1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31 #include <linux/string_choices.h>
32 #include <linux/mutex.h>
33
34 #include <asm/apic.h>
35 #include <asm/msr.h>
36 #include <asm/perf_event.h>
37 #include <asm/tlbflush.h>
38 #include <asm/desc.h>
39 #include <asm/debugreg.h>
40 #include <asm/kvm_para.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/spec-ctrl.h>
43 #include <asm/cpu_device_id.h>
44 #include <asm/traps.h>
45 #include <asm/reboot.h>
46 #include <asm/fpu/api.h>
47
48 #include <trace/events/ipi.h>
49
50 #include "trace.h"
51
52 #include "svm.h"
53 #include "svm_ops.h"
54
55 #include "kvm_onhyperv.h"
56 #include "svm_onhyperv.h"
57
58 MODULE_AUTHOR("Qumranet");
59 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions");
60 MODULE_LICENSE("GPL");
61
62 #ifdef MODULE
63 static const struct x86_cpu_id svm_cpu_id[] = {
64 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
65 {}
66 };
67 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
68 #endif
69
70 #define SEG_TYPE_LDT 2
71 #define SEG_TYPE_BUSY_TSS16 3
72
73 static bool erratum_383_found __read_mostly;
74
75 /*
76 * Set osvw_len to higher value when updated Revision Guides
77 * are published and we know what the new status bits are
78 */
79 static uint64_t osvw_len = 4, osvw_status;
80
81 static DEFINE_PER_CPU(u64, current_tsc_ratio);
82
83 /*
84 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
85 * pause_filter_count: On processors that support Pause filtering(indicated
86 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
87 * count value. On VMRUN this value is loaded into an internal counter.
88 * Each time a pause instruction is executed, this counter is decremented
89 * until it reaches zero at which time a #VMEXIT is generated if pause
90 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
91 * Intercept Filtering for more details.
92 * This also indicate if ple logic enabled.
93 *
94 * pause_filter_thresh: In addition, some processor families support advanced
95 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
96 * the amount of time a guest is allowed to execute in a pause loop.
97 * In this mode, a 16-bit pause filter threshold field is added in the
98 * VMCB. The threshold value is a cycle count that is used to reset the
99 * pause counter. As with simple pause filtering, VMRUN loads the pause
100 * count value from VMCB into an internal counter. Then, on each pause
101 * instruction the hardware checks the elapsed number of cycles since
102 * the most recent pause instruction against the pause filter threshold.
103 * If the elapsed cycle count is greater than the pause filter threshold,
104 * then the internal pause count is reloaded from the VMCB and execution
105 * continues. If the elapsed cycle count is less than the pause filter
106 * threshold, then the internal pause count is decremented. If the count
107 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
108 * triggered. If advanced pause filtering is supported and pause filter
109 * threshold field is set to zero, the filter will operate in the simpler,
110 * count only mode.
111 */
112
113 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
114 module_param(pause_filter_thresh, ushort, 0444);
115
116 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
117 module_param(pause_filter_count, ushort, 0444);
118
119 /* Default doubles per-vcpu window every exit. */
120 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
121 module_param(pause_filter_count_grow, ushort, 0444);
122
123 /* Default resets per-vcpu window every exit to pause_filter_count. */
124 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
125 module_param(pause_filter_count_shrink, ushort, 0444);
126
127 /* Default is to compute the maximum so we can never overflow. */
128 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
129 module_param(pause_filter_count_max, ushort, 0444);
130
131 /*
132 * Use nested page tables by default. Note, NPT may get forced off by
133 * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
134 */
135 bool npt_enabled = true;
136 module_param_named(npt, npt_enabled, bool, 0444);
137
138 /* allow nested virtualization in KVM/SVM */
139 static int nested = true;
140 module_param(nested, int, 0444);
141
142 /* enable/disable Next RIP Save */
143 int nrips = true;
144 module_param(nrips, int, 0444);
145
146 /* enable/disable Virtual VMLOAD VMSAVE */
147 static int vls = true;
148 module_param(vls, int, 0444);
149
150 /* enable/disable Virtual GIF */
151 int vgif = true;
152 module_param(vgif, int, 0444);
153
154 /* enable/disable LBR virtualization */
155 int lbrv = true;
156 module_param(lbrv, int, 0444);
157
158 static int tsc_scaling = true;
159 module_param(tsc_scaling, int, 0444);
160
161 module_param(enable_device_posted_irqs, bool, 0444);
162
163 bool __read_mostly dump_invalid_vmcb;
164 module_param(dump_invalid_vmcb, bool, 0644);
165
166
167 bool intercept_smi = true;
168 module_param(intercept_smi, bool, 0444);
169
170 bool vnmi = true;
171 module_param(vnmi, bool, 0444);
172
173 static bool svm_gp_erratum_intercept = true;
174
175 static u8 rsm_ins_bytes[] = "\x0f\xaa";
176
177 static unsigned long iopm_base;
178
179 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
180
181 static DEFINE_MUTEX(vmcb_dump_mutex);
182
183 /*
184 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via
185 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
186 *
187 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
188 * defer the restoration of TSC_AUX until the CPU returns to userspace.
189 */
190 int tsc_aux_uret_slot __ro_after_init = -1;
191
get_npt_level(void)192 static int get_npt_level(void)
193 {
194 #ifdef CONFIG_X86_64
195 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
196 #else
197 return PT32E_ROOT_LEVEL;
198 #endif
199 }
200
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)201 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
202 {
203 struct vcpu_svm *svm = to_svm(vcpu);
204 u64 old_efer = vcpu->arch.efer;
205 vcpu->arch.efer = efer;
206
207 if (!npt_enabled) {
208 /* Shadow paging assumes NX to be available. */
209 efer |= EFER_NX;
210
211 if (!(efer & EFER_LMA))
212 efer &= ~EFER_LME;
213 }
214
215 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
216 if (!(efer & EFER_SVME)) {
217 svm_leave_nested(vcpu);
218 svm_set_gif(svm, true);
219 /* #GP intercept is still needed for vmware backdoor */
220 if (!enable_vmware_backdoor)
221 clr_exception_intercept(svm, GP_VECTOR);
222
223 /*
224 * Free the nested guest state, unless we are in SMM.
225 * In this case we will return to the nested guest
226 * as soon as we leave SMM.
227 */
228 if (!is_smm(vcpu))
229 svm_free_nested(svm);
230
231 } else {
232 int ret = svm_allocate_nested(svm);
233
234 if (ret) {
235 vcpu->arch.efer = old_efer;
236 return ret;
237 }
238
239 /*
240 * Never intercept #GP for SEV guests, KVM can't
241 * decrypt guest memory to workaround the erratum.
242 */
243 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
244 set_exception_intercept(svm, GP_VECTOR);
245 }
246 }
247
248 svm->vmcb->save.efer = efer | EFER_SVME;
249 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
250 return 0;
251 }
252
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)253 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
254 {
255 struct vcpu_svm *svm = to_svm(vcpu);
256 u32 ret = 0;
257
258 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
259 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
260 return ret;
261 }
262
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)263 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
264 {
265 struct vcpu_svm *svm = to_svm(vcpu);
266
267 if (mask == 0)
268 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
269 else
270 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
271
272 }
273
__svm_skip_emulated_instruction(struct kvm_vcpu * vcpu,int emul_type,bool commit_side_effects)274 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
275 int emul_type,
276 bool commit_side_effects)
277 {
278 struct vcpu_svm *svm = to_svm(vcpu);
279 unsigned long old_rflags;
280
281 /*
282 * SEV-ES does not expose the next RIP. The RIP update is controlled by
283 * the type of exit and the #VC handler in the guest.
284 */
285 if (sev_es_guest(vcpu->kvm))
286 goto done;
287
288 if (nrips && svm->vmcb->control.next_rip != 0) {
289 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
290 svm->next_rip = svm->vmcb->control.next_rip;
291 }
292
293 if (!svm->next_rip) {
294 if (unlikely(!commit_side_effects))
295 old_rflags = svm->vmcb->save.rflags;
296
297 if (!kvm_emulate_instruction(vcpu, emul_type))
298 return 0;
299
300 if (unlikely(!commit_side_effects))
301 svm->vmcb->save.rflags = old_rflags;
302 } else {
303 kvm_rip_write(vcpu, svm->next_rip);
304 }
305
306 done:
307 if (likely(commit_side_effects))
308 svm_set_interrupt_shadow(vcpu, 0);
309
310 return 1;
311 }
312
svm_skip_emulated_instruction(struct kvm_vcpu * vcpu)313 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
314 {
315 return __svm_skip_emulated_instruction(vcpu, EMULTYPE_SKIP, true);
316 }
317
svm_update_soft_interrupt_rip(struct kvm_vcpu * vcpu,u8 vector)318 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu, u8 vector)
319 {
320 const int emul_type = EMULTYPE_SKIP | EMULTYPE_SKIP_SOFT_INT |
321 EMULTYPE_SET_SOFT_INT_VECTOR(vector);
322 unsigned long rip, old_rip = kvm_rip_read(vcpu);
323 struct vcpu_svm *svm = to_svm(vcpu);
324
325 /*
326 * Due to architectural shortcomings, the CPU doesn't always provide
327 * NextRIP, e.g. if KVM intercepted an exception that occurred while
328 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip
329 * the instruction even if NextRIP is supported to acquire the next
330 * RIP so that it can be shoved into the NextRIP field, otherwise
331 * hardware will fail to advance guest RIP during event injection.
332 * Drop the exception/interrupt if emulation fails and effectively
333 * retry the instruction, it's the least awful option. If NRIPS is
334 * in use, the skip must not commit any side effects such as clearing
335 * the interrupt shadow or RFLAGS.RF.
336 */
337 if (!__svm_skip_emulated_instruction(vcpu, emul_type, !nrips))
338 return -EIO;
339
340 rip = kvm_rip_read(vcpu);
341
342 /*
343 * Save the injection information, even when using next_rip, as the
344 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
345 * doesn't complete due to a VM-Exit occurring while the CPU is
346 * vectoring the event. Decoding the instruction isn't guaranteed to
347 * work as there may be no backing instruction, e.g. if the event is
348 * being injected by L1 for L2, or if the guest is patching INT3 into
349 * a different instruction.
350 */
351 svm->soft_int_injected = true;
352 svm->soft_int_csbase = svm->vmcb->save.cs.base;
353 svm->soft_int_old_rip = old_rip;
354 svm->soft_int_next_rip = rip;
355
356 if (nrips)
357 kvm_rip_write(vcpu, old_rip);
358
359 if (static_cpu_has(X86_FEATURE_NRIPS))
360 svm->vmcb->control.next_rip = rip;
361
362 return 0;
363 }
364
svm_inject_exception(struct kvm_vcpu * vcpu)365 static void svm_inject_exception(struct kvm_vcpu *vcpu)
366 {
367 struct kvm_queued_exception *ex = &vcpu->arch.exception;
368 struct vcpu_svm *svm = to_svm(vcpu);
369
370 kvm_deliver_exception_payload(vcpu, ex);
371
372 if (kvm_exception_is_soft(ex->vector) &&
373 svm_update_soft_interrupt_rip(vcpu, ex->vector))
374 return;
375
376 svm->vmcb->control.event_inj = ex->vector
377 | SVM_EVTINJ_VALID
378 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
379 | SVM_EVTINJ_TYPE_EXEPT;
380 svm->vmcb->control.event_inj_err = ex->error_code;
381 }
382
svm_init_erratum_383(void)383 static void svm_init_erratum_383(void)
384 {
385 u64 val;
386
387 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
388 return;
389
390 /* Use _safe variants to not break nested virtualization */
391 if (native_read_msr_safe(MSR_AMD64_DC_CFG, &val))
392 return;
393
394 val |= (1ULL << 47);
395
396 native_write_msr_safe(MSR_AMD64_DC_CFG, val);
397
398 erratum_383_found = true;
399 }
400
svm_init_osvw(struct kvm_vcpu * vcpu)401 static void svm_init_osvw(struct kvm_vcpu *vcpu)
402 {
403 /*
404 * Guests should see errata 400 and 415 as fixed (assuming that
405 * HLT and IO instructions are intercepted).
406 */
407 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
408 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
409
410 /*
411 * By increasing VCPU's osvw.length to 3 we are telling the guest that
412 * all osvw.status bits inside that length, including bit 0 (which is
413 * reserved for erratum 298), are valid. However, if host processor's
414 * osvw_len is 0 then osvw_status[0] carries no information. We need to
415 * be conservative here and therefore we tell the guest that erratum 298
416 * is present (because we really don't know).
417 */
418 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
419 vcpu->arch.osvw.status |= 1;
420 }
421
__kvm_is_svm_supported(void)422 static bool __kvm_is_svm_supported(void)
423 {
424 int cpu = smp_processor_id();
425 struct cpuinfo_x86 *c = &cpu_data(cpu);
426
427 if (c->x86_vendor != X86_VENDOR_AMD &&
428 c->x86_vendor != X86_VENDOR_HYGON) {
429 pr_err("CPU %d isn't AMD or Hygon\n", cpu);
430 return false;
431 }
432
433 if (!cpu_has(c, X86_FEATURE_SVM)) {
434 pr_err("SVM not supported by CPU %d\n", cpu);
435 return false;
436 }
437
438 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
439 pr_info("KVM is unsupported when running as an SEV guest\n");
440 return false;
441 }
442
443 return true;
444 }
445
kvm_is_svm_supported(void)446 static bool kvm_is_svm_supported(void)
447 {
448 bool supported;
449
450 migrate_disable();
451 supported = __kvm_is_svm_supported();
452 migrate_enable();
453
454 return supported;
455 }
456
svm_check_processor_compat(void)457 static int svm_check_processor_compat(void)
458 {
459 if (!__kvm_is_svm_supported())
460 return -EIO;
461
462 return 0;
463 }
464
__svm_write_tsc_multiplier(u64 multiplier)465 static void __svm_write_tsc_multiplier(u64 multiplier)
466 {
467 if (multiplier == __this_cpu_read(current_tsc_ratio))
468 return;
469
470 wrmsrq(MSR_AMD64_TSC_RATIO, multiplier);
471 __this_cpu_write(current_tsc_ratio, multiplier);
472 }
473
sev_es_host_save_area(struct svm_cpu_data * sd)474 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd)
475 {
476 return &sd->save_area->host_sev_es_save;
477 }
478
kvm_cpu_svm_disable(void)479 static inline void kvm_cpu_svm_disable(void)
480 {
481 uint64_t efer;
482
483 wrmsrq(MSR_VM_HSAVE_PA, 0);
484 rdmsrq(MSR_EFER, efer);
485 if (efer & EFER_SVME) {
486 /*
487 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
488 * NMI aren't blocked.
489 */
490 stgi();
491 wrmsrq(MSR_EFER, efer & ~EFER_SVME);
492 }
493 }
494
svm_emergency_disable_virtualization_cpu(void)495 static void svm_emergency_disable_virtualization_cpu(void)
496 {
497 kvm_rebooting = true;
498
499 kvm_cpu_svm_disable();
500 }
501
svm_disable_virtualization_cpu(void)502 static void svm_disable_virtualization_cpu(void)
503 {
504 /* Make sure we clean up behind us */
505 if (tsc_scaling)
506 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
507
508 kvm_cpu_svm_disable();
509
510 amd_pmu_disable_virt();
511 }
512
svm_enable_virtualization_cpu(void)513 static int svm_enable_virtualization_cpu(void)
514 {
515
516 struct svm_cpu_data *sd;
517 uint64_t efer;
518 int me = raw_smp_processor_id();
519
520 rdmsrq(MSR_EFER, efer);
521 if (efer & EFER_SVME)
522 return -EBUSY;
523
524 sd = per_cpu_ptr(&svm_data, me);
525 sd->asid_generation = 1;
526 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
527 sd->next_asid = sd->max_asid + 1;
528 sd->min_asid = max_sev_asid + 1;
529
530 wrmsrq(MSR_EFER, efer | EFER_SVME);
531
532 wrmsrq(MSR_VM_HSAVE_PA, sd->save_area_pa);
533
534 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
535 /*
536 * Set the default value, even if we don't use TSC scaling
537 * to avoid having stale value in the msr
538 */
539 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
540 }
541
542
543 /*
544 * Get OSVW bits.
545 *
546 * Note that it is possible to have a system with mixed processor
547 * revisions and therefore different OSVW bits. If bits are not the same
548 * on different processors then choose the worst case (i.e. if erratum
549 * is present on one processor and not on another then assume that the
550 * erratum is present everywhere).
551 */
552 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
553 u64 len, status = 0;
554 int err;
555
556 err = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &len);
557 if (!err)
558 err = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, &status);
559
560 if (err)
561 osvw_status = osvw_len = 0;
562 else {
563 if (len < osvw_len)
564 osvw_len = len;
565 osvw_status |= status;
566 osvw_status &= (1ULL << osvw_len) - 1;
567 }
568 } else
569 osvw_status = osvw_len = 0;
570
571 svm_init_erratum_383();
572
573 amd_pmu_enable_virt();
574
575 return 0;
576 }
577
svm_cpu_uninit(int cpu)578 static void svm_cpu_uninit(int cpu)
579 {
580 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
581
582 if (!sd->save_area)
583 return;
584
585 kfree(sd->sev_vmcbs);
586 __free_page(__sme_pa_to_page(sd->save_area_pa));
587 sd->save_area_pa = 0;
588 sd->save_area = NULL;
589 }
590
svm_cpu_init(int cpu)591 static int svm_cpu_init(int cpu)
592 {
593 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
594 struct page *save_area_page;
595 int ret = -ENOMEM;
596
597 memset(sd, 0, sizeof(struct svm_cpu_data));
598 save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL);
599 if (!save_area_page)
600 return ret;
601
602 ret = sev_cpu_init(sd);
603 if (ret)
604 goto free_save_area;
605
606 sd->save_area = page_address(save_area_page);
607 sd->save_area_pa = __sme_page_pa(save_area_page);
608 return 0;
609
610 free_save_area:
611 __free_page(save_area_page);
612 return ret;
613
614 }
615
set_dr_intercepts(struct vcpu_svm * svm)616 static void set_dr_intercepts(struct vcpu_svm *svm)
617 {
618 struct vmcb *vmcb = svm->vmcb01.ptr;
619
620 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
621 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
622 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
623 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
624 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
625 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
626 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
627 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
628 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
629 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
630 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
631 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
632 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
633 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
634 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
635 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
636
637 recalc_intercepts(svm);
638 }
639
clr_dr_intercepts(struct vcpu_svm * svm)640 static void clr_dr_intercepts(struct vcpu_svm *svm)
641 {
642 struct vmcb *vmcb = svm->vmcb01.ptr;
643
644 vmcb->control.intercepts[INTERCEPT_DR] = 0;
645
646 recalc_intercepts(svm);
647 }
648
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)649 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
650 {
651 /*
652 * For non-nested case:
653 * If the L01 MSR bitmap does not intercept the MSR, then we need to
654 * save it.
655 *
656 * For nested case:
657 * If the L02 MSR bitmap does not intercept the MSR, then we need to
658 * save it.
659 */
660 void *msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm :
661 to_svm(vcpu)->msrpm;
662
663 return svm_test_msr_bitmap_write(msrpm, msr);
664 }
665
svm_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool set)666 void svm_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set)
667 {
668 struct vcpu_svm *svm = to_svm(vcpu);
669 void *msrpm = svm->msrpm;
670
671 /* Don't disable interception for MSRs userspace wants to handle. */
672 if (type & MSR_TYPE_R) {
673 if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
674 svm_clear_msr_bitmap_read(msrpm, msr);
675 else
676 svm_set_msr_bitmap_read(msrpm, msr);
677 }
678
679 if (type & MSR_TYPE_W) {
680 if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
681 svm_clear_msr_bitmap_write(msrpm, msr);
682 else
683 svm_set_msr_bitmap_write(msrpm, msr);
684 }
685
686 svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
687 svm->nested.force_msr_bitmap_recalc = true;
688 }
689
svm_alloc_permissions_map(unsigned long size,gfp_t gfp_mask)690 void *svm_alloc_permissions_map(unsigned long size, gfp_t gfp_mask)
691 {
692 unsigned int order = get_order(size);
693 struct page *pages = alloc_pages(gfp_mask, order);
694 void *pm;
695
696 if (!pages)
697 return NULL;
698
699 /*
700 * Set all bits in the permissions map so that all MSR and I/O accesses
701 * are intercepted by default.
702 */
703 pm = page_address(pages);
704 memset(pm, 0xff, PAGE_SIZE * (1 << order));
705
706 return pm;
707 }
708
svm_recalc_lbr_msr_intercepts(struct kvm_vcpu * vcpu)709 static void svm_recalc_lbr_msr_intercepts(struct kvm_vcpu *vcpu)
710 {
711 struct vcpu_svm *svm = to_svm(vcpu);
712 bool intercept = !(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK);
713
714 if (intercept == svm->lbr_msrs_intercepted)
715 return;
716
717 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHFROMIP, MSR_TYPE_RW, intercept);
718 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHTOIP, MSR_TYPE_RW, intercept);
719 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTFROMIP, MSR_TYPE_RW, intercept);
720 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTTOIP, MSR_TYPE_RW, intercept);
721
722 if (sev_es_guest(vcpu->kvm))
723 svm_set_intercept_for_msr(vcpu, MSR_IA32_DEBUGCTLMSR, MSR_TYPE_RW, intercept);
724
725 svm->lbr_msrs_intercepted = intercept;
726 }
727
svm_vcpu_free_msrpm(void * msrpm)728 void svm_vcpu_free_msrpm(void *msrpm)
729 {
730 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
731 }
732
svm_recalc_msr_intercepts(struct kvm_vcpu * vcpu)733 static void svm_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
734 {
735 struct vcpu_svm *svm = to_svm(vcpu);
736
737 svm_disable_intercept_for_msr(vcpu, MSR_STAR, MSR_TYPE_RW);
738 svm_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
739
740 #ifdef CONFIG_X86_64
741 svm_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
742 svm_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
743 svm_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
744 svm_disable_intercept_for_msr(vcpu, MSR_LSTAR, MSR_TYPE_RW);
745 svm_disable_intercept_for_msr(vcpu, MSR_CSTAR, MSR_TYPE_RW);
746 svm_disable_intercept_for_msr(vcpu, MSR_SYSCALL_MASK, MSR_TYPE_RW);
747 #endif
748
749 if (lbrv)
750 svm_recalc_lbr_msr_intercepts(vcpu);
751
752 if (cpu_feature_enabled(X86_FEATURE_IBPB))
753 svm_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
754 !guest_has_pred_cmd_msr(vcpu));
755
756 if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D))
757 svm_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
758 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
759
760 /*
761 * Disable interception of SPEC_CTRL if KVM doesn't need to manually
762 * context switch the MSR (SPEC_CTRL is virtualized by the CPU), or if
763 * the guest has a non-zero SPEC_CTRL value, i.e. is likely actively
764 * using SPEC_CTRL.
