1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2020-2021 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49 * page table is updated.
50 */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING (2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 _dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61 * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62 * power of 2MB.
63 */
64 static uint64_t max_svm_range_pages;
65
66 struct criu_svm_metadata {
67 struct list_head list;
68 struct kfd_criu_svm_range_priv_data data;
69 };
70
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 const struct mmu_notifier_range *range,
75 unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 .invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82
83 /**
84 * svm_range_unlink - unlink svm_range from lists and interval tree
85 * @prange: svm range structure to be removed
86 *
87 * Remove the svm_range from the svms and svm_bo lists and the svms
88 * interval tree.
89 *
90 * Context: The caller must hold svms->lock
91 */
svm_range_unlink(struct svm_range * prange)92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 prange, prange->start, prange->last);
96
97 if (prange->svm_bo) {
98 spin_lock(&prange->svm_bo->list_lock);
99 list_del(&prange->svm_bo_list);
100 spin_unlock(&prange->svm_bo->list_lock);
101 }
102
103 list_del(&prange->list);
104 if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107
108 static void
svm_range_add_notifier_locked(struct mm_struct * mm,struct svm_range * prange)109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 prange, prange->start, prange->last);
113
114 mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 prange->start << PAGE_SHIFT,
116 prange->npages << PAGE_SHIFT,
117 &svm_range_mn_ops);
118 }
119
120 /**
121 * svm_range_add_to_svms - add svm range to svms
122 * @prange: svm range structure to be added
123 *
124 * Add the svm range to svms interval tree and link list
125 *
126 * Context: The caller must hold svms->lock
127 */
svm_range_add_to_svms(struct svm_range * prange)128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 prange, prange->start, prange->last);
132
133 list_move_tail(&prange->list, &prange->svms->list);
134 prange->it_node.start = prange->start;
135 prange->it_node.last = prange->last;
136 interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138
svm_range_remove_notifier(struct svm_range * prange)139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 prange->svms, prange,
143 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145
146 if (prange->notifier.interval_tree.start != 0 &&
147 prange->notifier.interval_tree.last != 0)
148 mmu_interval_notifier_remove(&prange->notifier);
149 }
150
151 static bool
svm_is_valid_dma_mapping_addr(struct device * dev,dma_addr_t dma_addr)152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157
158 static int
svm_range_dma_map_dev(struct amdgpu_device * adev,struct svm_range * prange,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns,uint32_t gpuidx)159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 unsigned long offset, unsigned long npages,
161 unsigned long *hmm_pfns, uint32_t gpuidx)
162 {
163 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 dma_addr_t *addr = prange->dma_addr[gpuidx];
165 struct device *dev = adev->dev;
166 struct page *page;
167 int i, r;
168
169 if (!addr) {
170 addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 if (!addr)
172 return -ENOMEM;
173 prange->dma_addr[gpuidx] = addr;
174 }
175
176 addr += offset;
177 for (i = 0; i < npages; i++) {
178 if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180
181 page = hmm_pfn_to_page(hmm_pfns[i]);
182 if (is_zone_device_page(page)) {
183 struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184
185 addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 bo_adev->vm_manager.vram_base_offset -
187 bo_adev->kfd.pgmap.range.start;
188 addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 continue;
191 }
192 addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 r = dma_mapping_error(dev, addr[i]);
194 if (r) {
195 dev_err(dev, "failed %d dma_map_page\n", r);
196 return r;
197 }
198 pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 }
201
202 return 0;
203 }
204
205 static int
svm_range_dma_map(struct svm_range * prange,unsigned long * bitmap,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns)206 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
207 unsigned long offset, unsigned long npages,
208 unsigned long *hmm_pfns)
209 {
210 struct kfd_process *p;
211 uint32_t gpuidx;
212 int r;
213
214 p = container_of(prange->svms, struct kfd_process, svms);
215
216 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
217 struct kfd_process_device *pdd;
218
219 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
220 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
221 if (!pdd) {
222 pr_debug("failed to find device idx %d\n", gpuidx);
223 return -EINVAL;
224 }
225
226 r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
227 hmm_pfns, gpuidx);
228 if (r)
229 break;
230 }
231
232 return r;
233 }
234
svm_range_dma_unmap_dev(struct device * dev,dma_addr_t * dma_addr,unsigned long offset,unsigned long npages)235 void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
236 unsigned long offset, unsigned long npages)
237 {
238 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
239 int i;
240
241 if (!dma_addr)
242 return;
243
244 for (i = offset; i < offset + npages; i++) {
245 if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
246 continue;
247 pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
248 dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
249 dma_addr[i] = 0;
250 }
251 }
252
svm_range_dma_unmap(struct svm_range * prange)253 void svm_range_dma_unmap(struct svm_range *prange)
254 {
255 struct kfd_process_device *pdd;
256 dma_addr_t *dma_addr;
257 struct device *dev;
258 struct kfd_process *p;
259 uint32_t gpuidx;
260
261 p = container_of(prange->svms, struct kfd_process, svms);
262
263 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
264 dma_addr = prange->dma_addr[gpuidx];
265 if (!dma_addr)
266 continue;
267
268 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
269 if (!pdd) {
270 pr_debug("failed to find device idx %d\n", gpuidx);
271 continue;
272 }
273 dev = &pdd->dev->adev->pdev->dev;
274
275 svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages);
276 }
277 }
278
svm_range_free(struct svm_range * prange,bool do_unmap)279 static void svm_range_free(struct svm_range *prange, bool do_unmap)
280 {
281 uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
282 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
283 uint32_t gpuidx;
284
285 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286 prange->start, prange->last);
287
288 svm_range_vram_node_free(prange);
289 if (do_unmap)
290 svm_range_dma_unmap(prange);
291
292 if (do_unmap && !p->xnack_enabled) {
293 pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
294 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
295 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
296 }
297
298 /* free dma_addr array for each gpu */
299 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
300 if (prange->dma_addr[gpuidx]) {
301 kvfree(prange->dma_addr[gpuidx]);
302 prange->dma_addr[gpuidx] = NULL;
303 }
304 }
305
306 mutex_destroy(&prange->lock);
307 mutex_destroy(&prange->migrate_mutex);
308 kfree(prange);
309 }
310
311 static void
svm_range_set_default_attributes(struct svm_range_list * svms,int32_t * location,int32_t * prefetch_loc,uint8_t * granularity,uint32_t * flags)312 svm_range_set_default_attributes(struct svm_range_list *svms, int32_t *location,
313 int32_t *prefetch_loc, uint8_t *granularity,
314 uint32_t *flags)
315 {
316 *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
317 *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
318 *granularity = svms->default_granularity;
319 *flags =
320 KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
321 }
322
323 static struct
svm_range_new(struct svm_range_list * svms,uint64_t start,uint64_t last,bool update_mem_usage)324 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
325 uint64_t last, bool update_mem_usage)
326 {
327 uint64_t size = last - start + 1;
328 struct svm_range *prange;
329 struct kfd_process *p;
330
331 prange = kzalloc(sizeof(*prange), GFP_KERNEL);
332 if (!prange)
333 return NULL;
334
335 p = container_of(svms, struct kfd_process, svms);
336 if (!p->xnack_enabled && update_mem_usage &&
337 amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
338 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
339 pr_info("SVM mapping failed, exceeds resident system memory limit\n");
340 kfree(prange);
341 return NULL;
342 }
343 prange->npages = size;
344 prange->svms = svms;
345 prange->start = start;
346 prange->last = last;
347 INIT_LIST_HEAD(&prange->list);
348 INIT_LIST_HEAD(&prange->update_list);
349 INIT_LIST_HEAD(&prange->svm_bo_list);
350 INIT_LIST_HEAD(&prange->deferred_list);
351 INIT_LIST_HEAD(&prange->child_list);
352 atomic_set(&prange->invalid, 0);
353 prange->validate_timestamp = 0;
354 prange->vram_pages = 0;
355 mutex_init(&prange->migrate_mutex);
356 mutex_init(&prange->lock);
357
358 if (p->xnack_enabled)
359 bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
360 MAX_GPU_INSTANCE);
361
362 svm_range_set_default_attributes(svms, &prange->preferred_loc,
363 &prange->prefetch_loc,
364 &prange->granularity, &prange->flags);
365
366 pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
367
368 return prange;
369 }
370
svm_bo_ref_unless_zero(struct svm_range_bo * svm_bo)371 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
372 {
373 if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
374 return false;
375
376 return true;
377 }
378
svm_range_bo_release(struct kref * kref)379 static void svm_range_bo_release(struct kref *kref)
380 {
381 struct svm_range_bo *svm_bo;
382
383 svm_bo = container_of(kref, struct svm_range_bo, kref);
384 pr_debug("svm_bo 0x%p\n", svm_bo);
385
386 spin_lock(&svm_bo->list_lock);
387 while (!list_empty(&svm_bo->range_list)) {
388 struct svm_range *prange =
389 list_first_entry(&svm_bo->range_list,
390 struct svm_range, svm_bo_list);
391 /* list_del_init tells a concurrent svm_range_vram_node_new when
392 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
393 */
394 list_del_init(&prange->svm_bo_list);
395 spin_unlock(&svm_bo->list_lock);
396
397 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
398 prange->start, prange->last);
399 mutex_lock(&prange->lock);
400 prange->svm_bo = NULL;
401 /* prange should not hold vram page now */
402 WARN_ONCE(prange->actual_loc, "prange should not hold vram page");
403 mutex_unlock(&prange->lock);
404
405 spin_lock(&svm_bo->list_lock);
406 }
407 spin_unlock(&svm_bo->list_lock);
408
409 if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
410 struct kfd_process_device *pdd;
411 struct kfd_process *p;
412 struct mm_struct *mm;
413
414 mm = svm_bo->eviction_fence->mm;
415 /*
416 * The forked child process takes svm_bo device pages ref, svm_bo could be
417 * released after parent process is gone.
418 */
419 p = kfd_lookup_process_by_mm(mm);
420 if (p) {
421 pdd = kfd_get_process_device_data(svm_bo->node, p);
422 if (pdd)
423 atomic64_sub(amdgpu_bo_size(svm_bo->bo), &pdd->vram_usage);
424 kfd_unref_process(p);
425 }
426 mmput(mm);
427 }
428
429 if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
430 /* We're not in the eviction worker. Signal the fence. */
431 dma_fence_signal(&svm_bo->eviction_fence->base);
432 dma_fence_put(&svm_bo->eviction_fence->base);
433 amdgpu_bo_unref(&svm_bo->bo);
434 kfree(svm_bo);
435 }
436
svm_range_bo_wq_release(struct work_struct * work)437 static void svm_range_bo_wq_release(struct work_struct *work)
438 {
439 struct svm_range_bo *svm_bo;
440
441 svm_bo = container_of(work, struct svm_range_bo, release_work);
442 svm_range_bo_release(&svm_bo->kref);
443 }
444
svm_range_bo_release_async(struct kref * kref)445 static void svm_range_bo_release_async(struct kref *kref)
446 {
447 struct svm_range_bo *svm_bo;
448
449 svm_bo = container_of(kref, struct svm_range_bo, kref);
450 pr_debug("svm_bo 0x%p\n", svm_bo);
451 INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
452 schedule_work(&svm_bo->release_work);
453 }
454
svm_range_bo_unref_async(struct svm_range_bo * svm_bo)455 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
456 {
457 kref_put(&svm_bo->kref, svm_range_bo_release_async);
458 }
459
svm_range_bo_unref(struct svm_range_bo * svm_bo)460 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
461 {
462 if (svm_bo)
463 kref_put(&svm_bo->kref, svm_range_bo_release);
464 }
465
466 static bool
svm_range_validate_svm_bo(struct kfd_node * node,struct svm_range * prange)467 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
468 {
469 mutex_lock(&prange->lock);
470 if (!prange->svm_bo) {
471 mutex_unlock(&prange->lock);
472 return false;
473 }
474 if (prange->ttm_res) {
475 /* We still have a reference, all is well */
476 mutex_unlock(&prange->lock);
477 return true;
478 }
479 if (svm_bo_ref_unless_zero(prange->svm_bo)) {
480 /*
481 * Migrate from GPU to GPU, remove range from source svm_bo->node
482 * range list, and return false to allocate svm_bo from destination
483 * node.
