xref: /linux/arch/x86/kvm/svm/svm.c (revision c924c5e9b8c65b3a479a90e5e37d74cc8cd9fe0a)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12 
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31 #include <linux/string_choices.h>
32 
33 #include <asm/apic.h>
34 #include <asm/perf_event.h>
35 #include <asm/tlbflush.h>
36 #include <asm/desc.h>
37 #include <asm/debugreg.h>
38 #include <asm/kvm_para.h>
39 #include <asm/irq_remapping.h>
40 #include <asm/spec-ctrl.h>
41 #include <asm/cpu_device_id.h>
42 #include <asm/traps.h>
43 #include <asm/reboot.h>
44 #include <asm/fpu/api.h>
45 
46 #include <trace/events/ipi.h>
47 
48 #include "trace.h"
49 
50 #include "svm.h"
51 #include "svm_ops.h"
52 
53 #include "kvm_onhyperv.h"
54 #include "svm_onhyperv.h"
55 
56 MODULE_AUTHOR("Qumranet");
57 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions");
58 MODULE_LICENSE("GPL");
59 
60 #ifdef MODULE
61 static const struct x86_cpu_id svm_cpu_id[] = {
62 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
63 	{}
64 };
65 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
66 #endif
67 
68 #define SEG_TYPE_LDT 2
69 #define SEG_TYPE_BUSY_TSS16 3
70 
71 static bool erratum_383_found __read_mostly;
72 
73 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
74 
75 /*
76  * Set osvw_len to higher value when updated Revision Guides
77  * are published and we know what the new status bits are
78  */
79 static uint64_t osvw_len = 4, osvw_status;
80 
81 static DEFINE_PER_CPU(u64, current_tsc_ratio);
82 
83 #define X2APIC_MSR(x)	(APIC_BASE_MSR + (x >> 4))
84 
85 static const struct svm_direct_access_msrs {
86 	u32 index;   /* Index of the MSR */
87 	bool always; /* True if intercept is initially cleared */
88 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
89 	{ .index = MSR_STAR,				.always = true  },
90 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
91 	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
92 	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
93 #ifdef CONFIG_X86_64
94 	{ .index = MSR_GS_BASE,				.always = true  },
95 	{ .index = MSR_FS_BASE,				.always = true  },
96 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
97 	{ .index = MSR_LSTAR,				.always = true  },
98 	{ .index = MSR_CSTAR,				.always = true  },
99 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
100 #endif
101 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
102 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
103 	{ .index = MSR_IA32_FLUSH_CMD,			.always = false },
104 	{ .index = MSR_IA32_DEBUGCTLMSR,		.always = false },
105 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
106 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
107 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
108 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
109 	{ .index = MSR_IA32_XSS,			.always = false },
110 	{ .index = MSR_EFER,				.always = false },
111 	{ .index = MSR_IA32_CR_PAT,			.always = false },
112 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
113 	{ .index = MSR_TSC_AUX,				.always = false },
114 	{ .index = X2APIC_MSR(APIC_ID),			.always = false },
115 	{ .index = X2APIC_MSR(APIC_LVR),		.always = false },
116 	{ .index = X2APIC_MSR(APIC_TASKPRI),		.always = false },
117 	{ .index = X2APIC_MSR(APIC_ARBPRI),		.always = false },
118 	{ .index = X2APIC_MSR(APIC_PROCPRI),		.always = false },
119 	{ .index = X2APIC_MSR(APIC_EOI),		.always = false },
120 	{ .index = X2APIC_MSR(APIC_RRR),		.always = false },
121 	{ .index = X2APIC_MSR(APIC_LDR),		.always = false },
122 	{ .index = X2APIC_MSR(APIC_DFR),		.always = false },
123 	{ .index = X2APIC_MSR(APIC_SPIV),		.always = false },
124 	{ .index = X2APIC_MSR(APIC_ISR),		.always = false },
125 	{ .index = X2APIC_MSR(APIC_TMR),		.always = false },
126 	{ .index = X2APIC_MSR(APIC_IRR),		.always = false },
127 	{ .index = X2APIC_MSR(APIC_ESR),		.always = false },
128 	{ .index = X2APIC_MSR(APIC_ICR),		.always = false },
129 	{ .index = X2APIC_MSR(APIC_ICR2),		.always = false },
130 
131 	/*
132 	 * Note:
133 	 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
134 	 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
135 	 * the AVIC hardware would generate GP fault. Therefore, always
136 	 * intercept the MSR 0x832, and do not setup direct_access_msr.
137 	 */
138 	{ .index = X2APIC_MSR(APIC_LVTTHMR),		.always = false },
139 	{ .index = X2APIC_MSR(APIC_LVTPC),		.always = false },
140 	{ .index = X2APIC_MSR(APIC_LVT0),		.always = false },
141 	{ .index = X2APIC_MSR(APIC_LVT1),		.always = false },
142 	{ .index = X2APIC_MSR(APIC_LVTERR),		.always = false },
143 	{ .index = X2APIC_MSR(APIC_TMICT),		.always = false },
144 	{ .index = X2APIC_MSR(APIC_TMCCT),		.always = false },
145 	{ .index = X2APIC_MSR(APIC_TDCR),		.always = false },
146 	{ .index = MSR_INVALID,				.always = false },
147 };
148 
149 /*
150  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
151  * pause_filter_count: On processors that support Pause filtering(indicated
152  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
153  *	count value. On VMRUN this value is loaded into an internal counter.
154  *	Each time a pause instruction is executed, this counter is decremented
155  *	until it reaches zero at which time a #VMEXIT is generated if pause
156  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
157  *	Intercept Filtering for more details.
158  *	This also indicate if ple logic enabled.
159  *
160  * pause_filter_thresh: In addition, some processor families support advanced
161  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
162  *	the amount of time a guest is allowed to execute in a pause loop.
163  *	In this mode, a 16-bit pause filter threshold field is added in the
164  *	VMCB. The threshold value is a cycle count that is used to reset the
165  *	pause counter. As with simple pause filtering, VMRUN loads the pause
166  *	count value from VMCB into an internal counter. Then, on each pause
167  *	instruction the hardware checks the elapsed number of cycles since
168  *	the most recent pause instruction against the pause filter threshold.
169  *	If the elapsed cycle count is greater than the pause filter threshold,
170  *	then the internal pause count is reloaded from the VMCB and execution
171  *	continues. If the elapsed cycle count is less than the pause filter
172  *	threshold, then the internal pause count is decremented. If the count
173  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
174  *	triggered. If advanced pause filtering is supported and pause filter
175  *	threshold field is set to zero, the filter will operate in the simpler,
176  *	count only mode.
177  */
178 
179 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
180 module_param(pause_filter_thresh, ushort, 0444);
181 
182 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
183 module_param(pause_filter_count, ushort, 0444);
184 
185 /* Default doubles per-vcpu window every exit. */
186 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
187 module_param(pause_filter_count_grow, ushort, 0444);
188 
189 /* Default resets per-vcpu window every exit to pause_filter_count. */
190 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
191 module_param(pause_filter_count_shrink, ushort, 0444);
192 
193 /* Default is to compute the maximum so we can never overflow. */
194 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
195 module_param(pause_filter_count_max, ushort, 0444);
196 
197 /*
198  * Use nested page tables by default.  Note, NPT may get forced off by
199  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
200  */
201 bool npt_enabled = true;
202 module_param_named(npt, npt_enabled, bool, 0444);
203 
204 /* allow nested virtualization in KVM/SVM */
205 static int nested = true;
206 module_param(nested, int, 0444);
207 
208 /* enable/disable Next RIP Save */
209 int nrips = true;
210 module_param(nrips, int, 0444);
211 
212 /* enable/disable Virtual VMLOAD VMSAVE */
213 static int vls = true;
214 module_param(vls, int, 0444);
215 
216 /* enable/disable Virtual GIF */
217 int vgif = true;
218 module_param(vgif, int, 0444);
219 
220 /* enable/disable LBR virtualization */
221 int lbrv = true;
222 module_param(lbrv, int, 0444);
223 
224 static int tsc_scaling = true;
225 module_param(tsc_scaling, int, 0444);
226 
227 /*
228  * enable / disable AVIC.  Because the defaults differ for APICv
229  * support between VMX and SVM we cannot use module_param_named.
230  */
231 static bool avic;
232 module_param(avic, bool, 0444);
233 
234 bool __read_mostly dump_invalid_vmcb;
235 module_param(dump_invalid_vmcb, bool, 0644);
236 
237 
238 bool intercept_smi = true;
239 module_param(intercept_smi, bool, 0444);
240 
241 bool vnmi = true;
242 module_param(vnmi, bool, 0444);
243 
244 static bool svm_gp_erratum_intercept = true;
245 
246 static u8 rsm_ins_bytes[] = "\x0f\xaa";
247 
248 static unsigned long iopm_base;
249 
250 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
251 
252 /*
253  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
254  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
255  *
256  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
257  * defer the restoration of TSC_AUX until the CPU returns to userspace.
258  */
259 static int tsc_aux_uret_slot __read_mostly = -1;
260 
261 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
262 
263 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
264 #define MSRS_RANGE_SIZE 2048
265 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
266 
svm_msrpm_offset(u32 msr)267 u32 svm_msrpm_offset(u32 msr)
268 {
269 	u32 offset;
270 	int i;
271 
272 	for (i = 0; i < NUM_MSR_MAPS; i++) {
273 		if (msr < msrpm_ranges[i] ||
274 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
275 			continue;
276 
277 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
278 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
279 
280 		/* Now we have the u8 offset - but need the u32 offset */
281 		return offset / 4;
282 	}
283 
284 	/* MSR not in any range */
285 	return MSR_INVALID;
286 }
287 
get_npt_level(void)288 static int get_npt_level(void)
289 {
290 #ifdef CONFIG_X86_64
291 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
292 #else
293 	return PT32E_ROOT_LEVEL;
294 #endif
295 }
296 
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)297 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
298 {
299 	struct vcpu_svm *svm = to_svm(vcpu);
300 	u64 old_efer = vcpu->arch.efer;
301 	vcpu->arch.efer = efer;
302 
303 	if (!npt_enabled) {
304 		/* Shadow paging assumes NX to be available.  */
305 		efer |= EFER_NX;
306 
307 		if (!(efer & EFER_LMA))
308 			efer &= ~EFER_LME;
309 	}
310 
311 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
312 		if (!(efer & EFER_SVME)) {
313 			svm_leave_nested(vcpu);
314 			svm_set_gif(svm, true);
315 			/* #GP intercept is still needed for vmware backdoor */
316 			if (!enable_vmware_backdoor)
317 				clr_exception_intercept(svm, GP_VECTOR);
318 
319 			/*
320 			 * Free the nested guest state, unless we are in SMM.
321 			 * In this case we will return to the nested guest
322 			 * as soon as we leave SMM.
323 			 */
324 			if (!is_smm(vcpu))
325 				svm_free_nested(svm);
326 
327 		} else {
328 			int ret = svm_allocate_nested(svm);
329 
330 			if (ret) {
331 				vcpu->arch.efer = old_efer;
332 				return ret;
333 			}
334 
335 			/*
336 			 * Never intercept #GP for SEV guests, KVM can't
337 			 * decrypt guest memory to workaround the erratum.
338 			 */
339 			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
340 				set_exception_intercept(svm, GP_VECTOR);
341 		}
342 	}
343 
344 	svm->vmcb->save.efer = efer | EFER_SVME;
345 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
346 	return 0;
347 }
348 
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)349 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
350 {
351 	struct vcpu_svm *svm = to_svm(vcpu);
352 	u32 ret = 0;
353 
354 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
355 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
356 	return ret;
357 }
358 
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)359 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
360 {
361 	struct vcpu_svm *svm = to_svm(vcpu);
362 
363 	if (mask == 0)
364 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
365 	else
366 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
367 
368 }
369 
__svm_skip_emulated_instruction(struct kvm_vcpu * vcpu,bool commit_side_effects)370 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
371 					   bool commit_side_effects)
372 {
373 	struct vcpu_svm *svm = to_svm(vcpu);
374 	unsigned long old_rflags;
375 
376 	/*
377 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
378 	 * the type of exit and the #VC handler in the guest.
379 	 */
380 	if (sev_es_guest(vcpu->kvm))
381 		goto done;
382 
383 	if (nrips && svm->vmcb->control.next_rip != 0) {
384 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
385 		svm->next_rip = svm->vmcb->control.next_rip;
386 	}
387 
388 	if (!svm->next_rip) {
389 		if (unlikely(!commit_side_effects))
390 			old_rflags = svm->vmcb->save.rflags;
391 
392 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
393 			return 0;
394 
395 		if (unlikely(!commit_side_effects))
396 			svm->vmcb->save.rflags = old_rflags;
397 	} else {
398 		kvm_rip_write(vcpu, svm->next_rip);
399 	}
400 
401 done:
402 	if (likely(commit_side_effects))
403 		svm_set_interrupt_shadow(vcpu, 0);
404 
405 	return 1;
406 }
407 
svm_skip_emulated_instruction(struct kvm_vcpu * vcpu)408 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
409 {
410 	return __svm_skip_emulated_instruction(vcpu, true);
411 }
412 
svm_update_soft_interrupt_rip(struct kvm_vcpu * vcpu)413 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
414 {
415 	unsigned long rip, old_rip = kvm_rip_read(vcpu);
416 	struct vcpu_svm *svm = to_svm(vcpu);
417 
418 	/*
419 	 * Due to architectural shortcomings, the CPU doesn't always provide
420 	 * NextRIP, e.g. if KVM intercepted an exception that occurred while
421 	 * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
422 	 * the instruction even if NextRIP is supported to acquire the next
423 	 * RIP so that it can be shoved into the NextRIP field, otherwise
424 	 * hardware will fail to advance guest RIP during event injection.
425 	 * Drop the exception/interrupt if emulation fails and effectively
426 	 * retry the instruction, it's the least awful option.  If NRIPS is
427 	 * in use, the skip must not commit any side effects such as clearing
428 	 * the interrupt shadow or RFLAGS.RF.
429 	 */
430 	if (!__svm_skip_emulated_instruction(vcpu, !nrips))
431 		return -EIO;
432 
433 	rip = kvm_rip_read(vcpu);
434 
435 	/*
436 	 * Save the injection information, even when using next_rip, as the
437 	 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
438 	 * doesn't complete due to a VM-Exit occurring while the CPU is
439 	 * vectoring the event.   Decoding the instruction isn't guaranteed to
440 	 * work as there may be no backing instruction, e.g. if the event is
441 	 * being injected by L1 for L2, or if the guest is patching INT3 into
442 	 * a different instruction.
443 	 */
444 	svm->soft_int_injected = true;
445 	svm->soft_int_csbase = svm->vmcb->save.cs.base;
446 	svm->soft_int_old_rip = old_rip;
447 	svm->soft_int_next_rip = rip;
448 
449 	if (nrips)
450 		kvm_rip_write(vcpu, old_rip);
451 
452 	if (static_cpu_has(X86_FEATURE_NRIPS))
453 		svm->vmcb->control.next_rip = rip;
454 
455 	return 0;
456 }
457 
svm_inject_exception(struct kvm_vcpu * vcpu)458 static void svm_inject_exception(struct kvm_vcpu *vcpu)
459 {
460 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
461 	struct vcpu_svm *svm = to_svm(vcpu);
462 
463 	kvm_deliver_exception_payload(vcpu, ex);
464 
465 	if (kvm_exception_is_soft(ex->vector) &&
466 	    svm_update_soft_interrupt_rip(vcpu))
467 		return;
468 
469 	svm->vmcb->control.event_inj = ex->vector
470 		| SVM_EVTINJ_VALID
471 		| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
472 		| SVM_EVTINJ_TYPE_EXEPT;
473 	svm->vmcb->control.event_inj_err = ex->error_code;
474 }
475 
svm_init_erratum_383(void)476 static void svm_init_erratum_383(void)
477 {
478 	u32 low, high;
479 	int err;
480 	u64 val;
481 
482 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
483 		return;
484 
485 	/* Use _safe variants to not break nested virtualization */
486 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
487 	if (err)
488 		return;
489 
490 	val |= (1ULL << 47);
491 
492 	low  = lower_32_bits(val);
493 	high = upper_32_bits(val);
494 
495 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
496 
497 	erratum_383_found = true;
498 }
499 
svm_init_osvw(struct kvm_vcpu * vcpu)500 static void svm_init_osvw(struct kvm_vcpu *vcpu)
501 {
502 	/*
503 	 * Guests should see errata 400 and 415 as fixed (assuming that
504 	 * HLT and IO instructions are intercepted).
505 	 */
506 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
507 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
508 
509 	/*
510 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
511 	 * all osvw.status bits inside that length, including bit 0 (which is
512 	 * reserved for erratum 298), are valid. However, if host processor's
513 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
514 	 * be conservative here and therefore we tell the guest that erratum 298
515 	 * is present (because we really don't know).
516 	 */
517 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
518 		vcpu->arch.osvw.status |= 1;
519 }
520 
__kvm_is_svm_supported(void)521 static bool __kvm_is_svm_supported(void)
522 {
523 	int cpu = smp_processor_id();
524 	struct cpuinfo_x86 *c = &cpu_data(cpu);
525 
526 	if (c->x86_vendor != X86_VENDOR_AMD &&
527 	    c->x86_vendor != X86_VENDOR_HYGON) {
528 		pr_err("CPU %d isn't AMD or Hygon\n", cpu);
529 		return false;
530 	}
531 
532 	if (!cpu_has(c, X86_FEATURE_SVM)) {
533 		pr_err("SVM not supported by CPU %d\n", cpu);
534 		return false;
535 	}
536 
537 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
538 		pr_info("KVM is unsupported when running as an SEV guest\n");
539 		return false;
540 	}
541 
542 	return true;
543 }
544 
kvm_is_svm_supported(void)545 static bool kvm_is_svm_supported(void)
546 {
547 	bool supported;
548 
549 	migrate_disable();
550 	supported = __kvm_is_svm_supported();
551 	migrate_enable();
552 
553 	return supported;
554 }
555 
svm_check_processor_compat(void)556 static int svm_check_processor_compat(void)
557 {
558 	if (!__kvm_is_svm_supported())
559 		return -EIO;
560 
561 	return 0;
562 }
563 
__svm_write_tsc_multiplier(u64 multiplier)564 static void __svm_write_tsc_multiplier(u64 multiplier)
565 {
566 	if (multiplier == __this_cpu_read(current_tsc_ratio))
567 		return;
568 
569 	wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
570 	__this_cpu_write(current_tsc_ratio, multiplier);
571 }
572 
sev_es_host_save_area(struct svm_cpu_data * sd)573 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd)
574 {
575 	return &sd->save_area->host_sev_es_save;
576 }
577 
kvm_cpu_svm_disable(void)578 static inline void kvm_cpu_svm_disable(void)
579 {
580 	uint64_t efer;
581 
582 	wrmsrl(MSR_VM_HSAVE_PA, 0);
583 	rdmsrl(MSR_EFER, efer);
584 	if (efer & EFER_SVME) {
585 		/*
586 		 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
587 		 * NMI aren't blocked.
588 		 */
589 		stgi();
590 		wrmsrl(MSR_EFER, efer & ~EFER_SVME);
591 	}
592 }
593 
svm_emergency_disable_virtualization_cpu(void)594 static void svm_emergency_disable_virtualization_cpu(void)
595 {
596 	kvm_rebooting = true;
597 
598 	kvm_cpu_svm_disable();
599 }
600 
svm_disable_virtualization_cpu(void)601 static void svm_disable_virtualization_cpu(void)
602 {
603 	/* Make sure we clean up behind us */
604 	if (tsc_scaling)
605 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
606 
607 	kvm_cpu_svm_disable();
608 
609 	amd_pmu_disable_virt();
610 
611 	if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
612 		msr_clear_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
613 }
614 
svm_enable_virtualization_cpu(void)615 static int svm_enable_virtualization_cpu(void)
616 {
617 
618 	struct svm_cpu_data *sd;
619 	uint64_t efer;
620 	int me = raw_smp_processor_id();
621 
622 	rdmsrl(MSR_EFER, efer);
623 	if (efer & EFER_SVME)
624 		return -EBUSY;
625 
626 	sd = per_cpu_ptr(&svm_data, me);
627 	sd->asid_generation = 1;
628 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
629 	sd->next_asid = sd->max_asid + 1;
630 	sd->min_asid = max_sev_asid + 1;
631 
632 	wrmsrl(MSR_EFER, efer | EFER_SVME);
633 
634 	wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
635 
636 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
637 		/*
638 		 * Set the default value, even if we don't use TSC scaling
639 		 * to avoid having stale value in the msr
640 		 */
641 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
642 	}
643 
644 
645 	/*
646 	 * Get OSVW bits.
647 	 *
648 	 * Note that it is possible to have a system with mixed processor
649 	 * revisions and therefore different OSVW bits. If bits are not the same
650 	 * on different processors then choose the worst case (i.e. if erratum
651 	 * is present on one processor and not on another then assume that the
652 	 * erratum is present everywhere).
653 	 */
654 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
655 		uint64_t len, status = 0;
656 		int err;
657 
658 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
659 		if (!err)
660 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
661 						      &err);
662 
663 		if (err)
664 			osvw_status = osvw_len = 0;
665 		else {
666 			if (len < osvw_len)
667 				osvw_len = len;
668 			osvw_status |= status;
669 			osvw_status &= (1ULL << osvw_len) - 1;
670 		}
671 	} else
672 		osvw_status = osvw_len = 0;
673 
674 	svm_init_erratum_383();
675 
676 	amd_pmu_enable_virt();
677 
678 	/*
679 	 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type
680 	 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests.
681 	 * Since Linux does not change the value of TSC_AUX once set, prime the
682 	 * TSC_AUX field now to avoid a RDMSR on every vCPU run.
