1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31 #include <linux/string_choices.h>
32 #include <linux/mutex.h>
33
34 #include <asm/apic.h>
35 #include <asm/msr.h>
36 #include <asm/perf_event.h>
37 #include <asm/tlbflush.h>
38 #include <asm/desc.h>
39 #include <asm/debugreg.h>
40 #include <asm/kvm_para.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/spec-ctrl.h>
43 #include <asm/cpu_device_id.h>
44 #include <asm/traps.h>
45 #include <asm/reboot.h>
46 #include <asm/fpu/api.h>
47
48 #include <trace/events/ipi.h>
49
50 #include "trace.h"
51
52 #include "svm.h"
53 #include "svm_ops.h"
54
55 #include "kvm_onhyperv.h"
56 #include "svm_onhyperv.h"
57
58 MODULE_AUTHOR("Qumranet");
59 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions");
60 MODULE_LICENSE("GPL");
61
62 #ifdef MODULE
63 static const struct x86_cpu_id svm_cpu_id[] = {
64 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
65 {}
66 };
67 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
68 #endif
69
70 #define SEG_TYPE_LDT 2
71 #define SEG_TYPE_BUSY_TSS16 3
72
73 static bool erratum_383_found __read_mostly;
74
75 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
76
77 /*
78 * Set osvw_len to higher value when updated Revision Guides
79 * are published and we know what the new status bits are
80 */
81 static uint64_t osvw_len = 4, osvw_status;
82
83 static DEFINE_PER_CPU(u64, current_tsc_ratio);
84
85 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4))
86
87 static const struct svm_direct_access_msrs {
88 u32 index; /* Index of the MSR */
89 bool always; /* True if intercept is initially cleared */
90 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
91 { .index = MSR_STAR, .always = true },
92 { .index = MSR_IA32_SYSENTER_CS, .always = true },
93 { .index = MSR_IA32_SYSENTER_EIP, .always = false },
94 { .index = MSR_IA32_SYSENTER_ESP, .always = false },
95 #ifdef CONFIG_X86_64
96 { .index = MSR_GS_BASE, .always = true },
97 { .index = MSR_FS_BASE, .always = true },
98 { .index = MSR_KERNEL_GS_BASE, .always = true },
99 { .index = MSR_LSTAR, .always = true },
100 { .index = MSR_CSTAR, .always = true },
101 { .index = MSR_SYSCALL_MASK, .always = true },
102 #endif
103 { .index = MSR_IA32_SPEC_CTRL, .always = false },
104 { .index = MSR_IA32_PRED_CMD, .always = false },
105 { .index = MSR_IA32_FLUSH_CMD, .always = false },
106 { .index = MSR_IA32_DEBUGCTLMSR, .always = false },
107 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
108 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
109 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
110 { .index = MSR_IA32_LASTINTTOIP, .always = false },
111 { .index = MSR_IA32_XSS, .always = false },
112 { .index = MSR_EFER, .always = false },
113 { .index = MSR_IA32_CR_PAT, .always = false },
114 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true },
115 { .index = MSR_TSC_AUX, .always = false },
116 { .index = X2APIC_MSR(APIC_ID), .always = false },
117 { .index = X2APIC_MSR(APIC_LVR), .always = false },
118 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false },
119 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false },
120 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false },
121 { .index = X2APIC_MSR(APIC_EOI), .always = false },
122 { .index = X2APIC_MSR(APIC_RRR), .always = false },
123 { .index = X2APIC_MSR(APIC_LDR), .always = false },
124 { .index = X2APIC_MSR(APIC_DFR), .always = false },
125 { .index = X2APIC_MSR(APIC_SPIV), .always = false },
126 { .index = X2APIC_MSR(APIC_ISR), .always = false },
127 { .index = X2APIC_MSR(APIC_TMR), .always = false },
128 { .index = X2APIC_MSR(APIC_IRR), .always = false },
129 { .index = X2APIC_MSR(APIC_ESR), .always = false },
130 { .index = X2APIC_MSR(APIC_ICR), .always = false },
131 { .index = X2APIC_MSR(APIC_ICR2), .always = false },
132
133 /*
134 * Note:
135 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
136 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
137 * the AVIC hardware would generate GP fault. Therefore, always
138 * intercept the MSR 0x832, and do not setup direct_access_msr.
139 */
140 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false },
141 { .index = X2APIC_MSR(APIC_LVTPC), .always = false },
142 { .index = X2APIC_MSR(APIC_LVT0), .always = false },
143 { .index = X2APIC_MSR(APIC_LVT1), .always = false },
144 { .index = X2APIC_MSR(APIC_LVTERR), .always = false },
145 { .index = X2APIC_MSR(APIC_TMICT), .always = false },
146 { .index = X2APIC_MSR(APIC_TMCCT), .always = false },
147 { .index = X2APIC_MSR(APIC_TDCR), .always = false },
148 { .index = MSR_INVALID, .always = false },
149 };
150
151 /*
152 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
153 * pause_filter_count: On processors that support Pause filtering(indicated
154 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
155 * count value. On VMRUN this value is loaded into an internal counter.
156 * Each time a pause instruction is executed, this counter is decremented
157 * until it reaches zero at which time a #VMEXIT is generated if pause
158 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
159 * Intercept Filtering for more details.
160 * This also indicate if ple logic enabled.
161 *
162 * pause_filter_thresh: In addition, some processor families support advanced
163 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
164 * the amount of time a guest is allowed to execute in a pause loop.
165 * In this mode, a 16-bit pause filter threshold field is added in the
166 * VMCB. The threshold value is a cycle count that is used to reset the
167 * pause counter. As with simple pause filtering, VMRUN loads the pause
168 * count value from VMCB into an internal counter. Then, on each pause
169 * instruction the hardware checks the elapsed number of cycles since
170 * the most recent pause instruction against the pause filter threshold.
171 * If the elapsed cycle count is greater than the pause filter threshold,
172 * then the internal pause count is reloaded from the VMCB and execution
173 * continues. If the elapsed cycle count is less than the pause filter
174 * threshold, then the internal pause count is decremented. If the count
175 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
176 * triggered. If advanced pause filtering is supported and pause filter
177 * threshold field is set to zero, the filter will operate in the simpler,
178 * count only mode.
179 */
180
181 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
182 module_param(pause_filter_thresh, ushort, 0444);
183
184 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
185 module_param(pause_filter_count, ushort, 0444);
186
187 /* Default doubles per-vcpu window every exit. */
188 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
189 module_param(pause_filter_count_grow, ushort, 0444);
190
191 /* Default resets per-vcpu window every exit to pause_filter_count. */
192 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
193 module_param(pause_filter_count_shrink, ushort, 0444);
194
195 /* Default is to compute the maximum so we can never overflow. */
196 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
197 module_param(pause_filter_count_max, ushort, 0444);
198
199 /*
200 * Use nested page tables by default. Note, NPT may get forced off by
201 * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
202 */
203 bool npt_enabled = true;
204 module_param_named(npt, npt_enabled, bool, 0444);
205
206 /* allow nested virtualization in KVM/SVM */
207 static int nested = true;
208 module_param(nested, int, 0444);
209
210 /* enable/disable Next RIP Save */
211 int nrips = true;
212 module_param(nrips, int, 0444);
213
214 /* enable/disable Virtual VMLOAD VMSAVE */
215 static int vls = true;
216 module_param(vls, int, 0444);
217
218 /* enable/disable Virtual GIF */
219 int vgif = true;
220 module_param(vgif, int, 0444);
221
222 /* enable/disable LBR virtualization */
223 int lbrv = true;
224 module_param(lbrv, int, 0444);
225
226 static int tsc_scaling = true;
227 module_param(tsc_scaling, int, 0444);
228
229 /*
230 * enable / disable AVIC. Because the defaults differ for APICv
231 * support between VMX and SVM we cannot use module_param_named.
232 */
233 static bool avic;
234 module_param(avic, bool, 0444);
235
236 module_param(enable_device_posted_irqs, bool, 0444);
237
238 bool __read_mostly dump_invalid_vmcb;
239 module_param(dump_invalid_vmcb, bool, 0644);
240
241
242 bool intercept_smi = true;
243 module_param(intercept_smi, bool, 0444);
244
245 bool vnmi = true;
246 module_param(vnmi, bool, 0444);
247
248 static bool svm_gp_erratum_intercept = true;
249
250 static u8 rsm_ins_bytes[] = "\x0f\xaa";
251
252 static unsigned long iopm_base;
253
254 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
255
256 static DEFINE_MUTEX(vmcb_dump_mutex);
257
258 /*
259 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via
260 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
261 *
262 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
263 * defer the restoration of TSC_AUX until the CPU returns to userspace.
264 */
265 static int tsc_aux_uret_slot __read_mostly = -1;
266
267 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
268
269 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
270 #define MSRS_RANGE_SIZE 2048
271 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
272
svm_msrpm_offset(u32 msr)273 u32 svm_msrpm_offset(u32 msr)
274 {
275 u32 offset;
276 int i;
277
278 for (i = 0; i < NUM_MSR_MAPS; i++) {
279 if (msr < msrpm_ranges[i] ||
280 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
281 continue;
282
283 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
284 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
285
286 /* Now we have the u8 offset - but need the u32 offset */
287 return offset / 4;
288 }
289
290 /* MSR not in any range */
291 return MSR_INVALID;
292 }
293
get_npt_level(void)294 static int get_npt_level(void)
295 {
296 #ifdef CONFIG_X86_64
297 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
298 #else
299 return PT32E_ROOT_LEVEL;
300 #endif
301 }
302
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)303 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
304 {
305 struct vcpu_svm *svm = to_svm(vcpu);
306 u64 old_efer = vcpu->arch.efer;
307 vcpu->arch.efer = efer;
308
309 if (!npt_enabled) {
310 /* Shadow paging assumes NX to be available. */
311 efer |= EFER_NX;
312
313 if (!(efer & EFER_LMA))
314 efer &= ~EFER_LME;
315 }
316
317 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
318 if (!(efer & EFER_SVME)) {
319 svm_leave_nested(vcpu);
320 svm_set_gif(svm, true);
321 /* #GP intercept is still needed for vmware backdoor */
322 if (!enable_vmware_backdoor)
323 clr_exception_intercept(svm, GP_VECTOR);
324
325 /*
326 * Free the nested guest state, unless we are in SMM.
327 * In this case we will return to the nested guest
328 * as soon as we leave SMM.
329 */
330 if (!is_smm(vcpu))
331 svm_free_nested(svm);
332
333 } else {
334 int ret = svm_allocate_nested(svm);
335
336 if (ret) {
337 vcpu->arch.efer = old_efer;
338 return ret;
339 }
340
341 /*
342 * Never intercept #GP for SEV guests, KVM can't
343 * decrypt guest memory to workaround the erratum.
344 */
345 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
346 set_exception_intercept(svm, GP_VECTOR);
347 }
348 }
349
350 svm->vmcb->save.efer = efer | EFER_SVME;
351 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
352 return 0;
353 }
354
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)355 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
356 {
357 struct vcpu_svm *svm = to_svm(vcpu);
358 u32 ret = 0;
359
360 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
361 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
362 return ret;
363 }
364
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)365 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
366 {
367 struct vcpu_svm *svm = to_svm(vcpu);
368
369 if (mask == 0)
370 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
371 else
372 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
373
374 }
375
__svm_skip_emulated_instruction(struct kvm_vcpu * vcpu,bool commit_side_effects)376 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
377 bool commit_side_effects)
378 {
379 struct vcpu_svm *svm = to_svm(vcpu);
380 unsigned long old_rflags;
381
382 /*
383 * SEV-ES does not expose the next RIP. The RIP update is controlled by
384 * the type of exit and the #VC handler in the guest.
385 */
386 if (sev_es_guest(vcpu->kvm))
387 goto done;
388
389 if (nrips && svm->vmcb->control.next_rip != 0) {
390 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
391 svm->next_rip = svm->vmcb->control.next_rip;
392 }
393
394 if (!svm->next_rip) {
395 if (unlikely(!commit_side_effects))
396 old_rflags = svm->vmcb->save.rflags;
397
398 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
399 return 0;
400
401 if (unlikely(!commit_side_effects))
402 svm->vmcb->save.rflags = old_rflags;
403 } else {
404 kvm_rip_write(vcpu, svm->next_rip);
405 }
406
407 done:
408 if (likely(commit_side_effects))
409 svm_set_interrupt_shadow(vcpu, 0);
410
411 return 1;
412 }
413
svm_skip_emulated_instruction(struct kvm_vcpu * vcpu)414 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
415 {
416 return __svm_skip_emulated_instruction(vcpu, true);
417 }
418
svm_update_soft_interrupt_rip(struct kvm_vcpu * vcpu)419 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
420 {
421 unsigned long rip, old_rip = kvm_rip_read(vcpu);
422 struct vcpu_svm *svm = to_svm(vcpu);
423
424 /*
425 * Due to architectural shortcomings, the CPU doesn't always provide
426 * NextRIP, e.g. if KVM intercepted an exception that occurred while
427 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip
428 * the instruction even if NextRIP is supported to acquire the next
429 * RIP so that it can be shoved into the NextRIP field, otherwise
430 * hardware will fail to advance guest RIP during event injection.
431 * Drop the exception/interrupt if emulation fails and effectively
432 * retry the instruction, it's the least awful option. If NRIPS is
433 * in use, the skip must not commit any side effects such as clearing
434 * the interrupt shadow or RFLAGS.RF.
435 */
436 if (!__svm_skip_emulated_instruction(vcpu, !nrips))
437 return -EIO;
438
439 rip = kvm_rip_read(vcpu);
440
441 /*
442 * Save the injection information, even when using next_rip, as the
443 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
444 * doesn't complete due to a VM-Exit occurring while the CPU is
445 * vectoring the event. Decoding the instruction isn't guaranteed to
446 * work as there may be no backing instruction, e.g. if the event is
447 * being injected by L1 for L2, or if the guest is patching INT3 into
448 * a different instruction.
449 */
450 svm->soft_int_injected = true;
451 svm->soft_int_csbase = svm->vmcb->save.cs.base;
452 svm->soft_int_old_rip = old_rip;
453 svm->soft_int_next_rip = rip;
454
455 if (nrips)
456 kvm_rip_write(vcpu, old_rip);
457
458 if (static_cpu_has(X86_FEATURE_NRIPS))
459 svm->vmcb->control.next_rip = rip;
460
461 return 0;
462 }
463
svm_inject_exception(struct kvm_vcpu * vcpu)464 static void svm_inject_exception(struct kvm_vcpu *vcpu)
465 {
466 struct kvm_queued_exception *ex = &vcpu->arch.exception;
467 struct vcpu_svm *svm = to_svm(vcpu);
468
469 kvm_deliver_exception_payload(vcpu, ex);
470
471 if (kvm_exception_is_soft(ex->vector) &&
472 svm_update_soft_interrupt_rip(vcpu))
473 return;
474
475 svm->vmcb->control.event_inj = ex->vector
476 | SVM_EVTINJ_VALID
477 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
478 | SVM_EVTINJ_TYPE_EXEPT;
479 svm->vmcb->control.event_inj_err = ex->error_code;
480 }
481
svm_init_erratum_383(void)482 static void svm_init_erratum_383(void)
483 {
484 u64 val;
485
486 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
487 return;
488
489 /* Use _safe variants to not break nested virtualization */
490 if (native_read_msr_safe(MSR_AMD64_DC_CFG, &val))
491 return;
492
493 val |= (1ULL << 47);
494
495 native_write_msr_safe(MSR_AMD64_DC_CFG, val);
496
497 erratum_383_found = true;
498 }
499
svm_init_osvw(struct kvm_vcpu * vcpu)500 static void svm_init_osvw(struct kvm_vcpu *vcpu)
501 {
502 /*
503 * Guests should see errata 400 and 415 as fixed (assuming that
504 * HLT and IO instructions are intercepted).
505 */
506 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
507 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
508
509 /*
510 * By increasing VCPU's osvw.length to 3 we are telling the guest that
511 * all osvw.status bits inside that length, including bit 0 (which is
512 * reserved for erratum 298), are valid. However, if host processor's
513 * osvw_len is 0 then osvw_status[0] carries no information. We need to
514 * be conservative here and therefore we tell the guest that erratum 298
515 * is present (because we really don't know).
516 */
517 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
518 vcpu->arch.osvw.status |= 1;
519 }
520
__kvm_is_svm_supported(void)521 static bool __kvm_is_svm_supported(void)
522 {
523 int cpu = smp_processor_id();
524 struct cpuinfo_x86 *c = &cpu_data(cpu);
525
526 if (c->x86_vendor != X86_VENDOR_AMD &&
527 c->x86_vendor != X86_VENDOR_HYGON) {
528 pr_err("CPU %d isn't AMD or Hygon\n", cpu);
529 return false;
530 }
531
532 if (!cpu_has(c, X86_FEATURE_SVM)) {
533 pr_err("SVM not supported by CPU %d\n", cpu);
534 return false;
535 }
536
537 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
538 pr_info("KVM is unsupported when running as an SEV guest\n");
539 return false;
540 }
541
542 return true;
543 }
544
kvm_is_svm_supported(void)545 static bool kvm_is_svm_supported(void)
546 {
547 bool supported;
548
549 migrate_disable();
550 supported = __kvm_is_svm_supported();
551 migrate_enable();
552
553 return supported;
554 }
555
svm_check_processor_compat(void)556 static int svm_check_processor_compat(void)
557 {
558 if (!__kvm_is_svm_supported())
559 return -EIO;
560
561 return 0;
562 }
563
__svm_write_tsc_multiplier(u64 multiplier)564 static void __svm_write_tsc_multiplier(u64 multiplier)
565 {
566 if (multiplier == __this_cpu_read(current_tsc_ratio))
567 return;
568
569 wrmsrq(MSR_AMD64_TSC_RATIO, multiplier);
570 __this_cpu_write(current_tsc_ratio, multiplier);
571 }
572
sev_es_host_save_area(struct svm_cpu_data * sd)573 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd)
574 {
575 return &sd->save_area->host_sev_es_save;
576 }
577
kvm_cpu_svm_disable(void)578 static inline void kvm_cpu_svm_disable(void)
579 {
580 uint64_t efer;
581
582 wrmsrq(MSR_VM_HSAVE_PA, 0);
583 rdmsrq(MSR_EFER, efer);
584 if (efer & EFER_SVME) {
585 /*
586 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
587 * NMI aren't blocked.
588 */
589 stgi();
590 wrmsrq(MSR_EFER, efer & ~EFER_SVME);
591 }
592 }
593
svm_emergency_disable_virtualization_cpu(void)594 static void svm_emergency_disable_virtualization_cpu(void)
595 {
596 kvm_rebooting = true;
597
598 kvm_cpu_svm_disable();
599 }
600
svm_disable_virtualization_cpu(void)601 static void svm_disable_virtualization_cpu(void)
602 {
603 /* Make sure we clean up behind us */
604 if (tsc_scaling)
605 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
606
607 kvm_cpu_svm_disable();
608
609 amd_pmu_disable_virt();
610 }
611
svm_enable_virtualization_cpu(void)612 static int svm_enable_virtualization_cpu(void)
613 {
614
615 struct svm_cpu_data *sd;
616 uint64_t efer;
617 int me = raw_smp_processor_id();
618
619 rdmsrq(MSR_EFER, efer);
620 if (efer & EFER_SVME)
621 return -EBUSY;
622
623 sd = per_cpu_ptr(&svm_data, me);
624 sd->asid_generation = 1;
625 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
626 sd->next_asid = sd->max_asid + 1;
627 sd->min_asid = max_sev_asid + 1;
628
629 wrmsrq(MSR_EFER, efer | EFER_SVME);
630
631 wrmsrq(MSR_VM_HSAVE_PA, sd->save_area_pa);
632
633 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
634 /*
635 * Set the default value, even if we don't use TSC scaling
636 * to avoid having stale value in the msr
637 */
638 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
639 }
640
641
642 /*
643 * Get OSVW bits.
644 *
645 * Note that it is possible to have a system with mixed processor
646 * revisions and therefore different OSVW bits. If bits are not the same
647 * on different processors then choose the worst case (i.e. if erratum
648 * is present on one processor and not on another then assume that the
649 * erratum is present everywhere).
650 */
651 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
652 u64 len, status = 0;
653 int err;
654
655 err = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &len);
656 if (!err)
657 err = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, &status);
658
659 if (err)
660 osvw_status = osvw_len = 0;
661 else {
662 if (len < osvw_len)
663 osvw_len = len;
664 osvw_status |= status;
665 osvw_status &= (1ULL << osvw_len) - 1;
666 }
667 } else
668 osvw_status = osvw_len = 0;
669
670 svm_init_erratum_383();
671
672 amd_pmu_enable_virt();
673
674 /*
675 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type
676 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests.
677 * Since Linux does not change the value of TSC_AUX once set, prime the
678 * TSC_AUX field now to avoid a RDMSR on every vCPU run.
679 */
680 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
681 u32 __maybe_unused msr_hi;
682
683 rdmsr(MSR_TSC_AUX, sev_es_host_save_area(sd)->tsc_aux, msr_hi);
684 }
685
686 return 0;
687 }
688
svm_cpu_uninit(int cpu)689 static void svm_cpu_uninit(int cpu)
690 {
691 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
692
693 if (!sd->save_area)
694 return;
695
696 kfree(sd->sev_vmcbs);
697 __free_page(__sme_pa_to_page(sd->save_area_pa));
698 sd->save_area_pa = 0;
699 sd->save_area = NULL;
700 }
701
svm_cpu_init(int cpu)702 static int svm_cpu_init(int cpu)
703 {
704 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
705 struct page *save_area_page;
706 int ret = -ENOMEM;
707
708 memset(sd, 0, sizeof(struct svm_cpu_data));
709 save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL);
710 if (!save_area_page)
711 return ret;
712
713 ret = sev_cpu_init(sd);
714 if (ret)
715 goto free_save_area;
716
717 sd->save_area = page_address(save_area_page);
718 sd->save_area_pa = __sme_page_pa(save_area_page);
719 return 0;
720
721 free_save_area:
722 __free_page(save_area_page);
723 return ret;
724
725 }
726
set_dr_intercepts(struct vcpu_svm * svm)727 static void set_dr_intercepts(struct vcpu_svm *svm)
728 {
729 struct vmcb *vmcb = svm->vmcb01.ptr;
730
731 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
732 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
733 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
734 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
735 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
736 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
737 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
738 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
739 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
740 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
741 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
742 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
743 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
744 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
745 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
746 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
747
748 recalc_intercepts(svm);
749 }
750
clr_dr_intercepts(struct vcpu_svm * svm)751 static void clr_dr_intercepts(struct vcpu_svm *svm)
752 {
753 struct vmcb *vmcb = svm->vmcb01.ptr;
754
755 vmcb->control.intercepts[INTERCEPT_DR] = 0;
756
757 recalc_intercepts(svm);
758 }
759
direct_access_msr_slot(u32 msr)760 static int direct_access_msr_slot(u32 msr)
761 {
762 u32 i;
763
764 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
765 if (direct_access_msrs[i].index == msr)
766 return i;
767
768 return -ENOENT;
769 }
770
set_shadow_msr_intercept(struct kvm_vcpu * vcpu,u32 msr,int read,int write)771 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
772 int write)
773 {
774 struct vcpu_svm *svm = to_svm(vcpu);
775 int slot = direct_access_msr_slot(msr);
776
777 if (slot == -ENOENT)
778 return;
779
780 /* Set the shadow bitmaps to the desired intercept states */
781 if (read)
782 set_bit(slot, svm->shadow_msr_intercept.read);
783 else
784 clear_bit(slot, svm->shadow_msr_intercept.read);
785
786 if (write)
787 set_bit(slot, svm->shadow_msr_intercept.write);
788 else
789 clear_bit(slot, svm->shadow_msr_intercept.write);
790 }
791
valid_msr_intercept(u32 index)792 static bool valid_msr_intercept(u32 index)
793 {
794 return direct_access_msr_slot(index) != -ENOENT;
795 }
796
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)797 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
798 {
799 u8 bit_write;
800 unsigned long tmp;
801 u32 offset;
802 u32 *msrpm;
803
804 /*
805 * For non-nested case:
806 * If the L01 MSR bitmap does not intercept the MSR, then we need to
807 * save it.
