xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_svm.c (revision afaf4250713e4678563914c6cfaf3e381562cf5f)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2020-2021 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29 
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "amdgpu_reset.h"
37 #include "kfd_priv.h"
38 #include "kfd_svm.h"
39 #include "kfd_migrate.h"
40 #include "kfd_smi_events.h"
41 
42 #ifdef dev_fmt
43 #undef dev_fmt
44 #endif
45 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
46 
47 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
48 
49 /* Long enough to ensure no retry fault comes after svm range is restored and
50  * page table is updated.
51  */
52 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING	(2UL * NSEC_PER_MSEC)
53 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
54 #define dynamic_svm_range_dump(svms) \
55 	_dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
56 #else
57 #define dynamic_svm_range_dump(svms) \
58 	do { if (0) svm_range_debug_dump(svms); } while (0)
59 #endif
60 
61 /* Giant svm range split into smaller ranges based on this, it is decided using
62  * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
63  * power of 2MB.
64  */
65 static uint64_t max_svm_range_pages;
66 
67 struct criu_svm_metadata {
68 	struct list_head list;
69 	struct kfd_criu_svm_range_priv_data data;
70 };
71 
72 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
73 static bool
74 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
75 				    const struct mmu_notifier_range *range,
76 				    unsigned long cur_seq);
77 static int
78 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
79 		   uint64_t *bo_s, uint64_t *bo_l);
80 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
81 	.invalidate = svm_range_cpu_invalidate_pagetables,
82 };
83 
84 /**
85  * svm_range_unlink - unlink svm_range from lists and interval tree
86  * @prange: svm range structure to be removed
87  *
88  * Remove the svm_range from the svms and svm_bo lists and the svms
89  * interval tree.
90  *
91  * Context: The caller must hold svms->lock
92  */
93 static void svm_range_unlink(struct svm_range *prange)
94 {
95 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
96 		 prange, prange->start, prange->last);
97 
98 	if (prange->svm_bo) {
99 		spin_lock(&prange->svm_bo->list_lock);
100 		list_del(&prange->svm_bo_list);
101 		spin_unlock(&prange->svm_bo->list_lock);
102 	}
103 
104 	list_del(&prange->list);
105 	if (prange->it_node.start != 0 && prange->it_node.last != 0)
106 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
107 }
108 
109 static void
110 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
111 {
112 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
113 		 prange, prange->start, prange->last);
114 
115 	mmu_interval_notifier_insert_locked(&prange->notifier, mm,
116 				     prange->start << PAGE_SHIFT,
117 				     prange->npages << PAGE_SHIFT,
118 				     &svm_range_mn_ops);
119 }
120 
121 /**
122  * svm_range_add_to_svms - add svm range to svms
123  * @prange: svm range structure to be added
124  *
125  * Add the svm range to svms interval tree and link list
126  *
127  * Context: The caller must hold svms->lock
128  */
129 static void svm_range_add_to_svms(struct svm_range *prange)
130 {
131 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
132 		 prange, prange->start, prange->last);
133 
134 	list_move_tail(&prange->list, &prange->svms->list);
135 	prange->it_node.start = prange->start;
136 	prange->it_node.last = prange->last;
137 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
138 }
139 
140 static void svm_range_remove_notifier(struct svm_range *prange)
141 {
142 	pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
143 		 prange->svms, prange,
144 		 prange->notifier.interval_tree.start >> PAGE_SHIFT,
145 		 prange->notifier.interval_tree.last >> PAGE_SHIFT);
146 
147 	if (prange->notifier.interval_tree.start != 0 &&
148 	    prange->notifier.interval_tree.last != 0)
149 		mmu_interval_notifier_remove(&prange->notifier);
150 }
151 
152 static bool
153 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
154 {
155 	return dma_addr && !dma_mapping_error(dev, dma_addr) &&
156 	       !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
157 }
158 
159 static int
160 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
161 		      unsigned long offset, unsigned long npages,
162 		      unsigned long *hmm_pfns, uint32_t gpuidx)
163 {
164 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
165 	dma_addr_t *addr = prange->dma_addr[gpuidx];
166 	struct device *dev = adev->dev;
167 	struct page *page;
168 	int i, r;
169 
170 	if (!addr) {
171 		addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
172 		if (!addr)
173 			return -ENOMEM;
174 		prange->dma_addr[gpuidx] = addr;
175 	}
176 
177 	addr += offset;
178 	for (i = 0; i < npages; i++) {
179 		if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
180 			dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
181 
182 		page = hmm_pfn_to_page(hmm_pfns[i]);
183 		if (is_zone_device_page(page)) {
184 			struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
185 
186 			addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
187 				   bo_adev->vm_manager.vram_base_offset -
188 				   bo_adev->kfd.pgmap.range.start;
189 			addr[i] |= SVM_RANGE_VRAM_DOMAIN;
190 			pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
191 			continue;
192 		}
193 		addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
194 		r = dma_mapping_error(dev, addr[i]);
195 		if (r) {
196 			dev_err(dev, "failed %d dma_map_page\n", r);
197 			return r;
198 		}
199 		pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
200 				     addr[i] >> PAGE_SHIFT, page_to_pfn(page));
201 	}
202 
203 	return 0;
204 }
205 
206 static int
207 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
208 		  unsigned long offset, unsigned long npages,
209 		  unsigned long *hmm_pfns)
210 {
211 	struct kfd_process *p;
212 	uint32_t gpuidx;
213 	int r;
214 
215 	p = container_of(prange->svms, struct kfd_process, svms);
216 
217 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
218 		struct kfd_process_device *pdd;
219 
220 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
221 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
222 		if (!pdd) {
223 			pr_debug("failed to find device idx %d\n", gpuidx);
224 			return -EINVAL;
225 		}
226 
227 		r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
228 					  hmm_pfns, gpuidx);
229 		if (r)
230 			break;
231 	}
232 
233 	return r;
234 }
235 
236 void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
237 			 unsigned long offset, unsigned long npages)
238 {
239 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
240 	int i;
241 
242 	if (!dma_addr)
243 		return;
244 
245 	for (i = offset; i < offset + npages; i++) {
246 		if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
247 			continue;
248 		pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
249 		dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
250 		dma_addr[i] = 0;
251 	}
252 }
253 
254 void svm_range_dma_unmap(struct svm_range *prange)
255 {
256 	struct kfd_process_device *pdd;
257 	dma_addr_t *dma_addr;
258 	struct device *dev;
259 	struct kfd_process *p;
260 	uint32_t gpuidx;
261 
262 	p = container_of(prange->svms, struct kfd_process, svms);
263 
264 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
265 		dma_addr = prange->dma_addr[gpuidx];
266 		if (!dma_addr)
267 			continue;
268 
269 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
270 		if (!pdd) {
271 			pr_debug("failed to find device idx %d\n", gpuidx);
272 			continue;
273 		}
274 		dev = &pdd->dev->adev->pdev->dev;
275 
276 		svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages);
277 	}
278 }
279 
280 static void svm_range_free(struct svm_range *prange, bool do_unmap)
281 {
282 	uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
283 	struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
284 	uint32_t gpuidx;
285 
286 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
287 		 prange->start, prange->last);
288 
289 	svm_range_vram_node_free(prange);
290 	if (do_unmap)
291 		svm_range_dma_unmap(prange);
292 
293 	if (do_unmap && !p->xnack_enabled) {
294 		pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
295 		amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
296 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
297 	}
298 
299 	/* free dma_addr array for each gpu */
300 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
301 		if (prange->dma_addr[gpuidx]) {
302 			kvfree(prange->dma_addr[gpuidx]);
303 			prange->dma_addr[gpuidx] = NULL;
304 		}
305 	}
306 
307 	mutex_destroy(&prange->lock);
308 	mutex_destroy(&prange->migrate_mutex);
309 	kfree(prange);
310 }
311 
312 static void
313 svm_range_set_default_attributes(struct svm_range_list *svms, int32_t *location,
314 				 int32_t *prefetch_loc, uint8_t *granularity,
315 				 uint32_t *flags)
316 {
317 	*location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
318 	*prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
319 	*granularity = svms->default_granularity;
320 	*flags =
321 		KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
322 }
323 
324 static struct
325 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
326 			 uint64_t last, bool update_mem_usage)
327 {
328 	uint64_t size = last - start + 1;
329 	struct svm_range *prange;
330 	struct kfd_process *p;
331 
332 	prange = kzalloc(sizeof(*prange), GFP_KERNEL);
333 	if (!prange)
334 		return NULL;
335 
336 	p = container_of(svms, struct kfd_process, svms);
337 	if (!p->xnack_enabled && update_mem_usage &&
338 	    amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
339 				    KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
340 		pr_info("SVM mapping failed, exceeds resident system memory limit\n");
341 		kfree(prange);
342 		return NULL;
343 	}
344 	prange->npages = size;
345 	prange->svms = svms;
346 	prange->start = start;
347 	prange->last = last;
348 	INIT_LIST_HEAD(&prange->list);
349 	INIT_LIST_HEAD(&prange->update_list);
350 	INIT_LIST_HEAD(&prange->svm_bo_list);
351 	INIT_LIST_HEAD(&prange->deferred_list);
352 	INIT_LIST_HEAD(&prange->child_list);
353 	atomic_set(&prange->invalid, 0);
354 	prange->validate_timestamp = 0;
355 	prange->vram_pages = 0;
356 	mutex_init(&prange->migrate_mutex);
357 	mutex_init(&prange->lock);
358 
359 	if (p->xnack_enabled)
360 		bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
361 			    MAX_GPU_INSTANCE);
362 
363 	svm_range_set_default_attributes(svms, &prange->preferred_loc,
364 					 &prange->prefetch_loc,
365 					 &prange->granularity, &prange->flags);
366 
367 	pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
368 
369 	return prange;
370 }
371 
372 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
373 {
374 	if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
375 		return false;
376 
377 	return true;
378 }
379 
380 static void svm_range_bo_release(struct kref *kref)
381 {
382 	struct svm_range_bo *svm_bo;
383 
384 	svm_bo = container_of(kref, struct svm_range_bo, kref);
385 	pr_debug("svm_bo 0x%p\n", svm_bo);
386 
387 	spin_lock(&svm_bo->list_lock);
388 	while (!list_empty(&svm_bo->range_list)) {
389 		struct svm_range *prange =
390 				list_first_entry(&svm_bo->range_list,
391 						struct svm_range, svm_bo_list);
392 		/* list_del_init tells a concurrent svm_range_vram_node_new when
393 		 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
394 		 */
395 		list_del_init(&prange->svm_bo_list);
396 		spin_unlock(&svm_bo->list_lock);
397 
398 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
399 			 prange->start, prange->last);
400 		mutex_lock(&prange->lock);
401 		prange->svm_bo = NULL;
402 		/* prange should not hold vram page now */
403 		WARN_ONCE(prange->actual_loc, "prange should not hold vram page");
404 		mutex_unlock(&prange->lock);
405 
406 		spin_lock(&svm_bo->list_lock);
407 	}
408 	spin_unlock(&svm_bo->list_lock);
409 
410 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
411 		struct kfd_process_device *pdd;
412 		struct kfd_process *p;
413 		struct mm_struct *mm;
414 
415 		mm = svm_bo->eviction_fence->mm;
416 		/*
417 		 * The forked child process takes svm_bo device pages ref, svm_bo could be
418 		 * released after parent process is gone.
419 		 */
420 		p = kfd_lookup_process_by_mm(mm);
421 		if (p) {
422 			pdd = kfd_get_process_device_data(svm_bo->node, p);
423 			if (pdd)
424 				atomic64_sub(amdgpu_bo_size(svm_bo->bo), &pdd->vram_usage);
425 			kfd_unref_process(p);
426 		}
427 		mmput(mm);
428 	}
429 
430 	if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
431 		/* We're not in the eviction worker. Signal the fence. */
432 		dma_fence_signal(&svm_bo->eviction_fence->base);
433 	dma_fence_put(&svm_bo->eviction_fence->base);
434 	amdgpu_bo_unref(&svm_bo->bo);
435 	kfree(svm_bo);
436 }
437 
438 static void svm_range_bo_wq_release(struct work_struct *work)
439 {
440 	struct svm_range_bo *svm_bo;
441 
442 	svm_bo = container_of(work, struct svm_range_bo, release_work);
443 	svm_range_bo_release(&svm_bo->kref);
444 }
445 
446 static void svm_range_bo_release_async(struct kref *kref)
447 {
448 	struct svm_range_bo *svm_bo;
449 
450 	svm_bo = container_of(kref, struct svm_range_bo, kref);
451 	pr_debug("svm_bo 0x%p\n", svm_bo);
452 	INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
453 	schedule_work(&svm_bo->release_work);
454 }
455 
456 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
457 {
458 	kref_put(&svm_bo->kref, svm_range_bo_release_async);
459 }
460 
461 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
462 {
463 	if (svm_bo)
464 		kref_put(&svm_bo->kref, svm_range_bo_release);
465 }
466 
467 static bool
468 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
469 {
470 	mutex_lock(&prange->lock);
471 	if (!prange->svm_bo) {
472 		mutex_unlock(&prange->lock);
473 		return false;
474 	}
475 	if (prange->ttm_res) {
476 		/* We still have a reference, all is well */
477 		mutex_unlock(&prange->lock);
478 		return true;
479 	}
480 	if (svm_bo_ref_unless_zero(prange->svm_bo)) {
481 		/*
482 		 * Migrate from GPU to GPU, remove range from source svm_bo->node
483 		 * range list, and return false to allocate svm_bo from destination
484 		 * node.
