xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_svm.c (revision 237f1bbfe3d84a74ad8e6e207660bdb3e6d9a84d)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2020-2021 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29 
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40 
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45 
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47 
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49  * page table is updated.
50  */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING	(2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 	_dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 	do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59 
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61  * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62  * power of 2MB.
63  */
64 static uint64_t max_svm_range_pages;
65 
66 struct criu_svm_metadata {
67 	struct list_head list;
68 	struct kfd_criu_svm_range_priv_data data;
69 };
70 
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 				    const struct mmu_notifier_range *range,
75 				    unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 		   uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 	.invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82 
83 /**
84  * svm_range_unlink - unlink svm_range from lists and interval tree
85  * @prange: svm range structure to be removed
86  *
87  * Remove the svm_range from the svms and svm_bo lists and the svms
88  * interval tree.
89  *
90  * Context: The caller must hold svms->lock
91  */
svm_range_unlink(struct svm_range * prange)92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 		 prange, prange->start, prange->last);
96 
97 	if (prange->svm_bo) {
98 		spin_lock(&prange->svm_bo->list_lock);
99 		list_del(&prange->svm_bo_list);
100 		spin_unlock(&prange->svm_bo->list_lock);
101 	}
102 
103 	list_del(&prange->list);
104 	if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107 
108 static void
svm_range_add_notifier_locked(struct mm_struct * mm,struct svm_range * prange)109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 		 prange, prange->start, prange->last);
113 
114 	mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 				     prange->start << PAGE_SHIFT,
116 				     prange->npages << PAGE_SHIFT,
117 				     &svm_range_mn_ops);
118 }
119 
120 /**
121  * svm_range_add_to_svms - add svm range to svms
122  * @prange: svm range structure to be added
123  *
124  * Add the svm range to svms interval tree and link list
125  *
126  * Context: The caller must hold svms->lock
127  */
svm_range_add_to_svms(struct svm_range * prange)128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 		 prange, prange->start, prange->last);
132 
133 	list_move_tail(&prange->list, &prange->svms->list);
134 	prange->it_node.start = prange->start;
135 	prange->it_node.last = prange->last;
136 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138 
svm_range_remove_notifier(struct svm_range * prange)139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 	pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 		 prange->svms, prange,
143 		 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 		 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145 
146 	if (prange->notifier.interval_tree.start != 0 &&
147 	    prange->notifier.interval_tree.last != 0)
148 		mmu_interval_notifier_remove(&prange->notifier);
149 }
150 
151 static bool
svm_is_valid_dma_mapping_addr(struct device * dev,dma_addr_t dma_addr)152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 	return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 	       !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157 
158 static int
svm_range_dma_map_dev(struct amdgpu_device * adev,struct svm_range * prange,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns,uint32_t gpuidx)159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 		      unsigned long offset, unsigned long npages,
161 		      unsigned long *hmm_pfns, uint32_t gpuidx)
162 {
163 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 	dma_addr_t *addr = prange->dma_addr[gpuidx];
165 	struct device *dev = adev->dev;
166 	struct page *page;
167 	int i, r;
168 
169 	if (!addr) {
170 		addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 		if (!addr)
172 			return -ENOMEM;
173 		prange->dma_addr[gpuidx] = addr;
174 	}
175 
176 	addr += offset;
177 	for (i = 0; i < npages; i++) {
178 		if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 			dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180 
181 		page = hmm_pfn_to_page(hmm_pfns[i]);
182 		if (is_zone_device_page(page)) {
183 			struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184 
185 			addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 				   bo_adev->vm_manager.vram_base_offset -
187 				   bo_adev->kfd.pgmap.range.start;
188 			addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 			pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 			continue;
191 		}
192 		addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 		r = dma_mapping_error(dev, addr[i]);
194 		if (r) {
195 			dev_err(dev, "failed %d dma_map_page\n", r);
196 			return r;
197 		}
198 		pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 				     addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 	}
201 
202 	return 0;
203 }
204 
205 static int
svm_range_dma_map(struct svm_range * prange,unsigned long * bitmap,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns)206 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
207 		  unsigned long offset, unsigned long npages,
208 		  unsigned long *hmm_pfns)
209 {
210 	struct kfd_process *p;
211 	uint32_t gpuidx;
212 	int r;
213 
214 	p = container_of(prange->svms, struct kfd_process, svms);
215 
216 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
217 		struct kfd_process_device *pdd;
218 
219 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
220 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
221 		if (!pdd) {
222 			pr_debug("failed to find device idx %d\n", gpuidx);
223 			return -EINVAL;
224 		}
225 
226 		r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
227 					  hmm_pfns, gpuidx);
228 		if (r)
229 			break;
230 	}
231 
232 	return r;
233 }
234 
svm_range_dma_unmap_dev(struct device * dev,dma_addr_t * dma_addr,unsigned long offset,unsigned long npages)235 void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
236 			 unsigned long offset, unsigned long npages)
237 {
238 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
239 	int i;
240 
241 	if (!dma_addr)
242 		return;
243 
244 	for (i = offset; i < offset + npages; i++) {
245 		if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
246 			continue;
247 		pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
248 		dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
249 		dma_addr[i] = 0;
250 	}
251 }
252 
svm_range_dma_unmap(struct svm_range * prange)253 void svm_range_dma_unmap(struct svm_range *prange)
254 {
255 	struct kfd_process_device *pdd;
256 	dma_addr_t *dma_addr;
257 	struct device *dev;
258 	struct kfd_process *p;
259 	uint32_t gpuidx;
260 
261 	p = container_of(prange->svms, struct kfd_process, svms);
262 
263 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
264 		dma_addr = prange->dma_addr[gpuidx];
265 		if (!dma_addr)
266 			continue;
267 
268 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
269 		if (!pdd) {
270 			pr_debug("failed to find device idx %d\n", gpuidx);
271 			continue;
272 		}
273 		dev = &pdd->dev->adev->pdev->dev;
274 
275 		svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages);
276 	}
277 }
278 
svm_range_free(struct svm_range * prange,bool do_unmap)279 static void svm_range_free(struct svm_range *prange, bool do_unmap)
280 {
281 	uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
282 	struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
283 	uint32_t gpuidx;
284 
285 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286 		 prange->start, prange->last);
287 
288 	svm_range_vram_node_free(prange);
289 	if (do_unmap)
290 		svm_range_dma_unmap(prange);
291 
292 	if (do_unmap && !p->xnack_enabled) {
293 		pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
294 		amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
295 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
296 	}
297 
298 	/* free dma_addr array for each gpu */
299 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
300 		if (prange->dma_addr[gpuidx]) {
301 			kvfree(prange->dma_addr[gpuidx]);
302 			prange->dma_addr[gpuidx] = NULL;
303 		}
304 	}
305 
306 	mutex_destroy(&prange->lock);
307 	mutex_destroy(&prange->migrate_mutex);
308 	kfree(prange);
309 }
310 
311 static void
svm_range_set_default_attributes(struct svm_range_list * svms,int32_t * location,int32_t * prefetch_loc,uint8_t * granularity,uint32_t * flags)312 svm_range_set_default_attributes(struct svm_range_list *svms, int32_t *location,
313 				 int32_t *prefetch_loc, uint8_t *granularity,
314 				 uint32_t *flags)
315 {
316 	*location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
317 	*prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
318 	*granularity = svms->default_granularity;
319 	*flags =
320 		KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
321 }
322 
323 static struct
svm_range_new(struct svm_range_list * svms,uint64_t start,uint64_t last,bool update_mem_usage)324 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
325 			 uint64_t last, bool update_mem_usage)
326 {
327 	uint64_t size = last - start + 1;
328 	struct svm_range *prange;
329 	struct kfd_process *p;
330 
331 	prange = kzalloc(sizeof(*prange), GFP_KERNEL);
332 	if (!prange)
333 		return NULL;
334 
335 	p = container_of(svms, struct kfd_process, svms);
336 	if (!p->xnack_enabled && update_mem_usage &&
337 	    amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
338 				    KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
339 		pr_info("SVM mapping failed, exceeds resident system memory limit\n");
340 		kfree(prange);
341 		return NULL;
342 	}
343 	prange->npages = size;
344 	prange->svms = svms;
345 	prange->start = start;
346 	prange->last = last;
347 	INIT_LIST_HEAD(&prange->list);
348 	INIT_LIST_HEAD(&prange->update_list);
349 	INIT_LIST_HEAD(&prange->svm_bo_list);
350 	INIT_LIST_HEAD(&prange->deferred_list);
351 	INIT_LIST_HEAD(&prange->child_list);
352 	atomic_set(&prange->invalid, 0);
353 	prange->validate_timestamp = 0;
354 	prange->vram_pages = 0;
355 	mutex_init(&prange->migrate_mutex);
356 	mutex_init(&prange->lock);
357 
358 	if (p->xnack_enabled)
359 		bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
360 			    MAX_GPU_INSTANCE);
361 
362 	svm_range_set_default_attributes(svms, &prange->preferred_loc,
363 					 &prange->prefetch_loc,
364 					 &prange->granularity, &prange->flags);
365 
366 	pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
367 
368 	return prange;
369 }
370 
svm_bo_ref_unless_zero(struct svm_range_bo * svm_bo)371 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
372 {
373 	if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
374 		return false;
375 
376 	return true;
377 }
378 
svm_range_bo_release(struct kref * kref)379 static void svm_range_bo_release(struct kref *kref)
380 {
381 	struct svm_range_bo *svm_bo;
382 
383 	svm_bo = container_of(kref, struct svm_range_bo, kref);
384 	pr_debug("svm_bo 0x%p\n", svm_bo);
385 
386 	spin_lock(&svm_bo->list_lock);
387 	while (!list_empty(&svm_bo->range_list)) {
388 		struct svm_range *prange =
389 				list_first_entry(&svm_bo->range_list,
390 						struct svm_range, svm_bo_list);
391 		/* list_del_init tells a concurrent svm_range_vram_node_new when
392 		 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
393 		 */
394 		list_del_init(&prange->svm_bo_list);
395 		spin_unlock(&svm_bo->list_lock);
396 
397 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
398 			 prange->start, prange->last);
399 		mutex_lock(&prange->lock);
400 		prange->svm_bo = NULL;
401 		/* prange should not hold vram page now */
402 		WARN_ONCE(prange->actual_loc, "prange should not hold vram page");
403 		mutex_unlock(&prange->lock);
404 
405 		spin_lock(&svm_bo->list_lock);
406 	}
407 	spin_unlock(&svm_bo->list_lock);
408 
409 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
410 		struct kfd_process_device *pdd;
411 		struct kfd_process *p;
412 		struct mm_struct *mm;
413 
414 		mm = svm_bo->eviction_fence->mm;
415 		/*
416 		 * The forked child process takes svm_bo device pages ref, svm_bo could be
417 		 * released after parent process is gone.
418 		 */
419 		p = kfd_lookup_process_by_mm(mm);
420 		if (p) {
421 			pdd = kfd_get_process_device_data(svm_bo->node, p);
422 			if (pdd)
423 				atomic64_sub(amdgpu_bo_size(svm_bo->bo), &pdd->vram_usage);
424 			kfd_unref_process(p);
425 		}
426 		mmput(mm);
427 	}
428 
429 	if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
430 		/* We're not in the eviction worker. Signal the fence. */
431 		dma_fence_signal(&svm_bo->eviction_fence->base);
432 	dma_fence_put(&svm_bo->eviction_fence->base);
433 	amdgpu_bo_unref(&svm_bo->bo);
434 	kfree(svm_bo);
435 }
436 
svm_range_bo_wq_release(struct work_struct * work)437 static void svm_range_bo_wq_release(struct work_struct *work)
438 {
439 	struct svm_range_bo *svm_bo;
440 
441 	svm_bo = container_of(work, struct svm_range_bo, release_work);
442 	svm_range_bo_release(&svm_bo->kref);
443 }
444 
svm_range_bo_release_async(struct kref * kref)445 static void svm_range_bo_release_async(struct kref *kref)
446 {
447 	struct svm_range_bo *svm_bo;
448 
449 	svm_bo = container_of(kref, struct svm_range_bo, kref);
450 	pr_debug("svm_bo 0x%p\n", svm_bo);
451 	INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
452 	schedule_work(&svm_bo->release_work);
453 }
454 
svm_range_bo_unref_async(struct svm_range_bo * svm_bo)455 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
456 {
457 	kref_put(&svm_bo->kref, svm_range_bo_release_async);
458 }
459 
svm_range_bo_unref(struct svm_range_bo * svm_bo)460 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
461 {
462 	if (svm_bo)
463 		kref_put(&svm_bo->kref, svm_range_bo_release);
464 }
465 
466 static bool
svm_range_validate_svm_bo(struct kfd_node * node,struct svm_range * prange)467 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
468 {
469 	mutex_lock(&prange->lock);
470 	if (!prange->svm_bo) {
471 		mutex_unlock(&prange->lock);
472 		return false;
473 	}
474 	if (prange->ttm_res) {
475 		/* We still have a reference, all is well */
476 		mutex_unlock(&prange->lock);
477 		return true;
478 	}
479 	if (svm_bo_ref_unless_zero(prange->svm_bo)) {
480 		/*
481 		 * Migrate from GPU to GPU, remove range from source svm_bo->node
482 		 * range list, and return false to allocate svm_bo from destination
483 		 * node.