484 */
485 if (prange->svm_bo->node != node) {
486 mutex_unlock(&prange->lock);
487
488 spin_lock(&prange->svm_bo->list_lock);
489 list_del_init(&prange->svm_bo_list);
490 spin_unlock(&prange->svm_bo->list_lock);
491
492 svm_range_bo_unref(prange->svm_bo);
493 return false;
494 }
495 if (READ_ONCE(prange->svm_bo->evicting)) {
496 struct dma_fence *f;
497 struct svm_range_bo *svm_bo;
498 /* The BO is getting evicted,
499 * we need to get a new one
500 */
501 mutex_unlock(&prange->lock);
502 svm_bo = prange->svm_bo;
503 f = dma_fence_get(&svm_bo->eviction_fence->base);
504 svm_range_bo_unref(prange->svm_bo);
505 /* wait for the fence to avoid long spin-loop
506 * at list_empty_careful
507 */
508 dma_fence_wait(f, false);
509 dma_fence_put(f);
510 } else {
511 /* The BO was still around and we got
512 * a new reference to it
513 */
514 mutex_unlock(&prange->lock);
515 pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
516 prange->svms, prange->start, prange->last);
517
518 prange->ttm_res = prange->svm_bo->bo->tbo.resource;
519 return true;
520 }
521
522 } else {
523 mutex_unlock(&prange->lock);
524 }
525
526 /* We need a new svm_bo. Spin-loop to wait for concurrent
527 * svm_range_bo_release to finish removing this range from
528 * its range list and set prange->svm_bo to null. After this,
529 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
530 */
531 while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
532 cond_resched();
533
534 return false;
535 }
536
svm_range_bo_new(void)537 static struct svm_range_bo *svm_range_bo_new(void)
538 {
539 struct svm_range_bo *svm_bo;
540
541 svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
542 if (!svm_bo)
543 return NULL;
544
545 kref_init(&svm_bo->kref);
546 INIT_LIST_HEAD(&svm_bo->range_list);
547 spin_lock_init(&svm_bo->list_lock);
548
549 return svm_bo;
550 }
551
552 int
svm_range_vram_node_new(struct kfd_node * node,struct svm_range * prange,bool clear)553 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
554 bool clear)
555 {
556 struct kfd_process_device *pdd;
557 struct amdgpu_bo_param bp;
558 struct svm_range_bo *svm_bo;
559 struct amdgpu_bo_user *ubo;
560 struct amdgpu_bo *bo;
561 struct kfd_process *p;
562 struct mm_struct *mm;
563 int r;
564
565 p = container_of(prange->svms, struct kfd_process, svms);
566 pr_debug("process pid: %d svms 0x%p [0x%lx 0x%lx]\n",
567 p->lead_thread->pid, prange->svms,
568 prange->start, prange->last);
569
570 if (svm_range_validate_svm_bo(node, prange))
571 return 0;
572
573 svm_bo = svm_range_bo_new();
574 if (!svm_bo) {
575 pr_debug("failed to alloc svm bo\n");
576 return -ENOMEM;
577 }
578 mm = get_task_mm(p->lead_thread);
579 if (!mm) {
580 pr_debug("failed to get mm\n");
581 kfree(svm_bo);
582 return -ESRCH;
583 }
584 svm_bo->node = node;
585 svm_bo->eviction_fence =
586 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
587 mm,
588 svm_bo);
589 mmput(mm);
590 INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
591 svm_bo->evicting = 0;
592 memset(&bp, 0, sizeof(bp));
593 bp.size = prange->npages * PAGE_SIZE;
594 bp.byte_align = PAGE_SIZE;
595 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
596 bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
597 bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
598 bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
599 bp.type = ttm_bo_type_device;
600 bp.resv = NULL;
601 if (node->xcp)
602 bp.xcp_id_plus1 = node->xcp->id + 1;
603
604 r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
605 if (r) {
606 pr_debug("failed %d to create bo\n", r);
607 goto create_bo_failed;
608 }
609 bo = &ubo->bo;
610
611 pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
612 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
613 bp.xcp_id_plus1 - 1);
614
615 r = amdgpu_bo_reserve(bo, true);
616 if (r) {
617 pr_debug("failed %d to reserve bo\n", r);
618 goto reserve_bo_failed;
619 }
620
621 if (clear) {
622 r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
623 if (r) {
624 pr_debug("failed %d to sync bo\n", r);
625 amdgpu_bo_unreserve(bo);
626 goto reserve_bo_failed;
627 }
628 }
629
630 r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
631 if (r) {
632 pr_debug("failed %d to reserve bo\n", r);
633 amdgpu_bo_unreserve(bo);
634 goto reserve_bo_failed;
635 }
636 amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
637
638 amdgpu_bo_unreserve(bo);
639
640 svm_bo->bo = bo;
641 prange->svm_bo = svm_bo;
642 prange->ttm_res = bo->tbo.resource;
643 prange->offset = 0;
644
645 spin_lock(&svm_bo->list_lock);
646 list_add(&prange->svm_bo_list, &svm_bo->range_list);
647 spin_unlock(&svm_bo->list_lock);
648
649 pdd = svm_range_get_pdd_by_node(prange, node);
650 if (pdd)
651 atomic64_add(amdgpu_bo_size(bo), &pdd->vram_usage);
652
653 return 0;
654
655 reserve_bo_failed:
656 amdgpu_bo_unref(&bo);
657 create_bo_failed:
658 dma_fence_put(&svm_bo->eviction_fence->base);
659 kfree(svm_bo);
660 prange->ttm_res = NULL;
661
662 return r;
663 }
664
svm_range_vram_node_free(struct svm_range * prange)665 void svm_range_vram_node_free(struct svm_range *prange)
666 {
667 /* serialize prange->svm_bo unref */
668 mutex_lock(&prange->lock);
669 /* prange->svm_bo has not been unref */
670 if (prange->ttm_res) {
671 prange->ttm_res = NULL;
672 mutex_unlock(&prange->lock);
673 svm_range_bo_unref(prange->svm_bo);
674 } else
675 mutex_unlock(&prange->lock);
676 }
677
678 struct kfd_node *
svm_range_get_node_by_id(struct svm_range * prange,uint32_t gpu_id)679 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
680 {
681 struct kfd_process *p;
682 struct kfd_process_device *pdd;
683
684 p = container_of(prange->svms, struct kfd_process, svms);
685 pdd = kfd_process_device_data_by_id(p, gpu_id);
686 if (!pdd) {
687 pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
688 return NULL;
689 }
690
691 return pdd->dev;
692 }
693
694 struct kfd_process_device *
svm_range_get_pdd_by_node(struct svm_range * prange,struct kfd_node * node)695 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
696 {
697 struct kfd_process *p;
698
699 p = container_of(prange->svms, struct kfd_process, svms);
700
701 return kfd_get_process_device_data(node, p);
702 }
703
svm_range_bo_validate(void * param,struct amdgpu_bo * bo)704 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
705 {
706 struct ttm_operation_ctx ctx = { false, false };
707
708 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
709
710 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
711 }
712
713 static int
svm_range_check_attr(struct kfd_process * p,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)714 svm_range_check_attr(struct kfd_process *p,
715 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
716 {
717 uint32_t i;
718
719 for (i = 0; i < nattr; i++) {
720 uint32_t val = attrs[i].value;
721 int gpuidx = MAX_GPU_INSTANCE;
722
723 switch (attrs[i].type) {
724 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
725 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
726 val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
727 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
728 break;
729 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
730 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
731 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
732 break;
733 case KFD_IOCTL_SVM_ATTR_ACCESS:
734 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
735 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
736 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
737 break;
738 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
739 break;
740 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
741 break;
742 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
743 break;
744 default:
745 pr_debug("unknown attr type 0x%x\n", attrs[i].type);
746 return -EINVAL;
747 }
748
749 if (gpuidx < 0) {
750 pr_debug("no GPU 0x%x found\n", val);
751 return -EINVAL;
752 } else if (gpuidx < MAX_GPU_INSTANCE &&
753 !test_bit(gpuidx, p->svms.bitmap_supported)) {
754 pr_debug("GPU 0x%x not supported\n", val);
755 return -EINVAL;
756 }
757 }
758
759 return 0;
760 }
761
762 static void
svm_range_apply_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,bool * update_mapping)763 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
764 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
765 bool *update_mapping)
766 {
767 uint32_t i;
768 int gpuidx;
769
770 for (i = 0; i < nattr; i++) {
771 switch (attrs[i].type) {
772 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
773 prange->preferred_loc = attrs[i].value;
774 break;
775 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
776 prange->prefetch_loc = attrs[i].value;
777 break;
778 case KFD_IOCTL_SVM_ATTR_ACCESS:
779 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
780 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
781 if (!p->xnack_enabled)
782 *update_mapping = true;
783
784 gpuidx = kfd_process_gpuidx_from_gpuid(p,
785 attrs[i].value);
786 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
787 bitmap_clear(prange->bitmap_access, gpuidx, 1);
788 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
789 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
790 bitmap_set(prange->bitmap_access, gpuidx, 1);
791 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
792 } else {
793 bitmap_clear(prange->bitmap_access, gpuidx, 1);
794 bitmap_set(prange->bitmap_aip, gpuidx, 1);
795 }
796 break;
797 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
798 *update_mapping = true;
799 prange->flags |= attrs[i].value;
800 break;
801 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
802 *update_mapping = true;
803 prange->flags &= ~attrs[i].value;
804 break;
805 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
806 prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
807 break;
808 default:
809 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
810 }
811 }
812 }
813
814 static bool
svm_range_is_same_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)815 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
816 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
817 {
818 uint32_t i;
819 int gpuidx;
820
821 for (i = 0; i < nattr; i++) {
822 switch (attrs[i].type) {
823 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
824 if (prange->preferred_loc != attrs[i].value)
825 return false;
826 break;
827 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
828 /* Prefetch should always trigger a migration even
829 * if the value of the attribute didn't change.
830 */
831 return false;
832 case KFD_IOCTL_SVM_ATTR_ACCESS:
833 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
834 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
835 gpuidx = kfd_process_gpuidx_from_gpuid(p,
836 attrs[i].value);
837 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
838 if (test_bit(gpuidx, prange->bitmap_access) ||
839 test_bit(gpuidx, prange->bitmap_aip))
840 return false;
841 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
842 if (!test_bit(gpuidx, prange->bitmap_access))
843 return false;
844 } else {
845 if (!test_bit(gpuidx, prange->bitmap_aip))
846 return false;
847 }
848 break;
849 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
850 if ((prange->flags & attrs[i].value) != attrs[i].value)
851 return false;
852 break;
853 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
854 if ((prange->flags & attrs[i].value) != 0)
855 return false;
856 break;
857 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
858 if (prange->granularity != attrs[i].value)
859 return false;
860 break;
861 default:
862 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
863 }
864 }
865
866 return true;
867 }
868
869 /**
870 * svm_range_debug_dump - print all range information from svms
871 * @svms: svm range list header
872 *
873 * debug output svm range start, end, prefetch location from svms
874 * interval tree and link list
875 *
876 * Context: The caller must hold svms->lock
877 */
svm_range_debug_dump(struct svm_range_list * svms)878 static void svm_range_debug_dump(struct svm_range_list *svms)
879 {
880 struct interval_tree_node *node;
881 struct svm_range *prange;
882
883 pr_debug("dump svms 0x%p list\n", svms);
884 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
885
886 list_for_each_entry(prange, &svms->list, list) {
887 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
888 prange, prange->start, prange->npages,
889 prange->start + prange->npages - 1,
890 prange->actual_loc);
891 }
892
893 pr_debug("dump svms 0x%p interval tree\n", svms);
894 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
895 node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
896 while (node) {
897 prange = container_of(node, struct svm_range, it_node);
898 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
899 prange, prange->start, prange->npages,
900 prange->start + prange->npages - 1,
901 prange->actual_loc);
902 node = interval_tree_iter_next(node, 0, ~0ULL);
903 }
904 }
905
906 static void *
svm_range_copy_array(void * psrc,size_t size,uint64_t num_elements,uint64_t offset,uint64_t * vram_pages)907 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
908 uint64_t offset, uint64_t *vram_pages)
909 {
910 unsigned char *src = (unsigned char *)psrc + offset;
911 unsigned char *dst;
912 uint64_t i;
913
914 dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
915 if (!dst)
916 return NULL;
917
918 if (!vram_pages) {
919 memcpy(dst, src, num_elements * size);
920 return (void *)dst;
921 }
922
923 *vram_pages = 0;
924 for (i = 0; i < num_elements; i++) {
925 dma_addr_t *temp;
926 temp = (dma_addr_t *)dst + i;
927 *temp = *((dma_addr_t *)src + i);
928 if (*temp&SVM_RANGE_VRAM_DOMAIN)
929 (*vram_pages)++;
930 }
931
932 return (void *)dst;
933 }
934
935 static int
svm_range_copy_dma_addrs(struct svm_range * dst,struct svm_range * src)936 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
937 {
938 int i;
939
940 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
941 if (!src->dma_addr[i])
942 continue;
943 dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
944 sizeof(*src->dma_addr[i]), src->npages, 0, NULL);
945 if (!dst->dma_addr[i])
946 return -ENOMEM;
947 }
948
949 return 0;
950 }
951
952 static int
svm_range_split_array(void * ppnew,void * ppold,size_t size,uint64_t old_start,uint64_t old_n,uint64_t new_start,uint64_t new_n,uint64_t * new_vram_pages)953 svm_range_split_array(void *ppnew, void *ppold, size_t size,
954 uint64_t old_start, uint64_t old_n,
955 uint64_t new_start, uint64_t new_n, uint64_t *new_vram_pages)
956 {
957 unsigned char *new, *old, *pold;
958 uint64_t d;
959
960 if (!ppold)
961 return 0;
962 pold = *(unsigned char **)ppold;
963 if (!pold)
964 return 0;
965
966 d = (new_start - old_start) * size;
967 /* get dma addr array for new range and calculte its vram page number */
968 new = svm_range_copy_array(pold, size, new_n, d, new_vram_pages);
969 if (!new)
970 return -ENOMEM;
971 d = (new_start == old_start) ? new_n * size : 0;
972 old = svm_range_copy_array(pold, size, old_n, d, NULL);
973 if (!old) {
974 kvfree(new);
975 return -ENOMEM;
976 }
977 kvfree(pold);
978 *(void **)ppold = old;
979 *(void **)ppnew = new;
980
981 return 0;
982 }
983
984 static int
svm_range_split_pages(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)985 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
986 uint64_t start, uint64_t last)
987 {
988 uint64_t npages = last - start + 1;
989 int i, r;
990
991 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
992 r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
993 sizeof(*old->dma_addr[i]), old->start,
994 npages, new->start, new->npages,
995 old->actual_loc ? &new->vram_pages : NULL);
996 if (r)
997 return r;
998 }
999 if (old->actual_loc)
1000 old->vram_pages -= new->vram_pages;
1001
1002 return 0;
1003 }
1004
1005 static int
svm_range_split_nodes(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1006 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
1007 uint64_t start, uint64_t last)
1008 {
1009 uint64_t npages = last - start + 1;
1010
1011 pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
1012 new->svms, new, new->start, start, last);
1013
1014 if (new->start == old->start) {
1015 new->offset = old->offset;
1016 old->offset += new->npages;
1017 } else {
1018 new->offset = old->offset + npages;
1019 }
1020
1021 new->svm_bo = svm_range_bo_ref(old->svm_bo);
1022 new->ttm_res = old->ttm_res;
1023
1024 spin_lock(&new->svm_bo->list_lock);
1025 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1026 spin_unlock(&new->svm_bo->list_lock);
1027
1028 return 0;
1029 }
1030
1031 /**
1032 * svm_range_split_adjust - split range and adjust
1033 *
1034 * @new: new range
1035 * @old: the old range
1036 * @start: the old range adjust to start address in pages
1037 * @last: the old range adjust to last address in pages
1038 *
1039 * Copy system memory dma_addr or vram ttm_res in old range to new
1040 * range from new_start up to size new->npages, the remaining old range is from
1041 * start to last
1042 *
1043 * Return:
1044 * 0 - OK, -ENOMEM - out of memory
1045 */
1046 static int
svm_range_split_adjust(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1047 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1048 uint64_t start, uint64_t last)
1049 {
1050 int r;
1051
1052 pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1053 new->svms, new->start, old->start, old->last, start, last);
1054
1055 if (new->start < old->start ||
1056 new->last > old->last) {
1057 WARN_ONCE(1, "invalid new range start or last\n");
1058 return -EINVAL;
1059 }
1060
1061 r = svm_range_split_pages(new, old, start, last);
1062 if (r)
1063 return r;
1064
1065 if (old->actual_loc && old->ttm_res) {
1066 r = svm_range_split_nodes(new, old, start, last);
1067 if (r)
1068 return r;
1069 }
1070
1071 old->npages = last - start + 1;
1072 old->start = start;
1073 old->last = last;
1074 new->flags = old->flags;
1075 new->preferred_loc = old->preferred_loc;
1076 new->prefetch_loc = old->prefetch_loc;
1077 new->actual_loc = old->actual_loc;
1078 new->granularity = old->granularity;
1079 new->mapped_to_gpu = old->mapped_to_gpu;
1080 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1081 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1082 atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
1083
1084 return 0;
1085 }
1086
1087 /**
1088 * svm_range_split - split a range in 2 ranges
1089 *
1090 * @prange: the svm range to split
1091 * @start: the remaining range start address in pages
1092 * @last: the remaining range last address in pages
1093 * @new: the result new range generated
1094 *
1095 * Two cases only:
1096 * case 1: if start == prange->start
1097 * prange ==> prange[start, last]
1098 * new range [last + 1, prange->last]
1099 *
1100 * case 2: if last == prange->last
1101 * prange ==> prange[start, last]
1102 * new range [prange->start, start - 1]
1103 *
1104 * Return:
1105 * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1106 */
1107 static int
svm_range_split(struct svm_range * prange,uint64_t start,uint64_t last,struct svm_range ** new)1108 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1109 struct svm_range **new)
1110 {
1111 uint64_t old_start = prange->start;
1112 uint64_t old_last = prange->last;
1113 struct svm_range_list *svms;
1114 int r = 0;
1115
1116 pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1117 old_start, old_last, start, last);
1118
1119 if (old_start != start && old_last != last)
1120 return -EINVAL;
1121 if (start < old_start || last > old_last)
1122 return -EINVAL;
1123
1124 svms = prange->svms;
1125 if (old_start == start)
1126 *new = svm_range_new(svms, last + 1, old_last, false);
1127 else
1128 *new = svm_range_new(svms, old_start, start - 1, false);
1129 if (!*new)
1130 return -ENOMEM;
1131
1132 r = svm_range_split_adjust(*new, prange, start, last);
1133 if (r) {
1134 pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1135 r, old_start, old_last, start, last);
1136 svm_range_free(*new, false);
1137 *new = NULL;
1138 }
1139
1140 return r;
1141 }
1142
1143 static int
svm_range_split_tail(struct svm_range * prange,uint64_t new_last,struct list_head * insert_list,struct list_head * remap_list)1144 svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
1145 struct list_head *insert_list, struct list_head *remap_list)
1146 {
1147 unsigned long last_align_down = ALIGN_DOWN(prange->last, 512);
1148 unsigned long start_align = ALIGN(prange->start, 512);
1149 bool huge_page_mapping = last_align_down > start_align;
1150 struct svm_range *tail = NULL;
1151 int r;
1152
1153 r = svm_range_split(prange, prange->start, new_last, &tail);
1154
1155 if (r)
1156 return r;
1157
1158 list_add(&tail->list, insert_list);
1159
1160 if (huge_page_mapping && tail->start > start_align &&
1161 tail->start < last_align_down && (!IS_ALIGNED(tail->start, 512)))
1162 list_add(&tail->update_list, remap_list);
1163
1164 return 0;
1165 }
1166
1167 static int
svm_range_split_head(struct svm_range * prange,uint64_t new_start,struct list_head * insert_list,struct list_head * remap_list)1168 svm_range_split_head(struct svm_range *prange, uint64_t new_start,
1169 struct list_head *insert_list, struct list_head *remap_list)
1170 {
1171 unsigned long last_align_down = ALIGN_DOWN(prange->last, 512);
1172 unsigned long start_align = ALIGN(prange->start, 512);
1173 bool huge_page_mapping = last_align_down > start_align;
1174 struct svm_range *head = NULL;
1175 int r;
1176
1177 r = svm_range_split(prange, new_start, prange->last, &head);
1178
1179 if (r)
1180 return r;
1181
1182 list_add(&head->list, insert_list);
1183
1184 if (huge_page_mapping && head->last + 1 > start_align &&
1185 head->last + 1 < last_align_down && (!IS_ALIGNED(head->last, 512)))
1186 list_add(&head->update_list, remap_list);
1187
1188 return 0;
1189 }
1190
1191 static void
svm_range_add_child(struct svm_range * prange,struct svm_range * pchild,enum svm_work_list_ops op)1192 svm_range_add_child(struct svm_range *prange, struct svm_range *pchild, enum svm_work_list_ops op)
1193 {
1194 pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1195 pchild, pchild->start, pchild->last, prange, op);
1196
1197 pchild->work_item.mm = NULL;
1198 pchild->work_item.op = op;
1199 list_add_tail(&pchild->child_list, &prange->child_list);
1200 }
1201
1202 static bool
svm_nodes_in_same_hive(struct kfd_node * node_a,struct kfd_node * node_b)1203 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1204 {
1205 return (node_a->adev == node_b->adev ||
1206 amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1207 }
1208
1209 static uint64_t
svm_range_get_pte_flags(struct kfd_node * node,struct amdgpu_vm * vm,struct svm_range * prange,int domain)1210 svm_range_get_pte_flags(struct kfd_node *node, struct amdgpu_vm *vm,
1211 struct svm_range *prange, int domain)
1212 {
1213 struct kfd_node *bo_node;
1214 uint32_t flags = prange->flags;
1215 uint32_t mapping_flags = 0;
1216 uint32_t gc_ip_version = KFD_GC_VERSION(node);
1217 uint64_t pte_flags;
1218 bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1219 bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1220 bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1221 unsigned int mtype_local;
1222
1223 if (domain == SVM_RANGE_VRAM_DOMAIN)
1224 bo_node = prange->svm_bo->node;
1225
1226 switch (gc_ip_version) {
1227 case IP_VERSION(9, 4, 1):
1228 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1229 if (bo_node == node) {
1230 mapping_flags |= coherent ?