485 		 */
486 		if (prange->svm_bo->node != node) {
487 			mutex_unlock(&prange->lock);
488 
489 			spin_lock(&prange->svm_bo->list_lock);
490 			list_del_init(&prange->svm_bo_list);
491 			spin_unlock(&prange->svm_bo->list_lock);
492 
493 			svm_range_bo_unref(prange->svm_bo);
494 			return false;
495 		}
496 		if (READ_ONCE(prange->svm_bo->evicting)) {
497 			struct dma_fence *f;
498 			struct svm_range_bo *svm_bo;
499 			/* The BO is getting evicted,
500 			 * we need to get a new one
501 			 */
502 			mutex_unlock(&prange->lock);
503 			svm_bo = prange->svm_bo;
504 			f = dma_fence_get(&svm_bo->eviction_fence->base);
505 			svm_range_bo_unref(prange->svm_bo);
506 			/* wait for the fence to avoid long spin-loop
507 			 * at list_empty_careful
508 			 */
509 			dma_fence_wait(f, false);
510 			dma_fence_put(f);
511 		} else {
512 			/* The BO was still around and we got
513 			 * a new reference to it
514 			 */
515 			mutex_unlock(&prange->lock);
516 			pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
517 				 prange->svms, prange->start, prange->last);
518 
519 			prange->ttm_res = prange->svm_bo->bo->tbo.resource;
520 			return true;
521 		}
522 
523 	} else {
524 		mutex_unlock(&prange->lock);
525 	}
526 
527 	/* We need a new svm_bo. Spin-loop to wait for concurrent
528 	 * svm_range_bo_release to finish removing this range from
529 	 * its range list and set prange->svm_bo to null. After this,
530 	 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
531 	 */
532 	while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
533 		cond_resched();
534 
535 	return false;
536 }
537 
538 static struct svm_range_bo *svm_range_bo_new(void)
539 {
540 	struct svm_range_bo *svm_bo;
541 
542 	svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
543 	if (!svm_bo)
544 		return NULL;
545 
546 	kref_init(&svm_bo->kref);
547 	INIT_LIST_HEAD(&svm_bo->range_list);
548 	spin_lock_init(&svm_bo->list_lock);
549 
550 	return svm_bo;
551 }
552 
553 int
554 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
555 			bool clear)
556 {
557 	struct kfd_process_device *pdd;
558 	struct amdgpu_bo_param bp;
559 	struct svm_range_bo *svm_bo;
560 	struct amdgpu_bo_user *ubo;
561 	struct amdgpu_bo *bo;
562 	struct kfd_process *p;
563 	struct mm_struct *mm;
564 	int r;
565 
566 	p = container_of(prange->svms, struct kfd_process, svms);
567 	pr_debug("process pid: %d svms 0x%p [0x%lx 0x%lx]\n",
568 		 p->lead_thread->pid, prange->svms,
569 		 prange->start, prange->last);
570 
571 	if (svm_range_validate_svm_bo(node, prange))
572 		return 0;
573 
574 	svm_bo = svm_range_bo_new();
575 	if (!svm_bo) {
576 		pr_debug("failed to alloc svm bo\n");
577 		return -ENOMEM;
578 	}
579 	mm = get_task_mm(p->lead_thread);
580 	if (!mm) {
581 		pr_debug("failed to get mm\n");
582 		kfree(svm_bo);
583 		return -ESRCH;
584 	}
585 	svm_bo->node = node;
586 	svm_bo->eviction_fence =
587 		amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
588 					   mm,
589 					   svm_bo, p->context_id);
590 	mmput(mm);
591 	INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
592 	svm_bo->evicting = 0;
593 	memset(&bp, 0, sizeof(bp));
594 	bp.size = prange->npages * PAGE_SIZE;
595 	bp.byte_align = PAGE_SIZE;
596 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
597 	bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
598 	bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
599 	bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
600 	bp.type = ttm_bo_type_device;
601 	bp.resv = NULL;
602 	if (node->xcp)
603 		bp.xcp_id_plus1 = node->xcp->id + 1;
604 
605 	r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
606 	if (r) {
607 		pr_debug("failed %d to create bo\n", r);
608 		goto create_bo_failed;
609 	}
610 	bo = &ubo->bo;
611 
612 	pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
613 		 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
614 		 bp.xcp_id_plus1 - 1);
615 
616 	r = amdgpu_bo_reserve(bo, true);
617 	if (r) {
618 		pr_debug("failed %d to reserve bo\n", r);
619 		goto reserve_bo_failed;
620 	}
621 
622 	if (clear) {
623 		r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
624 		if (r) {
625 			pr_debug("failed %d to sync bo\n", r);
626 			amdgpu_bo_unreserve(bo);
627 			goto reserve_bo_failed;
628 		}
629 	}
630 
631 	r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
632 	if (r) {
633 		pr_debug("failed %d to reserve bo\n", r);
634 		amdgpu_bo_unreserve(bo);
635 		goto reserve_bo_failed;
636 	}
637 	amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
638 
639 	amdgpu_bo_unreserve(bo);
640 
641 	svm_bo->bo = bo;
642 	prange->svm_bo = svm_bo;
643 	prange->ttm_res = bo->tbo.resource;
644 	prange->offset = 0;
645 
646 	spin_lock(&svm_bo->list_lock);
647 	list_add(&prange->svm_bo_list, &svm_bo->range_list);
648 	spin_unlock(&svm_bo->list_lock);
649 
650 	pdd = svm_range_get_pdd_by_node(prange, node);
651 	if (pdd)
652 		atomic64_add(amdgpu_bo_size(bo), &pdd->vram_usage);
653 
654 	return 0;
655 
656 reserve_bo_failed:
657 	amdgpu_bo_unref(&bo);
658 create_bo_failed:
659 	dma_fence_put(&svm_bo->eviction_fence->base);
660 	kfree(svm_bo);
661 	prange->ttm_res = NULL;
662 
663 	return r;
664 }
665 
666 void svm_range_vram_node_free(struct svm_range *prange)
667 {
668 	/* serialize prange->svm_bo unref */
669 	mutex_lock(&prange->lock);
670 	/* prange->svm_bo has not been unref */
671 	if (prange->ttm_res) {
672 		prange->ttm_res = NULL;
673 		mutex_unlock(&prange->lock);
674 		svm_range_bo_unref(prange->svm_bo);
675 	} else
676 		mutex_unlock(&prange->lock);
677 }
678 
679 struct kfd_node *
680 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
681 {
682 	struct kfd_process *p;
683 	struct kfd_process_device *pdd;
684 
685 	p = container_of(prange->svms, struct kfd_process, svms);
686 	pdd = kfd_process_device_data_by_id(p, gpu_id);
687 	if (!pdd) {
688 		pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
689 		return NULL;
690 	}
691 
692 	return pdd->dev;
693 }
694 
695 struct kfd_process_device *
696 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
697 {
698 	struct kfd_process *p;
699 
700 	p = container_of(prange->svms, struct kfd_process, svms);
701 
702 	return kfd_get_process_device_data(node, p);
703 }
704 
705 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
706 {
707 	struct ttm_operation_ctx ctx = { false, false };
708 
709 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
710 
711 	return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
712 }
713 
714 static int
715 svm_range_check_attr(struct kfd_process *p,
716 		     uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
717 {
718 	uint32_t i;
719 
720 	for (i = 0; i < nattr; i++) {
721 		uint32_t val = attrs[i].value;
722 		int gpuidx = MAX_GPU_INSTANCE;
723 
724 		switch (attrs[i].type) {
725 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
726 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
727 			    val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
728 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
729 			break;
730 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
731 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
732 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
733 			break;
734 		case KFD_IOCTL_SVM_ATTR_ACCESS:
735 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
736 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
737 			gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
738 			break;
739 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
740 			break;
741 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
742 			break;
743 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
744 			break;
745 		default:
746 			pr_debug("unknown attr type 0x%x\n", attrs[i].type);
747 			return -EINVAL;
748 		}
749 
750 		if (gpuidx < 0) {
751 			pr_debug("no GPU 0x%x found\n", val);
752 			return -EINVAL;
753 		} else if (gpuidx < MAX_GPU_INSTANCE &&
754 			   !test_bit(gpuidx, p->svms.bitmap_supported)) {
755 			pr_debug("GPU 0x%x not supported\n", val);
756 			return -EINVAL;
757 		}
758 	}
759 
760 	return 0;
761 }
762 
763 static void
764 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
765 		      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
766 		      bool *update_mapping)
767 {
768 	uint32_t i;
769 	int gpuidx;
770 
771 	for (i = 0; i < nattr; i++) {
772 		switch (attrs[i].type) {
773 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
774 			prange->preferred_loc = attrs[i].value;
775 			break;
776 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
777 			prange->prefetch_loc = attrs[i].value;
778 			break;
779 		case KFD_IOCTL_SVM_ATTR_ACCESS:
780 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
781 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
782 			if (!p->xnack_enabled)
783 				*update_mapping = true;
784 
785 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
786 							       attrs[i].value);
787 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
788 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
789 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
790 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
791 				bitmap_set(prange->bitmap_access, gpuidx, 1);
792 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
793 			} else {
794 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
795 				bitmap_set(prange->bitmap_aip, gpuidx, 1);
796 			}
797 			break;
798 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
799 			*update_mapping = true;
800 			prange->flags |= attrs[i].value;
801 			break;
802 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
803 			*update_mapping = true;
804 			prange->flags &= ~attrs[i].value;
805 			break;
806 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
807 			prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
808 			break;
809 		default:
810 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
811 		}
812 	}
813 }
814 
815 static bool
816 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
817 			uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
818 {
819 	uint32_t i;
820 	int gpuidx;
821 
822 	for (i = 0; i < nattr; i++) {
823 		switch (attrs[i].type) {
824 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
825 			if (prange->preferred_loc != attrs[i].value)
826 				return false;
827 			break;
828 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
829 			/* Prefetch should always trigger a migration even
830 			 * if the value of the attribute didn't change.
831 			 */
832 			return false;
833 		case KFD_IOCTL_SVM_ATTR_ACCESS:
834 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
835 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
836 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
837 							       attrs[i].value);
838 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
839 				if (test_bit(gpuidx, prange->bitmap_access) ||
840 				    test_bit(gpuidx, prange->bitmap_aip))
841 					return false;
842 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
843 				if (!test_bit(gpuidx, prange->bitmap_access))
844 					return false;
845 			} else {
846 				if (!test_bit(gpuidx, prange->bitmap_aip))
847 					return false;
848 			}
849 			break;
850 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
851 			if ((prange->flags & attrs[i].value) != attrs[i].value)
852 				return false;
853 			break;
854 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
855 			if ((prange->flags & attrs[i].value) != 0)
856 				return false;
857 			break;
858 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
859 			if (prange->granularity != attrs[i].value)
860 				return false;
861 			break;
862 		default:
863 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
864 		}
865 	}
866 
867 	return true;
868 }
869 
870 /**
871  * svm_range_debug_dump - print all range information from svms
872  * @svms: svm range list header
873  *
874  * debug output svm range start, end, prefetch location from svms
875  * interval tree and link list
876  *
877  * Context: The caller must hold svms->lock
878  */
879 static void svm_range_debug_dump(struct svm_range_list *svms)
880 {
881 	struct interval_tree_node *node;
882 	struct svm_range *prange;
883 
884 	pr_debug("dump svms 0x%p list\n", svms);
885 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
886 
887 	list_for_each_entry(prange, &svms->list, list) {
888 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
889 			 prange, prange->start, prange->npages,
890 			 prange->start + prange->npages - 1,
891 			 prange->actual_loc);
892 	}
893 
894 	pr_debug("dump svms 0x%p interval tree\n", svms);
895 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
896 	node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
897 	while (node) {
898 		prange = container_of(node, struct svm_range, it_node);
899 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
900 			 prange, prange->start, prange->npages,
901 			 prange->start + prange->npages - 1,
902 			 prange->actual_loc);
903 		node = interval_tree_iter_next(node, 0, ~0ULL);
904 	}
905 }
906 
907 static void *
908 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
909 		     uint64_t offset, uint64_t *vram_pages)
910 {
911 	unsigned char *src = (unsigned char *)psrc + offset;
912 	unsigned char *dst;
913 	uint64_t i;
914 
915 	dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
916 	if (!dst)
917 		return NULL;
918 
919 	if (!vram_pages) {
920 		memcpy(dst, src, num_elements * size);
921 		return (void *)dst;
922 	}
923 
924 	*vram_pages = 0;
925 	for (i = 0; i < num_elements; i++) {
926 		dma_addr_t *temp;
927 		temp = (dma_addr_t *)dst + i;
928 		*temp = *((dma_addr_t *)src + i);
929 		if (*temp&SVM_RANGE_VRAM_DOMAIN)
930 			(*vram_pages)++;
931 	}
932 
933 	return (void *)dst;
934 }
935 
936 static int
937 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
938 {
939 	int i;
940 
941 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
942 		if (!src->dma_addr[i])
943 			continue;
944 		dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
945 					sizeof(*src->dma_addr[i]), src->npages, 0, NULL);
946 		if (!dst->dma_addr[i])
947 			return -ENOMEM;
948 	}
949 
950 	return 0;
951 }
952 
953 static int
954 svm_range_split_array(void *ppnew, void *ppold, size_t size,
955 		      uint64_t old_start, uint64_t old_n,
956 		      uint64_t new_start, uint64_t new_n, uint64_t *new_vram_pages)
957 {
958 	unsigned char *new, *old, *pold;
959 	uint64_t d;
960 
961 	if (!ppold)
962 		return 0;
963 	pold = *(unsigned char **)ppold;
964 	if (!pold)
965 		return 0;
966 
967 	d = (new_start - old_start) * size;
968 	/* get dma addr array for new range and calculte its vram page number */
969 	new = svm_range_copy_array(pold, size, new_n, d, new_vram_pages);
970 	if (!new)
971 		return -ENOMEM;
972 	d = (new_start == old_start) ? new_n * size : 0;
973 	old = svm_range_copy_array(pold, size, old_n, d, NULL);
974 	if (!old) {
975 		kvfree(new);
976 		return -ENOMEM;
977 	}
978 	kvfree(pold);
979 	*(void **)ppold = old;
980 	*(void **)ppnew = new;
981 
982 	return 0;
983 }
984 
985 static int
986 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
987 		      uint64_t start, uint64_t last)
988 {
989 	uint64_t npages = last - start + 1;
990 	int i, r;
991 
992 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
993 		r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
994 					  sizeof(*old->dma_addr[i]), old->start,
995 					  npages, new->start, new->npages,
996 					  old->actual_loc ? &new->vram_pages : NULL);
997 		if (r)
998 			return r;
999 	}
1000 	if (old->actual_loc)
1001 		old->vram_pages -= new->vram_pages;
1002 
1003 	return 0;
