONFIG_TCP_AO
6628 		struct tcp_ao_info *ao;
6629 
6630 		ao = rcu_dereference_protected(tp->ao_info,
6631 					       lockdep_sock_is_held(sk));
6632 		if (ao) {
6633 			WRITE_ONCE(ao->risn, th->seq);
6634 			ao->rcv_sne = 0;
6635 		}
6636 #endif
6637 		tcp_set_state(sk, TCP_SYN_RECV);
6638 
6639 		if (tp->rx_opt.saw_tstamp) {
6640 			tp->rx_opt.tstamp_ok = 1;
6641 			tcp_store_ts_recent(tp);
6642 			tp->tcp_header_len =
6643 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6644 		} else {
6645 			tp->tcp_header_len = sizeof(struct tcphdr);
6646 		}
6647 
6648 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6649 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6650 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6651 
6652 		/* RFC1323: The window in SYN & SYN/ACK segments is
6653 		 * never scaled.
6654 		 */
6655 		tp->snd_wnd    = ntohs(th->window);
6656 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6657 		tp->max_window = tp->snd_wnd;
6658 
6659 		tcp_ecn_rcv_syn(tp, th);
6660 
6661 		tcp_mtup_init(sk);
6662 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6663 		tcp_initialize_rcv_mss(sk);
6664 
6665 		tcp_send_synack(sk);
6666 #if 0
6667 		/* Note, we could accept data and URG from this segment.
6668 		 * There are no obstacles to make this (except that we must
6669 		 * either change tcp_recvmsg() to prevent it from returning data
6670 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6671 		 *
6672 		 * However, if we ignore data in ACKless segments sometimes,
6673 		 * we have no reasons to accept it sometimes.
6674 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6675 		 * is not flawless. So, discard packet for sanity.
6676 		 * Uncomment this return to process the data.
6677 		 */
6678 		return -1;
6679 #else
6680 		goto consume;
6681 #endif
6682 	}
6683 	/* "fifth, if neither of the SYN or RST bits is set then
6684 	 * drop the segment and return."
6685 	 */
6686 
6687 discard_and_undo:
6688 	tcp_clear_options(&tp->rx_opt);
6689 	tp->rx_opt.mss_clamp = saved_clamp;
6690 	tcp_drop_reason(sk, skb, reason);
6691 	return 0;
6692 
6693 reset_and_undo:
6694 	tcp_clear_options(&tp->rx_opt);
6695 	tp->rx_opt.mss_clamp = saved_clamp;
6696 	/* we can reuse/return @reason to its caller to handle the exception */
6697 	return reason;
6698 }
6699 
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6700 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6701 {
6702 	struct tcp_sock *tp = tcp_sk(sk);
6703 	struct request_sock *req;
6704 
6705 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6706 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6707 	 */
6708 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6709 		tcp_try_undo_recovery(sk);
6710 
6711 	tcp_update_rto_time(tp);
6712 	inet_csk(sk)->icsk_retransmits = 0;
6713 	/* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6714 	 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6715 	 * need to zero retrans_stamp here to prevent spurious
6716 	 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6717 	 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6718 	 * set entering CA_Recovery, for correct retransmits_timed_out() and
6719 	 * undo behavior.
6720 	 */
6721 	tcp_retrans_stamp_cleanup(sk);
6722 
6723 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6724 	 * we no longer need req so release it.
6725 	 */
6726 	req = rcu_dereference_protected(tp->fastopen_rsk,
6727 					lockdep_sock_is_held(sk));
6728 	reqsk_fastopen_remove(sk, req, false);
6729 
6730 	/* Re-arm the timer because data may have been sent out.
6731 	 * This is similar to the regular data transmission case
6732 	 * when new data has just been ack'ed.
6733 	 *
6734 	 * (TFO) - we could try to be more aggressive and
6735 	 * retransmitting any data sooner based on when they
6736 	 * are sent out.
6737 	 */
6738 	tcp_rearm_rto(sk);
6739 }
6740 
6741 /*
6742  *	This function implements the receiving procedure of RFC 793 for
6743  *	all states except ESTABLISHED and TIME_WAIT.
6744  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6745  *	address independent.