683 	 */
684 	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
685 		u32 __maybe_unused msr_hi;
686 
687 		rdmsr(MSR_TSC_AUX, sev_es_host_save_area(sd)->tsc_aux, msr_hi);
688 	}
689 
690 	if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
691 		msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
692 
693 	return 0;
694 }
695 
svm_cpu_uninit(int cpu)696 static void svm_cpu_uninit(int cpu)
697 {
698 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
699 
700 	if (!sd->save_area)
701 		return;
702 
703 	kfree(sd->sev_vmcbs);
704 	__free_page(__sme_pa_to_page(sd->save_area_pa));
705 	sd->save_area_pa = 0;
706 	sd->save_area = NULL;
707 }
708 
svm_cpu_init(int cpu)709 static int svm_cpu_init(int cpu)
710 {
711 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
712 	struct page *save_area_page;
713 	int ret = -ENOMEM;
714 
715 	memset(sd, 0, sizeof(struct svm_cpu_data));
716 	save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL);
717 	if (!save_area_page)
718 		return ret;
719 
720 	ret = sev_cpu_init(sd);
721 	if (ret)
722 		goto free_save_area;
723 
724 	sd->save_area = page_address(save_area_page);
725 	sd->save_area_pa = __sme_page_pa(save_area_page);
726 	return 0;
727 
728 free_save_area:
729 	__free_page(save_area_page);
730 	return ret;
731 
732 }
733 
set_dr_intercepts(struct vcpu_svm * svm)734 static void set_dr_intercepts(struct vcpu_svm *svm)
735 {
736 	struct vmcb *vmcb = svm->vmcb01.ptr;
737 
738 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
739 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
740 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
741 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
742 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
743 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
744 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
745 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
746 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
747 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
748 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
749 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
750 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
751 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
752 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
753 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
754 
755 	recalc_intercepts(svm);
756 }
757 
clr_dr_intercepts(struct vcpu_svm * svm)758 static void clr_dr_intercepts(struct vcpu_svm *svm)
759 {
760 	struct vmcb *vmcb = svm->vmcb01.ptr;
761 
762 	vmcb->control.intercepts[INTERCEPT_DR] = 0;
763 
764 	recalc_intercepts(svm);
765 }
766 
direct_access_msr_slot(u32 msr)767 static int direct_access_msr_slot(u32 msr)
768 {
769 	u32 i;
770 
771 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
772 		if (direct_access_msrs[i].index == msr)
773 			return i;
774 
775 	return -ENOENT;
776 }
777 
set_shadow_msr_intercept(struct kvm_vcpu * vcpu,u32 msr,int read,int write)778 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
779 				     int write)
780 {
781 	struct vcpu_svm *svm = to_svm(vcpu);
782 	int slot = direct_access_msr_slot(msr);
783 
784 	if (slot == -ENOENT)
785 		return;
786 
787 	/* Set the shadow bitmaps to the desired intercept states */
788 	if (read)
789 		set_bit(slot, svm->shadow_msr_intercept.read);
790 	else
791 		clear_bit(slot, svm->shadow_msr_intercept.read);
792 
793 	if (write)
794 		set_bit(slot, svm->shadow_msr_intercept.write);
795 	else
796 		clear_bit(slot, svm->shadow_msr_intercept.write);
797 }
798 
valid_msr_intercept(u32 index)799 static bool valid_msr_intercept(u32 index)
800 {
801 	return direct_access_msr_slot(index) != -ENOENT;
802 }
803 
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)804 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
805 {
806 	u8 bit_write;
807 	unsigned long tmp;
808 	u32 offset;
809 	u32 *msrpm;
810 
811 	/*
812 	 * For non-nested case:
813 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
814 	 * save it.
815 	 *
816 	 * For nested case:
817 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
818 	 * save it.
819 	 */
820 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
821 				      to_svm(vcpu)->msrpm;
822 
823 	offset    = svm_msrpm_offset(msr);
824 	bit_write = 2 * (msr & 0x0f) + 1;
825 	tmp       = msrpm[offset];
826 
827 	BUG_ON(offset == MSR_INVALID);
828 
829 	return test_bit(bit_write, &tmp);
830 }
831 
set_msr_interception_bitmap(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)832 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
833 					u32 msr, int read, int write)
834 {
835 	struct vcpu_svm *svm = to_svm(vcpu);
836 	u8 bit_read, bit_write;
837 	unsigned long tmp;
838 	u32 offset;
839 
840 	/*
841 	 * If this warning triggers extend the direct_access_msrs list at the
842 	 * beginning of the file
843 	 */
844 	WARN_ON(!valid_msr_intercept(msr));
845 
846 	/* Enforce non allowed MSRs to trap */
847 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
848 		read = 0;
849 
850 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
851 		write = 0;
852 
853 	offset    = svm_msrpm_offset(msr);
854 	bit_read  = 2 * (msr & 0x0f);
855 	bit_write = 2 * (msr & 0x0f) + 1;
856 	tmp       = msrpm[offset];
857 
858 	BUG_ON(offset == MSR_INVALID);
859 
860 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
861 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
862 
863 	msrpm[offset] = tmp;
864 
865 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
866 	svm->nested.force_msr_bitmap_recalc = true;
867 }
868 
set_msr_interception(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)869 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
870 			  int read, int write)
871 {
872 	set_shadow_msr_intercept(vcpu, msr, read, write);
873 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
874 }
875 
svm_vcpu_alloc_msrpm(void)876 u32 *svm_vcpu_alloc_msrpm(void)
877 {
878 	unsigned int order = get_order(MSRPM_SIZE);
879 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
880 	u32 *msrpm;
881 
882 	if (!pages)
883 		return NULL;
884 
885 	msrpm = page_address(pages);
886 	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
887 
888 	return msrpm;
889 }
890 
svm_vcpu_init_msrpm(struct kvm_vcpu * vcpu,u32 * msrpm)891 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
892 {
893 	int i;
894 
895 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
896 		if (!direct_access_msrs[i].always)
897 			continue;
898 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
899 	}
900 }
901 
svm_set_x2apic_msr_interception(struct vcpu_svm * svm,bool intercept)902 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
903 {
904 	int i;
905 
906 	if (intercept == svm->x2avic_msrs_intercepted)
907 		return;
908 
909 	if (!x2avic_enabled)
910 		return;
911 
912 	for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
913 		int index = direct_access_msrs[i].index;
914 
915 		if ((index < APIC_BASE_MSR) ||
916 		    (index > APIC_BASE_MSR + 0xff))
917 			continue;
918 		set_msr_interception(&svm->vcpu, svm->msrpm, index,
919 				     !intercept, !intercept);
920 	}
921 
922 	svm->x2avic_msrs_intercepted = intercept;
923 }
924 
svm_vcpu_free_msrpm(u32 * msrpm)925 void svm_vcpu_free_msrpm(u32 *msrpm)
926 {
927 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
928 }
929 
svm_msr_filter_changed(struct kvm_vcpu * vcpu)930 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
931 {
932 	struct vcpu_svm *svm = to_svm(vcpu);
933 	u32 i;
934 
935 	/*
936 	 * Set intercept permissions for all direct access MSRs again. They
937 	 * will automatically get filtered through the MSR filter, so we are
938 	 * back in sync after this.
939 	 */
940 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
941 		u32 msr = direct_access_msrs[i].index;
942 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
943 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
944 
945 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
946 	}
947 }
948 
add_msr_offset(u32 offset)949 static void add_msr_offset(u32 offset)
950 {
951 	int i;
952 
953 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
954 
955 		/* Offset already in list? */
956 		if (msrpm_offsets[i] == offset)
957 			return;
958 
959 		/* Slot used by another offset? */
960 		if (msrpm_offsets[i] != MSR_INVALID)
961 			continue;
962 
963 		/* Add offset to list */
964 		msrpm_offsets[i] = offset;
965 
966 		return;
967 	}
968 
969 	/*
970 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
971 	 * increase MSRPM_OFFSETS in this case.
972 	 */
973 	BUG();
974 }
975 
init_msrpm_offsets(void)976 static void init_msrpm_offsets(void)
977 {
978 	int i;
979 
980 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
981 
982 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
983 		u32 offset;
984 
985 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
986 		BUG_ON(offset == MSR_INVALID);
987 
988 		add_msr_offset(offset);
989 	}
990 }
991 
svm_copy_lbrs(struct vmcb * to_vmcb,struct vmcb * from_vmcb)992 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
993 {
994 	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
995 	to_vmcb->save.br_from		= from_vmcb->save.br_from;
996 	to_vmcb->save.br_to		= from_vmcb->save.br_to;
997 	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
998 	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;
999 
1000 	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
1001 }
1002 
svm_enable_lbrv(struct kvm_vcpu * vcpu)1003 void svm_enable_lbrv(struct kvm_vcpu *vcpu)
1004 {
1005 	struct vcpu_svm *svm = to_svm(vcpu);
1006 
1007 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1008 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1009 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1010 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1011 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1012 
1013 	if (sev_es_guest(vcpu->kvm))
1014 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_DEBUGCTLMSR, 1, 1);
1015 
1016 	/* Move the LBR msrs to the vmcb02 so that the guest can see them. */
1017 	if (is_guest_mode(vcpu))
1018 		svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
1019 }
1020 
svm_disable_lbrv(struct kvm_vcpu * vcpu)1021 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
1022 {
1023 	struct vcpu_svm *svm = to_svm(vcpu);
1024 
1025 	KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm);
1026 
1027 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1028 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1029 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1030 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1031 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1032 
1033 	/*
1034 	 * Move the LBR msrs back to the vmcb01 to avoid copying them
1035 	 * on nested guest entries.
1036 	 */
1037 	if (is_guest_mode(vcpu))
1038 		svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
1039 }
1040 
svm_get_lbr_vmcb(struct vcpu_svm * svm)1041 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
1042 {
1043 	/*
1044 	 * If LBR virtualization is disabled, the LBR MSRs are always kept in
1045 	 * vmcb01.  If LBR virtualization is enabled and L1 is running VMs of
1046 	 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
1047 	 */
1048 	return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
1049 								   svm->vmcb01.ptr;
1050 }
1051 
svm_update_lbrv(struct kvm_vcpu * vcpu)1052 void svm_update_lbrv(struct kvm_vcpu *vcpu)
1053 {
1054 	struct vcpu_svm *svm = to_svm(vcpu);
1055 	bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
1056 	bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
1057 			    (is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
1058 			    (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
1059 
1060 	if (enable_lbrv == current_enable_lbrv)
1061 		return;
1062 
1063 	if (enable_lbrv)
1064 		svm_enable_lbrv(vcpu);
1065 	else
1066 		svm_disable_lbrv(vcpu);
1067 }
1068 
disable_nmi_singlestep(struct vcpu_svm * svm)1069 void disable_nmi_singlestep(struct vcpu_svm *svm)
1070 {
1071 	svm->nmi_singlestep = false;
1072 
1073 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1074 		/* Clear our flags if they were not set by the guest */
1075 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1076 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1077 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1078 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1079 	}
1080 }
1081 
grow_ple_window(struct kvm_vcpu * vcpu)1082 static void grow_ple_window(struct kvm_vcpu *vcpu)
1083 {
1084 	struct vcpu_svm *svm = to_svm(vcpu);
1085 	struct vmcb_control_area *control = &svm->vmcb->control;
1086 	int old = control->pause_filter_count;
1087 
1088 	if (kvm_pause_in_guest(vcpu->kvm))
1089 		return;
1090 
1091 	control->pause_filter_count = __grow_ple_window(old,
1092 							pause_filter_count,
1093 							pause_filter_count_grow,
1094 							pause_filter_count_max);
1095 
1096 	if (control->pause_filter_count != old) {
1097 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1098 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1099 					    control->pause_filter_count, old);
1100 	}
1101 }
1102 
shrink_ple_window(struct kvm_vcpu * vcpu)1103 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1104 {
1105 	struct vcpu_svm *svm = to_svm(vcpu);
1106 	struct vmcb_control_area *control = &svm->vmcb->control;
1107 	int old = control->pause_filter_count;
1108 
1109 	if (kvm_pause_in_guest(vcpu->kvm))
1110 		return;
1111 
1112 	control->pause_filter_count =
1113 				__shrink_ple_window(old,
1114 						    pause_filter_count,
1115 						    pause_filter_count_shrink,
1116 						    pause_filter_count);
1117 	if (control->pause_filter_count != old) {
1118 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1119 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1120 					    control->pause_filter_count, old);
1121 	}
1122 }
1123 
svm_hardware_unsetup(void)1124 static void svm_hardware_unsetup(void)
1125 {
1126 	int cpu;
1127 
1128 	sev_hardware_unsetup();
1129 
1130 	for_each_possible_cpu(cpu)
1131 		svm_cpu_uninit(cpu);
1132 
1133 	__free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE));
1134 	iopm_base = 0;
1135 }
1136 
init_seg(struct vmcb_seg * seg)1137 static void init_seg(struct vmcb_seg *seg)
1138 {
1139 	seg->selector = 0;
1140 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1141 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1142 	seg->limit = 0xffff;
1143 	seg->base = 0;
1144 }
1145 
init_sys_seg(struct vmcb_seg * seg,uint32_t type)1146 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1147 {
1148 	seg->selector = 0;
1149 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1150 	seg->limit = 0xffff;
1151 	seg->base = 0;
1152 }
1153 
svm_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1154 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1155 {
1156 	struct vcpu_svm *svm = to_svm(vcpu);
1157 
1158 	return svm->nested.ctl.tsc_offset;
1159 }
1160 
svm_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1161 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1162 {
1163 	struct vcpu_svm *svm = to_svm(vcpu);
1164 
1165 	return svm->tsc_ratio_msr;
1166 }
1167 
svm_write_tsc_offset(struct kvm_vcpu * vcpu)1168 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
1169 {
1170 	struct vcpu_svm *svm = to_svm(vcpu);
1171 
1172 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1173 	svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
1174 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1175 }
1176 
svm_write_tsc_multiplier(struct kvm_vcpu * vcpu)1177 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1178 {
1179 	preempt_disable();
1180 	if (to_svm(vcpu)->guest_state_loaded)
1181 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1182 	preempt_enable();
1183 }
1184 
1185 /* Evaluate instruction intercepts that depend on guest CPUID features. */
svm_recalc_instruction_intercepts(struct kvm_vcpu * vcpu,struct vcpu_svm * svm)1186 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1187 					      struct vcpu_svm *svm)
1188 {
1189 	/*
1190 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1191 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1192 	 */
1193 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1194 		if (!npt_enabled ||
1195 		    !guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID))
1196 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1197 		else
1198 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1199 	}
1200 
1201 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1202 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP))
1203 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1204 		else
1205 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
1206 	}
1207 }
1208 
init_vmcb_after_set_cpuid(struct kvm_vcpu * vcpu)1209 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1210 {
1211 	struct vcpu_svm *svm = to_svm(vcpu);
1212 
1213 	if (guest_cpuid_is_intel_compatible(vcpu)) {
1214 		/*
1215 		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1216 		 * accesses because the processor only stores 32 bits.
1217 		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1218 		 */
1219 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
1220 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
1221 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1222 
1223 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1224 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1225 	} else {
1226 		/*
1227 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1228 		 * in VMCB and clear intercepts to avoid #VMEXIT.
1229 		 */
1230 		if (vls) {
1231 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1232 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1233 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1234 		}
1235 		/* No need to intercept these MSRs */
1236 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1237 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1238 	}
1239 }
1240 
init_vmcb(struct kvm_vcpu * vcpu)1241 static void init_vmcb(struct kvm_vcpu *vcpu)
1242 {
1243 	struct vcpu_svm *svm = to_svm(vcpu);
1244 	struct vmcb *vmcb = svm->vmcb01.ptr;
1245 	struct vmcb_control_area *control = &vmcb->control;
1246 	struct vmcb_save_area *save = &vmcb->save;
1247 
1248 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1249 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1250 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1251 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1252 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1253 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1254 	if (!kvm_vcpu_apicv_active(vcpu))
1255 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1256 
1257 	set_dr_intercepts(svm);
1258 
1259 	set_exception_intercept(svm, PF_VECTOR);
1260 	set_exception_intercept(svm, UD_VECTOR);
1261 	set_exception_intercept(svm, MC_VECTOR);
1262 	set_exception_intercept(svm, AC_VECTOR);
1263 	set_exception_intercept(svm, DB_VECTOR);
1264 	/*
1265 	 * Guest access to VMware backdoor ports could legitimately
1266 	 * trigger #GP because of TSS I/O permission bitmap.
1267 	 * We intercept those #GP and allow access to them anyway
1268 	 * as VMware does.
1269 	 */
1270 	if (enable_vmware_backdoor)
1271 		set_exception_intercept(svm, GP_VECTOR);
1272 
1273 	svm_set_intercept(svm, INTERCEPT_INTR);
1274 	svm_set_intercept(svm, INTERCEPT_NMI);
1275 
1276 	if (intercept_smi)
1277 		svm_set_intercept(svm, INTERCEPT_SMI);
1278 
1279 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1280 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1281 	svm_set_intercept(svm, INTERCEPT_CPUID);
1282 	svm_set_intercept(svm, INTERCEPT_INVD);
1283 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1284 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1285 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1286 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1287 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1288 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1289 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1290 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1291 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1292 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1293 	svm_set_intercept(svm, INTERCEPT_STGI);
1294 	svm_set_intercept(svm, INTERCEPT_CLGI);
1295 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1296 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1297 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1298 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1299 	svm_set_intercept(svm, INTERCEPT_RSM);
1300 
1301 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1302 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1303 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1304 	}
1305 
1306 	if (!kvm_hlt_in_guest(vcpu->kvm)) {
1307 		if (cpu_feature_enabled(X86_FEATURE_IDLE_HLT))
1308 			svm_set_intercept(svm, INTERCEPT_IDLE_HLT);
1309 		else
1310 			svm_set_intercept(svm, INTERCEPT_HLT);
1311 	}
1312 
1313 	control->iopm_base_pa = iopm_base;
1314 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1315 	control->int_ctl = V_INTR_MASKING_MASK;
1316 
1317 	init_seg(&save->es);
1318 	init_seg(&save->ss);
1319 	init_seg(&save->ds);
1320 	init_seg(&save->fs);
1321 	init_seg(&save->gs);
1322 
1323 	save->cs.selector = 0xf000;
1324 	save->cs.base = 0xffff0000;
1325 	/* Executable/Readable Code Segment */
1326 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1327 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1328 	save->cs.limit = 0xffff;
1329 
1330 	save->gdtr.base = 0;
1331 	save->gdtr.limit = 0xffff;
1332 	save->idtr.base = 0;
1333 	save->idtr.limit = 0xffff;
1334 
1335 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1336 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1337 
1338 	if (npt_enabled) {
1339 		/* Setup VMCB for Nested Paging */
1340 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1341 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1342 		clr_exception_intercept(svm, PF_VECTOR);
1343 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1344 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1345 		save->g_pat = vcpu->arch.pat;
1346 		save->cr3 = 0;
1347 	}
1348 	svm->current_vmcb->asid_generation = 0;
1349 	svm->asid = 0;
1350 
1351 	svm->nested.vmcb12_gpa = INVALID_GPA;
1352 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1353 
1354 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1355 		control->pause_filter_count = pause_filter_count;
1356 		if (pause_filter_thresh)
1357 			control->pause_filter_thresh = pause_filter_thresh;
1358 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1359 	} else {
1360 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1361 	}
1362 
1363 	svm_recalc_instruction_intercepts(vcpu, svm);
1364 
1365 	/*
1366 	 * If the host supports V_SPEC_CTRL then disable the interception
1367 	 * of MSR_IA32_SPEC_CTRL.
1368 	 */
1369 	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1370 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1371 
1372 	if (kvm_vcpu_apicv_active(vcpu))
1373 		avic_init_vmcb(svm, vmcb);
1374 
1375 	if (vnmi)
1376 		svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1377 
1378 	if (vgif) {
1379 		svm_clr_intercept(svm, INTERCEPT_STGI);
1380 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1381 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1382 	}
1383 
1384 	if (sev_guest(vcpu->kvm))
1385 		sev_init_vmcb(svm);
1386 
1387 	svm_hv_init_vmcb(vmcb);
1388 	init_vmcb_after_set_cpuid(vcpu);
1389 
1390 	vmcb_mark_all_dirty(vmcb);
1391 
1392 	enable_gif(svm);
1393 }
1394 
__svm_vcpu_reset(struct kvm_vcpu * vcpu)1395 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1396 {
1397 	struct vcpu_svm *svm = to_svm(vcpu);
1398 
1399 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1400 
1401 	svm_init_osvw(vcpu);
1402 
1403 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
1404 		vcpu->arch.microcode_version = 0x01000065;
1405 	svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1406 
1407 	svm->nmi_masked = false;
1408 	svm->awaiting_iret_completion = false;
1409 
1410 	if (sev_es_guest(vcpu->kvm))
1411 		sev_es_vcpu_reset(svm);
1412 }
1413 
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)1414 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1415 {
1416 	struct vcpu_svm *svm = to_svm(vcpu);
1417 
1418 	svm->spec_ctrl = 0;
1419 	svm->virt_spec_ctrl = 0;
1420 
1421 	if (init_event)
1422 		sev_snp_init_protected_guest_state(vcpu);
1423 
1424 	init_vmcb(vcpu);
1425 
1426 	if (!init_event)
1427 		__svm_vcpu_reset(vcpu);
1428 }
1429 
svm_switch_vmcb(struct vcpu_svm * svm,struct kvm_vmcb_info * target_vmcb)1430 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1431 {
1432 	svm->current_vmcb = target_vmcb;
1433 	svm->vmcb = target_vmcb->ptr;
1434 }
1435 
svm_vcpu_create(struct kvm_vcpu * vcpu)1436 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1437 {
1438 	struct vcpu_svm *svm;
1439 	struct page *vmcb01_page;
1440 	struct page *vmsa_page = NULL;
1441 	int err;
1442 
1443 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1444 	svm = to_svm(vcpu);
1445 
1446 	err = -ENOMEM;
1447 	vmcb01_page = snp_safe_alloc_page();
1448 	if (!vmcb01_page)
1449 		goto out;
1450 
1451 	if (sev_es_guest(vcpu->kvm)) {
1452 		/*
1453 		 * SEV-ES guests require a separate VMSA page used to contain
1454 		 * the encrypted register state of the guest.