1004 }
1005 
1006 static int
1007 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
1008 		      uint64_t start, uint64_t last)
1009 {
1010 	uint64_t npages = last - start + 1;
1011 
1012 	pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
1013 		 new->svms, new, new->start, start, last);
1014 
1015 	if (new->start == old->start) {
1016 		new->offset = old->offset;
1017 		old->offset += new->npages;
1018 	} else {
1019 		new->offset = old->offset + npages;
1020 	}
1021 
1022 	new->svm_bo = svm_range_bo_ref(old->svm_bo);
1023 	new->ttm_res = old->ttm_res;
1024 
1025 	spin_lock(&new->svm_bo->list_lock);
1026 	list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1027 	spin_unlock(&new->svm_bo->list_lock);
1028 
1029 	return 0;
1030 }
1031 
1032 /**
1033  * svm_range_split_adjust - split range and adjust
1034  *
1035  * @new: new range
1036  * @old: the old range
1037  * @start: the old range adjust to start address in pages
1038  * @last: the old range adjust to last address in pages
1039  *
1040  * Copy system memory dma_addr or vram ttm_res in old range to new
1041  * range from new_start up to size new->npages, the remaining old range is from
1042  * start to last
1043  *
1044  * Return:
1045  * 0 - OK, -ENOMEM - out of memory
1046  */
1047 static int
1048 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1049 		      uint64_t start, uint64_t last)
1050 {
1051 	int r;
1052 
1053 	pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1054 		 new->svms, new->start, old->start, old->last, start, last);
1055 
1056 	if (new->start < old->start ||
1057 	    new->last > old->last) {
1058 		WARN_ONCE(1, "invalid new range start or last\n");
1059 		return -EINVAL;
1060 	}
1061 
1062 	r = svm_range_split_pages(new, old, start, last);
1063 	if (r)
1064 		return r;
1065 
1066 	if (old->actual_loc && old->ttm_res) {
1067 		r = svm_range_split_nodes(new, old, start, last);
1068 		if (r)
1069 			return r;
1070 	}
1071 
1072 	old->npages = last - start + 1;
1073 	old->start = start;
1074 	old->last = last;
1075 	new->flags = old->flags;
1076 	new->preferred_loc = old->preferred_loc;
1077 	new->prefetch_loc = old->prefetch_loc;
1078 	new->actual_loc = old->actual_loc;
1079 	new->granularity = old->granularity;
1080 	new->mapped_to_gpu = old->mapped_to_gpu;
1081 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1082 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1083 	atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
1084 
1085 	return 0;
1086 }
1087 
1088 /**
1089  * svm_range_split - split a range in 2 ranges
1090  *
1091  * @prange: the svm range to split
1092  * @start: the remaining range start address in pages
1093  * @last: the remaining range last address in pages
1094  * @new: the result new range generated
1095  *
1096  * Two cases only:
1097  * case 1: if start == prange->start
1098  *         prange ==> prange[start, last]
1099  *         new range [last + 1, prange->last]
1100  *
1101  * case 2: if last == prange->last
1102  *         prange ==> prange[start, last]
1103  *         new range [prange->start, start - 1]
1104  *
1105  * Return:
1106  * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1107  */
1108 static int
1109 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1110 		struct svm_range **new)
1111 {
1112 	uint64_t old_start = prange->start;
1113 	uint64_t old_last = prange->last;
1114 	struct svm_range_list *svms;
1115 	int r = 0;
1116 
1117 	pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1118 		 old_start, old_last, start, last);
1119 
1120 	if (old_start != start && old_last != last)
1121 		return -EINVAL;
1122 	if (start < old_start || last > old_last)
1123 		return -EINVAL;
1124 
1125 	svms = prange->svms;
1126 	if (old_start == start)
1127 		*new = svm_range_new(svms, last + 1, old_last, false);
1128 	else
1129 		*new = svm_range_new(svms, old_start, start - 1, false);
1130 	if (!*new)
1131 		return -ENOMEM;
1132 
1133 	r = svm_range_split_adjust(*new, prange, start, last);
1134 	if (r) {
1135 		pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1136 			 r, old_start, old_last, start, last);
1137 		svm_range_free(*new, false);
1138 		*new = NULL;
1139 	}
1140 
1141 	return r;
1142 }
1143 
1144 static int
1145 svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
1146 		     struct list_head *insert_list, struct list_head *remap_list)
1147 {
1148 	unsigned long last_align_down = ALIGN_DOWN(prange->last, 512);
1149 	unsigned long start_align = ALIGN(prange->start, 512);
1150 	bool huge_page_mapping = last_align_down > start_align;
1151 	struct svm_range *tail = NULL;
1152 	int r;
1153 
1154 	r = svm_range_split(prange, prange->start, new_last, &tail);
1155 
1156 	if (r)
1157 		return r;
1158 
1159 	list_add(&tail->list, insert_list);
1160 
1161 	if (huge_page_mapping && tail->start > start_align &&
1162 	    tail->start < last_align_down && (!IS_ALIGNED(tail->start, 512)))
1163 		list_add(&tail->update_list, remap_list);
1164 
1165 	return 0;
1166 }
1167 
1168 static int
1169 svm_range_split_head(struct svm_range *prange, uint64_t new_start,
1170 		     struct list_head *insert_list, struct list_head *remap_list)
1171 {
1172 	unsigned long last_align_down = ALIGN_DOWN(prange->last, 512);
1173 	unsigned long start_align = ALIGN(prange->start, 512);
1174 	bool huge_page_mapping = last_align_down > start_align;
1175 	struct svm_range *head = NULL;
1176 	int r;
1177 
1178 	r = svm_range_split(prange, new_start, prange->last, &head);
1179 
1180 	if (r)
1181 		return r;
1182 
1183 	list_add(&head->list, insert_list);
1184 
1185 	if (huge_page_mapping && head->last + 1 > start_align &&
1186 	    head->last + 1 < last_align_down && (!IS_ALIGNED(head->last, 512)))
1187 		list_add(&head->update_list, remap_list);
1188 
1189 	return 0;
1190 }
1191 
1192 static void
1193 svm_range_add_child(struct svm_range *prange, struct svm_range *pchild, enum svm_work_list_ops op)
1194 {
1195 	pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1196 		 pchild, pchild->start, pchild->last, prange, op);
1197 
1198 	pchild->work_item.mm = NULL;
1199 	pchild->work_item.op = op;
1200 	list_add_tail(&pchild->child_list, &prange->child_list);
1201 }
1202 
1203 static bool
1204 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1205 {
1206 	return (node_a->adev == node_b->adev ||
1207 		amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1208 }
1209 
1210 static uint64_t
1211 svm_range_get_pte_flags(struct kfd_node *node, struct amdgpu_vm *vm,
1212 			struct svm_range *prange, int domain)
1213 {
1214 	struct kfd_node *bo_node;
1215 	uint32_t flags = prange->flags;
1216 	uint32_t mapping_flags = 0;
1217 	uint32_t gc_ip_version = KFD_GC_VERSION(node);
1218 	uint64_t pte_flags;
1219 	bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1220 	bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1221 	bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1222 	unsigned int mtype_local;
1223 
1224 	if (domain == SVM_RANGE_VRAM_DOMAIN)
1225 		bo_node = prange->svm_bo->node;
1226 
1227 	switch (gc_ip_version) {
1228 	case IP_VERSION(9, 4, 1):
1229 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1230 			if (bo_node == node) {
1231 				mapping_flags |= coherent ?
1232 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1233 			} else {
1234 				mapping_flags |= coherent ?
1235 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1236 				if (svm_nodes_in_same_hive(node, bo_node))
1237 					snoop = true;
1238 			}
1239 		} else {
1240 			mapping_flags |= coherent ?
1241 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1242 		}
1243 		break;
1244 	case IP_VERSION(9, 4, 2):
1245 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1246 			if (bo_node == node) {
1247 				mapping_flags |= coherent ?
1248 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1249 				if (node->adev->gmc.xgmi.connected_to_cpu)
1250 					snoop = true;
1251 			} else {
1252 				mapping_flags |= coherent ?
1253 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1254 				if (svm_nodes_in_same_hive(node, bo_node))
1255 					snoop = true;
1256 			}
1257 		} else {
1258 			mapping_flags |= coherent ?
1259 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1260 		}
1261 		break;
1262 	case IP_VERSION(9, 4, 3):
1263 	case IP_VERSION(9, 4, 4):
1264 	case IP_VERSION(9, 5, 0):
1265 		if (ext_coherent)
1266 			mtype_local = AMDGPU_VM_MTYPE_CC;
1267 		else
1268 			mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1269 				amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1270 		snoop = true;
1271 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1272 			/* local HBM region close to partition */
1273 			if (bo_node->adev == node->adev &&
1274 			    (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1275 				mapping_flags |= mtype_local;
1276 			/* local HBM region far from partition or remote XGMI GPU
1277 			 * with regular system scope coherence
1278 			 */
1279 			else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent)
1280 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1281 			/* PCIe P2P on GPUs pre-9.5.0 */
1282 			else if (gc_ip_version < IP_VERSION(9, 5, 0) &&
1283 				 !svm_nodes_in_same_hive(bo_node, node))
1284 				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1285 			/* Other remote memory */
1286 			else
1287 				mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1288 		/* system memory accessed by the APU */
1289 		} else if (node->adev->flags & AMD_IS_APU) {
1290 			/* On NUMA systems, locality is determined per-page
1291 			 * in amdgpu_gmc_override_vm_pte_flags
1292 			 */
1293 			if (num_possible_nodes() <= 1)
1294 				mapping_flags |= mtype_local;
1295 			else
1296 				mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1297 		/* system memory accessed by the dGPU */
1298 		} else {
1299 			if (gc_ip_version < IP_VERSION(9, 5, 0) || ext_coherent)
1300 				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1301 			else
1302 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1303 		}
1304 		break;
1305 	case IP_VERSION(12, 0, 0):
1306 	case IP_VERSION(12, 0, 1):
1307 		mapping_flags |= AMDGPU_VM_MTYPE_NC;
1308 		break;
1309 	case IP_VERSION(12, 1, 0):
1310 		snoop = true;
1311 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1312 			mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1313 								AMDGPU_VM_MTYPE_RW;
1314 			/* local HBM  */
1315 			if (bo_node->adev == node->adev)
1316 				mapping_flags |= mtype_local;
1317 			/* Remote GPU memory */
1318 			else
1319 				mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC :
1320 								AMDGPU_VM_MTYPE_NC;
1321 		/* system memory accessed by the dGPU */
1322 		} else {
1323 			mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1324 		}
1325 		break;
1326 	default:
1327 		mapping_flags |= coherent ?
1328 			AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1329 	}
1330 
1331 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1332 		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1333 
1334 	pte_flags = AMDGPU_PTE_VALID;
1335 	pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1336 	pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1337 	if (gc_ip_version >= IP_VERSION(12, 0, 0))
1338 		pte_flags |= AMDGPU_PTE_IS_PTE;
1339 
1340 	amdgpu_gmc_get_vm_pte(node->adev, vm, NULL, mapping_flags, &pte_flags);
1341 	pte_flags |= AMDGPU_PTE_READABLE;
1342 	if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO))
1343 		pte_flags |= AMDGPU_PTE_WRITEABLE;
1344 
1345 	if ((gc_ip_version == IP_VERSION(12, 1, 0)) &&
1346 	    node->adev->have_atomics_support)
1347 		pte_flags |= AMDGPU_PTE_BUS_ATOMICS;
1348 
1349 	return pte_flags;
1350 }
1351 
1352 static int
1353 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1354 			 uint64_t start, uint64_t last,
1355 			 struct dma_fence **fence)
1356 {
1357 	uint64_t init_pte_value = adev->gmc.init_pte_flags;
1358 	uint64_t gpu_start, gpu_end;
1359 
1360 	/* Convert CPU page range to GPU page range */
1361 	gpu_start = start * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1362 	gpu_end = (last + 1) * AMDGPU_GPU_PAGES_IN_CPU_PAGE - 1;
1363 
1364 	pr_debug("CPU[0x%llx 0x%llx] -> GPU[0x%llx 0x%llx]\n", start, last,
1365 		gpu_start, gpu_end);
1366 	return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, gpu_start,
1367 				      gpu_end, init_pte_value, 0, 0, NULL, NULL,
1368 				      fence);
1369 }
1370 
1371 static int
1372 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1373 			  unsigned long last, uint32_t trigger)
1374 {
1375 	struct kfd_process_device *pdd;
1376 	struct dma_fence *fence = NULL;
1377 	struct kfd_process *p;
1378 	uint32_t gpuidx;
1379 	int r = 0;
1380 
1381 	if (!prange->mapped_to_gpu) {
1382 		pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1383 			 prange, prange->start, prange->last);
1384 		return 0;
1385 	}
1386 
1387 	if (prange->start == start && prange->last == last) {
1388 		pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1389 		prange->mapped_to_gpu = false;
1390 	}
1391 
1392 	p = container_of(prange->svms, struct kfd_process, svms);
1393 
1394 	for_each_or_bit(gpuidx, prange->bitmap_access, prange->bitmap_aip, MAX_GPU_INSTANCE) {
1395 		pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1396 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1397 		if (!pdd) {
1398 			pr_debug("failed to find device idx %d\n", gpuidx);
1399 			return -EINVAL;
1400 		}
1401 
1402 		kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1403 					     start, last, trigger);
1404 
1405 		r = svm_range_unmap_from_gpu(pdd->dev->adev,
1406 					     drm_priv_to_vm(pdd->drm_priv),
1407 					     start, last, &fence);
1408 		if (r)
1409 			break;
1410 
1411 		if (fence) {
1412 			r = dma_fence_wait(fence, false);
1413 			dma_fence_put(fence);
1414 			fence = NULL;
1415 			if (r)
1416 				break;
1417 		}
1418 		kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1419 	}
1420 
1421 	return r;
1422 }
1423 
1424 static int
1425 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1426 		     unsigned long offset, unsigned long npages, bool readonly,
1427 		     dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1428 		     struct dma_fence **fence, bool flush_tlb)
1429 {
1430 	struct amdgpu_device *adev = pdd->dev->adev;
1431 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1432 	uint64_t pte_flags;
1433 	unsigned long last_start;
1434 	int last_domain;
1435 	int r = 0;
1436 	int64_t i, j;
1437 
1438 	last_start = prange->start + offset;
1439 
1440 	pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1441 		 last_start, last_start + npages - 1, readonly);
1442 
1443 	for (i = offset; i < offset + npages; i++) {
1444 		uint64_t gpu_start;
1445 		uint64_t gpu_end;
1446 
1447 		last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1448 		dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1449 
1450 		/* Collect all pages in the same address range and memory domain
1451 		 * that can be mapped with a single call to update mapping.
1452 		 */
1453 		if (i < offset + npages - 1 &&
1454 		    last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1455 			continue;
1456 
1457 		pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1458 			 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1459 
1460 		pte_flags = svm_range_get_pte_flags(pdd->dev, vm, prange, last_domain);
1461 		if (readonly)
1462 			pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1463 
1464 
1465 		/* For dGPU mode, we use same vm_manager to allocate VRAM for
1466 		 * different memory partition based on fpfn/lpfn, we should use
1467 		 * same vm_manager.vram_base_offset regardless memory partition.