6746  */
6747 
6748 enum skb_drop_reason
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6749 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6750 {
6751 	struct tcp_sock *tp = tcp_sk(sk);
6752 	struct inet_connection_sock *icsk = inet_csk(sk);
6753 	const struct tcphdr *th = tcp_hdr(skb);
6754 	struct request_sock *req;
6755 	int queued = 0;
6756 	SKB_DR(reason);
6757 
6758 	switch (sk->sk_state) {
6759 	case TCP_CLOSE:
6760 		SKB_DR_SET(reason, TCP_CLOSE);
6761 		goto discard;
6762 
6763 	case TCP_LISTEN:
6764 		if (th->ack)
6765 			return SKB_DROP_REASON_TCP_FLAGS;
6766 
6767 		if (th->rst) {
6768 			SKB_DR_SET(reason, TCP_RESET);
6769 			goto discard;
6770 		}
6771 		if (th->syn) {
6772 			if (th->fin) {
6773 				SKB_DR_SET(reason, TCP_FLAGS);
6774 				goto discard;
6775 			}
6776 			/* It is possible that we process SYN packets from backlog,
6777 			 * so we need to make sure to disable BH and RCU right there.
6778 			 */
6779 			rcu_read_lock();
6780 			local_bh_disable();
6781 			icsk->icsk_af_ops->conn_request(sk, skb);
6782 			local_bh_enable();
6783 			rcu_read_unlock();
6784 
6785 			consume_skb(skb);
6786 			return 0;
6787 		}
6788 		SKB_DR_SET(reason, TCP_FLAGS);
6789 		goto discard;
6790 
6791 	case TCP_SYN_SENT:
6792 		tp->rx_opt.saw_tstamp = 0;
6793 		tcp_mstamp_refresh(tp);
6794 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6795 		if (queued >= 0)
6796 			return queued;
6797 
6798 		/* Do step6 onward by hand. */
6799 		tcp_urg(sk, skb, th);
6800 		__kfree_skb(skb);
6801 		tcp_data_snd_check(sk);
6802 		return 0;
6803 	}
6804 
6805 	tcp_mstamp_refresh(tp);
6806 	tp->rx_opt.saw_tstamp = 0;
6807 	req = rcu_dereference_protected(tp->fastopen_rsk,
6808 					lockdep_sock_is_held(sk));
6809 	if (req) {
6810 		bool req_stolen;
6811 
6812 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6813 		    sk->sk_state != TCP_FIN_WAIT1);
6814 
6815 		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6816 			SKB_DR_SET(reason, TCP_FASTOPEN);
6817 			goto discard;
6818 		}
6819 	}
6820 
6821 	if (!th->ack && !th->rst && !th->syn) {
6822 		SKB_DR_SET(reason, TCP_FLAGS);
6823 		goto discard;
6824 	}
6825 	if (!tcp_validate_incoming(sk, skb, th, 0))
6826 		return 0;
6827 
6828 	/* step 5: check the ACK field */
6829 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH |
6830 				  FLAG_UPDATE_TS_RECENT |
6831 				  FLAG_NO_CHALLENGE_ACK);
6832 
6833 	if ((int)reason <= 0) {
6834 		if (sk->sk_state == TCP_SYN_RECV) {
6835 			/* send one RST */
6836 			if (!reason)
6837 				return SKB_DROP_REASON_TCP_OLD_ACK;
6838 			return -reason;
6839 		}
6840 		/* accept old ack during closing */
6841 		if ((int)reason < 0) {
6842 			tcp_send_challenge_ack(sk);
6843 			reason = -reason;
6844 			goto discard;
6845 		}
6846 	}
6847 	SKB_DR_SET(reason, NOT_SPECIFIED);
6848 	switch (sk->sk_state) {
6849 	case TCP_SYN_RECV:
6850 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6851 		if (!tp->srtt_us)
6852 			tcp_synack_rtt_meas(sk, req);
6853 
6854 		if (req) {
6855 			tcp_rcv_synrecv_state_fastopen(sk);
6856 		} else {
6857 			tcp_try_undo_spurious_syn(sk);
6858 			tp->retrans_stamp = 0;
6859 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6860 					  skb);
6861 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6862 		}
6863 		tcp_ao_established(sk);
6864 		smp_mb();
6865 		tcp_set_state(sk, TCP_ESTABLISHED);
6866 		sk->sk_state_change(sk);
6867 
6868 		/* Note, that this wakeup is only for marginal crossed SYN case.