808 *
809 * For nested case:
810 * If the L02 MSR bitmap does not intercept the MSR, then we need to
811 * save it.
812 */
813 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
814 to_svm(vcpu)->msrpm;
815
816 offset = svm_msrpm_offset(msr);
817 bit_write = 2 * (msr & 0x0f) + 1;
818 tmp = msrpm[offset];
819
820 BUG_ON(offset == MSR_INVALID);
821
822 return test_bit(bit_write, &tmp);
823 }
824
set_msr_interception_bitmap(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)825 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
826 u32 msr, int read, int write)
827 {
828 struct vcpu_svm *svm = to_svm(vcpu);
829 u8 bit_read, bit_write;
830 unsigned long tmp;
831 u32 offset;
832
833 /*
834 * If this warning triggers extend the direct_access_msrs list at the
835 * beginning of the file
836 */
837 WARN_ON(!valid_msr_intercept(msr));
838
839 /* Enforce non allowed MSRs to trap */
840 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
841 read = 0;
842
843 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
844 write = 0;
845
846 offset = svm_msrpm_offset(msr);
847 bit_read = 2 * (msr & 0x0f);
848 bit_write = 2 * (msr & 0x0f) + 1;
849 tmp = msrpm[offset];
850
851 BUG_ON(offset == MSR_INVALID);
852
853 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
854 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
855
856 msrpm[offset] = tmp;
857
858 svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
859 svm->nested.force_msr_bitmap_recalc = true;
860 }
861
set_msr_interception(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)862 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
863 int read, int write)
864 {
865 set_shadow_msr_intercept(vcpu, msr, read, write);
866 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
867 }
868
svm_vcpu_alloc_msrpm(void)869 u32 *svm_vcpu_alloc_msrpm(void)
870 {
871 unsigned int order = get_order(MSRPM_SIZE);
872 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
873 u32 *msrpm;
874
875 if (!pages)
876 return NULL;
877
878 msrpm = page_address(pages);
879 memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
880
881 return msrpm;
882 }
883
svm_vcpu_init_msrpm(struct kvm_vcpu * vcpu,u32 * msrpm)884 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
885 {
886 int i;
887
888 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
889 if (!direct_access_msrs[i].always)
890 continue;
891 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
892 }
893 }
894
svm_set_x2apic_msr_interception(struct vcpu_svm * svm,bool intercept)895 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
896 {
897 int i;
898
899 if (intercept == svm->x2avic_msrs_intercepted)
900 return;
901
902 if (!x2avic_enabled)
903 return;
904
905 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
906 int index = direct_access_msrs[i].index;
907
908 if ((index < APIC_BASE_MSR) ||
909 (index > APIC_BASE_MSR + 0xff))
910 continue;
911 set_msr_interception(&svm->vcpu, svm->msrpm, index,
912 !intercept, !intercept);
913 }
914
915 svm->x2avic_msrs_intercepted = intercept;
916 }
917
svm_vcpu_free_msrpm(u32 * msrpm)918 void svm_vcpu_free_msrpm(u32 *msrpm)
919 {
920 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
921 }
922
svm_msr_filter_changed(struct kvm_vcpu * vcpu)923 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
924 {
925 struct vcpu_svm *svm = to_svm(vcpu);
926 u32 i;
927
928 /*
929 * Set intercept permissions for all direct access MSRs again. They
930 * will automatically get filtered through the MSR filter, so we are
931 * back in sync after this.
932 */
933 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
934 u32 msr = direct_access_msrs[i].index;
935 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
936 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
937
938 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
939 }
940 }
941
add_msr_offset(u32 offset)942 static void add_msr_offset(u32 offset)
943 {
944 int i;
945
946 for (i = 0; i < MSRPM_OFFSETS; ++i) {
947
948 /* Offset already in list? */
949 if (msrpm_offsets[i] == offset)
950 return;
951
952 /* Slot used by another offset? */
953 if (msrpm_offsets[i] != MSR_INVALID)
954 continue;
955
956 /* Add offset to list */
957 msrpm_offsets[i] = offset;
958
959 return;
960 }
961
962 /*
963 * If this BUG triggers the msrpm_offsets table has an overflow. Just
964 * increase MSRPM_OFFSETS in this case.
965 */
966 BUG();
967 }
968
init_msrpm_offsets(void)969 static void init_msrpm_offsets(void)
970 {
971 int i;
972
973 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
974
975 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
976 u32 offset;
977
978 offset = svm_msrpm_offset(direct_access_msrs[i].index);
979 BUG_ON(offset == MSR_INVALID);
980
981 add_msr_offset(offset);
982 }
983 }
984
svm_copy_lbrs(struct vmcb * to_vmcb,struct vmcb * from_vmcb)985 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
986 {
987 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl;
988 to_vmcb->save.br_from = from_vmcb->save.br_from;
989 to_vmcb->save.br_to = from_vmcb->save.br_to;
990 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from;
991 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to;
992
993 vmcb_mark_dirty(to_vmcb, VMCB_LBR);
994 }
995
svm_enable_lbrv(struct kvm_vcpu * vcpu)996 void svm_enable_lbrv(struct kvm_vcpu *vcpu)
997 {
998 struct vcpu_svm *svm = to_svm(vcpu);
999
1000 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1001 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1002 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1003 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1004 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1005
1006 if (sev_es_guest(vcpu->kvm))
1007 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_DEBUGCTLMSR, 1, 1);
1008
1009 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */
1010 if (is_guest_mode(vcpu))
1011 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
1012 }
1013
svm_disable_lbrv(struct kvm_vcpu * vcpu)1014 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
1015 {
1016 struct vcpu_svm *svm = to_svm(vcpu);
1017
1018 KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm);
1019
1020 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1021 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1022 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1023 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1024 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1025
1026 /*
1027 * Move the LBR msrs back to the vmcb01 to avoid copying them
1028 * on nested guest entries.
1029 */
1030 if (is_guest_mode(vcpu))
1031 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
1032 }
1033
svm_get_lbr_vmcb(struct vcpu_svm * svm)1034 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
1035 {
1036 /*
1037 * If LBR virtualization is disabled, the LBR MSRs are always kept in
1038 * vmcb01. If LBR virtualization is enabled and L1 is running VMs of
1039 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
1040 */
1041 return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
1042 svm->vmcb01.ptr;
1043 }
1044
svm_update_lbrv(struct kvm_vcpu * vcpu)1045 void svm_update_lbrv(struct kvm_vcpu *vcpu)
1046 {
1047 struct vcpu_svm *svm = to_svm(vcpu);
1048 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
1049 bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
1050 (is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
1051 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
1052
1053 if (enable_lbrv == current_enable_lbrv)
1054 return;
1055
1056 if (enable_lbrv)
1057 svm_enable_lbrv(vcpu);
1058 else
1059 svm_disable_lbrv(vcpu);
1060 }
1061
disable_nmi_singlestep(struct vcpu_svm * svm)1062 void disable_nmi_singlestep(struct vcpu_svm *svm)
1063 {
1064 svm->nmi_singlestep = false;
1065
1066 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1067 /* Clear our flags if they were not set by the guest */
1068 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1069 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1070 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1071 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1072 }
1073 }
1074
grow_ple_window(struct kvm_vcpu * vcpu)1075 static void grow_ple_window(struct kvm_vcpu *vcpu)
1076 {
1077 struct vcpu_svm *svm = to_svm(vcpu);
1078 struct vmcb_control_area *control = &svm->vmcb->control;
1079 int old = control->pause_filter_count;
1080
1081 if (kvm_pause_in_guest(vcpu->kvm))
1082 return;
1083
1084 control->pause_filter_count = __grow_ple_window(old,
1085 pause_filter_count,
1086 pause_filter_count_grow,
1087 pause_filter_count_max);
1088
1089 if (control->pause_filter_count != old) {
1090 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1091 trace_kvm_ple_window_update(vcpu->vcpu_id,
1092 control->pause_filter_count, old);
1093 }
1094 }
1095
shrink_ple_window(struct kvm_vcpu * vcpu)1096 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1097 {
1098 struct vcpu_svm *svm = to_svm(vcpu);
1099 struct vmcb_control_area *control = &svm->vmcb->control;
1100 int old = control->pause_filter_count;
1101
1102 if (kvm_pause_in_guest(vcpu->kvm))
1103 return;
1104
1105 control->pause_filter_count =
1106 __shrink_ple_window(old,
1107 pause_filter_count,
1108 pause_filter_count_shrink,
1109 pause_filter_count);
1110 if (control->pause_filter_count != old) {
1111 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1112 trace_kvm_ple_window_update(vcpu->vcpu_id,
1113 control->pause_filter_count, old);
1114 }
1115 }
1116
svm_hardware_unsetup(void)1117 static void svm_hardware_unsetup(void)
1118 {
1119 int cpu;
1120
1121 sev_hardware_unsetup();
1122
1123 for_each_possible_cpu(cpu)
1124 svm_cpu_uninit(cpu);
1125
1126 __free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE));
1127 iopm_base = 0;
1128 }
1129
init_seg(struct vmcb_seg * seg)1130 static void init_seg(struct vmcb_seg *seg)
1131 {
1132 seg->selector = 0;
1133 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1134 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1135 seg->limit = 0xffff;
1136 seg->base = 0;
1137 }
1138
init_sys_seg(struct vmcb_seg * seg,uint32_t type)1139 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1140 {
1141 seg->selector = 0;
1142 seg->attrib = SVM_SELECTOR_P_MASK | type;
1143 seg->limit = 0xffff;
1144 seg->base = 0;
1145 }
1146
svm_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1147 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1148 {
1149 struct vcpu_svm *svm = to_svm(vcpu);
1150
1151 return svm->nested.ctl.tsc_offset;
1152 }
1153
svm_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1154 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1155 {
1156 struct vcpu_svm *svm = to_svm(vcpu);
1157
1158 return svm->tsc_ratio_msr;
1159 }
1160
svm_write_tsc_offset(struct kvm_vcpu * vcpu)1161 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
1162 {
1163 struct vcpu_svm *svm = to_svm(vcpu);
1164
1165 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1166 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
1167 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1168 }
1169
svm_write_tsc_multiplier(struct kvm_vcpu * vcpu)1170 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1171 {
1172 preempt_disable();
1173 if (to_svm(vcpu)->guest_state_loaded)
1174 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1175 preempt_enable();
1176 }
1177
1178 /* Evaluate instruction intercepts that depend on guest CPUID features. */
svm_recalc_instruction_intercepts(struct kvm_vcpu * vcpu,struct vcpu_svm * svm)1179 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1180 struct vcpu_svm *svm)
1181 {
1182 /*
1183 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1184 * roots, or if INVPCID is disabled in the guest to inject #UD.
1185 */
1186 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1187 if (!npt_enabled ||
1188 !guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID))
1189 svm_set_intercept(svm, INTERCEPT_INVPCID);
1190 else
1191 svm_clr_intercept(svm, INTERCEPT_INVPCID);
1192 }
1193
1194 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1195 if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP))
1196 svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1197 else
1198 svm_set_intercept(svm, INTERCEPT_RDTSCP);
1199 }
1200 }
1201
init_vmcb_after_set_cpuid(struct kvm_vcpu * vcpu)1202 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1203 {
1204 struct vcpu_svm *svm = to_svm(vcpu);
1205
1206 if (guest_cpuid_is_intel_compatible(vcpu)) {
1207 /*
1208 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1209 * accesses because the processor only stores 32 bits.
1210 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1211 */
1212 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1213 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1214 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1215
1216 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1217 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1218 } else {
1219 /*
1220 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1221 * in VMCB and clear intercepts to avoid #VMEXIT.
1222 */
1223 if (vls) {
1224 svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1225 svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1226 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1227 }
1228 /* No need to intercept these MSRs */
1229 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1230 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1231 }
1232 }
1233
init_vmcb(struct kvm_vcpu * vcpu)1234 static void init_vmcb(struct kvm_vcpu *vcpu)
1235 {
1236 struct vcpu_svm *svm = to_svm(vcpu);
1237 struct vmcb *vmcb = svm->vmcb01.ptr;
1238 struct vmcb_control_area *control = &vmcb->control;
1239 struct vmcb_save_area *save = &vmcb->save;
1240
1241 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1242 svm_set_intercept(svm, INTERCEPT_CR3_READ);
1243 svm_set_intercept(svm, INTERCEPT_CR4_READ);
1244 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1245 svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1246 svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1247 if (!kvm_vcpu_apicv_active(vcpu))
1248 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1249
1250 set_dr_intercepts(svm);
1251
1252 set_exception_intercept(svm, PF_VECTOR);
1253 set_exception_intercept(svm, UD_VECTOR);
1254 set_exception_intercept(svm, MC_VECTOR);
1255 set_exception_intercept(svm, AC_VECTOR);
1256 set_exception_intercept(svm, DB_VECTOR);
1257 /*
1258 * Guest access to VMware backdoor ports could legitimately
1259 * trigger #GP because of TSS I/O permission bitmap.
1260 * We intercept those #GP and allow access to them anyway
1261 * as VMware does.
1262 */
1263 if (enable_vmware_backdoor)
1264 set_exception_intercept(svm, GP_VECTOR);
1265
1266 svm_set_intercept(svm, INTERCEPT_INTR);
1267 svm_set_intercept(svm, INTERCEPT_NMI);
1268
1269 if (intercept_smi)
1270 svm_set_intercept(svm, INTERCEPT_SMI);
1271
1272 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1273 svm_set_intercept(svm, INTERCEPT_RDPMC);
1274 svm_set_intercept(svm, INTERCEPT_CPUID);
1275 svm_set_intercept(svm, INTERCEPT_INVD);
1276 svm_set_intercept(svm, INTERCEPT_INVLPG);
1277 svm_set_intercept(svm, INTERCEPT_INVLPGA);
1278 svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1279 svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1280 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1281 svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1282 svm_set_intercept(svm, INTERCEPT_VMRUN);
1283 svm_set_intercept(svm, INTERCEPT_VMMCALL);
1284 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1285 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1286 svm_set_intercept(svm, INTERCEPT_STGI);
1287 svm_set_intercept(svm, INTERCEPT_CLGI);
1288 svm_set_intercept(svm, INTERCEPT_SKINIT);
1289 svm_set_intercept(svm, INTERCEPT_WBINVD);
1290 svm_set_intercept(svm, INTERCEPT_XSETBV);
1291 svm_set_intercept(svm, INTERCEPT_RDPRU);
1292 svm_set_intercept(svm, INTERCEPT_RSM);
1293
1294 if (!kvm_mwait_in_guest(vcpu->kvm)) {
1295 svm_set_intercept(svm, INTERCEPT_MONITOR);
1296 svm_set_intercept(svm, INTERCEPT_MWAIT);
1297 }
1298
1299 if (!kvm_hlt_in_guest(vcpu->kvm)) {
1300 if (cpu_feature_enabled(X86_FEATURE_IDLE_HLT))
1301 svm_set_intercept(svm, INTERCEPT_IDLE_HLT);
1302 else
1303 svm_set_intercept(svm, INTERCEPT_HLT);
1304 }
1305
1306 control->iopm_base_pa = iopm_base;
1307 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1308 control->int_ctl = V_INTR_MASKING_MASK;
1309
1310 init_seg(&save->es);
1311 init_seg(&save->ss);
1312 init_seg(&save->ds);
1313 init_seg(&save->fs);
1314 init_seg(&save->gs);
1315
1316 save->cs.selector = 0xf000;
1317 save->cs.base = 0xffff0000;
1318 /* Executable/Readable Code Segment */
1319 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1320 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1321 save->cs.limit = 0xffff;
1322
1323 save->gdtr.base = 0;
1324 save->gdtr.limit = 0xffff;
1325 save->idtr.base = 0;
1326 save->idtr.limit = 0xffff;
1327
1328 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1329 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1330
1331 if (npt_enabled) {
1332 /* Setup VMCB for Nested Paging */
1333 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1334 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1335 clr_exception_intercept(svm, PF_VECTOR);
1336 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1337 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1338 save->g_pat = vcpu->arch.pat;
1339 save->cr3 = 0;
1340 }
1341 svm->current_vmcb->asid_generation = 0;
1342 svm->asid = 0;
1343
1344 svm->nested.vmcb12_gpa = INVALID_GPA;
1345 svm->nested.last_vmcb12_gpa = INVALID_GPA;
1346
1347 if (!kvm_pause_in_guest(vcpu->kvm)) {
1348 control->pause_filter_count = pause_filter_count;
1349 if (pause_filter_thresh)
1350 control->pause_filter_thresh = pause_filter_thresh;
1351 svm_set_intercept(svm, INTERCEPT_PAUSE);
1352 } else {
1353 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1354 }
1355
1356 svm_recalc_instruction_intercepts(vcpu, svm);
1357
1358 /*
1359 * If the host supports V_SPEC_CTRL then disable the interception
1360 * of MSR_IA32_SPEC_CTRL.
1361 */
1362 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1363 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1364
1365 if (kvm_vcpu_apicv_active(vcpu))
1366 avic_init_vmcb(svm, vmcb);
1367
1368 if (vnmi)
1369 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1370
1371 if (vgif) {
1372 svm_clr_intercept(svm, INTERCEPT_STGI);
1373 svm_clr_intercept(svm, INTERCEPT_CLGI);
1374 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1375 }
1376
1377 if (vcpu->kvm->arch.bus_lock_detection_enabled)
1378 svm_set_intercept(svm, INTERCEPT_BUSLOCK);
1379
1380 if (sev_guest(vcpu->kvm))
1381 sev_init_vmcb(svm);
1382
1383 svm_hv_init_vmcb(vmcb);
1384 init_vmcb_after_set_cpuid(vcpu);
1385
1386 vmcb_mark_all_dirty(vmcb);
1387
1388 enable_gif(svm);
1389 }
1390
__svm_vcpu_reset(struct kvm_vcpu * vcpu)1391 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1392 {
1393 struct vcpu_svm *svm = to_svm(vcpu);
1394
1395 svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1396
1397 svm_init_osvw(vcpu);
1398
1399 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
1400 vcpu->arch.microcode_version = 0x01000065;
1401 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1402
1403 svm->nmi_masked = false;
1404 svm->awaiting_iret_completion = false;
1405
1406 if (sev_es_guest(vcpu->kvm))
1407 sev_es_vcpu_reset(svm);
1408 }
1409
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)1410 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1411 {
1412 struct vcpu_svm *svm = to_svm(vcpu);
1413
1414 svm->spec_ctrl = 0;
1415 svm->virt_spec_ctrl = 0;
1416
1417 if (init_event)
1418 sev_snp_init_protected_guest_state(vcpu);
1419
1420 init_vmcb(vcpu);
1421
1422 if (!init_event)
1423 __svm_vcpu_reset(vcpu);
1424 }
1425
svm_switch_vmcb(struct vcpu_svm * svm,struct kvm_vmcb_info * target_vmcb)1426 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1427 {
1428 svm->current_vmcb = target_vmcb;
1429 svm->vmcb = target_vmcb->ptr;
1430 }
1431
svm_vcpu_create(struct kvm_vcpu * vcpu)1432 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1433 {
1434 struct vcpu_svm *svm;
1435 struct page *vmcb01_page;
1436 struct page *vmsa_page = NULL;
1437 int err;
1438
1439 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1440 svm = to_svm(vcpu);
1441
1442 err = -ENOMEM;
1443 vmcb01_page = snp_safe_alloc_page();
1444 if (!vmcb01_page)
1445 goto out;
1446
1447 if (sev_es_guest(vcpu->kvm)) {
1448 /*
1449 * SEV-ES guests require a separate VMSA page used to contain
1450 * the encrypted register state of the guest.
1451 */
1452 vmsa_page = snp_safe_alloc_page();
1453 if (!vmsa_page)
1454 goto error_free_vmcb_page;
1455 }
1456
1457 err = avic_init_vcpu(svm);
1458 if (err)
1459 goto error_free_vmsa_page;
1460
1461 svm->msrpm = svm_vcpu_alloc_msrpm();
1462 if (!svm->msrpm) {
1463 err = -ENOMEM;
1464 goto error_free_vmsa_page;
1465 }
1466
1467 svm->x2avic_msrs_intercepted = true;
1468
1469 svm->vmcb01.ptr = page_address(vmcb01_page);
1470 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1471 svm_switch_vmcb(svm, &svm->vmcb01);
1472
1473 if (vmsa_page)
1474 svm->sev_es.vmsa = page_address(vmsa_page);
1475
1476 svm->guest_state_loaded = false;
1477
1478 return 0;
1479
1480 error_free_vmsa_page:
1481 if (vmsa_page)
1482 __free_page(vmsa_page);
1483 error_free_vmcb_page:
1484 __free_page(vmcb01_page);
1485 out:
1486 return err;
1487 }
1488
svm_vcpu_free(struct kvm_vcpu * vcpu)1489 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1490 {
1491 struct vcpu_svm *svm = to_svm(vcpu);
1492
1493 svm_leave_nested(vcpu);
1494 svm_free_nested(svm);
1495
1496 sev_free_vcpu(vcpu);
1497
1498 __free_page(__sme_pa_to_page(svm->vmcb01.pa));
1499 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1500 }
1501
1502 #ifdef CONFIG_CPU_MITIGATIONS
1503 static DEFINE_SPINLOCK(srso_lock);
1504 static atomic_t srso_nr_vms;
1505
svm_srso_clear_bp_spec_reduce(void * ign)1506 static void svm_srso_clear_bp_spec_reduce(void *ign)
1507 {
1508 struct svm_cpu_data *sd = this_cpu_ptr(&svm_data);
1509
1510 if (!sd->bp_spec_reduce_set)
1511 return;
1512
1513 msr_clear_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1514 sd->bp_spec_reduce_set = false;
1515 }
1516
svm_srso_vm_destroy(void)1517 static void svm_srso_vm_destroy(void)
1518 {
1519 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1520 return;
1521
1522 if (atomic_dec_return(&srso_nr_vms))
1523 return;
1524
1525 guard(spinlock)(&srso_lock);
1526
1527 /*
1528 * Verify a new VM didn't come along, acquire the lock, and increment
1529 * the count before this task acquired the lock.