765 */
766 if (cpu_feature_enabled(X86_FEATURE_V_SPEC_CTRL))
767 svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
768 !guest_has_spec_ctrl_msr(vcpu));
769 else
770 svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
771 !svm->spec_ctrl);
772
773 /*
774 * Intercept SYSENTER_EIP and SYSENTER_ESP when emulating an Intel CPU,
775 * as AMD hardware only store 32 bits, whereas Intel CPUs track 64 bits.
776 */
777 svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW,
778 guest_cpuid_is_intel_compatible(vcpu));
779 svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW,
780 guest_cpuid_is_intel_compatible(vcpu));
781
782 if (kvm_aperfmperf_in_guest(vcpu->kvm)) {
783 svm_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R);
784 svm_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R);
785 }
786
787 if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) {
788 bool shstk_enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
789
790 svm_set_intercept_for_msr(vcpu, MSR_IA32_U_CET, MSR_TYPE_RW, !shstk_enabled);
791 svm_set_intercept_for_msr(vcpu, MSR_IA32_S_CET, MSR_TYPE_RW, !shstk_enabled);
792 svm_set_intercept_for_msr(vcpu, MSR_IA32_PL0_SSP, MSR_TYPE_RW, !shstk_enabled);
793 svm_set_intercept_for_msr(vcpu, MSR_IA32_PL1_SSP, MSR_TYPE_RW, !shstk_enabled);
794 svm_set_intercept_for_msr(vcpu, MSR_IA32_PL2_SSP, MSR_TYPE_RW, !shstk_enabled);
795 svm_set_intercept_for_msr(vcpu, MSR_IA32_PL3_SSP, MSR_TYPE_RW, !shstk_enabled);
796 }
797
798 if (sev_es_guest(vcpu->kvm))
799 sev_es_recalc_msr_intercepts(vcpu);
800
801 /*
802 * x2APIC intercepts are modified on-demand and cannot be filtered by
803 * userspace.
804 */
805 }
806
svm_copy_lbrs(struct vmcb * to_vmcb,struct vmcb * from_vmcb)807 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
808 {
809 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl;
810 to_vmcb->save.br_from = from_vmcb->save.br_from;
811 to_vmcb->save.br_to = from_vmcb->save.br_to;
812 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from;
813 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to;
814
815 vmcb_mark_dirty(to_vmcb, VMCB_LBR);
816 }
817
__svm_enable_lbrv(struct kvm_vcpu * vcpu)818 static void __svm_enable_lbrv(struct kvm_vcpu *vcpu)
819 {
820 to_svm(vcpu)->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
821 }
822
svm_enable_lbrv(struct kvm_vcpu * vcpu)823 void svm_enable_lbrv(struct kvm_vcpu *vcpu)
824 {
825 __svm_enable_lbrv(vcpu);
826 svm_recalc_lbr_msr_intercepts(vcpu);
827 }
828
__svm_disable_lbrv(struct kvm_vcpu * vcpu)829 static void __svm_disable_lbrv(struct kvm_vcpu *vcpu)
830 {
831 KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm);
832 to_svm(vcpu)->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
833 }
834
svm_update_lbrv(struct kvm_vcpu * vcpu)835 void svm_update_lbrv(struct kvm_vcpu *vcpu)
836 {
837 struct vcpu_svm *svm = to_svm(vcpu);
838 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
839 bool enable_lbrv = (svm->vmcb->save.dbgctl & DEBUGCTLMSR_LBR) ||
840 (is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
841 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
842
843 if (enable_lbrv && !current_enable_lbrv)
844 __svm_enable_lbrv(vcpu);
845 else if (!enable_lbrv && current_enable_lbrv)
846 __svm_disable_lbrv(vcpu);
847
848 /*
849 * During nested transitions, it is possible that the current VMCB has
850 * LBR_CTL set, but the previous LBR_CTL had it cleared (or vice versa).
851 * In this case, even though LBR_CTL does not need an update, intercepts
852 * do, so always recalculate the intercepts here.
853 */
854 svm_recalc_lbr_msr_intercepts(vcpu);
855 }
856
disable_nmi_singlestep(struct vcpu_svm * svm)857 void disable_nmi_singlestep(struct vcpu_svm *svm)
858 {
859 svm->nmi_singlestep = false;
860
861 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
862 /* Clear our flags if they were not set by the guest */
863 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
864 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
865 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
866 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
867 }
868 }
869
grow_ple_window(struct kvm_vcpu * vcpu)870 static void grow_ple_window(struct kvm_vcpu *vcpu)
871 {
872 struct vcpu_svm *svm = to_svm(vcpu);
873 struct vmcb_control_area *control = &svm->vmcb->control;
874 int old = control->pause_filter_count;
875
876 if (kvm_pause_in_guest(vcpu->kvm))
877 return;
878
879 control->pause_filter_count = __grow_ple_window(old,
880 pause_filter_count,
881 pause_filter_count_grow,
882 pause_filter_count_max);
883
884 if (control->pause_filter_count != old) {
885 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
886 trace_kvm_ple_window_update(vcpu->vcpu_id,
887 control->pause_filter_count, old);
888 }
889 }
890
shrink_ple_window(struct kvm_vcpu * vcpu)891 static void shrink_ple_window(struct kvm_vcpu *vcpu)
892 {
893 struct vcpu_svm *svm = to_svm(vcpu);
894 struct vmcb_control_area *control = &svm->vmcb->control;
895 int old = control->pause_filter_count;
896
897 if (kvm_pause_in_guest(vcpu->kvm))
898 return;
899
900 control->pause_filter_count =
901 __shrink_ple_window(old,
902 pause_filter_count,
903 pause_filter_count_shrink,
904 pause_filter_count);
905 if (control->pause_filter_count != old) {
906 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
907 trace_kvm_ple_window_update(vcpu->vcpu_id,
908 control->pause_filter_count, old);
909 }
910 }
911
svm_hardware_unsetup(void)912 static void svm_hardware_unsetup(void)
913 {
914 int cpu;
915
916 avic_hardware_unsetup();
917
918 sev_hardware_unsetup();
919
920 for_each_possible_cpu(cpu)
921 svm_cpu_uninit(cpu);
922
923 __free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE));
924 iopm_base = 0;
925 }
926
init_seg(struct vmcb_seg * seg)927 static void init_seg(struct vmcb_seg *seg)
928 {
929 seg->selector = 0;
930 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
931 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
932 seg->limit = 0xffff;
933 seg->base = 0;
934 }
935
init_sys_seg(struct vmcb_seg * seg,uint32_t type)936 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
937 {
938 seg->selector = 0;
939 seg->attrib = SVM_SELECTOR_P_MASK | type;
940 seg->limit = 0xffff;
941 seg->base = 0;
942 }
943
svm_get_l2_tsc_offset(struct kvm_vcpu * vcpu)944 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
945 {
946 struct vcpu_svm *svm = to_svm(vcpu);
947
948 return svm->nested.ctl.tsc_offset;
949 }
950
svm_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)951 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
952 {
953 struct vcpu_svm *svm = to_svm(vcpu);
954
955 return svm->tsc_ratio_msr;
956 }
957
svm_write_tsc_offset(struct kvm_vcpu * vcpu)958 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
959 {
960 struct vcpu_svm *svm = to_svm(vcpu);
961
962 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
963 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
964 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
965 }
966
svm_write_tsc_multiplier(struct kvm_vcpu * vcpu)967 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
968 {
969 preempt_disable();
970 if (to_svm(vcpu)->guest_state_loaded)
971 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
972 preempt_enable();
973 }
974
975 /* Evaluate instruction intercepts that depend on guest CPUID features. */
svm_recalc_instruction_intercepts(struct kvm_vcpu * vcpu)976 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu)
977 {
978 struct vcpu_svm *svm = to_svm(vcpu);
979
980 /*
981 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
982 * roots, or if INVPCID is disabled in the guest to inject #UD.
983 */
984 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
985 if (!npt_enabled ||
986 !guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID))
987 svm_set_intercept(svm, INTERCEPT_INVPCID);
988 else
989 svm_clr_intercept(svm, INTERCEPT_INVPCID);
990 }
991
992 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
993 if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP))
994 svm_clr_intercept(svm, INTERCEPT_RDTSCP);
995 else
996 svm_set_intercept(svm, INTERCEPT_RDTSCP);
997 }
998
999 if (guest_cpuid_is_intel_compatible(vcpu)) {
1000 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1001 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1002 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1003 } else {
1004 /*
1005 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1006 * in VMCB and clear intercepts to avoid #VMEXIT.
1007 */
1008 if (vls) {
1009 svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1010 svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1011 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1012 }
1013 }
1014 }
1015
svm_recalc_intercepts(struct kvm_vcpu * vcpu)1016 static void svm_recalc_intercepts(struct kvm_vcpu *vcpu)
1017 {
1018 svm_recalc_instruction_intercepts(vcpu);
1019 svm_recalc_msr_intercepts(vcpu);
1020 }
1021
init_vmcb(struct kvm_vcpu * vcpu,bool init_event)1022 static void init_vmcb(struct kvm_vcpu *vcpu, bool init_event)
1023 {
1024 struct vcpu_svm *svm = to_svm(vcpu);
1025 struct vmcb *vmcb = svm->vmcb01.ptr;
1026 struct vmcb_control_area *control = &vmcb->control;
1027 struct vmcb_save_area *save = &vmcb->save;
1028
1029 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1030 svm_set_intercept(svm, INTERCEPT_CR3_READ);
1031 svm_set_intercept(svm, INTERCEPT_CR4_READ);
1032 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1033 svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1034 svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1035 if (!kvm_vcpu_apicv_active(vcpu))
1036 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1037
1038 set_dr_intercepts(svm);
1039
1040 set_exception_intercept(svm, PF_VECTOR);
1041 set_exception_intercept(svm, UD_VECTOR);
1042 set_exception_intercept(svm, MC_VECTOR);
1043 set_exception_intercept(svm, AC_VECTOR);
1044 set_exception_intercept(svm, DB_VECTOR);
1045 /*
1046 * Guest access to VMware backdoor ports could legitimately
1047 * trigger #GP because of TSS I/O permission bitmap.
1048 * We intercept those #GP and allow access to them anyway
1049 * as VMware does.
1050 */
1051 if (enable_vmware_backdoor)
1052 set_exception_intercept(svm, GP_VECTOR);
1053
1054 svm_set_intercept(svm, INTERCEPT_INTR);
1055 svm_set_intercept(svm, INTERCEPT_NMI);
1056
1057 if (intercept_smi)
1058 svm_set_intercept(svm, INTERCEPT_SMI);
1059
1060 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1061 svm_set_intercept(svm, INTERCEPT_RDPMC);
1062 svm_set_intercept(svm, INTERCEPT_CPUID);
1063 svm_set_intercept(svm, INTERCEPT_INVD);
1064 svm_set_intercept(svm, INTERCEPT_INVLPG);
1065 svm_set_intercept(svm, INTERCEPT_INVLPGA);
1066 svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1067 svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1068 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1069 svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1070 svm_set_intercept(svm, INTERCEPT_VMRUN);
1071 svm_set_intercept(svm, INTERCEPT_VMMCALL);
1072 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1073 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1074 svm_set_intercept(svm, INTERCEPT_STGI);
1075 svm_set_intercept(svm, INTERCEPT_CLGI);
1076 svm_set_intercept(svm, INTERCEPT_SKINIT);
1077 svm_set_intercept(svm, INTERCEPT_WBINVD);
1078 svm_set_intercept(svm, INTERCEPT_XSETBV);
1079 svm_set_intercept(svm, INTERCEPT_RDPRU);
1080 svm_set_intercept(svm, INTERCEPT_RSM);
1081
1082 if (!kvm_mwait_in_guest(vcpu->kvm)) {
1083 svm_set_intercept(svm, INTERCEPT_MONITOR);
1084 svm_set_intercept(svm, INTERCEPT_MWAIT);
1085 }
1086
1087 if (!kvm_hlt_in_guest(vcpu->kvm)) {
1088 if (cpu_feature_enabled(X86_FEATURE_IDLE_HLT))
1089 svm_set_intercept(svm, INTERCEPT_IDLE_HLT);
1090 else
1091 svm_set_intercept(svm, INTERCEPT_HLT);
1092 }
1093
1094 control->iopm_base_pa = iopm_base;
1095 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1096 control->int_ctl = V_INTR_MASKING_MASK;
1097
1098 init_seg(&save->es);
1099 init_seg(&save->ss);
1100 init_seg(&save->ds);
1101 init_seg(&save->fs);
1102 init_seg(&save->gs);
1103
1104 save->cs.selector = 0xf000;
1105 save->cs.base = 0xffff0000;
1106 /* Executable/Readable Code Segment */
1107 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1108 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1109 save->cs.limit = 0xffff;
1110
1111 save->gdtr.base = 0;
1112 save->gdtr.limit = 0xffff;
1113 save->idtr.base = 0;
1114 save->idtr.limit = 0xffff;
1115
1116 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1117 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1118
1119 if (npt_enabled) {
1120 /* Setup VMCB for Nested Paging */
1121 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1122 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1123 clr_exception_intercept(svm, PF_VECTOR);
1124 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1125 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1126 save->g_pat = vcpu->arch.pat;
1127 save->cr3 = 0;
1128 }
1129 svm->current_vmcb->asid_generation = 0;
1130 svm->asid = 0;
1131
1132 svm->nested.vmcb12_gpa = INVALID_GPA;
1133 svm->nested.last_vmcb12_gpa = INVALID_GPA;
1134
1135 if (!kvm_pause_in_guest(vcpu->kvm)) {
1136 control->pause_filter_count = pause_filter_count;
1137 if (pause_filter_thresh)
1138 control->pause_filter_thresh = pause_filter_thresh;
1139 svm_set_intercept(svm, INTERCEPT_PAUSE);
1140 } else {
1141 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1142 }
1143
1144 if (kvm_vcpu_apicv_active(vcpu))
1145 avic_init_vmcb(svm, vmcb);
1146
1147 if (vnmi)
1148 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1149
1150 if (vgif) {
1151 svm_clr_intercept(svm, INTERCEPT_STGI);
1152 svm_clr_intercept(svm, INTERCEPT_CLGI);
1153 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1154 }
1155
1156 if (vcpu->kvm->arch.bus_lock_detection_enabled)
1157 svm_set_intercept(svm, INTERCEPT_BUSLOCK);
1158
1159 if (sev_guest(vcpu->kvm))
1160 sev_init_vmcb(svm, init_event);
1161
1162 svm_hv_init_vmcb(vmcb);
1163
1164 kvm_make_request(KVM_REQ_RECALC_INTERCEPTS, vcpu);
1165
1166 vmcb_mark_all_dirty(vmcb);
1167
1168 enable_gif(svm);
1169 }
1170
__svm_vcpu_reset(struct kvm_vcpu * vcpu)1171 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1172 {
1173 struct vcpu_svm *svm = to_svm(vcpu);
1174
1175 svm_init_osvw(vcpu);
1176
1177 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
1178 vcpu->arch.microcode_version = 0x01000065;
1179 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1180
1181 svm->nmi_masked = false;
1182 svm->awaiting_iret_completion = false;
1183 }
1184
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)1185 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1186 {
1187 struct vcpu_svm *svm = to_svm(vcpu);
1188
1189 svm->spec_ctrl = 0;
1190 svm->virt_spec_ctrl = 0;
1191
1192 init_vmcb(vcpu, init_event);
1193
1194 if (!init_event)
1195 __svm_vcpu_reset(vcpu);
1196 }
1197
svm_switch_vmcb(struct vcpu_svm * svm,struct kvm_vmcb_info * target_vmcb)1198 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1199 {
1200 svm->current_vmcb = target_vmcb;
1201 svm->vmcb = target_vmcb->ptr;
1202 }
1203
svm_vcpu_precreate(struct kvm * kvm)1204 static int svm_vcpu_precreate(struct kvm *kvm)
1205 {
1206 return avic_alloc_physical_id_table(kvm);
1207 }
1208
svm_vcpu_create(struct kvm_vcpu * vcpu)1209 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1210 {
1211 struct vcpu_svm *svm;
1212 struct page *vmcb01_page;
1213 int err;
1214
1215 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1216 svm = to_svm(vcpu);
1217
1218 err = -ENOMEM;
1219 vmcb01_page = snp_safe_alloc_page();
1220 if (!vmcb01_page)
1221 goto out;
1222
1223 err = sev_vcpu_create(vcpu);
1224 if (err)
1225 goto error_free_vmcb_page;
1226
1227 err = avic_init_vcpu(svm);
1228 if (err)
1229 goto error_free_sev;
1230
1231 svm->msrpm = svm_vcpu_alloc_msrpm();
1232 if (!svm->msrpm) {
1233 err = -ENOMEM;
1234 goto error_free_sev;
1235 }
1236
1237 svm->x2avic_msrs_intercepted = true;
1238 svm->lbr_msrs_intercepted = true;
1239
1240 svm->vmcb01.ptr = page_address(vmcb01_page);
1241 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1242 svm_switch_vmcb(svm, &svm->vmcb01);
1243
1244 svm->guest_state_loaded = false;
1245
1246 return 0;
1247
1248 error_free_sev:
1249 sev_free_vcpu(vcpu);
1250 error_free_vmcb_page:
1251 __free_page(vmcb01_page);
1252 out:
1253 return err;
1254 }
1255
svm_vcpu_free(struct kvm_vcpu * vcpu)1256 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1257 {
1258 struct vcpu_svm *svm = to_svm(vcpu);
1259
1260 WARN_ON_ONCE(!list_empty(&svm->ir_list));
1261
1262 svm_leave_nested(vcpu);
1263 svm_free_nested(svm);
1264
1265 sev_free_vcpu(vcpu);
1266
1267 __free_page(__sme_pa_to_page(svm->vmcb01.pa));
1268 svm_vcpu_free_msrpm(svm->msrpm);
1269 }
1270
1271 #ifdef CONFIG_CPU_MITIGATIONS
1272 static DEFINE_SPINLOCK(srso_lock);
1273 static atomic_t srso_nr_vms;
1274
svm_srso_clear_bp_spec_reduce(void * ign)1275 static void svm_srso_clear_bp_spec_reduce(void *ign)
1276 {
1277 struct svm_cpu_data *sd = this_cpu_ptr(&svm_data);
1278
1279 if (!sd->bp_spec_reduce_set)
1280 return;
1281
1282 msr_clear_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1283 sd->bp_spec_reduce_set = false;
1284 }
1285
svm_srso_vm_destroy(void)1286 static void svm_srso_vm_destroy(void)
1287 {
1288 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1289 return;
1290
1291 if (atomic_dec_return(&srso_nr_vms))
1292 return;
1293
1294 guard(spinlock)(&srso_lock);
1295
1296 /*
1297 * Verify a new VM didn't come along, acquire the lock, and increment
1298 * the count before this task acquired the lock.
1299 */
1300 if (atomic_read(&srso_nr_vms))
1301 return;
1302
1303 on_each_cpu(svm_srso_clear_bp_spec_reduce, NULL, 1);
1304 }
1305
svm_srso_vm_init(void)1306 static void svm_srso_vm_init(void)
1307 {
1308 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1309 return;
1310
1311 /*
1312 * Acquire the lock on 0 => 1 transitions to ensure a potential 1 => 0
1313 * transition, i.e. destroying the last VM, is fully complete, e.g. so
1314 * that a delayed IPI doesn't clear BP_SPEC_REDUCE after a vCPU runs.
1315 */
1316 if (atomic_inc_not_zero(&srso_nr_vms))
1317 return;
1318
1319 guard(spinlock)(&srso_lock);
1320
1321 atomic_inc(&srso_nr_vms);
1322 }
1323 #else
svm_srso_vm_init(void)1324 static void svm_srso_vm_init(void) { }
svm_srso_vm_destroy(void)1325 static void svm_srso_vm_destroy(void) { }
1326 #endif
1327
svm_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1328 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1329 {
1330 struct vcpu_svm *svm = to_svm(vcpu);
1331 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1332
1333 if (sev_es_guest(vcpu->kvm))
1334 sev_es_unmap_ghcb(svm);
1335
1336 if (svm->guest_state_loaded)
1337 return;
1338
1339 /*
1340 * Save additional host state that will be restored on VMEXIT (sev-es)
1341 * or subsequent vmload of host save area.
1342 */
1343 vmsave(sd->save_area_pa);
1344 if (sev_es_guest(vcpu->kvm))
1345 sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd));
1346
1347 if (tsc_scaling)
1348 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1349
1350 /*
1351 * TSC_AUX is always virtualized (context switched by hardware) for
1352 * SEV-ES guests when the feature is available. For non-SEV-ES guests,
1353 * context switch TSC_AUX via the user_return MSR infrastructure (not
1354 * all CPUs support TSC_AUX virtualization).
1355 */
1356 if (likely(tsc_aux_uret_slot >= 0) &&
1357 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1358 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1359
1360 if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE) &&
1361 !sd->bp_spec_reduce_set) {
1362 sd->bp_spec_reduce_set = true;
1363 msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1364 }
1365 svm->guest_state_loaded = true;
1366 }
1367
svm_prepare_host_switch(struct kvm_vcpu * vcpu)1368 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1369 {
1370 to_svm(vcpu)->guest_state_loaded = false;
1371 }
1372
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1373 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1374 {
1375 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1376 shrink_ple_window(vcpu);
1377
1378 if (kvm_vcpu_apicv_active(vcpu))
1379 avic_vcpu_load(vcpu, cpu);
1380 }
1381
svm_vcpu_put(struct kvm_vcpu * vcpu)1382 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1383 {
1384 if (kvm_vcpu_apicv_active(vcpu))
1385 avic_vcpu_put(vcpu);
1386
1387 svm_prepare_host_switch(vcpu);
1388
1389 ++vcpu->stat.host_state_reload;
1390 }
1391
svm_get_rflags(struct kvm_vcpu * vcpu)1392 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1393 {
1394 struct vcpu_svm *svm = to_svm(vcpu);
1395 unsigned long rflags = svm->vmcb->save.rflags;
1396
1397 if (svm->nmi_singlestep) {
1398 /* Hide our flags if they were not set by the guest */
1399 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1400 rflags &= ~X86_EFLAGS_TF;
1401 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1402 rflags &= ~X86_EFLAGS_RF;
1403 }
1404 return rflags;
1405 }
1406
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1407 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1408 {
1409 if (to_svm(vcpu)->nmi_singlestep)
1410 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1411
1412 /*
1413 * Any change of EFLAGS.VM is accompanied by a reload of SS
1414 * (caused by either a task switch or an inter-privilege IRET),
1415 * so we do not need to update the CPL here.