6869 		 * Passively open sockets are not waked up, because
6870 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6871 		 */
6872 		if (sk->sk_socket)
6873 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6874 
6875 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6876 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6877 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6878 
6879 		if (tp->rx_opt.tstamp_ok)
6880 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6881 
6882 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6883 			tcp_update_pacing_rate(sk);
6884 
6885 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6886 		tp->lsndtime = tcp_jiffies32;
6887 
6888 		tcp_initialize_rcv_mss(sk);
6889 		tcp_fast_path_on(tp);
6890 		if (sk->sk_shutdown & SEND_SHUTDOWN)
6891 			tcp_shutdown(sk, SEND_SHUTDOWN);
6892 		break;
6893 
6894 	case TCP_FIN_WAIT1: {
6895 		int tmo;
6896 
6897 		if (req)
6898 			tcp_rcv_synrecv_state_fastopen(sk);
6899 
6900 		if (tp->snd_una != tp->write_seq)
6901 			break;
6902 
6903 		tcp_set_state(sk, TCP_FIN_WAIT2);
6904 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6905 
6906 		sk_dst_confirm(sk);
6907 
6908 		if (!sock_flag(sk, SOCK_DEAD)) {
6909 			/* Wake up lingering close() */
6910 			sk->sk_state_change(sk);
6911 			break;
6912 		}
6913 
6914 		if (READ_ONCE(tp->linger2) < 0) {
6915 			tcp_done(sk);
6916 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6917 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6918 		}
6919 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6920 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6921 			/* Receive out of order FIN after close() */
6922 			if (tp->syn_fastopen && th->fin)
6923 				tcp_fastopen_active_disable(sk);
6924 			tcp_done(sk);
6925 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6926 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6927 		}
6928 
6929 		tmo = tcp_fin_time(sk);
6930 		if (tmo > TCP_TIMEWAIT_LEN) {
6931 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6932 		} else if (th->fin || sock_owned_by_user(sk)) {
6933 			/* Bad case. We could lose such FIN otherwise.
6934 			 * It is not a big problem, but it looks confusing
6935 			 * and not so rare event. We still can lose it now,
6936 			 * if it spins in bh_lock_sock(), but it is really
6937 			 * marginal case.
6938 			 */
6939 			inet_csk_reset_keepalive_timer(sk, tmo);
6940 		} else {
6941 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6942 			goto consume;
6943 		}
6944 		break;
6945 	}
6946 
6947 	case TCP_CLOSING:
6948 		if (tp->snd_una == tp->write_seq) {
6949 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6950 			goto consume;
6951 		}
6952 		break;
6953 
6954 	case TCP_LAST_ACK:
6955 		if (tp->snd_una == tp->write_seq) {
6956 			tcp_update_metrics(sk);
6957 			tcp_done(sk);
6958 			goto consume;
6959 		}
6960 		break;
6961 	}
6962 
6963 	/* step 6: check the URG bit */
6964 	tcp_urg(sk, skb, th);
6965 
6966 	/* step 7: process the segment text */
6967 	switch (sk->sk_state) {
6968 	case TCP_CLOSE_WAIT:
6969 	case TCP_CLOSING:
6970 	case TCP_LAST_ACK:
6971 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6972 			/* If a subflow has been reset, the packet should not
6973 			 * continue to be processed, drop the packet.
6974 			 */
6975 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6976 				goto discard;
6977 			break;
6978 		}
6979 		fallthrough;
6980 	case TCP_FIN_WAIT1:
6981 	case TCP_FIN_WAIT2:
6982 		/* RFC 793 says to queue data in these states,
6983 		 * RFC 1122 says we MUST send a reset.
6984 		 * BSD 4.4 also does reset.