1231 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1232 } else {
1233 mapping_flags |= coherent ?
1234 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1235 if (svm_nodes_in_same_hive(node, bo_node))
1236 snoop = true;
1237 }
1238 } else {
1239 mapping_flags |= coherent ?
1240 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1241 }
1242 break;
1243 case IP_VERSION(9, 4, 2):
1244 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1245 if (bo_node == node) {
1246 mapping_flags |= coherent ?
1247 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1248 if (node->adev->gmc.xgmi.connected_to_cpu)
1249 snoop = true;
1250 } else {
1251 mapping_flags |= coherent ?
1252 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1253 if (svm_nodes_in_same_hive(node, bo_node))
1254 snoop = true;
1255 }
1256 } else {
1257 mapping_flags |= coherent ?
1258 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1259 }
1260 break;
1261 case IP_VERSION(9, 4, 3):
1262 case IP_VERSION(9, 4, 4):
1263 case IP_VERSION(9, 5, 0):
1264 if (ext_coherent)
1265 mtype_local = AMDGPU_VM_MTYPE_CC;
1266 else
1267 mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1268 amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1269 snoop = true;
1270 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1271 /* local HBM region close to partition */
1272 if (bo_node->adev == node->adev &&
1273 (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1274 mapping_flags |= mtype_local;
1275 /* local HBM region far from partition or remote XGMI GPU
1276 * with regular system scope coherence
1277 */
1278 else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent)
1279 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1280 /* PCIe P2P on GPUs pre-9.5.0 */
1281 else if (gc_ip_version < IP_VERSION(9, 5, 0) &&
1282 !svm_nodes_in_same_hive(bo_node, node))
1283 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1284 /* Other remote memory */
1285 else
1286 mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1287 /* system memory accessed by the APU */
1288 } else if (node->adev->flags & AMD_IS_APU) {
1289 /* On NUMA systems, locality is determined per-page
1290 * in amdgpu_gmc_override_vm_pte_flags
1291 */
1292 if (num_possible_nodes() <= 1)
1293 mapping_flags |= mtype_local;
1294 else
1295 mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1296 /* system memory accessed by the dGPU */
1297 } else {
1298 if (gc_ip_version < IP_VERSION(9, 5, 0) || ext_coherent)
1299 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1300 else
1301 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1302 }
1303 break;
1304 case IP_VERSION(12, 0, 0):
1305 case IP_VERSION(12, 0, 1):
1306 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1307 break;
1308 default:
1309 mapping_flags |= coherent ?
1310 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1311 }
1312
1313 if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1314 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1315
1316 pte_flags = AMDGPU_PTE_VALID;
1317 pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1318 pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1319 if (gc_ip_version >= IP_VERSION(12, 0, 0))
1320 pte_flags |= AMDGPU_PTE_IS_PTE;
1321
1322 amdgpu_gmc_get_vm_pte(node->adev, vm, NULL, mapping_flags, &pte_flags);
1323 pte_flags |= AMDGPU_PTE_READABLE;
1324 if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO))
1325 pte_flags |= AMDGPU_PTE_WRITEABLE;
1326 return pte_flags;
1327 }
1328
1329 static int
svm_range_unmap_from_gpu(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t start,uint64_t last,struct dma_fence ** fence)1330 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1331 uint64_t start, uint64_t last,
1332 struct dma_fence **fence)
1333 {
1334 uint64_t init_pte_value = 0;
1335
1336 pr_debug("[0x%llx 0x%llx]\n", start, last);
1337
1338 return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start,
1339 last, init_pte_value, 0, 0, NULL, NULL,
1340 fence);
1341 }
1342
1343 static int
svm_range_unmap_from_gpus(struct svm_range * prange,unsigned long start,unsigned long last,uint32_t trigger)1344 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1345 unsigned long last, uint32_t trigger)
1346 {
1347 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1348 struct kfd_process_device *pdd;
1349 struct dma_fence *fence = NULL;
1350 struct kfd_process *p;
1351 uint32_t gpuidx;
1352 int r = 0;
1353
1354 if (!prange->mapped_to_gpu) {
1355 pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1356 prange, prange->start, prange->last);
1357 return 0;
1358 }
1359
1360 if (prange->start == start && prange->last == last) {
1361 pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1362 prange->mapped_to_gpu = false;
1363 }
1364
1365 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1366 MAX_GPU_INSTANCE);
1367 p = container_of(prange->svms, struct kfd_process, svms);
1368
1369 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1370 pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1371 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1372 if (!pdd) {
1373 pr_debug("failed to find device idx %d\n", gpuidx);
1374 return -EINVAL;
1375 }
1376
1377 kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1378 start, last, trigger);
1379
1380 r = svm_range_unmap_from_gpu(pdd->dev->adev,
1381 drm_priv_to_vm(pdd->drm_priv),
1382 start, last, &fence);
1383 if (r)
1384 break;
1385
1386 if (fence) {
1387 r = dma_fence_wait(fence, false);
1388 dma_fence_put(fence);
1389 fence = NULL;
1390 if (r)
1391 break;
1392 }
1393 kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1394 }
1395
1396 return r;
1397 }
1398
1399 static int
svm_range_map_to_gpu(struct kfd_process_device * pdd,struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,dma_addr_t * dma_addr,struct amdgpu_device * bo_adev,struct dma_fence ** fence,bool flush_tlb)1400 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1401 unsigned long offset, unsigned long npages, bool readonly,
1402 dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1403 struct dma_fence **fence, bool flush_tlb)
1404 {
1405 struct amdgpu_device *adev = pdd->dev->adev;
1406 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1407 uint64_t pte_flags;
1408 unsigned long last_start;
1409 int last_domain;
1410 int r = 0;
1411 int64_t i, j;
1412
1413 last_start = prange->start + offset;
1414
1415 pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1416 last_start, last_start + npages - 1, readonly);
1417
1418 for (i = offset; i < offset + npages; i++) {
1419 last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1420 dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1421
1422 /* Collect all pages in the same address range and memory domain
1423 * that can be mapped with a single call to update mapping.
1424 */
1425 if (i < offset + npages - 1 &&
1426 last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1427 continue;
1428
1429 pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1430 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1431
1432 pte_flags = svm_range_get_pte_flags(pdd->dev, vm, prange, last_domain);
1433 if (readonly)
1434 pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1435
1436 pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1437 prange->svms, last_start, prange->start + i,
1438 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1439 pte_flags);
1440
1441 /* For dGPU mode, we use same vm_manager to allocate VRAM for
1442 * different memory partition based on fpfn/lpfn, we should use
1443 * same vm_manager.vram_base_offset regardless memory partition.
1444 */
1445 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true,
1446 NULL, last_start, prange->start + i,
1447 pte_flags,
1448 (last_start - prange->start) << PAGE_SHIFT,
1449 bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1450 NULL, dma_addr, &vm->last_update);
1451
1452 for (j = last_start - prange->start; j <= i; j++)
1453 dma_addr[j] |= last_domain;
1454
1455 if (r) {
1456 pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1457 goto out;
1458 }
1459 last_start = prange->start + i + 1;
1460 }
1461
1462 r = amdgpu_vm_update_pdes(adev, vm, false);
1463 if (r) {
1464 pr_debug("failed %d to update directories 0x%lx\n", r,
1465 prange->start);
1466 goto out;
1467 }
1468
1469 if (fence)
1470 *fence = dma_fence_get(vm->last_update);
1471
1472 out:
1473 return r;
1474 }
1475
1476 static int
svm_range_map_to_gpus(struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,unsigned long * bitmap,bool wait,bool flush_tlb)1477 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1478 unsigned long npages, bool readonly,
1479 unsigned long *bitmap, bool wait, bool flush_tlb)
1480 {
1481 struct kfd_process_device *pdd;
1482 struct amdgpu_device *bo_adev = NULL;
1483 struct kfd_process *p;
1484 struct dma_fence *fence = NULL;
1485 uint32_t gpuidx;
1486 int r = 0;
1487
1488 if (prange->svm_bo && prange->ttm_res)
1489 bo_adev = prange->svm_bo->node->adev;
1490
1491 p = container_of(prange->svms, struct kfd_process, svms);
1492 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1493 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1494 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1495 if (!pdd) {
1496 pr_debug("failed to find device idx %d\n", gpuidx);
1497 return -EINVAL;
1498 }
1499
1500 pdd = kfd_bind_process_to_device(pdd->dev, p);
1501 if (IS_ERR(pdd))
1502 return -EINVAL;
1503
1504 if (bo_adev && pdd->dev->adev != bo_adev &&
1505 !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1506 pr_debug("cannot map to device idx %d\n", gpuidx);
1507 continue;
1508 }
1509
1510 r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1511 prange->dma_addr[gpuidx],
1512 bo_adev, wait ? &fence : NULL,
1513 flush_tlb);
1514 if (r)
1515 break;
1516
1517 if (fence) {
1518 r = dma_fence_wait(fence, false);
1519 dma_fence_put(fence);
1520 fence = NULL;
1521 if (r) {
1522 pr_debug("failed %d to dma fence wait\n", r);
1523 break;
1524 }
1525 }
1526
1527 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1528 }
1529
1530 return r;
1531 }
1532
1533 struct svm_validate_context {
1534 struct kfd_process *process;
1535 struct svm_range *prange;
1536 bool intr;
1537 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1538 struct drm_exec exec;
1539 };
1540
svm_range_reserve_bos(struct svm_validate_context * ctx,bool intr)1541 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1542 {
1543 struct kfd_process_device *pdd;
1544 struct amdgpu_vm *vm;
1545 uint32_t gpuidx;
1546 int r;
1547
1548 drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0, 0);
1549 drm_exec_until_all_locked(&ctx->exec) {
1550 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1551 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1552 if (!pdd) {
1553 pr_debug("failed to find device idx %d\n", gpuidx);
1554 r = -EINVAL;
1555 goto unreserve_out;
1556 }
1557 vm = drm_priv_to_vm(pdd->drm_priv);
1558
1559 r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1560 drm_exec_retry_on_contention(&ctx->exec);
1561 if (unlikely(r)) {
1562 pr_debug("failed %d to reserve bo\n", r);
1563 goto unreserve_out;
1564 }
1565 }
1566 }
1567
1568 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1569 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1570 if (!pdd) {
1571 pr_debug("failed to find device idx %d\n", gpuidx);
1572 r = -EINVAL;
1573 goto unreserve_out;
1574 }
1575
1576 r = amdgpu_vm_validate(pdd->dev->adev,
1577 drm_priv_to_vm(pdd->drm_priv), NULL,
1578 svm_range_bo_validate, NULL);
1579 if (r) {
1580 pr_debug("failed %d validate pt bos\n", r);
1581 goto unreserve_out;
1582 }
1583 }
1584
1585 return 0;
1586
1587 unreserve_out:
1588 drm_exec_fini(&ctx->exec);
1589 return r;
1590 }
1591
svm_range_unreserve_bos(struct svm_validate_context * ctx)1592 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1593 {
1594 drm_exec_fini(&ctx->exec);
1595 }
1596
kfd_svm_page_owner(struct kfd_process * p,int32_t gpuidx)1597 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1598 {
1599 struct kfd_process_device *pdd;
1600
1601 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1602 if (!pdd)
1603 return NULL;
1604
1605 return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1606 }
1607
1608 /*
1609 * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1610 *
1611 * To prevent concurrent destruction or change of range attributes, the
1612 * svm_read_lock must be held. The caller must not hold the svm_write_lock
1613 * because that would block concurrent evictions and lead to deadlocks. To
1614 * serialize concurrent migrations or validations of the same range, the
1615 * prange->migrate_mutex must be held.
1616 *
1617 * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1618 * eviction fence.
1619 *
1620 * The following sequence ensures race-free validation and GPU mapping:
1621 *
1622 * 1. Reserve page table (and SVM BO if range is in VRAM)
1623 * 2. hmm_range_fault to get page addresses (if system memory)
1624 * 3. DMA-map pages (if system memory)
1625 * 4-a. Take notifier lock
1626 * 4-b. Check that pages still valid (mmu_interval_read_retry)
1627 * 4-c. Check that the range was not split or otherwise invalidated
1628 * 4-d. Update GPU page table
1629 * 4.e. Release notifier lock
1630 * 5. Release page table (and SVM BO) reservation
1631 */
svm_range_validate_and_map(struct mm_struct * mm,unsigned long map_start,unsigned long map_last,struct svm_range * prange,int32_t gpuidx,bool intr,bool wait,bool flush_tlb)1632 static int svm_range_validate_and_map(struct mm_struct *mm,
1633 unsigned long map_start, unsigned long map_last,
1634 struct svm_range *prange, int32_t gpuidx,
1635 bool intr, bool wait, bool flush_tlb)
1636 {
1637 struct svm_validate_context *ctx;
1638 unsigned long start, end, addr;
1639 struct kfd_process *p;
1640 void *owner;
1641 int32_t idx;
1642 int r = 0;
1643
1644 ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1645 if (!ctx)
1646 return -ENOMEM;
1647 ctx->process = container_of(prange->svms, struct kfd_process, svms);
1648 ctx->prange = prange;
1649 ctx->intr = intr;
1650
1651 if (gpuidx < MAX_GPU_INSTANCE) {
1652 bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1653 bitmap_set(ctx->bitmap, gpuidx, 1);
1654 } else if (ctx->process->xnack_enabled) {
1655 bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1656
1657 /* If prefetch range to GPU, or GPU retry fault migrate range to
1658 * GPU, which has ACCESS attribute to the range, create mapping
1659 * on that GPU.
1660 */
1661 if (prange->actual_loc) {
1662 gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1663 prange->actual_loc);
1664 if (gpuidx < 0) {
1665 WARN_ONCE(1, "failed get device by id 0x%x\n",
1666 prange->actual_loc);
1667 r = -EINVAL;
1668 goto free_ctx;
1669 }
1670 if (test_bit(gpuidx, prange->bitmap_access))
1671 bitmap_set(ctx->bitmap, gpuidx, 1);
1672 }
1673
1674 /*
1675 * If prange is already mapped or with always mapped flag,
1676 * update mapping on GPUs with ACCESS attribute
1677 */
1678 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1679 if (prange->mapped_to_gpu ||
1680 prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1681 bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1682 }
1683 } else {
1684 bitmap_or(ctx->bitmap, prange->bitmap_access,
1685 prange->bitmap_aip, MAX_GPU_INSTANCE);
1686 }
1687
1688 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1689 r = 0;
1690 goto free_ctx;
1691 }
1692
1693 if (prange->actual_loc && !prange->ttm_res) {
1694 /* This should never happen. actual_loc gets set by
1695 * svm_migrate_ram_to_vram after allocating a BO.