1468 		 */
1469 		gpu_start = last_start * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1470 		gpu_end = (prange->start + i + 1) * AMDGPU_GPU_PAGES_IN_CPU_PAGE - 1;
1471 
1472 		pr_debug("svms 0x%p map CPU[0x%lx 0x%llx] GPU[0x%llx 0x%llx] vram %d PTE 0x%llx\n",
1473 			 prange->svms, last_start, prange->start + i,
1474 			 gpu_start, gpu_end,
1475 			 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1476 			 pte_flags);
1477 
1478 		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true,
1479 					   NULL, gpu_start, gpu_end,
1480 					   pte_flags,
1481 					   (last_start - prange->start) << PAGE_SHIFT,
1482 					   bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1483 					   NULL, dma_addr, &vm->last_update);
1484 
1485 		for (j = last_start - prange->start; j <= i; j++)
1486 			dma_addr[j] |= last_domain;
1487 
1488 		if (r) {
1489 			pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1490 			goto out;
1491 		}
1492 		last_start = prange->start + i + 1;
1493 	}
1494 
1495 	r = amdgpu_vm_update_pdes(adev, vm, false);
1496 	if (r) {
1497 		pr_debug("failed %d to update directories 0x%lx\n", r,
1498 			 prange->start);
1499 		goto out;
1500 	}
1501 
1502 	if (fence)
1503 		*fence = dma_fence_get(vm->last_update);
1504 
1505 out:
1506 	return r;
1507 }
1508 
1509 static int
1510 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1511 		      unsigned long npages, bool readonly,
1512 		      unsigned long *bitmap, bool wait, bool flush_tlb)
1513 {
1514 	struct kfd_process_device *pdd;
1515 	struct amdgpu_device *bo_adev = NULL;
1516 	struct kfd_process *p;
1517 	struct dma_fence *fence = NULL;
1518 	uint32_t gpuidx;
1519 	int r = 0;
1520 
1521 	if (prange->svm_bo && prange->ttm_res)
1522 		bo_adev = prange->svm_bo->node->adev;
1523 
1524 	p = container_of(prange->svms, struct kfd_process, svms);
1525 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1526 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1527 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1528 		if (!pdd) {
1529 			pr_debug("failed to find device idx %d\n", gpuidx);
1530 			return -EINVAL;
1531 		}
1532 
1533 		pdd = kfd_bind_process_to_device(pdd->dev, p);
1534 		if (IS_ERR(pdd))
1535 			return -EINVAL;
1536 
1537 		if (bo_adev && pdd->dev->adev != bo_adev &&
1538 		    !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1539 			pr_debug("cannot map to device idx %d\n", gpuidx);
1540 			continue;
1541 		}
1542 
1543 		r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1544 					 prange->dma_addr[gpuidx],
1545 					 bo_adev, wait ? &fence : NULL,
1546 					 flush_tlb);
1547 		if (r)
1548 			break;
1549 
1550 		if (fence) {
1551 			r = dma_fence_wait(fence, false);
1552 			dma_fence_put(fence);
1553 			fence = NULL;
1554 			if (r) {
1555 				pr_debug("failed %d to dma fence wait\n", r);
1556 				break;
1557 			}
1558 		}
1559 
1560 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1561 	}
1562 
1563 	return r;
1564 }
1565 
1566 struct svm_validate_context {
1567 	struct kfd_process *process;
1568 	struct svm_range *prange;
1569 	bool intr;
1570 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1571 	struct drm_exec exec;
1572 };
1573 
1574 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1575 {
1576 	struct kfd_process_device *pdd;
1577 	struct amdgpu_vm *vm;
1578 	uint32_t gpuidx;
1579 	int r;
1580 
1581 	drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0, 0);
1582 	drm_exec_until_all_locked(&ctx->exec) {
1583 		for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1584 			pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1585 			if (!pdd) {
1586 				pr_debug("failed to find device idx %d\n", gpuidx);
1587 				r = -EINVAL;
1588 				goto unreserve_out;
1589 			}
1590 			vm = drm_priv_to_vm(pdd->drm_priv);
1591 
1592 			r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1593 			drm_exec_retry_on_contention(&ctx->exec);
1594 			if (unlikely(r)) {
1595 				pr_debug("failed %d to reserve bo\n", r);
1596 				goto unreserve_out;
1597 			}
1598 		}
1599 	}
1600 
1601 	for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1602 		pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1603 		if (!pdd) {
1604 			pr_debug("failed to find device idx %d\n", gpuidx);
1605 			r = -EINVAL;
1606 			goto unreserve_out;
1607 		}
1608 
1609 		r = amdgpu_vm_validate(pdd->dev->adev,
1610 				       drm_priv_to_vm(pdd->drm_priv), NULL,
1611 				       svm_range_bo_validate, NULL);
1612 		if (r) {
1613 			pr_debug("failed %d validate pt bos\n", r);
1614 			goto unreserve_out;
1615 		}
1616 	}
1617 
1618 	return 0;
1619 
1620 unreserve_out:
1621 	drm_exec_fini(&ctx->exec);
1622 	return r;
1623 }
1624 
1625 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1626 {
1627 	drm_exec_fini(&ctx->exec);
1628 }
1629 
1630 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1631 {
1632 	struct kfd_process_device *pdd;
1633 
1634 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1635 	if (!pdd)
1636 		return NULL;
1637 
1638 	return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1639 }
1640 
1641 /*
1642  * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1643  *
1644  * To prevent concurrent destruction or change of range attributes, the
1645  * svm_read_lock must be held. The caller must not hold the svm_write_lock
1646  * because that would block concurrent evictions and lead to deadlocks. To
1647  * serialize concurrent migrations or validations of the same range, the
1648  * prange->migrate_mutex must be held.
1649  *
1650  * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1651  * eviction fence.
1652  *
1653  * The following sequence ensures race-free validation and GPU mapping:
1654  *
1655  * 1. Reserve page table (and SVM BO if range is in VRAM)
1656  * 2. hmm_range_fault to get page addresses (if system memory)
1657  * 3. DMA-map pages (if system memory)
1658  * 4-a. Take notifier lock
1659  * 4-b. Check that pages still valid (mmu_interval_read_retry)
1660  * 4-c. Check that the range was not split or otherwise invalidated
1661  * 4-d. Update GPU page table
1662  * 4.e. Release notifier lock
1663  * 5. Release page table (and SVM BO) reservation
1664  */
1665 static int svm_range_validate_and_map(struct mm_struct *mm,
1666 				      unsigned long map_start, unsigned long map_last,
1667 				      struct svm_range *prange, int32_t gpuidx,
1668 				      bool intr, bool wait, bool flush_tlb)
1669 {
1670 	struct svm_validate_context *ctx;
1671 	unsigned long start, end, addr;
1672 	struct kfd_process *p;
1673 	void *owner;
1674 	int32_t idx;
1675 	int r = 0;
1676 
1677 	ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1678 	if (!ctx)
1679 		return -ENOMEM;
1680 	ctx->process = container_of(prange->svms, struct kfd_process, svms);
1681 	ctx->prange = prange;
1682 	ctx->intr = intr;
1683 
1684 	if (gpuidx < MAX_GPU_INSTANCE) {
1685 		bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1686 		bitmap_set(ctx->bitmap, gpuidx, 1);
1687 	} else if (ctx->process->xnack_enabled) {
1688 		bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1689 
1690 		/* If prefetch range to GPU, or GPU retry fault migrate range to
1691 		 * GPU, which has ACCESS attribute to the range, create mapping
1692 		 * on that GPU.
1693 		 */
1694 		if (prange->actual_loc) {
1695 			gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1696 							prange->actual_loc);
1697 			if (gpuidx < 0) {
1698 				WARN_ONCE(1, "failed get device by id 0x%x\n",
1699 					 prange->actual_loc);
1700 				r = -EINVAL;
1701 				goto free_ctx;
1702 			}
1703 			if (test_bit(gpuidx, prange->bitmap_access))
1704 				bitmap_set(ctx->bitmap, gpuidx, 1);
1705 		}
1706 
1707 		/*
1708 		 * If prange is already mapped or with always mapped flag,
1709 		 * update mapping on GPUs with ACCESS attribute
1710 		 */
1711 		if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1712 			if (prange->mapped_to_gpu ||
1713 			    prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1714 				bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1715 		}
1716 	} else {
1717 		bitmap_or(ctx->bitmap, prange->bitmap_access,
1718 			  prange->bitmap_aip, MAX_GPU_INSTANCE);
1719 	}
1720 
1721 	if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1722 		r = 0;
1723 		goto free_ctx;
1724 	}
1725 
1726 	if (prange->actual_loc && !prange->ttm_res) {
1727 		/* This should never happen. actual_loc gets set by
1728 		 * svm_migrate_ram_to_vram after allocating a BO.
1729 		 */
1730 		WARN_ONCE(1, "VRAM BO missing during validation\n");
1731 		r = -EINVAL;
1732 		goto free_ctx;
1733 	}
1734 
1735 	r = svm_range_reserve_bos(ctx, intr);
1736 	if (r)
1737 		goto free_ctx;
1738 
1739 	p = container_of(prange->svms, struct kfd_process, svms);
1740 	owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1741 						MAX_GPU_INSTANCE));
1742 	for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1743 		if (kfd_svm_page_owner(p, idx) != owner) {
1744 			owner = NULL;
1745 			break;
1746 		}
1747 	}
1748 
1749 	start = map_start << PAGE_SHIFT;
1750 	end = (map_last + 1) << PAGE_SHIFT;
1751 	for (addr = start; !r && addr < end; ) {
1752 		struct amdgpu_hmm_range *range = NULL;
1753 		unsigned long map_start_vma;
1754 		unsigned long map_last_vma;
1755 		struct vm_area_struct *vma;
1756 		unsigned long next = 0;
1757 		unsigned long offset;
1758 		unsigned long npages;
1759 		bool readonly;
1760 
1761 		vma = vma_lookup(mm, addr);
1762 		if (vma) {
1763 			readonly = !(vma->vm_flags & VM_WRITE);
1764 
1765 			next = min(vma->vm_end, end);
1766 			npages = (next - addr) >> PAGE_SHIFT;
1767 			/* HMM requires at least READ permissions. If provided with PROT_NONE,
1768 			 * unmap the memory. If it's not already mapped, this is a no-op
1769 			 * If PROT_WRITE is provided without READ, warn first then unmap
1770 			 */
1771 			if (!(vma->vm_flags & VM_READ)) {
1772 				unsigned long e, s;
1773 
1774 				svm_range_lock(prange);
1775 				if (vma->vm_flags & VM_WRITE)
1776 					pr_debug("VM_WRITE without VM_READ is not supported");
1777 				s = max(start, prange->start);
1778 				e = min(end, prange->last);
1779 				if (e >= s)
1780 					r = svm_range_unmap_from_gpus(prange, s, e,
1781 						       KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU);
1782 				svm_range_unlock(prange);
1783 				/* If unmap returns non-zero, we'll bail on the next for loop
1784 				 * iteration, so just leave r and continue
1785 				 */
1786 				addr = next;
1787 				continue;
1788 			}
1789 
1790 			WRITE_ONCE(p->svms.faulting_task, current);
1791 			range = amdgpu_hmm_range_alloc(NULL);
1792 			if (likely(range))
1793 				r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1794 							       readonly, owner, range);
1795 			else
1796 				r = -ENOMEM;
1797 			WRITE_ONCE(p->svms.faulting_task, NULL);
1798 			if (r)
1799 				pr_debug("failed %d to get svm range pages\n", r);
1800 		} else {
1801 			r = -EFAULT;
1802 		}
1803 
1804 		if (!r) {
1805 			offset = (addr >> PAGE_SHIFT) - prange->start;
1806 			r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1807 					      range->hmm_range.hmm_pfns);
1808 			if (r)
1809 				pr_debug("failed %d to dma map range\n", r);
1810 		}
1811 
1812 		svm_range_lock(prange);
1813 
1814 		/* Free backing memory of hmm_range if it was initialized
1815 		 * Override return value to TRY AGAIN only if prior returns
1816 		 * were successful
1817 		 */
1818 		if (range && !amdgpu_hmm_range_valid(range) && !r) {
1819 			pr_debug("hmm update the range, need validate again\n");
1820 			r = -EAGAIN;
1821 		}
1822 
1823 		/* Free the hmm range */
1824 		amdgpu_hmm_range_free(range);
1825 
1826 		if (!r && !list_empty(&prange->child_list)) {
1827 			pr_debug("range split by unmap in parallel, validate again\n");
1828 			r = -EAGAIN;
1829 		}
1830 
1831 		if (!r) {
1832 			map_start_vma = max(map_start, prange->start + offset);
1833 			map_last_vma = min(map_last, prange->start + offset + npages - 1);
1834 			if (map_start_vma <= map_last_vma) {
1835 				offset = map_start_vma - prange->start;
1836 				npages = map_last_vma - map_start_vma + 1;
1837 				r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1838 							  ctx->bitmap, wait, flush_tlb);
1839 			}
1840 		}
1841 
1842 		if (!r && next == end)
1843 			prange->mapped_to_gpu = true;
1844 
1845 		svm_range_unlock(prange);
1846 
1847 		addr = next;
1848 	}
1849 
1850 	svm_range_unreserve_bos(ctx);
1851 	if (!r)
1852 		prange->validate_timestamp = ktime_get_boottime();
1853 
1854 free_ctx:
1855 	kfree(ctx);
1856 
1857 	return r;
1858 }
1859 
1860 /**
1861  * svm_range_list_lock_and_flush_work - flush pending deferred work
1862  *
1863  * @svms: the svm range list
1864  * @mm: the mm structure
1865  *
1866  * Context: Returns with mmap write lock held, pending deferred work flushed
1867  *
1868  */
1869 void
1870 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1871 				   struct mm_struct *mm)
1872 {
1873 retry_flush_work:
1874 	flush_work(&svms->deferred_list_work);
1875 	mmap_write_lock(mm);
1876 
1877 	if (list_empty(&svms->deferred_range_list))
1878 		return;
1879 	mmap_write_unlock(mm);
1880 	pr_debug("retry flush\n");
1881 	goto retry_flush_work;
1882 }
1883 
1884 static void svm_range_restore_work(struct work_struct *work)
1885 {
1886 	struct delayed_work *dwork = to_delayed_work(work);
1887 	struct amdkfd_process_info *process_info;
1888 	struct svm_range_list *svms;
1889 	struct svm_range *prange;
1890 	struct kfd_process *p;
1891 	struct mm_struct *mm;
1892 	int evicted_ranges;
1893 	int invalid;
1894 	int r;
1895 
1896 	svms = container_of(dwork, struct svm_range_list, restore_work);
1897 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1898 	if (!evicted_ranges)
1899 		return;
1900 
1901 	pr_debug("restore svm ranges\n");
1902 
1903 	p = container_of(svms, struct kfd_process, svms);
1904 	process_info = p->kgd_process_info;
1905 
1906 	/* Keep mm reference when svm_range_validate_and_map ranges */
1907 	mm = get_task_mm(p->lead_thread);
1908 	if (!mm) {
1909 		pr_debug("svms 0x%p process mm gone\n", svms);
1910 		return;
1911 	}
1912 
1913 	mutex_lock(&process_info->lock);
1914 	svm_range_list_lock_and_flush_work(svms, mm);
1915 	mutex_lock(&svms->lock);
1916 
1917 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1918 
1919 	list_for_each_entry(prange, &svms->list, list) {
1920 		invalid = atomic_read(&prange->invalid);
1921 		if (!invalid)
1922 			continue;
1923 
1924 		pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1925 			 prange->svms, prange, prange->start, prange->last,
1926 			 invalid);
1927 
1928 		/*
1929 		 * If range is migrating, wait for migration is done.
1930 		 */
1931 		mutex_lock(&prange->migrate_mutex);
1932 
1933 		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
1934 					       MAX_GPU_INSTANCE, false, true, false);
1935 		if (r)
1936 			pr_debug("failed %d to map 0x%lx to gpus\n", r,
1937 				 prange->start);
1938 
1939 		mutex_unlock(&prange->migrate_mutex);
1940 		if (r)
1941 			goto out_reschedule;
1942 
1943 		if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1944 			goto out_reschedule;
1945 	}
1946 
1947 	if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1948 	    evicted_ranges)
1949 		goto out_reschedule;
1950 
1951 	evicted_ranges = 0;
1952 
1953 	r = kgd2kfd_resume_mm(mm);
1954 	if (r) {
1955 		/* No recovery from this failure. Probably the CP is
1956 		 * hanging. No point trying again.