6985 		 */
6986 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6987 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6988 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6989 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6990 				tcp_reset(sk, skb);
6991 				return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6992 			}
6993 		}
6994 		fallthrough;
6995 	case TCP_ESTABLISHED:
6996 		tcp_data_queue(sk, skb);
6997 		queued = 1;
6998 		break;
6999 	}
7000 
7001 	/* tcp_data could move socket to TIME-WAIT */
7002 	if (sk->sk_state != TCP_CLOSE) {
7003 		tcp_data_snd_check(sk);
7004 		tcp_ack_snd_check(sk);
7005 	}
7006 
7007 	if (!queued) {
7008 discard:
7009 		tcp_drop_reason(sk, skb, reason);
7010 	}
7011 	return 0;
7012 
7013 consume:
7014 	__kfree_skb(skb);
7015 	return 0;
7016 }
7017 EXPORT_SYMBOL(tcp_rcv_state_process);
7018 
pr_drop_req(struct request_sock * req,__u16 port,int family)7019 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
7020 {
7021 	struct inet_request_sock *ireq = inet_rsk(req);
7022 
7023 	if (family == AF_INET)
7024 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
7025 				    &ireq->ir_rmt_addr, port);
7026 #if IS_ENABLED(CONFIG_IPV6)
7027 	else if (family == AF_INET6)
7028 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
7029 				    &ireq->ir_v6_rmt_addr, port);
7030 #endif
7031 }
7032 
7033 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
7034  *
7035  * If we receive a SYN packet with these bits set, it means a
7036  * network is playing bad games with TOS bits. In order to
7037  * avoid possible false congestion notifications, we disable
7038  * TCP ECN negotiation.
7039  *
7040  * Exception: tcp_ca wants ECN. This is required for DCTCP
7041  * congestion control: Linux DCTCP asserts ECT on all packets,
7042  * including SYN, which is most optimal solution; however,
7043  * others, such as FreeBSD do not.
7044  *
7045  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
7046  * set, indicating the use of a future TCP extension (such as AccECN). See
7047  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
7048  * extensions.
7049  */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)7050 static void tcp_ecn_create_request(struct request_sock *req,
7051 				   const struct sk_buff *skb,
7052 				   const struct sock *listen_sk,
7053 				   const struct dst_entry *dst)
7054 {
7055 	const struct tcphdr *th = tcp_hdr(skb);
7056 	const struct net *net = sock_net(listen_sk);
7057 	bool th_ecn = th->ece && th->cwr;
7058 	bool ect, ecn_ok;
7059 	u32 ecn_ok_dst;
7060 
7061 	if (!th_ecn)
7062 		return;
7063 
7064 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
7065 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
7066 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
7067 
7068 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
7069 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
7070 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
7071 		inet_rsk(req)->ecn_ok = 1;
7072 }
7073 
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)7074 static void tcp_openreq_init(struct request_sock *req,
7075 			     const struct tcp_options_received *rx_opt,
7076 			     struct sk_buff *skb, const struct sock *sk)
7077 {
7078 	struct inet_request_sock *ireq = inet_rsk(req);
7079 
7080 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
7081 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
7082 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
7083 	tcp_rsk(req)->snt_synack = 0;
7084 	tcp_rsk(req)->last_oow_ack_time = 0;
7085 	req->mss = rx_opt->mss_clamp;
7086 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
7087 	ireq->tstamp_ok = rx_opt->tstamp_ok;
7088 	ireq->sack_ok = rx_opt->sack_ok;
7089 	ireq->snd_wscale = rx_opt->snd_wscale;
7090 	ireq->wscale_ok = rx_opt->wscale_ok;
7091 	ireq->acked = 0;
7092 	ireq->ecn_ok = 0;
7093 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
7094 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
7095 	ireq->ir_mark = inet_request_mark(sk, skb);
7096 #if IS_ENABLED(CONFIG_SMC)
7097 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