1696 */
1697 WARN_ONCE(1, "VRAM BO missing during validation\n");
1698 r = -EINVAL;
1699 goto free_ctx;
1700 }
1701
1702 r = svm_range_reserve_bos(ctx, intr);
1703 if (r)
1704 goto free_ctx;
1705
1706 p = container_of(prange->svms, struct kfd_process, svms);
1707 owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1708 MAX_GPU_INSTANCE));
1709 for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1710 if (kfd_svm_page_owner(p, idx) != owner) {
1711 owner = NULL;
1712 break;
1713 }
1714 }
1715
1716 start = map_start << PAGE_SHIFT;
1717 end = (map_last + 1) << PAGE_SHIFT;
1718 for (addr = start; !r && addr < end; ) {
1719 struct amdgpu_hmm_range *range = NULL;
1720 unsigned long map_start_vma;
1721 unsigned long map_last_vma;
1722 struct vm_area_struct *vma;
1723 unsigned long next = 0;
1724 unsigned long offset;
1725 unsigned long npages;
1726 bool readonly;
1727
1728 vma = vma_lookup(mm, addr);
1729 if (vma) {
1730 readonly = !(vma->vm_flags & VM_WRITE);
1731
1732 next = min(vma->vm_end, end);
1733 npages = (next - addr) >> PAGE_SHIFT;
1734 /* HMM requires at least READ permissions. If provided with PROT_NONE,
1735 * unmap the memory. If it's not already mapped, this is a no-op
1736 * If PROT_WRITE is provided without READ, warn first then unmap
1737 */
1738 if (!(vma->vm_flags & VM_READ)) {
1739 unsigned long e, s;
1740
1741 svm_range_lock(prange);
1742 if (vma->vm_flags & VM_WRITE)
1743 pr_debug("VM_WRITE without VM_READ is not supported");
1744 s = max(start, prange->start);
1745 e = min(end, prange->last);
1746 if (e >= s)
1747 r = svm_range_unmap_from_gpus(prange, s, e,
1748 KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU);
1749 svm_range_unlock(prange);
1750 /* If unmap returns non-zero, we'll bail on the next for loop
1751 * iteration, so just leave r and continue
1752 */
1753 addr = next;
1754 continue;
1755 }
1756
1757 WRITE_ONCE(p->svms.faulting_task, current);
1758 range = amdgpu_hmm_range_alloc(NULL);
1759 if (likely(range))
1760 r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1761 readonly, owner, range);
1762 else
1763 r = -ENOMEM;
1764 WRITE_ONCE(p->svms.faulting_task, NULL);
1765 if (r)
1766 pr_debug("failed %d to get svm range pages\n", r);
1767 } else {
1768 r = -EFAULT;
1769 }
1770
1771 if (!r) {
1772 offset = (addr >> PAGE_SHIFT) - prange->start;
1773 r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1774 range->hmm_range.hmm_pfns);
1775 if (r)
1776 pr_debug("failed %d to dma map range\n", r);
1777 }
1778
1779 svm_range_lock(prange);
1780
1781 /* Free backing memory of hmm_range if it was initialized
1782 * Override return value to TRY AGAIN only if prior returns
1783 * were successful
1784 */
1785 if (range && !amdgpu_hmm_range_valid(range) && !r) {
1786 pr_debug("hmm update the range, need validate again\n");
1787 r = -EAGAIN;
1788 }
1789
1790 /* Free the hmm range */
1791 amdgpu_hmm_range_free(range);
1792
1793 if (!r && !list_empty(&prange->child_list)) {
1794 pr_debug("range split by unmap in parallel, validate again\n");
1795 r = -EAGAIN;
1796 }
1797
1798 if (!r) {
1799 map_start_vma = max(map_start, prange->start + offset);
1800 map_last_vma = min(map_last, prange->start + offset + npages - 1);
1801 if (map_start_vma <= map_last_vma) {
1802 offset = map_start_vma - prange->start;
1803 npages = map_last_vma - map_start_vma + 1;
1804 r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1805 ctx->bitmap, wait, flush_tlb);
1806 }
1807 }
1808
1809 if (!r && next == end)
1810 prange->mapped_to_gpu = true;
1811
1812 svm_range_unlock(prange);
1813
1814 addr = next;
1815 }
1816
1817 svm_range_unreserve_bos(ctx);
1818 if (!r)
1819 prange->validate_timestamp = ktime_get_boottime();
1820
1821 free_ctx:
1822 kfree(ctx);
1823
1824 return r;
1825 }
1826
1827 /**
1828 * svm_range_list_lock_and_flush_work - flush pending deferred work
1829 *
1830 * @svms: the svm range list
1831 * @mm: the mm structure
1832 *
1833 * Context: Returns with mmap write lock held, pending deferred work flushed
1834 *
1835 */
1836 void
svm_range_list_lock_and_flush_work(struct svm_range_list * svms,struct mm_struct * mm)1837 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1838 struct mm_struct *mm)
1839 {
1840 retry_flush_work:
1841 flush_work(&svms->deferred_list_work);
1842 mmap_write_lock(mm);
1843
1844 if (list_empty(&svms->deferred_range_list))
1845 return;
1846 mmap_write_unlock(mm);
1847 pr_debug("retry flush\n");
1848 goto retry_flush_work;
1849 }
1850
svm_range_restore_work(struct work_struct * work)1851 static void svm_range_restore_work(struct work_struct *work)
1852 {
1853 struct delayed_work *dwork = to_delayed_work(work);
1854 struct amdkfd_process_info *process_info;
1855 struct svm_range_list *svms;
1856 struct svm_range *prange;
1857 struct kfd_process *p;
1858 struct mm_struct *mm;
1859 int evicted_ranges;
1860 int invalid;
1861 int r;
1862
1863 svms = container_of(dwork, struct svm_range_list, restore_work);
1864 evicted_ranges = atomic_read(&svms->evicted_ranges);
1865 if (!evicted_ranges)
1866 return;
1867
1868 pr_debug("restore svm ranges\n");
1869
1870 p = container_of(svms, struct kfd_process, svms);
1871 process_info = p->kgd_process_info;
1872
1873 /* Keep mm reference when svm_range_validate_and_map ranges */
1874 mm = get_task_mm(p->lead_thread);
1875 if (!mm) {
1876 pr_debug("svms 0x%p process mm gone\n", svms);
1877 return;
1878 }
1879
1880 mutex_lock(&process_info->lock);
1881 svm_range_list_lock_and_flush_work(svms, mm);
1882 mutex_lock(&svms->lock);
1883
1884 evicted_ranges = atomic_read(&svms->evicted_ranges);
1885
1886 list_for_each_entry(prange, &svms->list, list) {
1887 invalid = atomic_read(&prange->invalid);
1888 if (!invalid)
1889 continue;
1890
1891 pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1892 prange->svms, prange, prange->start, prange->last,
1893 invalid);
1894
1895 /*
1896 * If range is migrating, wait for migration is done.
1897 */
1898 mutex_lock(&prange->migrate_mutex);
1899
1900 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
1901 MAX_GPU_INSTANCE, false, true, false);
1902 if (r)
1903 pr_debug("failed %d to map 0x%lx to gpus\n", r,
1904 prange->start);
1905
1906 mutex_unlock(&prange->migrate_mutex);
1907 if (r)
1908 goto out_reschedule;
1909
1910 if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1911 goto out_reschedule;
1912 }
1913
1914 if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1915 evicted_ranges)
1916 goto out_reschedule;
1917
1918 evicted_ranges = 0;
1919
1920 r = kgd2kfd_resume_mm(mm);
1921 if (r) {
1922 /* No recovery from this failure. Probably the CP is
1923 * hanging. No point trying again.
1924 */
1925 pr_debug("failed %d to resume KFD\n", r);
1926 }
1927
1928 pr_debug("restore svm ranges successfully\n");
1929
1930 out_reschedule:
1931 mutex_unlock(&svms->lock);
1932 mmap_write_unlock(mm);
1933 mutex_unlock(&process_info->lock);
1934
1935 /* If validation failed, reschedule another attempt */
1936 if (evicted_ranges) {
1937 pr_debug("reschedule to restore svm range\n");
1938 queue_delayed_work(system_freezable_wq, &svms->restore_work,
1939 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1940
1941 kfd_smi_event_queue_restore_rescheduled(mm);
1942 }
1943 mmput(mm);
1944 }
1945
1946 /**
1947 * svm_range_evict - evict svm range
1948 * @prange: svm range structure
1949 * @mm: current process mm_struct
1950 * @start: starting process queue number
1951 * @last: last process queue number
1952 * @event: mmu notifier event when range is evicted or migrated
1953 *
1954 * Stop all queues of the process to ensure GPU doesn't access the memory, then
1955 * return to let CPU evict the buffer and proceed CPU pagetable update.
1956 *
1957 * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1958 * If invalidation happens while restore work is running, restore work will
1959 * restart to ensure to get the latest CPU pages mapping to GPU, then start
1960 * the queues.
1961 */
1962 static int
svm_range_evict(struct svm_range * prange,struct mm_struct * mm,unsigned long start,unsigned long last,enum mmu_notifier_event event)1963 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1964 unsigned long start, unsigned long last,
1965 enum mmu_notifier_event event)
1966 {
1967 struct svm_range_list *svms = prange->svms;
1968 struct svm_range *pchild;
1969 struct kfd_process *p;
1970 int r = 0;
1971
1972 p = container_of(svms, struct kfd_process, svms);
1973
1974 pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1975 svms, prange->start, prange->last, start, last);
1976
1977 if (!p->xnack_enabled ||
1978 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1979 int evicted_ranges;
1980 bool mapped = prange->mapped_to_gpu;
1981
1982 list_for_each_entry(pchild, &prange->child_list, child_list) {
1983 if (!pchild->mapped_to_gpu)
1984 continue;
1985 mapped = true;
1986 mutex_lock_nested(&pchild->lock, 1);
1987 if (pchild->start <= last && pchild->last >= start) {
1988 pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1989 pchild->start, pchild->last);
1990 atomic_inc(&pchild->invalid);
1991 }
1992 mutex_unlock(&pchild->lock);
1993 }
1994
1995 if (!mapped)
1996 return r;
1997
1998 if (prange->start <= last && prange->last >= start)
1999 atomic_inc(&prange->invalid);
2000
2001 evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
2002 if (evicted_ranges != 1)
2003 return r;
2004
2005 pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
2006 prange->svms, prange->start, prange->last);
2007
2008 /* First eviction, stop the queues */
2009 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
2010 if (r)
2011 pr_debug("failed to quiesce KFD\n");
2012
2013 pr_debug("schedule to restore svm %p ranges\n", svms);
2014 queue_delayed_work(system_freezable_wq, &svms->restore_work,
2015 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
2016 } else {
2017 unsigned long s, l;
2018 uint32_t trigger;
2019
2020 if (event == MMU_NOTIFY_MIGRATE)
2021 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
2022 else
2023 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
2024
2025 pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
2026 prange->svms, start, last);
2027 list_for_each_entry(pchild, &prange->child_list, child_list) {
2028 mutex_lock_nested(&pchild->lock, 1);
2029 s = max(start, pchild->start);
2030 l = min(last, pchild->last);
2031 if (l >= s)
2032 svm_range_unmap_from_gpus(pchild, s, l, trigger);
2033 mutex_unlock(&pchild->lock);
2034 }
2035 s = max(start, prange->start);
2036 l = min(last, prange->last);
2037 if (l >= s)
2038 svm_range_unmap_from_gpus(prange, s, l, trigger);
2039 }
2040
2041 return r;
2042 }
2043
svm_range_clone(struct svm_range * old)2044 static struct svm_range *svm_range_clone(struct svm_range *old)
2045 {
2046 struct svm_range *new;
2047
2048 new = svm_range_new(old->svms, old->start, old->last, false);
2049 if (!new)
2050 return NULL;
2051 if (svm_range_copy_dma_addrs(new, old)) {
2052 svm_range_free(new, false);
2053 return NULL;
2054 }
2055 if (old->svm_bo) {
2056 new->ttm_res = old->ttm_res;
2057 new->offset = old->offset;
2058 new->svm_bo = svm_range_bo_ref(old->svm_bo);
2059 spin_lock(&new->svm_bo->list_lock);
2060 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
2061 spin_unlock(&new->svm_bo->list_lock);
2062 }
2063 new->flags = old->flags;
2064 new->preferred_loc = old->preferred_loc;
2065 new->prefetch_loc = old->prefetch_loc;
2066 new->actual_loc = old->actual_loc;
2067 new->granularity = old->granularity;
2068 new->mapped_to_gpu = old->mapped_to_gpu;
2069 new->vram_pages = old->vram_pages;
2070 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
2071 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
2072 atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
2073
2074 return new;
2075 }
2076
svm_range_set_max_pages(struct amdgpu_device * adev)2077 void svm_range_set_max_pages(struct amdgpu_device *adev)
2078 {
2079 uint64_t max_pages;
2080 uint64_t pages, _pages;
2081 uint64_t min_pages = 0;
2082 int i, id;
2083
2084 for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
2085 if (adev->kfd.dev->nodes[i]->xcp)
2086 id = adev->kfd.dev->nodes[i]->xcp->id;
2087 else
2088 id = -1;
2089 pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2090 pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2091 pages = rounddown_pow_of_two(pages);
2092 min_pages = min_not_zero(min_pages, pages);
2093 }
2094
2095 do {
2096 max_pages = READ_ONCE(max_svm_range_pages);
2097 _pages = min_not_zero(max_pages, min_pages);
2098 } while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2099 }
2100
2101 static int
svm_range_split_new(struct svm_range_list * svms,uint64_t start,uint64_t last,uint64_t max_pages,struct list_head * insert_list,struct list_head * update_list)2102 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2103 uint64_t max_pages, struct list_head *insert_list,
2104 struct list_head *update_list)
2105 {
2106 struct svm_range *prange;
2107 uint64_t l;
2108
2109 pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2110 max_pages, start, last);
2111
2112 while (last >= start) {
2113 l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2114
2115 prange = svm_range_new(svms, start, l, true);
2116 if (!prange)
2117 return -ENOMEM;
2118 list_add(&prange->list, insert_list);
2119 list_add(&prange->update_list, update_list);
2120
2121 start = l + 1;
2122 }
2123 return 0;
2124 }
2125
2126 /**
2127 * svm_range_add - add svm range and handle overlap
2128 * @p: the range add to this process svms
2129 * @start: page size aligned
2130 * @size: page size aligned
2131 * @nattr: number of attributes
2132 * @attrs: array of attributes
2133 * @update_list: output, the ranges need validate and update GPU mapping
2134 * @insert_list: output, the ranges need insert to svms
2135 * @remove_list: output, the ranges are replaced and need remove from svms
2136 * @remap_list: output, remap unaligned svm ranges
2137 *
2138 * Check if the virtual address range has overlap with any existing ranges,
2139 * split partly overlapping ranges and add new ranges in the gaps. All changes
2140 * should be applied to the range_list and interval tree transactionally. If
2141 * any range split or allocation fails, the entire update fails. Therefore any
2142 * existing overlapping svm_ranges are cloned and the original svm_ranges left
2143 * unchanged.
2144 *
2145 * If the transaction succeeds, the caller can update and insert clones and
2146 * new ranges, then free the originals.
2147 *
2148 * Otherwise the caller can free the clones and new ranges, while the old
2149 * svm_ranges remain unchanged.