1957 		 */
1958 		pr_debug("failed %d to resume KFD\n", r);
1959 	}
1960 
1961 	pr_debug("restore svm ranges successfully\n");
1962 
1963 out_reschedule:
1964 	mutex_unlock(&svms->lock);
1965 	mmap_write_unlock(mm);
1966 	mutex_unlock(&process_info->lock);
1967 
1968 	/* If validation failed, reschedule another attempt */
1969 	if (evicted_ranges) {
1970 		pr_debug("reschedule to restore svm range\n");
1971 		queue_delayed_work(system_freezable_wq, &svms->restore_work,
1972 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1973 
1974 		kfd_smi_event_queue_restore_rescheduled(mm);
1975 	}
1976 	mmput(mm);
1977 }
1978 
1979 /**
1980  * svm_range_evict - evict svm range
1981  * @prange: svm range structure
1982  * @mm: current process mm_struct
1983  * @start: starting process queue number
1984  * @last: last process queue number
1985  * @event: mmu notifier event when range is evicted or migrated
1986  *
1987  * Stop all queues of the process to ensure GPU doesn't access the memory, then
1988  * return to let CPU evict the buffer and proceed CPU pagetable update.
1989  *
1990  * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1991  * If invalidation happens while restore work is running, restore work will
1992  * restart to ensure to get the latest CPU pages mapping to GPU, then start
1993  * the queues.
1994  */
1995 static int
1996 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1997 		unsigned long start, unsigned long last,
1998 		enum mmu_notifier_event event)
1999 {
2000 	struct svm_range_list *svms = prange->svms;
2001 	struct svm_range *pchild;
2002 	struct kfd_process *p;
2003 	int r = 0;
2004 
2005 	p = container_of(svms, struct kfd_process, svms);
2006 
2007 	pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2008 		 svms, prange->start, prange->last, start, last);
2009 
2010 	if (!p->xnack_enabled ||
2011 	    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
2012 		int evicted_ranges;
2013 		bool mapped = prange->mapped_to_gpu;
2014 
2015 		list_for_each_entry(pchild, &prange->child_list, child_list) {
2016 			if (!pchild->mapped_to_gpu)
2017 				continue;
2018 			mapped = true;
2019 			mutex_lock_nested(&pchild->lock, 1);
2020 			if (pchild->start <= last && pchild->last >= start) {
2021 				pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
2022 					 pchild->start, pchild->last);
2023 				atomic_inc(&pchild->invalid);
2024 			}
2025 			mutex_unlock(&pchild->lock);
2026 		}
2027 
2028 		if (!mapped)
2029 			return r;
2030 
2031 		if (prange->start <= last && prange->last >= start)
2032 			atomic_inc(&prange->invalid);
2033 
2034 		evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
2035 		if (evicted_ranges != 1)
2036 			return r;
2037 
2038 		pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
2039 			 prange->svms, prange->start, prange->last);
2040 
2041 		/* First eviction, stop the queues */
2042 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
2043 		if (r)
2044 			pr_debug("failed to quiesce KFD\n");
2045 
2046 		pr_debug("schedule to restore svm %p ranges\n", svms);
2047 		queue_delayed_work(system_freezable_wq, &svms->restore_work,
2048 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
2049 	} else {
2050 		unsigned long s, l;
2051 		uint32_t trigger;
2052 
2053 		if (event == MMU_NOTIFY_MIGRATE)
2054 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
2055 		else
2056 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
2057 
2058 		pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
2059 			 prange->svms, start, last);
2060 		list_for_each_entry(pchild, &prange->child_list, child_list) {
2061 			mutex_lock_nested(&pchild->lock, 1);
2062 			s = max(start, pchild->start);
2063 			l = min(last, pchild->last);
2064 			if (l >= s)
2065 				svm_range_unmap_from_gpus(pchild, s, l, trigger);
2066 			mutex_unlock(&pchild->lock);
2067 		}
2068 		s = max(start, prange->start);
2069 		l = min(last, prange->last);
2070 		if (l >= s)
2071 			svm_range_unmap_from_gpus(prange, s, l, trigger);
2072 	}
2073 
2074 	return r;
2075 }
2076 
2077 static struct svm_range *svm_range_clone(struct svm_range *old)
2078 {
2079 	struct svm_range *new;
2080 
2081 	new = svm_range_new(old->svms, old->start, old->last, false);
2082 	if (!new)
2083 		return NULL;
2084 	if (svm_range_copy_dma_addrs(new, old)) {
2085 		svm_range_free(new, false);
2086 		return NULL;
2087 	}
2088 	if (old->svm_bo) {
2089 		new->ttm_res = old->ttm_res;
2090 		new->offset = old->offset;
2091 		new->svm_bo = svm_range_bo_ref(old->svm_bo);
2092 		spin_lock(&new->svm_bo->list_lock);
2093 		list_add(&new->svm_bo_list, &new->svm_bo->range_list);
2094 		spin_unlock(&new->svm_bo->list_lock);
2095 	}
2096 	new->flags = old->flags;
2097 	new->preferred_loc = old->preferred_loc;
2098 	new->prefetch_loc = old->prefetch_loc;
2099 	new->actual_loc = old->actual_loc;
2100 	new->granularity = old->granularity;
2101 	new->mapped_to_gpu = old->mapped_to_gpu;
2102 	new->vram_pages = old->vram_pages;
2103 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
2104 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
2105 	atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
2106 
2107 	return new;
2108 }
2109 
2110 void svm_range_set_max_pages(struct amdgpu_device *adev)
2111 {
2112 	uint64_t max_pages;
2113 	uint64_t pages, _pages;
2114 	uint64_t min_pages = 0;
2115 	int i, id;
2116 
2117 	for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
2118 		if (adev->kfd.dev->nodes[i]->xcp)
2119 			id = adev->kfd.dev->nodes[i]->xcp->id;
2120 		else
2121 			id = -1;
2122 		pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2123 		pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2124 		pages = rounddown_pow_of_two(pages);
2125 		min_pages = min_not_zero(min_pages, pages);
2126 	}
2127 
2128 	do {
2129 		max_pages = READ_ONCE(max_svm_range_pages);
2130 		_pages = min_not_zero(max_pages, min_pages);
2131 	} while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2132 }
2133 
2134 static int
2135 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2136 		    uint64_t max_pages, struct list_head *insert_list,
2137 		    struct list_head *update_list)
2138 {
2139 	struct svm_range *prange;
2140 	uint64_t l;
2141 
2142 	pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2143 		 max_pages, start, last);
2144 
2145 	while (last >= start) {
2146 		l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2147 
2148 		prange = svm_range_new(svms, start, l, true);
2149 		if (!prange)
2150 			return -ENOMEM;
2151 		list_add(&prange->list, insert_list);
2152 		list_add(&prange->update_list, update_list);
2153 
2154 		start = l + 1;
2155 	}
2156 	return 0;
2157 }
2158 
2159 /**
2160  * svm_range_add - add svm range and handle overlap
2161  * @p: the range add to this process svms
2162  * @start: page size aligned
2163  * @size: page size aligned
2164  * @nattr: number of attributes
2165  * @attrs: array of attributes
2166  * @update_list: output, the ranges need validate and update GPU mapping
2167  * @insert_list: output, the ranges need insert to svms
2168  * @remove_list: output, the ranges are replaced and need remove from svms
2169  * @remap_list: output, remap unaligned svm ranges
2170  *
2171  * Check if the virtual address range has overlap with any existing ranges,
2172  * split partly overlapping ranges and add new ranges in the gaps. All changes
2173  * should be applied to the range_list and interval tree transactionally. If
2174  * any range split or allocation fails, the entire update fails. Therefore any
2175  * existing overlapping svm_ranges are cloned and the original svm_ranges left
2176  * unchanged.
2177  *
2178  * If the transaction succeeds, the caller can update and insert clones and
2179  * new ranges, then free the originals.
2180  *
2181  * Otherwise the caller can free the clones and new ranges, while the old
2182  * svm_ranges remain unchanged.
2183  *
2184  * Context: Process context, caller must hold svms->lock
2185  *
2186  * Return:
2187  * 0 - OK, otherwise error code
2188  */
2189 static int
2190 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2191 	      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2192 	      struct list_head *update_list, struct list_head *insert_list,
2193 	      struct list_head *remove_list, struct list_head *remap_list)
2194 {
2195 	unsigned long last = start + size - 1UL;
2196 	struct svm_range_list *svms = &p->svms;
2197 	struct interval_tree_node *node;
2198 	struct svm_range *prange;
2199 	struct svm_range *tmp;
2200 	struct list_head new_list;
2201 	int r = 0;
2202 
2203 	pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2204 
2205 	INIT_LIST_HEAD(update_list);
2206 	INIT_LIST_HEAD(insert_list);
2207 	INIT_LIST_HEAD(remove_list);
2208 	INIT_LIST_HEAD(&new_list);
2209 	INIT_LIST_HEAD(remap_list);
2210 
2211 	node = interval_tree_iter_first(&svms->objects, start, last);
2212 	while (node) {
2213 		struct interval_tree_node *next;
2214 		unsigned long next_start;
2215 
2216 		pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2217 			 node->last);
2218 
2219 		prange = container_of(node, struct svm_range, it_node);
2220 		next = interval_tree_iter_next(node, start, last);
2221 		next_start = min(node->last, last) + 1;
2222 
2223 		if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2224 		    prange->mapped_to_gpu) {
2225 			/* nothing to do */
2226 		} else if (node->start < start || node->last > last) {
2227 			/* node intersects the update range and its attributes
2228 			 * will change. Clone and split it, apply updates only
2229 			 * to the overlapping part
2230 			 */
2231 			struct svm_range *old = prange;
2232 
2233 			prange = svm_range_clone(old);
2234 			if (!prange) {
2235 				r = -ENOMEM;
2236 				goto out;
2237 			}
2238 
2239 			list_add(&old->update_list, remove_list);
2240 			list_add(&prange->list, insert_list);
2241 			list_add(&prange->update_list, update_list);
2242 
2243 			if (node->start < start) {
2244 				pr_debug("change old range start\n");
2245 				r = svm_range_split_head(prange, start,
2246 							 insert_list, remap_list);
2247 				if (r)
2248 					goto out;
2249 			}
2250 			if (node->last > last) {
2251 				pr_debug("change old range last\n");
2252 				r = svm_range_split_tail(prange, last,
2253 							 insert_list, remap_list);
2254 				if (r)
2255 					goto out;
2256 			}
2257 		} else {
2258 			/* The node is contained within start..last,
2259 			 * just update it
2260 			 */
2261 			list_add(&prange->update_list, update_list);
2262 		}
2263 
2264 		/* insert a new node if needed */
2265 		if (node->start > start) {
2266 			r = svm_range_split_new(svms, start, node->start - 1,
2267 						READ_ONCE(max_svm_range_pages),
2268 						&new_list, update_list);
2269 			if (r)
2270 				goto out;
2271 		}
2272 
2273 		node = next;
2274 		start = next_start;
2275 	}
2276 
2277 	/* add a final range at the end if needed */
2278 	if (start <= last)
2279 		r = svm_range_split_new(svms, start, last,
2280 					READ_ONCE(max_svm_range_pages),
2281 					&new_list, update_list);
2282 
2283 out:
2284 	if (r) {
2285 		list_for_each_entry_safe(prange, tmp, insert_list, list)
2286 			svm_range_free(prange, false);
2287 		list_for_each_entry_safe(prange, tmp, &new_list, list)
2288 			svm_range_free(prange, true);
2289 	} else {
2290 		list_splice(&new_list, insert_list);
2291 	}
2292 
2293 	return r;
2294 }
2295 
2296 static void
2297 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2298 					    struct svm_range *prange)
2299 {
2300 	unsigned long start;
2301 	unsigned long last;
2302 
2303 	start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2304 	last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2305 
2306 	if (prange->start == start && prange->last == last)
2307 		return;
2308 
2309 	pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2310 		  prange->svms, prange, start, last, prange->start,
2311 		  prange->last);
2312 
2313 	if (start != 0 && last != 0) {
2314 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
2315 		svm_range_remove_notifier(prange);
2316 	}
2317 	prange->it_node.start = prange->start;
2318 	prange->it_node.last = prange->last;
2319 
2320 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
2321 	svm_range_add_notifier_locked(mm, prange);
2322 }
2323 
2324 static void
2325 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2326 			 struct mm_struct *mm)
2327 {
2328 	switch (prange->work_item.op) {
2329 	case SVM_OP_NULL:
2330 		pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2331 			 svms, prange, prange->start, prange->last);
2332 		break;
2333 	case SVM_OP_UNMAP_RANGE:
2334 		pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2335 			 svms, prange, prange->start, prange->last);
2336 		svm_range_unlink(prange);
2337 		svm_range_remove_notifier(prange);
2338 		svm_range_free(prange, true);
2339 		break;
2340 	case SVM_OP_UPDATE_RANGE_NOTIFIER:
2341 		pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2342 			 svms, prange, prange->start, prange->last);
2343 		svm_range_update_notifier_and_interval_tree(mm, prange);
2344 		break;
2345 	case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2346 		pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2347 			 svms, prange, prange->start, prange->last);
2348 		svm_range_update_notifier_and_interval_tree(mm, prange);
2349 		/* TODO: implement deferred validation and mapping */
2350 		break;
2351 	case SVM_OP_ADD_RANGE:
2352 		pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2353 			 prange->start, prange->last);
2354 		svm_range_add_to_svms(prange);
2355 		svm_range_add_notifier_locked(mm, prange);
2356 		break;
2357 	case SVM_OP_ADD_RANGE_AND_MAP:
2358 		pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2359 			 prange, prange->start, prange->last);
2360 		svm_range_add_to_svms(prange);
2361 		svm_range_add_notifier_locked(mm, prange);
2362 		/* TODO: implement deferred validation and mapping */
2363 		break;
2364 	default:
2365 		WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2366 			 prange->work_item.op);
2367 	}
2368 }
2369 
2370 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2371 {
2372 	struct kfd_process_device *pdd;
2373 	struct kfd_process *p;
2374 	uint32_t i;
2375 
2376 	p = container_of(svms, struct kfd_process, svms);
2377 
2378 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2379 		pdd = p->pdds[i];
2380 		if (!pdd)
2381 			continue;
2382 
2383 		pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2384 
2385 		if (!down_read_trylock(&pdd->dev->adev->reset_domain->sem))
2386 			continue;
2387 
2388 		amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2389 				pdd->dev->adev->irq.retry_cam_enabled ?