1455 		 */
1456 		vmsa_page = snp_safe_alloc_page();
1457 		if (!vmsa_page)
1458 			goto error_free_vmcb_page;
1459 	}
1460 
1461 	err = avic_init_vcpu(svm);
1462 	if (err)
1463 		goto error_free_vmsa_page;
1464 
1465 	svm->msrpm = svm_vcpu_alloc_msrpm();
1466 	if (!svm->msrpm) {
1467 		err = -ENOMEM;
1468 		goto error_free_vmsa_page;
1469 	}
1470 
1471 	svm->x2avic_msrs_intercepted = true;
1472 
1473 	svm->vmcb01.ptr = page_address(vmcb01_page);
1474 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1475 	svm_switch_vmcb(svm, &svm->vmcb01);
1476 
1477 	if (vmsa_page)
1478 		svm->sev_es.vmsa = page_address(vmsa_page);
1479 
1480 	svm->guest_state_loaded = false;
1481 
1482 	return 0;
1483 
1484 error_free_vmsa_page:
1485 	if (vmsa_page)
1486 		__free_page(vmsa_page);
1487 error_free_vmcb_page:
1488 	__free_page(vmcb01_page);
1489 out:
1490 	return err;
1491 }
1492 
svm_clear_current_vmcb(struct vmcb * vmcb)1493 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1494 {
1495 	int i;
1496 
1497 	for_each_online_cpu(i)
1498 		cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1499 }
1500 
svm_vcpu_free(struct kvm_vcpu * vcpu)1501 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1502 {
1503 	struct vcpu_svm *svm = to_svm(vcpu);
1504 
1505 	/*
1506 	 * The vmcb page can be recycled, causing a false negative in
1507 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1508 	 * vmcb page recorded as its current vmcb.
1509 	 */
1510 	svm_clear_current_vmcb(svm->vmcb);
1511 
1512 	svm_leave_nested(vcpu);
1513 	svm_free_nested(svm);
1514 
1515 	sev_free_vcpu(vcpu);
1516 
1517 	__free_page(__sme_pa_to_page(svm->vmcb01.pa));
1518 	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1519 }
1520 
svm_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1521 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1522 {
1523 	struct vcpu_svm *svm = to_svm(vcpu);
1524 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1525 
1526 	if (sev_es_guest(vcpu->kvm))
1527 		sev_es_unmap_ghcb(svm);
1528 
1529 	if (svm->guest_state_loaded)
1530 		return;
1531 
1532 	/*
1533 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1534 	 * or subsequent vmload of host save area.
1535 	 */
1536 	vmsave(sd->save_area_pa);
1537 	if (sev_es_guest(vcpu->kvm))
1538 		sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd));
1539 
1540 	if (tsc_scaling)
1541 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1542 
1543 	/*
1544 	 * TSC_AUX is always virtualized for SEV-ES guests when the feature is
1545 	 * available. The user return MSR support is not required in this case
1546 	 * because TSC_AUX is restored on #VMEXIT from the host save area
1547 	 * (which has been initialized in svm_enable_virtualization_cpu()).
1548 	 */
1549 	if (likely(tsc_aux_uret_slot >= 0) &&
1550 	    (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1551 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1552 
1553 	svm->guest_state_loaded = true;
1554 }
1555 
svm_prepare_host_switch(struct kvm_vcpu * vcpu)1556 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1557 {
1558 	to_svm(vcpu)->guest_state_loaded = false;
1559 }
1560 
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1561 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1562 {
1563 	struct vcpu_svm *svm = to_svm(vcpu);
1564 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1565 
1566 	if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1567 		shrink_ple_window(vcpu);
1568 
1569 	if (sd->current_vmcb != svm->vmcb) {
1570 		sd->current_vmcb = svm->vmcb;
1571 
1572 		if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT) &&
1573 		    static_branch_likely(&switch_vcpu_ibpb))
1574 			indirect_branch_prediction_barrier();
1575 	}
1576 	if (kvm_vcpu_apicv_active(vcpu))
1577 		avic_vcpu_load(vcpu, cpu);
1578 }
1579 
svm_vcpu_put(struct kvm_vcpu * vcpu)1580 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1581 {
1582 	if (kvm_vcpu_apicv_active(vcpu))
1583 		avic_vcpu_put(vcpu);
1584 
1585 	svm_prepare_host_switch(vcpu);
1586 
1587 	++vcpu->stat.host_state_reload;
1588 }
1589 
svm_get_rflags(struct kvm_vcpu * vcpu)1590 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1591 {
1592 	struct vcpu_svm *svm = to_svm(vcpu);
1593 	unsigned long rflags = svm->vmcb->save.rflags;
1594 
1595 	if (svm->nmi_singlestep) {
1596 		/* Hide our flags if they were not set by the guest */
1597 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1598 			rflags &= ~X86_EFLAGS_TF;
1599 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1600 			rflags &= ~X86_EFLAGS_RF;
1601 	}
1602 	return rflags;
1603 }
1604 
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1605 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1606 {
1607 	if (to_svm(vcpu)->nmi_singlestep)
1608 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1609 
1610        /*
1611         * Any change of EFLAGS.VM is accompanied by a reload of SS
1612         * (caused by either a task switch or an inter-privilege IRET),
1613         * so we do not need to update the CPL here.
1614         */
1615 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1616 }
1617 
svm_get_if_flag(struct kvm_vcpu * vcpu)1618 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1619 {
1620 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1621 
1622 	return sev_es_guest(vcpu->kvm)
1623 		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1624 		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1625 }
1626 
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1627 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1628 {
1629 	kvm_register_mark_available(vcpu, reg);
1630 
1631 	switch (reg) {
1632 	case VCPU_EXREG_PDPTR:
1633 		/*
1634 		 * When !npt_enabled, mmu->pdptrs[] is already available since
1635 		 * it is always updated per SDM when moving to CRs.
1636 		 */
1637 		if (npt_enabled)
1638 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1639 		break;
1640 	default:
1641 		KVM_BUG_ON(1, vcpu->kvm);
1642 	}
1643 }
1644 
svm_set_vintr(struct vcpu_svm * svm)1645 static void svm_set_vintr(struct vcpu_svm *svm)
1646 {
1647 	struct vmcb_control_area *control;
1648 
1649 	/*
1650 	 * The following fields are ignored when AVIC is enabled
1651 	 */
1652 	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1653 
1654 	svm_set_intercept(svm, INTERCEPT_VINTR);
1655 
1656 	/*
1657 	 * Recalculating intercepts may have cleared the VINTR intercept.  If
1658 	 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1659 	 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1660 	 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1661 	 * interrupts will never be unblocked while L2 is running.
1662 	 */
1663 	if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1664 		return;
1665 
1666 	/*
1667 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1668 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1669 	 */
1670 	control = &svm->vmcb->control;
1671 	control->int_vector = 0x0;
1672 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1673 	control->int_ctl |= V_IRQ_MASK |
1674 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1675 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1676 }
1677 
svm_clear_vintr(struct vcpu_svm * svm)1678 static void svm_clear_vintr(struct vcpu_svm *svm)
1679 {
1680 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1681 
1682 	/* Drop int_ctl fields related to VINTR injection.  */
1683 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1684 	if (is_guest_mode(&svm->vcpu)) {
1685 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1686 
1687 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1688 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1689 
1690 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1691 			V_IRQ_INJECTION_BITS_MASK;
1692 
1693 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1694 	}
1695 
1696 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1697 }
1698 
svm_seg(struct kvm_vcpu * vcpu,int seg)1699 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1700 {
1701 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1702 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1703 
1704 	switch (seg) {
1705 	case VCPU_SREG_CS: return &save->cs;
1706 	case VCPU_SREG_DS: return &save->ds;
1707 	case VCPU_SREG_ES: return &save->es;
1708 	case VCPU_SREG_FS: return &save01->fs;
1709 	case VCPU_SREG_GS: return &save01->gs;
1710 	case VCPU_SREG_SS: return &save->ss;
1711 	case VCPU_SREG_TR: return &save01->tr;
1712 	case VCPU_SREG_LDTR: return &save01->ldtr;
1713 	}
1714 	BUG();
1715 	return NULL;
1716 }
1717 
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1718 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1719 {
1720 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1721 
1722 	return s->base;
1723 }
1724 
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1725 static void svm_get_segment(struct kvm_vcpu *vcpu,
1726 			    struct kvm_segment *var, int seg)
1727 {
1728 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1729 
1730 	var->base = s->base;
1731 	var->limit = s->limit;
1732 	var->selector = s->selector;
1733 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1734 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1735 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1736 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1737 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1738 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1739 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1740 
1741 	/*
1742 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1743 	 * However, the SVM spec states that the G bit is not observed by the
1744 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1745 	 * So let's synthesize a legal G bit for all segments, this helps
1746 	 * running KVM nested. It also helps cross-vendor migration, because
1747 	 * Intel's vmentry has a check on the 'G' bit.
1748 	 */
1749 	var->g = s->limit > 0xfffff;
1750 
1751 	/*
1752 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1753 	 * for cross vendor migration purposes by "not present"
1754 	 */
1755 	var->unusable = !var->present;
1756 
1757 	switch (seg) {
1758 	case VCPU_SREG_TR:
1759 		/*
1760 		 * Work around a bug where the busy flag in the tr selector
1761 		 * isn't exposed
1762 		 */
1763 		var->type |= 0x2;
1764 		break;
1765 	case VCPU_SREG_DS:
1766 	case VCPU_SREG_ES:
1767 	case VCPU_SREG_FS:
1768 	case VCPU_SREG_GS:
1769 		/*
1770 		 * The accessed bit must always be set in the segment
1771 		 * descriptor cache, although it can be cleared in the
1772 		 * descriptor, the cached bit always remains at 1. Since
1773 		 * Intel has a check on this, set it here to support
1774 		 * cross-vendor migration.
1775 		 */
1776 		if (!var->unusable)
1777 			var->type |= 0x1;
1778 		break;
1779 	case VCPU_SREG_SS:
1780 		/*
1781 		 * On AMD CPUs sometimes the DB bit in the segment
1782 		 * descriptor is left as 1, although the whole segment has
1783 		 * been made unusable. Clear it here to pass an Intel VMX
1784 		 * entry check when cross vendor migrating.
1785 		 */
1786 		if (var->unusable)
1787 			var->db = 0;
1788 		/* This is symmetric with svm_set_segment() */
1789 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1790 		break;
1791 	}
1792 }
1793 
svm_get_cpl(struct kvm_vcpu * vcpu)1794 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1795 {
1796 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1797 
1798 	return save->cpl;
1799 }
1800 
svm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)1801 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1802 {
1803 	struct kvm_segment cs;
1804 
1805 	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1806 	*db = cs.db;
1807 	*l = cs.l;
1808 }
1809 
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1810 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1811 {
1812 	struct vcpu_svm *svm = to_svm(vcpu);
1813 
1814 	dt->size = svm->vmcb->save.idtr.limit;
1815 	dt->address = svm->vmcb->save.idtr.base;
1816 }
1817 
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1818 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1819 {
1820 	struct vcpu_svm *svm = to_svm(vcpu);
1821 
1822 	svm->vmcb->save.idtr.limit = dt->size;
1823 	svm->vmcb->save.idtr.base = dt->address ;
1824 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1825 }
1826 
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1827 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1828 {
1829 	struct vcpu_svm *svm = to_svm(vcpu);
1830 
1831 	dt->size = svm->vmcb->save.gdtr.limit;
1832 	dt->address = svm->vmcb->save.gdtr.base;
1833 }
1834 
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1835 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1836 {
1837 	struct vcpu_svm *svm = to_svm(vcpu);
1838 
1839 	svm->vmcb->save.gdtr.limit = dt->size;
1840 	svm->vmcb->save.gdtr.base = dt->address ;
1841 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1842 }
1843 
sev_post_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1844 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1845 {
1846 	struct vcpu_svm *svm = to_svm(vcpu);
1847 
1848 	/*
1849 	 * For guests that don't set guest_state_protected, the cr3 update is
1850 	 * handled via kvm_mmu_load() while entering the guest. For guests
1851 	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1852 	 * VMCB save area now, since the save area will become the initial
1853 	 * contents of the VMSA, and future VMCB save area updates won't be
1854 	 * seen.
1855 	 */
1856 	if (sev_es_guest(vcpu->kvm)) {
1857 		svm->vmcb->save.cr3 = cr3;
1858 		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1859 	}
1860 }
1861 
svm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1862 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1863 {
1864 	return true;
1865 }
1866 
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1867 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1868 {
1869 	struct vcpu_svm *svm = to_svm(vcpu);
1870 	u64 hcr0 = cr0;
1871 	bool old_paging = is_paging(vcpu);
1872 
1873 #ifdef CONFIG_X86_64
1874 	if (vcpu->arch.efer & EFER_LME) {
1875 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1876 			vcpu->arch.efer |= EFER_LMA;
1877 			if (!vcpu->arch.guest_state_protected)
1878 				svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1879 		}
1880 
1881 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1882 			vcpu->arch.efer &= ~EFER_LMA;
1883 			if (!vcpu->arch.guest_state_protected)
1884 				svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1885 		}
1886 	}
1887 #endif
1888 	vcpu->arch.cr0 = cr0;
1889 
1890 	if (!npt_enabled) {
1891 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1892 		if (old_paging != is_paging(vcpu))
1893 			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1894 	}
1895 
1896 	/*
1897 	 * re-enable caching here because the QEMU bios
1898 	 * does not do it - this results in some delay at
1899 	 * reboot
1900 	 */
1901 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1902 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1903 
1904 	svm->vmcb->save.cr0 = hcr0;
1905 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1906 
1907 	/*
1908 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1909 	 * tracking is done using the CR write traps.
1910 	 */
1911 	if (sev_es_guest(vcpu->kvm))
1912 		return;
1913 
1914 	if (hcr0 == cr0) {
1915 		/* Selective CR0 write remains on.  */
1916 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1917 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1918 	} else {
1919 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1920 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1921 	}
1922 }
1923 
svm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1924 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1925 {
1926 	return true;
1927 }
1928 
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1929 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1930 {
1931 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1932 	unsigned long old_cr4 = vcpu->arch.cr4;
1933 
1934 	vcpu->arch.cr4 = cr4;
1935 	if (!npt_enabled) {
1936 		cr4 |= X86_CR4_PAE;
1937 
1938 		if (!is_paging(vcpu))
1939 			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1940 	}
1941 	cr4 |= host_cr4_mce;
1942 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1943 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1944 
1945 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1946 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
1947 }
1948 
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1949 static void svm_set_segment(struct kvm_vcpu *vcpu,
1950 			    struct kvm_segment *var, int seg)
1951 {
1952 	struct vcpu_svm *svm = to_svm(vcpu);
1953 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1954 
1955 	s->base = var->base;
1956 	s->limit = var->limit;
1957 	s->selector = var->selector;
1958 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1959 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1960 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1961 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1962 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1963 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1964 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1965 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1966 
1967 	/*
1968 	 * This is always accurate, except if SYSRET returned to a segment
1969 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1970 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1971 	 * would entail passing the CPL to userspace and back.
1972 	 */
1973 	if (seg == VCPU_SREG_SS)
1974 		/* This is symmetric with svm_get_segment() */
1975 		svm->vmcb->save.cpl = (var->dpl & 3);
1976 
1977 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1978 }
1979 
svm_update_exception_bitmap(struct kvm_vcpu * vcpu)1980 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1981 {
1982 	struct vcpu_svm *svm = to_svm(vcpu);
1983 
1984 	clr_exception_intercept(svm, BP_VECTOR);
1985 
1986 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1987 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1988 			set_exception_intercept(svm, BP_VECTOR);
1989 	}
1990 }
1991 
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)1992 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1993 {
1994 	if (sd->next_asid > sd->max_asid) {
1995 		++sd->asid_generation;
1996 		sd->next_asid = sd->min_asid;
1997 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1998 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1999 	}
2000 
2001 	svm->current_vmcb->asid_generation = sd->asid_generation;
2002 	svm->asid = sd->next_asid++;
2003 }
2004 
svm_set_dr6(struct kvm_vcpu * vcpu,unsigned long value)2005 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2006 {
2007 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
2008 
2009 	if (vcpu->arch.guest_state_protected)
2010 		return;
2011 
2012 	if (unlikely(value != vmcb->save.dr6)) {
2013 		vmcb->save.dr6 = value;
2014 		vmcb_mark_dirty(vmcb, VMCB_DR);
2015 	}
2016 }
2017 
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)2018 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2019 {
2020 	struct vcpu_svm *svm = to_svm(vcpu);
2021 
2022 	if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
2023 		return;
2024 
2025 	get_debugreg(vcpu->arch.db[0], 0);
2026 	get_debugreg(vcpu->arch.db[1], 1);
2027 	get_debugreg(vcpu->arch.db[2], 2);
2028 	get_debugreg(vcpu->arch.db[3], 3);
2029 	/*
2030 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
2031 	 * because db_interception might need it.  We can do it before vmentry.
2032 	 */
2033 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
2034 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
2035 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2036 	set_dr_intercepts(svm);
2037 }
2038 
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)2039 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2040 {
2041 	struct vcpu_svm *svm = to_svm(vcpu);
2042 
2043 	if (vcpu->arch.guest_state_protected)
2044 		return;
2045 
2046 	svm->vmcb->save.dr7 = value;
2047 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
2048 }
2049 
pf_interception(struct kvm_vcpu * vcpu)2050 static int pf_interception(struct kvm_vcpu *vcpu)
2051 {
2052 	struct vcpu_svm *svm = to_svm(vcpu);
2053 
2054 	u64 fault_address = svm->vmcb->control.exit_info_2;
2055 	u64 error_code = svm->vmcb->control.exit_info_1;
2056 
2057 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
2058 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2059 			svm->vmcb->control.insn_bytes : NULL,
2060 			svm->vmcb->control.insn_len);
2061 }
2062 
npf_interception(struct kvm_vcpu * vcpu)2063 static int npf_interception(struct kvm_vcpu *vcpu)
2064 {
2065 	struct vcpu_svm *svm = to_svm(vcpu);
2066 	int rc;
2067 
2068 	u64 fault_address = svm->vmcb->control.exit_info_2;
2069 	u64 error_code = svm->vmcb->control.exit_info_1;
2070 
2071 	/*
2072 	 * WARN if hardware generates a fault with an error code that collides
2073 	 * with KVM-defined sythentic flags.  Clear the flags and continue on,
2074 	 * i.e. don't terminate the VM, as KVM can't possibly be relying on a
2075 	 * flag that KVM doesn't know about.
2076 	 */
2077 	if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK))
2078 		error_code &= ~PFERR_SYNTHETIC_MASK;
2079 
2080 	if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK))
2081 		error_code |= PFERR_PRIVATE_ACCESS;
2082 
2083 	trace_kvm_page_fault(vcpu, fault_address, error_code);
2084 	rc = kvm_mmu_page_fault(vcpu, fault_address, error_code,
2085 				static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2086 				svm->vmcb->control.insn_bytes : NULL,
2087 				svm->vmcb->control.insn_len);
2088 
2089 	if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK)
2090 		sev_handle_rmp_fault(vcpu, fault_address, error_code);
2091 
2092 	return rc;
2093 }
2094 
db_interception(struct kvm_vcpu * vcpu)2095 static int db_interception(struct kvm_vcpu *vcpu)
2096 {
2097 	struct kvm_run *kvm_run = vcpu->run;
2098 	struct vcpu_svm *svm = to_svm(vcpu);
2099 
2100 	if (!(vcpu->guest_debug &
2101 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2102 		!svm->nmi_singlestep) {
2103 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2104 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2105 		return 1;
2106 	}
2107 
2108 	if (svm->nmi_singlestep) {
2109 		disable_nmi_singlestep(svm);
2110 		/* Make sure we check for pending NMIs upon entry */
2111 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2112 	}
2113 
2114 	if (vcpu->guest_debug &
2115 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2116 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
2117 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2118 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2119 		kvm_run->debug.arch.pc =
2120 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2121 		kvm_run->debug.arch.exception = DB_VECTOR;
2122 		return 0;
2123 	}
2124 
2125 	return 1;
2126 }
2127 
bp_interception(struct kvm_vcpu * vcpu)2128 static int bp_interception(struct kvm_vcpu *vcpu)
2129 {
2130 	struct vcpu_svm *svm = to_svm(vcpu);
2131 	struct kvm_run *kvm_run = vcpu->run;
2132 
2133 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2134 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2135 	kvm_run->debug.arch.exception = BP_VECTOR;
2136 	return 0;
2137 }
2138 
ud_interception(struct kvm_vcpu * vcpu)2139 static int ud_interception(struct kvm_vcpu *vcpu)
2140 {
2141 	return handle_ud(vcpu);
2142 }
2143 
ac_interception(struct kvm_vcpu * vcpu)2144 static int ac_interception(struct kvm_vcpu *vcpu)
2145 {
2146 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2147 	return 1;
2148 }
2149 
is_erratum_383(void)2150 static bool is_erratum_383(void)
2151 {
2152 	int err, i;
2153 	u64 value;
2154 
2155 	if (!erratum_383_found)
2156 		return false;
2157 
2158 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2159 	if (err)
2160 		return false;
2161 
2162 	/* Bit 62 may or may not be set for this mce */
2163 	value &= ~(1ULL << 62);
2164 
2165 	if (value != 0xb600000000010015ULL)
2166 		return false;
2167 
2168 	/* Clear MCi_STATUS registers */
2169 	for (i = 0; i < 6; ++i)
2170 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2171 
2172 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2173 	if (!err) {
2174 		u32 low, high;
2175 
2176 		value &= ~(1ULL << 2);
2177 		low    = lower_32_bits(value);
2178 		high   = upper_32_bits(value);
2179 
2180 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2181 	}
2182 
2183 	/* Flush tlb to evict multi-match entries */
2184 	__flush_tlb_all();
2185 
2186 	return true;
2187 }
2188 
svm_handle_mce(struct kvm_vcpu * vcpu)2189 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2190 {
2191 	if (is_erratum_383()) {
2192 		/*
2193 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2194 		 * guest.
2195 		 */
2196 		pr_err("Guest triggered AMD Erratum 383\n");
2197 
2198 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2199 
2200 		return;
2201 	}
2202 
2203 	/*
2204 	 * On an #MC intercept the MCE handler is not called automatically in
2205 	 * the host. So do it by hand here.