1416 */
1417 to_svm(vcpu)->vmcb->save.rflags = rflags;
1418 }
1419
svm_get_if_flag(struct kvm_vcpu * vcpu)1420 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1421 {
1422 struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1423
1424 return sev_es_guest(vcpu->kvm)
1425 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1426 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1427 }
1428
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1429 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1430 {
1431 kvm_register_mark_available(vcpu, reg);
1432
1433 switch (reg) {
1434 case VCPU_EXREG_PDPTR:
1435 /*
1436 * When !npt_enabled, mmu->pdptrs[] is already available since
1437 * it is always updated per SDM when moving to CRs.
1438 */
1439 if (npt_enabled)
1440 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1441 break;
1442 default:
1443 KVM_BUG_ON(1, vcpu->kvm);
1444 }
1445 }
1446
svm_set_vintr(struct vcpu_svm * svm)1447 static void svm_set_vintr(struct vcpu_svm *svm)
1448 {
1449 struct vmcb_control_area *control;
1450
1451 /*
1452 * The following fields are ignored when AVIC is enabled
1453 */
1454 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1455
1456 svm_set_intercept(svm, INTERCEPT_VINTR);
1457
1458 /*
1459 * Recalculating intercepts may have cleared the VINTR intercept. If
1460 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1461 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1462 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1463 * interrupts will never be unblocked while L2 is running.
1464 */
1465 if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1466 return;
1467
1468 /*
1469 * This is just a dummy VINTR to actually cause a vmexit to happen.
1470 * Actual injection of virtual interrupts happens through EVENTINJ.
1471 */
1472 control = &svm->vmcb->control;
1473 control->int_vector = 0x0;
1474 control->int_ctl &= ~V_INTR_PRIO_MASK;
1475 control->int_ctl |= V_IRQ_MASK |
1476 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1477 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1478 }
1479
svm_clear_vintr(struct vcpu_svm * svm)1480 static void svm_clear_vintr(struct vcpu_svm *svm)
1481 {
1482 svm_clr_intercept(svm, INTERCEPT_VINTR);
1483
1484 /* Drop int_ctl fields related to VINTR injection. */
1485 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1486 if (is_guest_mode(&svm->vcpu)) {
1487 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1488
1489 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1490 (svm->nested.ctl.int_ctl & V_TPR_MASK));
1491
1492 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1493 V_IRQ_INJECTION_BITS_MASK;
1494
1495 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1496 }
1497
1498 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1499 }
1500
svm_seg(struct kvm_vcpu * vcpu,int seg)1501 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1502 {
1503 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1504 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1505
1506 switch (seg) {
1507 case VCPU_SREG_CS: return &save->cs;
1508 case VCPU_SREG_DS: return &save->ds;
1509 case VCPU_SREG_ES: return &save->es;
1510 case VCPU_SREG_FS: return &save01->fs;
1511 case VCPU_SREG_GS: return &save01->gs;
1512 case VCPU_SREG_SS: return &save->ss;
1513 case VCPU_SREG_TR: return &save01->tr;
1514 case VCPU_SREG_LDTR: return &save01->ldtr;
1515 }
1516 BUG();
1517 return NULL;
1518 }
1519
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1520 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1521 {
1522 struct vmcb_seg *s = svm_seg(vcpu, seg);
1523
1524 return s->base;
1525 }
1526
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1527 static void svm_get_segment(struct kvm_vcpu *vcpu,
1528 struct kvm_segment *var, int seg)
1529 {
1530 struct vmcb_seg *s = svm_seg(vcpu, seg);
1531
1532 var->base = s->base;
1533 var->limit = s->limit;
1534 var->selector = s->selector;
1535 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1536 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1537 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1538 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1539 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1540 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1541 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1542
1543 /*
1544 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1545 * However, the SVM spec states that the G bit is not observed by the
1546 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1547 * So let's synthesize a legal G bit for all segments, this helps
1548 * running KVM nested. It also helps cross-vendor migration, because
1549 * Intel's vmentry has a check on the 'G' bit.
1550 */
1551 var->g = s->limit > 0xfffff;
1552
1553 /*
1554 * AMD's VMCB does not have an explicit unusable field, so emulate it
1555 * for cross vendor migration purposes by "not present"
1556 */
1557 var->unusable = !var->present;
1558
1559 switch (seg) {
1560 case VCPU_SREG_TR:
1561 /*
1562 * Work around a bug where the busy flag in the tr selector
1563 * isn't exposed
1564 */
1565 var->type |= 0x2;
1566 break;
1567 case VCPU_SREG_DS:
1568 case VCPU_SREG_ES:
1569 case VCPU_SREG_FS:
1570 case VCPU_SREG_GS:
1571 /*
1572 * The accessed bit must always be set in the segment
1573 * descriptor cache, although it can be cleared in the
1574 * descriptor, the cached bit always remains at 1. Since
1575 * Intel has a check on this, set it here to support
1576 * cross-vendor migration.
1577 */
1578 if (!var->unusable)
1579 var->type |= 0x1;
1580 break;
1581 case VCPU_SREG_SS:
1582 /*
1583 * On AMD CPUs sometimes the DB bit in the segment
1584 * descriptor is left as 1, although the whole segment has
1585 * been made unusable. Clear it here to pass an Intel VMX
1586 * entry check when cross vendor migrating.
1587 */
1588 if (var->unusable)
1589 var->db = 0;
1590 /* This is symmetric with svm_set_segment() */
1591 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1592 break;
1593 }
1594 }
1595
svm_get_cpl(struct kvm_vcpu * vcpu)1596 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1597 {
1598 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1599
1600 return save->cpl;
1601 }
1602
svm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)1603 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1604 {
1605 struct kvm_segment cs;
1606
1607 svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1608 *db = cs.db;
1609 *l = cs.l;
1610 }
1611
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1612 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1613 {
1614 struct vcpu_svm *svm = to_svm(vcpu);
1615
1616 dt->size = svm->vmcb->save.idtr.limit;
1617 dt->address = svm->vmcb->save.idtr.base;
1618 }
1619
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1620 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1621 {
1622 struct vcpu_svm *svm = to_svm(vcpu);
1623
1624 svm->vmcb->save.idtr.limit = dt->size;
1625 svm->vmcb->save.idtr.base = dt->address ;
1626 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1627 }
1628
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1629 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1630 {
1631 struct vcpu_svm *svm = to_svm(vcpu);
1632
1633 dt->size = svm->vmcb->save.gdtr.limit;
1634 dt->address = svm->vmcb->save.gdtr.base;
1635 }
1636
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1637 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1638 {
1639 struct vcpu_svm *svm = to_svm(vcpu);
1640
1641 svm->vmcb->save.gdtr.limit = dt->size;
1642 svm->vmcb->save.gdtr.base = dt->address ;
1643 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1644 }
1645
sev_post_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1646 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1647 {
1648 struct vcpu_svm *svm = to_svm(vcpu);
1649
1650 /*
1651 * For guests that don't set guest_state_protected, the cr3 update is
1652 * handled via kvm_mmu_load() while entering the guest. For guests
1653 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1654 * VMCB save area now, since the save area will become the initial
1655 * contents of the VMSA, and future VMCB save area updates won't be
1656 * seen.
1657 */
1658 if (sev_es_guest(vcpu->kvm)) {
1659 svm->vmcb->save.cr3 = cr3;
1660 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1661 }
1662 }
1663
svm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1664 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1665 {
1666 return true;
1667 }
1668
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1669 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1670 {
1671 struct vcpu_svm *svm = to_svm(vcpu);
1672 u64 hcr0 = cr0;
1673 bool old_paging = is_paging(vcpu);
1674
1675 #ifdef CONFIG_X86_64
1676 if (vcpu->arch.efer & EFER_LME) {
1677 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1678 vcpu->arch.efer |= EFER_LMA;
1679 if (!vcpu->arch.guest_state_protected)
1680 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1681 }
1682
1683 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1684 vcpu->arch.efer &= ~EFER_LMA;
1685 if (!vcpu->arch.guest_state_protected)
1686 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1687 }
1688 }
1689 #endif
1690 vcpu->arch.cr0 = cr0;
1691
1692 if (!npt_enabled) {
1693 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1694 if (old_paging != is_paging(vcpu))
1695 svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1696 }
1697
1698 /*
1699 * re-enable caching here because the QEMU bios
1700 * does not do it - this results in some delay at
1701 * reboot
1702 */
1703 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1704 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1705
1706 svm->vmcb->save.cr0 = hcr0;
1707 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1708
1709 /*
1710 * SEV-ES guests must always keep the CR intercepts cleared. CR
1711 * tracking is done using the CR write traps.
1712 */
1713 if (sev_es_guest(vcpu->kvm))
1714 return;
1715
1716 if (hcr0 == cr0) {
1717 /* Selective CR0 write remains on. */
1718 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1719 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1720 } else {
1721 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1722 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1723 }
1724 }
1725
svm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1726 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1727 {
1728 return true;
1729 }
1730
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1731 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1732 {
1733 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1734 unsigned long old_cr4 = vcpu->arch.cr4;
1735
1736 vcpu->arch.cr4 = cr4;
1737 if (!npt_enabled) {
1738 cr4 |= X86_CR4_PAE;
1739
1740 if (!is_paging(vcpu))
1741 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1742 }
1743 cr4 |= host_cr4_mce;
1744 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1745 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1746
1747 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1748 vcpu->arch.cpuid_dynamic_bits_dirty = true;
1749 }
1750
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1751 static void svm_set_segment(struct kvm_vcpu *vcpu,
1752 struct kvm_segment *var, int seg)
1753 {
1754 struct vcpu_svm *svm = to_svm(vcpu);
1755 struct vmcb_seg *s = svm_seg(vcpu, seg);
1756
1757 s->base = var->base;
1758 s->limit = var->limit;
1759 s->selector = var->selector;
1760 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1761 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1762 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1763 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1764 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1765 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1766 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1767 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1768
1769 /*
1770 * This is always accurate, except if SYSRET returned to a segment
1771 * with SS.DPL != 3. Intel does not have this quirk, and always
1772 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1773 * would entail passing the CPL to userspace and back.
1774 */
1775 if (seg == VCPU_SREG_SS)
1776 /* This is symmetric with svm_get_segment() */
1777 svm->vmcb->save.cpl = (var->dpl & 3);
1778
1779 vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1780 }
1781
svm_update_exception_bitmap(struct kvm_vcpu * vcpu)1782 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1783 {
1784 struct vcpu_svm *svm = to_svm(vcpu);
1785
1786 clr_exception_intercept(svm, BP_VECTOR);
1787
1788 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1789 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1790 set_exception_intercept(svm, BP_VECTOR);
1791 }
1792 }
1793
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)1794 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1795 {
1796 if (sd->next_asid > sd->max_asid) {
1797 ++sd->asid_generation;
1798 sd->next_asid = sd->min_asid;
1799 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1800 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1801 }
1802
1803 svm->current_vmcb->asid_generation = sd->asid_generation;
1804 svm->asid = sd->next_asid++;
1805 }
1806
svm_set_dr6(struct kvm_vcpu * vcpu,unsigned long value)1807 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1808 {
1809 struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1810
1811 if (vcpu->arch.guest_state_protected)
1812 return;
1813
1814 if (unlikely(value != vmcb->save.dr6)) {
1815 vmcb->save.dr6 = value;
1816 vmcb_mark_dirty(vmcb, VMCB_DR);
1817 }
1818 }
1819
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)1820 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1821 {
1822 struct vcpu_svm *svm = to_svm(vcpu);
1823
1824 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
1825 return;
1826
1827 get_debugreg(vcpu->arch.db[0], 0);
1828 get_debugreg(vcpu->arch.db[1], 1);
1829 get_debugreg(vcpu->arch.db[2], 2);
1830 get_debugreg(vcpu->arch.db[3], 3);
1831 /*
1832 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1833 * because db_interception might need it. We can do it before vmentry.
1834 */
1835 vcpu->arch.dr6 = svm->vmcb->save.dr6;
1836 vcpu->arch.dr7 = svm->vmcb->save.dr7;
1837 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1838 set_dr_intercepts(svm);
1839 }
1840
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)1841 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1842 {
1843 struct vcpu_svm *svm = to_svm(vcpu);
1844
1845 if (vcpu->arch.guest_state_protected)
1846 return;
1847
1848 svm->vmcb->save.dr7 = value;
1849 vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1850 }
1851
pf_interception(struct kvm_vcpu * vcpu)1852 static int pf_interception(struct kvm_vcpu *vcpu)
1853 {
1854 struct vcpu_svm *svm = to_svm(vcpu);
1855
1856 u64 fault_address = svm->vmcb->control.exit_info_2;
1857 u64 error_code = svm->vmcb->control.exit_info_1;
1858
1859 return kvm_handle_page_fault(vcpu, error_code, fault_address,
1860 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1861 svm->vmcb->control.insn_bytes : NULL,
1862 svm->vmcb->control.insn_len);
1863 }
1864
npf_interception(struct kvm_vcpu * vcpu)1865 static int npf_interception(struct kvm_vcpu *vcpu)
1866 {
1867 struct vcpu_svm *svm = to_svm(vcpu);
1868 int rc;
1869
1870 u64 fault_address = svm->vmcb->control.exit_info_2;
1871 u64 error_code = svm->vmcb->control.exit_info_1;
1872
1873 /*
1874 * WARN if hardware generates a fault with an error code that collides
1875 * with KVM-defined sythentic flags. Clear the flags and continue on,
1876 * i.e. don't terminate the VM, as KVM can't possibly be relying on a
1877 * flag that KVM doesn't know about.
1878 */
1879 if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK))
1880 error_code &= ~PFERR_SYNTHETIC_MASK;
1881
1882 if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK))
1883 error_code |= PFERR_PRIVATE_ACCESS;
1884
1885 trace_kvm_page_fault(vcpu, fault_address, error_code);
1886 rc = kvm_mmu_page_fault(vcpu, fault_address, error_code,
1887 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1888 svm->vmcb->control.insn_bytes : NULL,
1889 svm->vmcb->control.insn_len);
1890
1891 if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK)
1892 sev_handle_rmp_fault(vcpu, fault_address, error_code);
1893
1894 return rc;
1895 }
1896
db_interception(struct kvm_vcpu * vcpu)1897 static int db_interception(struct kvm_vcpu *vcpu)
1898 {
1899 struct kvm_run *kvm_run = vcpu->run;
1900 struct vcpu_svm *svm = to_svm(vcpu);
1901
1902 if (!(vcpu->guest_debug &
1903 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1904 !svm->nmi_singlestep) {
1905 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1906 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1907 return 1;
1908 }
1909
1910 if (svm->nmi_singlestep) {
1911 disable_nmi_singlestep(svm);
1912 /* Make sure we check for pending NMIs upon entry */
1913 kvm_make_request(KVM_REQ_EVENT, vcpu);
1914 }
1915
1916 if (vcpu->guest_debug &
1917 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1918 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1919 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1920 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1921 kvm_run->debug.arch.pc =
1922 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1923 kvm_run->debug.arch.exception = DB_VECTOR;
1924 return 0;
1925 }
1926
1927 return 1;
1928 }
1929
bp_interception(struct kvm_vcpu * vcpu)1930 static int bp_interception(struct kvm_vcpu *vcpu)
1931 {
1932 struct vcpu_svm *svm = to_svm(vcpu);
1933 struct kvm_run *kvm_run = vcpu->run;
1934
1935 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1936 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1937 kvm_run->debug.arch.exception = BP_VECTOR;
1938 return 0;
1939 }
1940
ud_interception(struct kvm_vcpu * vcpu)1941 static int ud_interception(struct kvm_vcpu *vcpu)
1942 {
1943 return handle_ud(vcpu);
1944 }
1945
ac_interception(struct kvm_vcpu * vcpu)1946 static int ac_interception(struct kvm_vcpu *vcpu)
1947 {
1948 kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
1949 return 1;
1950 }
1951
is_erratum_383(void)1952 static bool is_erratum_383(void)
1953 {
1954 int i;
1955 u64 value;
1956
1957 if (!erratum_383_found)
1958 return false;
1959
1960 if (native_read_msr_safe(MSR_IA32_MC0_STATUS, &value))
1961 return false;
1962
1963 /* Bit 62 may or may not be set for this mce */
1964 value &= ~(1ULL << 62);
1965
1966 if (value != 0xb600000000010015ULL)
1967 return false;
1968
1969 /* Clear MCi_STATUS registers */
1970 for (i = 0; i < 6; ++i)
1971 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0);
1972
1973 if (!native_read_msr_safe(MSR_IA32_MCG_STATUS, &value)) {
1974 value &= ~(1ULL << 2);
1975 native_write_msr_safe(MSR_IA32_MCG_STATUS, value);
1976 }
1977
1978 /* Flush tlb to evict multi-match entries */
1979 __flush_tlb_all();
1980
1981 return true;
1982 }
1983
svm_handle_mce(struct kvm_vcpu * vcpu)1984 static void svm_handle_mce(struct kvm_vcpu *vcpu)
1985 {
1986 if (is_erratum_383()) {
1987 /*
1988 * Erratum 383 triggered. Guest state is corrupt so kill the
1989 * guest.
1990 */
1991 pr_err("Guest triggered AMD Erratum 383\n");
1992
1993 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1994
1995 return;
1996 }
1997
1998 /*
1999 * On an #MC intercept the MCE handler is not called automatically in
2000 * the host. So do it by hand here.
2001 */
2002 kvm_machine_check();
2003 }
2004
mc_interception(struct kvm_vcpu * vcpu)2005 static int mc_interception(struct kvm_vcpu *vcpu)
2006 {
2007 return 1;
2008 }
2009
shutdown_interception(struct kvm_vcpu * vcpu)2010 static int shutdown_interception(struct kvm_vcpu *vcpu)
2011 {
2012 struct kvm_run *kvm_run = vcpu->run;
2013 struct vcpu_svm *svm = to_svm(vcpu);
2014
2015
2016 /*
2017 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put
2018 * the VMCB in a known good state. Unfortuately, KVM doesn't have
2019 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2020 * userspace. At a platform view, INIT is acceptable behavior as
2021 * there exist bare metal platforms that automatically INIT the CPU
2022 * in response to shutdown.
2023 *
2024 * The VM save area for SEV-ES guests has already been encrypted so it
2025 * cannot be reinitialized, i.e. synthesizing INIT is futile.
2026 */
2027 if (!sev_es_guest(vcpu->kvm)) {
2028 clear_page(svm->vmcb);
2029 #ifdef CONFIG_KVM_SMM
2030 if (is_smm(vcpu))
2031 kvm_smm_changed(vcpu, false);
2032 #endif
2033 kvm_vcpu_reset(vcpu, true);
2034 }
2035
2036 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2037 return 0;
2038 }
2039
io_interception(struct kvm_vcpu * vcpu)2040 static int io_interception(struct kvm_vcpu *vcpu)
2041 {
2042 struct vcpu_svm *svm = to_svm(vcpu);
2043 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2044 int size, in, string;
2045 unsigned port;
2046
2047 ++vcpu->stat.io_exits;
2048 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2049 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2050 port = io_info >> 16;
2051 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2052
2053 if (string) {
2054 if (sev_es_guest(vcpu->kvm))
2055 return sev_es_string_io(svm, size, port, in);
2056 else
2057 return kvm_emulate_instruction(vcpu, 0);
2058 }
2059
2060 svm->next_rip = svm->vmcb->control.exit_info_2;
2061
2062 return kvm_fast_pio(vcpu, size, port, in);
2063 }
2064
nmi_interception(struct kvm_vcpu * vcpu)2065 static int nmi_interception(struct kvm_vcpu *vcpu)
2066 {
2067 return 1;
2068 }
2069
smi_interception(struct kvm_vcpu * vcpu)2070 static int smi_interception(struct kvm_vcpu *vcpu)
2071 {
2072 return 1;
2073 }
2074
intr_interception(struct kvm_vcpu * vcpu)2075 static int intr_interception(struct kvm_vcpu *vcpu)
2076 {
2077 ++vcpu->stat.irq_exits;
2078 return 1;
2079 }
2080
vmload_vmsave_interception(struct kvm_vcpu * vcpu,bool vmload)2081 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2082 {
2083 struct vcpu_svm *svm = to_svm(vcpu);
2084 struct vmcb *vmcb12;
2085 struct kvm_host_map map;
2086 int ret;
2087
2088 if (nested_svm_check_permissions(vcpu))
2089 return 1;
2090
2091 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2092 if (ret) {
2093 if (ret == -EINVAL)
2094 kvm_inject_gp(vcpu, 0);
2095 return 1;
2096 }
2097
2098 vmcb12 = map.hva;
2099
2100 ret = kvm_skip_emulated_instruction(vcpu);
2101
2102 if (vmload) {
2103 svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2104 svm->sysenter_eip_hi = 0;
2105 svm->sysenter_esp_hi = 0;
2106 } else {
2107 svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2108 }
2109
2110 kvm_vcpu_unmap(vcpu, &map);
2111
2112 return ret;
2113 }
2114
vmload_interception(struct kvm_vcpu * vcpu)2115 static int vmload_interception(struct kvm_vcpu *vcpu)
2116 {
2117 return vmload_vmsave_interception(vcpu, true);
2118 }
2119
vmsave_interception(struct kvm_vcpu * vcpu)2120 static int vmsave_interception(struct kvm_vcpu *vcpu)
2121 {
2122 return vmload_vmsave_interception(vcpu, false);
2123 }
2124
vmrun_interception(struct kvm_vcpu * vcpu)2125 static int vmrun_interception(struct kvm_vcpu *vcpu)
2126 {
2127 if (nested_svm_check_permissions(vcpu))
2128 return 1;
2129
2130 return nested_svm_vmrun(vcpu);
2131 }
2132
2133 enum {
2134 NONE_SVM_INSTR,
2135 SVM_INSTR_VMRUN,
2136 SVM_INSTR_VMLOAD,
2137 SVM_INSTR_VMSAVE,
2138 };
2139
2140 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
svm_instr_opcode(struct kvm_vcpu * vcpu)2141 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2142 {
2143 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2144
2145 if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2146 return NONE_SVM_INSTR;
2147
2148 switch (ctxt->modrm) {
2149 case 0xd8: /* VMRUN */
2150 return SVM_INSTR_VMRUN;
2151 case 0xda: /* VMLOAD */
2152 return SVM_INSTR_VMLOAD;
2153 case 0xdb: /* VMSAVE */
2154 return SVM_INSTR_VMSAVE;
2155 default:
2156 break;
2157 }
2158
2159 return NONE_SVM_INSTR;
2160 }
2161
emulate_svm_instr(struct kvm_vcpu * vcpu,int opcode)2162 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2163 {
2164 const int guest_mode_exit_codes[] = {
2165 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2166 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2167 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2168 };
2169 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2170 [SVM_INSTR_VMRUN] = vmrun_interception,
2171 [SVM_INSTR_VMLOAD] = vmload_interception,
2172 [SVM_INSTR_VMSAVE] = vmsave_interception,
2173 };
2174 struct vcpu_svm *svm = to_svm(vcpu);
2175 int ret;
2176
2177 if (is_guest_mode(vcpu)) {
2178 /* Returns '1' or -errno on failure, '0' on success. */
2179 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2180 if (ret)
2181 return ret;
2182 return 1;
2183 }
2184 return svm_instr_handlers[opcode](vcpu);
2185 }
2186
2187 /*
2188 * #GP handling code. Note that #GP can be triggered under the following two
2189 * cases:
2190 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2191 * some AMD CPUs when EAX of these instructions are in the reserved memory
2192 * regions (e.g. SMM memory on host).