484 		 */
485 		if (prange->svm_bo->node != node) {
486 			mutex_unlock(&prange->lock);
487 
488 			spin_lock(&prange->svm_bo->list_lock);
489 			list_del_init(&prange->svm_bo_list);
490 			spin_unlock(&prange->svm_bo->list_lock);
491 
492 			svm_range_bo_unref(prange->svm_bo);
493 			return false;
494 		}
495 		if (READ_ONCE(prange->svm_bo->evicting)) {
496 			struct dma_fence *f;
497 			struct svm_range_bo *svm_bo;
498 			/* The BO is getting evicted,
499 			 * we need to get a new one
500 			 */
501 			mutex_unlock(&prange->lock);
502 			svm_bo = prange->svm_bo;
503 			f = dma_fence_get(&svm_bo->eviction_fence->base);
504 			svm_range_bo_unref(prange->svm_bo);
505 			/* wait for the fence to avoid long spin-loop
506 			 * at list_empty_careful
507 			 */
508 			dma_fence_wait(f, false);
509 			dma_fence_put(f);
510 		} else {
511 			/* The BO was still around and we got
512 			 * a new reference to it
513 			 */
514 			mutex_unlock(&prange->lock);
515 			pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
516 				 prange->svms, prange->start, prange->last);
517 
518 			prange->ttm_res = prange->svm_bo->bo->tbo.resource;
519 			return true;
520 		}
521 
522 	} else {
523 		mutex_unlock(&prange->lock);
524 	}
525 
526 	/* We need a new svm_bo. Spin-loop to wait for concurrent
527 	 * svm_range_bo_release to finish removing this range from
528 	 * its range list and set prange->svm_bo to null. After this,
529 	 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
530 	 */
531 	while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
532 		cond_resched();
533 
534 	return false;
535 }
536 
svm_range_bo_new(void)537 static struct svm_range_bo *svm_range_bo_new(void)
538 {
539 	struct svm_range_bo *svm_bo;
540 
541 	svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
542 	if (!svm_bo)
543 		return NULL;
544 
545 	kref_init(&svm_bo->kref);
546 	INIT_LIST_HEAD(&svm_bo->range_list);
547 	spin_lock_init(&svm_bo->list_lock);
548 
549 	return svm_bo;
550 }
551 
552 int
svm_range_vram_node_new(struct kfd_node * node,struct svm_range * prange,bool clear)553 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
554 			bool clear)
555 {
556 	struct kfd_process_device *pdd;
557 	struct amdgpu_bo_param bp;
558 	struct svm_range_bo *svm_bo;
559 	struct amdgpu_bo_user *ubo;
560 	struct amdgpu_bo *bo;
561 	struct kfd_process *p;
562 	struct mm_struct *mm;
563 	int r;
564 
565 	p = container_of(prange->svms, struct kfd_process, svms);
566 	pr_debug("process pid: %d svms 0x%p [0x%lx 0x%lx]\n",
567 		 p->lead_thread->pid, prange->svms,
568 		 prange->start, prange->last);
569 
570 	if (svm_range_validate_svm_bo(node, prange))
571 		return 0;
572 
573 	svm_bo = svm_range_bo_new();
574 	if (!svm_bo) {
575 		pr_debug("failed to alloc svm bo\n");
576 		return -ENOMEM;
577 	}
578 	mm = get_task_mm(p->lead_thread);
579 	if (!mm) {
580 		pr_debug("failed to get mm\n");
581 		kfree(svm_bo);
582 		return -ESRCH;
583 	}
584 	svm_bo->node = node;
585 	svm_bo->eviction_fence =
586 		amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
587 					   mm,
588 					   svm_bo);
589 	mmput(mm);
590 	INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
591 	svm_bo->evicting = 0;
592 	memset(&bp, 0, sizeof(bp));
593 	bp.size = prange->npages * PAGE_SIZE;
594 	bp.byte_align = PAGE_SIZE;
595 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
596 	bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
597 	bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
598 	bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
599 	bp.type = ttm_bo_type_device;
600 	bp.resv = NULL;
601 	if (node->xcp)
602 		bp.xcp_id_plus1 = node->xcp->id + 1;
603 
604 	r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
605 	if (r) {
606 		pr_debug("failed %d to create bo\n", r);
607 		goto create_bo_failed;
608 	}
609 	bo = &ubo->bo;
610 
611 	pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
612 		 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
613 		 bp.xcp_id_plus1 - 1);
614 
615 	r = amdgpu_bo_reserve(bo, true);
616 	if (r) {
617 		pr_debug("failed %d to reserve bo\n", r);
618 		goto reserve_bo_failed;
619 	}
620 
621 	if (clear) {
622 		r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
623 		if (r) {
624 			pr_debug("failed %d to sync bo\n", r);
625 			amdgpu_bo_unreserve(bo);
626 			goto reserve_bo_failed;
627 		}
628 	}
629 
630 	r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
631 	if (r) {
632 		pr_debug("failed %d to reserve bo\n", r);
633 		amdgpu_bo_unreserve(bo);
634 		goto reserve_bo_failed;
635 	}
636 	amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
637 
638 	amdgpu_bo_unreserve(bo);
639 
640 	svm_bo->bo = bo;
641 	prange->svm_bo = svm_bo;
642 	prange->ttm_res = bo->tbo.resource;
643 	prange->offset = 0;
644 
645 	spin_lock(&svm_bo->list_lock);
646 	list_add(&prange->svm_bo_list, &svm_bo->range_list);
647 	spin_unlock(&svm_bo->list_lock);
648 
649 	pdd = svm_range_get_pdd_by_node(prange, node);
650 	if (pdd)
651 		atomic64_add(amdgpu_bo_size(bo), &pdd->vram_usage);
652 
653 	return 0;
654 
655 reserve_bo_failed:
656 	amdgpu_bo_unref(&bo);
657 create_bo_failed:
658 	dma_fence_put(&svm_bo->eviction_fence->base);
659 	kfree(svm_bo);
660 	prange->ttm_res = NULL;
661 
662 	return r;
663 }
664 
svm_range_vram_node_free(struct svm_range * prange)665 void svm_range_vram_node_free(struct svm_range *prange)
666 {
667 	/* serialize prange->svm_bo unref */
668 	mutex_lock(&prange->lock);
669 	/* prange->svm_bo has not been unref */
670 	if (prange->ttm_res) {
671 		prange->ttm_res = NULL;
672 		mutex_unlock(&prange->lock);
673 		svm_range_bo_unref(prange->svm_bo);
674 	} else
675 		mutex_unlock(&prange->lock);
676 }
677 
678 struct kfd_node *
svm_range_get_node_by_id(struct svm_range * prange,uint32_t gpu_id)679 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
680 {
681 	struct kfd_process *p;
682 	struct kfd_process_device *pdd;
683 
684 	p = container_of(prange->svms, struct kfd_process, svms);
685 	pdd = kfd_process_device_data_by_id(p, gpu_id);
686 	if (!pdd) {
687 		pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
688 		return NULL;
689 	}
690 
691 	return pdd->dev;
692 }
693 
694 struct kfd_process_device *
svm_range_get_pdd_by_node(struct svm_range * prange,struct kfd_node * node)695 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
696 {
697 	struct kfd_process *p;
698 
699 	p = container_of(prange->svms, struct kfd_process, svms);
700 
701 	return kfd_get_process_device_data(node, p);
702 }
703 
svm_range_bo_validate(void * param,struct amdgpu_bo * bo)704 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
705 {
706 	struct ttm_operation_ctx ctx = { false, false };
707 
708 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
709 
710 	return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
711 }
712 
713 static int
svm_range_check_attr(struct kfd_process * p,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)714 svm_range_check_attr(struct kfd_process *p,
715 		     uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
716 {
717 	uint32_t i;
718 
719 	for (i = 0; i < nattr; i++) {
720 		uint32_t val = attrs[i].value;
721 		int gpuidx = MAX_GPU_INSTANCE;
722 
723 		switch (attrs[i].type) {
724 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
725 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
726 			    val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
727 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
728 			break;
729 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
730 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
731 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
732 			break;
733 		case KFD_IOCTL_SVM_ATTR_ACCESS:
734 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
735 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
736 			gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
737 			break;
738 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
739 			break;
740 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
741 			break;
742 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
743 			break;
744 		default:
745 			pr_debug("unknown attr type 0x%x\n", attrs[i].type);
746 			return -EINVAL;
747 		}
748 
749 		if (gpuidx < 0) {
750 			pr_debug("no GPU 0x%x found\n", val);
751 			return -EINVAL;
752 		} else if (gpuidx < MAX_GPU_INSTANCE &&
753 			   !test_bit(gpuidx, p->svms.bitmap_supported)) {
754 			pr_debug("GPU 0x%x not supported\n", val);
755 			return -EINVAL;
756 		}
757 	}
758 
759 	return 0;
760 }
761 
762 static void
svm_range_apply_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,bool * update_mapping)763 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
764 		      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
765 		      bool *update_mapping)
766 {
767 	uint32_t i;
768 	int gpuidx;
769 
770 	for (i = 0; i < nattr; i++) {
771 		switch (attrs[i].type) {
772 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
773 			prange->preferred_loc = attrs[i].value;
774 			break;
775 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
776 			prange->prefetch_loc = attrs[i].value;
777 			break;
778 		case KFD_IOCTL_SVM_ATTR_ACCESS:
779 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
780 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
781 			if (!p->xnack_enabled)
782 				*update_mapping = true;
783 
784 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
785 							       attrs[i].value);
786 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
787 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
788 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
789 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
790 				bitmap_set(prange->bitmap_access, gpuidx, 1);
791 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
792 			} else {
793 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
794 				bitmap_set(prange->bitmap_aip, gpuidx, 1);
795 			}
796 			break;
797 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
798 			*update_mapping = true;
799 			prange->flags |= attrs[i].value;
800 			break;
801 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
802 			*update_mapping = true;
803 			prange->flags &= ~attrs[i].value;
804 			break;
805 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
806 			prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
807 			break;
808 		default:
809 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
810 		}
811 	}
812 }
813 
814 static bool
svm_range_is_same_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)815 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
816 			uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
817 {
818 	uint32_t i;
819 	int gpuidx;
820 
821 	for (i = 0; i < nattr; i++) {
822 		switch (attrs[i].type) {
823 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
824 			if (prange->preferred_loc != attrs[i].value)
825 				return false;
826 			break;
827 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
828 			/* Prefetch should always trigger a migration even
829 			 * if the value of the attribute didn't change.
830 			 */
831 			return false;
832 		case KFD_IOCTL_SVM_ATTR_ACCESS:
833 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
834 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
835 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
836 							       attrs[i].value);
837 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
838 				if (test_bit(gpuidx, prange->bitmap_access) ||
839 				    test_bit(gpuidx, prange->bitmap_aip))
840 					return false;
841 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
842 				if (!test_bit(gpuidx, prange->bitmap_access))
843 					return false;
844 			} else {
845 				if (!test_bit(gpuidx, prange->bitmap_aip))
846 					return false;
847 			}
848 			break;
849 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
850 			if ((prange->flags & attrs[i].value) != attrs[i].value)
851 				return false;
852 			break;
853 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
854 			if ((prange->flags & attrs[i].value) != 0)
855 				return false;
856 			break;
857 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
858 			if (prange->granularity != attrs[i].value)
859 				return false;
860 			break;
861 		default:
862 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
863 		}
864 	}
865 
866 	return true;
867 }
868 
869 /**
870  * svm_range_debug_dump - print all range information from svms
871  * @svms: svm range list header
872  *
873  * debug output svm range start, end, prefetch location from svms
874  * interval tree and link list
875  *
876  * Context: The caller must hold svms->lock
877  */
svm_range_debug_dump(struct svm_range_list * svms)878 static void svm_range_debug_dump(struct svm_range_list *svms)
879 {
880 	struct interval_tree_node *node;
881 	struct svm_range *prange;
882 
883 	pr_debug("dump svms 0x%p list\n", svms);
884 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
885 
886 	list_for_each_entry(prange, &svms->list, list) {
887 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
888 			 prange, prange->start, prange->npages,
889 			 prange->start + prange->npages - 1,
890 			 prange->actual_loc);
891 	}
892 
893 	pr_debug("dump svms 0x%p interval tree\n", svms);
894 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
895 	node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
896 	while (node) {
897 		prange = container_of(node, struct svm_range, it_node);
898 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
899 			 prange, prange->start, prange->npages,
900 			 prange->start + prange->npages - 1,
901 			 prange->actual_loc);
902 		node = interval_tree_iter_next(node, 0, ~0ULL);
903 	}
904 }
905 
906 static void *
svm_range_copy_array(void * psrc,size_t size,uint64_t num_elements,uint64_t offset,uint64_t * vram_pages)907 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
908 		     uint64_t offset, uint64_t *vram_pages)
909 {
910 	unsigned char *src = (unsigned char *)psrc + offset;
911 	unsigned char *dst;
912 	uint64_t i;
913 
914 	dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
915 	if (!dst)
916 		return NULL;
917 
918 	if (!vram_pages) {
919 		memcpy(dst, src, num_elements * size);
920 		return (void *)dst;
921 	}
922 
923 	*vram_pages = 0;
924 	for (i = 0; i < num_elements; i++) {
925 		dma_addr_t *temp;
926 		temp = (dma_addr_t *)dst + i;
927 		*temp = *((dma_addr_t *)src + i);
928 		if (*temp&SVM_RANGE_VRAM_DOMAIN)
929 			(*vram_pages)++;
930 	}
931 
932 	return (void *)dst;
933 }
934 
935 static int
svm_range_copy_dma_addrs(struct svm_range * dst,struct svm_range * src)936 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
937 {
938 	int i;
939 
940 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
941 		if (!src->dma_addr[i])
942 			continue;
943 		dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
944 					sizeof(*src->dma_addr[i]), src->npages, 0, NULL);
945 		if (!dst->dma_addr[i])
946 			return -ENOMEM;
947 	}
948 
949 	return 0;
950 }
951 
952 static int
svm_range_split_array(void * ppnew,void * ppold,size_t size,uint64_t old_start,uint64_t old_n,uint64_t new_start,uint64_t new_n,uint64_t * new_vram_pages)953 svm_range_split_array(void *ppnew, void *ppold, size_t size,
954 		      uint64_t old_start, uint64_t old_n,
955 		      uint64_t new_start, uint64_t new_n, uint64_t *new_vram_pages)
956 {
957 	unsigned char *new, *old, *pold;
958 	uint64_t d;
959 
960 	if (!ppold)
961 		return 0;
962 	pold = *(unsigned char **)ppold;
963 	if (!pold)
964 		return 0;
965 
966 	d = (new_start - old_start) * size;
967 	/* get dma addr array for new range and calculte its vram page number */
968 	new = svm_range_copy_array(pold, size, new_n, d, new_vram_pages);
969 	if (!new)
970 		return -ENOMEM;
971 	d = (new_start == old_start) ? new_n * size : 0;
972 	old = svm_range_copy_array(pold, size, old_n, d, NULL);
973 	if (!old) {
974 		kvfree(new);
975 		return -ENOMEM;
976 	}
977 	kvfree(pold);
978 	*(void **)ppold = old;
979 	*(void **)ppnew = new;
980 
981 	return 0;
982 }
983 
984 static int
svm_range_split_pages(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)985 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
986 		      uint64_t start, uint64_t last)
987 {
988 	uint64_t npages = last - start + 1;
989 	int i, r;
990 
991 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
992 		r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
993 					  sizeof(*old->dma_addr[i]), old->start,
994 					  npages, new->start, new->npages,
995 					  old->actual_loc ? &new->vram_pages : NULL);
996 		if (r)
997 			return r;
998 	}
999 	if (old->actual_loc)
1000 		old->vram_pages -= new->vram_pages;
1001 
1002 	return 0;
1003 }
1004 
1005 static int
svm_range_split_nodes(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1006 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
1007 		      uint64_t start, uint64_t last)
1008 {
1009 	uint64_t npages = last - start + 1;
1010 
1011 	pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
1012 		 new->svms, new, new->start, start, last);
1013 
1014 	if (new->start == old->start) {
1015 		new->offset = old->offset;
1016 		old->offset += new->npages;
1017 	} else {
1018 		new->offset = old->offset + npages;
1019 	}
1020 
1021 	new->svm_bo = svm_range_bo_ref(old->svm_bo);
1022 	new->ttm_res = old->ttm_res;
1023 
1024 	spin_lock(&new->svm_bo->list_lock);
1025 	list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1026 	spin_unlock(&new->svm_bo->list_lock);
1027 
1028 	return 0;
1029 }
1030 
1031 /**
1032  * svm_range_split_adjust - split range and adjust
1033  *
1034  * @new: new range
1035  * @old: the old range
1036  * @start: the old range adjust to start address in pages
1037  * @last: the old range adjust to last address in pages
1038  *
1039  * Copy system memory dma_addr or vram ttm_res in old range to new
1040  * range from new_start up to size new->npages, the remaining old range is from
1041  * start to last
1042  *
1043  * Return:
1044  * 0 - OK, -ENOMEM - out of memory
1045  */
1046 static int
svm_range_split_adjust(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1047 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1048 		      uint64_t start, uint64_t last)
1049 {
1050 	int r;
1051 
1052 	pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1053 		 new->svms, new->start, old->start, old->last, start, last);
1054 
1055 	if (new->start < old->start ||
1056 	    new->last > old->last) {
1057 		WARN_ONCE(1, "invalid new range start or last\n");
1058 		return -EINVAL;
1059 	}
1060 
1061 	r = svm_range_split_pages(new, old, start, last);
1062 	if (r)
1063 		return r;
1064 
1065 	if (old->actual_loc && old->ttm_res) {
1066 		r = svm_range_split_nodes(new, old, start, last);
1067 		if (r)
1068 			return r;
1069 	}
1070 
1071 	old->npages = last - start + 1;
1072 	old->start = start;
1073 	old->last = last;
1074 	new->flags = old->flags;
1075 	new->preferred_loc = old->preferred_loc;
1076 	new->prefetch_loc = old->prefetch_loc;
1077 	new->actual_loc = old->actual_loc;
1078 	new->granularity = old->granularity;
1079 	new->mapped_to_gpu = old->mapped_to_gpu;
1080 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1081 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1082 	atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
1083 
1084 	return 0;
1085 }
1086 
1087 /**
1088  * svm_range_split - split a range in 2 ranges
1089  *
1090  * @prange: the svm range to split
1091  * @start: the remaining range start address in pages
1092  * @last: the remaining range last address in pages
1093  * @new: the result new range generated
1094  *
1095  * Two cases only:
1096  * case 1: if start == prange->start
1097  *         prange ==> prange[start, last]
1098  *         new range [last + 1, prange->last]
1099  *
1100  * case 2: if last == prange->last
1101  *         prange ==> prange[start, last]
1102  *         new range [prange->start, start - 1]
1103  *
1104  * Return:
1105  * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1106  */
1107 static int
svm_range_split(struct svm_range * prange,uint64_t start,uint64_t last,struct svm_range ** new)1108 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1109 		struct svm_range **new)
1110 {
1111 	uint64_t old_start = prange->start;
1112 	uint64_t old_last = prange->last;
1113 	struct svm_range_list *svms;
1114 	int r = 0;
1115 
1116 	pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1117 		 old_start, old_last, start, last);
1118 
1119 	if (old_start != start && old_last != last)
1120 		return -EINVAL;
1121 	if (start < old_start || last > old_last)
1122 		return -EINVAL;
1123 
1124 	svms = prange->svms;
1125 	if (old_start == start)
1126 		*new = svm_range_new(svms, last + 1, old_last, false);
1127 	else
1128 		*new = svm_range_new(svms, old_start, start - 1, false);
1129 	if (!*new)
1130 		return -ENOMEM;
1131 
1132 	r = svm_range_split_adjust(*new, prange, start, last);
1133 	if (r) {
1134 		pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1135 			 r, old_start, old_last, start, last);
1136 		svm_range_free(*new, false);
1137 		*new = NULL;
1138 	}
1139 
1140 	return r;
1141 }
1142 
1143 static int
svm_range_split_tail(struct svm_range * prange,uint64_t new_last,struct list_head * insert_list,struct list_head * remap_list)1144 svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
1145 		     struct list_head *insert_list, struct list_head *remap_list)
1146 {
1147 	unsigned long last_align_down = ALIGN_DOWN(prange->last, 512);
1148 	unsigned long start_align = ALIGN(prange->start, 512);
1149 	bool huge_page_mapping = last_align_down > start_align;
1150 	struct svm_range *tail = NULL;
1151 	int r;
1152 
1153 	r = svm_range_split(prange, prange->start, new_last, &tail);
1154 
1155 	if (r)
1156 		return r;
1157 
1158 	list_add(&tail->list, insert_list);
1159 
1160 	if (huge_page_mapping && tail->start > start_align &&
1161 	    tail->start < last_align_down && (!IS_ALIGNED(tail->start, 512)))
1162 		list_add(&tail->update_list, remap_list);
1163 
1164 	return 0;
1165 }
1166 
1167 static int
svm_range_split_head(struct svm_range * prange,uint64_t new_start,struct list_head * insert_list,struct list_head * remap_list)1168 svm_range_split_head(struct svm_range *prange, uint64_t new_start,
1169 		     struct list_head *insert_list, struct list_head *remap_list)
1170 {
1171 	unsigned long last_align_down = ALIGN_DOWN(prange->last, 512);
1172 	unsigned long start_align = ALIGN(prange->start, 512);
1173 	bool huge_page_mapping = last_align_down > start_align;
1174 	struct svm_range *head = NULL;
1175 	int r;
1176 
1177 	r = svm_range_split(prange, new_start, prange->last, &head);
1178 
1179 	if (r)
1180 		return r;
1181 
1182 	list_add(&head->list, insert_list);
1183 
1184 	if (huge_page_mapping && head->last + 1 > start_align &&
1185 	    head->last + 1 < last_align_down && (!IS_ALIGNED(head->last, 512)))
1186 		list_add(&head->update_list, remap_list);
1187 
1188 	return 0;
1189 }
1190 
1191 static void
svm_range_add_child(struct svm_range * prange,struct svm_range * pchild,enum svm_work_list_ops op)1192 svm_range_add_child(struct svm_range *prange, struct svm_range *pchild, enum svm_work_list_ops op)
1193 {
1194 	pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1195 		 pchild, pchild->start, pchild->last, prange, op);
1196 
1197 	pchild->work_item.mm = NULL;
1198 	pchild->work_item.op = op;
1199 	list_add_tail(&pchild->child_list, &prange->child_list);
1200 }
1201 
1202 static bool
svm_nodes_in_same_hive(struct kfd_node * node_a,struct kfd_node * node_b)1203 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1204 {
1205 	return (node_a->adev == node_b->adev ||
1206 		amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1207 }
1208 
1209 static uint64_t
svm_range_get_pte_flags(struct kfd_node * node,struct amdgpu_vm * vm,struct svm_range * prange,int domain)1210 svm_range_get_pte_flags(struct kfd_node *node, struct amdgpu_vm *vm,
1211 			struct svm_range *prange, int domain)
1212 {
1213 	struct kfd_node *bo_node;
1214 	uint32_t flags = prange->flags;
1215 	uint32_t mapping_flags = 0;
1216 	uint32_t gc_ip_version = KFD_GC_VERSION(node);
1217 	uint64_t pte_flags;
1218 	bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1219 	bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1220 	bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1221 	unsigned int mtype_local;
1222 
1223 	if (domain == SVM_RANGE_VRAM_DOMAIN)
1224 		bo_node = prange->svm_bo->node;
1225 
1226 	switch (gc_ip_version) {
1227 	case IP_VERSION(9, 4, 1):
1228 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1229 			if (bo_node == node) {
1230 				mapping_flags |= coherent ?