7098 			tcp_sk(sk)->smc_hs_congested(sk));
7099 #endif
7100 }
7101 
7102 /*
7103  * Return true if a syncookie should be sent
7104  */
tcp_syn_flood_action(struct sock * sk,const char * proto)7105 static bool tcp_syn_flood_action(struct sock *sk, const char *proto)
7106 {
7107 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
7108 	const char *msg = "Dropping request";
7109 	struct net *net = sock_net(sk);
7110 	bool want_cookie = false;
7111 	u8 syncookies;
7112 
7113 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7114 
7115 #ifdef CONFIG_SYN_COOKIES
7116 	if (syncookies) {
7117 		msg = "Sending cookies";
7118 		want_cookie = true;
7119 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7120 	} else
7121 #endif
7122 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7123 
7124 	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7125 	    xchg(&queue->synflood_warned, 1) == 0) {
7126 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7127 			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7128 					proto, inet6_rcv_saddr(sk),
7129 					sk->sk_num, msg);
7130 		} else {
7131 			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7132 					proto, &sk->sk_rcv_saddr,
7133 					sk->sk_num, msg);
7134 		}
7135 	}
7136 
7137 	return want_cookie;
7138 }
7139 
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)7140 static void tcp_reqsk_record_syn(const struct sock *sk,
7141 				 struct request_sock *req,
7142 				 const struct sk_buff *skb)
7143 {
7144 	if (tcp_sk(sk)->save_syn) {
7145 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7146 		struct saved_syn *saved_syn;
7147 		u32 mac_hdrlen;
7148 		void *base;
7149 
7150 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
7151 			base = skb_mac_header(skb);
7152 			mac_hdrlen = skb_mac_header_len(skb);
7153 			len += mac_hdrlen;
7154 		} else {
7155 			base = skb_network_header(skb);
7156 			mac_hdrlen = 0;
7157 		}
7158 
7159 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
7160 				    GFP_ATOMIC);
7161 		if (saved_syn) {
7162 			saved_syn->mac_hdrlen = mac_hdrlen;
7163 			saved_syn->network_hdrlen = skb_network_header_len(skb);
7164 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7165 			memcpy(saved_syn->data, base, len);
7166 			req->saved_syn = saved_syn;
7167 		}
7168 	}
7169 }
7170 
7171 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7172  * used for SYN cookie generation.
7173  */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)7174 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7175 			  const struct tcp_request_sock_ops *af_ops,
7176 			  struct sock *sk, struct tcphdr *th)
7177 {
7178 	struct tcp_sock *tp = tcp_sk(sk);
7179 	u16 mss;
7180 
7181 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7182 	    !inet_csk_reqsk_queue_is_full(sk))
7183 		return 0;
7184 
7185 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7186 		return 0;
7187 
7188 	if (sk_acceptq_is_full(sk)) {
7189 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7190 		return 0;
7191 	}
7192 
7193 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7194 	if (!mss)
7195 		mss = af_ops->mss_clamp;
7196 
7197 	return mss;
7198 }
7199 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7200 
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)7201 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7202 		     const struct tcp_request_sock_ops *af_ops,
7203 		     struct sock *sk, struct sk_buff *skb)
7204 {
7205 	struct tcp_fastopen_cookie foc = { .len = -1 };
7206 	struct tcp_options_received tmp_opt;
7207 	struct tcp_sock *tp = tcp_sk(sk);
7208 	struct net *net = sock_net(sk);
7209 	struct sock *fastopen_sk = NULL;
7210 	struct request_sock *req;
7211 	bool want_cookie = false;
7212 	struct dst_entry *dst;
7213 	struct flowi fl;
7214 	u8 syncookies;
7215 	u32 isn;
7216 
7217 #ifdef CONFIG_TCP_AO
7218 	const struct tcp_ao_hdr *aoh;
7219 #endif
7220 
7221 	isn = __this_cpu_read(tcp_tw_isn);
7222 	if (isn) {
7223 		/* TW buckets are converted to open requests without
7224 		 * limitations, they conserve resources and peer is
7225 		 * evidently real one.