2193 * 2) VMware backdoor
2194 */
gp_interception(struct kvm_vcpu * vcpu)2195 static int gp_interception(struct kvm_vcpu *vcpu)
2196 {
2197 struct vcpu_svm *svm = to_svm(vcpu);
2198 u32 error_code = svm->vmcb->control.exit_info_1;
2199 int opcode;
2200
2201 /* Both #GP cases have zero error_code */
2202 if (error_code)
2203 goto reinject;
2204
2205 /* Decode the instruction for usage later */
2206 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2207 goto reinject;
2208
2209 opcode = svm_instr_opcode(vcpu);
2210
2211 if (opcode == NONE_SVM_INSTR) {
2212 if (!enable_vmware_backdoor)
2213 goto reinject;
2214
2215 /*
2216 * VMware backdoor emulation on #GP interception only handles
2217 * IN{S}, OUT{S}, and RDPMC.
2218 */
2219 if (!is_guest_mode(vcpu))
2220 return kvm_emulate_instruction(vcpu,
2221 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2222 } else {
2223 /* All SVM instructions expect page aligned RAX */
2224 if (svm->vmcb->save.rax & ~PAGE_MASK)
2225 goto reinject;
2226
2227 return emulate_svm_instr(vcpu, opcode);
2228 }
2229
2230 reinject:
2231 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2232 return 1;
2233 }
2234
svm_set_gif(struct vcpu_svm * svm,bool value)2235 void svm_set_gif(struct vcpu_svm *svm, bool value)
2236 {
2237 if (value) {
2238 /*
2239 * If VGIF is enabled, the STGI intercept is only added to
2240 * detect the opening of the SMI/NMI window; remove it now.
2241 * Likewise, clear the VINTR intercept, we will set it
2242 * again while processing KVM_REQ_EVENT if needed.
2243 */
2244 if (vgif)
2245 svm_clr_intercept(svm, INTERCEPT_STGI);
2246 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2247 svm_clear_vintr(svm);
2248
2249 enable_gif(svm);
2250 if (svm->vcpu.arch.smi_pending ||
2251 svm->vcpu.arch.nmi_pending ||
2252 kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2253 kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2254 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2255 } else {
2256 disable_gif(svm);
2257
2258 /*
2259 * After a CLGI no interrupts should come. But if vGIF is
2260 * in use, we still rely on the VINTR intercept (rather than
2261 * STGI) to detect an open interrupt window.
2262 */
2263 if (!vgif)
2264 svm_clear_vintr(svm);
2265 }
2266 }
2267
stgi_interception(struct kvm_vcpu * vcpu)2268 static int stgi_interception(struct kvm_vcpu *vcpu)
2269 {
2270 int ret;
2271
2272 if (nested_svm_check_permissions(vcpu))
2273 return 1;
2274
2275 ret = kvm_skip_emulated_instruction(vcpu);
2276 svm_set_gif(to_svm(vcpu), true);
2277 return ret;
2278 }
2279
clgi_interception(struct kvm_vcpu * vcpu)2280 static int clgi_interception(struct kvm_vcpu *vcpu)
2281 {
2282 int ret;
2283
2284 if (nested_svm_check_permissions(vcpu))
2285 return 1;
2286
2287 ret = kvm_skip_emulated_instruction(vcpu);
2288 svm_set_gif(to_svm(vcpu), false);
2289 return ret;
2290 }
2291
invlpga_interception(struct kvm_vcpu * vcpu)2292 static int invlpga_interception(struct kvm_vcpu *vcpu)
2293 {
2294 gva_t gva = kvm_rax_read(vcpu);
2295 u32 asid = kvm_rcx_read(vcpu);
2296
2297 /* FIXME: Handle an address size prefix. */
2298 if (!is_long_mode(vcpu))
2299 gva = (u32)gva;
2300
2301 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2302
2303 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2304 kvm_mmu_invlpg(vcpu, gva);
2305
2306 return kvm_skip_emulated_instruction(vcpu);
2307 }
2308
skinit_interception(struct kvm_vcpu * vcpu)2309 static int skinit_interception(struct kvm_vcpu *vcpu)
2310 {
2311 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2312
2313 kvm_queue_exception(vcpu, UD_VECTOR);
2314 return 1;
2315 }
2316
task_switch_interception(struct kvm_vcpu * vcpu)2317 static int task_switch_interception(struct kvm_vcpu *vcpu)
2318 {
2319 struct vcpu_svm *svm = to_svm(vcpu);
2320 u16 tss_selector;
2321 int reason;
2322 int int_type = svm->vmcb->control.exit_int_info &
2323 SVM_EXITINTINFO_TYPE_MASK;
2324 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2325 uint32_t type =
2326 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2327 uint32_t idt_v =
2328 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2329 bool has_error_code = false;
2330 u32 error_code = 0;
2331
2332 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2333
2334 if (svm->vmcb->control.exit_info_2 &
2335 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2336 reason = TASK_SWITCH_IRET;
2337 else if (svm->vmcb->control.exit_info_2 &
2338 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2339 reason = TASK_SWITCH_JMP;
2340 else if (idt_v)
2341 reason = TASK_SWITCH_GATE;
2342 else
2343 reason = TASK_SWITCH_CALL;
2344
2345 if (reason == TASK_SWITCH_GATE) {
2346 switch (type) {
2347 case SVM_EXITINTINFO_TYPE_NMI:
2348 vcpu->arch.nmi_injected = false;
2349 break;
2350 case SVM_EXITINTINFO_TYPE_EXEPT:
2351 if (svm->vmcb->control.exit_info_2 &
2352 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2353 has_error_code = true;
2354 error_code =
2355 (u32)svm->vmcb->control.exit_info_2;
2356 }
2357 kvm_clear_exception_queue(vcpu);
2358 break;
2359 case SVM_EXITINTINFO_TYPE_INTR:
2360 case SVM_EXITINTINFO_TYPE_SOFT:
2361 kvm_clear_interrupt_queue(vcpu);
2362 break;
2363 default:
2364 break;
2365 }
2366 }
2367
2368 if (reason != TASK_SWITCH_GATE ||
2369 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2370 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2371 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2372 if (!svm_skip_emulated_instruction(vcpu))
2373 return 0;
2374 }
2375
2376 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2377 int_vec = -1;
2378
2379 return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2380 has_error_code, error_code);
2381 }
2382
svm_clr_iret_intercept(struct vcpu_svm * svm)2383 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2384 {
2385 if (!sev_es_guest(svm->vcpu.kvm))
2386 svm_clr_intercept(svm, INTERCEPT_IRET);
2387 }
2388
svm_set_iret_intercept(struct vcpu_svm * svm)2389 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2390 {
2391 if (!sev_es_guest(svm->vcpu.kvm))
2392 svm_set_intercept(svm, INTERCEPT_IRET);
2393 }
2394
iret_interception(struct kvm_vcpu * vcpu)2395 static int iret_interception(struct kvm_vcpu *vcpu)
2396 {
2397 struct vcpu_svm *svm = to_svm(vcpu);
2398
2399 WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2400
2401 ++vcpu->stat.nmi_window_exits;
2402 svm->awaiting_iret_completion = true;
2403
2404 svm_clr_iret_intercept(svm);
2405 svm->nmi_iret_rip = kvm_rip_read(vcpu);
2406
2407 kvm_make_request(KVM_REQ_EVENT, vcpu);
2408 return 1;
2409 }
2410
invlpg_interception(struct kvm_vcpu * vcpu)2411 static int invlpg_interception(struct kvm_vcpu *vcpu)
2412 {
2413 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2414 return kvm_emulate_instruction(vcpu, 0);
2415
2416 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2417 return kvm_skip_emulated_instruction(vcpu);
2418 }
2419
emulate_on_interception(struct kvm_vcpu * vcpu)2420 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2421 {
2422 return kvm_emulate_instruction(vcpu, 0);
2423 }
2424
rsm_interception(struct kvm_vcpu * vcpu)2425 static int rsm_interception(struct kvm_vcpu *vcpu)
2426 {
2427 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2428 }
2429
check_selective_cr0_intercepted(struct kvm_vcpu * vcpu,unsigned long val)2430 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2431 unsigned long val)
2432 {
2433 struct vcpu_svm *svm = to_svm(vcpu);
2434 unsigned long cr0 = vcpu->arch.cr0;
2435 bool ret = false;
2436
2437 if (!is_guest_mode(vcpu) ||
2438 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2439 return false;
2440
2441 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2442 val &= ~SVM_CR0_SELECTIVE_MASK;
2443
2444 if (cr0 ^ val) {
2445 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2446 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2447 }
2448
2449 return ret;
2450 }
2451
2452 #define CR_VALID (1ULL << 63)
2453
cr_interception(struct kvm_vcpu * vcpu)2454 static int cr_interception(struct kvm_vcpu *vcpu)
2455 {
2456 struct vcpu_svm *svm = to_svm(vcpu);
2457 int reg, cr;
2458 unsigned long val;
2459 int err;
2460
2461 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2462 return emulate_on_interception(vcpu);
2463
2464 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2465 return emulate_on_interception(vcpu);
2466
2467 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2468 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2469 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2470 else
2471 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2472
2473 err = 0;
2474 if (cr >= 16) { /* mov to cr */
2475 cr -= 16;
2476 val = kvm_register_read(vcpu, reg);
2477 trace_kvm_cr_write(cr, val);
2478 switch (cr) {
2479 case 0:
2480 if (!check_selective_cr0_intercepted(vcpu, val))
2481 err = kvm_set_cr0(vcpu, val);
2482 else
2483 return 1;
2484
2485 break;
2486 case 3:
2487 err = kvm_set_cr3(vcpu, val);
2488 break;
2489 case 4:
2490 err = kvm_set_cr4(vcpu, val);
2491 break;
2492 case 8:
2493 err = kvm_set_cr8(vcpu, val);
2494 break;
2495 default:
2496 WARN(1, "unhandled write to CR%d", cr);
2497 kvm_queue_exception(vcpu, UD_VECTOR);
2498 return 1;
2499 }
2500 } else { /* mov from cr */
2501 switch (cr) {
2502 case 0:
2503 val = kvm_read_cr0(vcpu);
2504 break;
2505 case 2:
2506 val = vcpu->arch.cr2;
2507 break;
2508 case 3:
2509 val = kvm_read_cr3(vcpu);
2510 break;
2511 case 4:
2512 val = kvm_read_cr4(vcpu);
2513 break;
2514 case 8:
2515 val = kvm_get_cr8(vcpu);
2516 break;
2517 default:
2518 WARN(1, "unhandled read from CR%d", cr);
2519 kvm_queue_exception(vcpu, UD_VECTOR);
2520 return 1;
2521 }
2522 kvm_register_write(vcpu, reg, val);
2523 trace_kvm_cr_read(cr, val);
2524 }
2525 return kvm_complete_insn_gp(vcpu, err);
2526 }
2527
cr_trap(struct kvm_vcpu * vcpu)2528 static int cr_trap(struct kvm_vcpu *vcpu)
2529 {
2530 struct vcpu_svm *svm = to_svm(vcpu);
2531 unsigned long old_value, new_value;
2532 unsigned int cr;
2533 int ret = 0;
2534
2535 new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2536
2537 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2538 switch (cr) {
2539 case 0:
2540 old_value = kvm_read_cr0(vcpu);
2541 svm_set_cr0(vcpu, new_value);
2542
2543 kvm_post_set_cr0(vcpu, old_value, new_value);
2544 break;
2545 case 4:
2546 old_value = kvm_read_cr4(vcpu);
2547 svm_set_cr4(vcpu, new_value);
2548
2549 kvm_post_set_cr4(vcpu, old_value, new_value);
2550 break;
2551 case 8:
2552 ret = kvm_set_cr8(vcpu, new_value);
2553 break;
2554 default:
2555 WARN(1, "unhandled CR%d write trap", cr);
2556 kvm_queue_exception(vcpu, UD_VECTOR);
2557 return 1;
2558 }
2559
2560 return kvm_complete_insn_gp(vcpu, ret);
2561 }
2562
dr_interception(struct kvm_vcpu * vcpu)2563 static int dr_interception(struct kvm_vcpu *vcpu)
2564 {
2565 struct vcpu_svm *svm = to_svm(vcpu);
2566 int reg, dr;
2567 int err = 0;
2568
2569 /*
2570 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2571 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2572 */
2573 if (sev_es_guest(vcpu->kvm))
2574 return 1;
2575
2576 if (vcpu->guest_debug == 0) {
2577 /*
2578 * No more DR vmexits; force a reload of the debug registers
2579 * and reenter on this instruction. The next vmexit will
2580 * retrieve the full state of the debug registers.
2581 */
2582 clr_dr_intercepts(svm);
2583 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2584 return 1;
2585 }
2586
2587 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2588 return emulate_on_interception(vcpu);
2589
2590 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2591 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2592 if (dr >= 16) { /* mov to DRn */
2593 dr -= 16;
2594 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
2595 } else {
2596 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
2597 }
2598
2599 return kvm_complete_insn_gp(vcpu, err);
2600 }
2601
cr8_write_interception(struct kvm_vcpu * vcpu)2602 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2603 {
2604 int r;
2605
2606 u8 cr8_prev = kvm_get_cr8(vcpu);
2607 /* instruction emulation calls kvm_set_cr8() */
2608 r = cr_interception(vcpu);
2609 if (lapic_in_kernel(vcpu))
2610 return r;
2611 if (cr8_prev <= kvm_get_cr8(vcpu))
2612 return r;
2613 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2614 return 0;
2615 }
2616
efer_trap(struct kvm_vcpu * vcpu)2617 static int efer_trap(struct kvm_vcpu *vcpu)
2618 {
2619 struct msr_data msr_info;
2620 int ret;
2621
2622 /*
2623 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2624 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2625 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2626 * the guest doesn't have X86_FEATURE_SVM.
2627 */
2628 msr_info.host_initiated = false;
2629 msr_info.index = MSR_EFER;
2630 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2631 ret = kvm_set_msr_common(vcpu, &msr_info);
2632
2633 return kvm_complete_insn_gp(vcpu, ret);
2634 }
2635
svm_get_feature_msr(u32 msr,u64 * data)2636 static int svm_get_feature_msr(u32 msr, u64 *data)
2637 {
2638 *data = 0;
2639
2640 switch (msr) {
2641 case MSR_AMD64_DE_CFG:
2642 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2643 *data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2644 break;
2645 default:
2646 return KVM_MSR_RET_UNSUPPORTED;
2647 }
2648
2649 return 0;
2650 }
2651
sev_es_prevent_msr_access(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2652 static bool sev_es_prevent_msr_access(struct kvm_vcpu *vcpu,
2653 struct msr_data *msr_info)
2654 {
2655 return sev_es_guest(vcpu->kvm) && vcpu->arch.guest_state_protected &&
2656 msr_info->index != MSR_IA32_XSS &&
2657 !msr_write_intercepted(vcpu, msr_info->index);
2658 }
2659
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2660 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2661 {
2662 struct vcpu_svm *svm = to_svm(vcpu);
2663
2664 if (sev_es_prevent_msr_access(vcpu, msr_info)) {
2665 msr_info->data = 0;
2666 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2667 }
2668
2669 switch (msr_info->index) {
2670 case MSR_AMD64_TSC_RATIO:
2671 if (!msr_info->host_initiated &&
2672 !guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR))
2673 return 1;
2674 msr_info->data = svm->tsc_ratio_msr;
2675 break;
2676 case MSR_STAR:
2677 msr_info->data = svm->vmcb01.ptr->save.star;
2678 break;
2679 #ifdef CONFIG_X86_64
2680 case MSR_LSTAR:
2681 msr_info->data = svm->vmcb01.ptr->save.lstar;
2682 break;
2683 case MSR_CSTAR:
2684 msr_info->data = svm->vmcb01.ptr->save.cstar;
2685 break;
2686 case MSR_GS_BASE:
2687 msr_info->data = svm->vmcb01.ptr->save.gs.base;
2688 break;
2689 case MSR_FS_BASE:
2690 msr_info->data = svm->vmcb01.ptr->save.fs.base;
2691 break;
2692 case MSR_KERNEL_GS_BASE:
2693 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2694 break;
2695 case MSR_SYSCALL_MASK:
2696 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2697 break;
2698 #endif
2699 case MSR_IA32_SYSENTER_CS:
2700 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2701 break;
2702 case MSR_IA32_SYSENTER_EIP:
2703 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2704 if (guest_cpuid_is_intel_compatible(vcpu))
2705 msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2706 break;
2707 case MSR_IA32_SYSENTER_ESP:
2708 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2709 if (guest_cpuid_is_intel_compatible(vcpu))
2710 msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2711 break;
2712 case MSR_IA32_S_CET:
2713 msr_info->data = svm->vmcb->save.s_cet;
2714 break;
2715 case MSR_IA32_INT_SSP_TAB:
2716 msr_info->data = svm->vmcb->save.isst_addr;
2717 break;
2718 case MSR_KVM_INTERNAL_GUEST_SSP:
2719 msr_info->data = svm->vmcb->save.ssp;
2720 break;
2721 case MSR_TSC_AUX:
2722 msr_info->data = svm->tsc_aux;
2723 break;
2724 case MSR_IA32_DEBUGCTLMSR:
2725 msr_info->data = svm->vmcb->save.dbgctl;
2726 break;
2727 case MSR_IA32_LASTBRANCHFROMIP:
2728 msr_info->data = svm->vmcb->save.br_from;
2729 break;
2730 case MSR_IA32_LASTBRANCHTOIP:
2731 msr_info->data = svm->vmcb->save.br_to;
2732 break;
2733 case MSR_IA32_LASTINTFROMIP:
2734 msr_info->data = svm->vmcb->save.last_excp_from;
2735 break;
2736 case MSR_IA32_LASTINTTOIP:
2737 msr_info->data = svm->vmcb->save.last_excp_to;
2738 break;
2739 case MSR_VM_HSAVE_PA:
2740 msr_info->data = svm->nested.hsave_msr;
2741 break;
2742 case MSR_VM_CR:
2743 msr_info->data = svm->nested.vm_cr_msr;
2744 break;
2745 case MSR_IA32_SPEC_CTRL:
2746 if (!msr_info->host_initiated &&
2747 !guest_has_spec_ctrl_msr(vcpu))
2748 return 1;
2749
2750 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2751 msr_info->data = svm->vmcb->save.spec_ctrl;
2752 else
2753 msr_info->data = svm->spec_ctrl;
2754 break;
2755 case MSR_AMD64_VIRT_SPEC_CTRL:
2756 if (!msr_info->host_initiated &&
2757 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2758 return 1;
2759
2760 msr_info->data = svm->virt_spec_ctrl;
2761 break;
2762 case MSR_F15H_IC_CFG: {
2763
2764 int family, model;
2765
2766 family = guest_cpuid_family(vcpu);
2767 model = guest_cpuid_model(vcpu);
2768
2769 if (family < 0 || model < 0)
2770 return kvm_get_msr_common(vcpu, msr_info);
2771
2772 msr_info->data = 0;
2773
2774 if (family == 0x15 &&
2775 (model >= 0x2 && model < 0x20))
2776 msr_info->data = 0x1E;
2777 }
2778 break;
2779 case MSR_AMD64_DE_CFG:
2780 msr_info->data = svm->msr_decfg;
2781 break;
2782 default:
2783 return kvm_get_msr_common(vcpu, msr_info);
2784 }
2785 return 0;
2786 }
2787
svm_complete_emulated_msr(struct kvm_vcpu * vcpu,int err)2788 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2789 {
2790 struct vcpu_svm *svm = to_svm(vcpu);
2791 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2792 return kvm_complete_insn_gp(vcpu, err);
2793
2794 svm_vmgexit_inject_exception(svm, X86_TRAP_GP);
2795 return 1;
2796 }
2797
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)2798 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2799 {
2800 struct vcpu_svm *svm = to_svm(vcpu);
2801 int svm_dis, chg_mask;
2802
2803 if (data & ~SVM_VM_CR_VALID_MASK)
2804 return 1;
2805
2806 chg_mask = SVM_VM_CR_VALID_MASK;
2807
2808 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2809 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2810
2811 svm->nested.vm_cr_msr &= ~chg_mask;
2812 svm->nested.vm_cr_msr |= (data & chg_mask);
2813
2814 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2815
2816 /* check for svm_disable while efer.svme is set */
2817 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2818 return 1;
2819
2820 return 0;
2821 }
2822
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2823 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2824 {
2825 struct vcpu_svm *svm = to_svm(vcpu);
2826 int ret = 0;
2827
2828 u32 ecx = msr->index;
2829 u64 data = msr->data;
2830
2831 if (sev_es_prevent_msr_access(vcpu, msr))
2832 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2833
2834 switch (ecx) {
2835 case MSR_AMD64_TSC_RATIO:
2836
2837 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) {
2838
2839 if (!msr->host_initiated)
2840 return 1;
2841 /*
2842 * In case TSC scaling is not enabled, always
2843 * leave this MSR at the default value.