1231 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1232 			} else {
1233 				mapping_flags |= coherent ?
1234 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1235 				if (svm_nodes_in_same_hive(node, bo_node))
1236 					snoop = true;
1237 			}
1238 		} else {
1239 			mapping_flags |= coherent ?
1240 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1241 		}
1242 		break;
1243 	case IP_VERSION(9, 4, 2):
1244 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1245 			if (bo_node == node) {
1246 				mapping_flags |= coherent ?
1247 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1248 				if (node->adev->gmc.xgmi.connected_to_cpu)
1249 					snoop = true;
1250 			} else {
1251 				mapping_flags |= coherent ?
1252 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1253 				if (svm_nodes_in_same_hive(node, bo_node))
1254 					snoop = true;
1255 			}
1256 		} else {
1257 			mapping_flags |= coherent ?
1258 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1259 		}
1260 		break;
1261 	case IP_VERSION(9, 4, 3):
1262 	case IP_VERSION(9, 4, 4):
1263 	case IP_VERSION(9, 5, 0):
1264 		if (ext_coherent)
1265 			mtype_local = AMDGPU_VM_MTYPE_CC;
1266 		else
1267 			mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1268 				amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1269 		snoop = true;
1270 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1271 			/* local HBM region close to partition */
1272 			if (bo_node->adev == node->adev &&
1273 			    (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1274 				mapping_flags |= mtype_local;
1275 			/* local HBM region far from partition or remote XGMI GPU
1276 			 * with regular system scope coherence
1277 			 */
1278 			else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent)
1279 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1280 			/* PCIe P2P on GPUs pre-9.5.0 */
1281 			else if (gc_ip_version < IP_VERSION(9, 5, 0) &&
1282 				 !svm_nodes_in_same_hive(bo_node, node))
1283 				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1284 			/* Other remote memory */
1285 			else
1286 				mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1287 		/* system memory accessed by the APU */
1288 		} else if (node->adev->flags & AMD_IS_APU) {
1289 			/* On NUMA systems, locality is determined per-page
1290 			 * in amdgpu_gmc_override_vm_pte_flags
1291 			 */
1292 			if (num_possible_nodes() <= 1)
1293 				mapping_flags |= mtype_local;
1294 			else
1295 				mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1296 		/* system memory accessed by the dGPU */
1297 		} else {
1298 			if (gc_ip_version < IP_VERSION(9, 5, 0) || ext_coherent)
1299 				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1300 			else
1301 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1302 		}
1303 		break;
1304 	case IP_VERSION(12, 0, 0):
1305 	case IP_VERSION(12, 0, 1):
1306 		mapping_flags |= AMDGPU_VM_MTYPE_NC;
1307 		break;
1308 	default:
1309 		mapping_flags |= coherent ?
1310 			AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1311 	}
1312 
1313 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1314 		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1315 
1316 	pte_flags = AMDGPU_PTE_VALID;
1317 	pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1318 	pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1319 	if (gc_ip_version >= IP_VERSION(12, 0, 0))
1320 		pte_flags |= AMDGPU_PTE_IS_PTE;
1321 
1322 	amdgpu_gmc_get_vm_pte(node->adev, vm, NULL, mapping_flags, &pte_flags);
1323 	pte_flags |= AMDGPU_PTE_READABLE;
1324 	if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO))
1325 		pte_flags |= AMDGPU_PTE_WRITEABLE;
1326 	return pte_flags;
1327 }
1328 
1329 static int
svm_range_unmap_from_gpu(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t start,uint64_t last,struct dma_fence ** fence)1330 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1331 			 uint64_t start, uint64_t last,
1332 			 struct dma_fence **fence)
1333 {
1334 	uint64_t init_pte_value = 0;
1335 
1336 	pr_debug("[0x%llx 0x%llx]\n", start, last);
1337 
1338 	return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start,
1339 				      last, init_pte_value, 0, 0, NULL, NULL,
1340 				      fence);
1341 }
1342 
1343 static int
svm_range_unmap_from_gpus(struct svm_range * prange,unsigned long start,unsigned long last,uint32_t trigger)1344 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1345 			  unsigned long last, uint32_t trigger)
1346 {
1347 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1348 	struct kfd_process_device *pdd;
1349 	struct dma_fence *fence = NULL;
1350 	struct kfd_process *p;
1351 	uint32_t gpuidx;
1352 	int r = 0;
1353 
1354 	if (!prange->mapped_to_gpu) {
1355 		pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1356 			 prange, prange->start, prange->last);
1357 		return 0;
1358 	}
1359 
1360 	if (prange->start == start && prange->last == last) {
1361 		pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1362 		prange->mapped_to_gpu = false;
1363 	}
1364 
1365 	bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1366 		  MAX_GPU_INSTANCE);
1367 	p = container_of(prange->svms, struct kfd_process, svms);
1368 
1369 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1370 		pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1371 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1372 		if (!pdd) {
1373 			pr_debug("failed to find device idx %d\n", gpuidx);
1374 			return -EINVAL;
1375 		}
1376 
1377 		kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1378 					     start, last, trigger);
1379 
1380 		r = svm_range_unmap_from_gpu(pdd->dev->adev,
1381 					     drm_priv_to_vm(pdd->drm_priv),
1382 					     start, last, &fence);
1383 		if (r)
1384 			break;
1385 
1386 		if (fence) {
1387 			r = dma_fence_wait(fence, false);
1388 			dma_fence_put(fence);
1389 			fence = NULL;
1390 			if (r)
1391 				break;
1392 		}
1393 		kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1394 	}
1395 
1396 	return r;
1397 }
1398 
1399 static int
svm_range_map_to_gpu(struct kfd_process_device * pdd,struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,dma_addr_t * dma_addr,struct amdgpu_device * bo_adev,struct dma_fence ** fence,bool flush_tlb)1400 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1401 		     unsigned long offset, unsigned long npages, bool readonly,
1402 		     dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1403 		     struct dma_fence **fence, bool flush_tlb)
1404 {
1405 	struct amdgpu_device *adev = pdd->dev->adev;
1406 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1407 	uint64_t pte_flags;
1408 	unsigned long last_start;
1409 	int last_domain;
1410 	int r = 0;
1411 	int64_t i, j;
1412 
1413 	last_start = prange->start + offset;
1414 
1415 	pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1416 		 last_start, last_start + npages - 1, readonly);
1417 
1418 	for (i = offset; i < offset + npages; i++) {
1419 		last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1420 		dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1421 
1422 		/* Collect all pages in the same address range and memory domain
1423 		 * that can be mapped with a single call to update mapping.
1424 		 */
1425 		if (i < offset + npages - 1 &&
1426 		    last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1427 			continue;
1428 
1429 		pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1430 			 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1431 
1432 		pte_flags = svm_range_get_pte_flags(pdd->dev, vm, prange, last_domain);
1433 		if (readonly)
1434 			pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1435 
1436 		pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1437 			 prange->svms, last_start, prange->start + i,
1438 			 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1439 			 pte_flags);
1440 
1441 		/* For dGPU mode, we use same vm_manager to allocate VRAM for
1442 		 * different memory partition based on fpfn/lpfn, we should use
1443 		 * same vm_manager.vram_base_offset regardless memory partition.
1444 		 */
1445 		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true,
1446 					   NULL, last_start, prange->start + i,
1447 					   pte_flags,
1448 					   (last_start - prange->start) << PAGE_SHIFT,
1449 					   bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1450 					   NULL, dma_addr, &vm->last_update);
1451 
1452 		for (j = last_start - prange->start; j <= i; j++)
1453 			dma_addr[j] |= last_domain;
1454 
1455 		if (r) {
1456 			pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1457 			goto out;
1458 		}
1459 		last_start = prange->start + i + 1;
1460 	}
1461 
1462 	r = amdgpu_vm_update_pdes(adev, vm, false);
1463 	if (r) {
1464 		pr_debug("failed %d to update directories 0x%lx\n", r,
1465 			 prange->start);
1466 		goto out;
1467 	}
1468 
1469 	if (fence)
1470 		*fence = dma_fence_get(vm->last_update);
1471 
1472 out:
1473 	return r;
1474 }
1475 
1476 static int
svm_range_map_to_gpus(struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,unsigned long * bitmap,bool wait,bool flush_tlb)1477 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1478 		      unsigned long npages, bool readonly,
1479 		      unsigned long *bitmap, bool wait, bool flush_tlb)
1480 {
1481 	struct kfd_process_device *pdd;
1482 	struct amdgpu_device *bo_adev = NULL;
1483 	struct kfd_process *p;
1484 	struct dma_fence *fence = NULL;
1485 	uint32_t gpuidx;
1486 	int r = 0;
1487 
1488 	if (prange->svm_bo && prange->ttm_res)
1489 		bo_adev = prange->svm_bo->node->adev;
1490 
1491 	p = container_of(prange->svms, struct kfd_process, svms);
1492 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1493 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1494 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1495 		if (!pdd) {
1496 			pr_debug("failed to find device idx %d\n", gpuidx);
1497 			return -EINVAL;
1498 		}
1499 
1500 		pdd = kfd_bind_process_to_device(pdd->dev, p);
1501 		if (IS_ERR(pdd))
1502 			return -EINVAL;
1503 
1504 		if (bo_adev && pdd->dev->adev != bo_adev &&
1505 		    !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1506 			pr_debug("cannot map to device idx %d\n", gpuidx);
1507 			continue;
1508 		}
1509 
1510 		r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1511 					 prange->dma_addr[gpuidx],
1512 					 bo_adev, wait ? &fence : NULL,
1513 					 flush_tlb);
1514 		if (r)
1515 			break;
1516 
1517 		if (fence) {
1518 			r = dma_fence_wait(fence, false);
1519 			dma_fence_put(fence);
1520 			fence = NULL;
1521 			if (r) {
1522 				pr_debug("failed %d to dma fence wait\n", r);
1523 				break;
1524 			}
1525 		}
1526 
1527 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1528 	}
1529 
1530 	return r;
1531 }
1532 
1533 struct svm_validate_context {
1534 	struct kfd_process *process;
1535 	struct svm_range *prange;
1536 	bool intr;
1537 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1538 	struct drm_exec exec;
1539 };
1540 
svm_range_reserve_bos(struct svm_validate_context * ctx,bool intr)1541 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1542 {
1543 	struct kfd_process_device *pdd;
1544 	struct amdgpu_vm *vm;
1545 	uint32_t gpuidx;
1546 	int r;
1547 
1548 	drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0, 0);
1549 	drm_exec_until_all_locked(&ctx->exec) {
1550 		for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1551 			pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1552 			if (!pdd) {
1553 				pr_debug("failed to find device idx %d\n", gpuidx);
1554 				r = -EINVAL;
1555 				goto unreserve_out;
1556 			}
1557 			vm = drm_priv_to_vm(pdd->drm_priv);
1558 
1559 			r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1560 			drm_exec_retry_on_contention(&ctx->exec);
1561 			if (unlikely(r)) {
1562 				pr_debug("failed %d to reserve bo\n", r);
1563 				goto unreserve_out;
1564 			}
1565 		}
1566 	}
1567 
1568 	for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1569 		pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1570 		if (!pdd) {
1571 			pr_debug("failed to find device idx %d\n", gpuidx);
1572 			r = -EINVAL;
1573 			goto unreserve_out;
1574 		}
1575 
1576 		r = amdgpu_vm_validate(pdd->dev->adev,
1577 				       drm_priv_to_vm(pdd->drm_priv), NULL,
1578 				       svm_range_bo_validate, NULL);
1579 		if (r) {
1580 			pr_debug("failed %d validate pt bos\n", r);
1581 			goto unreserve_out;
1582 		}
1583 	}
1584 
1585 	return 0;
1586 
1587 unreserve_out:
1588 	drm_exec_fini(&ctx->exec);
1589 	return r;
1590 }
1591 
svm_range_unreserve_bos(struct svm_validate_context * ctx)1592 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1593 {
1594 	drm_exec_fini(&ctx->exec);
1595 }
1596 
kfd_svm_page_owner(struct kfd_process * p,int32_t gpuidx)1597 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1598 {
1599 	struct kfd_process_device *pdd;
1600 
1601 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1602 	if (!pdd)
1603 		return NULL;
1604 
1605 	return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1606 }
1607 
1608 /*
1609  * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1610  *
1611  * To prevent concurrent destruction or change of range attributes, the
1612  * svm_read_lock must be held. The caller must not hold the svm_write_lock
1613  * because that would block concurrent evictions and lead to deadlocks. To
1614  * serialize concurrent migrations or validations of the same range, the
1615  * prange->migrate_mutex must be held.
1616  *
1617  * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1618  * eviction fence.
1619  *
1620  * The following sequence ensures race-free validation and GPU mapping:
1621  *
1622  * 1. Reserve page table (and SVM BO if range is in VRAM)
1623  * 2. hmm_range_fault to get page addresses (if system memory)
1624  * 3. DMA-map pages (if system memory)
1625  * 4-a. Take notifier lock
1626  * 4-b. Check that pages still valid (mmu_interval_read_retry)
1627  * 4-c. Check that the range was not split or otherwise invalidated
1628  * 4-d. Update GPU page table
1629  * 4.e. Release notifier lock
1630  * 5. Release page table (and SVM BO) reservation
1631  */
svm_range_validate_and_map(struct mm_struct * mm,unsigned long map_start,unsigned long map_last,struct svm_range * prange,int32_t gpuidx,bool intr,bool wait,bool flush_tlb)1632 static int svm_range_validate_and_map(struct mm_struct *mm,
1633 				      unsigned long map_start, unsigned long map_last,
1634 				      struct svm_range *prange, int32_t gpuidx,
1635 				      bool intr, bool wait, bool flush_tlb)
1636 {
1637 	struct svm_validate_context *ctx;
1638 	unsigned long start, end, addr;
1639 	struct kfd_process *p;
1640 	void *owner;
1641 	int32_t idx;
1642 	int r = 0;
1643 
1644 	ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1645 	if (!ctx)
1646 		return -ENOMEM;
1647 	ctx->process = container_of(prange->svms, struct kfd_process, svms);
1648 	ctx->prange = prange;
1649 	ctx->intr = intr;
1650 
1651 	if (gpuidx < MAX_GPU_INSTANCE) {
1652 		bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1653 		bitmap_set(ctx->bitmap, gpuidx, 1);
1654 	} else if (ctx->process->xnack_enabled) {
1655 		bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1656 
1657 		/* If prefetch range to GPU, or GPU retry fault migrate range to
1658 		 * GPU, which has ACCESS attribute to the range, create mapping
1659 		 * on that GPU.
1660 		 */
1661 		if (prange->actual_loc) {
1662 			gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1663 							prange->actual_loc);
1664 			if (gpuidx < 0) {
1665 				WARN_ONCE(1, "failed get device by id 0x%x\n",
1666 					 prange->actual_loc);
1667 				r = -EINVAL;
1668 				goto free_ctx;
1669 			}
1670 			if (test_bit(gpuidx, prange->bitmap_access))
1671 				bitmap_set(ctx->bitmap, gpuidx, 1);
1672 		}
1673 
1674 		/*
1675 		 * If prange is already mapped or with always mapped flag,
1676 		 * update mapping on GPUs with ACCESS attribute
1677 		 */
1678 		if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1679 			if (prange->mapped_to_gpu ||
1680 			    prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1681 				bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1682 		}
1683 	} else {
1684 		bitmap_or(ctx->bitmap, prange->bitmap_access,
1685 			  prange->bitmap_aip, MAX_GPU_INSTANCE);
1686 	}
1687 
1688 	if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1689 		r = 0;
1690 		goto free_ctx;
1691 	}
1692 
1693 	if (prange->actual_loc && !prange->ttm_res) {
1694 		/* This should never happen. actual_loc gets set by
1695 		 * svm_migrate_ram_to_vram after allocating a BO.