2390 				&pdd->dev->adev->irq.ih :
2391 				&pdd->dev->adev->irq.ih1);
2392 
2393 		if (pdd->dev->adev->irq.retry_cam_enabled)
2394 			amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2395 				&pdd->dev->adev->irq.ih_soft);
2396 
2397 		up_read(&pdd->dev->adev->reset_domain->sem);
2398 
2399 		pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2400 	}
2401 }
2402 
2403 static void svm_range_deferred_list_work(struct work_struct *work)
2404 {
2405 	struct svm_range_list *svms;
2406 	struct svm_range *prange;
2407 	struct mm_struct *mm;
2408 
2409 	svms = container_of(work, struct svm_range_list, deferred_list_work);
2410 	pr_debug("enter svms 0x%p\n", svms);
2411 
2412 	spin_lock(&svms->deferred_list_lock);
2413 	while (!list_empty(&svms->deferred_range_list)) {
2414 		prange = list_first_entry(&svms->deferred_range_list,
2415 					  struct svm_range, deferred_list);
2416 		spin_unlock(&svms->deferred_list_lock);
2417 
2418 		pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2419 			 prange->start, prange->last, prange->work_item.op);
2420 
2421 		mm = prange->work_item.mm;
2422 
2423 		mmap_write_lock(mm);
2424 
2425 		/* Remove from deferred_list must be inside mmap write lock, for
2426 		 * two race cases:
2427 		 * 1. unmap_from_cpu may change work_item.op and add the range
2428 		 *    to deferred_list again, cause use after free bug.
2429 		 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2430 		 *    lock and continue because deferred_list is empty, but
2431 		 *    deferred_list work is actually waiting for mmap lock.
2432 		 */
2433 		spin_lock(&svms->deferred_list_lock);
2434 		list_del_init(&prange->deferred_list);
2435 		spin_unlock(&svms->deferred_list_lock);
2436 
2437 		mutex_lock(&svms->lock);
2438 		mutex_lock(&prange->migrate_mutex);
2439 		while (!list_empty(&prange->child_list)) {
2440 			struct svm_range *pchild;
2441 
2442 			pchild = list_first_entry(&prange->child_list,
2443 						struct svm_range, child_list);
2444 			pr_debug("child prange 0x%p op %d\n", pchild,
2445 				 pchild->work_item.op);
2446 			list_del_init(&pchild->child_list);
2447 			svm_range_handle_list_op(svms, pchild, mm);
2448 		}
2449 		mutex_unlock(&prange->migrate_mutex);
2450 
2451 		svm_range_handle_list_op(svms, prange, mm);
2452 		mutex_unlock(&svms->lock);
2453 		mmap_write_unlock(mm);
2454 
2455 		/* Pairs with mmget in svm_range_add_list_work. If dropping the
2456 		 * last mm refcount, schedule release work to avoid circular locking
2457 		 */
2458 		mmput_async(mm);
2459 
2460 		spin_lock(&svms->deferred_list_lock);
2461 	}
2462 	spin_unlock(&svms->deferred_list_lock);
2463 	pr_debug("exit svms 0x%p\n", svms);
2464 }
2465 
2466 void
2467 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2468 			struct mm_struct *mm, enum svm_work_list_ops op)
2469 {
2470 	spin_lock(&svms->deferred_list_lock);
2471 	/* if prange is on the deferred list */
2472 	if (!list_empty(&prange->deferred_list)) {
2473 		pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2474 		WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2475 		if (op != SVM_OP_NULL &&
2476 		    prange->work_item.op != SVM_OP_UNMAP_RANGE)
2477 			prange->work_item.op = op;
2478 	} else {
2479 		/* Pairs with mmput in deferred_list_work.
2480 		 * If process is exiting and mm is gone, don't update mmu notifier.
2481 		 */
2482 		if (mmget_not_zero(mm)) {
2483 			prange->work_item.mm = mm;
2484 			prange->work_item.op = op;
2485 			list_add_tail(&prange->deferred_list,
2486 				      &prange->svms->deferred_range_list);
2487 			pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2488 				 prange, prange->start, prange->last, op);
2489 		}
2490 	}
2491 	spin_unlock(&svms->deferred_list_lock);
2492 }
2493 
2494 void schedule_deferred_list_work(struct svm_range_list *svms)
2495 {
2496 	spin_lock(&svms->deferred_list_lock);
2497 	if (!list_empty(&svms->deferred_range_list))
2498 		schedule_work(&svms->deferred_list_work);
2499 	spin_unlock(&svms->deferred_list_lock);
2500 }
2501 
2502 static void
2503 svm_range_unmap_split(struct svm_range *parent, struct svm_range *prange, unsigned long start,
2504 		      unsigned long last)
2505 {
2506 	struct svm_range *head;
2507 	struct svm_range *tail;
2508 
2509 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2510 		pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2511 			 prange->start, prange->last);
2512 		return;
2513 	}
2514 	if (start > prange->last || last < prange->start)
2515 		return;
2516 
2517 	head = tail = prange;
2518 	if (start > prange->start)
2519 		svm_range_split(prange, prange->start, start - 1, &tail);
2520 	if (last < tail->last)
2521 		svm_range_split(tail, last + 1, tail->last, &head);
2522 
2523 	if (head != prange && tail != prange) {
2524 		svm_range_add_child(parent, head, SVM_OP_UNMAP_RANGE);
2525 		svm_range_add_child(parent, tail, SVM_OP_ADD_RANGE);
2526 	} else if (tail != prange) {
2527 		svm_range_add_child(parent, tail, SVM_OP_UNMAP_RANGE);
2528 	} else if (head != prange) {
2529 		svm_range_add_child(parent, head, SVM_OP_UNMAP_RANGE);
2530 	} else if (parent != prange) {
2531 		prange->work_item.op = SVM_OP_UNMAP_RANGE;
2532 	}
2533 }
2534 
2535 static void
2536 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2537 			 unsigned long start, unsigned long last)
2538 {
2539 	uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2540 	struct svm_range_list *svms;
2541 	struct svm_range *pchild;
2542 	struct kfd_process *p;
2543 	unsigned long s, l;
2544 	bool unmap_parent;
2545 	uint32_t i;
2546 
2547 	if (atomic_read(&prange->queue_refcount)) {
2548 		int r;
2549 
2550 		pr_warn("Freeing queue vital buffer 0x%lx, queue evicted\n",
2551 			prange->start << PAGE_SHIFT);
2552 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
2553 		if (r)
2554 			pr_debug("failed %d to quiesce KFD queues\n", r);
2555 	}
2556 
2557 	p = kfd_lookup_process_by_mm(mm);
2558 	if (!p)
2559 		return;
2560 	svms = &p->svms;
2561 
2562 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2563 		 prange, prange->start, prange->last, start, last);
2564 
2565 	/* calculate time stamps that are used to decide which page faults need be
2566 	 * dropped or handled before unmap pages from gpu vm
2567 	 */
2568 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2569 		struct kfd_process_device *pdd;
2570 		struct amdgpu_device *adev;
2571 		struct amdgpu_ih_ring *ih;
2572 		uint32_t checkpoint_wptr;
2573 
2574 		pdd = p->pdds[i];
2575 		if (!pdd)
2576 			continue;
2577 
2578 		adev = pdd->dev->adev;
2579 
2580 		/* Check and drain ih1 ring if cam not available */
2581 		if (!adev->irq.retry_cam_enabled && adev->irq.ih1.ring_size) {
2582 			ih = &adev->irq.ih1;
2583 			checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2584 			if (ih->rptr != checkpoint_wptr) {
2585 				svms->checkpoint_ts[i] =
2586 					amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2587 				continue;
2588 			}
2589 		}
2590 
2591 		/* check if dev->irq.ih_soft is not empty */
2592 		ih = &adev->irq.ih_soft;
2593 		checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2594 		if (ih->rptr != checkpoint_wptr)
2595 			svms->checkpoint_ts[i] = amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2596 	}
2597 
2598 	unmap_parent = start <= prange->start && last >= prange->last;
2599 
2600 	list_for_each_entry(pchild, &prange->child_list, child_list) {
2601 		mutex_lock_nested(&pchild->lock, 1);
2602 		s = max(start, pchild->start);
2603 		l = min(last, pchild->last);
2604 		if (l >= s)
2605 			svm_range_unmap_from_gpus(pchild, s, l, trigger);
2606 		svm_range_unmap_split(prange, pchild, start, last);
2607 		mutex_unlock(&pchild->lock);
2608 	}
2609 	s = max(start, prange->start);
2610 	l = min(last, prange->last);
2611 	if (l >= s)
2612 		svm_range_unmap_from_gpus(prange, s, l, trigger);
2613 	svm_range_unmap_split(prange, prange, start, last);
2614 
2615 	if (unmap_parent)
2616 		svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2617 	else
2618 		svm_range_add_list_work(svms, prange, mm,
2619 					SVM_OP_UPDATE_RANGE_NOTIFIER);
2620 	schedule_deferred_list_work(svms);
2621 
2622 	kfd_unref_process(p);
2623 }
2624 
2625 /**
2626  * svm_range_cpu_invalidate_pagetables - interval notifier callback
2627  * @mni: mmu_interval_notifier struct
2628  * @range: mmu_notifier_range struct
2629  * @cur_seq: value to pass to mmu_interval_set_seq()
2630  *
2631  * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2632  * is from migration, or CPU page invalidation callback.
2633  *
2634  * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2635  * work thread, and split prange if only part of prange is unmapped.
2636  *
2637  * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2638  * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2639  * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2640  * update GPU mapping to recover.
2641  *
2642  * Context: mmap lock, notifier_invalidate_start lock are held
2643  *          for invalidate event, prange lock is held if this is from migration
2644  */
2645 static bool
2646 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2647 				    const struct mmu_notifier_range *range,
2648 				    unsigned long cur_seq)
2649 {
2650 	struct svm_range *prange;
2651 	unsigned long start;
2652 	unsigned long last;
2653 
2654 	if (range->event == MMU_NOTIFY_RELEASE)
2655 		return true;
2656 
2657 	start = mni->interval_tree.start;
2658 	last = mni->interval_tree.last;
2659 	start = max(start, range->start) >> PAGE_SHIFT;
2660 	last = min(last, range->end - 1) >> PAGE_SHIFT;
2661 	pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2662 		 start, last, range->start >> PAGE_SHIFT,
2663 		 (range->end - 1) >> PAGE_SHIFT,
2664 		 mni->interval_tree.start >> PAGE_SHIFT,
2665 		 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2666 
2667 	prange = container_of(mni, struct svm_range, notifier);
2668 
2669 	svm_range_lock(prange);
2670 	mmu_interval_set_seq(mni, cur_seq);
2671 
2672 	switch (range->event) {
2673 	case MMU_NOTIFY_UNMAP:
2674 		svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2675 		break;
2676 	default:
2677 		svm_range_evict(prange, mni->mm, start, last, range->event);
2678 		break;
2679 	}
2680 
2681 	svm_range_unlock(prange);
2682 
2683 	return true;
2684 }
2685 
2686 /**
2687  * svm_range_from_addr - find svm range from fault address
2688  * @svms: svm range list header
2689  * @addr: address to search range interval tree, in pages
2690  * @parent: parent range if range is on child list
2691  *
2692  * Context: The caller must hold svms->lock
2693  *
2694  * Return: the svm_range found or NULL
2695  */
2696 struct svm_range *
2697 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2698 		    struct svm_range **parent)
2699 {
2700 	struct interval_tree_node *node;
2701 	struct svm_range *prange;
2702 	struct svm_range *pchild;
2703 
2704 	node = interval_tree_iter_first(&svms->objects, addr, addr);
2705 	if (!node)
2706 		return NULL;
2707 
2708 	prange = container_of(node, struct svm_range, it_node);
2709 	pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2710 		 addr, prange->start, prange->last, node->start, node->last);
2711 
2712 	if (addr >= prange->start && addr <= prange->last) {
2713 		if (parent)
2714 			*parent = prange;
2715 		return prange;
2716 	}
2717 	list_for_each_entry(pchild, &prange->child_list, child_list)
2718 		if (addr >= pchild->start && addr <= pchild->last) {
2719 			pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2720 				 addr, pchild->start, pchild->last);
2721 			if (parent)
2722 				*parent = prange;
2723 			return pchild;
2724 		}
2725 
2726 	return NULL;
2727 }
2728 
2729 /* svm_range_best_restore_location - decide the best fault restore location
2730  * @prange: svm range structure
2731  * @adev: the GPU on which vm fault happened
2732  *
2733  * This is only called when xnack is on, to decide the best location to restore
2734  * the range mapping after GPU vm fault. Caller uses the best location to do
2735  * migration if actual loc is not best location, then update GPU page table
2736  * mapping to the best location.
2737  *
2738  * If the preferred loc is accessible by faulting GPU, use preferred loc.
2739  * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2740  * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2741  *    if range actual loc is cpu, best_loc is cpu
2742  *    if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2743  *    range actual loc.
2744  * Otherwise, GPU no access, best_loc is -1.