2844 *
2845 * Due to bug in qemu 6.2.0, it would try to set
2846 * this msr to 0 if tsc scaling is not enabled.
2847 * Ignore this value as well.
2848 */
2849 if (data != 0 && data != svm->tsc_ratio_msr)
2850 return 1;
2851 break;
2852 }
2853
2854 if (data & SVM_TSC_RATIO_RSVD)
2855 return 1;
2856
2857 svm->tsc_ratio_msr = data;
2858
2859 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) &&
2860 is_guest_mode(vcpu))
2861 nested_svm_update_tsc_ratio_msr(vcpu);
2862
2863 break;
2864 case MSR_IA32_CR_PAT:
2865 ret = kvm_set_msr_common(vcpu, msr);
2866 if (ret)
2867 break;
2868
2869 svm->vmcb01.ptr->save.g_pat = data;
2870 if (is_guest_mode(vcpu))
2871 nested_vmcb02_compute_g_pat(svm);
2872 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2873 break;
2874 case MSR_IA32_SPEC_CTRL:
2875 if (!msr->host_initiated &&
2876 !guest_has_spec_ctrl_msr(vcpu))
2877 return 1;
2878
2879 if (kvm_spec_ctrl_test_value(data))
2880 return 1;
2881
2882 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2883 svm->vmcb->save.spec_ctrl = data;
2884 else
2885 svm->spec_ctrl = data;
2886 if (!data)
2887 break;
2888
2889 /*
2890 * For non-nested:
2891 * When it's written (to non-zero) for the first time, pass
2892 * it through.
2893 *
2894 * For nested:
2895 * The handling of the MSR bitmap for L2 guests is done in
2896 * nested_svm_merge_msrpm().
2897 * We update the L1 MSR bit as well since it will end up
2898 * touching the MSR anyway now.
2899 */
2900 svm_disable_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
2901 break;
2902 case MSR_AMD64_VIRT_SPEC_CTRL:
2903 if (!msr->host_initiated &&
2904 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2905 return 1;
2906
2907 if (data & ~SPEC_CTRL_SSBD)
2908 return 1;
2909
2910 svm->virt_spec_ctrl = data;
2911 break;
2912 case MSR_STAR:
2913 svm->vmcb01.ptr->save.star = data;
2914 break;
2915 #ifdef CONFIG_X86_64
2916 case MSR_LSTAR:
2917 svm->vmcb01.ptr->save.lstar = data;
2918 break;
2919 case MSR_CSTAR:
2920 svm->vmcb01.ptr->save.cstar = data;
2921 break;
2922 case MSR_GS_BASE:
2923 svm->vmcb01.ptr->save.gs.base = data;
2924 break;
2925 case MSR_FS_BASE:
2926 svm->vmcb01.ptr->save.fs.base = data;
2927 break;
2928 case MSR_KERNEL_GS_BASE:
2929 svm->vmcb01.ptr->save.kernel_gs_base = data;
2930 break;
2931 case MSR_SYSCALL_MASK:
2932 svm->vmcb01.ptr->save.sfmask = data;
2933 break;
2934 #endif
2935 case MSR_IA32_SYSENTER_CS:
2936 svm->vmcb01.ptr->save.sysenter_cs = data;
2937 break;
2938 case MSR_IA32_SYSENTER_EIP:
2939 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2940 /*
2941 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2942 * when we spoof an Intel vendor ID (for cross vendor migration).
2943 * In this case we use this intercept to track the high
2944 * 32 bit part of these msrs to support Intel's
2945 * implementation of SYSENTER/SYSEXIT.
2946 */
2947 svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
2948 break;
2949 case MSR_IA32_SYSENTER_ESP:
2950 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2951 svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
2952 break;
2953 case MSR_IA32_S_CET:
2954 svm->vmcb->save.s_cet = data;
2955 vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET);
2956 break;
2957 case MSR_IA32_INT_SSP_TAB:
2958 svm->vmcb->save.isst_addr = data;
2959 vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET);
2960 break;
2961 case MSR_KVM_INTERNAL_GUEST_SSP:
2962 svm->vmcb->save.ssp = data;
2963 vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET);
2964 break;
2965 case MSR_TSC_AUX:
2966 /*
2967 * TSC_AUX is always virtualized for SEV-ES guests when the
2968 * feature is available. The user return MSR support is not
2969 * required in this case because TSC_AUX is restored on #VMEXIT
2970 * from the host save area.
2971 */
2972 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
2973 break;
2974
2975 /*
2976 * TSC_AUX is usually changed only during boot and never read
2977 * directly. Intercept TSC_AUX and switch it via user return.
2978 */
2979 preempt_disable();
2980 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
2981 preempt_enable();
2982 if (ret)
2983 break;
2984
2985 svm->tsc_aux = data;
2986 break;
2987 case MSR_IA32_DEBUGCTLMSR:
2988 if (!lbrv) {
2989 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
2990 break;
2991 }
2992
2993 /*
2994 * Suppress BTF as KVM doesn't virtualize BTF, but there's no
2995 * way to communicate lack of support to the guest.
2996 */
2997 if (data & DEBUGCTLMSR_BTF) {
2998 kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
2999 data &= ~DEBUGCTLMSR_BTF;
3000 }
3001
3002 if (data & DEBUGCTL_RESERVED_BITS)
3003 return 1;
3004
3005 if (svm->vmcb->save.dbgctl == data)
3006 break;
3007
3008 svm->vmcb->save.dbgctl = data;
3009 vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
3010 svm_update_lbrv(vcpu);
3011 break;
3012 case MSR_VM_HSAVE_PA:
3013 /*
3014 * Old kernels did not validate the value written to
3015 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid
3016 * value to allow live migrating buggy or malicious guests
3017 * originating from those kernels.
3018 */
3019 if (!msr->host_initiated && !page_address_valid(vcpu, data))
3020 return 1;
3021
3022 svm->nested.hsave_msr = data & PAGE_MASK;
3023 break;
3024 case MSR_VM_CR:
3025 return svm_set_vm_cr(vcpu, data);
3026 case MSR_VM_IGNNE:
3027 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3028 break;
3029 case MSR_AMD64_DE_CFG: {
3030 u64 supported_de_cfg;
3031
3032 if (svm_get_feature_msr(ecx, &supported_de_cfg))
3033 return 1;
3034
3035 if (data & ~supported_de_cfg)
3036 return 1;
3037
3038 svm->msr_decfg = data;
3039 break;
3040 }
3041 default:
3042 return kvm_set_msr_common(vcpu, msr);
3043 }
3044 return ret;
3045 }
3046
msr_interception(struct kvm_vcpu * vcpu)3047 static int msr_interception(struct kvm_vcpu *vcpu)
3048 {
3049 if (to_svm(vcpu)->vmcb->control.exit_info_1)
3050 return kvm_emulate_wrmsr(vcpu);
3051 else
3052 return kvm_emulate_rdmsr(vcpu);
3053 }
3054
interrupt_window_interception(struct kvm_vcpu * vcpu)3055 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3056 {
3057 kvm_make_request(KVM_REQ_EVENT, vcpu);
3058 svm_clear_vintr(to_svm(vcpu));
3059
3060 /*
3061 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3062 * In this case AVIC was temporarily disabled for
3063 * requesting the IRQ window and we have to re-enable it.
3064 *
3065 * If running nested, still remove the VM wide AVIC inhibit to
3066 * support case in which the interrupt window was requested when the
3067 * vCPU was not running nested.
3068
3069 * All vCPUs which run still run nested, will remain to have their
3070 * AVIC still inhibited due to per-cpu AVIC inhibition.
3071 */
3072 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3073
3074 ++vcpu->stat.irq_window_exits;
3075 return 1;
3076 }
3077
pause_interception(struct kvm_vcpu * vcpu)3078 static int pause_interception(struct kvm_vcpu *vcpu)
3079 {
3080 bool in_kernel;
3081 /*
3082 * CPL is not made available for an SEV-ES guest, therefore
3083 * vcpu->arch.preempted_in_kernel can never be true. Just
3084 * set in_kernel to false as well.
3085 */
3086 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3087
3088 grow_ple_window(vcpu);
3089
3090 kvm_vcpu_on_spin(vcpu, in_kernel);
3091 return kvm_skip_emulated_instruction(vcpu);
3092 }
3093
invpcid_interception(struct kvm_vcpu * vcpu)3094 static int invpcid_interception(struct kvm_vcpu *vcpu)
3095 {
3096 struct vcpu_svm *svm = to_svm(vcpu);
3097 unsigned long type;
3098 gva_t gva;
3099
3100 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
3101 kvm_queue_exception(vcpu, UD_VECTOR);
3102 return 1;
3103 }
3104
3105 /*
3106 * For an INVPCID intercept:
3107 * EXITINFO1 provides the linear address of the memory operand.
3108 * EXITINFO2 provides the contents of the register operand.
3109 */
3110 type = svm->vmcb->control.exit_info_2;
3111 gva = svm->vmcb->control.exit_info_1;
3112
3113 /*
3114 * FIXME: Perform segment checks for 32-bit mode, and inject #SS if the
3115 * stack segment is used. The intercept takes priority over all
3116 * #GP checks except CPL>0, but somehow still generates a linear
3117 * address? The APM is sorely lacking.
3118 */
3119 if (is_noncanonical_address(gva, vcpu, 0)) {
3120 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3121 return 1;
3122 }
3123
3124 return kvm_handle_invpcid(vcpu, type, gva);
3125 }
3126
complete_userspace_buslock(struct kvm_vcpu * vcpu)3127 static inline int complete_userspace_buslock(struct kvm_vcpu *vcpu)
3128 {
3129 struct vcpu_svm *svm = to_svm(vcpu);
3130
3131 /*
3132 * If userspace has NOT changed RIP, then KVM's ABI is to let the guest
3133 * execute the bus-locking instruction. Set the bus lock counter to '1'
3134 * to effectively step past the bus lock.
3135 */
3136 if (kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))
3137 svm->vmcb->control.bus_lock_counter = 1;
3138
3139 return 1;
3140 }
3141
bus_lock_exit(struct kvm_vcpu * vcpu)3142 static int bus_lock_exit(struct kvm_vcpu *vcpu)
3143 {
3144 struct vcpu_svm *svm = to_svm(vcpu);
3145
3146 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
3147 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
3148
3149 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
3150 vcpu->arch.complete_userspace_io = complete_userspace_buslock;
3151
3152 if (is_guest_mode(vcpu))
3153 svm->nested.ctl.bus_lock_rip = vcpu->arch.cui_linear_rip;
3154
3155 return 0;
3156 }
3157
3158 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3159 [SVM_EXIT_READ_CR0] = cr_interception,
3160 [SVM_EXIT_READ_CR3] = cr_interception,
3161 [SVM_EXIT_READ_CR4] = cr_interception,
3162 [SVM_EXIT_READ_CR8] = cr_interception,
3163 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3164 [SVM_EXIT_WRITE_CR0] = cr_interception,
3165 [SVM_EXIT_WRITE_CR3] = cr_interception,
3166 [SVM_EXIT_WRITE_CR4] = cr_interception,
3167 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3168 [SVM_EXIT_READ_DR0] = dr_interception,
3169 [SVM_EXIT_READ_DR1] = dr_interception,
3170 [SVM_EXIT_READ_DR2] = dr_interception,
3171 [SVM_EXIT_READ_DR3] = dr_interception,
3172 [SVM_EXIT_READ_DR4] = dr_interception,
3173 [SVM_EXIT_READ_DR5] = dr_interception,
3174 [SVM_EXIT_READ_DR6] = dr_interception,
3175 [SVM_EXIT_READ_DR7] = dr_interception,
3176 [SVM_EXIT_WRITE_DR0] = dr_interception,
3177 [SVM_EXIT_WRITE_DR1] = dr_interception,
3178 [SVM_EXIT_WRITE_DR2] = dr_interception,
3179 [SVM_EXIT_WRITE_DR3] = dr_interception,
3180 [SVM_EXIT_WRITE_DR4] = dr_interception,
3181 [SVM_EXIT_WRITE_DR5] = dr_interception,
3182 [SVM_EXIT_WRITE_DR6] = dr_interception,
3183 [SVM_EXIT_WRITE_DR7] = dr_interception,
3184 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3185 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3186 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3187 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3188 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3189 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
3190 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
3191 [SVM_EXIT_INTR] = intr_interception,
3192 [SVM_EXIT_NMI] = nmi_interception,
3193 [SVM_EXIT_SMI] = smi_interception,
3194 [SVM_EXIT_VINTR] = interrupt_window_interception,
3195 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc,
3196 [SVM_EXIT_CPUID] = kvm_emulate_cpuid,
3197 [SVM_EXIT_IRET] = iret_interception,
3198 [SVM_EXIT_INVD] = kvm_emulate_invd,
3199 [SVM_EXIT_PAUSE] = pause_interception,
3200 [SVM_EXIT_HLT] = kvm_emulate_halt,
3201 [SVM_EXIT_INVLPG] = invlpg_interception,
3202 [SVM_EXIT_INVLPGA] = invlpga_interception,
3203 [SVM_EXIT_IOIO] = io_interception,
3204 [SVM_EXIT_MSR] = msr_interception,
3205 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3206 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3207 [SVM_EXIT_VMRUN] = vmrun_interception,
3208 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall,
3209 [SVM_EXIT_VMLOAD] = vmload_interception,
3210 [SVM_EXIT_VMSAVE] = vmsave_interception,
3211 [SVM_EXIT_STGI] = stgi_interception,
3212 [SVM_EXIT_CLGI] = clgi_interception,
3213 [SVM_EXIT_SKINIT] = skinit_interception,
3214 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op,
3215 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd,
3216 [SVM_EXIT_MONITOR] = kvm_emulate_monitor,
3217 [SVM_EXIT_MWAIT] = kvm_emulate_mwait,
3218 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv,
3219 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op,
3220 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap,
3221 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap,
3222 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap,
3223 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap,
3224 [SVM_EXIT_INVPCID] = invpcid_interception,
3225 [SVM_EXIT_IDLE_HLT] = kvm_emulate_halt,
3226 [SVM_EXIT_NPF] = npf_interception,
3227 [SVM_EXIT_BUS_LOCK] = bus_lock_exit,
3228 [SVM_EXIT_RSM] = rsm_interception,
3229 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
3230 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
3231 #ifdef CONFIG_KVM_AMD_SEV
3232 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit,
3233 #endif
3234 };
3235
dump_vmcb(struct kvm_vcpu * vcpu)3236 static void dump_vmcb(struct kvm_vcpu *vcpu)
3237 {
3238 struct vcpu_svm *svm = to_svm(vcpu);
3239 struct vmcb_control_area *control = &svm->vmcb->control;
3240 struct vmcb_save_area *save = &svm->vmcb->save;
3241 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3242 char *vm_type;
3243
3244 if (!dump_invalid_vmcb) {
3245 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3246 return;
3247 }
3248
3249 guard(mutex)(&vmcb_dump_mutex);
3250
3251 vm_type = sev_snp_guest(vcpu->kvm) ? "SEV-SNP" :
3252 sev_es_guest(vcpu->kvm) ? "SEV-ES" :
3253 sev_guest(vcpu->kvm) ? "SEV" : "SVM";
3254
3255 pr_err("%s vCPU%u VMCB %p, last attempted VMRUN on CPU %d\n",
3256 vm_type, vcpu->vcpu_id, svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3257 pr_err("VMCB Control Area:\n");
3258 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3259 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3260 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3261 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3262 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3263 pr_err("%-20s%08x %08x\n", "intercepts:",
3264 control->intercepts[INTERCEPT_WORD3],
3265 control->intercepts[INTERCEPT_WORD4]);
3266 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3267 pr_err("%-20s%d\n", "pause filter threshold:",
3268 control->pause_filter_thresh);
3269 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3270 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3271 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3272 pr_err("%-20s%d\n", "asid:", control->asid);
3273 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3274 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3275 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3276 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3277 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3278 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3279 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3280 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3281 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3282 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3283 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3284 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3285 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3286 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3287 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3288 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3289 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3290 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3291 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3292 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3293 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3294 pr_err("%-20s%016llx\n", "allowed_sev_features:", control->allowed_sev_features);
3295 pr_err("%-20s%016llx\n", "guest_sev_features:", control->guest_sev_features);
3296
3297 if (sev_es_guest(vcpu->kvm)) {
3298 save = sev_decrypt_vmsa(vcpu);
3299 if (!save)
3300 goto no_vmsa;
3301
3302 save01 = save;
3303 }
3304
3305 pr_err("VMCB State Save Area:\n");
3306 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3307 "es:",
3308 save->es.selector, save->es.attrib,
3309 save->es.limit, save->es.base);
3310 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3311 "cs:",
3312 save->cs.selector, save->cs.attrib,
3313 save->cs.limit, save->cs.base);
3314 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3315 "ss:",
3316 save->ss.selector, save->ss.attrib,
3317 save->ss.limit, save->ss.base);
3318 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3319 "ds:",
3320 save->ds.selector, save->ds.attrib,
3321 save->ds.limit, save->ds.base);
3322 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3323 "fs:",
3324 save01->fs.selector, save01->fs.attrib,
3325 save01->fs.limit, save01->fs.base);
3326 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3327 "gs:",
3328 save01->gs.selector, save01->gs.attrib,
3329 save01->gs.limit, save01->gs.base);
3330 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3331 "gdtr:",
3332 save->gdtr.selector, save->gdtr.attrib,
3333 save->gdtr.limit, save->gdtr.base);
3334 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3335 "ldtr:",
3336 save01->ldtr.selector, save01->ldtr.attrib,
3337 save01->ldtr.limit, save01->ldtr.base);
3338 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3339 "idtr:",
3340 save->idtr.selector, save->idtr.attrib,
3341 save->idtr.limit, save->idtr.base);
3342 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3343 "tr:",
3344 save01->tr.selector, save01->tr.attrib,
3345 save01->tr.limit, save01->tr.base);
3346 pr_err("vmpl: %d cpl: %d efer: %016llx\n",
3347 save->vmpl, save->cpl, save->efer);
3348 pr_err("%-15s %016llx %-13s %016llx\n",
3349 "cr0:", save->cr0, "cr2:", save->cr2);
3350 pr_err("%-15s %016llx %-13s %016llx\n",
3351 "cr3:", save->cr3, "cr4:", save->cr4);
3352 pr_err("%-15s %016llx %-13s %016llx\n",
3353 "dr6:", save->dr6, "dr7:", save->dr7);
3354 pr_err("%-15s %016llx %-13s %016llx\n",
3355 "rip:", save->rip, "rflags:", save->rflags);
3356 pr_err("%-15s %016llx %-13s %016llx\n",
3357 "rsp:", save->rsp, "rax:", save->rax);
3358 pr_err("%-15s %016llx %-13s %016llx\n",
3359 "s_cet:", save->s_cet, "ssp:", save->ssp);
3360 pr_err("%-15s %016llx\n",
3361 "isst_addr:", save->isst_addr);
3362 pr_err("%-15s %016llx %-13s %016llx\n",
3363 "star:", save01->star, "lstar:", save01->lstar);
3364 pr_err("%-15s %016llx %-13s %016llx\n",
3365 "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3366 pr_err("%-15s %016llx %-13s %016llx\n",
3367 "kernel_gs_base:", save01->kernel_gs_base,
3368 "sysenter_cs:", save01->sysenter_cs);
3369 pr_err("%-15s %016llx %-13s %016llx\n",
3370 "sysenter_esp:", save01->sysenter_esp,
3371 "sysenter_eip:", save01->sysenter_eip);
3372 pr_err("%-15s %016llx %-13s %016llx\n",
3373 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3374 pr_err("%-15s %016llx %-13s %016llx\n",
3375 "br_from:", save->br_from, "br_to:", save->br_to);
3376 pr_err("%-15s %016llx %-13s %016llx\n",
3377 "excp_from:", save->last_excp_from,
3378 "excp_to:", save->last_excp_to);
3379
3380 if (sev_es_guest(vcpu->kvm)) {
3381 struct sev_es_save_area *vmsa = (struct sev_es_save_area *)save;
3382
3383 pr_err("%-15s %016llx\n",
3384 "sev_features", vmsa->sev_features);
3385
3386 pr_err("%-15s %016llx %-13s %016llx\n",
3387 "pl0_ssp:", vmsa->pl0_ssp, "pl1_ssp:", vmsa->pl1_ssp);
3388 pr_err("%-15s %016llx %-13s %016llx\n",
3389 "pl2_ssp:", vmsa->pl2_ssp, "pl3_ssp:", vmsa->pl3_ssp);
3390 pr_err("%-15s %016llx\n",
3391 "u_cet:", vmsa->u_cet);
3392
3393 pr_err("%-15s %016llx %-13s %016llx\n",
3394 "rax:", vmsa->rax, "rbx:", vmsa->rbx);
3395 pr_err("%-15s %016llx %-13s %016llx\n",
3396 "rcx:", vmsa->rcx, "rdx:", vmsa->rdx);
3397 pr_err("%-15s %016llx %-13s %016llx\n",
3398 "rsi:", vmsa->rsi, "rdi:", vmsa->rdi);
3399 pr_err("%-15s %016llx %-13s %016llx\n",
3400 "rbp:", vmsa->rbp, "rsp:", vmsa->rsp);
3401 pr_err("%-15s %016llx %-13s %016llx\n",
3402 "r8:", vmsa->r8, "r9:", vmsa->r9);
3403 pr_err("%-15s %016llx %-13s %016llx\n",
3404 "r10:", vmsa->r10, "r11:", vmsa->r11);
3405 pr_err("%-15s %016llx %-13s %016llx\n",
3406 "r12:", vmsa->r12, "r13:", vmsa->r13);
3407 pr_err("%-15s %016llx %-13s %016llx\n",
3408 "r14:", vmsa->r14, "r15:", vmsa->r15);
3409 pr_err("%-15s %016llx %-13s %016llx\n",
3410 "xcr0:", vmsa->xcr0, "xss:", vmsa->xss);
3411 } else {
3412 pr_err("%-15s %016llx %-13s %016lx\n",
3413 "rax:", save->rax, "rbx:",
3414 vcpu->arch.regs[VCPU_REGS_RBX]);
3415 pr_err("%-15s %016lx %-13s %016lx\n",
3416 "rcx:", vcpu->arch.regs[VCPU_REGS_RCX],
3417 "rdx:", vcpu->arch.regs[VCPU_REGS_RDX]);
3418 pr_err("%-15s %016lx %-13s %016lx\n",
3419 "rsi:", vcpu->arch.regs[VCPU_REGS_RSI],
3420 "rdi:", vcpu->arch.regs[VCPU_REGS_RDI]);
3421 pr_err("%-15s %016lx %-13s %016llx\n",
3422 "rbp:", vcpu->arch.regs[VCPU_REGS_RBP],
3423 "rsp:", save->rsp);
3424 #ifdef CONFIG_X86_64
3425 pr_err("%-15s %016lx %-13s %016lx\n",
3426 "r8:", vcpu->arch.regs[VCPU_REGS_R8],
3427 "r9:", vcpu->arch.regs[VCPU_REGS_R9]);
3428 pr_err("%-15s %016lx %-13s %016lx\n",
3429 "r10:", vcpu->arch.regs[VCPU_REGS_R10],
3430 "r11:", vcpu->arch.regs[VCPU_REGS_R11]);
3431 pr_err("%-15s %016lx %-13s %016lx\n",
3432 "r12:", vcpu->arch.regs[VCPU_REGS_R12],
3433 "r13:", vcpu->arch.regs[VCPU_REGS_R13]);
3434 pr_err("%-15s %016lx %-13s %016lx\n",
3435 "r14:", vcpu->arch.regs[VCPU_REGS_R14],
3436 "r15:", vcpu->arch.regs[VCPU_REGS_R15]);
3437 #endif
3438 }
3439
3440 no_vmsa:
3441 if (sev_es_guest(vcpu->kvm))
3442 sev_free_decrypted_vmsa(vcpu, save);
3443 }
3444
svm_check_exit_valid(u64 exit_code)3445 static bool svm_check_exit_valid(u64 exit_code)