1696 		 */
1697 		WARN_ONCE(1, "VRAM BO missing during validation\n");
1698 		r = -EINVAL;
1699 		goto free_ctx;
1700 	}
1701 
1702 	r = svm_range_reserve_bos(ctx, intr);
1703 	if (r)
1704 		goto free_ctx;
1705 
1706 	p = container_of(prange->svms, struct kfd_process, svms);
1707 	owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1708 						MAX_GPU_INSTANCE));
1709 	for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1710 		if (kfd_svm_page_owner(p, idx) != owner) {
1711 			owner = NULL;
1712 			break;
1713 		}
1714 	}
1715 
1716 	start = map_start << PAGE_SHIFT;
1717 	end = (map_last + 1) << PAGE_SHIFT;
1718 	for (addr = start; !r && addr < end; ) {
1719 		struct amdgpu_hmm_range *range = NULL;
1720 		unsigned long map_start_vma;
1721 		unsigned long map_last_vma;
1722 		struct vm_area_struct *vma;
1723 		unsigned long next = 0;
1724 		unsigned long offset;
1725 		unsigned long npages;
1726 		bool readonly;
1727 
1728 		vma = vma_lookup(mm, addr);
1729 		if (vma) {
1730 			readonly = !(vma->vm_flags & VM_WRITE);
1731 
1732 			next = min(vma->vm_end, end);
1733 			npages = (next - addr) >> PAGE_SHIFT;
1734 			/* HMM requires at least READ permissions. If provided with PROT_NONE,
1735 			 * unmap the memory. If it's not already mapped, this is a no-op
1736 			 * If PROT_WRITE is provided without READ, warn first then unmap
1737 			 */
1738 			if (!(vma->vm_flags & VM_READ)) {
1739 				unsigned long e, s;
1740 
1741 				svm_range_lock(prange);
1742 				if (vma->vm_flags & VM_WRITE)
1743 					pr_debug("VM_WRITE without VM_READ is not supported");
1744 				s = max(start, prange->start);
1745 				e = min(end, prange->last);
1746 				if (e >= s)
1747 					r = svm_range_unmap_from_gpus(prange, s, e,
1748 						       KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU);
1749 				svm_range_unlock(prange);
1750 				/* If unmap returns non-zero, we'll bail on the next for loop
1751 				 * iteration, so just leave r and continue
1752 				 */
1753 				addr = next;
1754 				continue;
1755 			}
1756 
1757 			WRITE_ONCE(p->svms.faulting_task, current);
1758 			range = amdgpu_hmm_range_alloc(NULL);
1759 			if (likely(range))
1760 				r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1761 							       readonly, owner, range);
1762 			else
1763 				r = -ENOMEM;
1764 			WRITE_ONCE(p->svms.faulting_task, NULL);
1765 			if (r)
1766 				pr_debug("failed %d to get svm range pages\n", r);
1767 		} else {
1768 			r = -EFAULT;
1769 		}
1770 
1771 		if (!r) {
1772 			offset = (addr >> PAGE_SHIFT) - prange->start;
1773 			r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1774 					      range->hmm_range.hmm_pfns);
1775 			if (r)
1776 				pr_debug("failed %d to dma map range\n", r);
1777 		}
1778 
1779 		svm_range_lock(prange);
1780 
1781 		/* Free backing memory of hmm_range if it was initialized
1782 		 * Override return value to TRY AGAIN only if prior returns
1783 		 * were successful
1784 		 */
1785 		if (range && !amdgpu_hmm_range_valid(range) && !r) {
1786 			pr_debug("hmm update the range, need validate again\n");
1787 			r = -EAGAIN;
1788 		}
1789 
1790 		/* Free the hmm range */
1791 		amdgpu_hmm_range_free(range);
1792 
1793 		if (!r && !list_empty(&prange->child_list)) {
1794 			pr_debug("range split by unmap in parallel, validate again\n");
1795 			r = -EAGAIN;
1796 		}
1797 
1798 		if (!r) {
1799 			map_start_vma = max(map_start, prange->start + offset);
1800 			map_last_vma = min(map_last, prange->start + offset + npages - 1);
1801 			if (map_start_vma <= map_last_vma) {
1802 				offset = map_start_vma - prange->start;
1803 				npages = map_last_vma - map_start_vma + 1;
1804 				r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1805 							  ctx->bitmap, wait, flush_tlb);
1806 			}
1807 		}
1808 
1809 		if (!r && next == end)
1810 			prange->mapped_to_gpu = true;
1811 
1812 		svm_range_unlock(prange);
1813 
1814 		addr = next;
1815 	}
1816 
1817 	svm_range_unreserve_bos(ctx);
1818 	if (!r)
1819 		prange->validate_timestamp = ktime_get_boottime();
1820 
1821 free_ctx:
1822 	kfree(ctx);
1823 
1824 	return r;
1825 }
1826 
1827 /**
1828  * svm_range_list_lock_and_flush_work - flush pending deferred work
1829  *
1830  * @svms: the svm range list
1831  * @mm: the mm structure
1832  *
1833  * Context: Returns with mmap write lock held, pending deferred work flushed
1834  *
1835  */
1836 void
svm_range_list_lock_and_flush_work(struct svm_range_list * svms,struct mm_struct * mm)1837 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1838 				   struct mm_struct *mm)
1839 {
1840 retry_flush_work:
1841 	flush_work(&svms->deferred_list_work);
1842 	mmap_write_lock(mm);
1843 
1844 	if (list_empty(&svms->deferred_range_list))
1845 		return;
1846 	mmap_write_unlock(mm);
1847 	pr_debug("retry flush\n");
1848 	goto retry_flush_work;
1849 }
1850 
svm_range_restore_work(struct work_struct * work)1851 static void svm_range_restore_work(struct work_struct *work)
1852 {
1853 	struct delayed_work *dwork = to_delayed_work(work);
1854 	struct amdkfd_process_info *process_info;
1855 	struct svm_range_list *svms;
1856 	struct svm_range *prange;
1857 	struct kfd_process *p;
1858 	struct mm_struct *mm;
1859 	int evicted_ranges;
1860 	int invalid;
1861 	int r;
1862 
1863 	svms = container_of(dwork, struct svm_range_list, restore_work);
1864 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1865 	if (!evicted_ranges)
1866 		return;
1867 
1868 	pr_debug("restore svm ranges\n");
1869 
1870 	p = container_of(svms, struct kfd_process, svms);
1871 	process_info = p->kgd_process_info;
1872 
1873 	/* Keep mm reference when svm_range_validate_and_map ranges */
1874 	mm = get_task_mm(p->lead_thread);
1875 	if (!mm) {
1876 		pr_debug("svms 0x%p process mm gone\n", svms);
1877 		return;
1878 	}
1879 
1880 	mutex_lock(&process_info->lock);
1881 	svm_range_list_lock_and_flush_work(svms, mm);
1882 	mutex_lock(&svms->lock);
1883 
1884 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1885 
1886 	list_for_each_entry(prange, &svms->list, list) {
1887 		invalid = atomic_read(&prange->invalid);
1888 		if (!invalid)
1889 			continue;
1890 
1891 		pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1892 			 prange->svms, prange, prange->start, prange->last,
1893 			 invalid);
1894 
1895 		/*
1896 		 * If range is migrating, wait for migration is done.
1897 		 */
1898 		mutex_lock(&prange->migrate_mutex);
1899 
1900 		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
1901 					       MAX_GPU_INSTANCE, false, true, false);
1902 		if (r)
1903 			pr_debug("failed %d to map 0x%lx to gpus\n", r,
1904 				 prange->start);
1905 
1906 		mutex_unlock(&prange->migrate_mutex);
1907 		if (r)
1908 			goto out_reschedule;
1909 
1910 		if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1911 			goto out_reschedule;
1912 	}
1913 
1914 	if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1915 	    evicted_ranges)
1916 		goto out_reschedule;
1917 
1918 	evicted_ranges = 0;
1919 
1920 	r = kgd2kfd_resume_mm(mm);
1921 	if (r) {
1922 		/* No recovery from this failure. Probably the CP is
1923 		 * hanging. No point trying again.
1924 		 */
1925 		pr_debug("failed %d to resume KFD\n", r);
1926 	}
1927 
1928 	pr_debug("restore svm ranges successfully\n");
1929 
1930 out_reschedule:
1931 	mutex_unlock(&svms->lock);
1932 	mmap_write_unlock(mm);
1933 	mutex_unlock(&process_info->lock);
1934 
1935 	/* If validation failed, reschedule another attempt */
1936 	if (evicted_ranges) {
1937 		pr_debug("reschedule to restore svm range\n");
1938 		queue_delayed_work(system_freezable_wq, &svms->restore_work,
1939 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1940 
1941 		kfd_smi_event_queue_restore_rescheduled(mm);
1942 	}
1943 	mmput(mm);
1944 }
1945 
1946 /**
1947  * svm_range_evict - evict svm range
1948  * @prange: svm range structure
1949  * @mm: current process mm_struct
1950  * @start: starting process queue number
1951  * @last: last process queue number
1952  * @event: mmu notifier event when range is evicted or migrated
1953  *
1954  * Stop all queues of the process to ensure GPU doesn't access the memory, then
1955  * return to let CPU evict the buffer and proceed CPU pagetable update.
1956  *
1957  * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1958  * If invalidation happens while restore work is running, restore work will
1959  * restart to ensure to get the latest CPU pages mapping to GPU, then start
1960  * the queues.
1961  */
1962 static int
svm_range_evict(struct svm_range * prange,struct mm_struct * mm,unsigned long start,unsigned long last,enum mmu_notifier_event event)1963 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1964 		unsigned long start, unsigned long last,
1965 		enum mmu_notifier_event event)
1966 {
1967 	struct svm_range_list *svms = prange->svms;
1968 	struct svm_range *pchild;
1969 	struct kfd_process *p;
1970 	int r = 0;
1971 
1972 	p = container_of(svms, struct kfd_process, svms);
1973 
1974 	pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1975 		 svms, prange->start, prange->last, start, last);
1976 
1977 	if (!p->xnack_enabled ||
1978 	    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1979 		int evicted_ranges;
1980 		bool mapped = prange->mapped_to_gpu;
1981 
1982 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1983 			if (!pchild->mapped_to_gpu)
1984 				continue;
1985 			mapped = true;
1986 			mutex_lock_nested(&pchild->lock, 1);
1987 			if (pchild->start <= last && pchild->last >= start) {
1988 				pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1989 					 pchild->start, pchild->last);
1990 				atomic_inc(&pchild->invalid);
1991 			}
1992 			mutex_unlock(&pchild->lock);
1993 		}
1994 
1995 		if (!mapped)
1996 			return r;
1997 
1998 		if (prange->start <= last && prange->last >= start)
1999 			atomic_inc(&prange->invalid);
2000 
2001 		evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
2002 		if (evicted_ranges != 1)
2003 			return r;
2004 
2005 		pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
2006 			 prange->svms, prange->start, prange->last);
2007 
2008 		/* First eviction, stop the queues */
2009 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
2010 		if (r)
2011 			pr_debug("failed to quiesce KFD\n");
2012 
2013 		pr_debug("schedule to restore svm %p ranges\n", svms);
2014 		queue_delayed_work(system_freezable_wq, &svms->restore_work,
2015 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
2016 	} else {
2017 		unsigned long s, l;
2018 		uint32_t trigger;
2019 
2020 		if (event == MMU_NOTIFY_MIGRATE)
2021 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
2022 		else
2023 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
2024 
2025 		pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
2026 			 prange->svms, start, last);
2027 		list_for_each_entry(pchild, &prange->child_list, child_list) {
2028 			mutex_lock_nested(&pchild->lock, 1);
2029 			s = max(start, pchild->start);
2030 			l = min(last, pchild->last);
2031 			if (l >= s)
2032 				svm_range_unmap_from_gpus(pchild, s, l, trigger);
2033 			mutex_unlock(&pchild->lock);
2034 		}
2035 		s = max(start, prange->start);
2036 		l = min(last, prange->last);
2037 		if (l >= s)
2038 			svm_range_unmap_from_gpus(prange, s, l, trigger);
2039 	}
2040 
2041 	return r;
2042 }
2043 
svm_range_clone(struct svm_range * old)2044 static struct svm_range *svm_range_clone(struct svm_range *old)
2045 {
2046 	struct svm_range *new;
2047 
2048 	new = svm_range_new(old->svms, old->start, old->last, false);
2049 	if (!new)
2050 		return NULL;
2051 	if (svm_range_copy_dma_addrs(new, old)) {
2052 		svm_range_free(new, false);
2053 		return NULL;
2054 	}
2055 	if (old->svm_bo) {
2056 		new->ttm_res = old->ttm_res;
2057 		new->offset = old->offset;
2058 		new->svm_bo = svm_range_bo_ref(old->svm_bo);
2059 		spin_lock(&new->svm_bo->list_lock);
2060 		list_add(&new->svm_bo_list, &new->svm_bo->range_list);
2061 		spin_unlock(&new->svm_bo->list_lock);
2062 	}
2063 	new->flags = old->flags;
2064 	new->preferred_loc = old->preferred_loc;
2065 	new->prefetch_loc = old->prefetch_loc;
2066 	new->actual_loc = old->actual_loc;
2067 	new->granularity = old->granularity;
2068 	new->mapped_to_gpu = old->mapped_to_gpu;
2069 	new->vram_pages = old->vram_pages;
2070 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
2071 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
2072 	atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
2073 
2074 	return new;
2075 }
2076 
svm_range_set_max_pages(struct amdgpu_device * adev)2077 void svm_range_set_max_pages(struct amdgpu_device *adev)
2078 {
2079 	uint64_t max_pages;
2080 	uint64_t pages, _pages;
2081 	uint64_t min_pages = 0;
2082 	int i, id;
2083 
2084 	for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
2085 		if (adev->kfd.dev->nodes[i]->xcp)
2086 			id = adev->kfd.dev->nodes[i]->xcp->id;
2087 		else
2088 			id = -1;
2089 		pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2090 		pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2091 		pages = rounddown_pow_of_two(pages);
2092 		min_pages = min_not_zero(min_pages, pages);
2093 	}
2094 
2095 	do {
2096 		max_pages = READ_ONCE(max_svm_range_pages);
2097 		_pages = min_not_zero(max_pages, min_pages);
2098 	} while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2099 }
2100 
2101 static int
svm_range_split_new(struct svm_range_list * svms,uint64_t start,uint64_t last,uint64_t max_pages,struct list_head * insert_list,struct list_head * update_list)2102 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2103 		    uint64_t max_pages, struct list_head *insert_list,
2104 		    struct list_head *update_list)
2105 {
2106 	struct svm_range *prange;
2107 	uint64_t l;
2108 
2109 	pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2110 		 max_pages, start, last);
2111 
2112 	while (last >= start) {
2113 		l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2114 
2115 		prange = svm_range_new(svms, start, l, true);
2116 		if (!prange)
2117 			return -ENOMEM;
2118 		list_add(&prange->list, insert_list);
2119 		list_add(&prange->update_list, update_list);
2120 
2121 		start = l + 1;
2122 	}
2123 	return 0;
2124 }
2125 
2126 /**
2127  * svm_range_add - add svm range and handle overlap
2128  * @p: the range add to this process svms
2129  * @start: page size aligned
2130  * @size: page size aligned
2131  * @nattr: number of attributes
2132  * @attrs: array of attributes
2133  * @update_list: output, the ranges need validate and update GPU mapping
2134  * @insert_list: output, the ranges need insert to svms
2135  * @remove_list: output, the ranges are replaced and need remove from svms
2136  * @remap_list: output, remap unaligned svm ranges
2137  *
2138  * Check if the virtual address range has overlap with any existing ranges,
2139  * split partly overlapping ranges and add new ranges in the gaps. All changes
2140  * should be applied to the range_list and interval tree transactionally. If
2141  * any range split or allocation fails, the entire update fails. Therefore any
2142  * existing overlapping svm_ranges are cloned and the original svm_ranges left
2143  * unchanged.
2144  *
2145  * If the transaction succeeds, the caller can update and insert clones and
2146  * new ranges, then free the originals.
2147  *
2148  * Otherwise the caller can free the clones and new ranges, while the old
2149  * svm_ranges remain unchanged.