1530 */
1531 if (atomic_read(&srso_nr_vms))
1532 return;
1533
1534 on_each_cpu(svm_srso_clear_bp_spec_reduce, NULL, 1);
1535 }
1536
svm_srso_vm_init(void)1537 static void svm_srso_vm_init(void)
1538 {
1539 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1540 return;
1541
1542 /*
1543 * Acquire the lock on 0 => 1 transitions to ensure a potential 1 => 0
1544 * transition, i.e. destroying the last VM, is fully complete, e.g. so
1545 * that a delayed IPI doesn't clear BP_SPEC_REDUCE after a vCPU runs.
1546 */
1547 if (atomic_inc_not_zero(&srso_nr_vms))
1548 return;
1549
1550 guard(spinlock)(&srso_lock);
1551
1552 atomic_inc(&srso_nr_vms);
1553 }
1554 #else
svm_srso_vm_init(void)1555 static void svm_srso_vm_init(void) { }
svm_srso_vm_destroy(void)1556 static void svm_srso_vm_destroy(void) { }
1557 #endif
1558
svm_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1559 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1560 {
1561 struct vcpu_svm *svm = to_svm(vcpu);
1562 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1563
1564 if (sev_es_guest(vcpu->kvm))
1565 sev_es_unmap_ghcb(svm);
1566
1567 if (svm->guest_state_loaded)
1568 return;
1569
1570 /*
1571 * Save additional host state that will be restored on VMEXIT (sev-es)
1572 * or subsequent vmload of host save area.
1573 */
1574 vmsave(sd->save_area_pa);
1575 if (sev_es_guest(vcpu->kvm))
1576 sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd));
1577
1578 if (tsc_scaling)
1579 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1580
1581 /*
1582 * TSC_AUX is always virtualized for SEV-ES guests when the feature is
1583 * available. The user return MSR support is not required in this case
1584 * because TSC_AUX is restored on #VMEXIT from the host save area
1585 * (which has been initialized in svm_enable_virtualization_cpu()).
1586 */
1587 if (likely(tsc_aux_uret_slot >= 0) &&
1588 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1589 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1590
1591 if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE) &&
1592 !sd->bp_spec_reduce_set) {
1593 sd->bp_spec_reduce_set = true;
1594 msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1595 }
1596 svm->guest_state_loaded = true;
1597 }
1598
svm_prepare_host_switch(struct kvm_vcpu * vcpu)1599 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1600 {
1601 to_svm(vcpu)->guest_state_loaded = false;
1602 }
1603
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1604 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1605 {
1606 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1607 shrink_ple_window(vcpu);
1608
1609 if (kvm_vcpu_apicv_active(vcpu))
1610 avic_vcpu_load(vcpu, cpu);
1611 }
1612
svm_vcpu_put(struct kvm_vcpu * vcpu)1613 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1614 {
1615 if (kvm_vcpu_apicv_active(vcpu))
1616 avic_vcpu_put(vcpu);
1617
1618 svm_prepare_host_switch(vcpu);
1619
1620 ++vcpu->stat.host_state_reload;
1621 }
1622
svm_get_rflags(struct kvm_vcpu * vcpu)1623 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1624 {
1625 struct vcpu_svm *svm = to_svm(vcpu);
1626 unsigned long rflags = svm->vmcb->save.rflags;
1627
1628 if (svm->nmi_singlestep) {
1629 /* Hide our flags if they were not set by the guest */
1630 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1631 rflags &= ~X86_EFLAGS_TF;
1632 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1633 rflags &= ~X86_EFLAGS_RF;
1634 }
1635 return rflags;
1636 }
1637
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1638 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1639 {
1640 if (to_svm(vcpu)->nmi_singlestep)
1641 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1642
1643 /*
1644 * Any change of EFLAGS.VM is accompanied by a reload of SS
1645 * (caused by either a task switch or an inter-privilege IRET),
1646 * so we do not need to update the CPL here.
1647 */
1648 to_svm(vcpu)->vmcb->save.rflags = rflags;
1649 }
1650
svm_get_if_flag(struct kvm_vcpu * vcpu)1651 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1652 {
1653 struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1654
1655 return sev_es_guest(vcpu->kvm)
1656 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1657 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1658 }
1659
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1660 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1661 {
1662 kvm_register_mark_available(vcpu, reg);
1663
1664 switch (reg) {
1665 case VCPU_EXREG_PDPTR:
1666 /*
1667 * When !npt_enabled, mmu->pdptrs[] is already available since
1668 * it is always updated per SDM when moving to CRs.
1669 */
1670 if (npt_enabled)
1671 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1672 break;
1673 default:
1674 KVM_BUG_ON(1, vcpu->kvm);
1675 }
1676 }
1677
svm_set_vintr(struct vcpu_svm * svm)1678 static void svm_set_vintr(struct vcpu_svm *svm)
1679 {
1680 struct vmcb_control_area *control;
1681
1682 /*
1683 * The following fields are ignored when AVIC is enabled
1684 */
1685 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1686
1687 svm_set_intercept(svm, INTERCEPT_VINTR);
1688
1689 /*
1690 * Recalculating intercepts may have cleared the VINTR intercept. If
1691 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1692 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1693 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1694 * interrupts will never be unblocked while L2 is running.
1695 */
1696 if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1697 return;
1698
1699 /*
1700 * This is just a dummy VINTR to actually cause a vmexit to happen.
1701 * Actual injection of virtual interrupts happens through EVENTINJ.
1702 */
1703 control = &svm->vmcb->control;
1704 control->int_vector = 0x0;
1705 control->int_ctl &= ~V_INTR_PRIO_MASK;
1706 control->int_ctl |= V_IRQ_MASK |
1707 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1708 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1709 }
1710
svm_clear_vintr(struct vcpu_svm * svm)1711 static void svm_clear_vintr(struct vcpu_svm *svm)
1712 {
1713 svm_clr_intercept(svm, INTERCEPT_VINTR);
1714
1715 /* Drop int_ctl fields related to VINTR injection. */
1716 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1717 if (is_guest_mode(&svm->vcpu)) {
1718 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1719
1720 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1721 (svm->nested.ctl.int_ctl & V_TPR_MASK));
1722
1723 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1724 V_IRQ_INJECTION_BITS_MASK;
1725
1726 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1727 }
1728
1729 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1730 }
1731
svm_seg(struct kvm_vcpu * vcpu,int seg)1732 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1733 {
1734 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1735 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1736
1737 switch (seg) {
1738 case VCPU_SREG_CS: return &save->cs;
1739 case VCPU_SREG_DS: return &save->ds;
1740 case VCPU_SREG_ES: return &save->es;
1741 case VCPU_SREG_FS: return &save01->fs;
1742 case VCPU_SREG_GS: return &save01->gs;
1743 case VCPU_SREG_SS: return &save->ss;
1744 case VCPU_SREG_TR: return &save01->tr;
1745 case VCPU_SREG_LDTR: return &save01->ldtr;
1746 }
1747 BUG();
1748 return NULL;
1749 }
1750
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1751 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1752 {
1753 struct vmcb_seg *s = svm_seg(vcpu, seg);
1754
1755 return s->base;
1756 }
1757
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1758 static void svm_get_segment(struct kvm_vcpu *vcpu,
1759 struct kvm_segment *var, int seg)
1760 {
1761 struct vmcb_seg *s = svm_seg(vcpu, seg);
1762
1763 var->base = s->base;
1764 var->limit = s->limit;
1765 var->selector = s->selector;
1766 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1767 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1768 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1769 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1770 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1771 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1772 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1773
1774 /*
1775 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1776 * However, the SVM spec states that the G bit is not observed by the
1777 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1778 * So let's synthesize a legal G bit for all segments, this helps
1779 * running KVM nested. It also helps cross-vendor migration, because
1780 * Intel's vmentry has a check on the 'G' bit.
1781 */
1782 var->g = s->limit > 0xfffff;
1783
1784 /*
1785 * AMD's VMCB does not have an explicit unusable field, so emulate it
1786 * for cross vendor migration purposes by "not present"
1787 */
1788 var->unusable = !var->present;
1789
1790 switch (seg) {
1791 case VCPU_SREG_TR:
1792 /*
1793 * Work around a bug where the busy flag in the tr selector
1794 * isn't exposed
1795 */
1796 var->type |= 0x2;
1797 break;
1798 case VCPU_SREG_DS:
1799 case VCPU_SREG_ES:
1800 case VCPU_SREG_FS:
1801 case VCPU_SREG_GS:
1802 /*
1803 * The accessed bit must always be set in the segment
1804 * descriptor cache, although it can be cleared in the
1805 * descriptor, the cached bit always remains at 1. Since
1806 * Intel has a check on this, set it here to support
1807 * cross-vendor migration.
1808 */
1809 if (!var->unusable)
1810 var->type |= 0x1;
1811 break;
1812 case VCPU_SREG_SS:
1813 /*
1814 * On AMD CPUs sometimes the DB bit in the segment
1815 * descriptor is left as 1, although the whole segment has
1816 * been made unusable. Clear it here to pass an Intel VMX
1817 * entry check when cross vendor migrating.
1818 */
1819 if (var->unusable)
1820 var->db = 0;
1821 /* This is symmetric with svm_set_segment() */
1822 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1823 break;
1824 }
1825 }
1826
svm_get_cpl(struct kvm_vcpu * vcpu)1827 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1828 {
1829 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1830
1831 return save->cpl;
1832 }
1833
svm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)1834 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1835 {
1836 struct kvm_segment cs;
1837
1838 svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1839 *db = cs.db;
1840 *l = cs.l;
1841 }
1842
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1843 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1844 {
1845 struct vcpu_svm *svm = to_svm(vcpu);
1846
1847 dt->size = svm->vmcb->save.idtr.limit;
1848 dt->address = svm->vmcb->save.idtr.base;
1849 }
1850
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1851 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1852 {
1853 struct vcpu_svm *svm = to_svm(vcpu);
1854
1855 svm->vmcb->save.idtr.limit = dt->size;
1856 svm->vmcb->save.idtr.base = dt->address ;
1857 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1858 }
1859
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1860 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1861 {
1862 struct vcpu_svm *svm = to_svm(vcpu);
1863
1864 dt->size = svm->vmcb->save.gdtr.limit;
1865 dt->address = svm->vmcb->save.gdtr.base;
1866 }
1867
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1868 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1869 {
1870 struct vcpu_svm *svm = to_svm(vcpu);
1871
1872 svm->vmcb->save.gdtr.limit = dt->size;
1873 svm->vmcb->save.gdtr.base = dt->address ;
1874 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1875 }
1876
sev_post_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1877 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1878 {
1879 struct vcpu_svm *svm = to_svm(vcpu);
1880
1881 /*
1882 * For guests that don't set guest_state_protected, the cr3 update is
1883 * handled via kvm_mmu_load() while entering the guest. For guests
1884 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1885 * VMCB save area now, since the save area will become the initial
1886 * contents of the VMSA, and future VMCB save area updates won't be
1887 * seen.
1888 */
1889 if (sev_es_guest(vcpu->kvm)) {
1890 svm->vmcb->save.cr3 = cr3;
1891 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1892 }
1893 }
1894
svm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1895 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1896 {
1897 return true;
1898 }
1899
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1900 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1901 {
1902 struct vcpu_svm *svm = to_svm(vcpu);
1903 u64 hcr0 = cr0;
1904 bool old_paging = is_paging(vcpu);
1905
1906 #ifdef CONFIG_X86_64
1907 if (vcpu->arch.efer & EFER_LME) {
1908 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1909 vcpu->arch.efer |= EFER_LMA;
1910 if (!vcpu->arch.guest_state_protected)
1911 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1912 }
1913
1914 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1915 vcpu->arch.efer &= ~EFER_LMA;
1916 if (!vcpu->arch.guest_state_protected)
1917 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1918 }
1919 }
1920 #endif
1921 vcpu->arch.cr0 = cr0;
1922
1923 if (!npt_enabled) {
1924 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1925 if (old_paging != is_paging(vcpu))
1926 svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1927 }
1928
1929 /*
1930 * re-enable caching here because the QEMU bios
1931 * does not do it - this results in some delay at
1932 * reboot
1933 */
1934 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1935 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1936
1937 svm->vmcb->save.cr0 = hcr0;
1938 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1939
1940 /*
1941 * SEV-ES guests must always keep the CR intercepts cleared. CR
1942 * tracking is done using the CR write traps.
1943 */
1944 if (sev_es_guest(vcpu->kvm))
1945 return;
1946
1947 if (hcr0 == cr0) {
1948 /* Selective CR0 write remains on. */
1949 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1950 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1951 } else {
1952 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1953 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1954 }
1955 }
1956
svm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1957 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1958 {
1959 return true;
1960 }
1961
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1962 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1963 {
1964 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1965 unsigned long old_cr4 = vcpu->arch.cr4;
1966
1967 vcpu->arch.cr4 = cr4;
1968 if (!npt_enabled) {
1969 cr4 |= X86_CR4_PAE;
1970
1971 if (!is_paging(vcpu))
1972 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1973 }
1974 cr4 |= host_cr4_mce;
1975 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1976 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1977
1978 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1979 vcpu->arch.cpuid_dynamic_bits_dirty = true;
1980 }
1981
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1982 static void svm_set_segment(struct kvm_vcpu *vcpu,
1983 struct kvm_segment *var, int seg)
1984 {
1985 struct vcpu_svm *svm = to_svm(vcpu);
1986 struct vmcb_seg *s = svm_seg(vcpu, seg);
1987
1988 s->base = var->base;
1989 s->limit = var->limit;
1990 s->selector = var->selector;
1991 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1992 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1993 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1994 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1995 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1996 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1997 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1998 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1999
2000 /*
2001 * This is always accurate, except if SYSRET returned to a segment
2002 * with SS.DPL != 3. Intel does not have this quirk, and always
2003 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2004 * would entail passing the CPL to userspace and back.
2005 */
2006 if (seg == VCPU_SREG_SS)
2007 /* This is symmetric with svm_get_segment() */
2008 svm->vmcb->save.cpl = (var->dpl & 3);
2009
2010 vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
2011 }
2012
svm_update_exception_bitmap(struct kvm_vcpu * vcpu)2013 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
2014 {
2015 struct vcpu_svm *svm = to_svm(vcpu);
2016
2017 clr_exception_intercept(svm, BP_VECTOR);
2018
2019 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2020 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2021 set_exception_intercept(svm, BP_VECTOR);
2022 }
2023 }
2024
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)2025 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2026 {
2027 if (sd->next_asid > sd->max_asid) {
2028 ++sd->asid_generation;
2029 sd->next_asid = sd->min_asid;
2030 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2031 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2032 }
2033
2034 svm->current_vmcb->asid_generation = sd->asid_generation;
2035 svm->asid = sd->next_asid++;
2036 }
2037
svm_set_dr6(struct kvm_vcpu * vcpu,unsigned long value)2038 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2039 {
2040 struct vmcb *vmcb = to_svm(vcpu)->vmcb;
2041
2042 if (vcpu->arch.guest_state_protected)
2043 return;
2044
2045 if (unlikely(value != vmcb->save.dr6)) {
2046 vmcb->save.dr6 = value;
2047 vmcb_mark_dirty(vmcb, VMCB_DR);
2048 }
2049 }
2050
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)2051 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2052 {
2053 struct vcpu_svm *svm = to_svm(vcpu);
2054
2055 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
2056 return;
2057
2058 get_debugreg(vcpu->arch.db[0], 0);
2059 get_debugreg(vcpu->arch.db[1], 1);
2060 get_debugreg(vcpu->arch.db[2], 2);
2061 get_debugreg(vcpu->arch.db[3], 3);
2062 /*
2063 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
2064 * because db_interception might need it. We can do it before vmentry.
2065 */
2066 vcpu->arch.dr6 = svm->vmcb->save.dr6;
2067 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2068 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2069 set_dr_intercepts(svm);
2070 }
2071
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)2072 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2073 {
2074 struct vcpu_svm *svm = to_svm(vcpu);
2075
2076 if (vcpu->arch.guest_state_protected)
2077 return;
2078
2079 svm->vmcb->save.dr7 = value;
2080 vmcb_mark_dirty(svm->vmcb, VMCB_DR);
2081 }
2082
pf_interception(struct kvm_vcpu * vcpu)2083 static int pf_interception(struct kvm_vcpu *vcpu)
2084 {
2085 struct vcpu_svm *svm = to_svm(vcpu);
2086
2087 u64 fault_address = svm->vmcb->control.exit_info_2;
2088 u64 error_code = svm->vmcb->control.exit_info_1;
2089
2090 return kvm_handle_page_fault(vcpu, error_code, fault_address,
2091 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2092 svm->vmcb->control.insn_bytes : NULL,
2093 svm->vmcb->control.insn_len);
2094 }
2095
npf_interception(struct kvm_vcpu * vcpu)2096 static int npf_interception(struct kvm_vcpu *vcpu)
2097 {
2098 struct vcpu_svm *svm = to_svm(vcpu);
2099 int rc;
2100
2101 u64 fault_address = svm->vmcb->control.exit_info_2;
2102 u64 error_code = svm->vmcb->control.exit_info_1;
2103
2104 /*
2105 * WARN if hardware generates a fault with an error code that collides
2106 * with KVM-defined sythentic flags. Clear the flags and continue on,
2107 * i.e. don't terminate the VM, as KVM can't possibly be relying on a
2108 * flag that KVM doesn't know about.
2109 */
2110 if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK))
2111 error_code &= ~PFERR_SYNTHETIC_MASK;
2112
2113 if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK))
2114 error_code |= PFERR_PRIVATE_ACCESS;
2115
2116 trace_kvm_page_fault(vcpu, fault_address, error_code);
2117 rc = kvm_mmu_page_fault(vcpu, fault_address, error_code,
2118 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2119 svm->vmcb->control.insn_bytes : NULL,
2120 svm->vmcb->control.insn_len);
2121
2122 if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK)
2123 sev_handle_rmp_fault(vcpu, fault_address, error_code);
2124
2125 return rc;
2126 }
2127
db_interception(struct kvm_vcpu * vcpu)2128 static int db_interception(struct kvm_vcpu *vcpu)
2129 {
2130 struct kvm_run *kvm_run = vcpu->run;
2131 struct vcpu_svm *svm = to_svm(vcpu);
2132
2133 if (!(vcpu->guest_debug &
2134 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2135 !svm->nmi_singlestep) {
2136 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2137 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2138 return 1;
2139 }
2140
2141 if (svm->nmi_singlestep) {
2142 disable_nmi_singlestep(svm);
2143 /* Make sure we check for pending NMIs upon entry */
2144 kvm_make_request(KVM_REQ_EVENT, vcpu);
2145 }
2146
2147 if (vcpu->guest_debug &
2148 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2149 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2150 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2151 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2152 kvm_run->debug.arch.pc =
2153 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2154 kvm_run->debug.arch.exception = DB_VECTOR;
2155 return 0;
2156 }
2157
2158 return 1;
2159 }
2160
bp_interception(struct kvm_vcpu * vcpu)2161 static int bp_interception(struct kvm_vcpu *vcpu)
2162 {
2163 struct vcpu_svm *svm = to_svm(vcpu);
2164 struct kvm_run *kvm_run = vcpu->run;
2165
2166 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2167 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2168 kvm_run->debug.arch.exception = BP_VECTOR;
2169 return 0;
2170 }
2171
ud_interception(struct kvm_vcpu * vcpu)2172 static int ud_interception(struct kvm_vcpu *vcpu)
2173 {
2174 return handle_ud(vcpu);
2175 }
2176
ac_interception(struct kvm_vcpu * vcpu)2177 static int ac_interception(struct kvm_vcpu *vcpu)
2178 {
2179 kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2180 return 1;
2181 }
2182
is_erratum_383(void)2183 static bool is_erratum_383(void)
2184 {
2185 int i;
2186 u64 value;
2187
2188 if (!erratum_383_found)
2189 return false;
2190
2191 if (native_read_msr_safe(MSR_IA32_MC0_STATUS, &value))
2192 return false;
2193
2194 /* Bit 62 may or may not be set for this mce */
2195 value &= ~(1ULL << 62);
2196
2197 if (value != 0xb600000000010015ULL)
2198 return false;
2199
2200 /* Clear MCi_STATUS registers */
2201 for (i = 0; i < 6; ++i)
2202 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0);
2203
2204 if (!native_read_msr_safe(MSR_IA32_MCG_STATUS, &value)) {
2205 value &= ~(1ULL << 2);
2206 native_write_msr_safe(MSR_IA32_MCG_STATUS, value);
2207 }
2208
2209 /* Flush tlb to evict multi-match entries */
2210 __flush_tlb_all();
2211
2212 return true;
2213 }
2214
svm_handle_mce(struct kvm_vcpu * vcpu)2215 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2216 {
2217 if (is_erratum_383()) {
2218 /*
2219 * Erratum 383 triggered. Guest state is corrupt so kill the
2220 * guest.
2221 */
2222 pr_err("Guest triggered AMD Erratum 383\n");
2223
2224 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2225
2226 return;
2227 }
2228
2229 /*
2230 * On an #MC intercept the MCE handler is not called automatically in
2231 * the host. So do it by hand here.
2232 */
2233 kvm_machine_check();
2234 }
2235
mc_interception(struct kvm_vcpu * vcpu)2236 static int mc_interception(struct kvm_vcpu *vcpu)
2237 {
2238 return 1;
2239 }
2240
shutdown_interception(struct kvm_vcpu * vcpu)2241 static int shutdown_interception(struct kvm_vcpu *vcpu)
2242 {
2243 struct kvm_run *kvm_run = vcpu->run;
2244 struct vcpu_svm *svm = to_svm(vcpu);
2245
2246
2247 /*
2248 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put
2249 * the VMCB in a known good state. Unfortuately, KVM doesn't have
2250 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2251 * userspace. At a platform view, INIT is acceptable behavior as
2252 * there exist bare metal platforms that automatically INIT the CPU
2253 * in response to shutdown.