3446 {
3447 return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3448 svm_exit_handlers[exit_code]);
3449 }
3450
svm_handle_invalid_exit(struct kvm_vcpu * vcpu,u64 exit_code)3451 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3452 {
3453 dump_vmcb(vcpu);
3454 kvm_prepare_unexpected_reason_exit(vcpu, exit_code);
3455 return 0;
3456 }
3457
svm_invoke_exit_handler(struct kvm_vcpu * vcpu,u64 exit_code)3458 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3459 {
3460 if (!svm_check_exit_valid(exit_code))
3461 return svm_handle_invalid_exit(vcpu, exit_code);
3462
3463 #ifdef CONFIG_MITIGATION_RETPOLINE
3464 if (exit_code == SVM_EXIT_MSR)
3465 return msr_interception(vcpu);
3466 else if (exit_code == SVM_EXIT_VINTR)
3467 return interrupt_window_interception(vcpu);
3468 else if (exit_code == SVM_EXIT_INTR)
3469 return intr_interception(vcpu);
3470 else if (exit_code == SVM_EXIT_HLT || exit_code == SVM_EXIT_IDLE_HLT)
3471 return kvm_emulate_halt(vcpu);
3472 else if (exit_code == SVM_EXIT_NPF)
3473 return npf_interception(vcpu);
3474 #ifdef CONFIG_KVM_AMD_SEV
3475 else if (exit_code == SVM_EXIT_VMGEXIT)
3476 return sev_handle_vmgexit(vcpu);
3477 #endif
3478 #endif
3479 return svm_exit_handlers[exit_code](vcpu);
3480 }
3481
svm_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)3482 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3483 u64 *info1, u64 *info2,
3484 u32 *intr_info, u32 *error_code)
3485 {
3486 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3487
3488 *reason = control->exit_code;
3489 *info1 = control->exit_info_1;
3490 *info2 = control->exit_info_2;
3491 *intr_info = control->exit_int_info;
3492 if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3493 (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3494 *error_code = control->exit_int_info_err;
3495 else
3496 *error_code = 0;
3497 }
3498
svm_get_entry_info(struct kvm_vcpu * vcpu,u32 * intr_info,u32 * error_code)3499 static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info,
3500 u32 *error_code)
3501 {
3502 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3503
3504 *intr_info = control->event_inj;
3505
3506 if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3507 (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3508 *error_code = control->event_inj_err;
3509 else
3510 *error_code = 0;
3511
3512 }
3513
svm_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)3514 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3515 {
3516 struct vcpu_svm *svm = to_svm(vcpu);
3517 struct kvm_run *kvm_run = vcpu->run;
3518 u32 exit_code = svm->vmcb->control.exit_code;
3519
3520 /* SEV-ES guests must use the CR write traps to track CR registers. */
3521 if (!sev_es_guest(vcpu->kvm)) {
3522 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3523 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3524 if (npt_enabled)
3525 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3526 }
3527
3528 if (is_guest_mode(vcpu)) {
3529 int vmexit;
3530
3531 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3532
3533 vmexit = nested_svm_exit_special(svm);
3534
3535 if (vmexit == NESTED_EXIT_CONTINUE)
3536 vmexit = nested_svm_exit_handled(svm);
3537
3538 if (vmexit == NESTED_EXIT_DONE)
3539 return 1;
3540 }
3541
3542 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3543 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3544 kvm_run->fail_entry.hardware_entry_failure_reason
3545 = svm->vmcb->control.exit_code;
3546 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3547 dump_vmcb(vcpu);
3548 return 0;
3549 }
3550
3551 if (exit_fastpath != EXIT_FASTPATH_NONE)
3552 return 1;
3553
3554 return svm_invoke_exit_handler(vcpu, exit_code);
3555 }
3556
pre_svm_run(struct kvm_vcpu * vcpu)3557 static int pre_svm_run(struct kvm_vcpu *vcpu)
3558 {
3559 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3560 struct vcpu_svm *svm = to_svm(vcpu);
3561
3562 /*
3563 * If the previous vmrun of the vmcb occurred on a different physical
3564 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's
3565 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3566 */
3567 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3568 svm->current_vmcb->asid_generation = 0;
3569 vmcb_mark_all_dirty(svm->vmcb);
3570 svm->current_vmcb->cpu = vcpu->cpu;
3571 }
3572
3573 if (sev_guest(vcpu->kvm))
3574 return pre_sev_run(svm, vcpu->cpu);
3575
3576 /* FIXME: handle wraparound of asid_generation */
3577 if (svm->current_vmcb->asid_generation != sd->asid_generation)
3578 new_asid(svm, sd);
3579
3580 return 0;
3581 }
3582
svm_inject_nmi(struct kvm_vcpu * vcpu)3583 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3584 {
3585 struct vcpu_svm *svm = to_svm(vcpu);
3586
3587 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3588
3589 if (svm->nmi_l1_to_l2)
3590 return;
3591
3592 /*
3593 * No need to manually track NMI masking when vNMI is enabled, hardware
3594 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
3595 * case where software directly injects an NMI.
3596 */
3597 if (!is_vnmi_enabled(svm)) {
3598 svm->nmi_masked = true;
3599 svm_set_iret_intercept(svm);
3600 }
3601 ++vcpu->stat.nmi_injections;
3602 }
3603
svm_is_vnmi_pending(struct kvm_vcpu * vcpu)3604 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3605 {
3606 struct vcpu_svm *svm = to_svm(vcpu);
3607
3608 if (!is_vnmi_enabled(svm))
3609 return false;
3610
3611 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3612 }
3613
svm_set_vnmi_pending(struct kvm_vcpu * vcpu)3614 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3615 {
3616 struct vcpu_svm *svm = to_svm(vcpu);
3617
3618 if (!is_vnmi_enabled(svm))
3619 return false;
3620
3621 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3622 return false;
3623
3624 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3625 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3626
3627 /*
3628 * Because the pending NMI is serviced by hardware, KVM can't know when
3629 * the NMI is "injected", but for all intents and purposes, passing the
3630 * NMI off to hardware counts as injection.
3631 */
3632 ++vcpu->stat.nmi_injections;
3633
3634 return true;
3635 }
3636
svm_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)3637 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3638 {
3639 struct kvm_queued_interrupt *intr = &vcpu->arch.interrupt;
3640 struct vcpu_svm *svm = to_svm(vcpu);
3641 u32 type;
3642
3643 if (intr->soft) {
3644 if (svm_update_soft_interrupt_rip(vcpu, intr->nr))
3645 return;
3646
3647 type = SVM_EVTINJ_TYPE_SOFT;
3648 } else {
3649 type = SVM_EVTINJ_TYPE_INTR;
3650 }
3651
3652 trace_kvm_inj_virq(intr->nr, intr->soft, reinjected);
3653 ++vcpu->stat.irq_injections;
3654
3655 svm->vmcb->control.event_inj = intr->nr | SVM_EVTINJ_VALID | type;
3656 }
3657
svm_complete_interrupt_delivery(struct kvm_vcpu * vcpu,int delivery_mode,int trig_mode,int vector)3658 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3659 int trig_mode, int vector)
3660 {
3661 /*
3662 * apic->apicv_active must be read after vcpu->mode.
3663 * Pairs with smp_store_release in vcpu_enter_guest.
3664 */
3665 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3666
3667 /* Note, this is called iff the local APIC is in-kernel. */
3668 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3669 /* Process the interrupt via kvm_check_and_inject_events(). */
3670 kvm_make_request(KVM_REQ_EVENT, vcpu);
3671 kvm_vcpu_kick(vcpu);
3672 return;
3673 }
3674
3675 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3676 if (in_guest_mode) {
3677 /*
3678 * Signal the doorbell to tell hardware to inject the IRQ. If
3679 * the vCPU exits the guest before the doorbell chimes, hardware
3680 * will automatically process AVIC interrupts at the next VMRUN.
3681 */
3682 avic_ring_doorbell(vcpu);
3683 } else {
3684 /*
3685 * Wake the vCPU if it was blocking. KVM will then detect the
3686 * pending IRQ when checking if the vCPU has a wake event.
3687 */
3688 kvm_vcpu_wake_up(vcpu);
3689 }
3690 }
3691
svm_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)3692 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
3693 int trig_mode, int vector)
3694 {
3695 kvm_lapic_set_irr(vector, apic);
3696
3697 /*
3698 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3699 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3700 * the read of guest_mode. This guarantees that either VMRUN will see
3701 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3702 * will signal the doorbell if the CPU has already entered the guest.
3703 */
3704 smp_mb__after_atomic();
3705 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3706 }
3707
svm_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3708 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3709 {
3710 struct vcpu_svm *svm = to_svm(vcpu);
3711
3712 /*
3713 * SEV-ES guests must always keep the CR intercepts cleared. CR
3714 * tracking is done using the CR write traps.
3715 */
3716 if (sev_es_guest(vcpu->kvm))
3717 return;
3718
3719 if (nested_svm_virtualize_tpr(vcpu))
3720 return;
3721
3722 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3723
3724 if (irr == -1)
3725 return;
3726
3727 if (tpr >= irr)
3728 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3729 }
3730
svm_get_nmi_mask(struct kvm_vcpu * vcpu)3731 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3732 {
3733 struct vcpu_svm *svm = to_svm(vcpu);
3734
3735 if (is_vnmi_enabled(svm))
3736 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3737 else
3738 return svm->nmi_masked;
3739 }
3740
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3741 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3742 {
3743 struct vcpu_svm *svm = to_svm(vcpu);
3744
3745 if (is_vnmi_enabled(svm)) {
3746 if (masked)
3747 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3748 else
3749 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3750
3751 } else {
3752 svm->nmi_masked = masked;
3753 if (masked)
3754 svm_set_iret_intercept(svm);
3755 else
3756 svm_clr_iret_intercept(svm);
3757 }
3758 }
3759
svm_nmi_blocked(struct kvm_vcpu * vcpu)3760 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3761 {
3762 struct vcpu_svm *svm = to_svm(vcpu);
3763 struct vmcb *vmcb = svm->vmcb;
3764
3765 if (!gif_set(svm))
3766 return true;
3767
3768 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3769 return false;
3770
3771 if (svm_get_nmi_mask(vcpu))
3772 return true;
3773
3774 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3775 }
3776
svm_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)3777 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3778 {
3779 struct vcpu_svm *svm = to_svm(vcpu);
3780 if (svm->nested.nested_run_pending)
3781 return -EBUSY;
3782
3783 if (svm_nmi_blocked(vcpu))
3784 return 0;
3785
3786 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
3787 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3788 return -EBUSY;
3789 return 1;
3790 }
3791
svm_interrupt_blocked(struct kvm_vcpu * vcpu)3792 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3793 {
3794 struct vcpu_svm *svm = to_svm(vcpu);
3795 struct vmcb *vmcb = svm->vmcb;
3796
3797 if (!gif_set(svm))
3798 return true;
3799
3800 if (is_guest_mode(vcpu)) {
3801 /* As long as interrupts are being delivered... */
3802 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3803 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3804 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3805 return true;
3806
3807 /* ... vmexits aren't blocked by the interrupt shadow */
3808 if (nested_exit_on_intr(svm))
3809 return false;
3810 } else {
3811 if (!svm_get_if_flag(vcpu))
3812 return true;
3813 }
3814
3815 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3816 }
3817
svm_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)3818 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3819 {
3820 struct vcpu_svm *svm = to_svm(vcpu);
3821
3822 if (svm->nested.nested_run_pending)
3823 return -EBUSY;
3824
3825 if (svm_interrupt_blocked(vcpu))
3826 return 0;
3827
3828 /*
3829 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3830 * e.g. if the IRQ arrived asynchronously after checking nested events.
3831 */
3832 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3833 return -EBUSY;
3834
3835 return 1;
3836 }
3837
svm_enable_irq_window(struct kvm_vcpu * vcpu)3838 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3839 {
3840 struct vcpu_svm *svm = to_svm(vcpu);
3841
3842 /*
3843 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3844 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3845 * get that intercept, this function will be called again though and
3846 * we'll get the vintr intercept. However, if the vGIF feature is
3847 * enabled, the STGI interception will not occur. Enable the irq
3848 * window under the assumption that the hardware will set the GIF.
3849 */
3850 if (vgif || gif_set(svm)) {
3851 /*
3852 * IRQ window is not needed when AVIC is enabled,
3853 * unless we have pending ExtINT since it cannot be injected
3854 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3855 * and fallback to injecting IRQ via V_IRQ.
3856 *
3857 * If running nested, AVIC is already locally inhibited
3858 * on this vCPU, therefore there is no need to request
3859 * the VM wide AVIC inhibition.
3860 */
3861 if (!is_guest_mode(vcpu))
3862 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3863
3864 svm_set_vintr(svm);
3865 }
3866 }
3867
svm_enable_nmi_window(struct kvm_vcpu * vcpu)3868 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3869 {
3870 struct vcpu_svm *svm = to_svm(vcpu);
3871
3872 /*
3873 * If NMIs are outright masked, i.e. the vCPU is already handling an
3874 * NMI, and KVM has not yet intercepted an IRET, then there is nothing
3875 * more to do at this time as KVM has already enabled IRET intercepts.
3876 * If KVM has already intercepted IRET, then single-step over the IRET,
3877 * as NMIs aren't architecturally unmasked until the IRET completes.
3878 *
3879 * If vNMI is enabled, KVM should never request an NMI window if NMIs
3880 * are masked, as KVM allows at most one to-be-injected NMI and one
3881 * pending NMI. If two NMIs arrive simultaneously, KVM will inject one
3882 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are
3883 * unmasked. KVM _will_ request an NMI window in some situations, e.g.
3884 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately
3885 * inject the NMI. In those situations, KVM needs to single-step over
3886 * the STI shadow or intercept STGI.
3887 */
3888 if (svm_get_nmi_mask(vcpu)) {
3889 WARN_ON_ONCE(is_vnmi_enabled(svm));
3890
3891 if (!svm->awaiting_iret_completion)
3892 return; /* IRET will cause a vm exit */
3893 }
3894
3895 /*
3896 * SEV-ES guests are responsible for signaling when a vCPU is ready to
3897 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3898 * KVM can't intercept and single-step IRET to detect when NMIs are
3899 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE.
3900 *
3901 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3902 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3903 * supported NAEs in the GHCB protocol.
3904 */
3905 if (sev_es_guest(vcpu->kvm))
3906 return;
3907
3908 if (!gif_set(svm)) {
3909 if (vgif)
3910 svm_set_intercept(svm, INTERCEPT_STGI);
3911 return; /* STGI will cause a vm exit */
3912 }
3913
3914 /*
3915 * Something prevents NMI from been injected. Single step over possible
3916 * problem (IRET or exception injection or interrupt shadow)
3917 */
3918 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3919 svm->nmi_singlestep = true;
3920 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3921 }
3922
svm_flush_tlb_asid(struct kvm_vcpu * vcpu)3923 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3924 {
3925 struct vcpu_svm *svm = to_svm(vcpu);
3926
3927 /*
3928 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3929 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3930 * entries, and thus is a superset of Hyper-V's fine grained flushing.
3931 */
3932 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3933
3934 /*
3935 * Flush only the current ASID even if the TLB flush was invoked via
3936 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all
3937 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3938 * unconditionally does a TLB flush on both nested VM-Enter and nested
3939 * VM-Exit (via kvm_mmu_reset_context()).
3940 */
3941 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3942 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3943 else
3944 svm->current_vmcb->asid_generation--;
3945 }
3946
svm_flush_tlb_current(struct kvm_vcpu * vcpu)3947 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3948 {
3949 hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3950
3951 /*
3952 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3953 * flush the NPT mappings via hypercall as flushing the ASID only
3954 * affects virtual to physical mappings, it does not invalidate guest
3955 * physical to host physical mappings.
3956 */
3957 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3958 hyperv_flush_guest_mapping(root_tdp);
3959
3960 svm_flush_tlb_asid(vcpu);
3961 }
3962
svm_flush_tlb_all(struct kvm_vcpu * vcpu)3963 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3964 {
3965 /*
3966 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3967 * flushes should be routed to hv_flush_remote_tlbs() without requesting
3968 * a "regular" remote flush. Reaching this point means either there's
3969 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
3970 * which might be fatal to the guest. Yell, but try to recover.
3971 */
3972 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3973 hv_flush_remote_tlbs(vcpu->kvm);
3974
3975 svm_flush_tlb_asid(vcpu);
3976 }
3977
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)3978 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3979 {
3980 struct vcpu_svm *svm = to_svm(vcpu);
3981
3982 invlpga(gva, svm->vmcb->control.asid);
3983 }
3984
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)3985 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3986 {
3987 struct vcpu_svm *svm = to_svm(vcpu);
3988
3989 if (nested_svm_virtualize_tpr(vcpu))
3990 return;
3991
3992 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3993 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3994 kvm_set_cr8(vcpu, cr8);
3995 }
3996 }
3997
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)3998 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3999 {
4000 struct vcpu_svm *svm = to_svm(vcpu);
4001 u64 cr8;
4002
4003 if (nested_svm_virtualize_tpr(vcpu))
4004 return;
4005
4006 cr8 = kvm_get_cr8(vcpu);
4007 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4008 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4009 }
4010
svm_complete_soft_interrupt(struct kvm_vcpu * vcpu,u8 vector,int type)4011 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
4012 int type)
4013 {
4014 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
4015 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
4016 struct vcpu_svm *svm = to_svm(vcpu);
4017
4018 /*
4019 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
4020 * associated with the original soft exception/interrupt. next_rip is
4021 * cleared on all exits that can occur while vectoring an event, so KVM
4022 * needs to manually set next_rip for re-injection. Unlike the !nrips
4023 * case below, this needs to be done if and only if KVM is re-injecting
4024 * the same event, i.e. if the event is a soft exception/interrupt,
4025 * otherwise next_rip is unused on VMRUN.
4026 */
4027 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
4028 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
4029 svm->vmcb->control.next_rip = svm->soft_int_next_rip;
4030 /*
4031 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
4032 * injecting the soft exception/interrupt. That advancement needs to
4033 * be unwound if vectoring didn't complete. Note, the new event may
4034 * not be the injected event, e.g. if KVM injected an INTn, the INTn
4035 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
4036 * be the reported vectored event, but RIP still needs to be unwound.
4037 */
4038 else if (!nrips && (is_soft || is_exception) &&
4039 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4040 kvm_rip_write(vcpu, svm->soft_int_old_rip);
4041 }
4042
svm_complete_interrupts(struct kvm_vcpu * vcpu)4043 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4044 {
4045 struct vcpu_svm *svm = to_svm(vcpu);
4046 u8 vector;
4047 int type;
4048 u32 exitintinfo = svm->vmcb->control.exit_int_info;
4049 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4050 bool soft_int_injected = svm->soft_int_injected;
4051
4052 svm->nmi_l1_to_l2 = false;
4053 svm->soft_int_injected = false;
4054
4055 /*
4056 * If we've made progress since setting awaiting_iret_completion, we've
4057 * executed an IRET and can allow NMI injection.
4058 */
4059 if (svm->awaiting_iret_completion &&
4060 kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4061 svm->awaiting_iret_completion = false;
4062 svm->nmi_masked = false;
4063 kvm_make_request(KVM_REQ_EVENT, vcpu);
4064 }
4065
4066 vcpu->arch.nmi_injected = false;
4067 kvm_clear_exception_queue(vcpu);
4068 kvm_clear_interrupt_queue(vcpu);
4069
4070 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4071 return;
4072
4073 kvm_make_request(KVM_REQ_EVENT, vcpu);
4074
4075 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4076 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4077
4078 if (soft_int_injected)
4079 svm_complete_soft_interrupt(vcpu, vector, type);
4080
4081 switch (type) {
4082 case SVM_EXITINTINFO_TYPE_NMI:
4083 vcpu->arch.nmi_injected = true;
4084 svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4085 break;
4086 case SVM_EXITINTINFO_TYPE_EXEPT: {
4087 u32 error_code = 0;
4088
4089 /*
4090 * Never re-inject a #VC exception.