2150  *
2151  * Context: Process context, caller must hold svms->lock
2152  *
2153  * Return:
2154  * 0 - OK, otherwise error code
2155  */
2156 static int
svm_range_add(struct kfd_process * p,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,struct list_head * update_list,struct list_head * insert_list,struct list_head * remove_list,struct list_head * remap_list)2157 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2158 	      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2159 	      struct list_head *update_list, struct list_head *insert_list,
2160 	      struct list_head *remove_list, struct list_head *remap_list)
2161 {
2162 	unsigned long last = start + size - 1UL;
2163 	struct svm_range_list *svms = &p->svms;
2164 	struct interval_tree_node *node;
2165 	struct svm_range *prange;
2166 	struct svm_range *tmp;
2167 	struct list_head new_list;
2168 	int r = 0;
2169 
2170 	pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2171 
2172 	INIT_LIST_HEAD(update_list);
2173 	INIT_LIST_HEAD(insert_list);
2174 	INIT_LIST_HEAD(remove_list);
2175 	INIT_LIST_HEAD(&new_list);
2176 	INIT_LIST_HEAD(remap_list);
2177 
2178 	node = interval_tree_iter_first(&svms->objects, start, last);
2179 	while (node) {
2180 		struct interval_tree_node *next;
2181 		unsigned long next_start;
2182 
2183 		pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2184 			 node->last);
2185 
2186 		prange = container_of(node, struct svm_range, it_node);
2187 		next = interval_tree_iter_next(node, start, last);
2188 		next_start = min(node->last, last) + 1;
2189 
2190 		if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2191 		    prange->mapped_to_gpu) {
2192 			/* nothing to do */
2193 		} else if (node->start < start || node->last > last) {
2194 			/* node intersects the update range and its attributes
2195 			 * will change. Clone and split it, apply updates only
2196 			 * to the overlapping part
2197 			 */
2198 			struct svm_range *old = prange;
2199 
2200 			prange = svm_range_clone(old);
2201 			if (!prange) {
2202 				r = -ENOMEM;
2203 				goto out;
2204 			}
2205 
2206 			list_add(&old->update_list, remove_list);
2207 			list_add(&prange->list, insert_list);
2208 			list_add(&prange->update_list, update_list);
2209 
2210 			if (node->start < start) {
2211 				pr_debug("change old range start\n");
2212 				r = svm_range_split_head(prange, start,
2213 							 insert_list, remap_list);
2214 				if (r)
2215 					goto out;
2216 			}
2217 			if (node->last > last) {
2218 				pr_debug("change old range last\n");
2219 				r = svm_range_split_tail(prange, last,
2220 							 insert_list, remap_list);
2221 				if (r)
2222 					goto out;
2223 			}
2224 		} else {
2225 			/* The node is contained within start..last,
2226 			 * just update it
2227 			 */
2228 			list_add(&prange->update_list, update_list);
2229 		}
2230 
2231 		/* insert a new node if needed */
2232 		if (node->start > start) {
2233 			r = svm_range_split_new(svms, start, node->start - 1,
2234 						READ_ONCE(max_svm_range_pages),
2235 						&new_list, update_list);
2236 			if (r)
2237 				goto out;
2238 		}
2239 
2240 		node = next;
2241 		start = next_start;
2242 	}
2243 
2244 	/* add a final range at the end if needed */
2245 	if (start <= last)
2246 		r = svm_range_split_new(svms, start, last,
2247 					READ_ONCE(max_svm_range_pages),
2248 					&new_list, update_list);
2249 
2250 out:
2251 	if (r) {
2252 		list_for_each_entry_safe(prange, tmp, insert_list, list)
2253 			svm_range_free(prange, false);
2254 		list_for_each_entry_safe(prange, tmp, &new_list, list)
2255 			svm_range_free(prange, true);
2256 	} else {
2257 		list_splice(&new_list, insert_list);
2258 	}
2259 
2260 	return r;
2261 }
2262 
2263 static void
svm_range_update_notifier_and_interval_tree(struct mm_struct * mm,struct svm_range * prange)2264 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2265 					    struct svm_range *prange)
2266 {
2267 	unsigned long start;
2268 	unsigned long last;
2269 
2270 	start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2271 	last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2272 
2273 	if (prange->start == start && prange->last == last)
2274 		return;
2275 
2276 	pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2277 		  prange->svms, prange, start, last, prange->start,
2278 		  prange->last);
2279 
2280 	if (start != 0 && last != 0) {
2281 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
2282 		svm_range_remove_notifier(prange);
2283 	}
2284 	prange->it_node.start = prange->start;
2285 	prange->it_node.last = prange->last;
2286 
2287 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
2288 	svm_range_add_notifier_locked(mm, prange);
2289 }
2290 
2291 static void
svm_range_handle_list_op(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm)2292 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2293 			 struct mm_struct *mm)
2294 {
2295 	switch (prange->work_item.op) {
2296 	case SVM_OP_NULL:
2297 		pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2298 			 svms, prange, prange->start, prange->last);
2299 		break;
2300 	case SVM_OP_UNMAP_RANGE:
2301 		pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2302 			 svms, prange, prange->start, prange->last);
2303 		svm_range_unlink(prange);
2304 		svm_range_remove_notifier(prange);
2305 		svm_range_free(prange, true);
2306 		break;
2307 	case SVM_OP_UPDATE_RANGE_NOTIFIER:
2308 		pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2309 			 svms, prange, prange->start, prange->last);
2310 		svm_range_update_notifier_and_interval_tree(mm, prange);
2311 		break;
2312 	case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2313 		pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2314 			 svms, prange, prange->start, prange->last);
2315 		svm_range_update_notifier_and_interval_tree(mm, prange);
2316 		/* TODO: implement deferred validation and mapping */
2317 		break;
2318 	case SVM_OP_ADD_RANGE:
2319 		pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2320 			 prange->start, prange->last);
2321 		svm_range_add_to_svms(prange);
2322 		svm_range_add_notifier_locked(mm, prange);
2323 		break;
2324 	case SVM_OP_ADD_RANGE_AND_MAP:
2325 		pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2326 			 prange, prange->start, prange->last);
2327 		svm_range_add_to_svms(prange);
2328 		svm_range_add_notifier_locked(mm, prange);
2329 		/* TODO: implement deferred validation and mapping */
2330 		break;
2331 	default:
2332 		WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2333 			 prange->work_item.op);
2334 	}
2335 }
2336 
svm_range_drain_retry_fault(struct svm_range_list * svms)2337 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2338 {
2339 	struct kfd_process_device *pdd;
2340 	struct kfd_process *p;
2341 	uint32_t i;
2342 
2343 	p = container_of(svms, struct kfd_process, svms);
2344 
2345 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2346 		pdd = p->pdds[i];
2347 		if (!pdd)
2348 			continue;
2349 
2350 		pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2351 
2352 		amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2353 				pdd->dev->adev->irq.retry_cam_enabled ?
2354 				&pdd->dev->adev->irq.ih :
2355 				&pdd->dev->adev->irq.ih1);
2356 
2357 		if (pdd->dev->adev->irq.retry_cam_enabled)
2358 			amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2359 				&pdd->dev->adev->irq.ih_soft);
2360 
2361 
2362 		pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2363 	}
2364 }
2365 
svm_range_deferred_list_work(struct work_struct * work)2366 static void svm_range_deferred_list_work(struct work_struct *work)
2367 {
2368 	struct svm_range_list *svms;
2369 	struct svm_range *prange;
2370 	struct mm_struct *mm;
2371 
2372 	svms = container_of(work, struct svm_range_list, deferred_list_work);
2373 	pr_debug("enter svms 0x%p\n", svms);
2374 
2375 	spin_lock(&svms->deferred_list_lock);
2376 	while (!list_empty(&svms->deferred_range_list)) {
2377 		prange = list_first_entry(&svms->deferred_range_list,
2378 					  struct svm_range, deferred_list);
2379 		spin_unlock(&svms->deferred_list_lock);
2380 
2381 		pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2382 			 prange->start, prange->last, prange->work_item.op);
2383 
2384 		mm = prange->work_item.mm;
2385 
2386 		mmap_write_lock(mm);
2387 
2388 		/* Remove from deferred_list must be inside mmap write lock, for
2389 		 * two race cases:
2390 		 * 1. unmap_from_cpu may change work_item.op and add the range
2391 		 *    to deferred_list again, cause use after free bug.
2392 		 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2393 		 *    lock and continue because deferred_list is empty, but
2394 		 *    deferred_list work is actually waiting for mmap lock.
2395 		 */
2396 		spin_lock(&svms->deferred_list_lock);
2397 		list_del_init(&prange->deferred_list);
2398 		spin_unlock(&svms->deferred_list_lock);
2399 
2400 		mutex_lock(&svms->lock);
2401 		mutex_lock(&prange->migrate_mutex);
2402 		while (!list_empty(&prange->child_list)) {
2403 			struct svm_range *pchild;
2404 
2405 			pchild = list_first_entry(&prange->child_list,
2406 						struct svm_range, child_list);
2407 			pr_debug("child prange 0x%p op %d\n", pchild,
2408 				 pchild->work_item.op);
2409 			list_del_init(&pchild->child_list);
2410 			svm_range_handle_list_op(svms, pchild, mm);
2411 		}
2412 		mutex_unlock(&prange->migrate_mutex);
2413 
2414 		svm_range_handle_list_op(svms, prange, mm);
2415 		mutex_unlock(&svms->lock);
2416 		mmap_write_unlock(mm);
2417 
2418 		/* Pairs with mmget in svm_range_add_list_work. If dropping the
2419 		 * last mm refcount, schedule release work to avoid circular locking
2420 		 */
2421 		mmput_async(mm);
2422 
2423 		spin_lock(&svms->deferred_list_lock);
2424 	}
2425 	spin_unlock(&svms->deferred_list_lock);
2426 	pr_debug("exit svms 0x%p\n", svms);
2427 }
2428 
2429 void
svm_range_add_list_work(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm,enum svm_work_list_ops op)2430 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2431 			struct mm_struct *mm, enum svm_work_list_ops op)
2432 {
2433 	spin_lock(&svms->deferred_list_lock);
2434 	/* if prange is on the deferred list */
2435 	if (!list_empty(&prange->deferred_list)) {
2436 		pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2437 		WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2438 		if (op != SVM_OP_NULL &&
2439 		    prange->work_item.op != SVM_OP_UNMAP_RANGE)
2440 			prange->work_item.op = op;
2441 	} else {
2442 		/* Pairs with mmput in deferred_list_work.
2443 		 * If process is exiting and mm is gone, don't update mmu notifier.
2444 		 */
2445 		if (mmget_not_zero(mm)) {
2446 			prange->work_item.mm = mm;
2447 			prange->work_item.op = op;
2448 			list_add_tail(&prange->deferred_list,
2449 				      &prange->svms->deferred_range_list);
2450 			pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2451 				 prange, prange->start, prange->last, op);
2452 		}
2453 	}
2454 	spin_unlock(&svms->deferred_list_lock);
2455 }
2456 
schedule_deferred_list_work(struct svm_range_list * svms)2457 void schedule_deferred_list_work(struct svm_range_list *svms)
2458 {
2459 	spin_lock(&svms->deferred_list_lock);
2460 	if (!list_empty(&svms->deferred_range_list))
2461 		schedule_work(&svms->deferred_list_work);
2462 	spin_unlock(&svms->deferred_list_lock);
2463 }
2464 
2465 static void
svm_range_unmap_split(struct svm_range * parent,struct svm_range * prange,unsigned long start,unsigned long last)2466 svm_range_unmap_split(struct svm_range *parent, struct svm_range *prange, unsigned long start,
2467 		      unsigned long last)
2468 {
2469 	struct svm_range *head;
2470 	struct svm_range *tail;
2471 
2472 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2473 		pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2474 			 prange->start, prange->last);
2475 		return;
2476 	}
2477 	if (start > prange->last || last < prange->start)
2478 		return;
2479 
2480 	head = tail = prange;
2481 	if (start > prange->start)
2482 		svm_range_split(prange, prange->start, start - 1, &tail);
2483 	if (last < tail->last)
2484 		svm_range_split(tail, last + 1, tail->last, &head);
2485 
2486 	if (head != prange && tail != prange) {
2487 		svm_range_add_child(parent, head, SVM_OP_UNMAP_RANGE);
2488 		svm_range_add_child(parent, tail, SVM_OP_ADD_RANGE);
2489 	} else if (tail != prange) {
2490 		svm_range_add_child(parent, tail, SVM_OP_UNMAP_RANGE);
2491 	} else if (head != prange) {
2492 		svm_range_add_child(parent, head, SVM_OP_UNMAP_RANGE);
2493 	} else if (parent != prange) {
2494 		prange->work_item.op = SVM_OP_UNMAP_RANGE;
2495 	}
2496 }
2497 
2498 static void
svm_range_unmap_from_cpu(struct mm_struct * mm,struct svm_range * prange,unsigned long start,unsigned long last)2499 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2500 			 unsigned long start, unsigned long last)
2501 {
2502 	uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2503 	struct svm_range_list *svms;
2504 	struct svm_range *pchild;
2505 	struct kfd_process *p;
2506 	unsigned long s, l;
2507 	bool unmap_parent;
2508 	uint32_t i;
2509 
2510 	if (atomic_read(&prange->queue_refcount)) {
2511 		int r;
2512 
2513 		pr_warn("Freeing queue vital buffer 0x%lx, queue evicted\n",
2514 			prange->start << PAGE_SHIFT);
2515 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
2516 		if (r)
2517 			pr_debug("failed %d to quiesce KFD queues\n", r);
2518 	}
2519 
2520 	p = kfd_lookup_process_by_mm(mm);
2521 	if (!p)
2522 		return;
2523 	svms = &p->svms;
2524 
2525 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2526 		 prange, prange->start, prange->last, start, last);
2527 
2528 	/* calculate time stamps that are used to decide which page faults need be
2529 	 * dropped or handled before unmap pages from gpu vm
2530 	 */
2531 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2532 		struct kfd_process_device *pdd;
2533 		struct amdgpu_device *adev;
2534 		struct amdgpu_ih_ring *ih;
2535 		uint32_t checkpoint_wptr;
2536 
2537 		pdd = p->pdds[i];
2538 		if (!pdd)
2539 			continue;
2540 
2541 		adev = pdd->dev->adev;
2542 
2543 		/* Check and drain ih1 ring if cam not available */
2544 		if (adev->irq.ih1.ring_size) {
2545 			ih = &adev->irq.ih1;
2546 			checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2547 			if (ih->rptr != checkpoint_wptr) {
2548 				svms->checkpoint_ts[i] =
2549 					amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2550 				continue;
2551 			}
2552 		}
2553 
2554 		/* check if dev->irq.ih_soft is not empty */
2555 		ih = &adev->irq.ih_soft;
2556 		checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2557 		if (ih->rptr != checkpoint_wptr)
2558 			svms->checkpoint_ts[i] = amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2559 	}
2560 
2561 	unmap_parent = start <= prange->start && last >= prange->last;
2562 
2563 	list_for_each_entry(pchild, &prange->child_list, child_list) {
2564 		mutex_lock_nested(&pchild->lock, 1);
2565 		s = max(start, pchild->start);
2566 		l = min(last, pchild->last);
2567 		if (l >= s)
2568 			svm_range_unmap_from_gpus(pchild, s, l, trigger);
2569 		svm_range_unmap_split(prange, pchild, start, last);
2570 		mutex_unlock(&pchild->lock);
2571 	}
2572 	s = max(start, prange->start);
2573 	l = min(last, prange->last);
2574 	if (l >= s)
2575 		svm_range_unmap_from_gpus(prange, s, l, trigger);
2576 	svm_range_unmap_split(prange, prange, start, last);
2577 
2578 	if (unmap_parent)
2579 		svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2580 	else
2581 		svm_range_add_list_work(svms, prange, mm,
2582 					SVM_OP_UPDATE_RANGE_NOTIFIER);
2583 	schedule_deferred_list_work(svms);
2584 
2585 	kfd_unref_process(p);
2586 }
2587 
2588 /**
2589  * svm_range_cpu_invalidate_pagetables - interval notifier callback
2590  * @mni: mmu_interval_notifier struct
2591  * @range: mmu_notifier_range struct
2592  * @cur_seq: value to pass to mmu_interval_set_seq()
2593  *
2594  * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2595  * is from migration, or CPU page invalidation callback.
2596  *
2597  * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2598  * work thread, and split prange if only part of prange is unmapped.
2599  *
2600  * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2601  * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2602  * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2603  * update GPU mapping to recover.
2604  *
2605  * Context: mmap lock, notifier_invalidate_start lock are held
2606  *          for invalidate event, prange lock is held if this is from migration
2607  */
2608 static bool
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)2609 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2610 				    const struct mmu_notifier_range *range,
2611 				    unsigned long cur_seq)
2612 {
2613 	struct svm_range *prange;
2614 	unsigned long start;
2615 	unsigned long last;
2616 
2617 	if (range->event == MMU_NOTIFY_RELEASE)
2618 		return true;
2619 
2620 	start = mni->interval_tree.start;
2621 	last = mni->interval_tree.last;
2622 	start = max(start, range->start) >> PAGE_SHIFT;
2623 	last = min(last, range->end - 1) >> PAGE_SHIFT;
2624 	pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2625 		 start, last, range->start >> PAGE_SHIFT,
2626 		 (range->end - 1) >> PAGE_SHIFT,
2627 		 mni->interval_tree.start >> PAGE_SHIFT,
2628 		 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2629 
2630 	prange = container_of(mni, struct svm_range, notifier);
2631 
2632 	svm_range_lock(prange);
2633 	mmu_interval_set_seq(mni, cur_seq);
2634 
2635 	switch (range->event) {
2636 	case MMU_NOTIFY_UNMAP:
2637 		svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2638 		break;
2639 	default:
2640 		svm_range_evict(prange, mni->mm, start, last, range->event);
2641 		break;
2642 	}
2643 
2644 	svm_range_unlock(prange);
2645 
2646 	return true;
2647 }
2648 
2649 /**
2650  * svm_range_from_addr - find svm range from fault address
2651  * @svms: svm range list header
2652  * @addr: address to search range interval tree, in pages
2653  * @parent: parent range if range is on child list
2654  *
2655  * Context: The caller must hold svms->lock
2656  *
2657  * Return: the svm_range found or NULL
2658  */
2659 struct svm_range *
svm_range_from_addr(struct svm_range_list * svms,unsigned long addr,struct svm_range ** parent)2660 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2661 		    struct svm_range **parent)
2662 {
2663 	struct interval_tree_node *node;
2664 	struct svm_range *prange;
2665 	struct svm_range *pchild;
2666 
2667 	node = interval_tree_iter_first(&svms->objects, addr, addr);
2668 	if (!node)
2669 		return NULL;
2670 
2671 	prange = container_of(node, struct svm_range, it_node);
2672 	pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2673 		 addr, prange->start, prange->last, node->start, node->last);
2674 
2675 	if (addr >= prange->start && addr <= prange->last) {
2676 		if (parent)
2677 			*parent = prange;
2678 		return prange;
2679 	}
2680 	list_for_each_entry(pchild, &prange->child_list, child_list)
2681 		if (addr >= pchild->start && addr <= pchild->last) {
2682 			pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2683 				 addr, pchild->start, pchild->last);
2684 			if (parent)
2685 				*parent = prange;
2686 			return pchild;
2687 		}
2688 
2689 	return NULL;
2690 }
2691 
2692 /* svm_range_best_restore_location - decide the best fault restore location
2693  * @prange: svm range structure
2694  * @adev: the GPU on which vm fault happened
2695  *
2696  * This is only called when xnack is on, to decide the best location to restore
2697  * the range mapping after GPU vm fault. Caller uses the best location to do
2698  * migration if actual loc is not best location, then update GPU page table
2699  * mapping to the best location.