2150 *
2151 * Context: Process context, caller must hold svms->lock
2152 *
2153 * Return:
2154 * 0 - OK, otherwise error code
2155 */
2156 static int
svm_range_add(struct kfd_process * p,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,struct list_head * update_list,struct list_head * insert_list,struct list_head * remove_list,struct list_head * remap_list)2157 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2158 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2159 struct list_head *update_list, struct list_head *insert_list,
2160 struct list_head *remove_list, struct list_head *remap_list)
2161 {
2162 unsigned long last = start + size - 1UL;
2163 struct svm_range_list *svms = &p->svms;
2164 struct interval_tree_node *node;
2165 struct svm_range *prange;
2166 struct svm_range *tmp;
2167 struct list_head new_list;
2168 int r = 0;
2169
2170 pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2171
2172 INIT_LIST_HEAD(update_list);
2173 INIT_LIST_HEAD(insert_list);
2174 INIT_LIST_HEAD(remove_list);
2175 INIT_LIST_HEAD(&new_list);
2176 INIT_LIST_HEAD(remap_list);
2177
2178 node = interval_tree_iter_first(&svms->objects, start, last);
2179 while (node) {
2180 struct interval_tree_node *next;
2181 unsigned long next_start;
2182
2183 pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2184 node->last);
2185
2186 prange = container_of(node, struct svm_range, it_node);
2187 next = interval_tree_iter_next(node, start, last);
2188 next_start = min(node->last, last) + 1;
2189
2190 if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2191 prange->mapped_to_gpu) {
2192 /* nothing to do */
2193 } else if (node->start < start || node->last > last) {
2194 /* node intersects the update range and its attributes
2195 * will change. Clone and split it, apply updates only
2196 * to the overlapping part
2197 */
2198 struct svm_range *old = prange;
2199
2200 prange = svm_range_clone(old);
2201 if (!prange) {
2202 r = -ENOMEM;
2203 goto out;
2204 }
2205
2206 list_add(&old->update_list, remove_list);
2207 list_add(&prange->list, insert_list);
2208 list_add(&prange->update_list, update_list);
2209
2210 if (node->start < start) {
2211 pr_debug("change old range start\n");
2212 r = svm_range_split_head(prange, start,
2213 insert_list, remap_list);
2214 if (r)
2215 goto out;
2216 }
2217 if (node->last > last) {
2218 pr_debug("change old range last\n");
2219 r = svm_range_split_tail(prange, last,
2220 insert_list, remap_list);
2221 if (r)
2222 goto out;
2223 }
2224 } else {
2225 /* The node is contained within start..last,
2226 * just update it
2227 */
2228 list_add(&prange->update_list, update_list);
2229 }
2230
2231 /* insert a new node if needed */
2232 if (node->start > start) {
2233 r = svm_range_split_new(svms, start, node->start - 1,
2234 READ_ONCE(max_svm_range_pages),
2235 &new_list, update_list);
2236 if (r)
2237 goto out;
2238 }
2239
2240 node = next;
2241 start = next_start;
2242 }
2243
2244 /* add a final range at the end if needed */
2245 if (start <= last)
2246 r = svm_range_split_new(svms, start, last,
2247 READ_ONCE(max_svm_range_pages),
2248 &new_list, update_list);
2249
2250 out:
2251 if (r) {
2252 list_for_each_entry_safe(prange, tmp, insert_list, list)
2253 svm_range_free(prange, false);
2254 list_for_each_entry_safe(prange, tmp, &new_list, list)
2255 svm_range_free(prange, true);
2256 } else {
2257 list_splice(&new_list, insert_list);
2258 }
2259
2260 return r;
2261 }
2262
2263 static void
svm_range_update_notifier_and_interval_tree(struct mm_struct * mm,struct svm_range * prange)2264 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2265 struct svm_range *prange)
2266 {
2267 unsigned long start;
2268 unsigned long last;
2269
2270 start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2271 last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2272
2273 if (prange->start == start && prange->last == last)
2274 return;
2275
2276 pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2277 prange->svms, prange, start, last, prange->start,
2278 prange->last);
2279
2280 if (start != 0 && last != 0) {
2281 interval_tree_remove(&prange->it_node, &prange->svms->objects);
2282 svm_range_remove_notifier(prange);
2283 }
2284 prange->it_node.start = prange->start;
2285 prange->it_node.last = prange->last;
2286
2287 interval_tree_insert(&prange->it_node, &prange->svms->objects);
2288 svm_range_add_notifier_locked(mm, prange);
2289 }
2290
2291 static void
svm_range_handle_list_op(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm)2292 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2293 struct mm_struct *mm)
2294 {
2295 switch (prange->work_item.op) {
2296 case SVM_OP_NULL:
2297 pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2298 svms, prange, prange->start, prange->last);
2299 break;
2300 case SVM_OP_UNMAP_RANGE:
2301 pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2302 svms, prange, prange->start, prange->last);
2303 svm_range_unlink(prange);
2304 svm_range_remove_notifier(prange);
2305 svm_range_free(prange, true);
2306 break;
2307 case SVM_OP_UPDATE_RANGE_NOTIFIER:
2308 pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2309 svms, prange, prange->start, prange->last);
2310 svm_range_update_notifier_and_interval_tree(mm, prange);
2311 break;
2312 case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2313 pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2314 svms, prange, prange->start, prange->last);
2315 svm_range_update_notifier_and_interval_tree(mm, prange);
2316 /* TODO: implement deferred validation and mapping */
2317 break;
2318 case SVM_OP_ADD_RANGE:
2319 pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2320 prange->start, prange->last);
2321 svm_range_add_to_svms(prange);
2322 svm_range_add_notifier_locked(mm, prange);
2323 break;
2324 case SVM_OP_ADD_RANGE_AND_MAP:
2325 pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2326 prange, prange->start, prange->last);
2327 svm_range_add_to_svms(prange);
2328 svm_range_add_notifier_locked(mm, prange);
2329 /* TODO: implement deferred validation and mapping */
2330 break;
2331 default:
2332 WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2333 prange->work_item.op);
2334 }
2335 }
2336
svm_range_drain_retry_fault(struct svm_range_list * svms)2337 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2338 {
2339 struct kfd_process_device *pdd;
2340 struct kfd_process *p;
2341 uint32_t i;
2342
2343 p = container_of(svms, struct kfd_process, svms);
2344
2345 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2346 pdd = p->pdds[i];
2347 if (!pdd)
2348 continue;
2349
2350 pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2351
2352 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2353 pdd->dev->adev->irq.retry_cam_enabled ?
2354 &pdd->dev->adev->irq.ih :
2355 &pdd->dev->adev->irq.ih1);
2356
2357 if (pdd->dev->adev->irq.retry_cam_enabled)
2358 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2359 &pdd->dev->adev->irq.ih_soft);
2360
2361
2362 pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2363 }
2364 }
2365
svm_range_deferred_list_work(struct work_struct * work)2366 static void svm_range_deferred_list_work(struct work_struct *work)
2367 {
2368 struct svm_range_list *svms;
2369 struct svm_range *prange;
2370 struct mm_struct *mm;
2371
2372 svms = container_of(work, struct svm_range_list, deferred_list_work);
2373 pr_debug("enter svms 0x%p\n", svms);
2374
2375 spin_lock(&svms->deferred_list_lock);
2376 while (!list_empty(&svms->deferred_range_list)) {
2377 prange = list_first_entry(&svms->deferred_range_list,
2378 struct svm_range, deferred_list);
2379 spin_unlock(&svms->deferred_list_lock);
2380
2381 pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2382 prange->start, prange->last, prange->work_item.op);
2383
2384 mm = prange->work_item.mm;
2385
2386 mmap_write_lock(mm);
2387
2388 /* Remove from deferred_list must be inside mmap write lock, for
2389 * two race cases:
2390 * 1. unmap_from_cpu may change work_item.op and add the range
2391 * to deferred_list again, cause use after free bug.
2392 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2393 * lock and continue because deferred_list is empty, but
2394 * deferred_list work is actually waiting for mmap lock.
2395 */
2396 spin_lock(&svms->deferred_list_lock);
2397 list_del_init(&prange->deferred_list);
2398 spin_unlock(&svms->deferred_list_lock);
2399
2400 mutex_lock(&svms->lock);
2401 mutex_lock(&prange->migrate_mutex);
2402 while (!list_empty(&prange->child_list)) {
2403 struct svm_range *pchild;
2404
2405 pchild = list_first_entry(&prange->child_list,
2406 struct svm_range, child_list);
2407 pr_debug("child prange 0x%p op %d\n", pchild,
2408 pchild->work_item.op);
2409 list_del_init(&pchild->child_list);
2410 svm_range_handle_list_op(svms, pchild, mm);
2411 }
2412 mutex_unlock(&prange->migrate_mutex);
2413
2414 svm_range_handle_list_op(svms, prange, mm);
2415 mutex_unlock(&svms->lock);
2416 mmap_write_unlock(mm);
2417
2418 /* Pairs with mmget in svm_range_add_list_work. If dropping the
2419 * last mm refcount, schedule release work to avoid circular locking
2420 */
2421 mmput_async(mm);
2422
2423 spin_lock(&svms->deferred_list_lock);
2424 }
2425 spin_unlock(&svms->deferred_list_lock);
2426 pr_debug("exit svms 0x%p\n", svms);
2427 }
2428
2429 void
svm_range_add_list_work(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm,enum svm_work_list_ops op)2430 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2431 struct mm_struct *mm, enum svm_work_list_ops op)
2432 {
2433 spin_lock(&svms->deferred_list_lock);
2434 /* if prange is on the deferred list */
2435 if (!list_empty(&prange->deferred_list)) {
2436 pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2437 WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2438 if (op != SVM_OP_NULL &&
2439 prange->work_item.op != SVM_OP_UNMAP_RANGE)
2440 prange->work_item.op = op;
2441 } else {
2442 /* Pairs with mmput in deferred_list_work.
2443 * If process is exiting and mm is gone, don't update mmu notifier.
2444 */
2445 if (mmget_not_zero(mm)) {
2446 prange->work_item.mm = mm;
2447 prange->work_item.op = op;
2448 list_add_tail(&prange->deferred_list,
2449 &prange->svms->deferred_range_list);
2450 pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2451 prange, prange->start, prange->last, op);
2452 }
2453 }
2454 spin_unlock(&svms->deferred_list_lock);
2455 }
2456
schedule_deferred_list_work(struct svm_range_list * svms)2457 void schedule_deferred_list_work(struct svm_range_list *svms)
2458 {
2459 spin_lock(&svms->deferred_list_lock);
2460 if (!list_empty(&svms->deferred_range_list))
2461 schedule_work(&svms->deferred_list_work);
2462 spin_unlock(&svms->deferred_list_lock);
2463 }
2464
2465 static void
svm_range_unmap_split(struct svm_range * parent,struct svm_range * prange,unsigned long start,unsigned long last)2466 svm_range_unmap_split(struct svm_range *parent, struct svm_range *prange, unsigned long start,
2467 unsigned long last)
2468 {
2469 struct svm_range *head;
2470 struct svm_range *tail;
2471
2472 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2473 pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2474 prange->start, prange->last);
2475 return;
2476 }
2477 if (start > prange->last || last < prange->start)
2478 return;
2479
2480 head = tail = prange;
2481 if (start > prange->start)
2482 svm_range_split(prange, prange->start, start - 1, &tail);
2483 if (last < tail->last)
2484 svm_range_split(tail, last + 1, tail->last, &head);
2485
2486 if (head != prange && tail != prange) {
2487 svm_range_add_child(parent, head, SVM_OP_UNMAP_RANGE);
2488 svm_range_add_child(parent, tail, SVM_OP_ADD_RANGE);
2489 } else if (tail != prange) {
2490 svm_range_add_child(parent, tail, SVM_OP_UNMAP_RANGE);
2491 } else if (head != prange) {
2492 svm_range_add_child(parent, head, SVM_OP_UNMAP_RANGE);
2493 } else if (parent != prange) {
2494 prange->work_item.op = SVM_OP_UNMAP_RANGE;
2495 }
2496 }
2497
2498 static void
svm_range_unmap_from_cpu(struct mm_struct * mm,struct svm_range * prange,unsigned long start,unsigned long last)2499 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2500 unsigned long start, unsigned long last)
2501 {
2502 uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2503 struct svm_range_list *svms;
2504 struct svm_range *pchild;
2505 struct kfd_process *p;
2506 unsigned long s, l;
2507 bool unmap_parent;
2508 uint32_t i;
2509
2510 if (atomic_read(&prange->queue_refcount)) {
2511 int r;
2512
2513 pr_warn("Freeing queue vital buffer 0x%lx, queue evicted\n",
2514 prange->start << PAGE_SHIFT);
2515 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
2516 if (r)
2517 pr_debug("failed %d to quiesce KFD queues\n", r);
2518 }
2519
2520 p = kfd_lookup_process_by_mm(mm);
2521 if (!p)
2522 return;
2523 svms = &p->svms;
2524
2525 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2526 prange, prange->start, prange->last, start, last);
2527
2528 /* calculate time stamps that are used to decide which page faults need be
2529 * dropped or handled before unmap pages from gpu vm
2530 */
2531 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2532 struct kfd_process_device *pdd;
2533 struct amdgpu_device *adev;
2534 struct amdgpu_ih_ring *ih;
2535 uint32_t checkpoint_wptr;
2536
2537 pdd = p->pdds[i];
2538 if (!pdd)
2539 continue;
2540
2541 adev = pdd->dev->adev;
2542
2543 /* Check and drain ih1 ring if cam not available */
2544 if (adev->irq.ih1.ring_size) {
2545 ih = &adev->irq.ih1;
2546 checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2547 if (ih->rptr != checkpoint_wptr) {
2548 svms->checkpoint_ts[i] =
2549 amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2550 continue;
2551 }
2552 }
2553
2554 /* check if dev->irq.ih_soft is not empty */
2555 ih = &adev->irq.ih_soft;
2556 checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2557 if (ih->rptr != checkpoint_wptr)
2558 svms->checkpoint_ts[i] = amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2559 }
2560
2561 unmap_parent = start <= prange->start && last >= prange->last;
2562
2563 list_for_each_entry(pchild, &prange->child_list, child_list) {
2564 mutex_lock_nested(&pchild->lock, 1);
2565 s = max(start, pchild->start);
2566 l = min(last, pchild->last);
2567 if (l >= s)
2568 svm_range_unmap_from_gpus(pchild, s, l, trigger);
2569 svm_range_unmap_split(prange, pchild, start, last);
2570 mutex_unlock(&pchild->lock);
2571 }
2572 s = max(start, prange->start);
2573 l = min(last, prange->last);
2574 if (l >= s)
2575 svm_range_unmap_from_gpus(prange, s, l, trigger);
2576 svm_range_unmap_split(prange, prange, start, last);
2577
2578 if (unmap_parent)
2579 svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2580 else
2581 svm_range_add_list_work(svms, prange, mm,
2582 SVM_OP_UPDATE_RANGE_NOTIFIER);
2583 schedule_deferred_list_work(svms);
2584
2585 kfd_unref_process(p);
2586 }
2587
2588 /**
2589 * svm_range_cpu_invalidate_pagetables - interval notifier callback
2590 * @mni: mmu_interval_notifier struct
2591 * @range: mmu_notifier_range struct
2592 * @cur_seq: value to pass to mmu_interval_set_seq()
2593 *
2594 * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2595 * is from migration, or CPU page invalidation callback.
2596 *
2597 * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2598 * work thread, and split prange if only part of prange is unmapped.
2599 *
2600 * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2601 * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2602 * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2603 * update GPU mapping to recover.
2604 *
2605 * Context: mmap lock, notifier_invalidate_start lock are held
2606 * for invalidate event, prange lock is held if this is from migration
2607 */
2608 static bool
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)2609 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2610 const struct mmu_notifier_range *range,
2611 unsigned long cur_seq)
2612 {
2613 struct svm_range *prange;
2614 unsigned long start;
2615 unsigned long last;
2616
2617 if (range->event == MMU_NOTIFY_RELEASE)
2618 return true;
2619
2620 start = mni->interval_tree.start;
2621 last = mni->interval_tree.last;
2622 start = max(start, range->start) >> PAGE_SHIFT;
2623 last = min(last, range->end - 1) >> PAGE_SHIFT;
2624 pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2625 start, last, range->start >> PAGE_SHIFT,
2626 (range->end - 1) >> PAGE_SHIFT,
2627 mni->interval_tree.start >> PAGE_SHIFT,
2628 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2629
2630 prange = container_of(mni, struct svm_range, notifier);
2631
2632 svm_range_lock(prange);
2633 mmu_interval_set_seq(mni, cur_seq);
2634
2635 switch (range->event) {
2636 case MMU_NOTIFY_UNMAP:
2637 svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2638 break;
2639 default:
2640 svm_range_evict(prange, mni->mm, start, last, range->event);
2641 break;
2642 }
2643
2644 svm_range_unlock(prange);
2645
2646 return true;
2647 }
2648
2649 /**
2650 * svm_range_from_addr - find svm range from fault address
2651 * @svms: svm range list header
2652 * @addr: address to search range interval tree, in pages
2653 * @parent: parent range if range is on child list
2654 *
2655 * Context: The caller must hold svms->lock
2656 *
2657 * Return: the svm_range found or NULL
2658 */
2659 struct svm_range *
svm_range_from_addr(struct svm_range_list * svms,unsigned long addr,struct svm_range ** parent)2660 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2661 struct svm_range **parent)
2662 {
2663 struct interval_tree_node *node;
2664 struct svm_range *prange;
2665 struct svm_range *pchild;
2666
2667 node = interval_tree_iter_first(&svms->objects, addr, addr);
2668 if (!node)
2669 return NULL;
2670
2671 prange = container_of(node, struct svm_range, it_node);
2672 pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2673 addr, prange->start, prange->last, node->start, node->last);
2674
2675 if (addr >= prange->start && addr <= prange->last) {
2676 if (parent)
2677 *parent = prange;
2678 return prange;
2679 }
2680 list_for_each_entry(pchild, &prange->child_list, child_list)
2681 if (addr >= pchild->start && addr <= pchild->last) {
2682 pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2683 addr, pchild->start, pchild->last);
2684 if (parent)
2685 *parent = prange;
2686 return pchild;
2687 }
2688
2689 return NULL;
2690 }
2691
2692 /* svm_range_best_restore_location - decide the best fault restore location
2693 * @prange: svm range structure
2694 * @adev: the GPU on which vm fault happened
2695 *
2696 * This is only called when xnack is on, to decide the best location to restore
2697 * the range mapping after GPU vm fault. Caller uses the best location to do
2698 * migration if actual loc is not best location, then update GPU page table
2699 * mapping to the best location.