2206 	 */
2207 	kvm_machine_check();
2208 }
2209 
mc_interception(struct kvm_vcpu * vcpu)2210 static int mc_interception(struct kvm_vcpu *vcpu)
2211 {
2212 	return 1;
2213 }
2214 
shutdown_interception(struct kvm_vcpu * vcpu)2215 static int shutdown_interception(struct kvm_vcpu *vcpu)
2216 {
2217 	struct kvm_run *kvm_run = vcpu->run;
2218 	struct vcpu_svm *svm = to_svm(vcpu);
2219 
2220 
2221 	/*
2222 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2223 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2224 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2225 	 * userspace.  At a platform view, INIT is acceptable behavior as
2226 	 * there exist bare metal platforms that automatically INIT the CPU
2227 	 * in response to shutdown.
2228 	 *
2229 	 * The VM save area for SEV-ES guests has already been encrypted so it
2230 	 * cannot be reinitialized, i.e. synthesizing INIT is futile.
2231 	 */
2232 	if (!sev_es_guest(vcpu->kvm)) {
2233 		clear_page(svm->vmcb);
2234 		kvm_vcpu_reset(vcpu, true);
2235 	}
2236 
2237 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2238 	return 0;
2239 }
2240 
io_interception(struct kvm_vcpu * vcpu)2241 static int io_interception(struct kvm_vcpu *vcpu)
2242 {
2243 	struct vcpu_svm *svm = to_svm(vcpu);
2244 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2245 	int size, in, string;
2246 	unsigned port;
2247 
2248 	++vcpu->stat.io_exits;
2249 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2250 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2251 	port = io_info >> 16;
2252 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2253 
2254 	if (string) {
2255 		if (sev_es_guest(vcpu->kvm))
2256 			return sev_es_string_io(svm, size, port, in);
2257 		else
2258 			return kvm_emulate_instruction(vcpu, 0);
2259 	}
2260 
2261 	svm->next_rip = svm->vmcb->control.exit_info_2;
2262 
2263 	return kvm_fast_pio(vcpu, size, port, in);
2264 }
2265 
nmi_interception(struct kvm_vcpu * vcpu)2266 static int nmi_interception(struct kvm_vcpu *vcpu)
2267 {
2268 	return 1;
2269 }
2270 
smi_interception(struct kvm_vcpu * vcpu)2271 static int smi_interception(struct kvm_vcpu *vcpu)
2272 {
2273 	return 1;
2274 }
2275 
intr_interception(struct kvm_vcpu * vcpu)2276 static int intr_interception(struct kvm_vcpu *vcpu)
2277 {
2278 	++vcpu->stat.irq_exits;
2279 	return 1;
2280 }
2281 
vmload_vmsave_interception(struct kvm_vcpu * vcpu,bool vmload)2282 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2283 {
2284 	struct vcpu_svm *svm = to_svm(vcpu);
2285 	struct vmcb *vmcb12;
2286 	struct kvm_host_map map;
2287 	int ret;
2288 
2289 	if (nested_svm_check_permissions(vcpu))
2290 		return 1;
2291 
2292 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2293 	if (ret) {
2294 		if (ret == -EINVAL)
2295 			kvm_inject_gp(vcpu, 0);
2296 		return 1;
2297 	}
2298 
2299 	vmcb12 = map.hva;
2300 
2301 	ret = kvm_skip_emulated_instruction(vcpu);
2302 
2303 	if (vmload) {
2304 		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2305 		svm->sysenter_eip_hi = 0;
2306 		svm->sysenter_esp_hi = 0;
2307 	} else {
2308 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2309 	}
2310 
2311 	kvm_vcpu_unmap(vcpu, &map);
2312 
2313 	return ret;
2314 }
2315 
vmload_interception(struct kvm_vcpu * vcpu)2316 static int vmload_interception(struct kvm_vcpu *vcpu)
2317 {
2318 	return vmload_vmsave_interception(vcpu, true);
2319 }
2320 
vmsave_interception(struct kvm_vcpu * vcpu)2321 static int vmsave_interception(struct kvm_vcpu *vcpu)
2322 {
2323 	return vmload_vmsave_interception(vcpu, false);
2324 }
2325 
vmrun_interception(struct kvm_vcpu * vcpu)2326 static int vmrun_interception(struct kvm_vcpu *vcpu)
2327 {
2328 	if (nested_svm_check_permissions(vcpu))
2329 		return 1;
2330 
2331 	return nested_svm_vmrun(vcpu);
2332 }
2333 
2334 enum {
2335 	NONE_SVM_INSTR,
2336 	SVM_INSTR_VMRUN,
2337 	SVM_INSTR_VMLOAD,
2338 	SVM_INSTR_VMSAVE,
2339 };
2340 
2341 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
svm_instr_opcode(struct kvm_vcpu * vcpu)2342 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2343 {
2344 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2345 
2346 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2347 		return NONE_SVM_INSTR;
2348 
2349 	switch (ctxt->modrm) {
2350 	case 0xd8: /* VMRUN */
2351 		return SVM_INSTR_VMRUN;
2352 	case 0xda: /* VMLOAD */
2353 		return SVM_INSTR_VMLOAD;
2354 	case 0xdb: /* VMSAVE */
2355 		return SVM_INSTR_VMSAVE;
2356 	default:
2357 		break;
2358 	}
2359 
2360 	return NONE_SVM_INSTR;
2361 }
2362 
emulate_svm_instr(struct kvm_vcpu * vcpu,int opcode)2363 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2364 {
2365 	const int guest_mode_exit_codes[] = {
2366 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2367 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2368 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2369 	};
2370 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2371 		[SVM_INSTR_VMRUN] = vmrun_interception,
2372 		[SVM_INSTR_VMLOAD] = vmload_interception,
2373 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2374 	};
2375 	struct vcpu_svm *svm = to_svm(vcpu);
2376 	int ret;
2377 
2378 	if (is_guest_mode(vcpu)) {
2379 		/* Returns '1' or -errno on failure, '0' on success. */
2380 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2381 		if (ret)
2382 			return ret;
2383 		return 1;
2384 	}
2385 	return svm_instr_handlers[opcode](vcpu);
2386 }
2387 
2388 /*
2389  * #GP handling code. Note that #GP can be triggered under the following two
2390  * cases:
2391  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2392  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2393  *      regions (e.g. SMM memory on host).
2394  *   2) VMware backdoor
2395  */
gp_interception(struct kvm_vcpu * vcpu)2396 static int gp_interception(struct kvm_vcpu *vcpu)
2397 {
2398 	struct vcpu_svm *svm = to_svm(vcpu);
2399 	u32 error_code = svm->vmcb->control.exit_info_1;
2400 	int opcode;
2401 
2402 	/* Both #GP cases have zero error_code */
2403 	if (error_code)
2404 		goto reinject;
2405 
2406 	/* Decode the instruction for usage later */
2407 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2408 		goto reinject;
2409 
2410 	opcode = svm_instr_opcode(vcpu);
2411 
2412 	if (opcode == NONE_SVM_INSTR) {
2413 		if (!enable_vmware_backdoor)
2414 			goto reinject;
2415 
2416 		/*
2417 		 * VMware backdoor emulation on #GP interception only handles
2418 		 * IN{S}, OUT{S}, and RDPMC.
2419 		 */
2420 		if (!is_guest_mode(vcpu))
2421 			return kvm_emulate_instruction(vcpu,
2422 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2423 	} else {
2424 		/* All SVM instructions expect page aligned RAX */
2425 		if (svm->vmcb->save.rax & ~PAGE_MASK)
2426 			goto reinject;
2427 
2428 		return emulate_svm_instr(vcpu, opcode);
2429 	}
2430 
2431 reinject:
2432 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2433 	return 1;
2434 }
2435 
svm_set_gif(struct vcpu_svm * svm,bool value)2436 void svm_set_gif(struct vcpu_svm *svm, bool value)
2437 {
2438 	if (value) {
2439 		/*
2440 		 * If VGIF is enabled, the STGI intercept is only added to
2441 		 * detect the opening of the SMI/NMI window; remove it now.
2442 		 * Likewise, clear the VINTR intercept, we will set it
2443 		 * again while processing KVM_REQ_EVENT if needed.
2444 		 */
2445 		if (vgif)
2446 			svm_clr_intercept(svm, INTERCEPT_STGI);
2447 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2448 			svm_clear_vintr(svm);
2449 
2450 		enable_gif(svm);
2451 		if (svm->vcpu.arch.smi_pending ||
2452 		    svm->vcpu.arch.nmi_pending ||
2453 		    kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2454 		    kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2455 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2456 	} else {
2457 		disable_gif(svm);
2458 
2459 		/*
2460 		 * After a CLGI no interrupts should come.  But if vGIF is
2461 		 * in use, we still rely on the VINTR intercept (rather than
2462 		 * STGI) to detect an open interrupt window.
2463 		*/
2464 		if (!vgif)
2465 			svm_clear_vintr(svm);
2466 	}
2467 }
2468 
stgi_interception(struct kvm_vcpu * vcpu)2469 static int stgi_interception(struct kvm_vcpu *vcpu)
2470 {
2471 	int ret;
2472 
2473 	if (nested_svm_check_permissions(vcpu))
2474 		return 1;
2475 
2476 	ret = kvm_skip_emulated_instruction(vcpu);
2477 	svm_set_gif(to_svm(vcpu), true);
2478 	return ret;
2479 }
2480 
clgi_interception(struct kvm_vcpu * vcpu)2481 static int clgi_interception(struct kvm_vcpu *vcpu)
2482 {
2483 	int ret;
2484 
2485 	if (nested_svm_check_permissions(vcpu))
2486 		return 1;
2487 
2488 	ret = kvm_skip_emulated_instruction(vcpu);
2489 	svm_set_gif(to_svm(vcpu), false);
2490 	return ret;
2491 }
2492 
invlpga_interception(struct kvm_vcpu * vcpu)2493 static int invlpga_interception(struct kvm_vcpu *vcpu)
2494 {
2495 	gva_t gva = kvm_rax_read(vcpu);
2496 	u32 asid = kvm_rcx_read(vcpu);
2497 
2498 	/* FIXME: Handle an address size prefix. */
2499 	if (!is_long_mode(vcpu))
2500 		gva = (u32)gva;
2501 
2502 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2503 
2504 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2505 	kvm_mmu_invlpg(vcpu, gva);
2506 
2507 	return kvm_skip_emulated_instruction(vcpu);
2508 }
2509 
skinit_interception(struct kvm_vcpu * vcpu)2510 static int skinit_interception(struct kvm_vcpu *vcpu)
2511 {
2512 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2513 
2514 	kvm_queue_exception(vcpu, UD_VECTOR);
2515 	return 1;
2516 }
2517 
task_switch_interception(struct kvm_vcpu * vcpu)2518 static int task_switch_interception(struct kvm_vcpu *vcpu)
2519 {
2520 	struct vcpu_svm *svm = to_svm(vcpu);
2521 	u16 tss_selector;
2522 	int reason;
2523 	int int_type = svm->vmcb->control.exit_int_info &
2524 		SVM_EXITINTINFO_TYPE_MASK;
2525 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2526 	uint32_t type =
2527 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2528 	uint32_t idt_v =
2529 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2530 	bool has_error_code = false;
2531 	u32 error_code = 0;
2532 
2533 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2534 
2535 	if (svm->vmcb->control.exit_info_2 &
2536 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2537 		reason = TASK_SWITCH_IRET;
2538 	else if (svm->vmcb->control.exit_info_2 &
2539 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2540 		reason = TASK_SWITCH_JMP;
2541 	else if (idt_v)
2542 		reason = TASK_SWITCH_GATE;
2543 	else
2544 		reason = TASK_SWITCH_CALL;
2545 
2546 	if (reason == TASK_SWITCH_GATE) {
2547 		switch (type) {
2548 		case SVM_EXITINTINFO_TYPE_NMI:
2549 			vcpu->arch.nmi_injected = false;
2550 			break;
2551 		case SVM_EXITINTINFO_TYPE_EXEPT:
2552 			if (svm->vmcb->control.exit_info_2 &
2553 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2554 				has_error_code = true;
2555 				error_code =
2556 					(u32)svm->vmcb->control.exit_info_2;
2557 			}
2558 			kvm_clear_exception_queue(vcpu);
2559 			break;
2560 		case SVM_EXITINTINFO_TYPE_INTR:
2561 		case SVM_EXITINTINFO_TYPE_SOFT:
2562 			kvm_clear_interrupt_queue(vcpu);
2563 			break;
2564 		default:
2565 			break;
2566 		}
2567 	}
2568 
2569 	if (reason != TASK_SWITCH_GATE ||
2570 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2571 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2572 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2573 		if (!svm_skip_emulated_instruction(vcpu))
2574 			return 0;
2575 	}
2576 
2577 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2578 		int_vec = -1;
2579 
2580 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2581 			       has_error_code, error_code);
2582 }
2583 
svm_clr_iret_intercept(struct vcpu_svm * svm)2584 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2585 {
2586 	if (!sev_es_guest(svm->vcpu.kvm))
2587 		svm_clr_intercept(svm, INTERCEPT_IRET);
2588 }
2589 
svm_set_iret_intercept(struct vcpu_svm * svm)2590 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2591 {
2592 	if (!sev_es_guest(svm->vcpu.kvm))
2593 		svm_set_intercept(svm, INTERCEPT_IRET);
2594 }
2595 
iret_interception(struct kvm_vcpu * vcpu)2596 static int iret_interception(struct kvm_vcpu *vcpu)
2597 {
2598 	struct vcpu_svm *svm = to_svm(vcpu);
2599 
2600 	WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2601 
2602 	++vcpu->stat.nmi_window_exits;
2603 	svm->awaiting_iret_completion = true;
2604 
2605 	svm_clr_iret_intercept(svm);
2606 	svm->nmi_iret_rip = kvm_rip_read(vcpu);
2607 
2608 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2609 	return 1;
2610 }
2611 
invlpg_interception(struct kvm_vcpu * vcpu)2612 static int invlpg_interception(struct kvm_vcpu *vcpu)
2613 {
2614 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2615 		return kvm_emulate_instruction(vcpu, 0);
2616 
2617 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2618 	return kvm_skip_emulated_instruction(vcpu);
2619 }
2620 
emulate_on_interception(struct kvm_vcpu * vcpu)2621 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2622 {
2623 	return kvm_emulate_instruction(vcpu, 0);
2624 }
2625 
rsm_interception(struct kvm_vcpu * vcpu)2626 static int rsm_interception(struct kvm_vcpu *vcpu)
2627 {
2628 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2629 }
2630 
check_selective_cr0_intercepted(struct kvm_vcpu * vcpu,unsigned long val)2631 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2632 					    unsigned long val)
2633 {
2634 	struct vcpu_svm *svm = to_svm(vcpu);
2635 	unsigned long cr0 = vcpu->arch.cr0;
2636 	bool ret = false;
2637 
2638 	if (!is_guest_mode(vcpu) ||
2639 	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2640 		return false;
2641 
2642 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2643 	val &= ~SVM_CR0_SELECTIVE_MASK;
2644 
2645 	if (cr0 ^ val) {
2646 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2647 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2648 	}
2649 
2650 	return ret;
2651 }
2652 
2653 #define CR_VALID (1ULL << 63)
2654 
cr_interception(struct kvm_vcpu * vcpu)2655 static int cr_interception(struct kvm_vcpu *vcpu)
2656 {
2657 	struct vcpu_svm *svm = to_svm(vcpu);
2658 	int reg, cr;
2659 	unsigned long val;
2660 	int err;
2661 
2662 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2663 		return emulate_on_interception(vcpu);
2664 
2665 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2666 		return emulate_on_interception(vcpu);
2667 
2668 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2669 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2670 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2671 	else
2672 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2673 
2674 	err = 0;
2675 	if (cr >= 16) { /* mov to cr */
2676 		cr -= 16;
2677 		val = kvm_register_read(vcpu, reg);
2678 		trace_kvm_cr_write(cr, val);
2679 		switch (cr) {
2680 		case 0:
2681 			if (!check_selective_cr0_intercepted(vcpu, val))
2682 				err = kvm_set_cr0(vcpu, val);
2683 			else
2684 				return 1;
2685 
2686 			break;
2687 		case 3:
2688 			err = kvm_set_cr3(vcpu, val);
2689 			break;
2690 		case 4:
2691 			err = kvm_set_cr4(vcpu, val);
2692 			break;
2693 		case 8:
2694 			err = kvm_set_cr8(vcpu, val);
2695 			break;
2696 		default:
2697 			WARN(1, "unhandled write to CR%d", cr);
2698 			kvm_queue_exception(vcpu, UD_VECTOR);
2699 			return 1;
2700 		}
2701 	} else { /* mov from cr */
2702 		switch (cr) {
2703 		case 0:
2704 			val = kvm_read_cr0(vcpu);
2705 			break;
2706 		case 2:
2707 			val = vcpu->arch.cr2;
2708 			break;
2709 		case 3:
2710 			val = kvm_read_cr3(vcpu);
2711 			break;
2712 		case 4:
2713 			val = kvm_read_cr4(vcpu);
2714 			break;
2715 		case 8:
2716 			val = kvm_get_cr8(vcpu);
2717 			break;
2718 		default:
2719 			WARN(1, "unhandled read from CR%d", cr);
2720 			kvm_queue_exception(vcpu, UD_VECTOR);
2721 			return 1;
2722 		}
2723 		kvm_register_write(vcpu, reg, val);
2724 		trace_kvm_cr_read(cr, val);
2725 	}
2726 	return kvm_complete_insn_gp(vcpu, err);
2727 }
2728 
cr_trap(struct kvm_vcpu * vcpu)2729 static int cr_trap(struct kvm_vcpu *vcpu)
2730 {
2731 	struct vcpu_svm *svm = to_svm(vcpu);
2732 	unsigned long old_value, new_value;
2733 	unsigned int cr;
2734 	int ret = 0;
2735 
2736 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2737 
2738 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2739 	switch (cr) {
2740 	case 0:
2741 		old_value = kvm_read_cr0(vcpu);
2742 		svm_set_cr0(vcpu, new_value);
2743 
2744 		kvm_post_set_cr0(vcpu, old_value, new_value);
2745 		break;
2746 	case 4:
2747 		old_value = kvm_read_cr4(vcpu);
2748 		svm_set_cr4(vcpu, new_value);
2749 
2750 		kvm_post_set_cr4(vcpu, old_value, new_value);
2751 		break;
2752 	case 8:
2753 		ret = kvm_set_cr8(vcpu, new_value);
2754 		break;
2755 	default:
2756 		WARN(1, "unhandled CR%d write trap", cr);
2757 		kvm_queue_exception(vcpu, UD_VECTOR);
2758 		return 1;
2759 	}
2760 
2761 	return kvm_complete_insn_gp(vcpu, ret);
2762 }
2763 
dr_interception(struct kvm_vcpu * vcpu)2764 static int dr_interception(struct kvm_vcpu *vcpu)
2765 {
2766 	struct vcpu_svm *svm = to_svm(vcpu);
2767 	int reg, dr;
2768 	int err = 0;
2769 
2770 	/*
2771 	 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2772 	 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2773 	 */
2774 	if (sev_es_guest(vcpu->kvm))
2775 		return 1;
2776 
2777 	if (vcpu->guest_debug == 0) {
2778 		/*
2779 		 * No more DR vmexits; force a reload of the debug registers
2780 		 * and reenter on this instruction.  The next vmexit will
2781 		 * retrieve the full state of the debug registers.
2782 		 */
2783 		clr_dr_intercepts(svm);
2784 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2785 		return 1;
2786 	}
2787 
2788 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2789 		return emulate_on_interception(vcpu);
2790 
2791 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2792 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2793 	if (dr >= 16) { /* mov to DRn  */
2794 		dr -= 16;
2795 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
2796 	} else {
2797 		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
2798 	}
2799 
2800 	return kvm_complete_insn_gp(vcpu, err);
2801 }
2802 
cr8_write_interception(struct kvm_vcpu * vcpu)2803 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2804 {
2805 	int r;
2806 
2807 	u8 cr8_prev = kvm_get_cr8(vcpu);
2808 	/* instruction emulation calls kvm_set_cr8() */
2809 	r = cr_interception(vcpu);
2810 	if (lapic_in_kernel(vcpu))
2811 		return r;
2812 	if (cr8_prev <= kvm_get_cr8(vcpu))
2813 		return r;
2814 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2815 	return 0;
2816 }
2817 
efer_trap(struct kvm_vcpu * vcpu)2818 static int efer_trap(struct kvm_vcpu *vcpu)
2819 {
2820 	struct msr_data msr_info;
2821 	int ret;
2822 
2823 	/*
2824 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2825 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2826 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2827 	 * the guest doesn't have X86_FEATURE_SVM.