2700  *
2701  * If the preferred loc is accessible by faulting GPU, use preferred loc.
2702  * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2703  * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2704  *    if range actual loc is cpu, best_loc is cpu
2705  *    if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2706  *    range actual loc.
2707  * Otherwise, GPU no access, best_loc is -1.
2708  *
2709  * Return:
2710  * -1 means vm fault GPU no access
2711  * 0 for CPU or GPU id
2712  */
2713 static int32_t
svm_range_best_restore_location(struct svm_range * prange,struct kfd_node * node,int32_t * gpuidx)2714 svm_range_best_restore_location(struct svm_range *prange,
2715 				struct kfd_node *node,
2716 				int32_t *gpuidx)
2717 {
2718 	struct kfd_node *bo_node, *preferred_node;
2719 	struct kfd_process *p;
2720 	uint32_t gpuid;
2721 	int r;
2722 
2723 	p = container_of(prange->svms, struct kfd_process, svms);
2724 
2725 	r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2726 	if (r < 0) {
2727 		pr_debug("failed to get gpuid from kgd\n");
2728 		return -1;
2729 	}
2730 
2731 	if (node->adev->apu_prefer_gtt)
2732 		return 0;
2733 
2734 	if (prange->preferred_loc == gpuid ||
2735 	    prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2736 		return prange->preferred_loc;
2737 	} else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2738 		preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2739 		if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2740 			return prange->preferred_loc;
2741 		/* fall through */
2742 	}
2743 
2744 	if (test_bit(*gpuidx, prange->bitmap_access))
2745 		return gpuid;
2746 
2747 	if (test_bit(*gpuidx, prange->bitmap_aip)) {
2748 		if (!prange->actual_loc)
2749 			return 0;
2750 
2751 		bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2752 		if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2753 			return prange->actual_loc;
2754 		else
2755 			return 0;
2756 	}
2757 
2758 	return -1;
2759 }
2760 
2761 static int
svm_range_get_range_boundaries(struct kfd_process * p,int64_t addr,unsigned long * start,unsigned long * last,bool * is_heap_stack)2762 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2763 			       unsigned long *start, unsigned long *last,
2764 			       bool *is_heap_stack)
2765 {
2766 	struct vm_area_struct *vma;
2767 	struct interval_tree_node *node;
2768 	struct rb_node *rb_node;
2769 	unsigned long start_limit, end_limit;
2770 
2771 	vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2772 	if (!vma) {
2773 		pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2774 		return -EFAULT;
2775 	}
2776 
2777 	*is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2778 
2779 	start_limit = max(vma->vm_start >> PAGE_SHIFT,
2780 		      (unsigned long)ALIGN_DOWN(addr, 1UL << p->svms.default_granularity));
2781 	end_limit = min(vma->vm_end >> PAGE_SHIFT,
2782 		    (unsigned long)ALIGN(addr + 1, 1UL << p->svms.default_granularity));
2783 
2784 	/* First range that starts after the fault address */
2785 	node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2786 	if (node) {
2787 		end_limit = min(end_limit, node->start);
2788 		/* Last range that ends before the fault address */
2789 		rb_node = rb_prev(&node->rb);
2790 	} else {
2791 		/* Last range must end before addr because
2792 		 * there was no range after addr
2793 		 */
2794 		rb_node = rb_last(&p->svms.objects.rb_root);
2795 	}
2796 	if (rb_node) {
2797 		node = container_of(rb_node, struct interval_tree_node, rb);
2798 		if (node->last >= addr) {
2799 			WARN(1, "Overlap with prev node and page fault addr\n");
2800 			return -EFAULT;
2801 		}
2802 		start_limit = max(start_limit, node->last + 1);
2803 	}
2804 
2805 	*start = start_limit;
2806 	*last = end_limit - 1;
2807 
2808 	pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2809 		 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2810 		 *start, *last, *is_heap_stack);
2811 
2812 	return 0;
2813 }
2814 
2815 static int
svm_range_check_vm_userptr(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)2816 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2817 			   uint64_t *bo_s, uint64_t *bo_l)
2818 {
2819 	struct amdgpu_bo_va_mapping *mapping;
2820 	struct interval_tree_node *node;
2821 	struct amdgpu_bo *bo = NULL;
2822 	unsigned long userptr;
2823 	uint32_t i;
2824 	int r;
2825 
2826 	for (i = 0; i < p->n_pdds; i++) {
2827 		struct amdgpu_vm *vm;
2828 
2829 		if (!p->pdds[i]->drm_priv)
2830 			continue;
2831 
2832 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2833 		r = amdgpu_bo_reserve(vm->root.bo, false);
2834 		if (r)
2835 			return r;
2836 
2837 		/* Check userptr by searching entire vm->va interval tree */
2838 		node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2839 		while (node) {
2840 			mapping = container_of((struct rb_node *)node,
2841 					       struct amdgpu_bo_va_mapping, rb);
2842 			bo = mapping->bo_va->base.bo;
2843 
2844 			if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2845 							 start << PAGE_SHIFT,
2846 							 last << PAGE_SHIFT,
2847 							 &userptr)) {
2848 				node = interval_tree_iter_next(node, 0, ~0ULL);
2849 				continue;
2850 			}
2851 
2852 			pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2853 				 start, last);
2854 			if (bo_s && bo_l) {
2855 				*bo_s = userptr >> PAGE_SHIFT;
2856 				*bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2857 			}
2858 			amdgpu_bo_unreserve(vm->root.bo);
2859 			return -EADDRINUSE;
2860 		}
2861 		amdgpu_bo_unreserve(vm->root.bo);
2862 	}
2863 	return 0;
2864 }
2865 
2866 static struct
svm_range_create_unregistered_range(struct kfd_node * node,struct kfd_process * p,struct mm_struct * mm,int64_t addr)2867 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2868 						struct kfd_process *p,
2869 						struct mm_struct *mm,
2870 						int64_t addr)
2871 {
2872 	struct svm_range *prange = NULL;
2873 	unsigned long start, last;
2874 	uint32_t gpuid, gpuidx;
2875 	bool is_heap_stack;
2876 	uint64_t bo_s = 0;
2877 	uint64_t bo_l = 0;
2878 	int r;
2879 
2880 	if (svm_range_get_range_boundaries(p, addr, &start, &last,
2881 					   &is_heap_stack))
2882 		return NULL;
2883 
2884 	r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2885 	if (r != -EADDRINUSE)
2886 		r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2887 
2888 	if (r == -EADDRINUSE) {
2889 		if (addr >= bo_s && addr <= bo_l)
2890 			return NULL;
2891 
2892 		/* Create one page svm range if 2MB range overlapping */
2893 		start = addr;
2894 		last = addr;
2895 	}
2896 
2897 	prange = svm_range_new(&p->svms, start, last, true);
2898 	if (!prange) {
2899 		pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2900 		return NULL;
2901 	}
2902 	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2903 		pr_debug("failed to get gpuid from kgd\n");
2904 		svm_range_free(prange, true);
2905 		return NULL;
2906 	}
2907 
2908 	if (is_heap_stack)
2909 		prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2910 
2911 	svm_range_add_to_svms(prange);
2912 	svm_range_add_notifier_locked(mm, prange);
2913 
2914 	return prange;
2915 }
2916 
2917 /* svm_range_skip_recover - decide if prange can be recovered
2918  * @prange: svm range structure
2919  *
2920  * GPU vm retry fault handle skip recover the range for cases:
2921  * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2922  *    deferred list work will drain the stale fault before free the prange.
2923  * 2. prange is on deferred list to add interval notifier after split, or
2924  * 3. prange is child range, it is split from parent prange, recover later
2925  *    after interval notifier is added.
2926  *
2927  * Return: true to skip recover, false to recover
2928  */
svm_range_skip_recover(struct svm_range * prange)2929 static bool svm_range_skip_recover(struct svm_range *prange)
2930 {
2931 	struct svm_range_list *svms = prange->svms;
2932 
2933 	spin_lock(&svms->deferred_list_lock);
2934 	if (list_empty(&prange->deferred_list) &&
2935 	    list_empty(&prange->child_list)) {
2936 		spin_unlock(&svms->deferred_list_lock);
2937 		return false;
2938 	}
2939 	spin_unlock(&svms->deferred_list_lock);
2940 
2941 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2942 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2943 			 svms, prange, prange->start, prange->last);
2944 		return true;
2945 	}
2946 	if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2947 	    prange->work_item.op == SVM_OP_ADD_RANGE) {
2948 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2949 			 svms, prange, prange->start, prange->last);
2950 		return true;
2951 	}
2952 	return false;
2953 }
2954 
2955 static void
svm_range_count_fault(struct kfd_node * node,struct kfd_process * p,int32_t gpuidx)2956 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2957 		      int32_t gpuidx)
2958 {
2959 	struct kfd_process_device *pdd;
2960 
2961 	/* fault is on different page of same range
2962 	 * or fault is skipped to recover later
2963 	 * or fault is on invalid virtual address
2964 	 */
2965 	if (gpuidx == MAX_GPU_INSTANCE) {
2966 		uint32_t gpuid;
2967 		int r;
2968 
2969 		r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2970 		if (r < 0)
2971 			return;
2972 	}
2973 
2974 	/* fault is recovered
2975 	 * or fault cannot recover because GPU no access on the range
2976 	 */
2977 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2978 	if (pdd)
2979 		WRITE_ONCE(pdd->faults, pdd->faults + 1);
2980 }
2981 
2982 static bool
svm_fault_allowed(struct vm_area_struct * vma,bool write_fault)2983 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2984 {
2985 	unsigned long requested = VM_READ;
2986 
2987 	if (write_fault)
2988 		requested |= VM_WRITE;
2989 
2990 	pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2991 		vma->vm_flags);
2992 	return (vma->vm_flags & requested) == requested;
2993 }
2994 
2995 int
svm_range_restore_pages(struct amdgpu_device * adev,unsigned int pasid,uint32_t vmid,uint32_t node_id,uint64_t addr,uint64_t ts,bool write_fault)2996 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2997 			uint32_t vmid, uint32_t node_id,
2998 			uint64_t addr, uint64_t ts, bool write_fault)
2999 {
3000 	unsigned long start, last, size;
3001 	struct mm_struct *mm = NULL;
3002 	struct svm_range_list *svms;
3003 	struct svm_range *prange;
3004 	struct kfd_process *p;
3005 	ktime_t timestamp = ktime_get_boottime();
3006 	struct kfd_node *node;
3007 	int32_t best_loc;
3008 	int32_t gpuid, gpuidx = MAX_GPU_INSTANCE;
3009 	bool write_locked = false;
3010 	struct vm_area_struct *vma;
3011 	bool migration = false;
3012 	int r = 0;
3013 
3014 	if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
3015 		pr_debug("device does not support SVM\n");
3016 		return -EFAULT;
3017 	}
3018 
3019 	p = kfd_lookup_process_by_pasid(pasid, NULL);
3020 	if (!p) {
3021 		pr_debug("kfd process not founded pasid 0x%x\n", pasid);
3022 		return 0;
3023 	}
3024 	svms = &p->svms;
3025 
3026 	pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
3027 
3028 	if (atomic_read(&svms->drain_pagefaults)) {
3029 		pr_debug("page fault handling disabled, drop fault 0x%llx\n", addr);
3030 		r = 0;
3031 		goto out;
3032 	}
3033 
3034 	node = kfd_node_by_irq_ids(adev, node_id, vmid);
3035 	if (!node) {
3036 		pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
3037 			 vmid);
3038 		r = -EFAULT;
3039 		goto out;
3040 	}
3041 
3042 	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
3043 		pr_debug("failed to get gpuid/gpuidex for node_id: %d\n", node_id);
3044 		r = -EFAULT;
3045 		goto out;
3046 	}
3047 
3048 	if (!p->xnack_enabled) {
3049 		pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
3050 		r = -EFAULT;
3051 		goto out;
3052 	}
3053 
3054 	/* p->lead_thread is available as kfd_process_wq_release flush the work
3055 	 * before releasing task ref.
3056 	 */
3057 	mm = get_task_mm(p->lead_thread);
3058 	if (!mm) {
3059 		pr_debug("svms 0x%p failed to get mm\n", svms);
3060 		r = 0;
3061 		goto out;
3062 	}
3063 
3064 	mmap_read_lock(mm);
3065 retry_write_locked:
3066 	mutex_lock(&svms->lock);
3067 
3068 	/* check if this page fault time stamp is before svms->checkpoint_ts */
3069 	if (svms->checkpoint_ts[gpuidx] != 0) {
3070 		if (amdgpu_ih_ts_after_or_equal(ts,  svms->checkpoint_ts[gpuidx])) {
3071 			pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
3072 			if (write_locked)
3073 				mmap_write_downgrade(mm);
3074 			r = -EAGAIN;
3075 			goto out_unlock_svms;
3076 		} else {
3077 			/* ts is after svms->checkpoint_ts now, reset svms->checkpoint_ts
3078 			 * to zero to avoid following ts wrap around give wrong comparing
3079 			 */
3080 			svms->checkpoint_ts[gpuidx] = 0;
3081 		}
3082 	}
3083 
3084 	prange = svm_range_from_addr(svms, addr, NULL);
3085 	if (!prange) {
3086 		pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
3087 			 svms, addr);
3088 		if (!write_locked) {
3089 			/* Need the write lock to create new range with MMU notifier.
3090 			 * Also flush pending deferred work to make sure the interval
3091 			 * tree is up to date before we add a new range
3092 			 */
3093 			mutex_unlock(&svms->lock);
3094 			mmap_read_unlock(mm);
3095 			mmap_write_lock(mm);
3096 			write_locked = true;
3097 			goto retry_write_locked;
3098 		}
3099 		prange = svm_range_create_unregistered_range(node, p, mm, addr);
3100 		if (!prange) {
3101 			pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
3102 				 svms, addr);
3103 			mmap_write_downgrade(mm);
3104 			r = -EFAULT;
3105 			goto out_unlock_svms;
3106 		}
3107 	}
3108 	if (write_locked)
3109 		mmap_write_downgrade(mm);
3110 
3111 	mutex_lock(&prange->migrate_mutex);
3112 
3113 	if (svm_range_skip_recover(prange)) {
3114 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3115 		r = 0;
3116 		goto out_unlock_range;
3117 	}
3118 
3119 	/* skip duplicate vm fault on different pages of same range */
3120 	if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
3121 				AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
3122 		pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
3123 			 svms, prange->start, prange->last);
3124 		r = 0;
3125 		goto out_unlock_range;
3126 	}
3127 
3128 	/* __do_munmap removed VMA, return success as we are handling stale
3129 	 * retry fault.
3130 	 */
3131 	vma = vma_lookup(mm, addr << PAGE_SHIFT);
3132 	if (!vma) {
3133 		pr_debug("address 0x%llx VMA is removed\n", addr);
3134 		r = 0;
3135 		goto out_unlock_range;
3136 	}
3137 
3138 	if (!svm_fault_allowed(vma, write_fault)) {
3139 		pr_debug("fault addr 0x%llx no %s permission\n", addr,
3140 			write_fault ? "write" : "read");
3141 		r = -EPERM;
3142 		goto out_unlock_range;
3143 	}
3144 
3145 	best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3146 	if (best_loc == -1) {
3147 		pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3148 			 svms, prange->start, prange->last);
3149 		r = -EACCES;
3150 		goto out_unlock_range;
3151 	}
3152 
3153 	pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3154 		 svms, prange->start, prange->last, best_loc,
3155 		 prange->actual_loc);
3156 
3157 	kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3158 				       write_fault, timestamp);
3159 
3160 	/* Align migration range start and size to granularity size */
3161 	size = 1UL << prange->granularity;
3162 	start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start);
3163 	last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last);
3164 	if (prange->actual_loc != 0 || best_loc != 0) {
3165 		if (best_loc) {
3166 			r = svm_migrate_to_vram(prange, best_loc, start, last,
3167 					mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3168 			if (r) {
3169 				pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3170 					 r, addr);
3171 				/* Fallback to system memory if migration to
3172 				 * VRAM failed
3173 				 */
3174 				if (prange->actual_loc && prange->actual_loc != best_loc)
3175 					r = svm_migrate_vram_to_ram(prange, mm, start, last,
3176 						KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3177 				else
3178 					r = 0;
3179 			}
3180 		} else {
3181 			r = svm_migrate_vram_to_ram(prange, mm, start, last,
3182 					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3183 		}
3184 		if (r) {
3185 			pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3186 				 r, svms, start, last);
3187 			goto out_migrate_fail;
3188 		} else {
3189 			migration = true;
3190 		}
3191 	}
3192 
3193 	r = svm_range_validate_and_map(mm, start, last, prange, gpuidx, false,
3194 				       false, false);
3195 	if (r)
3196 		pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3197 			 r, svms, start, last);
3198 
3199 out_migrate_fail:
3200 	kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3201 				     migration);
3202 
3203 out_unlock_range:
3204 	mutex_unlock(&prange->migrate_mutex);
3205 out_unlock_svms:
3206 	mutex_unlock(&svms->lock);
3207 	mmap_read_unlock(mm);
3208 
3209 	if (r != -EAGAIN)
3210 		svm_range_count_fault(node, p, gpuidx);
3211 
3212 	mmput(mm);
3213 out:
3214 	kfd_unref_process(p);
3215 
3216 	if (r == -EAGAIN) {
3217 		pr_debug("recover vm fault later\n");
3218 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3219 		r = 0;
3220 	}
3221 	return r;
3222 }
3223 
3224 int
svm_range_switch_xnack_reserve_mem(struct kfd_process * p,bool xnack_enabled)3225 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3226 {
3227 	struct svm_range *prange, *pchild;
3228 	uint64_t reserved_size = 0;
3229 	uint64_t size;
3230 	int r = 0;
3231 
3232 	pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3233 
3234 	mutex_lock(&p->svms.lock);
3235 
3236 	list_for_each_entry(prange, &p->svms.list, list) {
3237 		svm_range_lock(prange);
3238 		list_for_each_entry(pchild, &prange->child_list, child_list) {
3239 			size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3240 			if (xnack_enabled) {
3241 				amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3242 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3243 			} else {
3244 				r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3245 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3246 				if (r)
3247 					goto out_unlock;
3248 				reserved_size += size;
3249 			}
3250 		}
3251 
3252 		size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3253 		if (xnack_enabled) {
3254 			amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3255 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3256 		} else {
3257 			r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3258 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3259 			if (r)
3260 				goto out_unlock;
3261 			reserved_size += size;
3262 		}
3263 out_unlock:
3264 		svm_range_unlock(prange);
3265 		if (r)
3266 			break;
3267 	}
3268 
3269 	if (r)
3270 		amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3271 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3272 	else
3273 		/* Change xnack mode must be inside svms lock, to avoid race with
3274 		 * svm_range_deferred_list_work unreserve memory in parallel.