2745  *
2746  * Return:
2747  * -1 means vm fault GPU no access
2748  * 0 for CPU or GPU id
2749  */
2750 static int32_t
2751 svm_range_best_restore_location(struct svm_range *prange,
2752 				struct kfd_node *node,
2753 				int32_t *gpuidx)
2754 {
2755 	struct kfd_node *bo_node, *preferred_node;
2756 	struct kfd_process *p;
2757 	uint32_t gpuid;
2758 	int r;
2759 
2760 	p = container_of(prange->svms, struct kfd_process, svms);
2761 
2762 	r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2763 	if (r < 0) {
2764 		pr_debug("failed to get gpuid from kgd\n");
2765 		return -1;
2766 	}
2767 
2768 	if (node->adev->apu_prefer_gtt)
2769 		return 0;
2770 
2771 	if (prange->preferred_loc == gpuid ||
2772 	    prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2773 		return prange->preferred_loc;
2774 	} else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2775 		preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2776 		if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2777 			return prange->preferred_loc;
2778 		/* fall through */
2779 	}
2780 
2781 	if (test_bit(*gpuidx, prange->bitmap_access))
2782 		return gpuid;
2783 
2784 	if (test_bit(*gpuidx, prange->bitmap_aip)) {
2785 		if (!prange->actual_loc)
2786 			return 0;
2787 
2788 		bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2789 		if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2790 			return prange->actual_loc;
2791 		else
2792 			return 0;
2793 	}
2794 
2795 	return -1;
2796 }
2797 
2798 static int
2799 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2800 			       unsigned long *start, unsigned long *last,
2801 			       bool *is_heap_stack)
2802 {
2803 	struct vm_area_struct *vma;
2804 	struct interval_tree_node *node;
2805 	struct rb_node *rb_node;
2806 	unsigned long start_limit, end_limit;
2807 
2808 	vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2809 	if (!vma) {
2810 		pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2811 		return -EFAULT;
2812 	}
2813 
2814 	*is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2815 
2816 	start_limit = max(vma->vm_start >> PAGE_SHIFT,
2817 		      (unsigned long)ALIGN_DOWN(addr, 1UL << p->svms.default_granularity));
2818 	end_limit = min(vma->vm_end >> PAGE_SHIFT,
2819 		    (unsigned long)ALIGN(addr + 1, 1UL << p->svms.default_granularity));
2820 
2821 	/* First range that starts after the fault address */
2822 	node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2823 	if (node) {
2824 		end_limit = min(end_limit, node->start);
2825 		/* Last range that ends before the fault address */
2826 		rb_node = rb_prev(&node->rb);
2827 	} else {
2828 		/* Last range must end before addr because
2829 		 * there was no range after addr
2830 		 */
2831 		rb_node = rb_last(&p->svms.objects.rb_root);
2832 	}
2833 	if (rb_node) {
2834 		node = container_of(rb_node, struct interval_tree_node, rb);
2835 		if (node->last >= addr) {
2836 			WARN(1, "Overlap with prev node and page fault addr\n");
2837 			return -EFAULT;
2838 		}
2839 		start_limit = max(start_limit, node->last + 1);
2840 	}
2841 
2842 	*start = start_limit;
2843 	*last = end_limit - 1;
2844 
2845 	pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2846 		 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2847 		 *start, *last, *is_heap_stack);
2848 
2849 	return 0;
2850 }
2851 
2852 static int
2853 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2854 			   uint64_t *bo_s, uint64_t *bo_l)
2855 {
2856 	struct amdgpu_bo_va_mapping *mapping;
2857 	struct interval_tree_node *node;
2858 	struct amdgpu_bo *bo = NULL;
2859 	unsigned long userptr;
2860 	uint32_t i;
2861 	int r;
2862 
2863 	for (i = 0; i < p->n_pdds; i++) {
2864 		struct amdgpu_vm *vm;
2865 
2866 		if (!p->pdds[i]->drm_priv)
2867 			continue;
2868 
2869 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2870 		r = amdgpu_bo_reserve(vm->root.bo, false);
2871 		if (r)
2872 			return r;
2873 
2874 		/* Check userptr by searching entire vm->va interval tree */
2875 		node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2876 		while (node) {
2877 			mapping = container_of((struct rb_node *)node,
2878 					       struct amdgpu_bo_va_mapping, rb);
2879 			bo = mapping->bo_va->base.bo;
2880 
2881 			if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2882 							 start << PAGE_SHIFT,
2883 							 last << PAGE_SHIFT,
2884 							 &userptr)) {
2885 				node = interval_tree_iter_next(node, 0, ~0ULL);
2886 				continue;
2887 			}
2888 
2889 			pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2890 				 start, last);
2891 			if (bo_s && bo_l) {
2892 				*bo_s = userptr >> PAGE_SHIFT;
2893 				*bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2894 			}
2895 			amdgpu_bo_unreserve(vm->root.bo);
2896 			return -EADDRINUSE;
2897 		}
2898 		amdgpu_bo_unreserve(vm->root.bo);
2899 	}
2900 	return 0;
2901 }
2902 
2903 static struct
2904 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2905 						struct kfd_process *p,
2906 						struct mm_struct *mm,
2907 						int64_t addr)
2908 {
2909 	struct svm_range *prange = NULL;
2910 	unsigned long start, last;
2911 	uint32_t gpuid, gpuidx;
2912 	bool is_heap_stack;
2913 	uint64_t bo_s = 0;
2914 	uint64_t bo_l = 0;
2915 	int r;
2916 
2917 	if (svm_range_get_range_boundaries(p, addr, &start, &last,
2918 					   &is_heap_stack))
2919 		return NULL;
2920 
2921 	r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2922 	if (r != -EADDRINUSE)
2923 		r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2924 
2925 	if (r == -EADDRINUSE) {
2926 		if (addr >= bo_s && addr <= bo_l)
2927 			return NULL;
2928 
2929 		/* Create one page svm range if 2MB range overlapping */
2930 		start = addr;
2931 		last = addr;
2932 	}
2933 
2934 	prange = svm_range_new(&p->svms, start, last, true);
2935 	if (!prange) {
2936 		pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2937 		return NULL;
2938 	}
2939 	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2940 		pr_debug("failed to get gpuid from kgd\n");
2941 		svm_range_free(prange, true);
2942 		return NULL;
2943 	}
2944 
2945 	if (is_heap_stack)
2946 		prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2947 
2948 	svm_range_add_to_svms(prange);
2949 	svm_range_add_notifier_locked(mm, prange);
2950 
2951 	return prange;
2952 }
2953 
2954 /* svm_range_skip_recover - decide if prange can be recovered
2955  * @prange: svm range structure
2956  *
2957  * GPU vm retry fault handle skip recover the range for cases:
2958  * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2959  *    deferred list work will drain the stale fault before free the prange.
2960  * 2. prange is on deferred list to add interval notifier after split, or
2961  * 3. prange is child range, it is split from parent prange, recover later
2962  *    after interval notifier is added.
2963  *
2964  * Return: true to skip recover, false to recover
2965  */
2966 static bool svm_range_skip_recover(struct svm_range *prange)
2967 {
2968 	struct svm_range_list *svms = prange->svms;
2969 
2970 	spin_lock(&svms->deferred_list_lock);
2971 	if (list_empty(&prange->deferred_list) &&
2972 	    list_empty(&prange->child_list)) {
2973 		spin_unlock(&svms->deferred_list_lock);
2974 		return false;
2975 	}
2976 	spin_unlock(&svms->deferred_list_lock);
2977 
2978 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2979 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2980 			 svms, prange, prange->start, prange->last);
2981 		return true;
2982 	}
2983 	if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2984 	    prange->work_item.op == SVM_OP_ADD_RANGE) {
2985 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2986 			 svms, prange, prange->start, prange->last);
2987 		return true;
2988 	}
2989 	return false;
2990 }
2991 
2992 static void
2993 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2994 		      int32_t gpuidx)
2995 {
2996 	struct kfd_process_device *pdd;
2997 
2998 	/* fault is on different page of same range
2999 	 * or fault is skipped to recover later
3000 	 * or fault is on invalid virtual address
3001 	 */
3002 	if (gpuidx == MAX_GPU_INSTANCE) {
3003 		uint32_t gpuid;
3004 		int r;
3005 
3006 		r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
3007 		if (r < 0)
3008 			return;
3009 	}
3010 
3011 	/* fault is recovered
3012 	 * or fault cannot recover because GPU no access on the range
3013 	 */
3014 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3015 	if (pdd)
3016 		WRITE_ONCE(pdd->faults, pdd->faults + 1);
3017 }
3018 
3019 static bool
3020 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
3021 {
3022 	unsigned long requested = VM_READ;
3023 
3024 	if (write_fault)
3025 		requested |= VM_WRITE;
3026 
3027 	pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
3028 		vma->vm_flags);
3029 	return (vma->vm_flags & requested) == requested;
3030 }
3031 
3032 int
3033 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
3034 			uint32_t vmid, uint32_t node_id,
3035 			uint64_t addr, uint64_t ts, bool write_fault)
3036 {
3037 	unsigned long start, last, size;
3038 	struct mm_struct *mm = NULL;
3039 	struct svm_range_list *svms;
3040 	struct svm_range *prange;
3041 	struct kfd_process *p;
3042 	ktime_t timestamp = ktime_get_boottime();
3043 	struct kfd_node *node;
3044 	int32_t best_loc;
3045 	int32_t gpuid, gpuidx = MAX_GPU_INSTANCE;
3046 	bool write_locked = false;
3047 	struct vm_area_struct *vma;
3048 	bool migration = false;
3049 	int r = 0;
3050 
3051 	if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
3052 		pr_debug("device does not support SVM\n");
3053 		return -EFAULT;
3054 	}
3055 
3056 	p = kfd_lookup_process_by_pasid(pasid, NULL);
3057 	if (!p) {
3058 		pr_debug("kfd process not founded pasid 0x%x\n", pasid);
3059 		return 0;
3060 	}
3061 	svms = &p->svms;
3062 
3063 	pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
3064 
3065 	if (atomic_read(&svms->drain_pagefaults)) {
3066 		pr_debug("page fault handling disabled, drop fault 0x%llx\n", addr);
3067 		r = 0;
3068 		goto out;
3069 	}
3070 
3071 	node = kfd_node_by_irq_ids(adev, node_id, vmid);
3072 	if (!node) {
3073 		pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
3074 			 vmid);
3075 		r = -EFAULT;
3076 		goto out;
3077 	}
3078 
3079 	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
3080 		pr_debug("failed to get gpuid/gpuidex for node_id: %d\n", node_id);
3081 		r = -EFAULT;
3082 		goto out;
3083 	}
3084 
3085 	if (!p->xnack_enabled) {
3086 		pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
3087 		r = -EFAULT;
3088 		goto out;
3089 	}
3090 
3091 	/* p->lead_thread is available as kfd_process_wq_release flush the work
3092 	 * before releasing task ref.
3093 	 */
3094 	mm = get_task_mm(p->lead_thread);
3095 	if (!mm) {
3096 		pr_debug("svms 0x%p failed to get mm\n", svms);
3097 		r = 0;
3098 		goto out;
3099 	}
3100 
3101 	mmap_read_lock(mm);
3102 retry_write_locked:
3103 	mutex_lock(&svms->lock);
3104 
3105 	/* check if this page fault time stamp is before svms->checkpoint_ts */
3106 	if (svms->checkpoint_ts[gpuidx] != 0) {
3107 		if (amdgpu_ih_ts_after_or_equal(ts,  svms->checkpoint_ts[gpuidx])) {
3108 			pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
3109 			if (write_locked)
3110 				mmap_write_downgrade(mm);
3111 			r = -EAGAIN;
3112 			goto out_unlock_svms;
3113 		} else {
3114 			/* ts is after svms->checkpoint_ts now, reset svms->checkpoint_ts
3115 			 * to zero to avoid following ts wrap around give wrong comparing
3116 			 */
3117 			svms->checkpoint_ts[gpuidx] = 0;
3118 		}
3119 	}
3120 
3121 	prange = svm_range_from_addr(svms, addr, NULL);
3122 	if (!prange) {
3123 		pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
3124 			 svms, addr);
3125 		if (!write_locked) {
3126 			/* Need the write lock to create new range with MMU notifier.
3127 			 * Also flush pending deferred work to make sure the interval
3128 			 * tree is up to date before we add a new range
3129 			 */
3130 			mutex_unlock(&svms->lock);
3131 			mmap_read_unlock(mm);
3132 			mmap_write_lock(mm);
3133 			write_locked = true;
3134 			goto retry_write_locked;
3135 		}
3136 		prange = svm_range_create_unregistered_range(node, p, mm, addr);
3137 		if (!prange) {
3138 			pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
3139 				 svms, addr);
3140 			mmap_write_downgrade(mm);
3141 			r = -EFAULT;
3142 			goto out_unlock_svms;
3143 		}
3144 	}
3145 	if (write_locked)
3146 		mmap_write_downgrade(mm);
3147 
3148 	mutex_lock(&prange->migrate_mutex);
3149 
3150 	if (svm_range_skip_recover(prange)) {
3151 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3152 		r = 0;
3153 		goto out_unlock_range;
3154 	}
3155 
3156 	/* skip duplicate vm fault on different pages of same range */
3157 	if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
3158 				AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
3159 		pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
3160 			 svms, prange->start, prange->last);
3161 		r = 0;
3162 		goto out_unlock_range;
3163 	}
3164 
3165 	/* __do_munmap removed VMA, return success as we are handling stale
3166 	 * retry fault.
3167 	 */
3168 	vma = vma_lookup(mm, addr << PAGE_SHIFT);
3169 	if (!vma) {
3170 		pr_debug("address 0x%llx VMA is removed\n", addr);
3171 		r = 0;
3172 		goto out_unlock_range;
3173 	}
3174 
3175 	if (!svm_fault_allowed(vma, write_fault)) {
3176 		pr_debug("fault addr 0x%llx no %s permission\n", addr,
3177 			write_fault ? "write" : "read");
3178 		r = -EPERM;
3179 		goto out_unlock_range;
3180 	}
3181 
3182 	best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3183 	if (best_loc == -1) {
3184 		pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3185 			 svms, prange->start, prange->last);
3186 		r = -EACCES;
3187 		goto out_unlock_range;
3188 	}
3189 
3190 	pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3191 		 svms, prange->start, prange->last, best_loc,
3192 		 prange->actual_loc);
3193 
3194 	kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3195 				       write_fault, timestamp);
3196 
3197 	/* Align migration range start and size to granularity size */
3198 	size = 1UL << prange->granularity;
3199 	start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start);
3200 	last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last);
3201 	if (prange->actual_loc != 0 || best_loc != 0) {
3202 		if (best_loc) {
3203 			r = svm_migrate_to_vram(prange, best_loc, start, last,
3204 					mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3205 			if (r) {
3206 				pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3207 					 r, addr);
3208 				/* Fallback to system memory if migration to
3209 				 * VRAM failed
3210 				 */
3211 				if (prange->actual_loc && prange->actual_loc != best_loc)
3212 					r = svm_migrate_vram_to_ram(prange, mm, start, last,
3213 						KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3214 				else
3215 					r = 0;
3216 			}
3217 		} else {
3218 			r = svm_migrate_vram_to_ram(prange, mm, start, last,
3219 					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3220 		}
3221 		if (r) {
3222 			pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3223 				 r, svms, start, last);
3224 			goto out_migrate_fail;
3225 		} else {
3226 			migration = true;
3227 		}
3228 	}
3229 
3230 	r = svm_range_validate_and_map(mm, start, last, prange, gpuidx, false,
3231 				       false, false);
3232 	if (r)
3233 		pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3234 			 r, svms, start, last);
3235 
3236 out_migrate_fail:
3237 	kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3238 				     migration);
3239 
3240 out_unlock_range:
3241 	mutex_unlock(&prange->migrate_mutex);
3242 out_unlock_svms:
3243 	mutex_unlock(&svms->lock);
3244 	mmap_read_unlock(mm);
3245 
3246 	if (r != -EAGAIN)
3247 		svm_range_count_fault(node, p, gpuidx);
3248 
3249 	mmput(mm);
3250 out:
3251 	kfd_unref_process(p);
3252 
3253 	if (r == -EAGAIN) {
3254 		pr_debug("recover vm fault later\n");
3255 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3256 		r = 0;
3257 	}
3258 	return r;
3259 }
3260 
3261 int
3262 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3263 {
3264 	struct svm_range *prange, *pchild;
3265 	uint64_t reserved_size = 0;
3266 	uint64_t size;
3267 	int r = 0;
3268 
3269 	pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3270 
3271 	mutex_lock(&p->svms.lock);
3272 
3273 	list_for_each_entry(prange, &p->svms.list, list) {
3274 		svm_range_lock(prange);
3275 		list_for_each_entry(pchild, &prange->child_list, child_list) {
3276 			size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3277 			if (xnack_enabled) {
3278 				amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3279 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3280 			} else {
3281 				r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3282 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3283 				if (r)
3284 					goto out_unlock;
3285 				reserved_size += size;
3286 			}
3287 		}
3288 
3289 		size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3290 		if (xnack_enabled) {
3291 			amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3292 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3293 		} else {
3294 			r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3295 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3296 			if (r)
3297 				goto out_unlock;
3298 			reserved_size += size;
3299 		}
3300 out_unlock:
3301 		svm_range_unlock(prange);
3302 		if (r)
3303 			break;
3304 	}
3305 
3306 	if (r)
3307 		amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3308 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3309 	else
3310 		/* Change xnack mode must be inside svms lock, to avoid race with
3311 		 * svm_range_deferred_list_work unreserve memory in parallel.