4091 */
4092 if (vector == X86_TRAP_VC)
4093 break;
4094
4095 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR)
4096 error_code = svm->vmcb->control.exit_int_info_err;
4097
4098 kvm_requeue_exception(vcpu, vector,
4099 exitintinfo & SVM_EXITINTINFO_VALID_ERR,
4100 error_code);
4101 break;
4102 }
4103 case SVM_EXITINTINFO_TYPE_INTR:
4104 kvm_queue_interrupt(vcpu, vector, false);
4105 break;
4106 case SVM_EXITINTINFO_TYPE_SOFT:
4107 kvm_queue_interrupt(vcpu, vector, true);
4108 break;
4109 default:
4110 break;
4111 }
4112
4113 }
4114
svm_cancel_injection(struct kvm_vcpu * vcpu)4115 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4116 {
4117 struct vcpu_svm *svm = to_svm(vcpu);
4118 struct vmcb_control_area *control = &svm->vmcb->control;
4119
4120 control->exit_int_info = control->event_inj;
4121 control->exit_int_info_err = control->event_inj_err;
4122 control->event_inj = 0;
4123 svm_complete_interrupts(vcpu);
4124 }
4125
svm_vcpu_pre_run(struct kvm_vcpu * vcpu)4126 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4127 {
4128 if (to_kvm_sev_info(vcpu->kvm)->need_init)
4129 return -EINVAL;
4130
4131 return 1;
4132 }
4133
svm_exit_handlers_fastpath(struct kvm_vcpu * vcpu)4134 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4135 {
4136 struct vcpu_svm *svm = to_svm(vcpu);
4137 struct vmcb_control_area *control = &svm->vmcb->control;
4138
4139 /*
4140 * Next RIP must be provided as IRQs are disabled, and accessing guest
4141 * memory to decode the instruction might fault, i.e. might sleep.
4142 */
4143 if (!nrips || !control->next_rip)
4144 return EXIT_FASTPATH_NONE;
4145
4146 if (is_guest_mode(vcpu))
4147 return EXIT_FASTPATH_NONE;
4148
4149 switch (control->exit_code) {
4150 case SVM_EXIT_MSR:
4151 if (!control->exit_info_1)
4152 break;
4153 return handle_fastpath_wrmsr(vcpu);
4154 case SVM_EXIT_HLT:
4155 return handle_fastpath_hlt(vcpu);
4156 case SVM_EXIT_INVD:
4157 return handle_fastpath_invd(vcpu);
4158 default:
4159 break;
4160 }
4161
4162 return EXIT_FASTPATH_NONE;
4163 }
4164
svm_vcpu_enter_exit(struct kvm_vcpu * vcpu,bool spec_ctrl_intercepted)4165 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4166 {
4167 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
4168 struct vcpu_svm *svm = to_svm(vcpu);
4169
4170 guest_state_enter_irqoff();
4171
4172 /*
4173 * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of
4174 * VMRUN controls whether or not physical IRQs are masked (KVM always
4175 * runs with V_INTR_MASKING_MASK). Toggle RFLAGS.IF here to avoid the
4176 * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow
4177 * into guest state if delivery of an event during VMRUN triggers a
4178 * #VMEXIT, and the guest_state transitions already tell lockdep that
4179 * IRQs are being enabled/disabled. Note! GIF=0 for the entirety of
4180 * this path, so IRQs aren't actually unmasked while running host code.
4181 */
4182 raw_local_irq_enable();
4183
4184 amd_clear_divider();
4185
4186 if (sev_es_guest(vcpu->kvm))
4187 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted,
4188 sev_es_host_save_area(sd));
4189 else
4190 __svm_vcpu_run(svm, spec_ctrl_intercepted);
4191
4192 raw_local_irq_disable();
4193
4194 guest_state_exit_irqoff();
4195 }
4196
svm_vcpu_run(struct kvm_vcpu * vcpu,u64 run_flags)4197 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
4198 {
4199 bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT;
4200 struct vcpu_svm *svm = to_svm(vcpu);
4201 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4202
4203 trace_kvm_entry(vcpu, force_immediate_exit);
4204
4205 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4206 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4207 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4208
4209 /*
4210 * Disable singlestep if we're injecting an interrupt/exception.
4211 * We don't want our modified rflags to be pushed on the stack where
4212 * we might not be able to easily reset them if we disabled NMI
4213 * singlestep later.
4214 */
4215 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4216 /*
4217 * Event injection happens before external interrupts cause a
4218 * vmexit and interrupts are disabled here, so smp_send_reschedule
4219 * is enough to force an immediate vmexit.
4220 */
4221 disable_nmi_singlestep(svm);
4222 force_immediate_exit = true;
4223 }
4224
4225 if (force_immediate_exit)
4226 smp_send_reschedule(vcpu->cpu);
4227
4228 if (pre_svm_run(vcpu)) {
4229 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4230 vcpu->run->fail_entry.hardware_entry_failure_reason = SVM_EXIT_ERR;
4231 vcpu->run->fail_entry.cpu = vcpu->cpu;
4232 return EXIT_FASTPATH_EXIT_USERSPACE;
4233 }
4234
4235 sync_lapic_to_cr8(vcpu);
4236
4237 if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4238 svm->vmcb->control.asid = svm->asid;
4239 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4240 }
4241 svm->vmcb->save.cr2 = vcpu->arch.cr2;
4242
4243 svm_hv_update_vp_id(svm->vmcb, vcpu);
4244
4245 /*
4246 * Run with all-zero DR6 unless the guest can write DR6 freely, so that
4247 * KVM can get the exact cause of a #DB. Note, loading guest DR6 from
4248 * KVM's snapshot is only necessary when DR accesses won't exit.
4249 */
4250 if (unlikely(run_flags & KVM_RUN_LOAD_GUEST_DR6))
4251 svm_set_dr6(vcpu, vcpu->arch.dr6);
4252 else if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)))
4253 svm_set_dr6(vcpu, DR6_ACTIVE_LOW);
4254
4255 clgi();
4256
4257 /*
4258 * Hardware only context switches DEBUGCTL if LBR virtualization is
4259 * enabled. Manually load DEBUGCTL if necessary (and restore it after
4260 * VM-Exit), as running with the host's DEBUGCTL can negatively affect
4261 * guest state and can even be fatal, e.g. due to Bus Lock Detect.
4262 */
4263 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4264 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4265 update_debugctlmsr(svm->vmcb->save.dbgctl);
4266
4267 kvm_wait_lapic_expire(vcpu);
4268
4269 /*
4270 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4271 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4272 * is no need to worry about the conditional branch over the wrmsr
4273 * being speculatively taken.
4274 */
4275 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4276 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4277
4278 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4279
4280 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4281 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4282
4283 if (!sev_es_guest(vcpu->kvm)) {
4284 vcpu->arch.cr2 = svm->vmcb->save.cr2;
4285 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4286 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4287 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4288 }
4289 vcpu->arch.regs_dirty = 0;
4290
4291 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4292 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4293
4294 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4295 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4296 update_debugctlmsr(vcpu->arch.host_debugctl);
4297
4298 stgi();
4299
4300 /* Any pending NMI will happen here */
4301
4302 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4303 kvm_after_interrupt(vcpu);
4304
4305 sync_cr8_to_lapic(vcpu);
4306
4307 svm->next_rip = 0;
4308 if (is_guest_mode(vcpu)) {
4309 nested_sync_control_from_vmcb02(svm);
4310
4311 /* Track VMRUNs that have made past consistency checking */
4312 if (svm->nested.nested_run_pending &&
4313 svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4314 ++vcpu->stat.nested_run;
4315
4316 svm->nested.nested_run_pending = 0;
4317 }
4318
4319 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4320 vmcb_mark_all_clean(svm->vmcb);
4321
4322 /* if exit due to PF check for async PF */
4323 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4324 vcpu->arch.apf.host_apf_flags =
4325 kvm_read_and_reset_apf_flags();
4326
4327 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4328
4329 trace_kvm_exit(vcpu, KVM_ISA_SVM);
4330
4331 svm_complete_interrupts(vcpu);
4332
4333 return svm_exit_handlers_fastpath(vcpu);
4334 }
4335
svm_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)4336 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4337 int root_level)
4338 {
4339 struct vcpu_svm *svm = to_svm(vcpu);
4340 unsigned long cr3;
4341
4342 if (npt_enabled) {
4343 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4344 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4345
4346 hv_track_root_tdp(vcpu, root_hpa);
4347
4348 cr3 = vcpu->arch.cr3;
4349 } else if (root_level >= PT64_ROOT_4LEVEL) {
4350 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4351 } else {
4352 /* PCID in the guest should be impossible with a 32-bit MMU. */
4353 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4354 cr3 = root_hpa;
4355 }
4356
4357 svm->vmcb->save.cr3 = cr3;
4358 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4359 }
4360
4361 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4362 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4363 {
4364 /*
4365 * Patch in the VMMCALL instruction:
4366 */
4367 hypercall[0] = 0x0f;
4368 hypercall[1] = 0x01;
4369 hypercall[2] = 0xd9;
4370 }
4371
4372 /*
4373 * The kvm parameter can be NULL (module initialization, or invocation before
4374 * VM creation). Be sure to check the kvm parameter before using it.
4375 */
svm_has_emulated_msr(struct kvm * kvm,u32 index)4376 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4377 {
4378 switch (index) {
4379 case MSR_IA32_MCG_EXT_CTL:
4380 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4381 return false;
4382 case MSR_IA32_SMBASE:
4383 if (!IS_ENABLED(CONFIG_KVM_SMM))
4384 return false;
4385 /* SEV-ES guests do not support SMM, so report false */
4386 if (kvm && sev_es_guest(kvm))
4387 return false;
4388 break;
4389 default:
4390 break;
4391 }
4392
4393 return true;
4394 }
4395
svm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)4396 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4397 {
4398 struct vcpu_svm *svm = to_svm(vcpu);
4399
4400 /*
4401 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4402 * can only disable all variants of by disallowing CR4.OSXSAVE from
4403 * being set. As a result, if the host has XSAVE and XSAVES, and the
4404 * guest has XSAVE enabled, the guest can execute XSAVES without
4405 * faulting. Treat XSAVES as enabled in this case regardless of
4406 * whether it's advertised to the guest so that KVM context switches
4407 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give
4408 * the guest read/write access to the host's XSS.
4409 */
4410 guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES,
4411 boot_cpu_has(X86_FEATURE_XSAVES) &&
4412 guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE));
4413
4414 /*
4415 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that
4416 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4417 * SVM on Intel is bonkers and extremely unlikely to work).
4418 */
4419 if (guest_cpuid_is_intel_compatible(vcpu))
4420 guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4421
4422 if (sev_guest(vcpu->kvm))
4423 sev_vcpu_after_set_cpuid(svm);
4424 }
4425
svm_has_wbinvd_exit(void)4426 static bool svm_has_wbinvd_exit(void)
4427 {
4428 return true;
4429 }
4430
4431 #define PRE_EX(exit) { .exit_code = (exit), \
4432 .stage = X86_ICPT_PRE_EXCEPT, }
4433 #define POST_EX(exit) { .exit_code = (exit), \
4434 .stage = X86_ICPT_POST_EXCEPT, }
4435 #define POST_MEM(exit) { .exit_code = (exit), \
4436 .stage = X86_ICPT_POST_MEMACCESS, }
4437
4438 static const struct __x86_intercept {
4439 u32 exit_code;
4440 enum x86_intercept_stage stage;
4441 } x86_intercept_map[] = {
4442 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4443 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4444 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4445 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4446 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4447 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4448 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4449 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4450 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4451 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4452 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4453 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4454 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4455 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4456 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4457 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4458 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4459 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4460 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4461 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4462 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4463 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4464 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4465 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4466 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4467 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4468 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4469 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4470 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4471 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4472 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4473 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4474 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4475 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4476 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4477 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4478 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4479 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4480 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4481 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4482 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4483 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4484 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4485 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4486 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4487 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4488 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
4489 };
4490
4491 #undef PRE_EX
4492 #undef POST_EX
4493 #undef POST_MEM
4494
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)4495 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4496 struct x86_instruction_info *info,
4497 enum x86_intercept_stage stage,
4498 struct x86_exception *exception)
4499 {
4500 struct vcpu_svm *svm = to_svm(vcpu);
4501 int vmexit, ret = X86EMUL_CONTINUE;
4502 struct __x86_intercept icpt_info;
4503 struct vmcb *vmcb = svm->vmcb;
4504
4505 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4506 goto out;
4507
4508 icpt_info = x86_intercept_map[info->intercept];
4509
4510 if (stage != icpt_info.stage)
4511 goto out;
4512
4513 switch (icpt_info.exit_code) {
4514 case SVM_EXIT_READ_CR0:
4515 if (info->intercept == x86_intercept_cr_read)
4516 icpt_info.exit_code += info->modrm_reg;
4517 break;
4518 case SVM_EXIT_WRITE_CR0: {
4519 unsigned long cr0, val;
4520
4521 /*
4522 * Adjust the exit code accordingly if a CR other than CR0 is
4523 * being written, and skip straight to the common handling as
4524 * only CR0 has an additional selective intercept.
4525 */
4526 if (info->intercept == x86_intercept_cr_write && info->modrm_reg) {
4527 icpt_info.exit_code += info->modrm_reg;
4528 break;
4529 }
4530
4531 /*
4532 * Convert the exit_code to SVM_EXIT_CR0_SEL_WRITE if a
4533 * selective CR0 intercept is triggered (the common logic will
4534 * treat the selective intercept as being enabled). Note, the
4535 * unconditional intercept has higher priority, i.e. this is
4536 * only relevant if *only* the selective intercept is enabled.
4537 */
4538 if (vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_CR0_WRITE) ||
4539 !(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))
4540 break;
4541
4542 /* CLTS never triggers INTERCEPT_SELECTIVE_CR0 */
4543 if (info->intercept == x86_intercept_clts)
4544 break;
4545
4546 /* LMSW always triggers INTERCEPT_SELECTIVE_CR0 */
4547 if (info->intercept == x86_intercept_lmsw) {
4548 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4549 break;
4550 }
4551
4552 /*
4553 * MOV-to-CR0 only triggers INTERCEPT_SELECTIVE_CR0 if any bit
4554 * other than SVM_CR0_SELECTIVE_MASK is changed.
4555 */
4556 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4557 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4558 if (cr0 ^ val)
4559 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4560 break;
4561 }
4562 case SVM_EXIT_READ_DR0:
4563 case SVM_EXIT_WRITE_DR0:
4564 icpt_info.exit_code += info->modrm_reg;
4565 break;
4566 case SVM_EXIT_MSR:
4567 if (info->intercept == x86_intercept_wrmsr)
4568 vmcb->control.exit_info_1 = 1;
4569 else
4570 vmcb->control.exit_info_1 = 0;
4571 break;
4572 case SVM_EXIT_PAUSE:
4573 /*
4574 * We get this for NOP only, but pause
4575 * is rep not, check this here
4576 */
4577 if (info->rep_prefix != REPE_PREFIX)
4578 goto out;
4579 break;
4580 case SVM_EXIT_IOIO: {
4581 u64 exit_info;
4582 u32 bytes;
4583
4584 if (info->intercept == x86_intercept_in ||
4585 info->intercept == x86_intercept_ins) {
4586 exit_info = ((info->src_val & 0xffff) << 16) |
4587 SVM_IOIO_TYPE_MASK;
4588 bytes = info->dst_bytes;
4589 } else {
4590 exit_info = (info->dst_val & 0xffff) << 16;
4591 bytes = info->src_bytes;
4592 }
4593
4594 if (info->intercept == x86_intercept_outs ||
4595 info->intercept == x86_intercept_ins)
4596 exit_info |= SVM_IOIO_STR_MASK;
4597
4598 if (info->rep_prefix)
4599 exit_info |= SVM_IOIO_REP_MASK;
4600
4601 bytes = min(bytes, 4u);
4602
4603 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4604
4605 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4606
4607 vmcb->control.exit_info_1 = exit_info;
4608 vmcb->control.exit_info_2 = info->next_rip;
4609
4610 break;
4611 }
4612 default:
4613 break;
4614 }
4615
4616 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4617 if (static_cpu_has(X86_FEATURE_NRIPS))
4618 vmcb->control.next_rip = info->next_rip;
4619 vmcb->control.exit_code = icpt_info.exit_code;
4620 vmexit = nested_svm_exit_handled(svm);
4621
4622 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4623 : X86EMUL_CONTINUE;
4624
4625 out:
4626 return ret;
4627 }
4628
svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)4629 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4630 {
4631 switch (to_svm(vcpu)->vmcb->control.exit_code) {
4632 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
4633 svm_handle_mce(vcpu);
4634 break;
4635 case SVM_EXIT_INTR:
4636 vcpu->arch.at_instruction_boundary = true;
4637 break;
4638 default:
4639 break;
4640 }
4641 }
4642
svm_setup_mce(struct kvm_vcpu * vcpu)4643 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4644 {
4645 /* [63:9] are reserved. */
4646 vcpu->arch.mcg_cap &= 0x1ff;
4647 }
4648
4649 #ifdef CONFIG_KVM_SMM
svm_smi_blocked(struct kvm_vcpu * vcpu)4650 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4651 {
4652 struct vcpu_svm *svm = to_svm(vcpu);
4653
4654 /* Per APM Vol.2 15.22.2 "Response to SMI" */
4655 if (!gif_set(svm))
4656 return true;
4657
4658 return is_smm(vcpu);
4659 }
4660
svm_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4661 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4662 {
4663 struct vcpu_svm *svm = to_svm(vcpu);
4664 if (svm->nested.nested_run_pending)
4665 return -EBUSY;
4666
4667 if (svm_smi_blocked(vcpu))
4668 return 0;
4669
4670 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
4671 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4672 return -EBUSY;
4673
4674 return 1;
4675 }
4676
svm_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)4677 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4678 {
4679 struct vcpu_svm *svm = to_svm(vcpu);
4680 struct kvm_host_map map_save;
4681 int ret;
4682
4683 if (!is_guest_mode(vcpu))
4684 return 0;
4685
4686 /*
4687 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is
4688 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4689 */
4690
4691 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4692 return 1;
4693
4694 smram->smram64.svm_guest_flag = 1;
4695 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4696
4697 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4698 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4699 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4700
4701 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4702 if (ret)
4703 return ret;
4704
4705 /*
4706 * KVM uses VMCB01 to store L1 host state while L2 runs but
4707 * VMCB01 is going to be used during SMM and thus the state will
4708 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4709 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4710 * format of the area is identical to guest save area offsetted
4711 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4712 * within 'struct vmcb'). Note: HSAVE area may also be used by
4713 * L1 hypervisor to save additional host context (e.g. KVM does
4714 * that, see svm_prepare_switch_to_guest()) which must be
4715 * preserved.
4716 */
4717 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4718 return 1;
4719
4720 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4721
4722 svm_copy_vmrun_state(map_save.hva + 0x400,
4723 &svm->vmcb01.ptr->save);
4724
4725 kvm_vcpu_unmap(vcpu, &map_save);
4726 return 0;
4727 }
4728
svm_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)4729 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4730 {
4731 struct vcpu_svm *svm = to_svm(vcpu);
4732 struct kvm_host_map map, map_save;
4733 struct vmcb *vmcb12;
4734 int ret;
4735
4736 const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4737
4738 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4739 return 0;
4740
4741 /* Non-zero if SMI arrived while vCPU was in guest mode. */
4742 if (!smram64->svm_guest_flag)
4743 return 0;
4744
4745 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
4746 return 1;
4747
4748 if (!(smram64->efer & EFER_SVME))
4749 return 1;
4750
4751 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4752 return 1;
4753
4754 ret = 1;
4755 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4756 goto unmap_map;
4757
4758 if (svm_allocate_nested(svm))
4759 goto unmap_save;
4760
4761 /*
4762 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4763 * used during SMM (see svm_enter_smm())
4764 */
4765
4766 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4767
4768 /*
4769 * Enter the nested guest now
4770 */
4771
4772 vmcb_mark_all_dirty(svm->vmcb01.ptr);
4773
4774 vmcb12 = map.hva;
4775 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4776 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4777 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4778
4779 if (ret)
4780 goto unmap_save;
4781
4782 svm->nested.nested_run_pending = 1;
4783
4784 unmap_save:
4785 kvm_vcpu_unmap(vcpu, &map_save);
4786 unmap_map:
4787 kvm_vcpu_unmap(vcpu, &map);
4788 return ret;
4789 }
4790
svm_enable_smi_window(struct kvm_vcpu * vcpu)4791 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4792 {
4793 struct vcpu_svm *svm = to_svm(vcpu);
4794
4795 if (!gif_set(svm)) {
4796 if (vgif)
4797 svm_set_intercept(svm, INTERCEPT_STGI);
4798 /* STGI will cause a vm exit */
4799 } else {
4800 /* We must be in SMM; RSM will cause a vmexit anyway. */
4801 }
4802 }
4803 #endif
4804
svm_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)4805 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4806 void *insn, int insn_len)
4807 {
4808 struct vcpu_svm *svm = to_svm(vcpu);
4809 bool smep, smap, is_user;
4810 u64 error_code;
4811
4812 /* Check that emulation is possible during event vectoring */
4813 if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) &&
4814 !kvm_can_emulate_event_vectoring(emul_type))
4815 return X86EMUL_UNHANDLEABLE_VECTORING;
4816
4817 /* Emulation is always possible when KVM has access to all guest state. */
4818 if (!sev_guest(vcpu->kvm))
4819 return X86EMUL_CONTINUE;
4820
4821 /* #UD and #GP should never be intercepted for SEV guests. */
4822 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4823 EMULTYPE_TRAP_UD_FORCED |
4824 EMULTYPE_VMWARE_GP));
4825
4826 /*
4827 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4828 * to guest register state.
4829 */
4830 if (sev_es_guest(vcpu->kvm))
4831 return X86EMUL_RETRY_INSTR;
4832
4833 /*
4834 * Emulation is possible if the instruction is already decoded, e.g.
4835 * when completing I/O after returning from userspace.
4836 */
4837 if (emul_type & EMULTYPE_NO_DECODE)
4838 return X86EMUL_CONTINUE;
4839
4840 /*
4841 * Emulation is possible for SEV guests if and only if a prefilled
4842 * buffer containing the bytes of the intercepted instruction is
4843 * available. SEV guest memory is encrypted with a guest specific key
4844 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
4845 * decode garbage.
4846 *
4847 * If KVM is NOT trying to simply skip an instruction, inject #UD if
4848 * KVM reached this point without an instruction buffer. In practice,
4849 * this path should never be hit by a well-behaved guest, e.g. KVM
4850 * doesn't intercept #UD or #GP for SEV guests, but this path is still
4851 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4852 * access, and needs to be handled by KVM to avoid putting the guest
4853 * into an infinite loop. Injecting #UD is somewhat arbitrary, but
4854 * its the least awful option given lack of insight into the guest.