3275 		 */
3276 		p->xnack_enabled = xnack_enabled;
3277 
3278 	mutex_unlock(&p->svms.lock);
3279 	return r;
3280 }
3281 
svm_range_list_fini(struct kfd_process * p)3282 void svm_range_list_fini(struct kfd_process *p)
3283 {
3284 	struct svm_range *prange;
3285 	struct svm_range *next;
3286 
3287 	pr_debug("process pid %d svms 0x%p\n", p->lead_thread->pid,
3288 		 &p->svms);
3289 
3290 	cancel_delayed_work_sync(&p->svms.restore_work);
3291 
3292 	/* Ensure list work is finished before process is destroyed */
3293 	flush_work(&p->svms.deferred_list_work);
3294 
3295 	/*
3296 	 * Ensure no retry fault comes in afterwards, as page fault handler will
3297 	 * not find kfd process and take mm lock to recover fault.
3298 	 * stop kfd page fault handing, then wait pending page faults got drained
3299 	 */
3300 	atomic_set(&p->svms.drain_pagefaults, 1);
3301 	svm_range_drain_retry_fault(&p->svms);
3302 
3303 	list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3304 		svm_range_unlink(prange);
3305 		svm_range_remove_notifier(prange);
3306 		svm_range_free(prange, true);
3307 	}
3308 
3309 	mutex_destroy(&p->svms.lock);
3310 
3311 	pr_debug("process pid %d svms 0x%p done\n",
3312 		p->lead_thread->pid, &p->svms);
3313 }
3314 
svm_range_list_init(struct kfd_process * p)3315 int svm_range_list_init(struct kfd_process *p)
3316 {
3317 	struct svm_range_list *svms = &p->svms;
3318 	int i;
3319 
3320 	svms->objects = RB_ROOT_CACHED;
3321 	mutex_init(&svms->lock);
3322 	INIT_LIST_HEAD(&svms->list);
3323 	atomic_set(&svms->evicted_ranges, 0);
3324 	atomic_set(&svms->drain_pagefaults, 0);
3325 	INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3326 	INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3327 	INIT_LIST_HEAD(&svms->deferred_range_list);
3328 	INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3329 	spin_lock_init(&svms->deferred_list_lock);
3330 
3331 	for (i = 0; i < p->n_pdds; i++)
3332 		if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3333 			bitmap_set(svms->bitmap_supported, i, 1);
3334 
3335 	 /* Value of default granularity cannot exceed 0x1B, the
3336 	  * number of pages supported by a 4-level paging table
3337 	  */
3338 	svms->default_granularity = min_t(u8, amdgpu_svm_default_granularity, 0x1B);
3339 	pr_debug("Default SVM Granularity to use: %d\n", svms->default_granularity);
3340 
3341 	return 0;
3342 }
3343 
3344 /**
3345  * svm_range_check_vm - check if virtual address range mapped already
3346  * @p: current kfd_process
3347  * @start: range start address, in pages
3348  * @last: range last address, in pages
3349  * @bo_s: mapping start address in pages if address range already mapped
3350  * @bo_l: mapping last address in pages if address range already mapped
3351  *
3352  * The purpose is to avoid virtual address ranges already allocated by
3353  * kfd_ioctl_alloc_memory_of_gpu ioctl.
3354  * It looks for each pdd in the kfd_process.
3355  *
3356  * Context: Process context
3357  *
3358  * Return 0 - OK, if the range is not mapped.
3359  * Otherwise error code:
3360  * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3361  * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3362  * a signal. Release all buffer reservations and return to user-space.
3363  */
3364 static int
svm_range_check_vm(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)3365 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3366 		   uint64_t *bo_s, uint64_t *bo_l)
3367 {
3368 	struct amdgpu_bo_va_mapping *mapping;
3369 	struct interval_tree_node *node;
3370 	uint32_t i;
3371 	int r;
3372 
3373 	for (i = 0; i < p->n_pdds; i++) {
3374 		struct amdgpu_vm *vm;
3375 
3376 		if (!p->pdds[i]->drm_priv)
3377 			continue;
3378 
3379 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3380 		r = amdgpu_bo_reserve(vm->root.bo, false);
3381 		if (r)
3382 			return r;
3383 
3384 		node = interval_tree_iter_first(&vm->va, start, last);
3385 		if (node) {
3386 			pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3387 				 start, last);
3388 			mapping = container_of((struct rb_node *)node,
3389 					       struct amdgpu_bo_va_mapping, rb);
3390 			if (bo_s && bo_l) {
3391 				*bo_s = mapping->start;
3392 				*bo_l = mapping->last;
3393 			}
3394 			amdgpu_bo_unreserve(vm->root.bo);
3395 			return -EADDRINUSE;
3396 		}
3397 		amdgpu_bo_unreserve(vm->root.bo);
3398 	}
3399 
3400 	return 0;
3401 }
3402 
3403 /**
3404  * svm_range_is_valid - check if virtual address range is valid
3405  * @p: current kfd_process
3406  * @start: range start address, in pages
3407  * @size: range size, in pages
3408  *
3409  * Valid virtual address range means it belongs to one or more VMAs
3410  *
3411  * Context: Process context
3412  *
3413  * Return:
3414  *  0 - OK, otherwise error code
3415  */
3416 static int
svm_range_is_valid(struct kfd_process * p,uint64_t start,uint64_t size)3417 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3418 {
3419 	const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3420 	struct vm_area_struct *vma;
3421 	unsigned long end;
3422 	unsigned long start_unchg = start;
3423 
3424 	start <<= PAGE_SHIFT;
3425 	end = start + (size << PAGE_SHIFT);
3426 	do {
3427 		vma = vma_lookup(p->mm, start);
3428 		if (!vma || (vma->vm_flags & device_vma))
3429 			return -EFAULT;
3430 		start = min(end, vma->vm_end);
3431 	} while (start < end);
3432 
3433 	return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3434 				  NULL);
3435 }
3436 
3437 /**
3438  * svm_range_best_prefetch_location - decide the best prefetch location
3439  * @prange: svm range structure
3440  *
3441  * For xnack off:
3442  * If range map to single GPU, the best prefetch location is prefetch_loc, which
3443  * can be CPU or GPU.
3444  *
3445  * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3446  * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3447  * the best prefetch location is always CPU, because GPU can not have coherent
3448  * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3449  *
3450  * For xnack on:
3451  * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3452  * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3453  *
3454  * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3455  * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3456  * prefetch location is always CPU.
3457  *
3458  * Context: Process context
3459  *
3460  * Return:
3461  * 0 for CPU or GPU id
3462  */
3463 static uint32_t
svm_range_best_prefetch_location(struct svm_range * prange)3464 svm_range_best_prefetch_location(struct svm_range *prange)
3465 {
3466 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3467 	uint32_t best_loc = prange->prefetch_loc;
3468 	struct kfd_process_device *pdd;
3469 	struct kfd_node *bo_node;
3470 	struct kfd_process *p;
3471 	uint32_t gpuidx;
3472 
3473 	p = container_of(prange->svms, struct kfd_process, svms);
3474 
3475 	if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3476 		goto out;
3477 
3478 	bo_node = svm_range_get_node_by_id(prange, best_loc);
3479 	if (!bo_node) {
3480 		WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3481 		best_loc = 0;
3482 		goto out;
3483 	}
3484 
3485 	if (bo_node->adev->apu_prefer_gtt) {
3486 		best_loc = 0;
3487 		goto out;
3488 	}
3489 
3490 	if (p->xnack_enabled)
3491 		bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3492 	else
3493 		bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3494 			  MAX_GPU_INSTANCE);
3495 
3496 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3497 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3498 		if (!pdd) {
3499 			pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3500 			continue;
3501 		}
3502 
3503 		if (pdd->dev->adev == bo_node->adev)
3504 			continue;
3505 
3506 		if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3507 			best_loc = 0;
3508 			break;
3509 		}
3510 	}
3511 
3512 out:
3513 	pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3514 		 p->xnack_enabled, &p->svms, prange->start, prange->last,
3515 		 best_loc);
3516 
3517 	return best_loc;
3518 }
3519 
3520 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3521  * @mm: current process mm_struct
3522  * @prange: svm range structure
3523  * @migrated: output, true if migration is triggered
3524  *
3525  * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3526  * from ram to vram.
3527  * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3528  * from vram to ram.
3529  *
3530  * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3531  * and restore work:
3532  * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3533  *    stops all queues, schedule restore work
3534  * 2. svm_range_restore_work wait for migration is done by
3535  *    a. svm_range_validate_vram takes prange->migrate_mutex
3536  *    b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3537  * 3. restore work update mappings of GPU, resume all queues.
3538  *
3539  * Context: Process context
3540  *
3541  * Return:
3542  * 0 - OK, otherwise - error code of migration
3543  */
3544 static int
svm_range_trigger_migration(struct mm_struct * mm,struct svm_range * prange,bool * migrated)3545 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3546 			    bool *migrated)
3547 {
3548 	uint32_t best_loc;
3549 	int r = 0;
3550 
3551 	*migrated = false;
3552 	best_loc = svm_range_best_prefetch_location(prange);
3553 
3554 	/* when best_loc is a gpu node and same as prange->actual_loc
3555 	 * we still need do migration as prange->actual_loc !=0 does
3556 	 * not mean all pages in prange are vram. hmm migrate will pick
3557 	 * up right pages during migration.
3558 	 */
3559 	if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) ||
3560 	    (best_loc == 0 && prange->actual_loc == 0))
3561 		return 0;
3562 
3563 	if (!best_loc) {
3564 		r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
3565 					KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3566 		*migrated = !r;
3567 		return r;
3568 	}
3569 
3570 	r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last,
3571 				mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3572 	*migrated = !r;
3573 
3574 	return 0;
3575 }
3576 
svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence * fence)3577 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3578 {
3579 	/* Dereferencing fence->svm_bo is safe here because the fence hasn't
3580 	 * signaled yet and we're under the protection of the fence->lock.
3581 	 * After the fence is signaled in svm_range_bo_release, we cannot get
3582 	 * here any more.
3583 	 *
3584 	 * Reference is dropped in svm_range_evict_svm_bo_worker.
3585 	 */
3586 	if (svm_bo_ref_unless_zero(fence->svm_bo)) {
3587 		WRITE_ONCE(fence->svm_bo->evicting, 1);
3588 		schedule_work(&fence->svm_bo->eviction_work);
3589 	}
3590 
3591 	return 0;
3592 }
3593 
svm_range_evict_svm_bo_worker(struct work_struct * work)3594 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3595 {
3596 	struct svm_range_bo *svm_bo;
3597 	struct mm_struct *mm;
3598 	int r = 0;
3599 
3600 	svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3601 
3602 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3603 		mm = svm_bo->eviction_fence->mm;
3604 	} else {
3605 		svm_range_bo_unref(svm_bo);
3606 		return;
3607 	}
3608 
3609 	mmap_read_lock(mm);
3610 	spin_lock(&svm_bo->list_lock);
3611 	while (!list_empty(&svm_bo->range_list) && !r) {
3612 		struct svm_range *prange =
3613 				list_first_entry(&svm_bo->range_list,
3614 						struct svm_range, svm_bo_list);
3615 		int retries = 3;
3616 
3617 		list_del_init(&prange->svm_bo_list);
3618 		spin_unlock(&svm_bo->list_lock);
3619 
3620 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3621 			 prange->start, prange->last);
3622 
3623 		mutex_lock(&prange->migrate_mutex);
3624 		do {
3625 			/* migrate all vram pages in this prange to sys ram
3626 			 * after that prange->actual_loc should be zero
3627 			 */
3628 			r = svm_migrate_vram_to_ram(prange, mm,
3629 					prange->start, prange->last,
3630 					KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3631 		} while (!r && prange->actual_loc && --retries);
3632 
3633 		if (!r && prange->actual_loc)
3634 			pr_info_once("Migration failed during eviction");
3635 
3636 		if (!prange->actual_loc) {
3637 			mutex_lock(&prange->lock);
3638 			prange->svm_bo = NULL;
3639 			mutex_unlock(&prange->lock);
3640 		}
3641 		mutex_unlock(&prange->migrate_mutex);
3642 
3643 		spin_lock(&svm_bo->list_lock);
3644 	}
3645 	spin_unlock(&svm_bo->list_lock);
3646 	mmap_read_unlock(mm);
3647 	mmput(mm);
3648 
3649 	dma_fence_signal(&svm_bo->eviction_fence->base);
3650 
3651 	/* This is the last reference to svm_bo, after svm_range_vram_node_free
3652 	 * has been called in svm_migrate_vram_to_ram
3653 	 */
3654 	WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3655 	svm_range_bo_unref(svm_bo);
3656 }
3657 
3658 static int
svm_range_set_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3659 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3660 		   uint64_t start, uint64_t size, uint32_t nattr,
3661 		   struct kfd_ioctl_svm_attribute *attrs)
3662 {
3663 	struct amdkfd_process_info *process_info = p->kgd_process_info;
3664 	struct list_head update_list;
3665 	struct list_head insert_list;
3666 	struct list_head remove_list;
3667 	struct list_head remap_list;
3668 	struct svm_range_list *svms;
3669 	struct svm_range *prange;
3670 	struct svm_range *next;
3671 	bool update_mapping = false;
3672 	bool flush_tlb;
3673 	int r, ret = 0;
3674 
3675 	pr_debug("process pid %d svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3676 		 p->lead_thread->pid, &p->svms, start, start + size - 1, size);
3677 
3678 	r = svm_range_check_attr(p, nattr, attrs);
3679 	if (r)
3680 		return r;
3681 
3682 	svms = &p->svms;
3683 
3684 	mutex_lock(&process_info->lock);
3685 
3686 	svm_range_list_lock_and_flush_work(svms, mm);
3687 
3688 	r = svm_range_is_valid(p, start, size);
3689 	if (r) {
3690 		pr_debug("invalid range r=%d\n", r);
3691 		mmap_write_unlock(mm);
3692 		goto out;
3693 	}
3694 
3695 	mutex_lock(&svms->lock);
3696 
3697 	/* Add new range and split existing ranges as needed */
3698 	r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3699 			  &insert_list, &remove_list, &remap_list);
3700 	if (r) {
3701 		mutex_unlock(&svms->lock);
3702 		mmap_write_unlock(mm);
3703 		goto out;
3704 	}
3705 	/* Apply changes as a transaction */
3706 	list_for_each_entry_safe(prange, next, &insert_list, list) {
3707 		svm_range_add_to_svms(prange);
3708 		svm_range_add_notifier_locked(mm, prange);
3709 	}
3710 	list_for_each_entry(prange, &update_list, update_list) {
3711 		svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3712 		/* TODO: unmap ranges from GPU that lost access */
3713 	}
3714 	update_mapping |= !p->xnack_enabled && !list_empty(&remap_list);
3715 
3716 	list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3717 		pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3718 			 prange->svms, prange, prange->start,
3719 			 prange->last);
3720 		svm_range_unlink(prange);
3721 		svm_range_remove_notifier(prange);
3722 		svm_range_free(prange, false);
3723 	}
3724 
3725 	mmap_write_downgrade(mm);
3726 	/* Trigger migrations and revalidate and map to GPUs as needed. If
3727 	 * this fails we may be left with partially completed actions. There
3728 	 * is no clean way of rolling back to the previous state in such a
3729 	 * case because the rollback wouldn't be guaranteed to work either.