2700 *
2701 * If the preferred loc is accessible by faulting GPU, use preferred loc.
2702 * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2703 * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2704 * if range actual loc is cpu, best_loc is cpu
2705 * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2706 * range actual loc.
2707 * Otherwise, GPU no access, best_loc is -1.
2708 *
2709 * Return:
2710 * -1 means vm fault GPU no access
2711 * 0 for CPU or GPU id
2712 */
2713 static int32_t
svm_range_best_restore_location(struct svm_range * prange,struct kfd_node * node,int32_t * gpuidx)2714 svm_range_best_restore_location(struct svm_range *prange,
2715 struct kfd_node *node,
2716 int32_t *gpuidx)
2717 {
2718 struct kfd_node *bo_node, *preferred_node;
2719 struct kfd_process *p;
2720 uint32_t gpuid;
2721 int r;
2722
2723 p = container_of(prange->svms, struct kfd_process, svms);
2724
2725 r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2726 if (r < 0) {
2727 pr_debug("failed to get gpuid from kgd\n");
2728 return -1;
2729 }
2730
2731 if (node->adev->apu_prefer_gtt)
2732 return 0;
2733
2734 if (prange->preferred_loc == gpuid ||
2735 prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2736 return prange->preferred_loc;
2737 } else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2738 preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2739 if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2740 return prange->preferred_loc;
2741 /* fall through */
2742 }
2743
2744 if (test_bit(*gpuidx, prange->bitmap_access))
2745 return gpuid;
2746
2747 if (test_bit(*gpuidx, prange->bitmap_aip)) {
2748 if (!prange->actual_loc)
2749 return 0;
2750
2751 bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2752 if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2753 return prange->actual_loc;
2754 else
2755 return 0;
2756 }
2757
2758 return -1;
2759 }
2760
2761 static int
svm_range_get_range_boundaries(struct kfd_process * p,int64_t addr,unsigned long * start,unsigned long * last,bool * is_heap_stack)2762 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2763 unsigned long *start, unsigned long *last,
2764 bool *is_heap_stack)
2765 {
2766 struct vm_area_struct *vma;
2767 struct interval_tree_node *node;
2768 struct rb_node *rb_node;
2769 unsigned long start_limit, end_limit;
2770
2771 vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2772 if (!vma) {
2773 pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2774 return -EFAULT;
2775 }
2776
2777 *is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2778
2779 start_limit = max(vma->vm_start >> PAGE_SHIFT,
2780 (unsigned long)ALIGN_DOWN(addr, 1UL << p->svms.default_granularity));
2781 end_limit = min(vma->vm_end >> PAGE_SHIFT,
2782 (unsigned long)ALIGN(addr + 1, 1UL << p->svms.default_granularity));
2783
2784 /* First range that starts after the fault address */
2785 node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2786 if (node) {
2787 end_limit = min(end_limit, node->start);
2788 /* Last range that ends before the fault address */
2789 rb_node = rb_prev(&node->rb);
2790 } else {
2791 /* Last range must end before addr because
2792 * there was no range after addr
2793 */
2794 rb_node = rb_last(&p->svms.objects.rb_root);
2795 }
2796 if (rb_node) {
2797 node = container_of(rb_node, struct interval_tree_node, rb);
2798 if (node->last >= addr) {
2799 WARN(1, "Overlap with prev node and page fault addr\n");
2800 return -EFAULT;
2801 }
2802 start_limit = max(start_limit, node->last + 1);
2803 }
2804
2805 *start = start_limit;
2806 *last = end_limit - 1;
2807
2808 pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2809 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2810 *start, *last, *is_heap_stack);
2811
2812 return 0;
2813 }
2814
2815 static int
svm_range_check_vm_userptr(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)2816 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2817 uint64_t *bo_s, uint64_t *bo_l)
2818 {
2819 struct amdgpu_bo_va_mapping *mapping;
2820 struct interval_tree_node *node;
2821 struct amdgpu_bo *bo = NULL;
2822 unsigned long userptr;
2823 uint32_t i;
2824 int r;
2825
2826 for (i = 0; i < p->n_pdds; i++) {
2827 struct amdgpu_vm *vm;
2828
2829 if (!p->pdds[i]->drm_priv)
2830 continue;
2831
2832 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2833 r = amdgpu_bo_reserve(vm->root.bo, false);
2834 if (r)
2835 return r;
2836
2837 /* Check userptr by searching entire vm->va interval tree */
2838 node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2839 while (node) {
2840 mapping = container_of((struct rb_node *)node,
2841 struct amdgpu_bo_va_mapping, rb);
2842 bo = mapping->bo_va->base.bo;
2843
2844 if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2845 start << PAGE_SHIFT,
2846 last << PAGE_SHIFT,
2847 &userptr)) {
2848 node = interval_tree_iter_next(node, 0, ~0ULL);
2849 continue;
2850 }
2851
2852 pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2853 start, last);
2854 if (bo_s && bo_l) {
2855 *bo_s = userptr >> PAGE_SHIFT;
2856 *bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2857 }
2858 amdgpu_bo_unreserve(vm->root.bo);
2859 return -EADDRINUSE;
2860 }
2861 amdgpu_bo_unreserve(vm->root.bo);
2862 }
2863 return 0;
2864 }
2865
2866 static struct
svm_range_create_unregistered_range(struct kfd_node * node,struct kfd_process * p,struct mm_struct * mm,int64_t addr)2867 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2868 struct kfd_process *p,
2869 struct mm_struct *mm,
2870 int64_t addr)
2871 {
2872 struct svm_range *prange = NULL;
2873 unsigned long start, last;
2874 uint32_t gpuid, gpuidx;
2875 bool is_heap_stack;
2876 uint64_t bo_s = 0;
2877 uint64_t bo_l = 0;
2878 int r;
2879
2880 if (svm_range_get_range_boundaries(p, addr, &start, &last,
2881 &is_heap_stack))
2882 return NULL;
2883
2884 r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2885 if (r != -EADDRINUSE)
2886 r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2887
2888 if (r == -EADDRINUSE) {
2889 if (addr >= bo_s && addr <= bo_l)
2890 return NULL;
2891
2892 /* Create one page svm range if 2MB range overlapping */
2893 start = addr;
2894 last = addr;
2895 }
2896
2897 prange = svm_range_new(&p->svms, start, last, true);
2898 if (!prange) {
2899 pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2900 return NULL;
2901 }
2902 if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2903 pr_debug("failed to get gpuid from kgd\n");
2904 svm_range_free(prange, true);
2905 return NULL;
2906 }
2907
2908 if (is_heap_stack)
2909 prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2910
2911 svm_range_add_to_svms(prange);
2912 svm_range_add_notifier_locked(mm, prange);
2913
2914 return prange;
2915 }
2916
2917 /* svm_range_skip_recover - decide if prange can be recovered
2918 * @prange: svm range structure
2919 *
2920 * GPU vm retry fault handle skip recover the range for cases:
2921 * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2922 * deferred list work will drain the stale fault before free the prange.
2923 * 2. prange is on deferred list to add interval notifier after split, or
2924 * 3. prange is child range, it is split from parent prange, recover later
2925 * after interval notifier is added.
2926 *
2927 * Return: true to skip recover, false to recover
2928 */
svm_range_skip_recover(struct svm_range * prange)2929 static bool svm_range_skip_recover(struct svm_range *prange)
2930 {
2931 struct svm_range_list *svms = prange->svms;
2932
2933 spin_lock(&svms->deferred_list_lock);
2934 if (list_empty(&prange->deferred_list) &&
2935 list_empty(&prange->child_list)) {
2936 spin_unlock(&svms->deferred_list_lock);
2937 return false;
2938 }
2939 spin_unlock(&svms->deferred_list_lock);
2940
2941 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2942 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2943 svms, prange, prange->start, prange->last);
2944 return true;
2945 }
2946 if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2947 prange->work_item.op == SVM_OP_ADD_RANGE) {
2948 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2949 svms, prange, prange->start, prange->last);
2950 return true;
2951 }
2952 return false;
2953 }
2954
2955 static void
svm_range_count_fault(struct kfd_node * node,struct kfd_process * p,int32_t gpuidx)2956 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2957 int32_t gpuidx)
2958 {
2959 struct kfd_process_device *pdd;
2960
2961 /* fault is on different page of same range
2962 * or fault is skipped to recover later
2963 * or fault is on invalid virtual address
2964 */
2965 if (gpuidx == MAX_GPU_INSTANCE) {
2966 uint32_t gpuid;
2967 int r;
2968
2969 r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2970 if (r < 0)
2971 return;
2972 }
2973
2974 /* fault is recovered
2975 * or fault cannot recover because GPU no access on the range
2976 */
2977 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2978 if (pdd)
2979 WRITE_ONCE(pdd->faults, pdd->faults + 1);
2980 }
2981
2982 static bool
svm_fault_allowed(struct vm_area_struct * vma,bool write_fault)2983 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2984 {
2985 unsigned long requested = VM_READ;
2986
2987 if (write_fault)
2988 requested |= VM_WRITE;
2989
2990 pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2991 vma->vm_flags);
2992 return (vma->vm_flags & requested) == requested;
2993 }
2994
2995 int
svm_range_restore_pages(struct amdgpu_device * adev,unsigned int pasid,uint32_t vmid,uint32_t node_id,uint64_t addr,uint64_t ts,bool write_fault)2996 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2997 uint32_t vmid, uint32_t node_id,
2998 uint64_t addr, uint64_t ts, bool write_fault)
2999 {
3000 unsigned long start, last, size;
3001 struct mm_struct *mm = NULL;
3002 struct svm_range_list *svms;
3003 struct svm_range *prange;
3004 struct kfd_process *p;
3005 ktime_t timestamp = ktime_get_boottime();
3006 struct kfd_node *node;
3007 int32_t best_loc;
3008 int32_t gpuid, gpuidx = MAX_GPU_INSTANCE;
3009 bool write_locked = false;
3010 struct vm_area_struct *vma;
3011 bool migration = false;
3012 int r = 0;
3013
3014 if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
3015 pr_debug("device does not support SVM\n");
3016 return -EFAULT;
3017 }
3018
3019 p = kfd_lookup_process_by_pasid(pasid, NULL);
3020 if (!p) {
3021 pr_debug("kfd process not founded pasid 0x%x\n", pasid);
3022 return 0;
3023 }
3024 svms = &p->svms;
3025
3026 pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
3027
3028 if (atomic_read(&svms->drain_pagefaults)) {
3029 pr_debug("page fault handling disabled, drop fault 0x%llx\n", addr);
3030 r = 0;
3031 goto out;
3032 }
3033
3034 node = kfd_node_by_irq_ids(adev, node_id, vmid);
3035 if (!node) {
3036 pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
3037 vmid);
3038 r = -EFAULT;
3039 goto out;
3040 }
3041
3042 if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
3043 pr_debug("failed to get gpuid/gpuidex for node_id: %d\n", node_id);
3044 r = -EFAULT;
3045 goto out;
3046 }
3047
3048 if (!p->xnack_enabled) {
3049 pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
3050 r = -EFAULT;
3051 goto out;
3052 }
3053
3054 /* p->lead_thread is available as kfd_process_wq_release flush the work
3055 * before releasing task ref.
3056 */
3057 mm = get_task_mm(p->lead_thread);
3058 if (!mm) {
3059 pr_debug("svms 0x%p failed to get mm\n", svms);
3060 r = 0;
3061 goto out;
3062 }
3063
3064 mmap_read_lock(mm);
3065 retry_write_locked:
3066 mutex_lock(&svms->lock);
3067
3068 /* check if this page fault time stamp is before svms->checkpoint_ts */
3069 if (svms->checkpoint_ts[gpuidx] != 0) {
3070 if (amdgpu_ih_ts_after_or_equal(ts, svms->checkpoint_ts[gpuidx])) {
3071 pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
3072 if (write_locked)
3073 mmap_write_downgrade(mm);
3074 r = -EAGAIN;
3075 goto out_unlock_svms;
3076 } else {
3077 /* ts is after svms->checkpoint_ts now, reset svms->checkpoint_ts
3078 * to zero to avoid following ts wrap around give wrong comparing
3079 */
3080 svms->checkpoint_ts[gpuidx] = 0;
3081 }
3082 }
3083
3084 prange = svm_range_from_addr(svms, addr, NULL);
3085 if (!prange) {
3086 pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
3087 svms, addr);
3088 if (!write_locked) {
3089 /* Need the write lock to create new range with MMU notifier.
3090 * Also flush pending deferred work to make sure the interval
3091 * tree is up to date before we add a new range
3092 */
3093 mutex_unlock(&svms->lock);
3094 mmap_read_unlock(mm);
3095 mmap_write_lock(mm);
3096 write_locked = true;
3097 goto retry_write_locked;
3098 }
3099 prange = svm_range_create_unregistered_range(node, p, mm, addr);
3100 if (!prange) {
3101 pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
3102 svms, addr);
3103 mmap_write_downgrade(mm);
3104 r = -EFAULT;
3105 goto out_unlock_svms;
3106 }
3107 }
3108 if (write_locked)
3109 mmap_write_downgrade(mm);
3110
3111 mutex_lock(&prange->migrate_mutex);
3112
3113 if (svm_range_skip_recover(prange)) {
3114 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3115 r = 0;
3116 goto out_unlock_range;
3117 }
3118
3119 /* skip duplicate vm fault on different pages of same range */
3120 if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
3121 AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
3122 pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
3123 svms, prange->start, prange->last);
3124 r = 0;
3125 goto out_unlock_range;
3126 }
3127
3128 /* __do_munmap removed VMA, return success as we are handling stale
3129 * retry fault.
3130 */
3131 vma = vma_lookup(mm, addr << PAGE_SHIFT);
3132 if (!vma) {
3133 pr_debug("address 0x%llx VMA is removed\n", addr);
3134 r = 0;
3135 goto out_unlock_range;
3136 }
3137
3138 if (!svm_fault_allowed(vma, write_fault)) {
3139 pr_debug("fault addr 0x%llx no %s permission\n", addr,
3140 write_fault ? "write" : "read");
3141 r = -EPERM;
3142 goto out_unlock_range;
3143 }
3144
3145 best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3146 if (best_loc == -1) {
3147 pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3148 svms, prange->start, prange->last);
3149 r = -EACCES;
3150 goto out_unlock_range;
3151 }
3152
3153 pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3154 svms, prange->start, prange->last, best_loc,
3155 prange->actual_loc);
3156
3157 kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3158 write_fault, timestamp);
3159
3160 /* Align migration range start and size to granularity size */
3161 size = 1UL << prange->granularity;
3162 start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start);
3163 last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last);
3164 if (prange->actual_loc != 0 || best_loc != 0) {
3165 if (best_loc) {
3166 r = svm_migrate_to_vram(prange, best_loc, start, last,
3167 mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3168 if (r) {
3169 pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3170 r, addr);
3171 /* Fallback to system memory if migration to
3172 * VRAM failed
3173 */
3174 if (prange->actual_loc && prange->actual_loc != best_loc)
3175 r = svm_migrate_vram_to_ram(prange, mm, start, last,
3176 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3177 else
3178 r = 0;
3179 }
3180 } else {
3181 r = svm_migrate_vram_to_ram(prange, mm, start, last,
3182 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3183 }
3184 if (r) {
3185 pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3186 r, svms, start, last);
3187 goto out_migrate_fail;
3188 } else {
3189 migration = true;
3190 }
3191 }
3192
3193 r = svm_range_validate_and_map(mm, start, last, prange, gpuidx, false,
3194 false, false);
3195 if (r)
3196 pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3197 r, svms, start, last);
3198
3199 out_migrate_fail:
3200 kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3201 migration);
3202
3203 out_unlock_range:
3204 mutex_unlock(&prange->migrate_mutex);
3205 out_unlock_svms:
3206 mutex_unlock(&svms->lock);
3207 mmap_read_unlock(mm);
3208
3209 if (r != -EAGAIN)
3210 svm_range_count_fault(node, p, gpuidx);
3211
3212 mmput(mm);
3213 out:
3214 kfd_unref_process(p);
3215
3216 if (r == -EAGAIN) {
3217 pr_debug("recover vm fault later\n");
3218 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3219 r = 0;
3220 }
3221 return r;
3222 }
3223
3224 int
svm_range_switch_xnack_reserve_mem(struct kfd_process * p,bool xnack_enabled)3225 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3226 {
3227 struct svm_range *prange, *pchild;
3228 uint64_t reserved_size = 0;
3229 uint64_t size;
3230 int r = 0;
3231
3232 pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3233
3234 mutex_lock(&p->svms.lock);
3235
3236 list_for_each_entry(prange, &p->svms.list, list) {
3237 svm_range_lock(prange);
3238 list_for_each_entry(pchild, &prange->child_list, child_list) {
3239 size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3240 if (xnack_enabled) {
3241 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3242 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3243 } else {
3244 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3245 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3246 if (r)
3247 goto out_unlock;
3248 reserved_size += size;
3249 }
3250 }
3251
3252 size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3253 if (xnack_enabled) {
3254 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3255 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3256 } else {
3257 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3258 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3259 if (r)
3260 goto out_unlock;
3261 reserved_size += size;
3262 }
3263 out_unlock:
3264 svm_range_unlock(prange);
3265 if (r)
3266 break;
3267 }
3268
3269 if (r)
3270 amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3271 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3272 else
3273 /* Change xnack mode must be inside svms lock, to avoid race with
3274 * svm_range_deferred_list_work unreserve memory in parallel.