2828 	 */
2829 	msr_info.host_initiated = false;
2830 	msr_info.index = MSR_EFER;
2831 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2832 	ret = kvm_set_msr_common(vcpu, &msr_info);
2833 
2834 	return kvm_complete_insn_gp(vcpu, ret);
2835 }
2836 
svm_get_feature_msr(u32 msr,u64 * data)2837 static int svm_get_feature_msr(u32 msr, u64 *data)
2838 {
2839 	*data = 0;
2840 
2841 	switch (msr) {
2842 	case MSR_AMD64_DE_CFG:
2843 		if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2844 			*data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2845 		break;
2846 	default:
2847 		return KVM_MSR_RET_UNSUPPORTED;
2848 	}
2849 
2850 	return 0;
2851 }
2852 
2853 static bool
sev_es_prevent_msr_access(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2854 sev_es_prevent_msr_access(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2855 {
2856 	return sev_es_guest(vcpu->kvm) &&
2857 	       vcpu->arch.guest_state_protected &&
2858 	       svm_msrpm_offset(msr_info->index) != MSR_INVALID &&
2859 	       !msr_write_intercepted(vcpu, msr_info->index);
2860 }
2861 
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2862 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2863 {
2864 	struct vcpu_svm *svm = to_svm(vcpu);
2865 
2866 	if (sev_es_prevent_msr_access(vcpu, msr_info)) {
2867 		msr_info->data = 0;
2868 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2869 	}
2870 
2871 	switch (msr_info->index) {
2872 	case MSR_AMD64_TSC_RATIO:
2873 		if (!msr_info->host_initiated &&
2874 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR))
2875 			return 1;
2876 		msr_info->data = svm->tsc_ratio_msr;
2877 		break;
2878 	case MSR_STAR:
2879 		msr_info->data = svm->vmcb01.ptr->save.star;
2880 		break;
2881 #ifdef CONFIG_X86_64
2882 	case MSR_LSTAR:
2883 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2884 		break;
2885 	case MSR_CSTAR:
2886 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2887 		break;
2888 	case MSR_GS_BASE:
2889 		msr_info->data = svm->vmcb01.ptr->save.gs.base;
2890 		break;
2891 	case MSR_FS_BASE:
2892 		msr_info->data = svm->vmcb01.ptr->save.fs.base;
2893 		break;
2894 	case MSR_KERNEL_GS_BASE:
2895 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2896 		break;
2897 	case MSR_SYSCALL_MASK:
2898 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2899 		break;
2900 #endif
2901 	case MSR_IA32_SYSENTER_CS:
2902 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2903 		break;
2904 	case MSR_IA32_SYSENTER_EIP:
2905 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2906 		if (guest_cpuid_is_intel_compatible(vcpu))
2907 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2908 		break;
2909 	case MSR_IA32_SYSENTER_ESP:
2910 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2911 		if (guest_cpuid_is_intel_compatible(vcpu))
2912 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2913 		break;
2914 	case MSR_TSC_AUX:
2915 		msr_info->data = svm->tsc_aux;
2916 		break;
2917 	case MSR_IA32_DEBUGCTLMSR:
2918 		msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
2919 		break;
2920 	case MSR_IA32_LASTBRANCHFROMIP:
2921 		msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
2922 		break;
2923 	case MSR_IA32_LASTBRANCHTOIP:
2924 		msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
2925 		break;
2926 	case MSR_IA32_LASTINTFROMIP:
2927 		msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
2928 		break;
2929 	case MSR_IA32_LASTINTTOIP:
2930 		msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
2931 		break;
2932 	case MSR_VM_HSAVE_PA:
2933 		msr_info->data = svm->nested.hsave_msr;
2934 		break;
2935 	case MSR_VM_CR:
2936 		msr_info->data = svm->nested.vm_cr_msr;
2937 		break;
2938 	case MSR_IA32_SPEC_CTRL:
2939 		if (!msr_info->host_initiated &&
2940 		    !guest_has_spec_ctrl_msr(vcpu))
2941 			return 1;
2942 
2943 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2944 			msr_info->data = svm->vmcb->save.spec_ctrl;
2945 		else
2946 			msr_info->data = svm->spec_ctrl;
2947 		break;
2948 	case MSR_AMD64_VIRT_SPEC_CTRL:
2949 		if (!msr_info->host_initiated &&
2950 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2951 			return 1;
2952 
2953 		msr_info->data = svm->virt_spec_ctrl;
2954 		break;
2955 	case MSR_F15H_IC_CFG: {
2956 
2957 		int family, model;
2958 
2959 		family = guest_cpuid_family(vcpu);
2960 		model  = guest_cpuid_model(vcpu);
2961 
2962 		if (family < 0 || model < 0)
2963 			return kvm_get_msr_common(vcpu, msr_info);
2964 
2965 		msr_info->data = 0;
2966 
2967 		if (family == 0x15 &&
2968 		    (model >= 0x2 && model < 0x20))
2969 			msr_info->data = 0x1E;
2970 		}
2971 		break;
2972 	case MSR_AMD64_DE_CFG:
2973 		msr_info->data = svm->msr_decfg;
2974 		break;
2975 	default:
2976 		return kvm_get_msr_common(vcpu, msr_info);
2977 	}
2978 	return 0;
2979 }
2980 
svm_complete_emulated_msr(struct kvm_vcpu * vcpu,int err)2981 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2982 {
2983 	struct vcpu_svm *svm = to_svm(vcpu);
2984 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2985 		return kvm_complete_insn_gp(vcpu, err);
2986 
2987 	svm_vmgexit_inject_exception(svm, X86_TRAP_GP);
2988 	return 1;
2989 }
2990 
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)2991 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2992 {
2993 	struct vcpu_svm *svm = to_svm(vcpu);
2994 	int svm_dis, chg_mask;
2995 
2996 	if (data & ~SVM_VM_CR_VALID_MASK)
2997 		return 1;
2998 
2999 	chg_mask = SVM_VM_CR_VALID_MASK;
3000 
3001 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3002 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3003 
3004 	svm->nested.vm_cr_msr &= ~chg_mask;
3005 	svm->nested.vm_cr_msr |= (data & chg_mask);
3006 
3007 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3008 
3009 	/* check for svm_disable while efer.svme is set */
3010 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3011 		return 1;
3012 
3013 	return 0;
3014 }
3015 
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)3016 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3017 {
3018 	struct vcpu_svm *svm = to_svm(vcpu);
3019 	int ret = 0;
3020 
3021 	u32 ecx = msr->index;
3022 	u64 data = msr->data;
3023 
3024 	if (sev_es_prevent_msr_access(vcpu, msr))
3025 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
3026 
3027 	switch (ecx) {
3028 	case MSR_AMD64_TSC_RATIO:
3029 
3030 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) {
3031 
3032 			if (!msr->host_initiated)
3033 				return 1;
3034 			/*
3035 			 * In case TSC scaling is not enabled, always
3036 			 * leave this MSR at the default value.
3037 			 *
3038 			 * Due to bug in qemu 6.2.0, it would try to set
3039 			 * this msr to 0 if tsc scaling is not enabled.
3040 			 * Ignore this value as well.
3041 			 */
3042 			if (data != 0 && data != svm->tsc_ratio_msr)
3043 				return 1;
3044 			break;
3045 		}
3046 
3047 		if (data & SVM_TSC_RATIO_RSVD)
3048 			return 1;
3049 
3050 		svm->tsc_ratio_msr = data;
3051 
3052 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) &&
3053 		    is_guest_mode(vcpu))
3054 			nested_svm_update_tsc_ratio_msr(vcpu);
3055 
3056 		break;
3057 	case MSR_IA32_CR_PAT:
3058 		ret = kvm_set_msr_common(vcpu, msr);
3059 		if (ret)
3060 			break;
3061 
3062 		svm->vmcb01.ptr->save.g_pat = data;
3063 		if (is_guest_mode(vcpu))
3064 			nested_vmcb02_compute_g_pat(svm);
3065 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3066 		break;
3067 	case MSR_IA32_SPEC_CTRL:
3068 		if (!msr->host_initiated &&
3069 		    !guest_has_spec_ctrl_msr(vcpu))
3070 			return 1;
3071 
3072 		if (kvm_spec_ctrl_test_value(data))
3073 			return 1;
3074 
3075 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3076 			svm->vmcb->save.spec_ctrl = data;
3077 		else
3078 			svm->spec_ctrl = data;
3079 		if (!data)
3080 			break;
3081 
3082 		/*
3083 		 * For non-nested:
3084 		 * When it's written (to non-zero) for the first time, pass
3085 		 * it through.
3086 		 *
3087 		 * For nested:
3088 		 * The handling of the MSR bitmap for L2 guests is done in
3089 		 * nested_svm_vmrun_msrpm.
3090 		 * We update the L1 MSR bit as well since it will end up
3091 		 * touching the MSR anyway now.
3092 		 */
3093 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
3094 		break;
3095 	case MSR_AMD64_VIRT_SPEC_CTRL:
3096 		if (!msr->host_initiated &&
3097 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
3098 			return 1;
3099 
3100 		if (data & ~SPEC_CTRL_SSBD)
3101 			return 1;
3102 
3103 		svm->virt_spec_ctrl = data;
3104 		break;
3105 	case MSR_STAR:
3106 		svm->vmcb01.ptr->save.star = data;
3107 		break;
3108 #ifdef CONFIG_X86_64
3109 	case MSR_LSTAR:
3110 		svm->vmcb01.ptr->save.lstar = data;
3111 		break;
3112 	case MSR_CSTAR:
3113 		svm->vmcb01.ptr->save.cstar = data;
3114 		break;
3115 	case MSR_GS_BASE:
3116 		svm->vmcb01.ptr->save.gs.base = data;
3117 		break;
3118 	case MSR_FS_BASE:
3119 		svm->vmcb01.ptr->save.fs.base = data;
3120 		break;
3121 	case MSR_KERNEL_GS_BASE:
3122 		svm->vmcb01.ptr->save.kernel_gs_base = data;
3123 		break;
3124 	case MSR_SYSCALL_MASK:
3125 		svm->vmcb01.ptr->save.sfmask = data;
3126 		break;
3127 #endif
3128 	case MSR_IA32_SYSENTER_CS:
3129 		svm->vmcb01.ptr->save.sysenter_cs = data;
3130 		break;
3131 	case MSR_IA32_SYSENTER_EIP:
3132 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
3133 		/*
3134 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3135 		 * when we spoof an Intel vendor ID (for cross vendor migration).
3136 		 * In this case we use this intercept to track the high
3137 		 * 32 bit part of these msrs to support Intel's
3138 		 * implementation of SYSENTER/SYSEXIT.
3139 		 */
3140 		svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
3141 		break;
3142 	case MSR_IA32_SYSENTER_ESP:
3143 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3144 		svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
3145 		break;
3146 	case MSR_TSC_AUX:
3147 		/*
3148 		 * TSC_AUX is always virtualized for SEV-ES guests when the
3149 		 * feature is available. The user return MSR support is not
3150 		 * required in this case because TSC_AUX is restored on #VMEXIT
3151 		 * from the host save area (which has been initialized in
3152 		 * svm_enable_virtualization_cpu()).
3153 		 */
3154 		if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
3155 			break;
3156 
3157 		/*
3158 		 * TSC_AUX is usually changed only during boot and never read
3159 		 * directly.  Intercept TSC_AUX instead of exposing it to the
3160 		 * guest via direct_access_msrs, and switch it via user return.
3161 		 */
3162 		preempt_disable();
3163 		ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3164 		preempt_enable();
3165 		if (ret)
3166 			break;
3167 
3168 		svm->tsc_aux = data;
3169 		break;
3170 	case MSR_IA32_DEBUGCTLMSR:
3171 		if (!lbrv) {
3172 			kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3173 			break;
3174 		}
3175 
3176 		/*
3177 		 * AMD changed the architectural behavior of bits 5:2.  On CPUs
3178 		 * without BusLockTrap, bits 5:2 control "external pins", but
3179 		 * on CPUs that support BusLockDetect, bit 2 enables BusLockTrap
3180 		 * and bits 5:3 are reserved-to-zero.  Sadly, old KVM allowed
3181 		 * the guest to set bits 5:2 despite not actually virtualizing
3182 		 * Performance-Monitoring/Breakpoint external pins.  Drop bits
3183 		 * 5:2 for backwards compatibility.
3184 		 */
3185 		data &= ~GENMASK(5, 2);
3186 
3187 		/*
3188 		 * Suppress BTF as KVM doesn't virtualize BTF, but there's no
3189 		 * way to communicate lack of support to the guest.
3190 		 */
3191 		if (data & DEBUGCTLMSR_BTF) {
3192 			kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
3193 			data &= ~DEBUGCTLMSR_BTF;
3194 		}
3195 
3196 		if (data & DEBUGCTL_RESERVED_BITS)
3197 			return 1;
3198 
3199 		svm_get_lbr_vmcb(svm)->save.dbgctl = data;
3200 		svm_update_lbrv(vcpu);
3201 		break;
3202 	case MSR_VM_HSAVE_PA:
3203 		/*
3204 		 * Old kernels did not validate the value written to
3205 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3206 		 * value to allow live migrating buggy or malicious guests
3207 		 * originating from those kernels.
3208 		 */
3209 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
3210 			return 1;
3211 
3212 		svm->nested.hsave_msr = data & PAGE_MASK;
3213 		break;
3214 	case MSR_VM_CR:
3215 		return svm_set_vm_cr(vcpu, data);
3216 	case MSR_VM_IGNNE:
3217 		kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3218 		break;
3219 	case MSR_AMD64_DE_CFG: {
3220 		u64 supported_de_cfg;
3221 
3222 		if (svm_get_feature_msr(ecx, &supported_de_cfg))
3223 			return 1;
3224 
3225 		if (data & ~supported_de_cfg)
3226 			return 1;
3227 
3228 		svm->msr_decfg = data;
3229 		break;
3230 	}
3231 	default:
3232 		return kvm_set_msr_common(vcpu, msr);
3233 	}
3234 	return ret;
3235 }
3236 
msr_interception(struct kvm_vcpu * vcpu)3237 static int msr_interception(struct kvm_vcpu *vcpu)
3238 {
3239 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
3240 		return kvm_emulate_wrmsr(vcpu);
3241 	else
3242 		return kvm_emulate_rdmsr(vcpu);
3243 }
3244 
interrupt_window_interception(struct kvm_vcpu * vcpu)3245 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3246 {
3247 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3248 	svm_clear_vintr(to_svm(vcpu));
3249 
3250 	/*
3251 	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3252 	 * In this case AVIC was temporarily disabled for
3253 	 * requesting the IRQ window and we have to re-enable it.
3254 	 *
3255 	 * If running nested, still remove the VM wide AVIC inhibit to
3256 	 * support case in which the interrupt window was requested when the
3257 	 * vCPU was not running nested.
3258 
3259 	 * All vCPUs which run still run nested, will remain to have their
3260 	 * AVIC still inhibited due to per-cpu AVIC inhibition.
3261 	 */
3262 	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3263 
3264 	++vcpu->stat.irq_window_exits;
3265 	return 1;
3266 }
3267 
pause_interception(struct kvm_vcpu * vcpu)3268 static int pause_interception(struct kvm_vcpu *vcpu)
3269 {
3270 	bool in_kernel;
3271 	/*
3272 	 * CPL is not made available for an SEV-ES guest, therefore
3273 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3274 	 * set in_kernel to false as well.
3275 	 */
3276 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3277 
3278 	grow_ple_window(vcpu);
3279 
3280 	kvm_vcpu_on_spin(vcpu, in_kernel);
3281 	return kvm_skip_emulated_instruction(vcpu);
3282 }
3283 
invpcid_interception(struct kvm_vcpu * vcpu)3284 static int invpcid_interception(struct kvm_vcpu *vcpu)
3285 {
3286 	struct vcpu_svm *svm = to_svm(vcpu);
3287 	unsigned long type;
3288 	gva_t gva;
3289 
3290 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
3291 		kvm_queue_exception(vcpu, UD_VECTOR);
3292 		return 1;
3293 	}
3294 
3295 	/*
3296 	 * For an INVPCID intercept:
3297 	 * EXITINFO1 provides the linear address of the memory operand.
3298 	 * EXITINFO2 provides the contents of the register operand.
3299 	 */
3300 	type = svm->vmcb->control.exit_info_2;
3301 	gva = svm->vmcb->control.exit_info_1;
3302 
3303 	/*
3304 	 * FIXME: Perform segment checks for 32-bit mode, and inject #SS if the
3305 	 *        stack segment is used.  The intercept takes priority over all
3306 	 *        #GP checks except CPL>0, but somehow still generates a linear
3307 	 *        address?  The APM is sorely lacking.
3308 	 */
3309 	if (is_noncanonical_address(gva, vcpu, 0)) {
3310 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3311 		return 1;
3312 	}
3313 
3314 	return kvm_handle_invpcid(vcpu, type, gva);
3315 }
3316 
3317 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3318 	[SVM_EXIT_READ_CR0]			= cr_interception,
3319 	[SVM_EXIT_READ_CR3]			= cr_interception,
3320 	[SVM_EXIT_READ_CR4]			= cr_interception,
3321 	[SVM_EXIT_READ_CR8]			= cr_interception,
3322 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3323 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3324 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3325 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3326 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3327 	[SVM_EXIT_READ_DR0]			= dr_interception,
3328 	[SVM_EXIT_READ_DR1]			= dr_interception,
3329 	[SVM_EXIT_READ_DR2]			= dr_interception,
3330 	[SVM_EXIT_READ_DR3]			= dr_interception,
3331 	[SVM_EXIT_READ_DR4]			= dr_interception,
3332 	[SVM_EXIT_READ_DR5]			= dr_interception,
3333 	[SVM_EXIT_READ_DR6]			= dr_interception,
3334 	[SVM_EXIT_READ_DR7]			= dr_interception,
3335 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3336 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3337 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3338 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3339 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3340 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3341 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3342 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3343 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3344 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3345 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3346 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3347 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3348 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3349 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3350 	[SVM_EXIT_INTR]				= intr_interception,
3351 	[SVM_EXIT_NMI]				= nmi_interception,
3352 	[SVM_EXIT_SMI]				= smi_interception,
3353 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3354 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3355 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3356 	[SVM_EXIT_IRET]                         = iret_interception,
3357 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3358 	[SVM_EXIT_PAUSE]			= pause_interception,
3359 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3360 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3361 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3362 	[SVM_EXIT_IOIO]				= io_interception,
3363 	[SVM_EXIT_MSR]				= msr_interception,
3364 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3365 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3366 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3367 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3368 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3369 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3370 	[SVM_EXIT_STGI]				= stgi_interception,
3371 	[SVM_EXIT_CLGI]				= clgi_interception,
3372 	[SVM_EXIT_SKINIT]			= skinit_interception,
3373 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3374 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3375 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3376 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3377 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3378 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3379 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3380 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3381 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3382 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3383 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3384 	[SVM_EXIT_IDLE_HLT]			= kvm_emulate_halt,
3385 	[SVM_EXIT_NPF]				= npf_interception,
3386 	[SVM_EXIT_RSM]                          = rsm_interception,
3387 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3388 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3389 #ifdef CONFIG_KVM_AMD_SEV
3390 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3391 #endif
3392 };
3393 
dump_vmcb(struct kvm_vcpu * vcpu)3394 static void dump_vmcb(struct kvm_vcpu *vcpu)
3395 {
3396 	struct vcpu_svm *svm = to_svm(vcpu);
3397 	struct vmcb_control_area *control = &svm->vmcb->control;
3398 	struct vmcb_save_area *save = &svm->vmcb->save;
3399 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3400 
3401 	if (!dump_invalid_vmcb) {
3402 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3403 		return;
3404 	}
3405 
3406 	pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3407 	       svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3408 	pr_err("VMCB Control Area:\n");
3409 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3410 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3411 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3412 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3413 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3414 	pr_err("%-20s%08x %08x\n", "intercepts:",
3415               control->intercepts[INTERCEPT_WORD3],
3416 	       control->intercepts[INTERCEPT_WORD4]);
3417 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3418 	pr_err("%-20s%d\n", "pause filter threshold:",
3419 	       control->pause_filter_thresh);
3420 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3421 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3422 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3423 	pr_err("%-20s%d\n", "asid:", control->asid);
3424 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3425 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3426 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3427 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3428 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3429 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3430 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3431 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3432 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3433 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3434 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3435 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3436 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3437 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3438 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3439 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3440 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3441 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3442 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3443 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3444 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3445 	pr_err("VMCB State Save Area:\n");
3446 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3447 	       "es:",
3448 	       save->es.selector, save->es.attrib,
3449 	       save->es.limit, save->es.base);
3450 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3451 	       "cs:",
3452 	       save->cs.selector, save->cs.attrib,
3453 	       save->cs.limit, save->cs.base);
3454 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3455 	       "ss:",
3456 	       save->ss.selector, save->ss.attrib,
3457 	       save->ss.limit, save->ss.base);
3458 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3459 	       "ds:",
3460 	       save->ds.selector, save->ds.attrib,
3461 	       save->ds.limit, save->ds.base);
3462 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3463 	       "fs:",
3464 	       save01->fs.selector, save01->fs.attrib,
3465 	       save01->fs.limit, save01->fs.base);
3466 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3467 	       "gs:",
3468 	       save01->gs.selector, save01->gs.attrib,
3469 	       save01->gs.limit, save01->gs.base);
3470 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3471 	       "gdtr:",
3472 	       save->gdtr.selector, save->gdtr.attrib,
3473 	       save->gdtr.limit, save->gdtr.base);
3474 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3475 	       "ldtr:",
3476 	       save01->ldtr.selector, save01->ldtr.attrib,
3477 	       save01->ldtr.limit, save01->ldtr.base);
3478 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3479 	       "idtr:",
3480 	       save->idtr.selector, save->idtr.attrib,
3481 	       save->idtr.limit, save->idtr.base);
3482 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3483 	       "tr:",
3484 	       save01->tr.selector, save01->tr.attrib,
3485 	       save01->tr.limit, save01->tr.base);
3486 	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3487 	       save->vmpl, save->cpl, save->efer);
3488 	pr_err("%-15s %016llx %-13s %016llx\n",
3489 	       "cr0:", save->cr0, "cr2:", save->cr2);
3490 	pr_err("%-15s %016llx %-13s %016llx\n",
3491 	       "cr3:", save->cr3, "cr4:", save->cr4);
3492 	pr_err("%-15s %016llx %-13s %016llx\n",
3493 	       "dr6:", save->dr6, "dr7:", save->dr7);
3494 	pr_err("%-15s %016llx %-13s %016llx\n",
3495 	       "rip:", save->rip, "rflags:", save->rflags);
3496 	pr_err("%-15s %016llx %-13s %016llx\n",
3497 	       "rsp:", save->rsp, "rax:", save->rax);
3498 	pr_err("%-15s %016llx %-13s %016llx\n",
3499 	       "star:", save01->star, "lstar:", save01->lstar);
3500 	pr_err("%-15s %016llx %-13s %016llx\n",
3501 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3502 	pr_err("%-15s %016llx %-13s %016llx\n",
3503 	       "kernel_gs_base:", save01->kernel_gs_base,
3504 	       "sysenter_cs:", save01->sysenter_cs);
3505 	pr_err("%-15s %016llx %-13s %016llx\n",
3506 	       "sysenter_esp:", save01->sysenter_esp,
3507 	       "sysenter_eip:", save01->sysenter_eip);
3508 	pr_err("%-15s %016llx %-13s %016llx\n",
3509 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3510 	pr_err("%-15s %016llx %-13s %016llx\n",
3511 	       "br_from:", save->br_from, "br_to:", save->br_to);
3512 	pr_err("%-15s %016llx %-13s %016llx\n",
3513 	       "excp_from:", save->last_excp_from,
3514 	       "excp_to:", save->last_excp_to);
3515 }
3516 
svm_check_exit_valid(u64 exit_code)3517 static bool svm_check_exit_valid(u64 exit_code)
3518 {
3519 	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3520 		svm_exit_handlers[exit_code]);
3521 }
3522 
svm_handle_invalid_exit(struct kvm_vcpu * vcpu,u64 exit_code)3523 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3524 {
3525 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3526 	dump_vmcb(vcpu);
3527 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3528 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3529 	vcpu->run->internal.ndata = 2;
3530 	vcpu->run->internal.data[0] = exit_code;
3531 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3532 	return 0;
3533 }
3534 
svm_invoke_exit_handler(struct kvm_vcpu * vcpu,u64 exit_code)3535 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3536 {
3537 	if (!svm_check_exit_valid(exit_code))
3538 		return svm_handle_invalid_exit(vcpu, exit_code);
3539 
3540 #ifdef CONFIG_MITIGATION_RETPOLINE
3541 	if (exit_code == SVM_EXIT_MSR)
3542 		return msr_interception(vcpu);
3543 	else if (exit_code == SVM_EXIT_VINTR)
3544 		return interrupt_window_interception(vcpu);
3545 	else if (exit_code == SVM_EXIT_INTR)
3546 		return intr_interception(vcpu);
3547 	else if (exit_code == SVM_EXIT_HLT || exit_code == SVM_EXIT_IDLE_HLT)
3548 		return kvm_emulate_halt(vcpu);
3549 	else if (exit_code == SVM_EXIT_NPF)
3550 		return npf_interception(vcpu);
3551 #endif
3552 	return svm_exit_handlers[exit_code](vcpu);
3553 }
3554 
svm_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)3555 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3556 			      u64 *info1, u64 *info2,
3557 			      u32 *intr_info, u32 *error_code)
3558 {
3559 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3560 
3561 	*reason = control->exit_code;
3562 	*info1 = control->exit_info_1;
3563 	*info2 = control->exit_info_2;
3564 	*intr_info = control->exit_int_info;
3565 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3566 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3567 		*error_code = control->exit_int_info_err;
3568 	else
3569 		*error_code = 0;
3570 }
3571 
svm_get_entry_info(struct kvm_vcpu * vcpu,u32 * intr_info,u32 * error_code)3572 static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info,
3573 			       u32 *error_code)
3574 {
3575 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3576 
3577 	*intr_info = control->event_inj;
3578 
3579 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3580 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3581 		*error_code = control->event_inj_err;
3582 	else
3583 		*error_code = 0;
3584 
3585 }
3586 
svm_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)3587 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3588 {
3589 	struct vcpu_svm *svm = to_svm(vcpu);
3590 	struct kvm_run *kvm_run = vcpu->run;
3591 	u32 exit_code = svm->vmcb->control.exit_code;
3592 
3593 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3594 	if (!sev_es_guest(vcpu->kvm)) {
3595 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3596 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3597 		if (npt_enabled)
3598 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3599 	}
3600 
3601 	if (is_guest_mode(vcpu)) {
3602 		int vmexit;
3603 
3604 		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3605 
3606 		vmexit = nested_svm_exit_special(svm);
3607 
3608 		if (vmexit == NESTED_EXIT_CONTINUE)
3609 			vmexit = nested_svm_exit_handled(svm);
3610 
3611 		if (vmexit == NESTED_EXIT_DONE)
3612 			return 1;
3613 	}
3614 
3615 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3616 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3617 		kvm_run->fail_entry.hardware_entry_failure_reason
3618 			= svm->vmcb->control.exit_code;
3619 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3620 		dump_vmcb(vcpu);
3621 		return 0;
3622 	}
3623 
3624 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3625 		return 1;
3626 
3627 	return svm_invoke_exit_handler(vcpu, exit_code);
3628 }
3629 
pre_svm_run(struct kvm_vcpu * vcpu)3630 static int pre_svm_run(struct kvm_vcpu *vcpu)
3631 {
3632 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3633 	struct vcpu_svm *svm = to_svm(vcpu);
3634 
3635 	/*
3636 	 * If the previous vmrun of the vmcb occurred on a different physical
3637 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3638 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3639 	 */
3640 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3641 		svm->current_vmcb->asid_generation = 0;
3642 		vmcb_mark_all_dirty(svm->vmcb);
3643 		svm->current_vmcb->cpu = vcpu->cpu;
3644         }
3645 
3646 	if (sev_guest(vcpu->kvm))
3647 		return pre_sev_run(svm, vcpu->cpu);
3648 
3649 	/* FIXME: handle wraparound of asid_generation */
3650 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3651 		new_asid(svm, sd);
3652 
3653 	return 0;
3654 }
3655 
svm_inject_nmi(struct kvm_vcpu * vcpu)3656 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3657 {
3658 	struct vcpu_svm *svm = to_svm(vcpu);
3659 
3660 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3661 
3662 	if (svm->nmi_l1_to_l2)
3663 		return;
3664 
3665 	/*
3666 	 * No need to manually track NMI masking when vNMI is enabled, hardware
3667 	 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
3668 	 * case where software directly injects an NMI.