4855 *
4856 * If KVM is trying to skip an instruction, simply resume the guest.
4857 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4858 * will attempt to re-inject the INT3/INTO and skip the instruction.
4859 * In that scenario, retrying the INT3/INTO and hoping the guest will
4860 * make forward progress is the only option that has a chance of
4861 * success (and in practice it will work the vast majority of the time).
4862 */
4863 if (unlikely(!insn)) {
4864 if (emul_type & EMULTYPE_SKIP)
4865 return X86EMUL_UNHANDLEABLE;
4866
4867 kvm_queue_exception(vcpu, UD_VECTOR);
4868 return X86EMUL_PROPAGATE_FAULT;
4869 }
4870
4871 /*
4872 * Emulate for SEV guests if the insn buffer is not empty. The buffer
4873 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4874 * the faulting instruction because the code fetch itself faulted, e.g.
4875 * the guest attempted to fetch from emulated MMIO or a guest page
4876 * table used to translate CS:RIP resides in emulated MMIO.
4877 */
4878 if (likely(insn_len))
4879 return X86EMUL_CONTINUE;
4880
4881 /*
4882 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4883 *
4884 * Errata:
4885 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4886 * possible that CPU microcode implementing DecodeAssist will fail to
4887 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4888 * be '0'. This happens because microcode reads CS:RIP using a _data_
4889 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode
4890 * gives up and does not fill the instruction bytes buffer.
4891 *
4892 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4893 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4894 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4895 * GuestIntrBytes field of the VMCB.
4896 *
4897 * This does _not_ mean that the erratum has been encountered, as the
4898 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4899 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4900 * encountered a reserved/not-present #PF.
4901 *
4902 * To hit the erratum, the following conditions must be true:
4903 * 1. CR4.SMAP=1 (obviously).
4904 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot
4905 * have been hit as the guest would have encountered a SMEP
4906 * violation #PF, not a #NPF.
4907 * 3. The #NPF is not due to a code fetch, in which case failure to
4908 * retrieve the instruction bytes is legitimate (see abvoe).
4909 *
4910 * In addition, don't apply the erratum workaround if the #NPF occurred
4911 * while translating guest page tables (see below).
4912 */
4913 error_code = svm->vmcb->control.exit_info_1;
4914 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4915 goto resume_guest;
4916
4917 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4918 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4919 is_user = svm_get_cpl(vcpu) == 3;
4920 if (smap && (!smep || is_user)) {
4921 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4922
4923 /*
4924 * If the fault occurred in userspace, arbitrarily inject #GP
4925 * to avoid killing the guest and to hopefully avoid confusing
4926 * the guest kernel too much, e.g. injecting #PF would not be
4927 * coherent with respect to the guest's page tables. Request
4928 * triple fault if the fault occurred in the kernel as there's
4929 * no fault that KVM can inject without confusing the guest.
4930 * In practice, the triple fault is moot as no sane SEV kernel
4931 * will execute from user memory while also running with SMAP=1.
4932 */
4933 if (is_user)
4934 kvm_inject_gp(vcpu, 0);
4935 else
4936 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4937 return X86EMUL_PROPAGATE_FAULT;
4938 }
4939
4940 resume_guest:
4941 /*
4942 * If the erratum was not hit, simply resume the guest and let it fault
4943 * again. While awful, e.g. the vCPU may get stuck in an infinite loop
4944 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to
4945 * userspace will kill the guest, and letting the emulator read garbage
4946 * will yield random behavior and potentially corrupt the guest.
4947 *
4948 * Simply resuming the guest is technically not a violation of the SEV
4949 * architecture. AMD's APM states that all code fetches and page table
4950 * accesses for SEV guest are encrypted, regardless of the C-Bit. The
4951 * APM also states that encrypted accesses to MMIO are "ignored", but
4952 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4953 * the guest spin is technically "ignoring" the access.
4954 */
4955 return X86EMUL_RETRY_INSTR;
4956 }
4957
svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)4958 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4959 {
4960 struct vcpu_svm *svm = to_svm(vcpu);
4961
4962 return !gif_set(svm);
4963 }
4964
svm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)4965 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4966 {
4967 if (!sev_es_guest(vcpu->kvm))
4968 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4969
4970 sev_vcpu_deliver_sipi_vector(vcpu, vector);
4971 }
4972
svm_vm_destroy(struct kvm * kvm)4973 static void svm_vm_destroy(struct kvm *kvm)
4974 {
4975 avic_vm_destroy(kvm);
4976 sev_vm_destroy(kvm);
4977
4978 svm_srso_vm_destroy();
4979 }
4980
svm_vm_init(struct kvm * kvm)4981 static int svm_vm_init(struct kvm *kvm)
4982 {
4983 int type = kvm->arch.vm_type;
4984
4985 if (type != KVM_X86_DEFAULT_VM &&
4986 type != KVM_X86_SW_PROTECTED_VM) {
4987 kvm->arch.has_protected_state =
4988 (type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM);
4989 to_kvm_sev_info(kvm)->need_init = true;
4990
4991 kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM);
4992 kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem;
4993 }
4994
4995 if (!pause_filter_count || !pause_filter_thresh)
4996 kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE);
4997
4998 if (enable_apicv) {
4999 int ret = avic_vm_init(kvm);
5000 if (ret)
5001 return ret;
5002 }
5003
5004 svm_srso_vm_init();
5005 return 0;
5006 }
5007
svm_alloc_apic_backing_page(struct kvm_vcpu * vcpu)5008 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu)
5009 {
5010 struct page *page = snp_safe_alloc_page();
5011
5012 if (!page)
5013 return NULL;
5014
5015 return page_address(page);
5016 }
5017
5018 struct kvm_x86_ops svm_x86_ops __initdata = {
5019 .name = KBUILD_MODNAME,
5020
5021 .check_processor_compatibility = svm_check_processor_compat,
5022
5023 .hardware_unsetup = svm_hardware_unsetup,
5024 .enable_virtualization_cpu = svm_enable_virtualization_cpu,
5025 .disable_virtualization_cpu = svm_disable_virtualization_cpu,
5026 .emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu,
5027 .has_emulated_msr = svm_has_emulated_msr,
5028
5029 .vcpu_precreate = svm_vcpu_precreate,
5030 .vcpu_create = svm_vcpu_create,
5031 .vcpu_free = svm_vcpu_free,
5032 .vcpu_reset = svm_vcpu_reset,
5033
5034 .vm_size = sizeof(struct kvm_svm),
5035 .vm_init = svm_vm_init,
5036 .vm_destroy = svm_vm_destroy,
5037
5038 .prepare_switch_to_guest = svm_prepare_switch_to_guest,
5039 .vcpu_load = svm_vcpu_load,
5040 .vcpu_put = svm_vcpu_put,
5041 .vcpu_blocking = avic_vcpu_blocking,
5042 .vcpu_unblocking = avic_vcpu_unblocking,
5043
5044 .update_exception_bitmap = svm_update_exception_bitmap,
5045 .get_feature_msr = svm_get_feature_msr,
5046 .get_msr = svm_get_msr,
5047 .set_msr = svm_set_msr,
5048 .get_segment_base = svm_get_segment_base,
5049 .get_segment = svm_get_segment,
5050 .set_segment = svm_set_segment,
5051 .get_cpl = svm_get_cpl,
5052 .get_cpl_no_cache = svm_get_cpl,
5053 .get_cs_db_l_bits = svm_get_cs_db_l_bits,
5054 .is_valid_cr0 = svm_is_valid_cr0,
5055 .set_cr0 = svm_set_cr0,
5056 .post_set_cr3 = sev_post_set_cr3,
5057 .is_valid_cr4 = svm_is_valid_cr4,
5058 .set_cr4 = svm_set_cr4,
5059 .set_efer = svm_set_efer,
5060 .get_idt = svm_get_idt,
5061 .set_idt = svm_set_idt,
5062 .get_gdt = svm_get_gdt,
5063 .set_gdt = svm_set_gdt,
5064 .set_dr7 = svm_set_dr7,
5065 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5066 .cache_reg = svm_cache_reg,
5067 .get_rflags = svm_get_rflags,
5068 .set_rflags = svm_set_rflags,
5069 .get_if_flag = svm_get_if_flag,
5070
5071 .flush_tlb_all = svm_flush_tlb_all,
5072 .flush_tlb_current = svm_flush_tlb_current,
5073 .flush_tlb_gva = svm_flush_tlb_gva,
5074 .flush_tlb_guest = svm_flush_tlb_asid,
5075
5076 .vcpu_pre_run = svm_vcpu_pre_run,
5077 .vcpu_run = svm_vcpu_run,
5078 .handle_exit = svm_handle_exit,
5079 .skip_emulated_instruction = svm_skip_emulated_instruction,
5080 .update_emulated_instruction = NULL,
5081 .set_interrupt_shadow = svm_set_interrupt_shadow,
5082 .get_interrupt_shadow = svm_get_interrupt_shadow,
5083 .patch_hypercall = svm_patch_hypercall,
5084 .inject_irq = svm_inject_irq,
5085 .inject_nmi = svm_inject_nmi,
5086 .is_vnmi_pending = svm_is_vnmi_pending,
5087 .set_vnmi_pending = svm_set_vnmi_pending,
5088 .inject_exception = svm_inject_exception,
5089 .cancel_injection = svm_cancel_injection,
5090 .interrupt_allowed = svm_interrupt_allowed,
5091 .nmi_allowed = svm_nmi_allowed,
5092 .get_nmi_mask = svm_get_nmi_mask,
5093 .set_nmi_mask = svm_set_nmi_mask,
5094 .enable_nmi_window = svm_enable_nmi_window,
5095 .enable_irq_window = svm_enable_irq_window,
5096 .update_cr8_intercept = svm_update_cr8_intercept,
5097
5098 .x2apic_icr_is_split = true,
5099 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
5100 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
5101 .apicv_post_state_restore = avic_apicv_post_state_restore,
5102 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
5103
5104 .get_exit_info = svm_get_exit_info,
5105 .get_entry_info = svm_get_entry_info,
5106
5107 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
5108
5109 .has_wbinvd_exit = svm_has_wbinvd_exit,
5110
5111 .get_l2_tsc_offset = svm_get_l2_tsc_offset,
5112 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
5113 .write_tsc_offset = svm_write_tsc_offset,
5114 .write_tsc_multiplier = svm_write_tsc_multiplier,
5115
5116 .load_mmu_pgd = svm_load_mmu_pgd,
5117
5118 .check_intercept = svm_check_intercept,
5119 .handle_exit_irqoff = svm_handle_exit_irqoff,
5120
5121 .nested_ops = &svm_nested_ops,
5122
5123 .deliver_interrupt = svm_deliver_interrupt,
5124 .pi_update_irte = avic_pi_update_irte,
5125 .setup_mce = svm_setup_mce,
5126
5127 #ifdef CONFIG_KVM_SMM
5128 .smi_allowed = svm_smi_allowed,
5129 .enter_smm = svm_enter_smm,
5130 .leave_smm = svm_leave_smm,
5131 .enable_smi_window = svm_enable_smi_window,
5132 #endif
5133
5134 #ifdef CONFIG_KVM_AMD_SEV
5135 .dev_get_attr = sev_dev_get_attr,
5136 .mem_enc_ioctl = sev_mem_enc_ioctl,
5137 .mem_enc_register_region = sev_mem_enc_register_region,
5138 .mem_enc_unregister_region = sev_mem_enc_unregister_region,
5139 .guest_memory_reclaimed = sev_guest_memory_reclaimed,
5140
5141 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5142 .vm_move_enc_context_from = sev_vm_move_enc_context_from,
5143 #endif
5144 .check_emulate_instruction = svm_check_emulate_instruction,
5145
5146 .apic_init_signal_blocked = svm_apic_init_signal_blocked,
5147
5148 .recalc_intercepts = svm_recalc_intercepts,
5149 .complete_emulated_msr = svm_complete_emulated_msr,
5150
5151 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5152 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5153 .alloc_apic_backing_page = svm_alloc_apic_backing_page,
5154
5155 .gmem_prepare = sev_gmem_prepare,
5156 .gmem_invalidate = sev_gmem_invalidate,
5157 .gmem_max_mapping_level = sev_gmem_max_mapping_level,
5158 };
5159
5160 /*
5161 * The default MMIO mask is a single bit (excluding the present bit),
5162 * which could conflict with the memory encryption bit. Check for
5163 * memory encryption support and override the default MMIO mask if
5164 * memory encryption is enabled.
5165 */
svm_adjust_mmio_mask(void)5166 static __init void svm_adjust_mmio_mask(void)
5167 {
5168 unsigned int enc_bit, mask_bit;
5169 u64 msr, mask;
5170
5171 /* If there is no memory encryption support, use existing mask */
5172 if (cpuid_eax(0x80000000) < 0x8000001f)
5173 return;
5174
5175 /* If memory encryption is not enabled, use existing mask */
5176 rdmsrq(MSR_AMD64_SYSCFG, msr);
5177 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5178 return;
5179
5180 enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5181 mask_bit = boot_cpu_data.x86_phys_bits;
5182
5183 /* Increment the mask bit if it is the same as the encryption bit */
5184 if (enc_bit == mask_bit)
5185 mask_bit++;
5186
5187 /*
5188 * If the mask bit location is below 52, then some bits above the
5189 * physical addressing limit will always be reserved, so use the
5190 * rsvd_bits() function to generate the mask. This mask, along with
5191 * the present bit, will be used to generate a page fault with
5192 * PFER.RSV = 1.
5193 *
5194 * If the mask bit location is 52 (or above), then clear the mask.
5195 */
5196 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5197
5198 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5199 }
5200
svm_set_cpu_caps(void)5201 static __init void svm_set_cpu_caps(void)
5202 {
5203 kvm_set_cpu_caps();
5204
5205 kvm_caps.supported_perf_cap = 0;
5206
5207 kvm_cpu_cap_clear(X86_FEATURE_IBT);
5208
5209 /* CPUID 0x80000001 and 0x8000000A (SVM features) */
5210 if (nested) {
5211 kvm_cpu_cap_set(X86_FEATURE_SVM);
5212 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5213
5214 /*
5215 * KVM currently flushes TLBs on *every* nested SVM transition,
5216 * and so for all intents and purposes KVM supports flushing by
5217 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
5218 */
5219 kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);
5220
5221 if (nrips)
5222 kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5223
5224 if (npt_enabled)
5225 kvm_cpu_cap_set(X86_FEATURE_NPT);
5226
5227 if (tsc_scaling)
5228 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5229
5230 if (vls)
5231 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5232 if (lbrv)
5233 kvm_cpu_cap_set(X86_FEATURE_LBRV);
5234
5235 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5236 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5237
5238 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5239 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5240
5241 if (vgif)
5242 kvm_cpu_cap_set(X86_FEATURE_VGIF);
5243
5244 if (vnmi)
5245 kvm_cpu_cap_set(X86_FEATURE_VNMI);
5246
5247 /* Nested VM can receive #VMEXIT instead of triggering #GP */
5248 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5249 }
5250
5251 if (cpu_feature_enabled(X86_FEATURE_BUS_LOCK_THRESHOLD))
5252 kvm_caps.has_bus_lock_exit = true;
5253
5254 /* CPUID 0x80000008 */
5255 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5256 boot_cpu_has(X86_FEATURE_AMD_SSBD))
5257 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5258
5259 if (enable_pmu) {
5260 /*
5261 * Enumerate support for PERFCTR_CORE if and only if KVM has
5262 * access to enough counters to virtualize "core" support,
5263 * otherwise limit vPMU support to the legacy number of counters.
5264 */
5265 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5266 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5267 kvm_pmu_cap.num_counters_gp);
5268 else
5269 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5270
5271 if (kvm_pmu_cap.version != 2 ||
5272 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5273 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5274 }
5275
5276 /* CPUID 0x8000001F (SME/SEV features) */
5277 sev_set_cpu_caps();
5278
5279 /*
5280 * Clear capabilities that are automatically configured by common code,
5281 * but that require explicit SVM support (that isn't yet implemented).
5282 */
5283 kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT);
5284 kvm_cpu_cap_clear(X86_FEATURE_MSR_IMM);
5285 }
5286
svm_hardware_setup(void)5287 static __init int svm_hardware_setup(void)
5288 {
5289 void *iopm_va;
5290 int cpu, r;
5291
5292 /*
5293 * NX is required for shadow paging and for NPT if the NX huge pages
5294 * mitigation is enabled.
5295 */
5296 if (!boot_cpu_has(X86_FEATURE_NX)) {
5297 pr_err_ratelimited("NX (Execute Disable) not supported\n");
5298 return -EOPNOTSUPP;
5299 }
5300 kvm_enable_efer_bits(EFER_NX);
5301
5302 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5303 XFEATURE_MASK_BNDCSR);
5304
5305 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5306 kvm_enable_efer_bits(EFER_FFXSR);
5307
5308 if (tsc_scaling) {
5309 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5310 tsc_scaling = false;
5311 } else {
5312 pr_info("TSC scaling supported\n");
5313 kvm_caps.has_tsc_control = true;
5314 }
5315 }
5316 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5317 kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5318
5319 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5320
5321 if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5322 kvm_enable_efer_bits(EFER_AUTOIBRS);
5323
5324 /* Check for pause filtering support */
5325 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5326 pause_filter_count = 0;
5327 pause_filter_thresh = 0;
5328 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5329 pause_filter_thresh = 0;
5330 }
5331
5332 if (nested) {
5333 pr_info("Nested Virtualization enabled\n");
5334 kvm_enable_efer_bits(EFER_SVME);
5335 if (!boot_cpu_has(X86_FEATURE_EFER_LMSLE_MBZ))
5336 kvm_enable_efer_bits(EFER_LMSLE);
5337
5338 r = nested_svm_init_msrpm_merge_offsets();
5339 if (r)
5340 return r;
5341 }
5342
5343 /*
5344 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5345 * NPT isn't supported if the host is using 2-level paging since host
5346 * CR4 is unchanged on VMRUN.
5347 */
5348 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5349 npt_enabled = false;
5350
5351 if (!boot_cpu_has(X86_FEATURE_NPT))
5352 npt_enabled = false;
5353
5354 /* Force VM NPT level equal to the host's paging level */
5355 kvm_configure_mmu(npt_enabled, get_npt_level(),
5356 get_npt_level(), PG_LEVEL_1G);
5357 pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled));
5358
5359 /*
5360 * It seems that on AMD processors PTE's accessed bit is
5361 * being set by the CPU hardware before the NPF vmexit.
5362 * This is not expected behaviour and our tests fail because
5363 * of it.
5364 * A workaround here is to disable support for
5365 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5366 * In this case userspace can know if there is support using
5367 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5368 * it
5369 * If future AMD CPU models change the behaviour described above,
5370 * this variable can be changed accordingly
5371 */
5372 allow_smaller_maxphyaddr = !npt_enabled;
5373
5374 /* Setup shadow_me_value and shadow_me_mask */
5375 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5376
5377 svm_adjust_mmio_mask();
5378
5379 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5380
5381 if (lbrv) {
5382 if (!boot_cpu_has(X86_FEATURE_LBRV))
5383 lbrv = false;
5384 else
5385 pr_info("LBR virtualization supported\n");
5386 }
5387
5388 iopm_va = svm_alloc_permissions_map(IOPM_SIZE, GFP_KERNEL);
5389 if (!iopm_va)
5390 return -ENOMEM;
5391
5392 iopm_base = __sme_set(__pa(iopm_va));
5393
5394 /*
5395 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5396 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5397 */
5398 sev_hardware_setup();
5399
5400 svm_hv_hardware_setup();
5401
5402 enable_apicv = avic_hardware_setup();
5403 if (!enable_apicv) {
5404 enable_ipiv = false;
5405 svm_x86_ops.vcpu_blocking = NULL;
5406 svm_x86_ops.vcpu_unblocking = NULL;
5407 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5408 }
5409
5410 if (vls) {
5411 if (!npt_enabled ||
5412 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5413 !IS_ENABLED(CONFIG_X86_64)) {
5414 vls = false;
5415 } else {
5416 pr_info("Virtual VMLOAD VMSAVE supported\n");
5417 }
5418 }
5419
5420 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5421 svm_gp_erratum_intercept = false;
5422
5423 if (vgif) {
5424 if (!boot_cpu_has(X86_FEATURE_VGIF))
5425 vgif = false;
5426 else
5427 pr_info("Virtual GIF supported\n");
5428 }
5429
5430 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5431 if (vnmi)
5432 pr_info("Virtual NMI enabled\n");
5433
5434 if (!vnmi) {
5435 svm_x86_ops.is_vnmi_pending = NULL;
5436 svm_x86_ops.set_vnmi_pending = NULL;
5437 }
5438
5439 if (!enable_pmu)
5440 pr_info("PMU virtualization is disabled\n");
5441
5442 svm_set_cpu_caps();
5443
5444 kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_CD_NW_CLEARED;
5445
5446 for_each_possible_cpu(cpu) {
5447 r = svm_cpu_init(cpu);
5448 if (r)
5449 goto err;
5450 }
5451
5452 return 0;
5453
5454 err:
5455 svm_hardware_unsetup();
5456 return r;
5457 }
5458
5459
5460 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5461 .hardware_setup = svm_hardware_setup,
5462
5463 .runtime_ops = &svm_x86_ops,
5464 .pmu_ops = &amd_pmu_ops,
5465 };
5466
__svm_exit(void)5467 static void __svm_exit(void)
5468 {
5469 kvm_x86_vendor_exit();
5470 }
5471
svm_init(void)5472 static int __init svm_init(void)
5473 {
5474 int r;
5475
5476 KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_svm);
5477
5478 __unused_size_checks();
5479
5480 if (!kvm_is_svm_supported())
5481 return -EOPNOTSUPP;
5482
5483 r = kvm_x86_vendor_init(&svm_init_ops);
5484 if (r)
5485 return r;
5486
5487 /*
5488 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5489 * exposed to userspace!
5490 */
5491 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5492 THIS_MODULE);
5493 if (r)
5494 goto err_kvm_init;
5495
5496 return 0;
5497
5498 err_kvm_init:
5499 __svm_exit();
5500 return r;
5501 }
5502
svm_exit(void)5503 static void __exit svm_exit(void)
5504 {
5505 kvm_exit();
5506 __svm_exit();
5507 }
5508
5509 module_init(svm_init)
5510 module_exit(svm_exit)
5511