2254 *
2255 * The VM save area for SEV-ES guests has already been encrypted so it
2256 * cannot be reinitialized, i.e. synthesizing INIT is futile.
2257 */
2258 if (!sev_es_guest(vcpu->kvm)) {
2259 clear_page(svm->vmcb);
2260 #ifdef CONFIG_KVM_SMM
2261 if (is_smm(vcpu))
2262 kvm_smm_changed(vcpu, false);
2263 #endif
2264 kvm_vcpu_reset(vcpu, true);
2265 }
2266
2267 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2268 return 0;
2269 }
2270
io_interception(struct kvm_vcpu * vcpu)2271 static int io_interception(struct kvm_vcpu *vcpu)
2272 {
2273 struct vcpu_svm *svm = to_svm(vcpu);
2274 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2275 int size, in, string;
2276 unsigned port;
2277
2278 ++vcpu->stat.io_exits;
2279 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2280 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2281 port = io_info >> 16;
2282 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2283
2284 if (string) {
2285 if (sev_es_guest(vcpu->kvm))
2286 return sev_es_string_io(svm, size, port, in);
2287 else
2288 return kvm_emulate_instruction(vcpu, 0);
2289 }
2290
2291 svm->next_rip = svm->vmcb->control.exit_info_2;
2292
2293 return kvm_fast_pio(vcpu, size, port, in);
2294 }
2295
nmi_interception(struct kvm_vcpu * vcpu)2296 static int nmi_interception(struct kvm_vcpu *vcpu)
2297 {
2298 return 1;
2299 }
2300
smi_interception(struct kvm_vcpu * vcpu)2301 static int smi_interception(struct kvm_vcpu *vcpu)
2302 {
2303 return 1;
2304 }
2305
intr_interception(struct kvm_vcpu * vcpu)2306 static int intr_interception(struct kvm_vcpu *vcpu)
2307 {
2308 ++vcpu->stat.irq_exits;
2309 return 1;
2310 }
2311
vmload_vmsave_interception(struct kvm_vcpu * vcpu,bool vmload)2312 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2313 {
2314 struct vcpu_svm *svm = to_svm(vcpu);
2315 struct vmcb *vmcb12;
2316 struct kvm_host_map map;
2317 int ret;
2318
2319 if (nested_svm_check_permissions(vcpu))
2320 return 1;
2321
2322 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2323 if (ret) {
2324 if (ret == -EINVAL)
2325 kvm_inject_gp(vcpu, 0);
2326 return 1;
2327 }
2328
2329 vmcb12 = map.hva;
2330
2331 ret = kvm_skip_emulated_instruction(vcpu);
2332
2333 if (vmload) {
2334 svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2335 svm->sysenter_eip_hi = 0;
2336 svm->sysenter_esp_hi = 0;
2337 } else {
2338 svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2339 }
2340
2341 kvm_vcpu_unmap(vcpu, &map);
2342
2343 return ret;
2344 }
2345
vmload_interception(struct kvm_vcpu * vcpu)2346 static int vmload_interception(struct kvm_vcpu *vcpu)
2347 {
2348 return vmload_vmsave_interception(vcpu, true);
2349 }
2350
vmsave_interception(struct kvm_vcpu * vcpu)2351 static int vmsave_interception(struct kvm_vcpu *vcpu)
2352 {
2353 return vmload_vmsave_interception(vcpu, false);
2354 }
2355
vmrun_interception(struct kvm_vcpu * vcpu)2356 static int vmrun_interception(struct kvm_vcpu *vcpu)
2357 {
2358 if (nested_svm_check_permissions(vcpu))
2359 return 1;
2360
2361 return nested_svm_vmrun(vcpu);
2362 }
2363
2364 enum {
2365 NONE_SVM_INSTR,
2366 SVM_INSTR_VMRUN,
2367 SVM_INSTR_VMLOAD,
2368 SVM_INSTR_VMSAVE,
2369 };
2370
2371 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
svm_instr_opcode(struct kvm_vcpu * vcpu)2372 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2373 {
2374 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2375
2376 if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2377 return NONE_SVM_INSTR;
2378
2379 switch (ctxt->modrm) {
2380 case 0xd8: /* VMRUN */
2381 return SVM_INSTR_VMRUN;
2382 case 0xda: /* VMLOAD */
2383 return SVM_INSTR_VMLOAD;
2384 case 0xdb: /* VMSAVE */
2385 return SVM_INSTR_VMSAVE;
2386 default:
2387 break;
2388 }
2389
2390 return NONE_SVM_INSTR;
2391 }
2392
emulate_svm_instr(struct kvm_vcpu * vcpu,int opcode)2393 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2394 {
2395 const int guest_mode_exit_codes[] = {
2396 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2397 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2398 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2399 };
2400 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2401 [SVM_INSTR_VMRUN] = vmrun_interception,
2402 [SVM_INSTR_VMLOAD] = vmload_interception,
2403 [SVM_INSTR_VMSAVE] = vmsave_interception,
2404 };
2405 struct vcpu_svm *svm = to_svm(vcpu);
2406 int ret;
2407
2408 if (is_guest_mode(vcpu)) {
2409 /* Returns '1' or -errno on failure, '0' on success. */
2410 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2411 if (ret)
2412 return ret;
2413 return 1;
2414 }
2415 return svm_instr_handlers[opcode](vcpu);
2416 }
2417
2418 /*
2419 * #GP handling code. Note that #GP can be triggered under the following two
2420 * cases:
2421 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2422 * some AMD CPUs when EAX of these instructions are in the reserved memory
2423 * regions (e.g. SMM memory on host).
2424 * 2) VMware backdoor
2425 */
gp_interception(struct kvm_vcpu * vcpu)2426 static int gp_interception(struct kvm_vcpu *vcpu)
2427 {
2428 struct vcpu_svm *svm = to_svm(vcpu);
2429 u32 error_code = svm->vmcb->control.exit_info_1;
2430 int opcode;
2431
2432 /* Both #GP cases have zero error_code */
2433 if (error_code)
2434 goto reinject;
2435
2436 /* Decode the instruction for usage later */
2437 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2438 goto reinject;
2439
2440 opcode = svm_instr_opcode(vcpu);
2441
2442 if (opcode == NONE_SVM_INSTR) {
2443 if (!enable_vmware_backdoor)
2444 goto reinject;
2445
2446 /*
2447 * VMware backdoor emulation on #GP interception only handles
2448 * IN{S}, OUT{S}, and RDPMC.
2449 */
2450 if (!is_guest_mode(vcpu))
2451 return kvm_emulate_instruction(vcpu,
2452 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2453 } else {
2454 /* All SVM instructions expect page aligned RAX */
2455 if (svm->vmcb->save.rax & ~PAGE_MASK)
2456 goto reinject;
2457
2458 return emulate_svm_instr(vcpu, opcode);
2459 }
2460
2461 reinject:
2462 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2463 return 1;
2464 }
2465
svm_set_gif(struct vcpu_svm * svm,bool value)2466 void svm_set_gif(struct vcpu_svm *svm, bool value)
2467 {
2468 if (value) {
2469 /*
2470 * If VGIF is enabled, the STGI intercept is only added to
2471 * detect the opening of the SMI/NMI window; remove it now.
2472 * Likewise, clear the VINTR intercept, we will set it
2473 * again while processing KVM_REQ_EVENT if needed.
2474 */
2475 if (vgif)
2476 svm_clr_intercept(svm, INTERCEPT_STGI);
2477 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2478 svm_clear_vintr(svm);
2479
2480 enable_gif(svm);
2481 if (svm->vcpu.arch.smi_pending ||
2482 svm->vcpu.arch.nmi_pending ||
2483 kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2484 kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2485 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2486 } else {
2487 disable_gif(svm);
2488
2489 /*
2490 * After a CLGI no interrupts should come. But if vGIF is
2491 * in use, we still rely on the VINTR intercept (rather than
2492 * STGI) to detect an open interrupt window.
2493 */
2494 if (!vgif)
2495 svm_clear_vintr(svm);
2496 }
2497 }
2498
stgi_interception(struct kvm_vcpu * vcpu)2499 static int stgi_interception(struct kvm_vcpu *vcpu)
2500 {
2501 int ret;
2502
2503 if (nested_svm_check_permissions(vcpu))
2504 return 1;
2505
2506 ret = kvm_skip_emulated_instruction(vcpu);
2507 svm_set_gif(to_svm(vcpu), true);
2508 return ret;
2509 }
2510
clgi_interception(struct kvm_vcpu * vcpu)2511 static int clgi_interception(struct kvm_vcpu *vcpu)
2512 {
2513 int ret;
2514
2515 if (nested_svm_check_permissions(vcpu))
2516 return 1;
2517
2518 ret = kvm_skip_emulated_instruction(vcpu);
2519 svm_set_gif(to_svm(vcpu), false);
2520 return ret;
2521 }
2522
invlpga_interception(struct kvm_vcpu * vcpu)2523 static int invlpga_interception(struct kvm_vcpu *vcpu)
2524 {
2525 gva_t gva = kvm_rax_read(vcpu);
2526 u32 asid = kvm_rcx_read(vcpu);
2527
2528 /* FIXME: Handle an address size prefix. */
2529 if (!is_long_mode(vcpu))
2530 gva = (u32)gva;
2531
2532 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2533
2534 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2535 kvm_mmu_invlpg(vcpu, gva);
2536
2537 return kvm_skip_emulated_instruction(vcpu);
2538 }
2539
skinit_interception(struct kvm_vcpu * vcpu)2540 static int skinit_interception(struct kvm_vcpu *vcpu)
2541 {
2542 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2543
2544 kvm_queue_exception(vcpu, UD_VECTOR);
2545 return 1;
2546 }
2547
task_switch_interception(struct kvm_vcpu * vcpu)2548 static int task_switch_interception(struct kvm_vcpu *vcpu)
2549 {
2550 struct vcpu_svm *svm = to_svm(vcpu);
2551 u16 tss_selector;
2552 int reason;
2553 int int_type = svm->vmcb->control.exit_int_info &
2554 SVM_EXITINTINFO_TYPE_MASK;
2555 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2556 uint32_t type =
2557 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2558 uint32_t idt_v =
2559 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2560 bool has_error_code = false;
2561 u32 error_code = 0;
2562
2563 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2564
2565 if (svm->vmcb->control.exit_info_2 &
2566 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2567 reason = TASK_SWITCH_IRET;
2568 else if (svm->vmcb->control.exit_info_2 &
2569 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2570 reason = TASK_SWITCH_JMP;
2571 else if (idt_v)
2572 reason = TASK_SWITCH_GATE;
2573 else
2574 reason = TASK_SWITCH_CALL;
2575
2576 if (reason == TASK_SWITCH_GATE) {
2577 switch (type) {
2578 case SVM_EXITINTINFO_TYPE_NMI:
2579 vcpu->arch.nmi_injected = false;
2580 break;
2581 case SVM_EXITINTINFO_TYPE_EXEPT:
2582 if (svm->vmcb->control.exit_info_2 &
2583 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2584 has_error_code = true;
2585 error_code =
2586 (u32)svm->vmcb->control.exit_info_2;
2587 }
2588 kvm_clear_exception_queue(vcpu);
2589 break;
2590 case SVM_EXITINTINFO_TYPE_INTR:
2591 case SVM_EXITINTINFO_TYPE_SOFT:
2592 kvm_clear_interrupt_queue(vcpu);
2593 break;
2594 default:
2595 break;
2596 }
2597 }
2598
2599 if (reason != TASK_SWITCH_GATE ||
2600 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2601 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2602 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2603 if (!svm_skip_emulated_instruction(vcpu))
2604 return 0;
2605 }
2606
2607 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2608 int_vec = -1;
2609
2610 return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2611 has_error_code, error_code);
2612 }
2613
svm_clr_iret_intercept(struct vcpu_svm * svm)2614 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2615 {
2616 if (!sev_es_guest(svm->vcpu.kvm))
2617 svm_clr_intercept(svm, INTERCEPT_IRET);
2618 }
2619
svm_set_iret_intercept(struct vcpu_svm * svm)2620 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2621 {
2622 if (!sev_es_guest(svm->vcpu.kvm))
2623 svm_set_intercept(svm, INTERCEPT_IRET);
2624 }
2625
iret_interception(struct kvm_vcpu * vcpu)2626 static int iret_interception(struct kvm_vcpu *vcpu)
2627 {
2628 struct vcpu_svm *svm = to_svm(vcpu);
2629
2630 WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2631
2632 ++vcpu->stat.nmi_window_exits;
2633 svm->awaiting_iret_completion = true;
2634
2635 svm_clr_iret_intercept(svm);
2636 svm->nmi_iret_rip = kvm_rip_read(vcpu);
2637
2638 kvm_make_request(KVM_REQ_EVENT, vcpu);
2639 return 1;
2640 }
2641
invlpg_interception(struct kvm_vcpu * vcpu)2642 static int invlpg_interception(struct kvm_vcpu *vcpu)
2643 {
2644 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2645 return kvm_emulate_instruction(vcpu, 0);
2646
2647 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2648 return kvm_skip_emulated_instruction(vcpu);
2649 }
2650
emulate_on_interception(struct kvm_vcpu * vcpu)2651 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2652 {
2653 return kvm_emulate_instruction(vcpu, 0);
2654 }
2655
rsm_interception(struct kvm_vcpu * vcpu)2656 static int rsm_interception(struct kvm_vcpu *vcpu)
2657 {
2658 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2659 }
2660
check_selective_cr0_intercepted(struct kvm_vcpu * vcpu,unsigned long val)2661 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2662 unsigned long val)
2663 {
2664 struct vcpu_svm *svm = to_svm(vcpu);
2665 unsigned long cr0 = vcpu->arch.cr0;
2666 bool ret = false;
2667
2668 if (!is_guest_mode(vcpu) ||
2669 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2670 return false;
2671
2672 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2673 val &= ~SVM_CR0_SELECTIVE_MASK;
2674
2675 if (cr0 ^ val) {
2676 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2677 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2678 }
2679
2680 return ret;
2681 }
2682
2683 #define CR_VALID (1ULL << 63)
2684
cr_interception(struct kvm_vcpu * vcpu)2685 static int cr_interception(struct kvm_vcpu *vcpu)
2686 {
2687 struct vcpu_svm *svm = to_svm(vcpu);
2688 int reg, cr;
2689 unsigned long val;
2690 int err;
2691
2692 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2693 return emulate_on_interception(vcpu);
2694
2695 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2696 return emulate_on_interception(vcpu);
2697
2698 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2699 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2700 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2701 else
2702 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2703
2704 err = 0;
2705 if (cr >= 16) { /* mov to cr */
2706 cr -= 16;
2707 val = kvm_register_read(vcpu, reg);
2708 trace_kvm_cr_write(cr, val);
2709 switch (cr) {
2710 case 0:
2711 if (!check_selective_cr0_intercepted(vcpu, val))
2712 err = kvm_set_cr0(vcpu, val);
2713 else
2714 return 1;
2715
2716 break;
2717 case 3:
2718 err = kvm_set_cr3(vcpu, val);
2719 break;
2720 case 4:
2721 err = kvm_set_cr4(vcpu, val);
2722 break;
2723 case 8:
2724 err = kvm_set_cr8(vcpu, val);
2725 break;
2726 default:
2727 WARN(1, "unhandled write to CR%d", cr);
2728 kvm_queue_exception(vcpu, UD_VECTOR);
2729 return 1;
2730 }
2731 } else { /* mov from cr */
2732 switch (cr) {
2733 case 0:
2734 val = kvm_read_cr0(vcpu);
2735 break;
2736 case 2:
2737 val = vcpu->arch.cr2;
2738 break;
2739 case 3:
2740 val = kvm_read_cr3(vcpu);
2741 break;
2742 case 4:
2743 val = kvm_read_cr4(vcpu);
2744 break;
2745 case 8:
2746 val = kvm_get_cr8(vcpu);
2747 break;
2748 default:
2749 WARN(1, "unhandled read from CR%d", cr);
2750 kvm_queue_exception(vcpu, UD_VECTOR);
2751 return 1;
2752 }
2753 kvm_register_write(vcpu, reg, val);
2754 trace_kvm_cr_read(cr, val);
2755 }
2756 return kvm_complete_insn_gp(vcpu, err);
2757 }
2758
cr_trap(struct kvm_vcpu * vcpu)2759 static int cr_trap(struct kvm_vcpu *vcpu)
2760 {
2761 struct vcpu_svm *svm = to_svm(vcpu);
2762 unsigned long old_value, new_value;
2763 unsigned int cr;
2764 int ret = 0;
2765
2766 new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2767
2768 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2769 switch (cr) {
2770 case 0:
2771 old_value = kvm_read_cr0(vcpu);
2772 svm_set_cr0(vcpu, new_value);
2773
2774 kvm_post_set_cr0(vcpu, old_value, new_value);
2775 break;
2776 case 4:
2777 old_value = kvm_read_cr4(vcpu);
2778 svm_set_cr4(vcpu, new_value);
2779
2780 kvm_post_set_cr4(vcpu, old_value, new_value);
2781 break;
2782 case 8:
2783 ret = kvm_set_cr8(vcpu, new_value);
2784 break;
2785 default:
2786 WARN(1, "unhandled CR%d write trap", cr);
2787 kvm_queue_exception(vcpu, UD_VECTOR);
2788 return 1;
2789 }
2790
2791 return kvm_complete_insn_gp(vcpu, ret);
2792 }
2793
dr_interception(struct kvm_vcpu * vcpu)2794 static int dr_interception(struct kvm_vcpu *vcpu)
2795 {
2796 struct vcpu_svm *svm = to_svm(vcpu);
2797 int reg, dr;
2798 int err = 0;
2799
2800 /*
2801 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2802 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2803 */
2804 if (sev_es_guest(vcpu->kvm))
2805 return 1;
2806
2807 if (vcpu->guest_debug == 0) {
2808 /*
2809 * No more DR vmexits; force a reload of the debug registers
2810 * and reenter on this instruction. The next vmexit will
2811 * retrieve the full state of the debug registers.
2812 */
2813 clr_dr_intercepts(svm);
2814 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2815 return 1;
2816 }
2817
2818 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2819 return emulate_on_interception(vcpu);
2820
2821 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2822 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2823 if (dr >= 16) { /* mov to DRn */
2824 dr -= 16;
2825 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
2826 } else {
2827 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
2828 }
2829
2830 return kvm_complete_insn_gp(vcpu, err);
2831 }
2832
cr8_write_interception(struct kvm_vcpu * vcpu)2833 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2834 {
2835 int r;
2836
2837 u8 cr8_prev = kvm_get_cr8(vcpu);
2838 /* instruction emulation calls kvm_set_cr8() */
2839 r = cr_interception(vcpu);
2840 if (lapic_in_kernel(vcpu))
2841 return r;
2842 if (cr8_prev <= kvm_get_cr8(vcpu))
2843 return r;
2844 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2845 return 0;
2846 }
2847
efer_trap(struct kvm_vcpu * vcpu)2848 static int efer_trap(struct kvm_vcpu *vcpu)
2849 {
2850 struct msr_data msr_info;
2851 int ret;
2852
2853 /*
2854 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2855 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2856 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2857 * the guest doesn't have X86_FEATURE_SVM.