3730 	 */
3731 	list_for_each_entry(prange, &update_list, update_list) {
3732 		bool migrated;
3733 
3734 		mutex_lock(&prange->migrate_mutex);
3735 
3736 		r = svm_range_trigger_migration(mm, prange, &migrated);
3737 		if (r)
3738 			goto out_unlock_range;
3739 
3740 		if (migrated && (!p->xnack_enabled ||
3741 		    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3742 		    prange->mapped_to_gpu) {
3743 			pr_debug("restore_work will update mappings of GPUs\n");
3744 			mutex_unlock(&prange->migrate_mutex);
3745 			continue;
3746 		}
3747 
3748 		if (!migrated && !update_mapping) {
3749 			mutex_unlock(&prange->migrate_mutex);
3750 			continue;
3751 		}
3752 
3753 		flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3754 
3755 		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3756 					       MAX_GPU_INSTANCE, true, true, flush_tlb);
3757 		if (r)
3758 			pr_debug("failed %d to map svm range\n", r);
3759 
3760 out_unlock_range:
3761 		mutex_unlock(&prange->migrate_mutex);
3762 		if (r)
3763 			ret = r;
3764 	}
3765 
3766 	list_for_each_entry(prange, &remap_list, update_list) {
3767 		pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
3768 			 prange, prange->start, prange->last);
3769 		mutex_lock(&prange->migrate_mutex);
3770 		r = svm_range_validate_and_map(mm,  prange->start, prange->last, prange,
3771 					       MAX_GPU_INSTANCE, true, true, prange->mapped_to_gpu);
3772 		if (r)
3773 			pr_debug("failed %d on remap svm range\n", r);
3774 		mutex_unlock(&prange->migrate_mutex);
3775 		if (r)
3776 			ret = r;
3777 	}
3778 
3779 	dynamic_svm_range_dump(svms);
3780 
3781 	mutex_unlock(&svms->lock);
3782 	mmap_read_unlock(mm);
3783 out:
3784 	mutex_unlock(&process_info->lock);
3785 
3786 	pr_debug("process pid %d svms 0x%p [0x%llx 0x%llx] done, r=%d\n",
3787 		 p->lead_thread->pid, &p->svms, start, start + size - 1, r);
3788 
3789 	return ret ? ret : r;
3790 }
3791 
3792 static int
svm_range_get_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3793 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3794 		   uint64_t start, uint64_t size, uint32_t nattr,
3795 		   struct kfd_ioctl_svm_attribute *attrs)
3796 {
3797 	DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3798 	DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3799 	bool get_preferred_loc = false;
3800 	bool get_prefetch_loc = false;
3801 	bool get_granularity = false;
3802 	bool get_accessible = false;
3803 	bool get_flags = false;
3804 	uint64_t last = start + size - 1UL;
3805 	uint8_t granularity = 0xff;
3806 	struct interval_tree_node *node;
3807 	struct svm_range_list *svms;
3808 	struct svm_range *prange;
3809 	uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3810 	uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3811 	uint32_t flags_and = 0xffffffff;
3812 	uint32_t flags_or = 0;
3813 	int gpuidx;
3814 	uint32_t i;
3815 	int r = 0;
3816 
3817 	pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3818 		 start + size - 1, nattr);
3819 
3820 	/* Flush pending deferred work to avoid racing with deferred actions from
3821 	 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3822 	 * can still race with get_attr because we don't hold the mmap lock. But that
3823 	 * would be a race condition in the application anyway, and undefined
3824 	 * behaviour is acceptable in that case.
3825 	 */
3826 	flush_work(&p->svms.deferred_list_work);
3827 
3828 	mmap_read_lock(mm);
3829 	r = svm_range_is_valid(p, start, size);
3830 	mmap_read_unlock(mm);
3831 	if (r) {
3832 		pr_debug("invalid range r=%d\n", r);
3833 		return r;
3834 	}
3835 
3836 	for (i = 0; i < nattr; i++) {
3837 		switch (attrs[i].type) {
3838 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3839 			get_preferred_loc = true;
3840 			break;
3841 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3842 			get_prefetch_loc = true;
3843 			break;
3844 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3845 			get_accessible = true;
3846 			break;
3847 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3848 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3849 			get_flags = true;
3850 			break;
3851 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3852 			get_granularity = true;
3853 			break;
3854 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3855 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3856 			fallthrough;
3857 		default:
3858 			pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3859 			return -EINVAL;
3860 		}
3861 	}
3862 
3863 	svms = &p->svms;
3864 
3865 	mutex_lock(&svms->lock);
3866 
3867 	node = interval_tree_iter_first(&svms->objects, start, last);
3868 	if (!node) {
3869 		pr_debug("range attrs not found return default values\n");
3870 		svm_range_set_default_attributes(svms, &location, &prefetch_loc,
3871 						 &granularity, &flags_and);
3872 		flags_or = flags_and;
3873 		if (p->xnack_enabled)
3874 			bitmap_copy(bitmap_access, svms->bitmap_supported,
3875 				    MAX_GPU_INSTANCE);
3876 		else
3877 			bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3878 		bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3879 		goto fill_values;
3880 	}
3881 	bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3882 	bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3883 
3884 	while (node) {
3885 		struct interval_tree_node *next;
3886 
3887 		prange = container_of(node, struct svm_range, it_node);
3888 		next = interval_tree_iter_next(node, start, last);
3889 
3890 		if (get_preferred_loc) {
3891 			if (prange->preferred_loc ==
3892 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3893 			    (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3894 			     location != prange->preferred_loc)) {
3895 				location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3896 				get_preferred_loc = false;
3897 			} else {
3898 				location = prange->preferred_loc;
3899 			}
3900 		}
3901 		if (get_prefetch_loc) {
3902 			if (prange->prefetch_loc ==
3903 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3904 			    (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3905 			     prefetch_loc != prange->prefetch_loc)) {
3906 				prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3907 				get_prefetch_loc = false;
3908 			} else {
3909 				prefetch_loc = prange->prefetch_loc;
3910 			}
3911 		}
3912 		if (get_accessible) {
3913 			bitmap_and(bitmap_access, bitmap_access,
3914 				   prange->bitmap_access, MAX_GPU_INSTANCE);
3915 			bitmap_and(bitmap_aip, bitmap_aip,
3916 				   prange->bitmap_aip, MAX_GPU_INSTANCE);
3917 		}
3918 		if (get_flags) {
3919 			flags_and &= prange->flags;
3920 			flags_or |= prange->flags;
3921 		}
3922 
3923 		if (get_granularity && prange->granularity < granularity)
3924 			granularity = prange->granularity;
3925 
3926 		node = next;
3927 	}
3928 fill_values:
3929 	mutex_unlock(&svms->lock);
3930 
3931 	for (i = 0; i < nattr; i++) {
3932 		switch (attrs[i].type) {
3933 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3934 			attrs[i].value = location;
3935 			break;
3936 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3937 			attrs[i].value = prefetch_loc;
3938 			break;
3939 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3940 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
3941 							       attrs[i].value);
3942 			if (gpuidx < 0) {
3943 				pr_debug("invalid gpuid %x\n", attrs[i].value);
3944 				return -EINVAL;
3945 			}
3946 			if (test_bit(gpuidx, bitmap_access))
3947 				attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3948 			else if (test_bit(gpuidx, bitmap_aip))
3949 				attrs[i].type =
3950 					KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3951 			else
3952 				attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3953 			break;
3954 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3955 			attrs[i].value = flags_and;
3956 			break;
3957 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3958 			attrs[i].value = ~flags_or;
3959 			break;
3960 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3961 			attrs[i].value = (uint32_t)granularity;
3962 			break;
3963 		}
3964 	}
3965 
3966 	return 0;
3967 }
3968 
kfd_criu_resume_svm(struct kfd_process * p)3969 int kfd_criu_resume_svm(struct kfd_process *p)
3970 {
3971 	struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3972 	int nattr_common = 4, nattr_accessibility = 1;
3973 	struct criu_svm_metadata *criu_svm_md = NULL;
3974 	struct svm_range_list *svms = &p->svms;
3975 	struct criu_svm_metadata *next = NULL;
3976 	uint32_t set_flags = 0xffffffff;
3977 	int i, j, num_attrs, ret = 0;
3978 	uint64_t set_attr_size;
3979 	struct mm_struct *mm;
3980 
3981 	if (list_empty(&svms->criu_svm_metadata_list)) {
3982 		pr_debug("No SVM data from CRIU restore stage 2\n");
3983 		return ret;
3984 	}
3985 
3986 	mm = get_task_mm(p->lead_thread);
3987 	if (!mm) {
3988 		pr_err("failed to get mm for the target process\n");
3989 		return -ESRCH;
3990 	}
3991 
3992 	num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3993 
3994 	i = j = 0;
3995 	list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3996 		pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3997 			 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3998 
3999 		for (j = 0; j < num_attrs; j++) {
4000 			pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
4001 				 i, j, criu_svm_md->data.attrs[j].type,
4002 				 i, j, criu_svm_md->data.attrs[j].value);
4003 			switch (criu_svm_md->data.attrs[j].type) {
4004 			/* During Checkpoint operation, the query for
4005 			 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
4006 			 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
4007 			 * not used by the range which was checkpointed. Care
4008 			 * must be taken to not restore with an invalid value
4009 			 * otherwise the gpuidx value will be invalid and
4010 			 * set_attr would eventually fail so just replace those
4011 			 * with another dummy attribute such as
4012 			 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
4013 			 */
4014 			case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
4015 				if (criu_svm_md->data.attrs[j].value ==
4016 				    KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
4017 					criu_svm_md->data.attrs[j].type =
4018 						KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4019 					criu_svm_md->data.attrs[j].value = 0;
4020 				}
4021 				break;
4022 			case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
4023 				set_flags = criu_svm_md->data.attrs[j].value;
4024 				break;
4025 			default:
4026 				break;
4027 			}
4028 		}
4029 
4030 		/* CLR_FLAGS is not available via get_attr during checkpoint but
4031 		 * it needs to be inserted before restoring the ranges so
4032 		 * allocate extra space for it before calling set_attr
4033 		 */
4034 		set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4035 						(num_attrs + 1);
4036 		set_attr_new = krealloc(set_attr, set_attr_size,
4037 					    GFP_KERNEL);
4038 		if (!set_attr_new) {
4039 			ret = -ENOMEM;
4040 			goto exit;
4041 		}
4042 		set_attr = set_attr_new;
4043 
4044 		memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
4045 					sizeof(struct kfd_ioctl_svm_attribute));
4046 		set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
4047 		set_attr[num_attrs].value = ~set_flags;
4048 
4049 		ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
4050 					 criu_svm_md->data.size, num_attrs + 1,
4051 					 set_attr);
4052 		if (ret) {
4053 			pr_err("CRIU: failed to set range attributes\n");
4054 			goto exit;
4055 		}
4056 
4057 		i++;
4058 	}
4059 exit:
4060 	kfree(set_attr);
4061 	list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
4062 		pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
4063 						criu_svm_md->data.start_addr);
4064 		kfree(criu_svm_md);
4065 	}
4066 
4067 	mmput(mm);
4068 	return ret;
4069 
4070 }
4071 
kfd_criu_restore_svm(struct kfd_process * p,uint8_t __user * user_priv_ptr,uint64_t * priv_data_offset,uint64_t max_priv_data_size)4072 int kfd_criu_restore_svm(struct kfd_process *p,
4073 			 uint8_t __user *user_priv_ptr,
4074 			 uint64_t *priv_data_offset,
4075 			 uint64_t max_priv_data_size)
4076 {
4077 	uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
4078 	int nattr_common = 4, nattr_accessibility = 1;
4079 	struct criu_svm_metadata *criu_svm_md = NULL;
4080 	struct svm_range_list *svms = &p->svms;
4081 	uint32_t num_devices;
4082 	int ret = 0;
4083 
4084 	num_devices = p->n_pdds;
4085 	/* Handle one SVM range object at a time, also the number of gpus are
4086 	 * assumed to be same on the restore node, checking must be done while
4087 	 * evaluating the topology earlier
4088 	 */
4089 
4090 	svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
4091 		(nattr_common + nattr_accessibility * num_devices);
4092 	svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
4093 
4094 	svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4095 								svm_attrs_size;
4096 
4097 	criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
4098 	if (!criu_svm_md) {
4099 		pr_err("failed to allocate memory to store svm metadata\n");
4100 		return -ENOMEM;
4101 	}
4102 	if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
4103 		ret = -EINVAL;
4104 		goto exit;
4105 	}
4106 
4107 	ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
4108 			     svm_priv_data_size);
4109 	if (ret) {
4110 		ret = -EFAULT;
4111 		goto exit;
4112 	}
4113 	*priv_data_offset += svm_priv_data_size;
4114 
4115 	list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
4116 
4117 	return 0;
4118 
4119 
4120 exit:
4121 	kfree(criu_svm_md);
4122 	return ret;
4123 }
4124 
svm_range_get_info(struct kfd_process * p,uint32_t * num_svm_ranges,uint64_t * svm_priv_data_size)4125 void svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
4126 			uint64_t *svm_priv_data_size)
4127 {
4128 	uint64_t total_size, accessibility_size, common_attr_size;
4129 	int nattr_common = 4, nattr_accessibility = 1;
4130 	int num_devices = p->n_pdds;
4131 	struct svm_range_list *svms;
4132 	struct svm_range *prange;
4133 	uint32_t count = 0;
4134 
4135 	*svm_priv_data_size = 0;
4136 
4137 	svms = &p->svms;
4138 
4139 	mutex_lock(&svms->lock);
4140 	list_for_each_entry(prange, &svms->list, list) {
4141 		pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
4142 			 prange, prange->start, prange->npages,
4143 			 prange->start + prange->npages - 1);
4144 		count++;
4145 	}
4146 	mutex_unlock(&svms->lock);
4147 
4148 	*num_svm_ranges = count;
4149 	/* Only the accessbility attributes need to be queried for all the gpus
4150 	 * individually, remaining ones are spanned across the entire process
4151 	 * regardless of the various gpu nodes. Of the remaining attributes,
4152 	 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4153 	 *
4154 	 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4155 	 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4156 	 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4157 	 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4158 	 *
4159 	 * ** ACCESSBILITY ATTRIBUTES **
4160 	 * (Considered as one, type is altered during query, value is gpuid)
4161 	 * KFD_IOCTL_SVM_ATTR_ACCESS
4162 	 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4163 	 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4164 	 */
4165 	if (*num_svm_ranges > 0) {
4166 		common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4167 			nattr_common;
4168 		accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4169 			nattr_accessibility * num_devices;
4170 
4171 		total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4172 			common_attr_size + accessibility_size;
4173 
4174 		*svm_priv_data_size = *num_svm_ranges * total_size;
4175 	}
4176 
4177 	pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4178 		 *svm_priv_data_size);
4179 }
4180 
kfd_criu_checkpoint_svm(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_data_offset)4181 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4182 			    uint8_t __user *user_priv_data,
4183 			    uint64_t *priv_data_offset)
4184 {
4185 	struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4186 	struct kfd_ioctl_svm_attribute *query_attr = NULL;
4187 	uint64_t svm_priv_data_size, query_attr_size = 0;
4188 	int index, nattr_common = 4, ret = 0;
4189 	struct svm_range_list *svms;
4190 	int num_devices = p->n_pdds;
4191 	struct svm_range *prange;
4192 	struct mm_struct *mm;
4193 
4194 	svms = &p->svms;
4195 
4196 	mm = get_task_mm(p->lead_thread);
4197 	if (!mm) {
4198 		pr_err("failed to get mm for the target process\n");
4199 		return -ESRCH;
4200 	}
4201 
4202 	query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4203 				(nattr_common + num_devices);
4204 
4205 	query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4206 	if (!query_attr) {
4207 		ret = -ENOMEM;
4208 		goto exit;
4209 	}
4210 
4211 	query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4212 	query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4213 	query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4214 	query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4215 
4216 	for (index = 0; index < num_devices; index++) {
4217 		struct kfd_process_device *pdd = p->pdds[index];
4218 
4219 		query_attr[index + nattr_common].type =
4220 			KFD_IOCTL_SVM_ATTR_ACCESS;
4221 		query_attr[index + nattr_common].value = pdd->user_gpu_id;
4222 	}
4223 
4224 	svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4225 
4226 	svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4227 	if (!svm_priv) {
4228 		ret = -ENOMEM;
4229 		goto exit_query;
4230 	}
4231 
4232 	index = 0;
4233 	list_for_each_entry(prange, &svms->list, list) {
4234 
4235 		svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4236 		svm_priv->start_addr = prange->start;
4237 		svm_priv->size = prange->npages;
4238 		memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4239 		pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4240 			 prange, prange->start, prange->npages,
4241 			 prange->start + prange->npages - 1,
4242 			 prange->npages * PAGE_SIZE);
4243 
4244 		ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4245 					 svm_priv->size,
4246 					 (nattr_common + num_devices),
4247 					 svm_priv->attrs);
4248 		if (ret) {
4249 			pr_err("CRIU: failed to obtain range attributes\n");
4250 			goto exit_priv;
4251 		}
4252 
4253 		if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4254 				 svm_priv_data_size)) {
4255 			pr_err("Failed to copy svm priv to user\n");
4256 			ret = -EFAULT;
4257 			goto exit_priv;
4258 		}
4259 
4260 		*priv_data_offset += svm_priv_data_size;
4261 
4262 	}
4263 
4264 
4265 exit_priv:
4266 	kfree(svm_priv);
4267 exit_query:
4268 	kfree(query_attr);
4269 exit:
4270 	mmput(mm);
4271 	return ret;
4272 }
4273 
4274 int
svm_ioctl(struct kfd_process * p,enum kfd_ioctl_svm_op op,uint64_t start,uint64_t size,uint32_t nattrs,struct kfd_ioctl_svm_attribute * attrs)4275 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4276 	  uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4277 {
4278 	struct mm_struct *mm = current->mm;
4279 	int r;
4280 
4281 	start >>= PAGE_SHIFT;
4282 	size >>= PAGE_SHIFT;
4283 
4284 	switch (op) {
4285 	case KFD_IOCTL_SVM_OP_SET_ATTR:
4286 		r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4287 		break;
4288 	case KFD_IOCTL_SVM_OP_GET_ATTR:
4289 		r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4290 		break;
4291 	default:
4292 		r = -EINVAL;
4293 		break;
4294 	}
4295 
4296 	return r;
4297 }
4298