3669 	 */
3670 	if (!is_vnmi_enabled(svm)) {
3671 		svm->nmi_masked = true;
3672 		svm_set_iret_intercept(svm);
3673 	}
3674 	++vcpu->stat.nmi_injections;
3675 }
3676 
svm_is_vnmi_pending(struct kvm_vcpu * vcpu)3677 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3678 {
3679 	struct vcpu_svm *svm = to_svm(vcpu);
3680 
3681 	if (!is_vnmi_enabled(svm))
3682 		return false;
3683 
3684 	return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3685 }
3686 
svm_set_vnmi_pending(struct kvm_vcpu * vcpu)3687 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3688 {
3689 	struct vcpu_svm *svm = to_svm(vcpu);
3690 
3691 	if (!is_vnmi_enabled(svm))
3692 		return false;
3693 
3694 	if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3695 		return false;
3696 
3697 	svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3698 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3699 
3700 	/*
3701 	 * Because the pending NMI is serviced by hardware, KVM can't know when
3702 	 * the NMI is "injected", but for all intents and purposes, passing the
3703 	 * NMI off to hardware counts as injection.
3704 	 */
3705 	++vcpu->stat.nmi_injections;
3706 
3707 	return true;
3708 }
3709 
svm_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)3710 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3711 {
3712 	struct vcpu_svm *svm = to_svm(vcpu);
3713 	u32 type;
3714 
3715 	if (vcpu->arch.interrupt.soft) {
3716 		if (svm_update_soft_interrupt_rip(vcpu))
3717 			return;
3718 
3719 		type = SVM_EVTINJ_TYPE_SOFT;
3720 	} else {
3721 		type = SVM_EVTINJ_TYPE_INTR;
3722 	}
3723 
3724 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3725 			   vcpu->arch.interrupt.soft, reinjected);
3726 	++vcpu->stat.irq_injections;
3727 
3728 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3729 				       SVM_EVTINJ_VALID | type;
3730 }
3731 
svm_complete_interrupt_delivery(struct kvm_vcpu * vcpu,int delivery_mode,int trig_mode,int vector)3732 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3733 				     int trig_mode, int vector)
3734 {
3735 	/*
3736 	 * apic->apicv_active must be read after vcpu->mode.
3737 	 * Pairs with smp_store_release in vcpu_enter_guest.
3738 	 */
3739 	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3740 
3741 	/* Note, this is called iff the local APIC is in-kernel. */
3742 	if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3743 		/* Process the interrupt via kvm_check_and_inject_events(). */
3744 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3745 		kvm_vcpu_kick(vcpu);
3746 		return;
3747 	}
3748 
3749 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3750 	if (in_guest_mode) {
3751 		/*
3752 		 * Signal the doorbell to tell hardware to inject the IRQ.  If
3753 		 * the vCPU exits the guest before the doorbell chimes, hardware
3754 		 * will automatically process AVIC interrupts at the next VMRUN.
3755 		 */
3756 		avic_ring_doorbell(vcpu);
3757 	} else {
3758 		/*
3759 		 * Wake the vCPU if it was blocking.  KVM will then detect the
3760 		 * pending IRQ when checking if the vCPU has a wake event.
3761 		 */
3762 		kvm_vcpu_wake_up(vcpu);
3763 	}
3764 }
3765 
svm_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)3766 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3767 				  int trig_mode, int vector)
3768 {
3769 	kvm_lapic_set_irr(vector, apic);
3770 
3771 	/*
3772 	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3773 	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3774 	 * the read of guest_mode.  This guarantees that either VMRUN will see
3775 	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3776 	 * will signal the doorbell if the CPU has already entered the guest.
3777 	 */
3778 	smp_mb__after_atomic();
3779 	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3780 }
3781 
svm_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3782 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3783 {
3784 	struct vcpu_svm *svm = to_svm(vcpu);
3785 
3786 	/*
3787 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3788 	 * tracking is done using the CR write traps.
3789 	 */
3790 	if (sev_es_guest(vcpu->kvm))
3791 		return;
3792 
3793 	if (nested_svm_virtualize_tpr(vcpu))
3794 		return;
3795 
3796 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3797 
3798 	if (irr == -1)
3799 		return;
3800 
3801 	if (tpr >= irr)
3802 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3803 }
3804 
svm_get_nmi_mask(struct kvm_vcpu * vcpu)3805 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3806 {
3807 	struct vcpu_svm *svm = to_svm(vcpu);
3808 
3809 	if (is_vnmi_enabled(svm))
3810 		return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3811 	else
3812 		return svm->nmi_masked;
3813 }
3814 
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3815 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3816 {
3817 	struct vcpu_svm *svm = to_svm(vcpu);
3818 
3819 	if (is_vnmi_enabled(svm)) {
3820 		if (masked)
3821 			svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3822 		else
3823 			svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3824 
3825 	} else {
3826 		svm->nmi_masked = masked;
3827 		if (masked)
3828 			svm_set_iret_intercept(svm);
3829 		else
3830 			svm_clr_iret_intercept(svm);
3831 	}
3832 }
3833 
svm_nmi_blocked(struct kvm_vcpu * vcpu)3834 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3835 {
3836 	struct vcpu_svm *svm = to_svm(vcpu);
3837 	struct vmcb *vmcb = svm->vmcb;
3838 
3839 	if (!gif_set(svm))
3840 		return true;
3841 
3842 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3843 		return false;
3844 
3845 	if (svm_get_nmi_mask(vcpu))
3846 		return true;
3847 
3848 	return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3849 }
3850 
svm_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)3851 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3852 {
3853 	struct vcpu_svm *svm = to_svm(vcpu);
3854 	if (svm->nested.nested_run_pending)
3855 		return -EBUSY;
3856 
3857 	if (svm_nmi_blocked(vcpu))
3858 		return 0;
3859 
3860 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3861 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3862 		return -EBUSY;
3863 	return 1;
3864 }
3865 
svm_interrupt_blocked(struct kvm_vcpu * vcpu)3866 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3867 {
3868 	struct vcpu_svm *svm = to_svm(vcpu);
3869 	struct vmcb *vmcb = svm->vmcb;
3870 
3871 	if (!gif_set(svm))
3872 		return true;
3873 
3874 	if (is_guest_mode(vcpu)) {
3875 		/* As long as interrupts are being delivered...  */
3876 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3877 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3878 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3879 			return true;
3880 
3881 		/* ... vmexits aren't blocked by the interrupt shadow  */
3882 		if (nested_exit_on_intr(svm))
3883 			return false;
3884 	} else {
3885 		if (!svm_get_if_flag(vcpu))
3886 			return true;
3887 	}
3888 
3889 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3890 }
3891 
svm_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)3892 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3893 {
3894 	struct vcpu_svm *svm = to_svm(vcpu);
3895 
3896 	if (svm->nested.nested_run_pending)
3897 		return -EBUSY;
3898 
3899 	if (svm_interrupt_blocked(vcpu))
3900 		return 0;
3901 
3902 	/*
3903 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3904 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3905 	 */
3906 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3907 		return -EBUSY;
3908 
3909 	return 1;
3910 }
3911 
svm_enable_irq_window(struct kvm_vcpu * vcpu)3912 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3913 {
3914 	struct vcpu_svm *svm = to_svm(vcpu);
3915 
3916 	/*
3917 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3918 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3919 	 * get that intercept, this function will be called again though and
3920 	 * we'll get the vintr intercept. However, if the vGIF feature is
3921 	 * enabled, the STGI interception will not occur. Enable the irq
3922 	 * window under the assumption that the hardware will set the GIF.
3923 	 */
3924 	if (vgif || gif_set(svm)) {
3925 		/*
3926 		 * IRQ window is not needed when AVIC is enabled,
3927 		 * unless we have pending ExtINT since it cannot be injected
3928 		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3929 		 * and fallback to injecting IRQ via V_IRQ.
3930 		 *
3931 		 * If running nested, AVIC is already locally inhibited
3932 		 * on this vCPU, therefore there is no need to request
3933 		 * the VM wide AVIC inhibition.
3934 		 */
3935 		if (!is_guest_mode(vcpu))
3936 			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3937 
3938 		svm_set_vintr(svm);
3939 	}
3940 }
3941 
svm_enable_nmi_window(struct kvm_vcpu * vcpu)3942 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3943 {
3944 	struct vcpu_svm *svm = to_svm(vcpu);
3945 
3946 	/*
3947 	 * If NMIs are outright masked, i.e. the vCPU is already handling an
3948 	 * NMI, and KVM has not yet intercepted an IRET, then there is nothing
3949 	 * more to do at this time as KVM has already enabled IRET intercepts.
3950 	 * If KVM has already intercepted IRET, then single-step over the IRET,
3951 	 * as NMIs aren't architecturally unmasked until the IRET completes.
3952 	 *
3953 	 * If vNMI is enabled, KVM should never request an NMI window if NMIs
3954 	 * are masked, as KVM allows at most one to-be-injected NMI and one
3955 	 * pending NMI.  If two NMIs arrive simultaneously, KVM will inject one
3956 	 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are
3957 	 * unmasked.  KVM _will_ request an NMI window in some situations, e.g.
3958 	 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately
3959 	 * inject the NMI.  In those situations, KVM needs to single-step over
3960 	 * the STI shadow or intercept STGI.
3961 	 */
3962 	if (svm_get_nmi_mask(vcpu)) {
3963 		WARN_ON_ONCE(is_vnmi_enabled(svm));
3964 
3965 		if (!svm->awaiting_iret_completion)
3966 			return; /* IRET will cause a vm exit */
3967 	}
3968 
3969 	/*
3970 	 * SEV-ES guests are responsible for signaling when a vCPU is ready to
3971 	 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3972 	 * KVM can't intercept and single-step IRET to detect when NMIs are
3973 	 * unblocked (architecturally speaking).  See SVM_VMGEXIT_NMI_COMPLETE.
3974 	 *
3975 	 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3976 	 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3977 	 * supported NAEs in the GHCB protocol.
3978 	 */
3979 	if (sev_es_guest(vcpu->kvm))
3980 		return;
3981 
3982 	if (!gif_set(svm)) {
3983 		if (vgif)
3984 			svm_set_intercept(svm, INTERCEPT_STGI);
3985 		return; /* STGI will cause a vm exit */
3986 	}
3987 
3988 	/*
3989 	 * Something prevents NMI from been injected. Single step over possible
3990 	 * problem (IRET or exception injection or interrupt shadow)
3991 	 */
3992 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3993 	svm->nmi_singlestep = true;
3994 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3995 }
3996 
svm_flush_tlb_asid(struct kvm_vcpu * vcpu)3997 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3998 {
3999 	struct vcpu_svm *svm = to_svm(vcpu);
4000 
4001 	/*
4002 	 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
4003 	 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
4004 	 * entries, and thus is a superset of Hyper-V's fine grained flushing.
4005 	 */
4006 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
4007 
4008 	/*
4009 	 * Flush only the current ASID even if the TLB flush was invoked via
4010 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
4011 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
4012 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
4013 	 * VM-Exit (via kvm_mmu_reset_context()).
4014 	 */
4015 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4016 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4017 	else
4018 		svm->current_vmcb->asid_generation--;
4019 }
4020 
svm_flush_tlb_current(struct kvm_vcpu * vcpu)4021 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
4022 {
4023 	hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
4024 
4025 	/*
4026 	 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
4027 	 * flush the NPT mappings via hypercall as flushing the ASID only
4028 	 * affects virtual to physical mappings, it does not invalidate guest
4029 	 * physical to host physical mappings.
4030 	 */
4031 	if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
4032 		hyperv_flush_guest_mapping(root_tdp);
4033 
4034 	svm_flush_tlb_asid(vcpu);
4035 }
4036 
svm_flush_tlb_all(struct kvm_vcpu * vcpu)4037 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
4038 {
4039 	/*
4040 	 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
4041 	 * flushes should be routed to hv_flush_remote_tlbs() without requesting
4042 	 * a "regular" remote flush.  Reaching this point means either there's
4043 	 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
4044 	 * which might be fatal to the guest.  Yell, but try to recover.
4045 	 */
4046 	if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
4047 		hv_flush_remote_tlbs(vcpu->kvm);
4048 
4049 	svm_flush_tlb_asid(vcpu);
4050 }
4051 
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)4052 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
4053 {
4054 	struct vcpu_svm *svm = to_svm(vcpu);
4055 
4056 	invlpga(gva, svm->vmcb->control.asid);
4057 }
4058 
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)4059 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4060 {
4061 	struct vcpu_svm *svm = to_svm(vcpu);
4062 
4063 	if (nested_svm_virtualize_tpr(vcpu))
4064 		return;
4065 
4066 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
4067 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4068 		kvm_set_cr8(vcpu, cr8);
4069 	}
4070 }
4071 
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)4072 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4073 {
4074 	struct vcpu_svm *svm = to_svm(vcpu);
4075 	u64 cr8;
4076 
4077 	if (nested_svm_virtualize_tpr(vcpu) ||
4078 	    kvm_vcpu_apicv_active(vcpu))
4079 		return;
4080 
4081 	cr8 = kvm_get_cr8(vcpu);
4082 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4083 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4084 }
4085 
svm_complete_soft_interrupt(struct kvm_vcpu * vcpu,u8 vector,int type)4086 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
4087 					int type)
4088 {
4089 	bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
4090 	bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
4091 	struct vcpu_svm *svm = to_svm(vcpu);
4092 
4093 	/*
4094 	 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
4095 	 * associated with the original soft exception/interrupt.  next_rip is
4096 	 * cleared on all exits that can occur while vectoring an event, so KVM
4097 	 * needs to manually set next_rip for re-injection.  Unlike the !nrips
4098 	 * case below, this needs to be done if and only if KVM is re-injecting
4099 	 * the same event, i.e. if the event is a soft exception/interrupt,
4100 	 * otherwise next_rip is unused on VMRUN.
4101 	 */
4102 	if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
4103 	    kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
4104 		svm->vmcb->control.next_rip = svm->soft_int_next_rip;
4105 	/*
4106 	 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
4107 	 * injecting the soft exception/interrupt.  That advancement needs to
4108 	 * be unwound if vectoring didn't complete.  Note, the new event may
4109 	 * not be the injected event, e.g. if KVM injected an INTn, the INTn
4110 	 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
4111 	 * be the reported vectored event, but RIP still needs to be unwound.
4112 	 */
4113 	else if (!nrips && (is_soft || is_exception) &&
4114 		 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4115 		kvm_rip_write(vcpu, svm->soft_int_old_rip);
4116 }
4117 
svm_complete_interrupts(struct kvm_vcpu * vcpu)4118 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4119 {
4120 	struct vcpu_svm *svm = to_svm(vcpu);
4121 	u8 vector;
4122 	int type;
4123 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
4124 	bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4125 	bool soft_int_injected = svm->soft_int_injected;
4126 
4127 	svm->nmi_l1_to_l2 = false;
4128 	svm->soft_int_injected = false;
4129 
4130 	/*
4131 	 * If we've made progress since setting awaiting_iret_completion, we've
4132 	 * executed an IRET and can allow NMI injection.
4133 	 */
4134 	if (svm->awaiting_iret_completion &&
4135 	    kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4136 		svm->awaiting_iret_completion = false;
4137 		svm->nmi_masked = false;
4138 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4139 	}
4140 
4141 	vcpu->arch.nmi_injected = false;
4142 	kvm_clear_exception_queue(vcpu);
4143 	kvm_clear_interrupt_queue(vcpu);
4144 
4145 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4146 		return;
4147 
4148 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4149 
4150 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4151 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4152 
4153 	if (soft_int_injected)
4154 		svm_complete_soft_interrupt(vcpu, vector, type);
4155 
4156 	switch (type) {
4157 	case SVM_EXITINTINFO_TYPE_NMI:
4158 		vcpu->arch.nmi_injected = true;
4159 		svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4160 		break;
4161 	case SVM_EXITINTINFO_TYPE_EXEPT: {
4162 		u32 error_code = 0;
4163 
4164 		/*
4165 		 * Never re-inject a #VC exception.