2858 */
2859 msr_info.host_initiated = false;
2860 msr_info.index = MSR_EFER;
2861 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2862 ret = kvm_set_msr_common(vcpu, &msr_info);
2863
2864 return kvm_complete_insn_gp(vcpu, ret);
2865 }
2866
svm_get_feature_msr(u32 msr,u64 * data)2867 static int svm_get_feature_msr(u32 msr, u64 *data)
2868 {
2869 *data = 0;
2870
2871 switch (msr) {
2872 case MSR_AMD64_DE_CFG:
2873 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2874 *data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2875 break;
2876 default:
2877 return KVM_MSR_RET_UNSUPPORTED;
2878 }
2879
2880 return 0;
2881 }
2882
2883 static bool
sev_es_prevent_msr_access(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2884 sev_es_prevent_msr_access(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2885 {
2886 return sev_es_guest(vcpu->kvm) &&
2887 vcpu->arch.guest_state_protected &&
2888 svm_msrpm_offset(msr_info->index) != MSR_INVALID &&
2889 !msr_write_intercepted(vcpu, msr_info->index);
2890 }
2891
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2892 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2893 {
2894 struct vcpu_svm *svm = to_svm(vcpu);
2895
2896 if (sev_es_prevent_msr_access(vcpu, msr_info)) {
2897 msr_info->data = 0;
2898 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2899 }
2900
2901 switch (msr_info->index) {
2902 case MSR_AMD64_TSC_RATIO:
2903 if (!msr_info->host_initiated &&
2904 !guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR))
2905 return 1;
2906 msr_info->data = svm->tsc_ratio_msr;
2907 break;
2908 case MSR_STAR:
2909 msr_info->data = svm->vmcb01.ptr->save.star;
2910 break;
2911 #ifdef CONFIG_X86_64
2912 case MSR_LSTAR:
2913 msr_info->data = svm->vmcb01.ptr->save.lstar;
2914 break;
2915 case MSR_CSTAR:
2916 msr_info->data = svm->vmcb01.ptr->save.cstar;
2917 break;
2918 case MSR_GS_BASE:
2919 msr_info->data = svm->vmcb01.ptr->save.gs.base;
2920 break;
2921 case MSR_FS_BASE:
2922 msr_info->data = svm->vmcb01.ptr->save.fs.base;
2923 break;
2924 case MSR_KERNEL_GS_BASE:
2925 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2926 break;
2927 case MSR_SYSCALL_MASK:
2928 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2929 break;
2930 #endif
2931 case MSR_IA32_SYSENTER_CS:
2932 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2933 break;
2934 case MSR_IA32_SYSENTER_EIP:
2935 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2936 if (guest_cpuid_is_intel_compatible(vcpu))
2937 msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2938 break;
2939 case MSR_IA32_SYSENTER_ESP:
2940 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2941 if (guest_cpuid_is_intel_compatible(vcpu))
2942 msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2943 break;
2944 case MSR_TSC_AUX:
2945 msr_info->data = svm->tsc_aux;
2946 break;
2947 case MSR_IA32_DEBUGCTLMSR:
2948 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
2949 break;
2950 case MSR_IA32_LASTBRANCHFROMIP:
2951 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
2952 break;
2953 case MSR_IA32_LASTBRANCHTOIP:
2954 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
2955 break;
2956 case MSR_IA32_LASTINTFROMIP:
2957 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
2958 break;
2959 case MSR_IA32_LASTINTTOIP:
2960 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
2961 break;
2962 case MSR_VM_HSAVE_PA:
2963 msr_info->data = svm->nested.hsave_msr;
2964 break;
2965 case MSR_VM_CR:
2966 msr_info->data = svm->nested.vm_cr_msr;
2967 break;
2968 case MSR_IA32_SPEC_CTRL:
2969 if (!msr_info->host_initiated &&
2970 !guest_has_spec_ctrl_msr(vcpu))
2971 return 1;
2972
2973 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2974 msr_info->data = svm->vmcb->save.spec_ctrl;
2975 else
2976 msr_info->data = svm->spec_ctrl;
2977 break;
2978 case MSR_AMD64_VIRT_SPEC_CTRL:
2979 if (!msr_info->host_initiated &&
2980 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2981 return 1;
2982
2983 msr_info->data = svm->virt_spec_ctrl;
2984 break;
2985 case MSR_F15H_IC_CFG: {
2986
2987 int family, model;
2988
2989 family = guest_cpuid_family(vcpu);
2990 model = guest_cpuid_model(vcpu);
2991
2992 if (family < 0 || model < 0)
2993 return kvm_get_msr_common(vcpu, msr_info);
2994
2995 msr_info->data = 0;
2996
2997 if (family == 0x15 &&
2998 (model >= 0x2 && model < 0x20))
2999 msr_info->data = 0x1E;
3000 }
3001 break;
3002 case MSR_AMD64_DE_CFG:
3003 msr_info->data = svm->msr_decfg;
3004 break;
3005 default:
3006 return kvm_get_msr_common(vcpu, msr_info);
3007 }
3008 return 0;
3009 }
3010
svm_complete_emulated_msr(struct kvm_vcpu * vcpu,int err)3011 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
3012 {
3013 struct vcpu_svm *svm = to_svm(vcpu);
3014 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
3015 return kvm_complete_insn_gp(vcpu, err);
3016
3017 svm_vmgexit_inject_exception(svm, X86_TRAP_GP);
3018 return 1;
3019 }
3020
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)3021 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3022 {
3023 struct vcpu_svm *svm = to_svm(vcpu);
3024 int svm_dis, chg_mask;
3025
3026 if (data & ~SVM_VM_CR_VALID_MASK)
3027 return 1;
3028
3029 chg_mask = SVM_VM_CR_VALID_MASK;
3030
3031 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3032 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3033
3034 svm->nested.vm_cr_msr &= ~chg_mask;
3035 svm->nested.vm_cr_msr |= (data & chg_mask);
3036
3037 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3038
3039 /* check for svm_disable while efer.svme is set */
3040 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3041 return 1;
3042
3043 return 0;
3044 }
3045
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)3046 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3047 {
3048 struct vcpu_svm *svm = to_svm(vcpu);
3049 int ret = 0;
3050
3051 u32 ecx = msr->index;
3052 u64 data = msr->data;
3053
3054 if (sev_es_prevent_msr_access(vcpu, msr))
3055 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
3056
3057 switch (ecx) {
3058 case MSR_AMD64_TSC_RATIO:
3059
3060 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) {
3061
3062 if (!msr->host_initiated)
3063 return 1;
3064 /*
3065 * In case TSC scaling is not enabled, always
3066 * leave this MSR at the default value.
3067 *
3068 * Due to bug in qemu 6.2.0, it would try to set
3069 * this msr to 0 if tsc scaling is not enabled.
3070 * Ignore this value as well.
3071 */
3072 if (data != 0 && data != svm->tsc_ratio_msr)
3073 return 1;
3074 break;
3075 }
3076
3077 if (data & SVM_TSC_RATIO_RSVD)
3078 return 1;
3079
3080 svm->tsc_ratio_msr = data;
3081
3082 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) &&
3083 is_guest_mode(vcpu))
3084 nested_svm_update_tsc_ratio_msr(vcpu);
3085
3086 break;
3087 case MSR_IA32_CR_PAT:
3088 ret = kvm_set_msr_common(vcpu, msr);
3089 if (ret)
3090 break;
3091
3092 svm->vmcb01.ptr->save.g_pat = data;
3093 if (is_guest_mode(vcpu))
3094 nested_vmcb02_compute_g_pat(svm);
3095 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3096 break;
3097 case MSR_IA32_SPEC_CTRL:
3098 if (!msr->host_initiated &&
3099 !guest_has_spec_ctrl_msr(vcpu))
3100 return 1;
3101
3102 if (kvm_spec_ctrl_test_value(data))
3103 return 1;
3104
3105 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3106 svm->vmcb->save.spec_ctrl = data;
3107 else
3108 svm->spec_ctrl = data;
3109 if (!data)
3110 break;
3111
3112 /*
3113 * For non-nested:
3114 * When it's written (to non-zero) for the first time, pass
3115 * it through.
3116 *
3117 * For nested:
3118 * The handling of the MSR bitmap for L2 guests is done in
3119 * nested_svm_vmrun_msrpm.
3120 * We update the L1 MSR bit as well since it will end up
3121 * touching the MSR anyway now.
3122 */
3123 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
3124 break;
3125 case MSR_AMD64_VIRT_SPEC_CTRL:
3126 if (!msr->host_initiated &&
3127 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
3128 return 1;
3129
3130 if (data & ~SPEC_CTRL_SSBD)
3131 return 1;
3132
3133 svm->virt_spec_ctrl = data;
3134 break;
3135 case MSR_STAR:
3136 svm->vmcb01.ptr->save.star = data;
3137 break;
3138 #ifdef CONFIG_X86_64
3139 case MSR_LSTAR:
3140 svm->vmcb01.ptr->save.lstar = data;
3141 break;
3142 case MSR_CSTAR:
3143 svm->vmcb01.ptr->save.cstar = data;
3144 break;
3145 case MSR_GS_BASE:
3146 svm->vmcb01.ptr->save.gs.base = data;
3147 break;
3148 case MSR_FS_BASE:
3149 svm->vmcb01.ptr->save.fs.base = data;
3150 break;
3151 case MSR_KERNEL_GS_BASE:
3152 svm->vmcb01.ptr->save.kernel_gs_base = data;
3153 break;
3154 case MSR_SYSCALL_MASK:
3155 svm->vmcb01.ptr->save.sfmask = data;
3156 break;
3157 #endif
3158 case MSR_IA32_SYSENTER_CS:
3159 svm->vmcb01.ptr->save.sysenter_cs = data;
3160 break;
3161 case MSR_IA32_SYSENTER_EIP:
3162 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
3163 /*
3164 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3165 * when we spoof an Intel vendor ID (for cross vendor migration).
3166 * In this case we use this intercept to track the high
3167 * 32 bit part of these msrs to support Intel's
3168 * implementation of SYSENTER/SYSEXIT.
3169 */
3170 svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
3171 break;
3172 case MSR_IA32_SYSENTER_ESP:
3173 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3174 svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
3175 break;
3176 case MSR_TSC_AUX:
3177 /*
3178 * TSC_AUX is always virtualized for SEV-ES guests when the
3179 * feature is available. The user return MSR support is not
3180 * required in this case because TSC_AUX is restored on #VMEXIT
3181 * from the host save area (which has been initialized in
3182 * svm_enable_virtualization_cpu()).
3183 */
3184 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
3185 break;
3186
3187 /*
3188 * TSC_AUX is usually changed only during boot and never read
3189 * directly. Intercept TSC_AUX instead of exposing it to the
3190 * guest via direct_access_msrs, and switch it via user return.
3191 */
3192 preempt_disable();
3193 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3194 preempt_enable();
3195 if (ret)
3196 break;
3197
3198 svm->tsc_aux = data;
3199 break;
3200 case MSR_IA32_DEBUGCTLMSR:
3201 if (!lbrv) {
3202 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3203 break;
3204 }
3205
3206 /*
3207 * Suppress BTF as KVM doesn't virtualize BTF, but there's no
3208 * way to communicate lack of support to the guest.
3209 */
3210 if (data & DEBUGCTLMSR_BTF) {
3211 kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
3212 data &= ~DEBUGCTLMSR_BTF;
3213 }
3214
3215 if (data & DEBUGCTL_RESERVED_BITS)
3216 return 1;
3217
3218 svm_get_lbr_vmcb(svm)->save.dbgctl = data;
3219 svm_update_lbrv(vcpu);
3220 break;
3221 case MSR_VM_HSAVE_PA:
3222 /*
3223 * Old kernels did not validate the value written to
3224 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid
3225 * value to allow live migrating buggy or malicious guests
3226 * originating from those kernels.
3227 */
3228 if (!msr->host_initiated && !page_address_valid(vcpu, data))
3229 return 1;
3230
3231 svm->nested.hsave_msr = data & PAGE_MASK;
3232 break;
3233 case MSR_VM_CR:
3234 return svm_set_vm_cr(vcpu, data);
3235 case MSR_VM_IGNNE:
3236 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3237 break;
3238 case MSR_AMD64_DE_CFG: {
3239 u64 supported_de_cfg;
3240
3241 if (svm_get_feature_msr(ecx, &supported_de_cfg))
3242 return 1;
3243
3244 if (data & ~supported_de_cfg)
3245 return 1;
3246
3247 svm->msr_decfg = data;
3248 break;
3249 }
3250 default:
3251 return kvm_set_msr_common(vcpu, msr);
3252 }
3253 return ret;
3254 }
3255
msr_interception(struct kvm_vcpu * vcpu)3256 static int msr_interception(struct kvm_vcpu *vcpu)
3257 {
3258 if (to_svm(vcpu)->vmcb->control.exit_info_1)
3259 return kvm_emulate_wrmsr(vcpu);
3260 else
3261 return kvm_emulate_rdmsr(vcpu);
3262 }
3263
interrupt_window_interception(struct kvm_vcpu * vcpu)3264 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3265 {
3266 kvm_make_request(KVM_REQ_EVENT, vcpu);
3267 svm_clear_vintr(to_svm(vcpu));
3268
3269 /*
3270 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3271 * In this case AVIC was temporarily disabled for
3272 * requesting the IRQ window and we have to re-enable it.
3273 *
3274 * If running nested, still remove the VM wide AVIC inhibit to
3275 * support case in which the interrupt window was requested when the
3276 * vCPU was not running nested.
3277
3278 * All vCPUs which run still run nested, will remain to have their
3279 * AVIC still inhibited due to per-cpu AVIC inhibition.
3280 */
3281 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3282
3283 ++vcpu->stat.irq_window_exits;
3284 return 1;
3285 }
3286
pause_interception(struct kvm_vcpu * vcpu)3287 static int pause_interception(struct kvm_vcpu *vcpu)
3288 {
3289 bool in_kernel;
3290 /*
3291 * CPL is not made available for an SEV-ES guest, therefore
3292 * vcpu->arch.preempted_in_kernel can never be true. Just
3293 * set in_kernel to false as well.
3294 */
3295 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3296
3297 grow_ple_window(vcpu);
3298
3299 kvm_vcpu_on_spin(vcpu, in_kernel);
3300 return kvm_skip_emulated_instruction(vcpu);
3301 }
3302
invpcid_interception(struct kvm_vcpu * vcpu)3303 static int invpcid_interception(struct kvm_vcpu *vcpu)
3304 {
3305 struct vcpu_svm *svm = to_svm(vcpu);
3306 unsigned long type;
3307 gva_t gva;
3308
3309 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
3310 kvm_queue_exception(vcpu, UD_VECTOR);
3311 return 1;
3312 }
3313
3314 /*
3315 * For an INVPCID intercept:
3316 * EXITINFO1 provides the linear address of the memory operand.
3317 * EXITINFO2 provides the contents of the register operand.
3318 */
3319 type = svm->vmcb->control.exit_info_2;
3320 gva = svm->vmcb->control.exit_info_1;
3321
3322 /*
3323 * FIXME: Perform segment checks for 32-bit mode, and inject #SS if the
3324 * stack segment is used. The intercept takes priority over all
3325 * #GP checks except CPL>0, but somehow still generates a linear
3326 * address? The APM is sorely lacking.
3327 */
3328 if (is_noncanonical_address(gva, vcpu, 0)) {
3329 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3330 return 1;
3331 }
3332
3333 return kvm_handle_invpcid(vcpu, type, gva);
3334 }
3335
complete_userspace_buslock(struct kvm_vcpu * vcpu)3336 static inline int complete_userspace_buslock(struct kvm_vcpu *vcpu)
3337 {
3338 struct vcpu_svm *svm = to_svm(vcpu);
3339
3340 /*
3341 * If userspace has NOT changed RIP, then KVM's ABI is to let the guest
3342 * execute the bus-locking instruction. Set the bus lock counter to '1'
3343 * to effectively step past the bus lock.
3344 */
3345 if (kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))
3346 svm->vmcb->control.bus_lock_counter = 1;
3347
3348 return 1;
3349 }
3350
bus_lock_exit(struct kvm_vcpu * vcpu)3351 static int bus_lock_exit(struct kvm_vcpu *vcpu)
3352 {
3353 struct vcpu_svm *svm = to_svm(vcpu);
3354
3355 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
3356 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
3357
3358 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
3359 vcpu->arch.complete_userspace_io = complete_userspace_buslock;
3360
3361 if (is_guest_mode(vcpu))
3362 svm->nested.ctl.bus_lock_rip = vcpu->arch.cui_linear_rip;
3363
3364 return 0;
3365 }
3366
3367 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3368 [SVM_EXIT_READ_CR0] = cr_interception,
3369 [SVM_EXIT_READ_CR3] = cr_interception,
3370 [SVM_EXIT_READ_CR4] = cr_interception,
3371 [SVM_EXIT_READ_CR8] = cr_interception,
3372 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3373 [SVM_EXIT_WRITE_CR0] = cr_interception,
3374 [SVM_EXIT_WRITE_CR3] = cr_interception,
3375 [SVM_EXIT_WRITE_CR4] = cr_interception,
3376 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3377 [SVM_EXIT_READ_DR0] = dr_interception,
3378 [SVM_EXIT_READ_DR1] = dr_interception,
3379 [SVM_EXIT_READ_DR2] = dr_interception,
3380 [SVM_EXIT_READ_DR3] = dr_interception,
3381 [SVM_EXIT_READ_DR4] = dr_interception,
3382 [SVM_EXIT_READ_DR5] = dr_interception,
3383 [SVM_EXIT_READ_DR6] = dr_interception,
3384 [SVM_EXIT_READ_DR7] = dr_interception,
3385 [SVM_EXIT_WRITE_DR0] = dr_interception,
3386 [SVM_EXIT_WRITE_DR1] = dr_interception,
3387 [SVM_EXIT_WRITE_DR2] = dr_interception,
3388 [SVM_EXIT_WRITE_DR3] = dr_interception,
3389 [SVM_EXIT_WRITE_DR4] = dr_interception,
3390 [SVM_EXIT_WRITE_DR5] = dr_interception,
3391 [SVM_EXIT_WRITE_DR6] = dr_interception,
3392 [SVM_EXIT_WRITE_DR7] = dr_interception,
3393 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3394 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3395 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3396 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3397 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3398 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
3399 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
3400 [SVM_EXIT_INTR] = intr_interception,
3401 [SVM_EXIT_NMI] = nmi_interception,
3402 [SVM_EXIT_SMI] = smi_interception,
3403 [SVM_EXIT_VINTR] = interrupt_window_interception,
3404 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc,
3405 [SVM_EXIT_CPUID] = kvm_emulate_cpuid,
3406 [SVM_EXIT_IRET] = iret_interception,
3407 [SVM_EXIT_INVD] = kvm_emulate_invd,
3408 [SVM_EXIT_PAUSE] = pause_interception,
3409 [SVM_EXIT_HLT] = kvm_emulate_halt,
3410 [SVM_EXIT_INVLPG] = invlpg_interception,
3411 [SVM_EXIT_INVLPGA] = invlpga_interception,
3412 [SVM_EXIT_IOIO] = io_interception,
3413 [SVM_EXIT_MSR] = msr_interception,
3414 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3415 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3416 [SVM_EXIT_VMRUN] = vmrun_interception,
3417 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall,
3418 [SVM_EXIT_VMLOAD] = vmload_interception,
3419 [SVM_EXIT_VMSAVE] = vmsave_interception,
3420 [SVM_EXIT_STGI] = stgi_interception,
3421 [SVM_EXIT_CLGI] = clgi_interception,
3422 [SVM_EXIT_SKINIT] = skinit_interception,
3423 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op,
3424 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd,
3425 [SVM_EXIT_MONITOR] = kvm_emulate_monitor,
3426 [SVM_EXIT_MWAIT] = kvm_emulate_mwait,
3427 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv,
3428 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op,
3429 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap,
3430 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap,
3431 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap,
3432 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap,
3433 [SVM_EXIT_INVPCID] = invpcid_interception,
3434 [SVM_EXIT_IDLE_HLT] = kvm_emulate_halt,
3435 [SVM_EXIT_NPF] = npf_interception,
3436 [SVM_EXIT_BUS_LOCK] = bus_lock_exit,
3437 [SVM_EXIT_RSM] = rsm_interception,
3438 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
3439 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
3440 #ifdef CONFIG_KVM_AMD_SEV
3441 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit,
3442 #endif
3443 };
3444
dump_vmcb(struct kvm_vcpu * vcpu)3445 static void dump_vmcb(struct kvm_vcpu *vcpu)
3446 {
3447 struct vcpu_svm *svm = to_svm(vcpu);
3448 struct vmcb_control_area *control = &svm->vmcb->control;
3449 struct vmcb_save_area *save = &svm->vmcb->save;
3450 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3451 char *vm_type;
3452
3453 if (!dump_invalid_vmcb) {
3454 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3455 return;
3456 }
3457
3458 guard(mutex)(&vmcb_dump_mutex);
3459
3460 vm_type = sev_snp_guest(vcpu->kvm) ? "SEV-SNP" :
3461 sev_es_guest(vcpu->kvm) ? "SEV-ES" :
3462 sev_guest(vcpu->kvm) ? "SEV" : "SVM";
3463
3464 pr_err("%s vCPU%u VMCB %p, last attempted VMRUN on CPU %d\n",
3465 vm_type, vcpu->vcpu_id, svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3466 pr_err("VMCB Control Area:\n");
3467 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3468 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3469 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3470 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3471 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3472 pr_err("%-20s%08x %08x\n", "intercepts:",
3473 control->intercepts[INTERCEPT_WORD3],
3474 control->intercepts[INTERCEPT_WORD4]);
3475 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3476 pr_err("%-20s%d\n", "pause filter threshold:",
3477 control->pause_filter_thresh);
3478 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3479 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3480 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3481 pr_err("%-20s%d\n", "asid:", control->asid);
3482 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3483 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3484 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3485 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3486 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3487 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3488 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3489 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3490 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3491 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3492 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3493 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3494 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3495 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3496 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3497 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3498 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3499 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3500 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3501 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3502 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3503 pr_err("%-20s%016llx\n", "allowed_sev_features:", control->allowed_sev_features);
3504 pr_err("%-20s%016llx\n", "guest_sev_features:", control->guest_sev_features);
3505
3506 if (sev_es_guest(vcpu->kvm)) {
3507 save = sev_decrypt_vmsa(vcpu);
3508 if (!save)
3509 goto no_vmsa;
3510
3511 save01 = save;
3512 }
3513
3514 pr_err("VMCB State Save Area:\n");
3515 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3516 "es:",
3517 save->es.selector, save->es.attrib,
3518 save->es.limit, save->es.base);
3519 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3520 "cs:",
3521 save->cs.selector, save->cs.attrib,
3522 save->cs.limit, save->cs.base);
3523 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3524 "ss:",
3525 save->ss.selector, save->ss.attrib,
3526 save->ss.limit, save->ss.base);
3527 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3528 "ds:",
3529 save->ds.selector, save->ds.attrib,
3530 save->ds.limit, save->ds.base);
3531 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3532 "fs:",
3533 save01->fs.selector, save01->fs.attrib,
3534 save01->fs.limit, save01->fs.base);
3535 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3536 "gs:",
3537 save01->gs.selector, save01->gs.attrib,
3538 save01->gs.limit, save01->gs.base);
3539 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3540 "gdtr:",
3541 save->gdtr.selector, save->gdtr.attrib,
3542 save->gdtr.limit, save->gdtr.base);
3543 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3544 "ldtr:",
3545 save01->ldtr.selector, save01->ldtr.attrib,
3546 save01->ldtr.limit, save01->ldtr.base);
3547 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3548 "idtr:",
3549 save->idtr.selector, save->idtr.attrib,
3550 save->idtr.limit, save->idtr.base);
3551 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3552 "tr:",
3553 save01->tr.selector, save01->tr.attrib,
3554 save01->tr.limit, save01->tr.base);
3555 pr_err("vmpl: %d cpl: %d efer: %016llx\n",
3556 save->vmpl, save->cpl, save->efer);
3557 pr_err("%-15s %016llx %-13s %016llx\n",
3558 "cr0:", save->cr0, "cr2:", save->cr2);
3559 pr_err("%-15s %016llx %-13s %016llx\n",
3560 "cr3:", save->cr3, "cr4:", save->cr4);
3561 pr_err("%-15s %016llx %-13s %016llx\n",
3562 "dr6:", save->dr6, "dr7:", save->dr7);
3563 pr_err("%-15s %016llx %-13s %016llx\n",
3564 "rip:", save->rip, "rflags:", save->rflags);
3565 pr_err("%-15s %016llx %-13s %016llx\n",
3566 "rsp:", save->rsp, "rax:", save->rax);