3275 */
3276 p->xnack_enabled = xnack_enabled;
3277
3278 mutex_unlock(&p->svms.lock);
3279 return r;
3280 }
3281
svm_range_list_fini(struct kfd_process * p)3282 void svm_range_list_fini(struct kfd_process *p)
3283 {
3284 struct svm_range *prange;
3285 struct svm_range *next;
3286
3287 pr_debug("process pid %d svms 0x%p\n", p->lead_thread->pid,
3288 &p->svms);
3289
3290 cancel_delayed_work_sync(&p->svms.restore_work);
3291
3292 /* Ensure list work is finished before process is destroyed */
3293 flush_work(&p->svms.deferred_list_work);
3294
3295 /*
3296 * Ensure no retry fault comes in afterwards, as page fault handler will
3297 * not find kfd process and take mm lock to recover fault.
3298 * stop kfd page fault handing, then wait pending page faults got drained
3299 */
3300 atomic_set(&p->svms.drain_pagefaults, 1);
3301 svm_range_drain_retry_fault(&p->svms);
3302
3303 list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3304 svm_range_unlink(prange);
3305 svm_range_remove_notifier(prange);
3306 svm_range_free(prange, true);
3307 }
3308
3309 mutex_destroy(&p->svms.lock);
3310
3311 pr_debug("process pid %d svms 0x%p done\n",
3312 p->lead_thread->pid, &p->svms);
3313 }
3314
svm_range_list_init(struct kfd_process * p)3315 int svm_range_list_init(struct kfd_process *p)
3316 {
3317 struct svm_range_list *svms = &p->svms;
3318 int i;
3319
3320 svms->objects = RB_ROOT_CACHED;
3321 mutex_init(&svms->lock);
3322 INIT_LIST_HEAD(&svms->list);
3323 atomic_set(&svms->evicted_ranges, 0);
3324 atomic_set(&svms->drain_pagefaults, 0);
3325 INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3326 INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3327 INIT_LIST_HEAD(&svms->deferred_range_list);
3328 INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3329 spin_lock_init(&svms->deferred_list_lock);
3330
3331 for (i = 0; i < p->n_pdds; i++)
3332 if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3333 bitmap_set(svms->bitmap_supported, i, 1);
3334
3335 /* Value of default granularity cannot exceed 0x1B, the
3336 * number of pages supported by a 4-level paging table
3337 */
3338 svms->default_granularity = min_t(u8, amdgpu_svm_default_granularity, 0x1B);
3339 pr_debug("Default SVM Granularity to use: %d\n", svms->default_granularity);
3340
3341 return 0;
3342 }
3343
3344 /**
3345 * svm_range_check_vm - check if virtual address range mapped already
3346 * @p: current kfd_process
3347 * @start: range start address, in pages
3348 * @last: range last address, in pages
3349 * @bo_s: mapping start address in pages if address range already mapped
3350 * @bo_l: mapping last address in pages if address range already mapped
3351 *
3352 * The purpose is to avoid virtual address ranges already allocated by
3353 * kfd_ioctl_alloc_memory_of_gpu ioctl.
3354 * It looks for each pdd in the kfd_process.
3355 *
3356 * Context: Process context
3357 *
3358 * Return 0 - OK, if the range is not mapped.
3359 * Otherwise error code:
3360 * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3361 * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3362 * a signal. Release all buffer reservations and return to user-space.
3363 */
3364 static int
svm_range_check_vm(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)3365 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3366 uint64_t *bo_s, uint64_t *bo_l)
3367 {
3368 struct amdgpu_bo_va_mapping *mapping;
3369 struct interval_tree_node *node;
3370 uint32_t i;
3371 int r;
3372
3373 for (i = 0; i < p->n_pdds; i++) {
3374 struct amdgpu_vm *vm;
3375
3376 if (!p->pdds[i]->drm_priv)
3377 continue;
3378
3379 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3380 r = amdgpu_bo_reserve(vm->root.bo, false);
3381 if (r)
3382 return r;
3383
3384 node = interval_tree_iter_first(&vm->va, start, last);
3385 if (node) {
3386 pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3387 start, last);
3388 mapping = container_of((struct rb_node *)node,
3389 struct amdgpu_bo_va_mapping, rb);
3390 if (bo_s && bo_l) {
3391 *bo_s = mapping->start;
3392 *bo_l = mapping->last;
3393 }
3394 amdgpu_bo_unreserve(vm->root.bo);
3395 return -EADDRINUSE;
3396 }
3397 amdgpu_bo_unreserve(vm->root.bo);
3398 }
3399
3400 return 0;
3401 }
3402
3403 /**
3404 * svm_range_is_valid - check if virtual address range is valid
3405 * @p: current kfd_process
3406 * @start: range start address, in pages
3407 * @size: range size, in pages
3408 *
3409 * Valid virtual address range means it belongs to one or more VMAs
3410 *
3411 * Context: Process context
3412 *
3413 * Return:
3414 * 0 - OK, otherwise error code
3415 */
3416 static int
svm_range_is_valid(struct kfd_process * p,uint64_t start,uint64_t size)3417 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3418 {
3419 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3420 struct vm_area_struct *vma;
3421 unsigned long end;
3422 unsigned long start_unchg = start;
3423
3424 start <<= PAGE_SHIFT;
3425 end = start + (size << PAGE_SHIFT);
3426 do {
3427 vma = vma_lookup(p->mm, start);
3428 if (!vma || (vma->vm_flags & device_vma))
3429 return -EFAULT;
3430 start = min(end, vma->vm_end);
3431 } while (start < end);
3432
3433 return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3434 NULL);
3435 }
3436
3437 /**
3438 * svm_range_best_prefetch_location - decide the best prefetch location
3439 * @prange: svm range structure
3440 *
3441 * For xnack off:
3442 * If range map to single GPU, the best prefetch location is prefetch_loc, which
3443 * can be CPU or GPU.
3444 *
3445 * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3446 * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3447 * the best prefetch location is always CPU, because GPU can not have coherent
3448 * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3449 *
3450 * For xnack on:
3451 * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3452 * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3453 *
3454 * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3455 * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3456 * prefetch location is always CPU.
3457 *
3458 * Context: Process context
3459 *
3460 * Return:
3461 * 0 for CPU or GPU id
3462 */
3463 static uint32_t
svm_range_best_prefetch_location(struct svm_range * prange)3464 svm_range_best_prefetch_location(struct svm_range *prange)
3465 {
3466 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3467 uint32_t best_loc = prange->prefetch_loc;
3468 struct kfd_process_device *pdd;
3469 struct kfd_node *bo_node;
3470 struct kfd_process *p;
3471 uint32_t gpuidx;
3472
3473 p = container_of(prange->svms, struct kfd_process, svms);
3474
3475 if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3476 goto out;
3477
3478 bo_node = svm_range_get_node_by_id(prange, best_loc);
3479 if (!bo_node) {
3480 WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3481 best_loc = 0;
3482 goto out;
3483 }
3484
3485 if (bo_node->adev->apu_prefer_gtt) {
3486 best_loc = 0;
3487 goto out;
3488 }
3489
3490 if (p->xnack_enabled)
3491 bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3492 else
3493 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3494 MAX_GPU_INSTANCE);
3495
3496 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3497 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3498 if (!pdd) {
3499 pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3500 continue;
3501 }
3502
3503 if (pdd->dev->adev == bo_node->adev)
3504 continue;
3505
3506 if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3507 best_loc = 0;
3508 break;
3509 }
3510 }
3511
3512 out:
3513 pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3514 p->xnack_enabled, &p->svms, prange->start, prange->last,
3515 best_loc);
3516
3517 return best_loc;
3518 }
3519
3520 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3521 * @mm: current process mm_struct
3522 * @prange: svm range structure
3523 * @migrated: output, true if migration is triggered
3524 *
3525 * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3526 * from ram to vram.
3527 * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3528 * from vram to ram.
3529 *
3530 * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3531 * and restore work:
3532 * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3533 * stops all queues, schedule restore work
3534 * 2. svm_range_restore_work wait for migration is done by
3535 * a. svm_range_validate_vram takes prange->migrate_mutex
3536 * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3537 * 3. restore work update mappings of GPU, resume all queues.
3538 *
3539 * Context: Process context
3540 *
3541 * Return:
3542 * 0 - OK, otherwise - error code of migration
3543 */
3544 static int
svm_range_trigger_migration(struct mm_struct * mm,struct svm_range * prange,bool * migrated)3545 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3546 bool *migrated)
3547 {
3548 uint32_t best_loc;
3549 int r = 0;
3550
3551 *migrated = false;
3552 best_loc = svm_range_best_prefetch_location(prange);
3553
3554 /* when best_loc is a gpu node and same as prange->actual_loc
3555 * we still need do migration as prange->actual_loc !=0 does
3556 * not mean all pages in prange are vram. hmm migrate will pick
3557 * up right pages during migration.
3558 */
3559 if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) ||
3560 (best_loc == 0 && prange->actual_loc == 0))
3561 return 0;
3562
3563 if (!best_loc) {
3564 r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
3565 KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3566 *migrated = !r;
3567 return r;
3568 }
3569
3570 r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last,
3571 mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3572 *migrated = !r;
3573
3574 return 0;
3575 }
3576
svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence * fence)3577 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3578 {
3579 /* Dereferencing fence->svm_bo is safe here because the fence hasn't
3580 * signaled yet and we're under the protection of the fence->lock.
3581 * After the fence is signaled in svm_range_bo_release, we cannot get
3582 * here any more.
3583 *
3584 * Reference is dropped in svm_range_evict_svm_bo_worker.
3585 */
3586 if (svm_bo_ref_unless_zero(fence->svm_bo)) {
3587 WRITE_ONCE(fence->svm_bo->evicting, 1);
3588 schedule_work(&fence->svm_bo->eviction_work);
3589 }
3590
3591 return 0;
3592 }
3593
svm_range_evict_svm_bo_worker(struct work_struct * work)3594 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3595 {
3596 struct svm_range_bo *svm_bo;
3597 struct mm_struct *mm;
3598 int r = 0;
3599
3600 svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3601
3602 if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3603 mm = svm_bo->eviction_fence->mm;
3604 } else {
3605 svm_range_bo_unref(svm_bo);
3606 return;
3607 }
3608
3609 mmap_read_lock(mm);
3610 spin_lock(&svm_bo->list_lock);
3611 while (!list_empty(&svm_bo->range_list) && !r) {
3612 struct svm_range *prange =
3613 list_first_entry(&svm_bo->range_list,
3614 struct svm_range, svm_bo_list);
3615 int retries = 3;
3616
3617 list_del_init(&prange->svm_bo_list);
3618 spin_unlock(&svm_bo->list_lock);
3619
3620 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3621 prange->start, prange->last);
3622
3623 mutex_lock(&prange->migrate_mutex);
3624 do {
3625 /* migrate all vram pages in this prange to sys ram
3626 * after that prange->actual_loc should be zero
3627 */
3628 r = svm_migrate_vram_to_ram(prange, mm,
3629 prange->start, prange->last,
3630 KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3631 } while (!r && prange->actual_loc && --retries);
3632
3633 if (!r && prange->actual_loc)
3634 pr_info_once("Migration failed during eviction");
3635
3636 if (!prange->actual_loc) {
3637 mutex_lock(&prange->lock);
3638 prange->svm_bo = NULL;
3639 mutex_unlock(&prange->lock);
3640 }
3641 mutex_unlock(&prange->migrate_mutex);
3642
3643 spin_lock(&svm_bo->list_lock);
3644 }
3645 spin_unlock(&svm_bo->list_lock);
3646 mmap_read_unlock(mm);
3647 mmput(mm);
3648
3649 dma_fence_signal(&svm_bo->eviction_fence->base);
3650
3651 /* This is the last reference to svm_bo, after svm_range_vram_node_free
3652 * has been called in svm_migrate_vram_to_ram
3653 */
3654 WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3655 svm_range_bo_unref(svm_bo);
3656 }
3657
3658 static int
svm_range_set_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3659 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3660 uint64_t start, uint64_t size, uint32_t nattr,
3661 struct kfd_ioctl_svm_attribute *attrs)
3662 {
3663 struct amdkfd_process_info *process_info = p->kgd_process_info;
3664 struct list_head update_list;
3665 struct list_head insert_list;
3666 struct list_head remove_list;
3667 struct list_head remap_list;
3668 struct svm_range_list *svms;
3669 struct svm_range *prange;
3670 struct svm_range *next;
3671 bool update_mapping = false;
3672 bool flush_tlb;
3673 int r, ret = 0;
3674
3675 pr_debug("process pid %d svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3676 p->lead_thread->pid, &p->svms, start, start + size - 1, size);
3677
3678 r = svm_range_check_attr(p, nattr, attrs);
3679 if (r)
3680 return r;
3681
3682 svms = &p->svms;
3683
3684 mutex_lock(&process_info->lock);
3685
3686 svm_range_list_lock_and_flush_work(svms, mm);
3687
3688 r = svm_range_is_valid(p, start, size);
3689 if (r) {
3690 pr_debug("invalid range r=%d\n", r);
3691 mmap_write_unlock(mm);
3692 goto out;
3693 }
3694
3695 mutex_lock(&svms->lock);
3696
3697 /* Add new range and split existing ranges as needed */
3698 r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3699 &insert_list, &remove_list, &remap_list);
3700 if (r) {
3701 mutex_unlock(&svms->lock);
3702 mmap_write_unlock(mm);
3703 goto out;
3704 }
3705 /* Apply changes as a transaction */
3706 list_for_each_entry_safe(prange, next, &insert_list, list) {
3707 svm_range_add_to_svms(prange);
3708 svm_range_add_notifier_locked(mm, prange);
3709 }
3710 list_for_each_entry(prange, &update_list, update_list) {
3711 svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3712 /* TODO: unmap ranges from GPU that lost access */
3713 }
3714 update_mapping |= !p->xnack_enabled && !list_empty(&remap_list);
3715
3716 list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3717 pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3718 prange->svms, prange, prange->start,
3719 prange->last);
3720 svm_range_unlink(prange);
3721 svm_range_remove_notifier(prange);
3722 svm_range_free(prange, false);
3723 }
3724
3725 mmap_write_downgrade(mm);
3726 /* Trigger migrations and revalidate and map to GPUs as needed. If
3727 * this fails we may be left with partially completed actions. There
3728 * is no clean way of rolling back to the previous state in such a
3729 * case because the rollback wouldn't be guaranteed to work either.