4166 		 */
4167 		if (vector == X86_TRAP_VC)
4168 			break;
4169 
4170 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR)
4171 			error_code = svm->vmcb->control.exit_int_info_err;
4172 
4173 		kvm_requeue_exception(vcpu, vector,
4174 				      exitintinfo & SVM_EXITINTINFO_VALID_ERR,
4175 				      error_code);
4176 		break;
4177 	}
4178 	case SVM_EXITINTINFO_TYPE_INTR:
4179 		kvm_queue_interrupt(vcpu, vector, false);
4180 		break;
4181 	case SVM_EXITINTINFO_TYPE_SOFT:
4182 		kvm_queue_interrupt(vcpu, vector, true);
4183 		break;
4184 	default:
4185 		break;
4186 	}
4187 
4188 }
4189 
svm_cancel_injection(struct kvm_vcpu * vcpu)4190 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4191 {
4192 	struct vcpu_svm *svm = to_svm(vcpu);
4193 	struct vmcb_control_area *control = &svm->vmcb->control;
4194 
4195 	control->exit_int_info = control->event_inj;
4196 	control->exit_int_info_err = control->event_inj_err;
4197 	control->event_inj = 0;
4198 	svm_complete_interrupts(vcpu);
4199 }
4200 
svm_vcpu_pre_run(struct kvm_vcpu * vcpu)4201 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4202 {
4203 	if (to_kvm_sev_info(vcpu->kvm)->need_init)
4204 		return -EINVAL;
4205 
4206 	return 1;
4207 }
4208 
svm_exit_handlers_fastpath(struct kvm_vcpu * vcpu)4209 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4210 {
4211 	struct vcpu_svm *svm = to_svm(vcpu);
4212 
4213 	if (is_guest_mode(vcpu))
4214 		return EXIT_FASTPATH_NONE;
4215 
4216 	switch (svm->vmcb->control.exit_code) {
4217 	case SVM_EXIT_MSR:
4218 		if (!svm->vmcb->control.exit_info_1)
4219 			break;
4220 		return handle_fastpath_set_msr_irqoff(vcpu);
4221 	case SVM_EXIT_HLT:
4222 		return handle_fastpath_hlt(vcpu);
4223 	default:
4224 		break;
4225 	}
4226 
4227 	return EXIT_FASTPATH_NONE;
4228 }
4229 
svm_vcpu_enter_exit(struct kvm_vcpu * vcpu,bool spec_ctrl_intercepted)4230 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4231 {
4232 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
4233 	struct vcpu_svm *svm = to_svm(vcpu);
4234 
4235 	guest_state_enter_irqoff();
4236 
4237 	/*
4238 	 * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of
4239 	 * VMRUN controls whether or not physical IRQs are masked (KVM always
4240 	 * runs with V_INTR_MASKING_MASK).  Toggle RFLAGS.IF here to avoid the
4241 	 * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow
4242 	 * into guest state if delivery of an event during VMRUN triggers a
4243 	 * #VMEXIT, and the guest_state transitions already tell lockdep that
4244 	 * IRQs are being enabled/disabled.  Note!  GIF=0 for the entirety of
4245 	 * this path, so IRQs aren't actually unmasked while running host code.
4246 	 */
4247 	raw_local_irq_enable();
4248 
4249 	amd_clear_divider();
4250 
4251 	if (sev_es_guest(vcpu->kvm))
4252 		__svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted,
4253 				      sev_es_host_save_area(sd));
4254 	else
4255 		__svm_vcpu_run(svm, spec_ctrl_intercepted);
4256 
4257 	raw_local_irq_disable();
4258 
4259 	guest_state_exit_irqoff();
4260 }
4261 
svm_vcpu_run(struct kvm_vcpu * vcpu,bool force_immediate_exit)4262 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu,
4263 					  bool force_immediate_exit)
4264 {
4265 	struct vcpu_svm *svm = to_svm(vcpu);
4266 	bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4267 
4268 	trace_kvm_entry(vcpu, force_immediate_exit);
4269 
4270 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4271 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4272 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4273 
4274 	/*
4275 	 * Disable singlestep if we're injecting an interrupt/exception.
4276 	 * We don't want our modified rflags to be pushed on the stack where
4277 	 * we might not be able to easily reset them if we disabled NMI
4278 	 * singlestep later.
4279 	 */
4280 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4281 		/*
4282 		 * Event injection happens before external interrupts cause a
4283 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
4284 		 * is enough to force an immediate vmexit.
4285 		 */
4286 		disable_nmi_singlestep(svm);
4287 		force_immediate_exit = true;
4288 	}
4289 
4290 	if (force_immediate_exit)
4291 		smp_send_reschedule(vcpu->cpu);
4292 
4293 	if (pre_svm_run(vcpu)) {
4294 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4295 		vcpu->run->fail_entry.hardware_entry_failure_reason = SVM_EXIT_ERR;
4296 		vcpu->run->fail_entry.cpu = vcpu->cpu;
4297 		return EXIT_FASTPATH_EXIT_USERSPACE;
4298 	}
4299 
4300 	sync_lapic_to_cr8(vcpu);
4301 
4302 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4303 		svm->vmcb->control.asid = svm->asid;
4304 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4305 	}
4306 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
4307 
4308 	svm_hv_update_vp_id(svm->vmcb, vcpu);
4309 
4310 	/*
4311 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
4312 	 * of a #DB.
4313 	 */
4314 	if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)))
4315 		svm_set_dr6(vcpu, DR6_ACTIVE_LOW);
4316 
4317 	clgi();
4318 	kvm_load_guest_xsave_state(vcpu);
4319 
4320 	/*
4321 	 * Hardware only context switches DEBUGCTL if LBR virtualization is
4322 	 * enabled.  Manually load DEBUGCTL if necessary (and restore it after
4323 	 * VM-Exit), as running with the host's DEBUGCTL can negatively affect
4324 	 * guest state and can even be fatal, e.g. due to Bus Lock Detect.
4325 	 */
4326 	if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4327 	    vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4328 		update_debugctlmsr(svm->vmcb->save.dbgctl);
4329 
4330 	kvm_wait_lapic_expire(vcpu);
4331 
4332 	/*
4333 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4334 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4335 	 * is no need to worry about the conditional branch over the wrmsr
4336 	 * being speculatively taken.
4337 	 */
4338 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4339 		x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4340 
4341 	svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4342 
4343 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4344 		x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4345 
4346 	if (!sev_es_guest(vcpu->kvm)) {
4347 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
4348 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4349 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4350 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4351 	}
4352 	vcpu->arch.regs_dirty = 0;
4353 
4354 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4355 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4356 
4357 	if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4358 	    vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4359 		update_debugctlmsr(vcpu->arch.host_debugctl);
4360 
4361 	kvm_load_host_xsave_state(vcpu);
4362 	stgi();
4363 
4364 	/* Any pending NMI will happen here */
4365 
4366 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4367 		kvm_after_interrupt(vcpu);
4368 
4369 	sync_cr8_to_lapic(vcpu);
4370 
4371 	svm->next_rip = 0;
4372 	if (is_guest_mode(vcpu)) {
4373 		nested_sync_control_from_vmcb02(svm);
4374 
4375 		/* Track VMRUNs that have made past consistency checking */
4376 		if (svm->nested.nested_run_pending &&
4377 		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4378                         ++vcpu->stat.nested_run;
4379 
4380 		svm->nested.nested_run_pending = 0;
4381 	}
4382 
4383 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4384 	vmcb_mark_all_clean(svm->vmcb);
4385 
4386 	/* if exit due to PF check for async PF */
4387 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4388 		vcpu->arch.apf.host_apf_flags =
4389 			kvm_read_and_reset_apf_flags();
4390 
4391 	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4392 
4393 	/*
4394 	 * We need to handle MC intercepts here before the vcpu has a chance to
4395 	 * change the physical cpu
4396 	 */
4397 	if (unlikely(svm->vmcb->control.exit_code ==
4398 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4399 		svm_handle_mce(vcpu);
4400 
4401 	trace_kvm_exit(vcpu, KVM_ISA_SVM);
4402 
4403 	svm_complete_interrupts(vcpu);
4404 
4405 	return svm_exit_handlers_fastpath(vcpu);
4406 }
4407 
svm_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)4408 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4409 			     int root_level)
4410 {
4411 	struct vcpu_svm *svm = to_svm(vcpu);
4412 	unsigned long cr3;
4413 
4414 	if (npt_enabled) {
4415 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4416 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4417 
4418 		hv_track_root_tdp(vcpu, root_hpa);
4419 
4420 		cr3 = vcpu->arch.cr3;
4421 	} else if (root_level >= PT64_ROOT_4LEVEL) {
4422 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4423 	} else {
4424 		/* PCID in the guest should be impossible with a 32-bit MMU. */
4425 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4426 		cr3 = root_hpa;
4427 	}
4428 
4429 	svm->vmcb->save.cr3 = cr3;
4430 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4431 }
4432 
4433 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4434 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4435 {
4436 	/*
4437 	 * Patch in the VMMCALL instruction:
4438 	 */
4439 	hypercall[0] = 0x0f;
4440 	hypercall[1] = 0x01;
4441 	hypercall[2] = 0xd9;
4442 }
4443 
4444 /*
4445  * The kvm parameter can be NULL (module initialization, or invocation before
4446  * VM creation). Be sure to check the kvm parameter before using it.
4447  */
svm_has_emulated_msr(struct kvm * kvm,u32 index)4448 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4449 {
4450 	switch (index) {
4451 	case MSR_IA32_MCG_EXT_CTL:
4452 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4453 		return false;
4454 	case MSR_IA32_SMBASE:
4455 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4456 			return false;
4457 		/* SEV-ES guests do not support SMM, so report false */
4458 		if (kvm && sev_es_guest(kvm))
4459 			return false;
4460 		break;
4461 	default:
4462 		break;
4463 	}
4464 
4465 	return true;
4466 }
4467 
svm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)4468 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4469 {
4470 	struct vcpu_svm *svm = to_svm(vcpu);
4471 
4472 	/*
4473 	 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4474 	 * can only disable all variants of by disallowing CR4.OSXSAVE from
4475 	 * being set.  As a result, if the host has XSAVE and XSAVES, and the
4476 	 * guest has XSAVE enabled, the guest can execute XSAVES without
4477 	 * faulting.  Treat XSAVES as enabled in this case regardless of
4478 	 * whether it's advertised to the guest so that KVM context switches
4479 	 * XSS on VM-Enter/VM-Exit.  Failure to do so would effectively give
4480 	 * the guest read/write access to the host's XSS.
4481 	 */
4482 	guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES,
4483 			     boot_cpu_has(X86_FEATURE_XSAVES) &&
4484 			     guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE));
4485 
4486 	/*
4487 	 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that
4488 	 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4489 	 * SVM on Intel is bonkers and extremely unlikely to work).
4490 	 */
4491 	if (guest_cpuid_is_intel_compatible(vcpu))
4492 		guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4493 
4494 	svm_recalc_instruction_intercepts(vcpu, svm);
4495 
4496 	if (boot_cpu_has(X86_FEATURE_IBPB))
4497 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
4498 				     !!guest_has_pred_cmd_msr(vcpu));
4499 
4500 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
4501 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
4502 				     !!guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
4503 
4504 	if (sev_guest(vcpu->kvm))
4505 		sev_vcpu_after_set_cpuid(svm);
4506 
4507 	init_vmcb_after_set_cpuid(vcpu);
4508 }
4509 
svm_has_wbinvd_exit(void)4510 static bool svm_has_wbinvd_exit(void)
4511 {
4512 	return true;
4513 }
4514 
4515 #define PRE_EX(exit)  { .exit_code = (exit), \
4516 			.stage = X86_ICPT_PRE_EXCEPT, }
4517 #define POST_EX(exit) { .exit_code = (exit), \
4518 			.stage = X86_ICPT_POST_EXCEPT, }
4519 #define POST_MEM(exit) { .exit_code = (exit), \
4520 			.stage = X86_ICPT_POST_MEMACCESS, }
4521 
4522 static const struct __x86_intercept {
4523 	u32 exit_code;
4524 	enum x86_intercept_stage stage;
4525 } x86_intercept_map[] = {
4526 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4527 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4528 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4529 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4530 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4531 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4532 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4533 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4534 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4535 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4536 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4537 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4538 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4539 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4540 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4541 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4542 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4543 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4544 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4545 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4546 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4547 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4548 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4549 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4550 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4551 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4552 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4553 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4554 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4555 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4556 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4557 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4558 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4559 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4560 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4561 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4562 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4563 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4564 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4565 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4566 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4567 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4568 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4569 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4570 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4571 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4572 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4573 };
4574 
4575 #undef PRE_EX
4576 #undef POST_EX
4577 #undef POST_MEM
4578 
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)4579 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4580 			       struct x86_instruction_info *info,
4581 			       enum x86_intercept_stage stage,
4582 			       struct x86_exception *exception)
4583 {
4584 	struct vcpu_svm *svm = to_svm(vcpu);
4585 	int vmexit, ret = X86EMUL_CONTINUE;
4586 	struct __x86_intercept icpt_info;
4587 	struct vmcb *vmcb = svm->vmcb;
4588 
4589 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4590 		goto out;
4591 
4592 	icpt_info = x86_intercept_map[info->intercept];
4593 
4594 	if (stage != icpt_info.stage)
4595 		goto out;
4596 
4597 	switch (icpt_info.exit_code) {
4598 	case SVM_EXIT_READ_CR0:
4599 		if (info->intercept == x86_intercept_cr_read)
4600 			icpt_info.exit_code += info->modrm_reg;
4601 		break;
4602 	case SVM_EXIT_WRITE_CR0: {
4603 		unsigned long cr0, val;
4604 
4605 		if (info->intercept == x86_intercept_cr_write)
4606 			icpt_info.exit_code += info->modrm_reg;
4607 
4608 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4609 		    info->intercept == x86_intercept_clts)
4610 			break;
4611 
4612 		if (!(vmcb12_is_intercept(&svm->nested.ctl,
4613 					INTERCEPT_SELECTIVE_CR0)))
4614 			break;
4615 
4616 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4617 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4618 
4619 		if (info->intercept == x86_intercept_lmsw) {
4620 			cr0 &= 0xfUL;
4621 			val &= 0xfUL;
4622 			/* lmsw can't clear PE - catch this here */
4623 			if (cr0 & X86_CR0_PE)
4624 				val |= X86_CR0_PE;
4625 		}
4626 
4627 		if (cr0 ^ val)
4628 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4629 
4630 		break;
4631 	}
4632 	case SVM_EXIT_READ_DR0:
4633 	case SVM_EXIT_WRITE_DR0:
4634 		icpt_info.exit_code += info->modrm_reg;
4635 		break;
4636 	case SVM_EXIT_MSR:
4637 		if (info->intercept == x86_intercept_wrmsr)
4638 			vmcb->control.exit_info_1 = 1;
4639 		else
4640 			vmcb->control.exit_info_1 = 0;
4641 		break;
4642 	case SVM_EXIT_PAUSE:
4643 		/*
4644 		 * We get this for NOP only, but pause
4645 		 * is rep not, check this here
4646 		 */
4647 		if (info->rep_prefix != REPE_PREFIX)
4648 			goto out;
4649 		break;
4650 	case SVM_EXIT_IOIO: {
4651 		u64 exit_info;
4652 		u32 bytes;
4653 
4654 		if (info->intercept == x86_intercept_in ||
4655 		    info->intercept == x86_intercept_ins) {
4656 			exit_info = ((info->src_val & 0xffff) << 16) |
4657 				SVM_IOIO_TYPE_MASK;
4658 			bytes = info->dst_bytes;
4659 		} else {
4660 			exit_info = (info->dst_val & 0xffff) << 16;
4661 			bytes = info->src_bytes;
4662 		}
4663 
4664 		if (info->intercept == x86_intercept_outs ||
4665 		    info->intercept == x86_intercept_ins)
4666 			exit_info |= SVM_IOIO_STR_MASK;
4667 
4668 		if (info->rep_prefix)
4669 			exit_info |= SVM_IOIO_REP_MASK;
4670 
4671 		bytes = min(bytes, 4u);
4672 
4673 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4674 
4675 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4676 
4677 		vmcb->control.exit_info_1 = exit_info;
4678 		vmcb->control.exit_info_2 = info->next_rip;
4679 
4680 		break;
4681 	}
4682 	default:
4683 		break;
4684 	}
4685 
4686 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4687 	if (static_cpu_has(X86_FEATURE_NRIPS))
4688 		vmcb->control.next_rip  = info->next_rip;
4689 	vmcb->control.exit_code = icpt_info.exit_code;
4690 	vmexit = nested_svm_exit_handled(svm);
4691 
4692 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4693 					   : X86EMUL_CONTINUE;
4694 
4695 out:
4696 	return ret;
4697 }
4698 
svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)4699 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4700 {
4701 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4702 		vcpu->arch.at_instruction_boundary = true;
4703 }
4704 
svm_setup_mce(struct kvm_vcpu * vcpu)4705 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4706 {
4707 	/* [63:9] are reserved. */
4708 	vcpu->arch.mcg_cap &= 0x1ff;
4709 }
4710 
4711 #ifdef CONFIG_KVM_SMM
svm_smi_blocked(struct kvm_vcpu * vcpu)4712 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4713 {
4714 	struct vcpu_svm *svm = to_svm(vcpu);
4715 
4716 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4717 	if (!gif_set(svm))
4718 		return true;
4719 
4720 	return is_smm(vcpu);
4721 }
4722 
svm_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4723 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4724 {
4725 	struct vcpu_svm *svm = to_svm(vcpu);
4726 	if (svm->nested.nested_run_pending)
4727 		return -EBUSY;
4728 
4729 	if (svm_smi_blocked(vcpu))
4730 		return 0;
4731 
4732 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4733 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4734 		return -EBUSY;
4735 
4736 	return 1;
4737 }
4738 
svm_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)4739 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4740 {
4741 	struct vcpu_svm *svm = to_svm(vcpu);
4742 	struct kvm_host_map map_save;
4743 	int ret;
4744 
4745 	if (!is_guest_mode(vcpu))
4746 		return 0;
4747 
4748 	/*
4749 	 * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
4750 	 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4751 	 */
4752 
4753 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4754 		return 1;
4755 
4756 	smram->smram64.svm_guest_flag = 1;
4757 	smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4758 
4759 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4760 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4761 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4762 
4763 	ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4764 	if (ret)
4765 		return ret;
4766 
4767 	/*
4768 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4769 	 * VMCB01 is going to be used during SMM and thus the state will
4770 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4771 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4772 	 * format of the area is identical to guest save area offsetted
4773 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4774 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4775 	 * L1 hypervisor to save additional host context (e.g. KVM does
4776 	 * that, see svm_prepare_switch_to_guest()) which must be
4777 	 * preserved.
4778 	 */
4779 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4780 		return 1;
4781 
4782 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4783 
4784 	svm_copy_vmrun_state(map_save.hva + 0x400,
4785 			     &svm->vmcb01.ptr->save);
4786 
4787 	kvm_vcpu_unmap(vcpu, &map_save);
4788 	return 0;
4789 }
4790 
svm_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)4791 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4792 {
4793 	struct vcpu_svm *svm = to_svm(vcpu);
4794 	struct kvm_host_map map, map_save;
4795 	struct vmcb *vmcb12;
4796 	int ret;
4797 
4798 	const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4799 
4800 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4801 		return 0;
4802 
4803 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4804 	if (!smram64->svm_guest_flag)
4805 		return 0;
4806 
4807 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
4808 		return 1;
4809 
4810 	if (!(smram64->efer & EFER_SVME))
4811 		return 1;
4812 
4813 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4814 		return 1;
4815 
4816 	ret = 1;
4817 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4818 		goto unmap_map;
4819 
4820 	if (svm_allocate_nested(svm))
4821 		goto unmap_save;
4822 
4823 	/*
4824 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4825 	 * used during SMM (see svm_enter_smm())
4826 	 */
4827 
4828 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4829 
4830 	/*
4831 	 * Enter the nested guest now
4832 	 */
4833 
4834 	vmcb_mark_all_dirty(svm->vmcb01.ptr);
4835 
4836 	vmcb12 = map.hva;
4837 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4838 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4839 	ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4840 
4841 	if (ret)
4842 		goto unmap_save;
4843 
4844 	svm->nested.nested_run_pending = 1;
4845 
4846 unmap_save:
4847 	kvm_vcpu_unmap(vcpu, &map_save);
4848 unmap_map:
4849 	kvm_vcpu_unmap(vcpu, &map);
4850 	return ret;
4851 }
4852 
svm_enable_smi_window(struct kvm_vcpu * vcpu)4853 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4854 {
4855 	struct vcpu_svm *svm = to_svm(vcpu);
4856 
4857 	if (!gif_set(svm)) {
4858 		if (vgif)
4859 			svm_set_intercept(svm, INTERCEPT_STGI);
4860 		/* STGI will cause a vm exit */
4861 	} else {
4862 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4863 	}
4864 }
4865 #endif
4866 
svm_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)4867 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4868 					 void *insn, int insn_len)
4869 {
4870 	struct vcpu_svm *svm = to_svm(vcpu);
4871 	bool smep, smap, is_user;
4872 	u64 error_code;
4873 
4874 	/* Check that emulation is possible during event vectoring */
4875 	if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) &&
4876 	    !kvm_can_emulate_event_vectoring(emul_type))
4877 		return X86EMUL_UNHANDLEABLE_VECTORING;
4878 
4879 	/* Emulation is always possible when KVM has access to all guest state. */
4880 	if (!sev_guest(vcpu->kvm))
4881 		return X86EMUL_CONTINUE;
4882 
4883 	/* #UD and #GP should never be intercepted for SEV guests. */
4884 	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4885 				  EMULTYPE_TRAP_UD_FORCED |
4886 				  EMULTYPE_VMWARE_GP));
4887 
4888 	/*
4889 	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4890 	 * to guest register state.
4891 	 */
4892 	if (sev_es_guest(vcpu->kvm))
4893 		return X86EMUL_RETRY_INSTR;
4894 
4895 	/*
4896 	 * Emulation is possible if the instruction is already decoded, e.g.
4897 	 * when completing I/O after returning from userspace.
4898 	 */
4899 	if (emul_type & EMULTYPE_NO_DECODE)
4900 		return X86EMUL_CONTINUE;
4901 
4902 	/*
4903 	 * Emulation is possible for SEV guests if and only if a prefilled
4904 	 * buffer containing the bytes of the intercepted instruction is
4905 	 * available. SEV guest memory is encrypted with a guest specific key
4906 	 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
4907 	 * decode garbage.
4908 	 *
4909 	 * If KVM is NOT trying to simply skip an instruction, inject #UD if
4910 	 * KVM reached this point without an instruction buffer.  In practice,
4911 	 * this path should never be hit by a well-behaved guest, e.g. KVM
4912 	 * doesn't intercept #UD or #GP for SEV guests, but this path is still
4913 	 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4914 	 * access, and needs to be handled by KVM to avoid putting the guest
4915 	 * into an infinite loop.   Injecting #UD is somewhat arbitrary, but
4916 	 * its the least awful option given lack of insight into the guest.
4917 	 *
4918 	 * If KVM is trying to skip an instruction, simply resume the guest.
4919 	 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4920 	 * will attempt to re-inject the INT3/INTO and skip the instruction.