3567 pr_err("%-15s %016llx %-13s %016llx\n",
3568 "star:", save01->star, "lstar:", save01->lstar);
3569 pr_err("%-15s %016llx %-13s %016llx\n",
3570 "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3571 pr_err("%-15s %016llx %-13s %016llx\n",
3572 "kernel_gs_base:", save01->kernel_gs_base,
3573 "sysenter_cs:", save01->sysenter_cs);
3574 pr_err("%-15s %016llx %-13s %016llx\n",
3575 "sysenter_esp:", save01->sysenter_esp,
3576 "sysenter_eip:", save01->sysenter_eip);
3577 pr_err("%-15s %016llx %-13s %016llx\n",
3578 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3579 pr_err("%-15s %016llx %-13s %016llx\n",
3580 "br_from:", save->br_from, "br_to:", save->br_to);
3581 pr_err("%-15s %016llx %-13s %016llx\n",
3582 "excp_from:", save->last_excp_from,
3583 "excp_to:", save->last_excp_to);
3584
3585 if (sev_es_guest(vcpu->kvm)) {
3586 struct sev_es_save_area *vmsa = (struct sev_es_save_area *)save;
3587
3588 pr_err("%-15s %016llx\n",
3589 "sev_features", vmsa->sev_features);
3590
3591 pr_err("%-15s %016llx %-13s %016llx\n",
3592 "rax:", vmsa->rax, "rbx:", vmsa->rbx);
3593 pr_err("%-15s %016llx %-13s %016llx\n",
3594 "rcx:", vmsa->rcx, "rdx:", vmsa->rdx);
3595 pr_err("%-15s %016llx %-13s %016llx\n",
3596 "rsi:", vmsa->rsi, "rdi:", vmsa->rdi);
3597 pr_err("%-15s %016llx %-13s %016llx\n",
3598 "rbp:", vmsa->rbp, "rsp:", vmsa->rsp);
3599 pr_err("%-15s %016llx %-13s %016llx\n",
3600 "r8:", vmsa->r8, "r9:", vmsa->r9);
3601 pr_err("%-15s %016llx %-13s %016llx\n",
3602 "r10:", vmsa->r10, "r11:", vmsa->r11);
3603 pr_err("%-15s %016llx %-13s %016llx\n",
3604 "r12:", vmsa->r12, "r13:", vmsa->r13);
3605 pr_err("%-15s %016llx %-13s %016llx\n",
3606 "r14:", vmsa->r14, "r15:", vmsa->r15);
3607 pr_err("%-15s %016llx %-13s %016llx\n",
3608 "xcr0:", vmsa->xcr0, "xss:", vmsa->xss);
3609 } else {
3610 pr_err("%-15s %016llx %-13s %016lx\n",
3611 "rax:", save->rax, "rbx:",
3612 vcpu->arch.regs[VCPU_REGS_RBX]);
3613 pr_err("%-15s %016lx %-13s %016lx\n",
3614 "rcx:", vcpu->arch.regs[VCPU_REGS_RCX],
3615 "rdx:", vcpu->arch.regs[VCPU_REGS_RDX]);
3616 pr_err("%-15s %016lx %-13s %016lx\n",
3617 "rsi:", vcpu->arch.regs[VCPU_REGS_RSI],
3618 "rdi:", vcpu->arch.regs[VCPU_REGS_RDI]);
3619 pr_err("%-15s %016lx %-13s %016llx\n",
3620 "rbp:", vcpu->arch.regs[VCPU_REGS_RBP],
3621 "rsp:", save->rsp);
3622 #ifdef CONFIG_X86_64
3623 pr_err("%-15s %016lx %-13s %016lx\n",
3624 "r8:", vcpu->arch.regs[VCPU_REGS_R8],
3625 "r9:", vcpu->arch.regs[VCPU_REGS_R9]);
3626 pr_err("%-15s %016lx %-13s %016lx\n",
3627 "r10:", vcpu->arch.regs[VCPU_REGS_R10],
3628 "r11:", vcpu->arch.regs[VCPU_REGS_R11]);
3629 pr_err("%-15s %016lx %-13s %016lx\n",
3630 "r12:", vcpu->arch.regs[VCPU_REGS_R12],
3631 "r13:", vcpu->arch.regs[VCPU_REGS_R13]);
3632 pr_err("%-15s %016lx %-13s %016lx\n",
3633 "r14:", vcpu->arch.regs[VCPU_REGS_R14],
3634 "r15:", vcpu->arch.regs[VCPU_REGS_R15]);
3635 #endif
3636 }
3637
3638 no_vmsa:
3639 if (sev_es_guest(vcpu->kvm))
3640 sev_free_decrypted_vmsa(vcpu, save);
3641 }
3642
svm_check_exit_valid(u64 exit_code)3643 static bool svm_check_exit_valid(u64 exit_code)
3644 {
3645 return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3646 svm_exit_handlers[exit_code]);
3647 }
3648
svm_handle_invalid_exit(struct kvm_vcpu * vcpu,u64 exit_code)3649 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3650 {
3651 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3652 dump_vmcb(vcpu);
3653 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3654 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3655 vcpu->run->internal.ndata = 2;
3656 vcpu->run->internal.data[0] = exit_code;
3657 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3658 return 0;
3659 }
3660
svm_invoke_exit_handler(struct kvm_vcpu * vcpu,u64 exit_code)3661 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3662 {
3663 if (!svm_check_exit_valid(exit_code))
3664 return svm_handle_invalid_exit(vcpu, exit_code);
3665
3666 #ifdef CONFIG_MITIGATION_RETPOLINE
3667 if (exit_code == SVM_EXIT_MSR)
3668 return msr_interception(vcpu);
3669 else if (exit_code == SVM_EXIT_VINTR)
3670 return interrupt_window_interception(vcpu);
3671 else if (exit_code == SVM_EXIT_INTR)
3672 return intr_interception(vcpu);
3673 else if (exit_code == SVM_EXIT_HLT || exit_code == SVM_EXIT_IDLE_HLT)
3674 return kvm_emulate_halt(vcpu);
3675 else if (exit_code == SVM_EXIT_NPF)
3676 return npf_interception(vcpu);
3677 #ifdef CONFIG_KVM_AMD_SEV
3678 else if (exit_code == SVM_EXIT_VMGEXIT)
3679 return sev_handle_vmgexit(vcpu);
3680 #endif
3681 #endif
3682 return svm_exit_handlers[exit_code](vcpu);
3683 }
3684
svm_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)3685 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3686 u64 *info1, u64 *info2,
3687 u32 *intr_info, u32 *error_code)
3688 {
3689 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3690
3691 *reason = control->exit_code;
3692 *info1 = control->exit_info_1;
3693 *info2 = control->exit_info_2;
3694 *intr_info = control->exit_int_info;
3695 if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3696 (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3697 *error_code = control->exit_int_info_err;
3698 else
3699 *error_code = 0;
3700 }
3701
svm_get_entry_info(struct kvm_vcpu * vcpu,u32 * intr_info,u32 * error_code)3702 static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info,
3703 u32 *error_code)
3704 {
3705 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3706
3707 *intr_info = control->event_inj;
3708
3709 if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3710 (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3711 *error_code = control->event_inj_err;
3712 else
3713 *error_code = 0;
3714
3715 }
3716
svm_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)3717 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3718 {
3719 struct vcpu_svm *svm = to_svm(vcpu);
3720 struct kvm_run *kvm_run = vcpu->run;
3721 u32 exit_code = svm->vmcb->control.exit_code;
3722
3723 /* SEV-ES guests must use the CR write traps to track CR registers. */
3724 if (!sev_es_guest(vcpu->kvm)) {
3725 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3726 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3727 if (npt_enabled)
3728 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3729 }
3730
3731 if (is_guest_mode(vcpu)) {
3732 int vmexit;
3733
3734 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3735
3736 vmexit = nested_svm_exit_special(svm);
3737
3738 if (vmexit == NESTED_EXIT_CONTINUE)
3739 vmexit = nested_svm_exit_handled(svm);
3740
3741 if (vmexit == NESTED_EXIT_DONE)
3742 return 1;
3743 }
3744
3745 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3746 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3747 kvm_run->fail_entry.hardware_entry_failure_reason
3748 = svm->vmcb->control.exit_code;
3749 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3750 dump_vmcb(vcpu);
3751 return 0;
3752 }
3753
3754 if (exit_fastpath != EXIT_FASTPATH_NONE)
3755 return 1;
3756
3757 return svm_invoke_exit_handler(vcpu, exit_code);
3758 }
3759
pre_svm_run(struct kvm_vcpu * vcpu)3760 static int pre_svm_run(struct kvm_vcpu *vcpu)
3761 {
3762 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3763 struct vcpu_svm *svm = to_svm(vcpu);
3764
3765 /*
3766 * If the previous vmrun of the vmcb occurred on a different physical
3767 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's
3768 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3769 */
3770 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3771 svm->current_vmcb->asid_generation = 0;
3772 vmcb_mark_all_dirty(svm->vmcb);
3773 svm->current_vmcb->cpu = vcpu->cpu;
3774 }
3775
3776 if (sev_guest(vcpu->kvm))
3777 return pre_sev_run(svm, vcpu->cpu);
3778
3779 /* FIXME: handle wraparound of asid_generation */
3780 if (svm->current_vmcb->asid_generation != sd->asid_generation)
3781 new_asid(svm, sd);
3782
3783 return 0;
3784 }
3785
svm_inject_nmi(struct kvm_vcpu * vcpu)3786 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3787 {
3788 struct vcpu_svm *svm = to_svm(vcpu);
3789
3790 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3791
3792 if (svm->nmi_l1_to_l2)
3793 return;
3794
3795 /*
3796 * No need to manually track NMI masking when vNMI is enabled, hardware
3797 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
3798 * case where software directly injects an NMI.
3799 */
3800 if (!is_vnmi_enabled(svm)) {
3801 svm->nmi_masked = true;
3802 svm_set_iret_intercept(svm);
3803 }
3804 ++vcpu->stat.nmi_injections;
3805 }
3806
svm_is_vnmi_pending(struct kvm_vcpu * vcpu)3807 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3808 {
3809 struct vcpu_svm *svm = to_svm(vcpu);
3810
3811 if (!is_vnmi_enabled(svm))
3812 return false;
3813
3814 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3815 }
3816
svm_set_vnmi_pending(struct kvm_vcpu * vcpu)3817 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3818 {
3819 struct vcpu_svm *svm = to_svm(vcpu);
3820
3821 if (!is_vnmi_enabled(svm))
3822 return false;
3823
3824 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3825 return false;
3826
3827 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3828 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3829
3830 /*
3831 * Because the pending NMI is serviced by hardware, KVM can't know when
3832 * the NMI is "injected", but for all intents and purposes, passing the
3833 * NMI off to hardware counts as injection.
3834 */
3835 ++vcpu->stat.nmi_injections;
3836
3837 return true;
3838 }
3839
svm_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)3840 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3841 {
3842 struct vcpu_svm *svm = to_svm(vcpu);
3843 u32 type;
3844
3845 if (vcpu->arch.interrupt.soft) {
3846 if (svm_update_soft_interrupt_rip(vcpu))
3847 return;
3848
3849 type = SVM_EVTINJ_TYPE_SOFT;
3850 } else {
3851 type = SVM_EVTINJ_TYPE_INTR;
3852 }
3853
3854 trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3855 vcpu->arch.interrupt.soft, reinjected);
3856 ++vcpu->stat.irq_injections;
3857
3858 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3859 SVM_EVTINJ_VALID | type;
3860 }
3861
svm_complete_interrupt_delivery(struct kvm_vcpu * vcpu,int delivery_mode,int trig_mode,int vector)3862 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3863 int trig_mode, int vector)
3864 {
3865 /*
3866 * apic->apicv_active must be read after vcpu->mode.
3867 * Pairs with smp_store_release in vcpu_enter_guest.
3868 */
3869 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3870
3871 /* Note, this is called iff the local APIC is in-kernel. */
3872 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3873 /* Process the interrupt via kvm_check_and_inject_events(). */
3874 kvm_make_request(KVM_REQ_EVENT, vcpu);
3875 kvm_vcpu_kick(vcpu);
3876 return;
3877 }
3878
3879 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3880 if (in_guest_mode) {
3881 /*
3882 * Signal the doorbell to tell hardware to inject the IRQ. If
3883 * the vCPU exits the guest before the doorbell chimes, hardware
3884 * will automatically process AVIC interrupts at the next VMRUN.
3885 */
3886 avic_ring_doorbell(vcpu);
3887 } else {
3888 /*
3889 * Wake the vCPU if it was blocking. KVM will then detect the
3890 * pending IRQ when checking if the vCPU has a wake event.
3891 */
3892 kvm_vcpu_wake_up(vcpu);
3893 }
3894 }
3895
svm_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)3896 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
3897 int trig_mode, int vector)
3898 {
3899 kvm_lapic_set_irr(vector, apic);
3900
3901 /*
3902 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3903 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3904 * the read of guest_mode. This guarantees that either VMRUN will see
3905 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3906 * will signal the doorbell if the CPU has already entered the guest.
3907 */
3908 smp_mb__after_atomic();
3909 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3910 }
3911
svm_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3912 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3913 {
3914 struct vcpu_svm *svm = to_svm(vcpu);
3915
3916 /*
3917 * SEV-ES guests must always keep the CR intercepts cleared. CR
3918 * tracking is done using the CR write traps.
3919 */
3920 if (sev_es_guest(vcpu->kvm))
3921 return;
3922
3923 if (nested_svm_virtualize_tpr(vcpu))
3924 return;
3925
3926 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3927
3928 if (irr == -1)
3929 return;
3930
3931 if (tpr >= irr)
3932 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3933 }
3934
svm_get_nmi_mask(struct kvm_vcpu * vcpu)3935 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3936 {
3937 struct vcpu_svm *svm = to_svm(vcpu);
3938
3939 if (is_vnmi_enabled(svm))
3940 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3941 else
3942 return svm->nmi_masked;
3943 }
3944
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3945 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3946 {
3947 struct vcpu_svm *svm = to_svm(vcpu);
3948
3949 if (is_vnmi_enabled(svm)) {
3950 if (masked)
3951 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3952 else
3953 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3954
3955 } else {
3956 svm->nmi_masked = masked;
3957 if (masked)
3958 svm_set_iret_intercept(svm);
3959 else
3960 svm_clr_iret_intercept(svm);
3961 }
3962 }
3963
svm_nmi_blocked(struct kvm_vcpu * vcpu)3964 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3965 {
3966 struct vcpu_svm *svm = to_svm(vcpu);
3967 struct vmcb *vmcb = svm->vmcb;
3968
3969 if (!gif_set(svm))
3970 return true;
3971
3972 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3973 return false;
3974
3975 if (svm_get_nmi_mask(vcpu))
3976 return true;
3977
3978 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3979 }
3980
svm_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)3981 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3982 {
3983 struct vcpu_svm *svm = to_svm(vcpu);
3984 if (svm->nested.nested_run_pending)
3985 return -EBUSY;
3986
3987 if (svm_nmi_blocked(vcpu))
3988 return 0;
3989
3990 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
3991 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3992 return -EBUSY;
3993 return 1;
3994 }
3995
svm_interrupt_blocked(struct kvm_vcpu * vcpu)3996 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3997 {
3998 struct vcpu_svm *svm = to_svm(vcpu);
3999 struct vmcb *vmcb = svm->vmcb;
4000
4001 if (!gif_set(svm))
4002 return true;
4003
4004 if (is_guest_mode(vcpu)) {
4005 /* As long as interrupts are being delivered... */
4006 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
4007 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
4008 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
4009 return true;
4010
4011 /* ... vmexits aren't blocked by the interrupt shadow */
4012 if (nested_exit_on_intr(svm))
4013 return false;
4014 } else {
4015 if (!svm_get_if_flag(vcpu))
4016 return true;
4017 }
4018
4019 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
4020 }
4021
svm_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)4022 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4023 {
4024 struct vcpu_svm *svm = to_svm(vcpu);
4025
4026 if (svm->nested.nested_run_pending)
4027 return -EBUSY;
4028
4029 if (svm_interrupt_blocked(vcpu))
4030 return 0;
4031
4032 /*
4033 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4034 * e.g. if the IRQ arrived asynchronously after checking nested events.
4035 */
4036 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
4037 return -EBUSY;
4038
4039 return 1;
4040 }
4041
svm_enable_irq_window(struct kvm_vcpu * vcpu)4042 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
4043 {
4044 struct vcpu_svm *svm = to_svm(vcpu);
4045
4046 /*
4047 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
4048 * 1, because that's a separate STGI/VMRUN intercept. The next time we
4049 * get that intercept, this function will be called again though and
4050 * we'll get the vintr intercept. However, if the vGIF feature is
4051 * enabled, the STGI interception will not occur. Enable the irq
4052 * window under the assumption that the hardware will set the GIF.
4053 */
4054 if (vgif || gif_set(svm)) {
4055 /*
4056 * IRQ window is not needed when AVIC is enabled,
4057 * unless we have pending ExtINT since it cannot be injected
4058 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
4059 * and fallback to injecting IRQ via V_IRQ.
4060 *
4061 * If running nested, AVIC is already locally inhibited
4062 * on this vCPU, therefore there is no need to request
4063 * the VM wide AVIC inhibition.
4064 */
4065 if (!is_guest_mode(vcpu))
4066 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
4067
4068 svm_set_vintr(svm);
4069 }
4070 }
4071
svm_enable_nmi_window(struct kvm_vcpu * vcpu)4072 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
4073 {
4074 struct vcpu_svm *svm = to_svm(vcpu);
4075
4076 /*
4077 * If NMIs are outright masked, i.e. the vCPU is already handling an
4078 * NMI, and KVM has not yet intercepted an IRET, then there is nothing
4079 * more to do at this time as KVM has already enabled IRET intercepts.
4080 * If KVM has already intercepted IRET, then single-step over the IRET,
4081 * as NMIs aren't architecturally unmasked until the IRET completes.
4082 *
4083 * If vNMI is enabled, KVM should never request an NMI window if NMIs
4084 * are masked, as KVM allows at most one to-be-injected NMI and one
4085 * pending NMI. If two NMIs arrive simultaneously, KVM will inject one
4086 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are
4087 * unmasked. KVM _will_ request an NMI window in some situations, e.g.
4088 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately
4089 * inject the NMI. In those situations, KVM needs to single-step over
4090 * the STI shadow or intercept STGI.
4091 */
4092 if (svm_get_nmi_mask(vcpu)) {
4093 WARN_ON_ONCE(is_vnmi_enabled(svm));
4094
4095 if (!svm->awaiting_iret_completion)
4096 return; /* IRET will cause a vm exit */
4097 }
4098
4099 /*
4100 * SEV-ES guests are responsible for signaling when a vCPU is ready to
4101 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
4102 * KVM can't intercept and single-step IRET to detect when NMIs are
4103 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE.
4104 *
4105 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
4106 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
4107 * supported NAEs in the GHCB protocol.
4108 */
4109 if (sev_es_guest(vcpu->kvm))
4110 return;
4111
4112 if (!gif_set(svm)) {
4113 if (vgif)
4114 svm_set_intercept(svm, INTERCEPT_STGI);
4115 return; /* STGI will cause a vm exit */
4116 }
4117
4118 /*
4119 * Something prevents NMI from been injected. Single step over possible
4120 * problem (IRET or exception injection or interrupt shadow)
4121 */
4122 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
4123 svm->nmi_singlestep = true;
4124 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4125 }
4126
svm_flush_tlb_asid(struct kvm_vcpu * vcpu)4127 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
4128 {
4129 struct vcpu_svm *svm = to_svm(vcpu);
4130
4131 /*
4132 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
4133 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
4134 * entries, and thus is a superset of Hyper-V's fine grained flushing.
4135 */
4136 kvm_hv_vcpu_purge_flush_tlb(vcpu);
4137
4138 /*
4139 * Flush only the current ASID even if the TLB flush was invoked via
4140 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all
4141 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
4142 * unconditionally does a TLB flush on both nested VM-Enter and nested
4143 * VM-Exit (via kvm_mmu_reset_context()).
4144 */
4145 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4146 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4147 else
4148 svm->current_vmcb->asid_generation--;
4149 }
4150
svm_flush_tlb_current(struct kvm_vcpu * vcpu)4151 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
4152 {
4153 hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
4154
4155 /*
4156 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
4157 * flush the NPT mappings via hypercall as flushing the ASID only
4158 * affects virtual to physical mappings, it does not invalidate guest
4159 * physical to host physical mappings.
4160 */
4161 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
4162 hyperv_flush_guest_mapping(root_tdp);
4163
4164 svm_flush_tlb_asid(vcpu);
4165 }
4166
svm_flush_tlb_all(struct kvm_vcpu * vcpu)4167 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
4168 {
4169 /*
4170 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
4171 * flushes should be routed to hv_flush_remote_tlbs() without requesting
4172 * a "regular" remote flush. Reaching this point means either there's
4173 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
4174 * which might be fatal to the guest. Yell, but try to recover.
4175 */
4176 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
4177 hv_flush_remote_tlbs(vcpu->kvm);
4178
4179 svm_flush_tlb_asid(vcpu);
4180 }
4181
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)4182 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
4183 {
4184 struct vcpu_svm *svm = to_svm(vcpu);
4185
4186 invlpga(gva, svm->vmcb->control.asid);
4187 }
4188
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)4189 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4190 {
4191 struct vcpu_svm *svm = to_svm(vcpu);
4192
4193 if (nested_svm_virtualize_tpr(vcpu))
4194 return;
4195
4196 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
4197 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4198 kvm_set_cr8(vcpu, cr8);
4199 }
4200 }
4201
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)4202 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4203 {
4204 struct vcpu_svm *svm = to_svm(vcpu);
4205 u64 cr8;
4206
4207 if (nested_svm_virtualize_tpr(vcpu) ||
4208 kvm_vcpu_apicv_active(vcpu))
4209 return;
4210
4211 cr8 = kvm_get_cr8(vcpu);
4212 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4213 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4214 }
4215
svm_complete_soft_interrupt(struct kvm_vcpu * vcpu,u8 vector,int type)4216 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
4217 int type)
4218 {
4219 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
4220 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
4221 struct vcpu_svm *svm = to_svm(vcpu);
4222
4223 /*
4224 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
4225 * associated with the original soft exception/interrupt. next_rip is
4226 * cleared on all exits that can occur while vectoring an event, so KVM
4227 * needs to manually set next_rip for re-injection. Unlike the !nrips
4228 * case below, this needs to be done if and only if KVM is re-injecting
4229 * the same event, i.e. if the event is a soft exception/interrupt,
4230 * otherwise next_rip is unused on VMRUN.
4231 */
4232 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
4233 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
4234 svm->vmcb->control.next_rip = svm->soft_int_next_rip;
4235 /*
4236 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
4237 * injecting the soft exception/interrupt. That advancement needs to
4238 * be unwound if vectoring didn't complete. Note, the new event may
4239 * not be the injected event, e.g. if KVM injected an INTn, the INTn
4240 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
4241 * be the reported vectored event, but RIP still needs to be unwound.
4242 */
4243 else if (!nrips && (is_soft || is_exception) &&
4244 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4245 kvm_rip_write(vcpu, svm->soft_int_old_rip);
4246 }
4247
svm_complete_interrupts(struct kvm_vcpu * vcpu)4248 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4249 {
4250 struct vcpu_svm *svm = to_svm(vcpu);
4251 u8 vector;
4252 int type;
4253 u32 exitintinfo = svm->vmcb->control.exit_int_info;
4254 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4255 bool soft_int_injected = svm->soft_int_injected;
4256
4257 svm->nmi_l1_to_l2 = false;
4258 svm->soft_int_injected = false;
4259
4260 /*
4261 * If we've made progress since setting awaiting_iret_completion, we've
4262 * executed an IRET and can allow NMI injection.