3730 */
3731 list_for_each_entry(prange, &update_list, update_list) {
3732 bool migrated;
3733
3734 mutex_lock(&prange->migrate_mutex);
3735
3736 r = svm_range_trigger_migration(mm, prange, &migrated);
3737 if (r)
3738 goto out_unlock_range;
3739
3740 if (migrated && (!p->xnack_enabled ||
3741 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3742 prange->mapped_to_gpu) {
3743 pr_debug("restore_work will update mappings of GPUs\n");
3744 mutex_unlock(&prange->migrate_mutex);
3745 continue;
3746 }
3747
3748 if (!migrated && !update_mapping) {
3749 mutex_unlock(&prange->migrate_mutex);
3750 continue;
3751 }
3752
3753 flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3754
3755 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3756 MAX_GPU_INSTANCE, true, true, flush_tlb);
3757 if (r)
3758 pr_debug("failed %d to map svm range\n", r);
3759
3760 out_unlock_range:
3761 mutex_unlock(&prange->migrate_mutex);
3762 if (r)
3763 ret = r;
3764 }
3765
3766 list_for_each_entry(prange, &remap_list, update_list) {
3767 pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
3768 prange, prange->start, prange->last);
3769 mutex_lock(&prange->migrate_mutex);
3770 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3771 MAX_GPU_INSTANCE, true, true, prange->mapped_to_gpu);
3772 if (r)
3773 pr_debug("failed %d on remap svm range\n", r);
3774 mutex_unlock(&prange->migrate_mutex);
3775 if (r)
3776 ret = r;
3777 }
3778
3779 dynamic_svm_range_dump(svms);
3780
3781 mutex_unlock(&svms->lock);
3782 mmap_read_unlock(mm);
3783 out:
3784 mutex_unlock(&process_info->lock);
3785
3786 pr_debug("process pid %d svms 0x%p [0x%llx 0x%llx] done, r=%d\n",
3787 p->lead_thread->pid, &p->svms, start, start + size - 1, r);
3788
3789 return ret ? ret : r;
3790 }
3791
3792 static int
svm_range_get_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3793 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3794 uint64_t start, uint64_t size, uint32_t nattr,
3795 struct kfd_ioctl_svm_attribute *attrs)
3796 {
3797 DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3798 DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3799 bool get_preferred_loc = false;
3800 bool get_prefetch_loc = false;
3801 bool get_granularity = false;
3802 bool get_accessible = false;
3803 bool get_flags = false;
3804 uint64_t last = start + size - 1UL;
3805 uint8_t granularity = 0xff;
3806 struct interval_tree_node *node;
3807 struct svm_range_list *svms;
3808 struct svm_range *prange;
3809 uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3810 uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3811 uint32_t flags_and = 0xffffffff;
3812 uint32_t flags_or = 0;
3813 int gpuidx;
3814 uint32_t i;
3815 int r = 0;
3816
3817 pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3818 start + size - 1, nattr);
3819
3820 /* Flush pending deferred work to avoid racing with deferred actions from
3821 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3822 * can still race with get_attr because we don't hold the mmap lock. But that
3823 * would be a race condition in the application anyway, and undefined
3824 * behaviour is acceptable in that case.
3825 */
3826 flush_work(&p->svms.deferred_list_work);
3827
3828 mmap_read_lock(mm);
3829 r = svm_range_is_valid(p, start, size);
3830 mmap_read_unlock(mm);
3831 if (r) {
3832 pr_debug("invalid range r=%d\n", r);
3833 return r;
3834 }
3835
3836 for (i = 0; i < nattr; i++) {
3837 switch (attrs[i].type) {
3838 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3839 get_preferred_loc = true;
3840 break;
3841 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3842 get_prefetch_loc = true;
3843 break;
3844 case KFD_IOCTL_SVM_ATTR_ACCESS:
3845 get_accessible = true;
3846 break;
3847 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3848 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3849 get_flags = true;
3850 break;
3851 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3852 get_granularity = true;
3853 break;
3854 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3855 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3856 fallthrough;
3857 default:
3858 pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3859 return -EINVAL;
3860 }
3861 }
3862
3863 svms = &p->svms;
3864
3865 mutex_lock(&svms->lock);
3866
3867 node = interval_tree_iter_first(&svms->objects, start, last);
3868 if (!node) {
3869 pr_debug("range attrs not found return default values\n");
3870 svm_range_set_default_attributes(svms, &location, &prefetch_loc,
3871 &granularity, &flags_and);
3872 flags_or = flags_and;
3873 if (p->xnack_enabled)
3874 bitmap_copy(bitmap_access, svms->bitmap_supported,
3875 MAX_GPU_INSTANCE);
3876 else
3877 bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3878 bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3879 goto fill_values;
3880 }
3881 bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3882 bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3883
3884 while (node) {
3885 struct interval_tree_node *next;
3886
3887 prange = container_of(node, struct svm_range, it_node);
3888 next = interval_tree_iter_next(node, start, last);
3889
3890 if (get_preferred_loc) {
3891 if (prange->preferred_loc ==
3892 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3893 (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3894 location != prange->preferred_loc)) {
3895 location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3896 get_preferred_loc = false;
3897 } else {
3898 location = prange->preferred_loc;
3899 }
3900 }
3901 if (get_prefetch_loc) {
3902 if (prange->prefetch_loc ==
3903 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3904 (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3905 prefetch_loc != prange->prefetch_loc)) {
3906 prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3907 get_prefetch_loc = false;
3908 } else {
3909 prefetch_loc = prange->prefetch_loc;
3910 }
3911 }
3912 if (get_accessible) {
3913 bitmap_and(bitmap_access, bitmap_access,
3914 prange->bitmap_access, MAX_GPU_INSTANCE);
3915 bitmap_and(bitmap_aip, bitmap_aip,
3916 prange->bitmap_aip, MAX_GPU_INSTANCE);
3917 }
3918 if (get_flags) {
3919 flags_and &= prange->flags;
3920 flags_or |= prange->flags;
3921 }
3922
3923 if (get_granularity && prange->granularity < granularity)
3924 granularity = prange->granularity;
3925
3926 node = next;
3927 }
3928 fill_values:
3929 mutex_unlock(&svms->lock);
3930
3931 for (i = 0; i < nattr; i++) {
3932 switch (attrs[i].type) {
3933 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3934 attrs[i].value = location;
3935 break;
3936 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3937 attrs[i].value = prefetch_loc;
3938 break;
3939 case KFD_IOCTL_SVM_ATTR_ACCESS:
3940 gpuidx = kfd_process_gpuidx_from_gpuid(p,
3941 attrs[i].value);
3942 if (gpuidx < 0) {
3943 pr_debug("invalid gpuid %x\n", attrs[i].value);
3944 return -EINVAL;
3945 }
3946 if (test_bit(gpuidx, bitmap_access))
3947 attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3948 else if (test_bit(gpuidx, bitmap_aip))
3949 attrs[i].type =
3950 KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3951 else
3952 attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3953 break;
3954 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3955 attrs[i].value = flags_and;
3956 break;
3957 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3958 attrs[i].value = ~flags_or;
3959 break;
3960 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3961 attrs[i].value = (uint32_t)granularity;
3962 break;
3963 }
3964 }
3965
3966 return 0;
3967 }
3968
kfd_criu_resume_svm(struct kfd_process * p)3969 int kfd_criu_resume_svm(struct kfd_process *p)
3970 {
3971 struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3972 int nattr_common = 4, nattr_accessibility = 1;
3973 struct criu_svm_metadata *criu_svm_md = NULL;
3974 struct svm_range_list *svms = &p->svms;
3975 struct criu_svm_metadata *next = NULL;
3976 uint32_t set_flags = 0xffffffff;
3977 int i, j, num_attrs, ret = 0;
3978 uint64_t set_attr_size;
3979 struct mm_struct *mm;
3980
3981 if (list_empty(&svms->criu_svm_metadata_list)) {
3982 pr_debug("No SVM data from CRIU restore stage 2\n");
3983 return ret;
3984 }
3985
3986 mm = get_task_mm(p->lead_thread);
3987 if (!mm) {
3988 pr_err("failed to get mm for the target process\n");
3989 return -ESRCH;
3990 }
3991
3992 num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3993
3994 i = j = 0;
3995 list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3996 pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3997 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3998
3999 for (j = 0; j < num_attrs; j++) {
4000 pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
4001 i, j, criu_svm_md->data.attrs[j].type,
4002 i, j, criu_svm_md->data.attrs[j].value);
4003 switch (criu_svm_md->data.attrs[j].type) {
4004 /* During Checkpoint operation, the query for
4005 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
4006 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
4007 * not used by the range which was checkpointed. Care
4008 * must be taken to not restore with an invalid value
4009 * otherwise the gpuidx value will be invalid and
4010 * set_attr would eventually fail so just replace those
4011 * with another dummy attribute such as
4012 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
4013 */
4014 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
4015 if (criu_svm_md->data.attrs[j].value ==
4016 KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
4017 criu_svm_md->data.attrs[j].type =
4018 KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4019 criu_svm_md->data.attrs[j].value = 0;
4020 }
4021 break;
4022 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
4023 set_flags = criu_svm_md->data.attrs[j].value;
4024 break;
4025 default:
4026 break;
4027 }
4028 }
4029
4030 /* CLR_FLAGS is not available via get_attr during checkpoint but
4031 * it needs to be inserted before restoring the ranges so
4032 * allocate extra space for it before calling set_attr
4033 */
4034 set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4035 (num_attrs + 1);
4036 set_attr_new = krealloc(set_attr, set_attr_size,
4037 GFP_KERNEL);
4038 if (!set_attr_new) {
4039 ret = -ENOMEM;
4040 goto exit;
4041 }
4042 set_attr = set_attr_new;
4043
4044 memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
4045 sizeof(struct kfd_ioctl_svm_attribute));
4046 set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
4047 set_attr[num_attrs].value = ~set_flags;
4048
4049 ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
4050 criu_svm_md->data.size, num_attrs + 1,
4051 set_attr);
4052 if (ret) {
4053 pr_err("CRIU: failed to set range attributes\n");
4054 goto exit;
4055 }
4056
4057 i++;
4058 }
4059 exit:
4060 kfree(set_attr);
4061 list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
4062 pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
4063 criu_svm_md->data.start_addr);
4064 kfree(criu_svm_md);
4065 }
4066
4067 mmput(mm);
4068 return ret;
4069
4070 }
4071
kfd_criu_restore_svm(struct kfd_process * p,uint8_t __user * user_priv_ptr,uint64_t * priv_data_offset,uint64_t max_priv_data_size)4072 int kfd_criu_restore_svm(struct kfd_process *p,
4073 uint8_t __user *user_priv_ptr,
4074 uint64_t *priv_data_offset,
4075 uint64_t max_priv_data_size)
4076 {
4077 uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
4078 int nattr_common = 4, nattr_accessibility = 1;
4079 struct criu_svm_metadata *criu_svm_md = NULL;
4080 struct svm_range_list *svms = &p->svms;
4081 uint32_t num_devices;
4082 int ret = 0;
4083
4084 num_devices = p->n_pdds;
4085 /* Handle one SVM range object at a time, also the number of gpus are
4086 * assumed to be same on the restore node, checking must be done while
4087 * evaluating the topology earlier
4088 */
4089
4090 svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
4091 (nattr_common + nattr_accessibility * num_devices);
4092 svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
4093
4094 svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4095 svm_attrs_size;
4096
4097 criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
4098 if (!criu_svm_md) {
4099 pr_err("failed to allocate memory to store svm metadata\n");
4100 return -ENOMEM;
4101 }
4102 if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
4103 ret = -EINVAL;
4104 goto exit;
4105 }
4106
4107 ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
4108 svm_priv_data_size);
4109 if (ret) {
4110 ret = -EFAULT;
4111 goto exit;
4112 }
4113 *priv_data_offset += svm_priv_data_size;
4114
4115 list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
4116
4117 return 0;
4118
4119
4120 exit:
4121 kfree(criu_svm_md);
4122 return ret;
4123 }
4124
svm_range_get_info(struct kfd_process * p,uint32_t * num_svm_ranges,uint64_t * svm_priv_data_size)4125 void svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
4126 uint64_t *svm_priv_data_size)
4127 {
4128 uint64_t total_size, accessibility_size, common_attr_size;
4129 int nattr_common = 4, nattr_accessibility = 1;
4130 int num_devices = p->n_pdds;
4131 struct svm_range_list *svms;
4132 struct svm_range *prange;
4133 uint32_t count = 0;
4134
4135 *svm_priv_data_size = 0;
4136
4137 svms = &p->svms;
4138
4139 mutex_lock(&svms->lock);
4140 list_for_each_entry(prange, &svms->list, list) {
4141 pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
4142 prange, prange->start, prange->npages,
4143 prange->start + prange->npages - 1);
4144 count++;
4145 }
4146 mutex_unlock(&svms->lock);
4147
4148 *num_svm_ranges = count;
4149 /* Only the accessbility attributes need to be queried for all the gpus
4150 * individually, remaining ones are spanned across the entire process
4151 * regardless of the various gpu nodes. Of the remaining attributes,
4152 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4153 *
4154 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4155 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4156 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4157 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4158 *
4159 * ** ACCESSBILITY ATTRIBUTES **
4160 * (Considered as one, type is altered during query, value is gpuid)
4161 * KFD_IOCTL_SVM_ATTR_ACCESS
4162 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4163 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4164 */
4165 if (*num_svm_ranges > 0) {
4166 common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4167 nattr_common;
4168 accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4169 nattr_accessibility * num_devices;
4170
4171 total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4172 common_attr_size + accessibility_size;
4173
4174 *svm_priv_data_size = *num_svm_ranges * total_size;
4175 }
4176
4177 pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4178 *svm_priv_data_size);
4179 }
4180
kfd_criu_checkpoint_svm(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_data_offset)4181 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4182 uint8_t __user *user_priv_data,
4183 uint64_t *priv_data_offset)
4184 {
4185 struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4186 struct kfd_ioctl_svm_attribute *query_attr = NULL;
4187 uint64_t svm_priv_data_size, query_attr_size = 0;
4188 int index, nattr_common = 4, ret = 0;
4189 struct svm_range_list *svms;
4190 int num_devices = p->n_pdds;
4191 struct svm_range *prange;
4192 struct mm_struct *mm;
4193
4194 svms = &p->svms;
4195
4196 mm = get_task_mm(p->lead_thread);
4197 if (!mm) {
4198 pr_err("failed to get mm for the target process\n");
4199 return -ESRCH;
4200 }
4201
4202 query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4203 (nattr_common + num_devices);
4204
4205 query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4206 if (!query_attr) {
4207 ret = -ENOMEM;
4208 goto exit;
4209 }
4210
4211 query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4212 query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4213 query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4214 query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4215
4216 for (index = 0; index < num_devices; index++) {
4217 struct kfd_process_device *pdd = p->pdds[index];
4218
4219 query_attr[index + nattr_common].type =
4220 KFD_IOCTL_SVM_ATTR_ACCESS;
4221 query_attr[index + nattr_common].value = pdd->user_gpu_id;
4222 }
4223
4224 svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4225
4226 svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4227 if (!svm_priv) {
4228 ret = -ENOMEM;
4229 goto exit_query;
4230 }
4231
4232 index = 0;
4233 list_for_each_entry(prange, &svms->list, list) {
4234
4235 svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4236 svm_priv->start_addr = prange->start;
4237 svm_priv->size = prange->npages;
4238 memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4239 pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4240 prange, prange->start, prange->npages,
4241 prange->start + prange->npages - 1,
4242 prange->npages * PAGE_SIZE);
4243
4244 ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4245 svm_priv->size,
4246 (nattr_common + num_devices),
4247 svm_priv->attrs);
4248 if (ret) {
4249 pr_err("CRIU: failed to obtain range attributes\n");
4250 goto exit_priv;
4251 }
4252
4253 if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4254 svm_priv_data_size)) {
4255 pr_err("Failed to copy svm priv to user\n");
4256 ret = -EFAULT;
4257 goto exit_priv;
4258 }
4259
4260 *priv_data_offset += svm_priv_data_size;
4261
4262 }
4263
4264
4265 exit_priv:
4266 kfree(svm_priv);
4267 exit_query:
4268 kfree(query_attr);
4269 exit:
4270 mmput(mm);
4271 return ret;
4272 }
4273
4274 int
svm_ioctl(struct kfd_process * p,enum kfd_ioctl_svm_op op,uint64_t start,uint64_t size,uint32_t nattrs,struct kfd_ioctl_svm_attribute * attrs)4275 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4276 uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4277 {
4278 struct mm_struct *mm = current->mm;
4279 int r;
4280
4281 start >>= PAGE_SHIFT;
4282 size >>= PAGE_SHIFT;
4283
4284 switch (op) {
4285 case KFD_IOCTL_SVM_OP_SET_ATTR:
4286 r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4287 break;
4288 case KFD_IOCTL_SVM_OP_GET_ATTR:
4289 r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4290 break;
4291 default:
4292 r = -EINVAL;
4293 break;
4294 }
4295
4296 return r;
4297 }
4298