4921 	 * In that scenario, retrying the INT3/INTO and hoping the guest will
4922 	 * make forward progress is the only option that has a chance of
4923 	 * success (and in practice it will work the vast majority of the time).
4924 	 */
4925 	if (unlikely(!insn)) {
4926 		if (emul_type & EMULTYPE_SKIP)
4927 			return X86EMUL_UNHANDLEABLE;
4928 
4929 		kvm_queue_exception(vcpu, UD_VECTOR);
4930 		return X86EMUL_PROPAGATE_FAULT;
4931 	}
4932 
4933 	/*
4934 	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4935 	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4936 	 * the faulting instruction because the code fetch itself faulted, e.g.
4937 	 * the guest attempted to fetch from emulated MMIO or a guest page
4938 	 * table used to translate CS:RIP resides in emulated MMIO.
4939 	 */
4940 	if (likely(insn_len))
4941 		return X86EMUL_CONTINUE;
4942 
4943 	/*
4944 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4945 	 *
4946 	 * Errata:
4947 	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4948 	 * possible that CPU microcode implementing DecodeAssist will fail to
4949 	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4950 	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
4951 	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4952 	 * gives up and does not fill the instruction bytes buffer.
4953 	 *
4954 	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4955 	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4956 	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4957 	 * GuestIntrBytes field of the VMCB.
4958 	 *
4959 	 * This does _not_ mean that the erratum has been encountered, as the
4960 	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4961 	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4962 	 * encountered a reserved/not-present #PF.
4963 	 *
4964 	 * To hit the erratum, the following conditions must be true:
4965 	 *    1. CR4.SMAP=1 (obviously).
4966 	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4967 	 *       have been hit as the guest would have encountered a SMEP
4968 	 *       violation #PF, not a #NPF.
4969 	 *    3. The #NPF is not due to a code fetch, in which case failure to
4970 	 *       retrieve the instruction bytes is legitimate (see abvoe).
4971 	 *
4972 	 * In addition, don't apply the erratum workaround if the #NPF occurred
4973 	 * while translating guest page tables (see below).
4974 	 */
4975 	error_code = svm->vmcb->control.exit_info_1;
4976 	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4977 		goto resume_guest;
4978 
4979 	smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4980 	smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4981 	is_user = svm_get_cpl(vcpu) == 3;
4982 	if (smap && (!smep || is_user)) {
4983 		pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4984 
4985 		/*
4986 		 * If the fault occurred in userspace, arbitrarily inject #GP
4987 		 * to avoid killing the guest and to hopefully avoid confusing
4988 		 * the guest kernel too much, e.g. injecting #PF would not be
4989 		 * coherent with respect to the guest's page tables.  Request
4990 		 * triple fault if the fault occurred in the kernel as there's
4991 		 * no fault that KVM can inject without confusing the guest.
4992 		 * In practice, the triple fault is moot as no sane SEV kernel
4993 		 * will execute from user memory while also running with SMAP=1.
4994 		 */
4995 		if (is_user)
4996 			kvm_inject_gp(vcpu, 0);
4997 		else
4998 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4999 		return X86EMUL_PROPAGATE_FAULT;
5000 	}
5001 
5002 resume_guest:
5003 	/*
5004 	 * If the erratum was not hit, simply resume the guest and let it fault
5005 	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
5006 	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
5007 	 * userspace will kill the guest, and letting the emulator read garbage
5008 	 * will yield random behavior and potentially corrupt the guest.
5009 	 *
5010 	 * Simply resuming the guest is technically not a violation of the SEV
5011 	 * architecture.  AMD's APM states that all code fetches and page table
5012 	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
5013 	 * APM also states that encrypted accesses to MMIO are "ignored", but
5014 	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
5015 	 * the guest spin is technically "ignoring" the access.
5016 	 */
5017 	return X86EMUL_RETRY_INSTR;
5018 }
5019 
svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)5020 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
5021 {
5022 	struct vcpu_svm *svm = to_svm(vcpu);
5023 
5024 	return !gif_set(svm);
5025 }
5026 
svm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)5027 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
5028 {
5029 	if (!sev_es_guest(vcpu->kvm))
5030 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
5031 
5032 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
5033 }
5034 
svm_vm_destroy(struct kvm * kvm)5035 static void svm_vm_destroy(struct kvm *kvm)
5036 {
5037 	avic_vm_destroy(kvm);
5038 	sev_vm_destroy(kvm);
5039 }
5040 
svm_vm_init(struct kvm * kvm)5041 static int svm_vm_init(struct kvm *kvm)
5042 {
5043 	int type = kvm->arch.vm_type;
5044 
5045 	if (type != KVM_X86_DEFAULT_VM &&
5046 	    type != KVM_X86_SW_PROTECTED_VM) {
5047 		kvm->arch.has_protected_state =
5048 			(type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM);
5049 		to_kvm_sev_info(kvm)->need_init = true;
5050 
5051 		kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM);
5052 		kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem;
5053 	}
5054 
5055 	if (!pause_filter_count || !pause_filter_thresh)
5056 		kvm->arch.pause_in_guest = true;
5057 
5058 	if (enable_apicv) {
5059 		int ret = avic_vm_init(kvm);
5060 		if (ret)
5061 			return ret;
5062 	}
5063 
5064 	return 0;
5065 }
5066 
svm_alloc_apic_backing_page(struct kvm_vcpu * vcpu)5067 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu)
5068 {
5069 	struct page *page = snp_safe_alloc_page();
5070 
5071 	if (!page)
5072 		return NULL;
5073 
5074 	return page_address(page);
5075 }
5076 
5077 static struct kvm_x86_ops svm_x86_ops __initdata = {
5078 	.name = KBUILD_MODNAME,
5079 
5080 	.check_processor_compatibility = svm_check_processor_compat,
5081 
5082 	.hardware_unsetup = svm_hardware_unsetup,
5083 	.enable_virtualization_cpu = svm_enable_virtualization_cpu,
5084 	.disable_virtualization_cpu = svm_disable_virtualization_cpu,
5085 	.emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu,
5086 	.has_emulated_msr = svm_has_emulated_msr,
5087 
5088 	.vcpu_create = svm_vcpu_create,
5089 	.vcpu_free = svm_vcpu_free,
5090 	.vcpu_reset = svm_vcpu_reset,
5091 
5092 	.vm_size = sizeof(struct kvm_svm),
5093 	.vm_init = svm_vm_init,
5094 	.vm_destroy = svm_vm_destroy,
5095 
5096 	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
5097 	.vcpu_load = svm_vcpu_load,
5098 	.vcpu_put = svm_vcpu_put,
5099 	.vcpu_blocking = avic_vcpu_blocking,
5100 	.vcpu_unblocking = avic_vcpu_unblocking,
5101 
5102 	.update_exception_bitmap = svm_update_exception_bitmap,
5103 	.get_feature_msr = svm_get_feature_msr,
5104 	.get_msr = svm_get_msr,
5105 	.set_msr = svm_set_msr,
5106 	.get_segment_base = svm_get_segment_base,
5107 	.get_segment = svm_get_segment,
5108 	.set_segment = svm_set_segment,
5109 	.get_cpl = svm_get_cpl,
5110 	.get_cpl_no_cache = svm_get_cpl,
5111 	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
5112 	.is_valid_cr0 = svm_is_valid_cr0,
5113 	.set_cr0 = svm_set_cr0,
5114 	.post_set_cr3 = sev_post_set_cr3,
5115 	.is_valid_cr4 = svm_is_valid_cr4,
5116 	.set_cr4 = svm_set_cr4,
5117 	.set_efer = svm_set_efer,
5118 	.get_idt = svm_get_idt,
5119 	.set_idt = svm_set_idt,
5120 	.get_gdt = svm_get_gdt,
5121 	.set_gdt = svm_set_gdt,
5122 	.set_dr6 = svm_set_dr6,
5123 	.set_dr7 = svm_set_dr7,
5124 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5125 	.cache_reg = svm_cache_reg,
5126 	.get_rflags = svm_get_rflags,
5127 	.set_rflags = svm_set_rflags,
5128 	.get_if_flag = svm_get_if_flag,
5129 
5130 	.flush_tlb_all = svm_flush_tlb_all,
5131 	.flush_tlb_current = svm_flush_tlb_current,
5132 	.flush_tlb_gva = svm_flush_tlb_gva,
5133 	.flush_tlb_guest = svm_flush_tlb_asid,
5134 
5135 	.vcpu_pre_run = svm_vcpu_pre_run,
5136 	.vcpu_run = svm_vcpu_run,
5137 	.handle_exit = svm_handle_exit,
5138 	.skip_emulated_instruction = svm_skip_emulated_instruction,
5139 	.update_emulated_instruction = NULL,
5140 	.set_interrupt_shadow = svm_set_interrupt_shadow,
5141 	.get_interrupt_shadow = svm_get_interrupt_shadow,
5142 	.patch_hypercall = svm_patch_hypercall,
5143 	.inject_irq = svm_inject_irq,
5144 	.inject_nmi = svm_inject_nmi,
5145 	.is_vnmi_pending = svm_is_vnmi_pending,
5146 	.set_vnmi_pending = svm_set_vnmi_pending,
5147 	.inject_exception = svm_inject_exception,
5148 	.cancel_injection = svm_cancel_injection,
5149 	.interrupt_allowed = svm_interrupt_allowed,
5150 	.nmi_allowed = svm_nmi_allowed,
5151 	.get_nmi_mask = svm_get_nmi_mask,
5152 	.set_nmi_mask = svm_set_nmi_mask,
5153 	.enable_nmi_window = svm_enable_nmi_window,
5154 	.enable_irq_window = svm_enable_irq_window,
5155 	.update_cr8_intercept = svm_update_cr8_intercept,
5156 
5157 	.x2apic_icr_is_split = true,
5158 	.set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
5159 	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
5160 	.apicv_post_state_restore = avic_apicv_post_state_restore,
5161 	.required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
5162 
5163 	.get_exit_info = svm_get_exit_info,
5164 	.get_entry_info = svm_get_entry_info,
5165 
5166 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
5167 
5168 	.has_wbinvd_exit = svm_has_wbinvd_exit,
5169 
5170 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
5171 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
5172 	.write_tsc_offset = svm_write_tsc_offset,
5173 	.write_tsc_multiplier = svm_write_tsc_multiplier,
5174 
5175 	.load_mmu_pgd = svm_load_mmu_pgd,
5176 
5177 	.check_intercept = svm_check_intercept,
5178 	.handle_exit_irqoff = svm_handle_exit_irqoff,
5179 
5180 	.nested_ops = &svm_nested_ops,
5181 
5182 	.deliver_interrupt = svm_deliver_interrupt,
5183 	.pi_update_irte = avic_pi_update_irte,
5184 	.setup_mce = svm_setup_mce,
5185 
5186 #ifdef CONFIG_KVM_SMM
5187 	.smi_allowed = svm_smi_allowed,
5188 	.enter_smm = svm_enter_smm,
5189 	.leave_smm = svm_leave_smm,
5190 	.enable_smi_window = svm_enable_smi_window,
5191 #endif
5192 
5193 #ifdef CONFIG_KVM_AMD_SEV
5194 	.dev_get_attr = sev_dev_get_attr,
5195 	.mem_enc_ioctl = sev_mem_enc_ioctl,
5196 	.mem_enc_register_region = sev_mem_enc_register_region,
5197 	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
5198 	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
5199 
5200 	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5201 	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
5202 #endif
5203 	.check_emulate_instruction = svm_check_emulate_instruction,
5204 
5205 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
5206 
5207 	.msr_filter_changed = svm_msr_filter_changed,
5208 	.complete_emulated_msr = svm_complete_emulated_msr,
5209 
5210 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5211 	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5212 	.alloc_apic_backing_page = svm_alloc_apic_backing_page,
5213 
5214 	.gmem_prepare = sev_gmem_prepare,
5215 	.gmem_invalidate = sev_gmem_invalidate,
5216 	.private_max_mapping_level = sev_private_max_mapping_level,
5217 };
5218 
5219 /*
5220  * The default MMIO mask is a single bit (excluding the present bit),
5221  * which could conflict with the memory encryption bit. Check for
5222  * memory encryption support and override the default MMIO mask if
5223  * memory encryption is enabled.
5224  */
svm_adjust_mmio_mask(void)5225 static __init void svm_adjust_mmio_mask(void)
5226 {
5227 	unsigned int enc_bit, mask_bit;
5228 	u64 msr, mask;
5229 
5230 	/* If there is no memory encryption support, use existing mask */
5231 	if (cpuid_eax(0x80000000) < 0x8000001f)
5232 		return;
5233 
5234 	/* If memory encryption is not enabled, use existing mask */
5235 	rdmsrl(MSR_AMD64_SYSCFG, msr);
5236 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5237 		return;
5238 
5239 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5240 	mask_bit = boot_cpu_data.x86_phys_bits;
5241 
5242 	/* Increment the mask bit if it is the same as the encryption bit */
5243 	if (enc_bit == mask_bit)
5244 		mask_bit++;
5245 
5246 	/*
5247 	 * If the mask bit location is below 52, then some bits above the
5248 	 * physical addressing limit will always be reserved, so use the
5249 	 * rsvd_bits() function to generate the mask. This mask, along with
5250 	 * the present bit, will be used to generate a page fault with
5251 	 * PFER.RSV = 1.
5252 	 *
5253 	 * If the mask bit location is 52 (or above), then clear the mask.
5254 	 */
5255 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5256 
5257 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5258 }
5259 
svm_set_cpu_caps(void)5260 static __init void svm_set_cpu_caps(void)
5261 {
5262 	kvm_set_cpu_caps();
5263 
5264 	kvm_caps.supported_perf_cap = 0;
5265 	kvm_caps.supported_xss = 0;
5266 
5267 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
5268 	if (nested) {
5269 		kvm_cpu_cap_set(X86_FEATURE_SVM);
5270 		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5271 
5272 		/*
5273 		 * KVM currently flushes TLBs on *every* nested SVM transition,
5274 		 * and so for all intents and purposes KVM supports flushing by
5275 		 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
5276 		 */
5277 		kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);
5278 
5279 		if (nrips)
5280 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5281 
5282 		if (npt_enabled)
5283 			kvm_cpu_cap_set(X86_FEATURE_NPT);
5284 
5285 		if (tsc_scaling)
5286 			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5287 
5288 		if (vls)
5289 			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5290 		if (lbrv)
5291 			kvm_cpu_cap_set(X86_FEATURE_LBRV);
5292 
5293 		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5294 			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5295 
5296 		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5297 			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5298 
5299 		if (vgif)
5300 			kvm_cpu_cap_set(X86_FEATURE_VGIF);
5301 
5302 		if (vnmi)
5303 			kvm_cpu_cap_set(X86_FEATURE_VNMI);
5304 
5305 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
5306 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5307 	}
5308 
5309 	/* CPUID 0x80000008 */
5310 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5311 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
5312 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5313 
5314 	if (enable_pmu) {
5315 		/*
5316 		 * Enumerate support for PERFCTR_CORE if and only if KVM has
5317 		 * access to enough counters to virtualize "core" support,
5318 		 * otherwise limit vPMU support to the legacy number of counters.
5319 		 */
5320 		if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5321 			kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5322 							  kvm_pmu_cap.num_counters_gp);
5323 		else
5324 			kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5325 
5326 		if (kvm_pmu_cap.version != 2 ||
5327 		    !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5328 			kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5329 	}
5330 
5331 	/* CPUID 0x8000001F (SME/SEV features) */
5332 	sev_set_cpu_caps();
5333 
5334 	/* Don't advertise Bus Lock Detect to guest if SVM support is absent */
5335 	kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT);
5336 }
5337 
svm_hardware_setup(void)5338 static __init int svm_hardware_setup(void)
5339 {
5340 	int cpu;
5341 	struct page *iopm_pages;
5342 	void *iopm_va;
5343 	int r;
5344 	unsigned int order = get_order(IOPM_SIZE);
5345 
5346 	/*
5347 	 * NX is required for shadow paging and for NPT if the NX huge pages
5348 	 * mitigation is enabled.
5349 	 */
5350 	if (!boot_cpu_has(X86_FEATURE_NX)) {
5351 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
5352 		return -EOPNOTSUPP;
5353 	}
5354 	kvm_enable_efer_bits(EFER_NX);
5355 
5356 	iopm_pages = alloc_pages(GFP_KERNEL, order);
5357 
5358 	if (!iopm_pages)
5359 		return -ENOMEM;
5360 
5361 	iopm_va = page_address(iopm_pages);
5362 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
5363 	iopm_base = __sme_page_pa(iopm_pages);
5364 
5365 	init_msrpm_offsets();
5366 
5367 	kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5368 				     XFEATURE_MASK_BNDCSR);
5369 
5370 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5371 		kvm_enable_efer_bits(EFER_FFXSR);
5372 
5373 	if (tsc_scaling) {
5374 		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5375 			tsc_scaling = false;
5376 		} else {
5377 			pr_info("TSC scaling supported\n");
5378 			kvm_caps.has_tsc_control = true;
5379 		}
5380 	}
5381 	kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5382 	kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5383 
5384 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5385 
5386 	if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5387 		kvm_enable_efer_bits(EFER_AUTOIBRS);
5388 
5389 	/* Check for pause filtering support */
5390 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5391 		pause_filter_count = 0;
5392 		pause_filter_thresh = 0;
5393 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5394 		pause_filter_thresh = 0;
5395 	}
5396 
5397 	if (nested) {
5398 		pr_info("Nested Virtualization enabled\n");
5399 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5400 	}
5401 
5402 	/*
5403 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5404 	 * NPT isn't supported if the host is using 2-level paging since host
5405 	 * CR4 is unchanged on VMRUN.
5406 	 */
5407 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5408 		npt_enabled = false;
5409 
5410 	if (!boot_cpu_has(X86_FEATURE_NPT))
5411 		npt_enabled = false;
5412 
5413 	/* Force VM NPT level equal to the host's paging level */
5414 	kvm_configure_mmu(npt_enabled, get_npt_level(),
5415 			  get_npt_level(), PG_LEVEL_1G);
5416 	pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled));
5417 
5418 	/* Setup shadow_me_value and shadow_me_mask */
5419 	kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5420 
5421 	svm_adjust_mmio_mask();
5422 
5423 	nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5424 
5425 	if (lbrv) {
5426 		if (!boot_cpu_has(X86_FEATURE_LBRV))
5427 			lbrv = false;
5428 		else
5429 			pr_info("LBR virtualization supported\n");
5430 	}
5431 	/*
5432 	 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5433 	 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5434 	 */
5435 	sev_hardware_setup();
5436 
5437 	svm_hv_hardware_setup();
5438 
5439 	for_each_possible_cpu(cpu) {
5440 		r = svm_cpu_init(cpu);
5441 		if (r)
5442 			goto err;
5443 	}
5444 
5445 	enable_apicv = avic = avic && avic_hardware_setup();
5446 
5447 	if (!enable_apicv) {
5448 		svm_x86_ops.vcpu_blocking = NULL;
5449 		svm_x86_ops.vcpu_unblocking = NULL;
5450 		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5451 	} else if (!x2avic_enabled) {
5452 		svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5453 	}
5454 
5455 	if (vls) {
5456 		if (!npt_enabled ||
5457 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5458 		    !IS_ENABLED(CONFIG_X86_64)) {
5459 			vls = false;
5460 		} else {
5461 			pr_info("Virtual VMLOAD VMSAVE supported\n");
5462 		}
5463 	}
5464 
5465 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5466 		svm_gp_erratum_intercept = false;
5467 
5468 	if (vgif) {
5469 		if (!boot_cpu_has(X86_FEATURE_VGIF))
5470 			vgif = false;
5471 		else
5472 			pr_info("Virtual GIF supported\n");
5473 	}
5474 
5475 	vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5476 	if (vnmi)
5477 		pr_info("Virtual NMI enabled\n");
5478 
5479 	if (!vnmi) {
5480 		svm_x86_ops.is_vnmi_pending = NULL;
5481 		svm_x86_ops.set_vnmi_pending = NULL;
5482 	}
5483 
5484 	if (!enable_pmu)
5485 		pr_info("PMU virtualization is disabled\n");
5486 
5487 	svm_set_cpu_caps();
5488 
5489 	/*
5490 	 * It seems that on AMD processors PTE's accessed bit is
5491 	 * being set by the CPU hardware before the NPF vmexit.
5492 	 * This is not expected behaviour and our tests fail because
5493 	 * of it.
5494 	 * A workaround here is to disable support for
5495 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5496 	 * In this case userspace can know if there is support using
5497 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5498 	 * it
5499 	 * If future AMD CPU models change the behaviour described above,
5500 	 * this variable can be changed accordingly
5501 	 */
5502 	allow_smaller_maxphyaddr = !npt_enabled;
5503 
5504 	return 0;
5505 
5506 err:
5507 	svm_hardware_unsetup();
5508 	return r;
5509 }
5510 
5511 
5512 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5513 	.hardware_setup = svm_hardware_setup,
5514 
5515 	.runtime_ops = &svm_x86_ops,
5516 	.pmu_ops = &amd_pmu_ops,
5517 };
5518 
__svm_exit(void)5519 static void __svm_exit(void)
5520 {
5521 	kvm_x86_vendor_exit();
5522 }
5523 
svm_init(void)5524 static int __init svm_init(void)
5525 {
5526 	int r;
5527 
5528 	__unused_size_checks();
5529 
5530 	if (!kvm_is_svm_supported())
5531 		return -EOPNOTSUPP;
5532 
5533 	r = kvm_x86_vendor_init(&svm_init_ops);
5534 	if (r)
5535 		return r;
5536 
5537 	/*
5538 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5539 	 * exposed to userspace!
5540 	 */
5541 	r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5542 		     THIS_MODULE);
5543 	if (r)
5544 		goto err_kvm_init;
5545 
5546 	return 0;
5547 
5548 err_kvm_init:
5549 	__svm_exit();
5550 	return r;
5551 }
5552 
svm_exit(void)5553 static void __exit svm_exit(void)
5554 {
5555 	kvm_exit();
5556 	__svm_exit();
5557 }
5558 
5559 module_init(svm_init)
5560 module_exit(svm_exit)
5561