4263 */
4264 if (svm->awaiting_iret_completion &&
4265 kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4266 svm->awaiting_iret_completion = false;
4267 svm->nmi_masked = false;
4268 kvm_make_request(KVM_REQ_EVENT, vcpu);
4269 }
4270
4271 vcpu->arch.nmi_injected = false;
4272 kvm_clear_exception_queue(vcpu);
4273 kvm_clear_interrupt_queue(vcpu);
4274
4275 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4276 return;
4277
4278 kvm_make_request(KVM_REQ_EVENT, vcpu);
4279
4280 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4281 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4282
4283 if (soft_int_injected)
4284 svm_complete_soft_interrupt(vcpu, vector, type);
4285
4286 switch (type) {
4287 case SVM_EXITINTINFO_TYPE_NMI:
4288 vcpu->arch.nmi_injected = true;
4289 svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4290 break;
4291 case SVM_EXITINTINFO_TYPE_EXEPT: {
4292 u32 error_code = 0;
4293
4294 /*
4295 * Never re-inject a #VC exception.
4296 */
4297 if (vector == X86_TRAP_VC)
4298 break;
4299
4300 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR)
4301 error_code = svm->vmcb->control.exit_int_info_err;
4302
4303 kvm_requeue_exception(vcpu, vector,
4304 exitintinfo & SVM_EXITINTINFO_VALID_ERR,
4305 error_code);
4306 break;
4307 }
4308 case SVM_EXITINTINFO_TYPE_INTR:
4309 kvm_queue_interrupt(vcpu, vector, false);
4310 break;
4311 case SVM_EXITINTINFO_TYPE_SOFT:
4312 kvm_queue_interrupt(vcpu, vector, true);
4313 break;
4314 default:
4315 break;
4316 }
4317
4318 }
4319
svm_cancel_injection(struct kvm_vcpu * vcpu)4320 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4321 {
4322 struct vcpu_svm *svm = to_svm(vcpu);
4323 struct vmcb_control_area *control = &svm->vmcb->control;
4324
4325 control->exit_int_info = control->event_inj;
4326 control->exit_int_info_err = control->event_inj_err;
4327 control->event_inj = 0;
4328 svm_complete_interrupts(vcpu);
4329 }
4330
svm_vcpu_pre_run(struct kvm_vcpu * vcpu)4331 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4332 {
4333 if (to_kvm_sev_info(vcpu->kvm)->need_init)
4334 return -EINVAL;
4335
4336 return 1;
4337 }
4338
svm_exit_handlers_fastpath(struct kvm_vcpu * vcpu)4339 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4340 {
4341 struct vcpu_svm *svm = to_svm(vcpu);
4342
4343 if (is_guest_mode(vcpu))
4344 return EXIT_FASTPATH_NONE;
4345
4346 switch (svm->vmcb->control.exit_code) {
4347 case SVM_EXIT_MSR:
4348 if (!svm->vmcb->control.exit_info_1)
4349 break;
4350 return handle_fastpath_set_msr_irqoff(vcpu);
4351 case SVM_EXIT_HLT:
4352 return handle_fastpath_hlt(vcpu);
4353 default:
4354 break;
4355 }
4356
4357 return EXIT_FASTPATH_NONE;
4358 }
4359
svm_vcpu_enter_exit(struct kvm_vcpu * vcpu,bool spec_ctrl_intercepted)4360 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4361 {
4362 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
4363 struct vcpu_svm *svm = to_svm(vcpu);
4364
4365 guest_state_enter_irqoff();
4366
4367 /*
4368 * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of
4369 * VMRUN controls whether or not physical IRQs are masked (KVM always
4370 * runs with V_INTR_MASKING_MASK). Toggle RFLAGS.IF here to avoid the
4371 * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow
4372 * into guest state if delivery of an event during VMRUN triggers a
4373 * #VMEXIT, and the guest_state transitions already tell lockdep that
4374 * IRQs are being enabled/disabled. Note! GIF=0 for the entirety of
4375 * this path, so IRQs aren't actually unmasked while running host code.
4376 */
4377 raw_local_irq_enable();
4378
4379 amd_clear_divider();
4380
4381 if (sev_es_guest(vcpu->kvm))
4382 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted,
4383 sev_es_host_save_area(sd));
4384 else
4385 __svm_vcpu_run(svm, spec_ctrl_intercepted);
4386
4387 raw_local_irq_disable();
4388
4389 guest_state_exit_irqoff();
4390 }
4391
svm_vcpu_run(struct kvm_vcpu * vcpu,bool force_immediate_exit)4392 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu,
4393 bool force_immediate_exit)
4394 {
4395 struct vcpu_svm *svm = to_svm(vcpu);
4396 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4397
4398 trace_kvm_entry(vcpu, force_immediate_exit);
4399
4400 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4401 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4402 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4403
4404 /*
4405 * Disable singlestep if we're injecting an interrupt/exception.
4406 * We don't want our modified rflags to be pushed on the stack where
4407 * we might not be able to easily reset them if we disabled NMI
4408 * singlestep later.
4409 */
4410 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4411 /*
4412 * Event injection happens before external interrupts cause a
4413 * vmexit and interrupts are disabled here, so smp_send_reschedule
4414 * is enough to force an immediate vmexit.
4415 */
4416 disable_nmi_singlestep(svm);
4417 force_immediate_exit = true;
4418 }
4419
4420 if (force_immediate_exit)
4421 smp_send_reschedule(vcpu->cpu);
4422
4423 if (pre_svm_run(vcpu)) {
4424 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4425 vcpu->run->fail_entry.hardware_entry_failure_reason = SVM_EXIT_ERR;
4426 vcpu->run->fail_entry.cpu = vcpu->cpu;
4427 return EXIT_FASTPATH_EXIT_USERSPACE;
4428 }
4429
4430 sync_lapic_to_cr8(vcpu);
4431
4432 if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4433 svm->vmcb->control.asid = svm->asid;
4434 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4435 }
4436 svm->vmcb->save.cr2 = vcpu->arch.cr2;
4437
4438 svm_hv_update_vp_id(svm->vmcb, vcpu);
4439
4440 /*
4441 * Run with all-zero DR6 unless needed, so that we can get the exact cause
4442 * of a #DB.
4443 */
4444 if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)))
4445 svm_set_dr6(vcpu, DR6_ACTIVE_LOW);
4446
4447 clgi();
4448 kvm_load_guest_xsave_state(vcpu);
4449
4450 /*
4451 * Hardware only context switches DEBUGCTL if LBR virtualization is
4452 * enabled. Manually load DEBUGCTL if necessary (and restore it after
4453 * VM-Exit), as running with the host's DEBUGCTL can negatively affect
4454 * guest state and can even be fatal, e.g. due to Bus Lock Detect.
4455 */
4456 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4457 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4458 update_debugctlmsr(svm->vmcb->save.dbgctl);
4459
4460 kvm_wait_lapic_expire(vcpu);
4461
4462 /*
4463 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4464 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4465 * is no need to worry about the conditional branch over the wrmsr
4466 * being speculatively taken.
4467 */
4468 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4469 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4470
4471 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4472
4473 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4474 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4475
4476 if (!sev_es_guest(vcpu->kvm)) {
4477 vcpu->arch.cr2 = svm->vmcb->save.cr2;
4478 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4479 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4480 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4481 }
4482 vcpu->arch.regs_dirty = 0;
4483
4484 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4485 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4486
4487 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4488 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4489 update_debugctlmsr(vcpu->arch.host_debugctl);
4490
4491 kvm_load_host_xsave_state(vcpu);
4492 stgi();
4493
4494 /* Any pending NMI will happen here */
4495
4496 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4497 kvm_after_interrupt(vcpu);
4498
4499 sync_cr8_to_lapic(vcpu);
4500
4501 svm->next_rip = 0;
4502 if (is_guest_mode(vcpu)) {
4503 nested_sync_control_from_vmcb02(svm);
4504
4505 /* Track VMRUNs that have made past consistency checking */
4506 if (svm->nested.nested_run_pending &&
4507 svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4508 ++vcpu->stat.nested_run;
4509
4510 svm->nested.nested_run_pending = 0;
4511 }
4512
4513 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4514 vmcb_mark_all_clean(svm->vmcb);
4515
4516 /* if exit due to PF check for async PF */
4517 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4518 vcpu->arch.apf.host_apf_flags =
4519 kvm_read_and_reset_apf_flags();
4520
4521 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4522
4523 /*
4524 * We need to handle MC intercepts here before the vcpu has a chance to
4525 * change the physical cpu
4526 */
4527 if (unlikely(svm->vmcb->control.exit_code ==
4528 SVM_EXIT_EXCP_BASE + MC_VECTOR))
4529 svm_handle_mce(vcpu);
4530
4531 trace_kvm_exit(vcpu, KVM_ISA_SVM);
4532
4533 svm_complete_interrupts(vcpu);
4534
4535 return svm_exit_handlers_fastpath(vcpu);
4536 }
4537
svm_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)4538 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4539 int root_level)
4540 {
4541 struct vcpu_svm *svm = to_svm(vcpu);
4542 unsigned long cr3;
4543
4544 if (npt_enabled) {
4545 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4546 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4547
4548 hv_track_root_tdp(vcpu, root_hpa);
4549
4550 cr3 = vcpu->arch.cr3;
4551 } else if (root_level >= PT64_ROOT_4LEVEL) {
4552 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4553 } else {
4554 /* PCID in the guest should be impossible with a 32-bit MMU. */
4555 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4556 cr3 = root_hpa;
4557 }
4558
4559 svm->vmcb->save.cr3 = cr3;
4560 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4561 }
4562
4563 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4564 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4565 {
4566 /*
4567 * Patch in the VMMCALL instruction:
4568 */
4569 hypercall[0] = 0x0f;
4570 hypercall[1] = 0x01;
4571 hypercall[2] = 0xd9;
4572 }
4573
4574 /*
4575 * The kvm parameter can be NULL (module initialization, or invocation before
4576 * VM creation). Be sure to check the kvm parameter before using it.
4577 */
svm_has_emulated_msr(struct kvm * kvm,u32 index)4578 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4579 {
4580 switch (index) {
4581 case MSR_IA32_MCG_EXT_CTL:
4582 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4583 return false;
4584 case MSR_IA32_SMBASE:
4585 if (!IS_ENABLED(CONFIG_KVM_SMM))
4586 return false;
4587 /* SEV-ES guests do not support SMM, so report false */
4588 if (kvm && sev_es_guest(kvm))
4589 return false;
4590 break;
4591 default:
4592 break;
4593 }
4594
4595 return true;
4596 }
4597
svm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)4598 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4599 {
4600 struct vcpu_svm *svm = to_svm(vcpu);
4601
4602 /*
4603 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4604 * can only disable all variants of by disallowing CR4.OSXSAVE from
4605 * being set. As a result, if the host has XSAVE and XSAVES, and the
4606 * guest has XSAVE enabled, the guest can execute XSAVES without
4607 * faulting. Treat XSAVES as enabled in this case regardless of
4608 * whether it's advertised to the guest so that KVM context switches
4609 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give
4610 * the guest read/write access to the host's XSS.
4611 */
4612 guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES,
4613 boot_cpu_has(X86_FEATURE_XSAVES) &&
4614 guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE));
4615
4616 /*
4617 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that
4618 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4619 * SVM on Intel is bonkers and extremely unlikely to work).
4620 */
4621 if (guest_cpuid_is_intel_compatible(vcpu))
4622 guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4623
4624 svm_recalc_instruction_intercepts(vcpu, svm);
4625
4626 if (boot_cpu_has(X86_FEATURE_IBPB))
4627 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
4628 !!guest_has_pred_cmd_msr(vcpu));
4629
4630 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
4631 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
4632 !!guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
4633
4634 if (sev_guest(vcpu->kvm))
4635 sev_vcpu_after_set_cpuid(svm);
4636
4637 init_vmcb_after_set_cpuid(vcpu);
4638 }
4639
svm_has_wbinvd_exit(void)4640 static bool svm_has_wbinvd_exit(void)
4641 {
4642 return true;
4643 }
4644
4645 #define PRE_EX(exit) { .exit_code = (exit), \
4646 .stage = X86_ICPT_PRE_EXCEPT, }
4647 #define POST_EX(exit) { .exit_code = (exit), \
4648 .stage = X86_ICPT_POST_EXCEPT, }
4649 #define POST_MEM(exit) { .exit_code = (exit), \
4650 .stage = X86_ICPT_POST_MEMACCESS, }
4651
4652 static const struct __x86_intercept {
4653 u32 exit_code;
4654 enum x86_intercept_stage stage;
4655 } x86_intercept_map[] = {
4656 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4657 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4658 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4659 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4660 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4661 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4662 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4663 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4664 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4665 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4666 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4667 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4668 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4669 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4670 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4671 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4672 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4673 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4674 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4675 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4676 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4677 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4678 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4679 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4680 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4681 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4682 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4683 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4684 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4685 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4686 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4687 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4688 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4689 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4690 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4691 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4692 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4693 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4694 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4695 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4696 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4697 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4698 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4699 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4700 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4701 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4702 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
4703 };
4704
4705 #undef PRE_EX
4706 #undef POST_EX
4707 #undef POST_MEM
4708
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)4709 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4710 struct x86_instruction_info *info,
4711 enum x86_intercept_stage stage,
4712 struct x86_exception *exception)
4713 {
4714 struct vcpu_svm *svm = to_svm(vcpu);
4715 int vmexit, ret = X86EMUL_CONTINUE;
4716 struct __x86_intercept icpt_info;
4717 struct vmcb *vmcb = svm->vmcb;
4718
4719 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4720 goto out;
4721
4722 icpt_info = x86_intercept_map[info->intercept];
4723
4724 if (stage != icpt_info.stage)
4725 goto out;
4726
4727 switch (icpt_info.exit_code) {
4728 case SVM_EXIT_READ_CR0:
4729 if (info->intercept == x86_intercept_cr_read)
4730 icpt_info.exit_code += info->modrm_reg;
4731 break;
4732 case SVM_EXIT_WRITE_CR0: {
4733 unsigned long cr0, val;
4734
4735 if (info->intercept == x86_intercept_cr_write)
4736 icpt_info.exit_code += info->modrm_reg;
4737
4738 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4739 info->intercept == x86_intercept_clts)
4740 break;
4741
4742 if (!(vmcb12_is_intercept(&svm->nested.ctl,
4743 INTERCEPT_SELECTIVE_CR0)))
4744 break;
4745
4746 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4747 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4748
4749 if (info->intercept == x86_intercept_lmsw) {
4750 cr0 &= 0xfUL;
4751 val &= 0xfUL;
4752 /* lmsw can't clear PE - catch this here */
4753 if (cr0 & X86_CR0_PE)
4754 val |= X86_CR0_PE;
4755 }
4756
4757 if (cr0 ^ val)
4758 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4759
4760 break;
4761 }
4762 case SVM_EXIT_READ_DR0:
4763 case SVM_EXIT_WRITE_DR0:
4764 icpt_info.exit_code += info->modrm_reg;
4765 break;
4766 case SVM_EXIT_MSR:
4767 if (info->intercept == x86_intercept_wrmsr)
4768 vmcb->control.exit_info_1 = 1;
4769 else
4770 vmcb->control.exit_info_1 = 0;
4771 break;
4772 case SVM_EXIT_PAUSE:
4773 /*
4774 * We get this for NOP only, but pause
4775 * is rep not, check this here
4776 */
4777 if (info->rep_prefix != REPE_PREFIX)
4778 goto out;
4779 break;
4780 case SVM_EXIT_IOIO: {
4781 u64 exit_info;
4782 u32 bytes;
4783
4784 if (info->intercept == x86_intercept_in ||
4785 info->intercept == x86_intercept_ins) {
4786 exit_info = ((info->src_val & 0xffff) << 16) |
4787 SVM_IOIO_TYPE_MASK;
4788 bytes = info->dst_bytes;
4789 } else {
4790 exit_info = (info->dst_val & 0xffff) << 16;
4791 bytes = info->src_bytes;
4792 }
4793
4794 if (info->intercept == x86_intercept_outs ||
4795 info->intercept == x86_intercept_ins)
4796 exit_info |= SVM_IOIO_STR_MASK;
4797
4798 if (info->rep_prefix)
4799 exit_info |= SVM_IOIO_REP_MASK;
4800
4801 bytes = min(bytes, 4u);
4802
4803 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4804
4805 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4806
4807 vmcb->control.exit_info_1 = exit_info;
4808 vmcb->control.exit_info_2 = info->next_rip;
4809
4810 break;
4811 }
4812 default:
4813 break;
4814 }
4815
4816 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4817 if (static_cpu_has(X86_FEATURE_NRIPS))
4818 vmcb->control.next_rip = info->next_rip;
4819 vmcb->control.exit_code = icpt_info.exit_code;
4820 vmexit = nested_svm_exit_handled(svm);
4821
4822 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4823 : X86EMUL_CONTINUE;
4824
4825 out:
4826 return ret;
4827 }
4828
svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)4829 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4830 {
4831 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4832 vcpu->arch.at_instruction_boundary = true;
4833 }
4834
svm_setup_mce(struct kvm_vcpu * vcpu)4835 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4836 {
4837 /* [63:9] are reserved. */
4838 vcpu->arch.mcg_cap &= 0x1ff;
4839 }
4840
4841 #ifdef CONFIG_KVM_SMM
svm_smi_blocked(struct kvm_vcpu * vcpu)4842 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4843 {
4844 struct vcpu_svm *svm = to_svm(vcpu);
4845
4846 /* Per APM Vol.2 15.22.2 "Response to SMI" */
4847 if (!gif_set(svm))
4848 return true;
4849
4850 return is_smm(vcpu);
4851 }
4852
svm_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4853 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4854 {
4855 struct vcpu_svm *svm = to_svm(vcpu);
4856 if (svm->nested.nested_run_pending)
4857 return -EBUSY;
4858
4859 if (svm_smi_blocked(vcpu))
4860 return 0;
4861
4862 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
4863 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4864 return -EBUSY;
4865
4866 return 1;
4867 }
4868
svm_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)4869 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4870 {
4871 struct vcpu_svm *svm = to_svm(vcpu);
4872 struct kvm_host_map map_save;
4873 int ret;
4874
4875 if (!is_guest_mode(vcpu))
4876 return 0;
4877
4878 /*
4879 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is
4880 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4881 */
4882
4883 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4884 return 1;
4885
4886 smram->smram64.svm_guest_flag = 1;
4887 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4888
4889 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4890 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4891 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4892
4893 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4894 if (ret)
4895 return ret;
4896
4897 /*
4898 * KVM uses VMCB01 to store L1 host state while L2 runs but
4899 * VMCB01 is going to be used during SMM and thus the state will
4900 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4901 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4902 * format of the area is identical to guest save area offsetted
4903 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4904 * within 'struct vmcb'). Note: HSAVE area may also be used by
4905 * L1 hypervisor to save additional host context (e.g. KVM does
4906 * that, see svm_prepare_switch_to_guest()) which must be
4907 * preserved.
4908 */
4909 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4910 return 1;
4911
4912 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4913
4914 svm_copy_vmrun_state(map_save.hva + 0x400,
4915 &svm->vmcb01.ptr->save);
4916
4917 kvm_vcpu_unmap(vcpu, &map_save);
4918 return 0;
4919 }
4920
svm_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)4921 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4922 {
4923 struct vcpu_svm *svm = to_svm(vcpu);
4924 struct kvm_host_map map, map_save;
4925 struct vmcb *vmcb12;
4926 int ret;
4927
4928 const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4929
4930 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4931 return 0;
4932
4933 /* Non-zero if SMI arrived while vCPU was in guest mode. */
4934 if (!smram64->svm_guest_flag)
4935 return 0;
4936
4937 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
4938 return 1;
4939
4940 if (!(smram64->efer & EFER_SVME))
4941 return 1;
4942
4943 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4944 return 1;
4945
4946 ret = 1;
4947 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4948 goto unmap_map;
4949
4950 if (svm_allocate_nested(svm))
4951 goto unmap_save;
4952
4953 /*
4954 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4955 * used during SMM (see svm_enter_smm())
4956 */
4957
4958 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4959
4960 /*
4961 * Enter the nested guest now
4962 */
4963
4964 vmcb_mark_all_dirty(svm->vmcb01.ptr);
4965
4966 vmcb12 = map.hva;
4967 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4968 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4969 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4970
4971 if (ret)
4972 goto unmap_save;
4973
4974 svm->nested.nested_run_pending = 1;
4975
4976 unmap_save:
4977 kvm_vcpu_unmap(vcpu, &map_save);
4978 unmap_map:
4979 kvm_vcpu_unmap(vcpu, &map);
4980 return ret;
4981 }
4982
svm_enable_smi_window(struct kvm_vcpu * vcpu)4983 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4984 {
4985 struct vcpu_svm *svm = to_svm(vcpu);
4986
4987 if (!gif_set(svm)) {
4988 if (vgif)
4989 svm_set_intercept(svm, INTERCEPT_STGI);
4990 /* STGI will cause a vm exit */
4991 } else {
4992 /* We must be in SMM; RSM will cause a vmexit anyway. */
4993 }
4994 }
4995 #endif
4996
svm_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)4997 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4998 void *insn, int insn_len)
4999 {
5000 struct vcpu_svm *svm = to_svm(vcpu);
5001 bool smep, smap, is_user;
5002 u64 error_code;
5003
5004 /* Check that emulation is possible during event vectoring */
5005 if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) &&
5006 !kvm_can_emulate_event_vectoring(emul_type))
5007 return X86EMUL_UNHANDLEABLE_VECTORING;
5008
5009 /* Emulation is always possible when KVM has access to all guest state. */
5010 if (!sev_guest(vcpu->kvm))
5011 return X86EMUL_CONTINUE;
5012
5013 /* #UD and #GP should never be intercepted for SEV guests. */
5014 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
5015 EMULTYPE_TRAP_UD_FORCED |
5016 EMULTYPE_VMWARE_GP));
5017
5018 /*
5019 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
5020 * to guest register state.
5021 */
5022 if (sev_es_guest(vcpu->kvm))
5023 return X86EMUL_RETRY_INSTR;
5024
5025 /*
5026 * Emulation is possible if the instruction is already decoded, e.g.
5027 * when completing I/O after returning from userspace.
5028 */
5029 if (emul_type & EMULTYPE_NO_DECODE)
5030 return X86EMUL_CONTINUE;
5031
5032 /*
5033 * Emulation is possible for SEV guests if and only if a prefilled
5034 * buffer containing the bytes of the intercepted instruction is
5035 * available. SEV guest memory is encrypted with a guest specific key
5036 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
5037 * decode garbage.