7226 		 */
7227 		__this_cpu_write(tcp_tw_isn, 0);
7228 	} else {
7229 		syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7230 
7231 		if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) {
7232 			want_cookie = tcp_syn_flood_action(sk,
7233 							   rsk_ops->slab_name);
7234 			if (!want_cookie)
7235 				goto drop;
7236 		}
7237 	}
7238 
7239 	if (sk_acceptq_is_full(sk)) {
7240 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7241 		goto drop;
7242 	}
7243 
7244 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7245 	if (!req)
7246 		goto drop;
7247 
7248 	req->syncookie = want_cookie;
7249 	tcp_rsk(req)->af_specific = af_ops;
7250 	tcp_rsk(req)->ts_off = 0;
7251 	tcp_rsk(req)->req_usec_ts = false;
7252 #if IS_ENABLED(CONFIG_MPTCP)
7253 	tcp_rsk(req)->is_mptcp = 0;
7254 #endif
7255 
7256 	tcp_clear_options(&tmp_opt);
7257 	tmp_opt.mss_clamp = af_ops->mss_clamp;
7258 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
7259 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7260 			  want_cookie ? NULL : &foc);
7261 
7262 	if (want_cookie && !tmp_opt.saw_tstamp)
7263 		tcp_clear_options(&tmp_opt);
7264 
7265 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7266 		tmp_opt.smc_ok = 0;
7267 
7268 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7269 	tcp_openreq_init(req, &tmp_opt, skb, sk);
7270 	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7271 
7272 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7273 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7274 
7275 	dst = af_ops->route_req(sk, skb, &fl, req, isn);
7276 	if (!dst)
7277 		goto drop_and_free;
7278 
7279 	if (tmp_opt.tstamp_ok) {
7280 		tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7281 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7282 	}
7283 	if (!want_cookie && !isn) {
7284 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7285 
7286 		/* Kill the following clause, if you dislike this way. */
7287 		if (!syncookies &&
7288 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7289 		     (max_syn_backlog >> 2)) &&
7290 		    !tcp_peer_is_proven(req, dst)) {
7291 			/* Without syncookies last quarter of
7292 			 * backlog is filled with destinations,
7293 			 * proven to be alive.
7294 			 * It means that we continue to communicate
7295 			 * to destinations, already remembered
7296 			 * to the moment of synflood.
7297 			 */
7298 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7299 				    rsk_ops->family);
7300 			goto drop_and_release;
7301 		}
7302 
7303 		isn = af_ops->init_seq(skb);
7304 	}
7305 
7306 	tcp_ecn_create_request(req, skb, sk, dst);
7307 
7308 	if (want_cookie) {
7309 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7310 		if (!tmp_opt.tstamp_ok)
7311 			inet_rsk(req)->ecn_ok = 0;
7312 	}
7313 
7314 #ifdef CONFIG_TCP_AO
7315 	if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7316 		goto drop_and_release; /* Invalid TCP options */
7317 	if (aoh) {
7318 		tcp_rsk(req)->used_tcp_ao = true;
7319 		tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7320 		tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7321 
7322 	} else {
7323 		tcp_rsk(req)->used_tcp_ao = false;
7324 	}
7325 #endif
7326 	tcp_rsk(req)->snt_isn = isn;
7327 	tcp_rsk(req)->txhash = net_tx_rndhash();
7328 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7329 	tcp_openreq_init_rwin(req, sk, dst);
7330 	sk_rx_queue_set(req_to_sk(req), skb);
7331 	if (!want_cookie) {
7332 		tcp_reqsk_record_syn(sk, req, skb);
7333 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7334 	}
7335 	if (fastopen_sk) {
7336 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7337 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7338 		/* Add the child socket directly into the accept queue */
7339 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7340 			reqsk_fastopen_remove(fastopen_sk, req, false);
7341 			bh_unlock_sock(fastopen_sk);
7342 			sock_put(fastopen_sk);
7343 			goto drop_and_free;
7344 		}
7345 		sk->sk_data_ready(sk);
7346 		bh_unlock_sock(fastopen_sk);
7347 		sock_put(fastopen_sk);
7348 	} else {
7349 		tcp_rsk(req)->tfo_listener = false;
7350 		if (!want_cookie) {
7351 			req->timeout = tcp_timeout_init((struct sock *)req);
7352 			if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7353 								    req->timeout))) {
7354 				reqsk_free(req);
7355 				dst_release(dst);
7356 				return 0;
7357 			}
7358 
7359 		}
7360 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7361 				    !want_cookie ? TCP_SYNACK_NORMAL :
7362 						   TCP_SYNACK_COOKIE,
7363 				    skb);
7364 		if (want_cookie) {
7365 			reqsk_free(req);
7366 			return 0;
7367 		}
7368 	}
7369 	reqsk_put(req);
7370 	return 0;
7371 
7372 drop_and_release:
7373 	dst_release(dst);
7374 drop_and_free:
7375 	__reqsk_free(req);
7376 drop:
7377 	tcp_listendrop(sk);
7378 	return 0;
7379 }
7380 EXPORT_SYMBOL(tcp_conn_request);
7381