5038 *
5039 * If KVM is NOT trying to simply skip an instruction, inject #UD if
5040 * KVM reached this point without an instruction buffer. In practice,
5041 * this path should never be hit by a well-behaved guest, e.g. KVM
5042 * doesn't intercept #UD or #GP for SEV guests, but this path is still
5043 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
5044 * access, and needs to be handled by KVM to avoid putting the guest
5045 * into an infinite loop. Injecting #UD is somewhat arbitrary, but
5046 * its the least awful option given lack of insight into the guest.
5047 *
5048 * If KVM is trying to skip an instruction, simply resume the guest.
5049 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
5050 * will attempt to re-inject the INT3/INTO and skip the instruction.
5051 * In that scenario, retrying the INT3/INTO and hoping the guest will
5052 * make forward progress is the only option that has a chance of
5053 * success (and in practice it will work the vast majority of the time).
5054 */
5055 if (unlikely(!insn)) {
5056 if (emul_type & EMULTYPE_SKIP)
5057 return X86EMUL_UNHANDLEABLE;
5058
5059 kvm_queue_exception(vcpu, UD_VECTOR);
5060 return X86EMUL_PROPAGATE_FAULT;
5061 }
5062
5063 /*
5064 * Emulate for SEV guests if the insn buffer is not empty. The buffer
5065 * will be empty if the DecodeAssist microcode cannot fetch bytes for
5066 * the faulting instruction because the code fetch itself faulted, e.g.
5067 * the guest attempted to fetch from emulated MMIO or a guest page
5068 * table used to translate CS:RIP resides in emulated MMIO.
5069 */
5070 if (likely(insn_len))
5071 return X86EMUL_CONTINUE;
5072
5073 /*
5074 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
5075 *
5076 * Errata:
5077 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
5078 * possible that CPU microcode implementing DecodeAssist will fail to
5079 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
5080 * be '0'. This happens because microcode reads CS:RIP using a _data_
5081 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode
5082 * gives up and does not fill the instruction bytes buffer.
5083 *
5084 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
5085 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
5086 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
5087 * GuestIntrBytes field of the VMCB.
5088 *
5089 * This does _not_ mean that the erratum has been encountered, as the
5090 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
5091 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
5092 * encountered a reserved/not-present #PF.
5093 *
5094 * To hit the erratum, the following conditions must be true:
5095 * 1. CR4.SMAP=1 (obviously).
5096 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot
5097 * have been hit as the guest would have encountered a SMEP
5098 * violation #PF, not a #NPF.
5099 * 3. The #NPF is not due to a code fetch, in which case failure to
5100 * retrieve the instruction bytes is legitimate (see abvoe).
5101 *
5102 * In addition, don't apply the erratum workaround if the #NPF occurred
5103 * while translating guest page tables (see below).
5104 */
5105 error_code = svm->vmcb->control.exit_info_1;
5106 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
5107 goto resume_guest;
5108
5109 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
5110 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
5111 is_user = svm_get_cpl(vcpu) == 3;
5112 if (smap && (!smep || is_user)) {
5113 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
5114
5115 /*
5116 * If the fault occurred in userspace, arbitrarily inject #GP
5117 * to avoid killing the guest and to hopefully avoid confusing
5118 * the guest kernel too much, e.g. injecting #PF would not be
5119 * coherent with respect to the guest's page tables. Request
5120 * triple fault if the fault occurred in the kernel as there's
5121 * no fault that KVM can inject without confusing the guest.
5122 * In practice, the triple fault is moot as no sane SEV kernel
5123 * will execute from user memory while also running with SMAP=1.
5124 */
5125 if (is_user)
5126 kvm_inject_gp(vcpu, 0);
5127 else
5128 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5129 return X86EMUL_PROPAGATE_FAULT;
5130 }
5131
5132 resume_guest:
5133 /*
5134 * If the erratum was not hit, simply resume the guest and let it fault
5135 * again. While awful, e.g. the vCPU may get stuck in an infinite loop
5136 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to
5137 * userspace will kill the guest, and letting the emulator read garbage
5138 * will yield random behavior and potentially corrupt the guest.
5139 *
5140 * Simply resuming the guest is technically not a violation of the SEV
5141 * architecture. AMD's APM states that all code fetches and page table
5142 * accesses for SEV guest are encrypted, regardless of the C-Bit. The
5143 * APM also states that encrypted accesses to MMIO are "ignored", but
5144 * doesn't explicitly define "ignored", i.e. doing nothing and letting
5145 * the guest spin is technically "ignoring" the access.
5146 */
5147 return X86EMUL_RETRY_INSTR;
5148 }
5149
svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)5150 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
5151 {
5152 struct vcpu_svm *svm = to_svm(vcpu);
5153
5154 return !gif_set(svm);
5155 }
5156
svm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)5157 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
5158 {
5159 if (!sev_es_guest(vcpu->kvm))
5160 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
5161
5162 sev_vcpu_deliver_sipi_vector(vcpu, vector);
5163 }
5164
svm_vm_destroy(struct kvm * kvm)5165 static void svm_vm_destroy(struct kvm *kvm)
5166 {
5167 avic_vm_destroy(kvm);
5168 sev_vm_destroy(kvm);
5169
5170 svm_srso_vm_destroy();
5171 }
5172
svm_vm_init(struct kvm * kvm)5173 static int svm_vm_init(struct kvm *kvm)
5174 {
5175 int type = kvm->arch.vm_type;
5176
5177 if (type != KVM_X86_DEFAULT_VM &&
5178 type != KVM_X86_SW_PROTECTED_VM) {
5179 kvm->arch.has_protected_state =
5180 (type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM);
5181 to_kvm_sev_info(kvm)->need_init = true;
5182
5183 kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM);
5184 kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem;
5185 }
5186
5187 if (!pause_filter_count || !pause_filter_thresh)
5188 kvm->arch.pause_in_guest = true;
5189
5190 if (enable_apicv) {
5191 int ret = avic_vm_init(kvm);
5192 if (ret)
5193 return ret;
5194 }
5195
5196 svm_srso_vm_init();
5197 return 0;
5198 }
5199
svm_alloc_apic_backing_page(struct kvm_vcpu * vcpu)5200 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu)
5201 {
5202 struct page *page = snp_safe_alloc_page();
5203
5204 if (!page)
5205 return NULL;
5206
5207 return page_address(page);
5208 }
5209
5210 static struct kvm_x86_ops svm_x86_ops __initdata = {
5211 .name = KBUILD_MODNAME,
5212
5213 .check_processor_compatibility = svm_check_processor_compat,
5214
5215 .hardware_unsetup = svm_hardware_unsetup,
5216 .enable_virtualization_cpu = svm_enable_virtualization_cpu,
5217 .disable_virtualization_cpu = svm_disable_virtualization_cpu,
5218 .emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu,
5219 .has_emulated_msr = svm_has_emulated_msr,
5220
5221 .vcpu_create = svm_vcpu_create,
5222 .vcpu_free = svm_vcpu_free,
5223 .vcpu_reset = svm_vcpu_reset,
5224
5225 .vm_size = sizeof(struct kvm_svm),
5226 .vm_init = svm_vm_init,
5227 .vm_destroy = svm_vm_destroy,
5228
5229 .prepare_switch_to_guest = svm_prepare_switch_to_guest,
5230 .vcpu_load = svm_vcpu_load,
5231 .vcpu_put = svm_vcpu_put,
5232 .vcpu_blocking = avic_vcpu_blocking,
5233 .vcpu_unblocking = avic_vcpu_unblocking,
5234
5235 .update_exception_bitmap = svm_update_exception_bitmap,
5236 .get_feature_msr = svm_get_feature_msr,
5237 .get_msr = svm_get_msr,
5238 .set_msr = svm_set_msr,
5239 .get_segment_base = svm_get_segment_base,
5240 .get_segment = svm_get_segment,
5241 .set_segment = svm_set_segment,
5242 .get_cpl = svm_get_cpl,
5243 .get_cpl_no_cache = svm_get_cpl,
5244 .get_cs_db_l_bits = svm_get_cs_db_l_bits,
5245 .is_valid_cr0 = svm_is_valid_cr0,
5246 .set_cr0 = svm_set_cr0,
5247 .post_set_cr3 = sev_post_set_cr3,
5248 .is_valid_cr4 = svm_is_valid_cr4,
5249 .set_cr4 = svm_set_cr4,
5250 .set_efer = svm_set_efer,
5251 .get_idt = svm_get_idt,
5252 .set_idt = svm_set_idt,
5253 .get_gdt = svm_get_gdt,
5254 .set_gdt = svm_set_gdt,
5255 .set_dr6 = svm_set_dr6,
5256 .set_dr7 = svm_set_dr7,
5257 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5258 .cache_reg = svm_cache_reg,
5259 .get_rflags = svm_get_rflags,
5260 .set_rflags = svm_set_rflags,
5261 .get_if_flag = svm_get_if_flag,
5262
5263 .flush_tlb_all = svm_flush_tlb_all,
5264 .flush_tlb_current = svm_flush_tlb_current,
5265 .flush_tlb_gva = svm_flush_tlb_gva,
5266 .flush_tlb_guest = svm_flush_tlb_asid,
5267
5268 .vcpu_pre_run = svm_vcpu_pre_run,
5269 .vcpu_run = svm_vcpu_run,
5270 .handle_exit = svm_handle_exit,
5271 .skip_emulated_instruction = svm_skip_emulated_instruction,
5272 .update_emulated_instruction = NULL,
5273 .set_interrupt_shadow = svm_set_interrupt_shadow,
5274 .get_interrupt_shadow = svm_get_interrupt_shadow,
5275 .patch_hypercall = svm_patch_hypercall,
5276 .inject_irq = svm_inject_irq,
5277 .inject_nmi = svm_inject_nmi,
5278 .is_vnmi_pending = svm_is_vnmi_pending,
5279 .set_vnmi_pending = svm_set_vnmi_pending,
5280 .inject_exception = svm_inject_exception,
5281 .cancel_injection = svm_cancel_injection,
5282 .interrupt_allowed = svm_interrupt_allowed,
5283 .nmi_allowed = svm_nmi_allowed,
5284 .get_nmi_mask = svm_get_nmi_mask,
5285 .set_nmi_mask = svm_set_nmi_mask,
5286 .enable_nmi_window = svm_enable_nmi_window,
5287 .enable_irq_window = svm_enable_irq_window,
5288 .update_cr8_intercept = svm_update_cr8_intercept,
5289
5290 .x2apic_icr_is_split = true,
5291 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
5292 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
5293 .apicv_post_state_restore = avic_apicv_post_state_restore,
5294 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
5295
5296 .get_exit_info = svm_get_exit_info,
5297 .get_entry_info = svm_get_entry_info,
5298
5299 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
5300
5301 .has_wbinvd_exit = svm_has_wbinvd_exit,
5302
5303 .get_l2_tsc_offset = svm_get_l2_tsc_offset,
5304 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
5305 .write_tsc_offset = svm_write_tsc_offset,
5306 .write_tsc_multiplier = svm_write_tsc_multiplier,
5307
5308 .load_mmu_pgd = svm_load_mmu_pgd,
5309
5310 .check_intercept = svm_check_intercept,
5311 .handle_exit_irqoff = svm_handle_exit_irqoff,
5312
5313 .nested_ops = &svm_nested_ops,
5314
5315 .deliver_interrupt = svm_deliver_interrupt,
5316 .pi_update_irte = avic_pi_update_irte,
5317 .setup_mce = svm_setup_mce,
5318
5319 #ifdef CONFIG_KVM_SMM
5320 .smi_allowed = svm_smi_allowed,
5321 .enter_smm = svm_enter_smm,
5322 .leave_smm = svm_leave_smm,
5323 .enable_smi_window = svm_enable_smi_window,
5324 #endif
5325
5326 #ifdef CONFIG_KVM_AMD_SEV
5327 .dev_get_attr = sev_dev_get_attr,
5328 .mem_enc_ioctl = sev_mem_enc_ioctl,
5329 .mem_enc_register_region = sev_mem_enc_register_region,
5330 .mem_enc_unregister_region = sev_mem_enc_unregister_region,
5331 .guest_memory_reclaimed = sev_guest_memory_reclaimed,
5332
5333 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5334 .vm_move_enc_context_from = sev_vm_move_enc_context_from,
5335 #endif
5336 .check_emulate_instruction = svm_check_emulate_instruction,
5337
5338 .apic_init_signal_blocked = svm_apic_init_signal_blocked,
5339
5340 .msr_filter_changed = svm_msr_filter_changed,
5341 .complete_emulated_msr = svm_complete_emulated_msr,
5342
5343 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5344 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5345 .alloc_apic_backing_page = svm_alloc_apic_backing_page,
5346
5347 .gmem_prepare = sev_gmem_prepare,
5348 .gmem_invalidate = sev_gmem_invalidate,
5349 .private_max_mapping_level = sev_private_max_mapping_level,
5350 };
5351
5352 /*
5353 * The default MMIO mask is a single bit (excluding the present bit),
5354 * which could conflict with the memory encryption bit. Check for
5355 * memory encryption support and override the default MMIO mask if
5356 * memory encryption is enabled.
5357 */
svm_adjust_mmio_mask(void)5358 static __init void svm_adjust_mmio_mask(void)
5359 {
5360 unsigned int enc_bit, mask_bit;
5361 u64 msr, mask;
5362
5363 /* If there is no memory encryption support, use existing mask */
5364 if (cpuid_eax(0x80000000) < 0x8000001f)
5365 return;
5366
5367 /* If memory encryption is not enabled, use existing mask */
5368 rdmsrq(MSR_AMD64_SYSCFG, msr);
5369 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5370 return;
5371
5372 enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5373 mask_bit = boot_cpu_data.x86_phys_bits;
5374
5375 /* Increment the mask bit if it is the same as the encryption bit */
5376 if (enc_bit == mask_bit)
5377 mask_bit++;
5378
5379 /*
5380 * If the mask bit location is below 52, then some bits above the
5381 * physical addressing limit will always be reserved, so use the
5382 * rsvd_bits() function to generate the mask. This mask, along with
5383 * the present bit, will be used to generate a page fault with
5384 * PFER.RSV = 1.
5385 *
5386 * If the mask bit location is 52 (or above), then clear the mask.
5387 */
5388 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5389
5390 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5391 }
5392
svm_set_cpu_caps(void)5393 static __init void svm_set_cpu_caps(void)
5394 {
5395 kvm_set_cpu_caps();
5396
5397 kvm_caps.supported_perf_cap = 0;
5398 kvm_caps.supported_xss = 0;
5399
5400 /* CPUID 0x80000001 and 0x8000000A (SVM features) */
5401 if (nested) {
5402 kvm_cpu_cap_set(X86_FEATURE_SVM);
5403 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5404
5405 /*
5406 * KVM currently flushes TLBs on *every* nested SVM transition,
5407 * and so for all intents and purposes KVM supports flushing by
5408 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
5409 */
5410 kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);
5411
5412 if (nrips)
5413 kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5414
5415 if (npt_enabled)
5416 kvm_cpu_cap_set(X86_FEATURE_NPT);
5417
5418 if (tsc_scaling)
5419 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5420
5421 if (vls)
5422 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5423 if (lbrv)
5424 kvm_cpu_cap_set(X86_FEATURE_LBRV);
5425
5426 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5427 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5428
5429 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5430 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5431
5432 if (vgif)
5433 kvm_cpu_cap_set(X86_FEATURE_VGIF);
5434
5435 if (vnmi)
5436 kvm_cpu_cap_set(X86_FEATURE_VNMI);
5437
5438 /* Nested VM can receive #VMEXIT instead of triggering #GP */
5439 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5440 }
5441
5442 if (cpu_feature_enabled(X86_FEATURE_BUS_LOCK_THRESHOLD))
5443 kvm_caps.has_bus_lock_exit = true;
5444
5445 /* CPUID 0x80000008 */
5446 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5447 boot_cpu_has(X86_FEATURE_AMD_SSBD))
5448 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5449
5450 if (enable_pmu) {
5451 /*
5452 * Enumerate support for PERFCTR_CORE if and only if KVM has
5453 * access to enough counters to virtualize "core" support,
5454 * otherwise limit vPMU support to the legacy number of counters.
5455 */
5456 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5457 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5458 kvm_pmu_cap.num_counters_gp);
5459 else
5460 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5461
5462 if (kvm_pmu_cap.version != 2 ||
5463 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5464 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5465 }
5466
5467 /* CPUID 0x8000001F (SME/SEV features) */
5468 sev_set_cpu_caps();
5469
5470 /* Don't advertise Bus Lock Detect to guest if SVM support is absent */
5471 kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT);
5472 }
5473
svm_hardware_setup(void)5474 static __init int svm_hardware_setup(void)
5475 {
5476 int cpu;
5477 struct page *iopm_pages;
5478 void *iopm_va;
5479 int r;
5480 unsigned int order = get_order(IOPM_SIZE);
5481
5482 /*
5483 * NX is required for shadow paging and for NPT if the NX huge pages
5484 * mitigation is enabled.
5485 */
5486 if (!boot_cpu_has(X86_FEATURE_NX)) {
5487 pr_err_ratelimited("NX (Execute Disable) not supported\n");
5488 return -EOPNOTSUPP;
5489 }
5490 kvm_enable_efer_bits(EFER_NX);
5491
5492 iopm_pages = alloc_pages(GFP_KERNEL, order);
5493
5494 if (!iopm_pages)
5495 return -ENOMEM;
5496
5497 iopm_va = page_address(iopm_pages);
5498 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
5499 iopm_base = __sme_page_pa(iopm_pages);
5500
5501 init_msrpm_offsets();
5502
5503 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5504 XFEATURE_MASK_BNDCSR);
5505
5506 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5507 kvm_enable_efer_bits(EFER_FFXSR);
5508
5509 if (tsc_scaling) {
5510 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5511 tsc_scaling = false;
5512 } else {
5513 pr_info("TSC scaling supported\n");
5514 kvm_caps.has_tsc_control = true;
5515 }
5516 }
5517 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5518 kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5519
5520 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5521
5522 if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5523 kvm_enable_efer_bits(EFER_AUTOIBRS);
5524
5525 /* Check for pause filtering support */
5526 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5527 pause_filter_count = 0;
5528 pause_filter_thresh = 0;
5529 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5530 pause_filter_thresh = 0;
5531 }
5532
5533 if (nested) {
5534 pr_info("Nested Virtualization enabled\n");
5535 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5536 }
5537
5538 /*
5539 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5540 * NPT isn't supported if the host is using 2-level paging since host
5541 * CR4 is unchanged on VMRUN.
5542 */
5543 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5544 npt_enabled = false;
5545
5546 if (!boot_cpu_has(X86_FEATURE_NPT))
5547 npt_enabled = false;
5548
5549 /* Force VM NPT level equal to the host's paging level */
5550 kvm_configure_mmu(npt_enabled, get_npt_level(),
5551 get_npt_level(), PG_LEVEL_1G);
5552 pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled));
5553
5554 /* Setup shadow_me_value and shadow_me_mask */
5555 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5556
5557 svm_adjust_mmio_mask();
5558
5559 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5560
5561 if (lbrv) {
5562 if (!boot_cpu_has(X86_FEATURE_LBRV))
5563 lbrv = false;
5564 else
5565 pr_info("LBR virtualization supported\n");
5566 }
5567 /*
5568 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5569 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5570 */
5571 sev_hardware_setup();
5572
5573 svm_hv_hardware_setup();
5574
5575 for_each_possible_cpu(cpu) {
5576 r = svm_cpu_init(cpu);
5577 if (r)
5578 goto err;
5579 }
5580
5581 enable_apicv = avic = avic && avic_hardware_setup();
5582
5583 if (!enable_apicv) {
5584 svm_x86_ops.vcpu_blocking = NULL;
5585 svm_x86_ops.vcpu_unblocking = NULL;
5586 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5587 } else if (!x2avic_enabled) {
5588 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5589 }
5590
5591 if (vls) {
5592 if (!npt_enabled ||
5593 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5594 !IS_ENABLED(CONFIG_X86_64)) {
5595 vls = false;
5596 } else {
5597 pr_info("Virtual VMLOAD VMSAVE supported\n");
5598 }
5599 }
5600
5601 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5602 svm_gp_erratum_intercept = false;
5603
5604 if (vgif) {
5605 if (!boot_cpu_has(X86_FEATURE_VGIF))
5606 vgif = false;
5607 else
5608 pr_info("Virtual GIF supported\n");
5609 }
5610
5611 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5612 if (vnmi)
5613 pr_info("Virtual NMI enabled\n");
5614
5615 if (!vnmi) {
5616 svm_x86_ops.is_vnmi_pending = NULL;
5617 svm_x86_ops.set_vnmi_pending = NULL;
5618 }
5619
5620 if (!enable_pmu)
5621 pr_info("PMU virtualization is disabled\n");
5622
5623 svm_set_cpu_caps();
5624
5625 /*
5626 * It seems that on AMD processors PTE's accessed bit is
5627 * being set by the CPU hardware before the NPF vmexit.
5628 * This is not expected behaviour and our tests fail because
5629 * of it.
5630 * A workaround here is to disable support for
5631 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5632 * In this case userspace can know if there is support using
5633 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5634 * it
5635 * If future AMD CPU models change the behaviour described above,
5636 * this variable can be changed accordingly
5637 */
5638 allow_smaller_maxphyaddr = !npt_enabled;
5639
5640 kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_CD_NW_CLEARED;
5641 return 0;
5642
5643 err:
5644 svm_hardware_unsetup();
5645 return r;
5646 }
5647
5648
5649 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5650 .hardware_setup = svm_hardware_setup,
5651
5652 .runtime_ops = &svm_x86_ops,
5653 .pmu_ops = &amd_pmu_ops,
5654 };
5655
__svm_exit(void)5656 static void __svm_exit(void)
5657 {
5658 kvm_x86_vendor_exit();
5659 }
5660
svm_init(void)5661 static int __init svm_init(void)
5662 {
5663 int r;
5664
5665 __unused_size_checks();
5666
5667 if (!kvm_is_svm_supported())
5668 return -EOPNOTSUPP;
5669
5670 r = kvm_x86_vendor_init(&svm_init_ops);
5671 if (r)
5672 return r;
5673
5674 /*
5675 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5676 * exposed to userspace!
5677 */
5678 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5679 THIS_MODULE);
5680 if (r)
5681 goto err_kvm_init;
5682
5683 return 0;
5684
5685 err_kvm_init:
5686 __svm_exit();
5687 return r;
5688 }
5689
svm_exit(void)5690 static void __exit svm_exit(void)
5691 {
5692 kvm_exit();
5693 __svm_exit();
5694 }
5695
5696 module_init(svm_init)
5697 module_exit(svm_exit)
5698