3312 		 */
3313 		p->xnack_enabled = xnack_enabled;
3314 
3315 	mutex_unlock(&p->svms.lock);
3316 	return r;
3317 }
3318 
3319 void svm_range_list_fini(struct kfd_process *p)
3320 {
3321 	struct svm_range *prange;
3322 	struct svm_range *next;
3323 
3324 	pr_debug("process pid %d svms 0x%p\n", p->lead_thread->pid,
3325 		 &p->svms);
3326 
3327 	cancel_delayed_work_sync(&p->svms.restore_work);
3328 
3329 	/* Ensure list work is finished before process is destroyed */
3330 	flush_work(&p->svms.deferred_list_work);
3331 
3332 	/*
3333 	 * Ensure no retry fault comes in afterwards, as page fault handler will
3334 	 * not find kfd process and take mm lock to recover fault.
3335 	 * stop kfd page fault handing, then wait pending page faults got drained
3336 	 */
3337 	atomic_set(&p->svms.drain_pagefaults, 1);
3338 	svm_range_drain_retry_fault(&p->svms);
3339 
3340 	list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3341 		svm_range_unlink(prange);
3342 		svm_range_remove_notifier(prange);
3343 		svm_range_free(prange, true);
3344 	}
3345 
3346 	mutex_destroy(&p->svms.lock);
3347 
3348 	pr_debug("process pid %d svms 0x%p done\n",
3349 		p->lead_thread->pid, &p->svms);
3350 }
3351 
3352 int svm_range_list_init(struct kfd_process *p)
3353 {
3354 	struct svm_range_list *svms = &p->svms;
3355 	int i;
3356 
3357 	svms->objects = RB_ROOT_CACHED;
3358 	mutex_init(&svms->lock);
3359 	INIT_LIST_HEAD(&svms->list);
3360 	atomic_set(&svms->evicted_ranges, 0);
3361 	atomic_set(&svms->drain_pagefaults, 0);
3362 	INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3363 	INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3364 	INIT_LIST_HEAD(&svms->deferred_range_list);
3365 	INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3366 	spin_lock_init(&svms->deferred_list_lock);
3367 
3368 	for (i = 0; i < p->n_pdds; i++)
3369 		if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3370 			bitmap_set(svms->bitmap_supported, i, 1);
3371 
3372 	 /* Value of default granularity cannot exceed 0x1B, the
3373 	  * number of pages supported by a 4-level paging table
3374 	  */
3375 	svms->default_granularity = min_t(u8, amdgpu_svm_default_granularity, 0x1B);
3376 	pr_debug("Default SVM Granularity to use: %d\n", svms->default_granularity);
3377 
3378 	return 0;
3379 }
3380 
3381 /**
3382  * svm_range_check_vm - check if virtual address range mapped already
3383  * @p: current kfd_process
3384  * @start: range start address, in pages
3385  * @last: range last address, in pages
3386  * @bo_s: mapping start address in pages if address range already mapped
3387  * @bo_l: mapping last address in pages if address range already mapped
3388  *
3389  * The purpose is to avoid virtual address ranges already allocated by
3390  * kfd_ioctl_alloc_memory_of_gpu ioctl.
3391  * It looks for each pdd in the kfd_process.
3392  *
3393  * Context: Process context
3394  *
3395  * Return 0 - OK, if the range is not mapped.
3396  * Otherwise error code:
3397  * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3398  * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3399  * a signal. Release all buffer reservations and return to user-space.
3400  */
3401 static int
3402 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3403 		   uint64_t *bo_s, uint64_t *bo_l)
3404 {
3405 	struct amdgpu_bo_va_mapping *mapping;
3406 	struct interval_tree_node *node;
3407 	uint32_t i;
3408 	int r;
3409 
3410 	for (i = 0; i < p->n_pdds; i++) {
3411 		struct amdgpu_vm *vm;
3412 
3413 		if (!p->pdds[i]->drm_priv)
3414 			continue;
3415 
3416 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3417 		r = amdgpu_bo_reserve(vm->root.bo, false);
3418 		if (r)
3419 			return r;
3420 
3421 		node = interval_tree_iter_first(&vm->va, start, last);
3422 		if (node) {
3423 			pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3424 				 start, last);
3425 			mapping = container_of((struct rb_node *)node,
3426 					       struct amdgpu_bo_va_mapping, rb);
3427 			if (bo_s && bo_l) {
3428 				*bo_s = mapping->start;
3429 				*bo_l = mapping->last;
3430 			}
3431 			amdgpu_bo_unreserve(vm->root.bo);
3432 			return -EADDRINUSE;
3433 		}
3434 		amdgpu_bo_unreserve(vm->root.bo);
3435 	}
3436 
3437 	return 0;
3438 }
3439 
3440 /**
3441  * svm_range_is_valid - check if virtual address range is valid
3442  * @p: current kfd_process
3443  * @start: range start address, in pages
3444  * @size: range size, in pages
3445  *
3446  * Valid virtual address range means it belongs to one or more VMAs
3447  *
3448  * Context: Process context
3449  *
3450  * Return:
3451  *  0 - OK, otherwise error code
3452  */
3453 static int
3454 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3455 {
3456 	const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3457 	struct vm_area_struct *vma;
3458 	unsigned long end;
3459 	unsigned long start_unchg = start;
3460 
3461 	start <<= PAGE_SHIFT;
3462 	end = start + (size << PAGE_SHIFT);
3463 	do {
3464 		vma = vma_lookup(p->mm, start);
3465 		if (!vma || (vma->vm_flags & device_vma))
3466 			return -EFAULT;
3467 		start = min(end, vma->vm_end);
3468 	} while (start < end);
3469 
3470 	return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3471 				  NULL);
3472 }
3473 
3474 /**
3475  * svm_range_best_prefetch_location - decide the best prefetch location
3476  * @prange: svm range structure
3477  *
3478  * For xnack off:
3479  * If range map to single GPU, the best prefetch location is prefetch_loc, which
3480  * can be CPU or GPU.
3481  *
3482  * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3483  * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3484  * the best prefetch location is always CPU, because GPU can not have coherent
3485  * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3486  *
3487  * For xnack on:
3488  * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3489  * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3490  *
3491  * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3492  * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3493  * prefetch location is always CPU.
3494  *
3495  * Context: Process context
3496  *
3497  * Return:
3498  * 0 for CPU or GPU id
3499  */
3500 static uint32_t
3501 svm_range_best_prefetch_location(struct svm_range *prange)
3502 {
3503 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3504 	uint32_t best_loc = prange->prefetch_loc;
3505 	struct kfd_process_device *pdd;
3506 	struct kfd_node *bo_node;
3507 	struct kfd_process *p;
3508 	uint32_t gpuidx;
3509 
3510 	p = container_of(prange->svms, struct kfd_process, svms);
3511 
3512 	if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3513 		goto out;
3514 
3515 	bo_node = svm_range_get_node_by_id(prange, best_loc);
3516 	if (!bo_node) {
3517 		WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3518 		best_loc = 0;
3519 		goto out;
3520 	}
3521 
3522 	if (bo_node->adev->apu_prefer_gtt) {
3523 		best_loc = 0;
3524 		goto out;
3525 	}
3526 
3527 	if (p->xnack_enabled)
3528 		bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3529 	else
3530 		bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3531 			  MAX_GPU_INSTANCE);
3532 
3533 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3534 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3535 		if (!pdd) {
3536 			pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3537 			continue;
3538 		}
3539 
3540 		if (pdd->dev->adev == bo_node->adev)
3541 			continue;
3542 
3543 		if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3544 			best_loc = 0;
3545 			break;
3546 		}
3547 	}
3548 
3549 out:
3550 	pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3551 		 p->xnack_enabled, &p->svms, prange->start, prange->last,
3552 		 best_loc);
3553 
3554 	return best_loc;
3555 }
3556 
3557 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3558  * @mm: current process mm_struct
3559  * @prange: svm range structure
3560  * @migrated: output, true if migration is triggered
3561  *
3562  * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3563  * from ram to vram.
3564  * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3565  * from vram to ram.
3566  *
3567  * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3568  * and restore work:
3569  * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3570  *    stops all queues, schedule restore work
3571  * 2. svm_range_restore_work wait for migration is done by
3572  *    a. svm_range_validate_vram takes prange->migrate_mutex
3573  *    b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3574  * 3. restore work update mappings of GPU, resume all queues.
3575  *
3576  * Context: Process context
3577  *
3578  * Return:
3579  * 0 - OK, otherwise - error code of migration
3580  */
3581 static int
3582 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3583 			    bool *migrated)
3584 {
3585 	uint32_t best_loc;
3586 	int r = 0;
3587 
3588 	*migrated = false;
3589 	best_loc = svm_range_best_prefetch_location(prange);
3590 
3591 	/* when best_loc is a gpu node and same as prange->actual_loc
3592 	 * we still need do migration as prange->actual_loc !=0 does
3593 	 * not mean all pages in prange are vram. hmm migrate will pick
3594 	 * up right pages during migration.
3595 	 */
3596 	if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) ||
3597 	    (best_loc == 0 && prange->actual_loc == 0))
3598 		return 0;
3599 
3600 	if (!best_loc) {
3601 		r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
3602 					KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3603 		*migrated = !r;
3604 		return r;
3605 	}
3606 
3607 	r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last,
3608 				mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3609 	*migrated = !r;
3610 
3611 	return 0;
3612 }
3613 
3614 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3615 {
3616 	/* Dereferencing fence->svm_bo is safe here because the fence hasn't
3617 	 * signaled yet and we're under the protection of the fence->lock.
3618 	 * After the fence is signaled in svm_range_bo_release, we cannot get
3619 	 * here any more.
3620 	 *
3621 	 * Reference is dropped in svm_range_evict_svm_bo_worker.
3622 	 */
3623 	if (svm_bo_ref_unless_zero(fence->svm_bo)) {
3624 		WRITE_ONCE(fence->svm_bo->evicting, 1);
3625 		schedule_work(&fence->svm_bo->eviction_work);
3626 	}
3627 
3628 	return 0;
3629 }
3630 
3631 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3632 {
3633 	struct svm_range_bo *svm_bo;
3634 	struct mm_struct *mm;
3635 	int r = 0;
3636 
3637 	svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3638 
3639 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3640 		mm = svm_bo->eviction_fence->mm;
3641 	} else {
3642 		svm_range_bo_unref(svm_bo);
3643 		return;
3644 	}
3645 
3646 	mmap_read_lock(mm);
3647 	spin_lock(&svm_bo->list_lock);
3648 	while (!list_empty(&svm_bo->range_list) && !r) {
3649 		struct svm_range *prange =
3650 				list_first_entry(&svm_bo->range_list,
3651 						struct svm_range, svm_bo_list);
3652 		int retries = 3;
3653 
3654 		list_del_init(&prange->svm_bo_list);
3655 		spin_unlock(&svm_bo->list_lock);
3656 
3657 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3658 			 prange->start, prange->last);
3659 
3660 		mutex_lock(&prange->migrate_mutex);
3661 		do {
3662 			/* migrate all vram pages in this prange to sys ram
3663 			 * after that prange->actual_loc should be zero
3664 			 */
3665 			r = svm_migrate_vram_to_ram(prange, mm,
3666 					prange->start, prange->last,
3667 					KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3668 		} while (!r && prange->actual_loc && --retries);
3669 
3670 		if (!r && prange->actual_loc)
3671 			pr_info_once("Migration failed during eviction");
3672 
3673 		if (!prange->actual_loc) {
3674 			mutex_lock(&prange->lock);
3675 			prange->svm_bo = NULL;
3676 			mutex_unlock(&prange->lock);
3677 		}
3678 		mutex_unlock(&prange->migrate_mutex);
3679 
3680 		spin_lock(&svm_bo->list_lock);
3681 	}
3682 	spin_unlock(&svm_bo->list_lock);
3683 	mmap_read_unlock(mm);
3684 	mmput(mm);
3685 
3686 	dma_fence_signal(&svm_bo->eviction_fence->base);
3687 
3688 	/* This is the last reference to svm_bo, after svm_range_vram_node_free
3689 	 * has been called in svm_migrate_vram_to_ram
3690 	 */
3691 	WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3692 	svm_range_bo_unref(svm_bo);
3693 }
3694 
3695 static int
3696 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3697 		   uint64_t start, uint64_t size, uint32_t nattr,
3698 		   struct kfd_ioctl_svm_attribute *attrs)
3699 {
3700 	struct amdkfd_process_info *process_info = p->kgd_process_info;
3701 	struct list_head update_list;
3702 	struct list_head insert_list;
3703 	struct list_head remove_list;
3704 	struct list_head remap_list;
3705 	struct svm_range_list *svms;
3706 	struct svm_range *prange;
3707 	struct svm_range *next;
3708 	bool update_mapping = false;
3709 	bool flush_tlb;
3710 	int r, ret = 0;
3711 
3712 	pr_debug("process pid %d svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3713 		 p->lead_thread->pid, &p->svms, start, start + size - 1, size);
3714 
3715 	r = svm_range_check_attr(p, nattr, attrs);
3716 	if (r)
3717 		return r;
3718 
3719 	svms = &p->svms;
3720 
3721 	mutex_lock(&process_info->lock);
3722 
3723 	svm_range_list_lock_and_flush_work(svms, mm);
3724 
3725 	r = svm_range_is_valid(p, start, size);
3726 	if (r) {
3727 		pr_debug("invalid range r=%d\n", r);
3728 		mmap_write_unlock(mm);
3729 		goto out;
3730 	}
3731 
3732 	mutex_lock(&svms->lock);
3733 
3734 	/* Add new range and split existing ranges as needed */
3735 	r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3736 			  &insert_list, &remove_list, &remap_list);
3737 	if (r) {
3738 		mutex_unlock(&svms->lock);
3739 		mmap_write_unlock(mm);
3740 		goto out;
3741 	}
3742 	/* Apply changes as a transaction */
3743 	list_for_each_entry_safe(prange, next, &insert_list, list) {
3744 		svm_range_add_to_svms(prange);
3745 		svm_range_add_notifier_locked(mm, prange);
3746 	}
3747 	list_for_each_entry(prange, &update_list, update_list) {
3748 		svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3749 		/* TODO: unmap ranges from GPU that lost access */
3750 	}
3751 	update_mapping |= !p->xnack_enabled && !list_empty(&remap_list);
3752 
3753 	list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3754 		pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3755 			 prange->svms, prange, prange->start,
3756 			 prange->last);
3757 		svm_range_unlink(prange);
3758 		svm_range_remove_notifier(prange);
3759 		svm_range_free(prange, false);
3760 	}
3761 
3762 	mmap_write_downgrade(mm);
3763 	/* Trigger migrations and revalidate and map to GPUs as needed. If
3764 	 * this fails we may be left with partially completed actions. There
3765 	 * is no clean way of rolling back to the previous state in such a
3766 	 * case because the rollback wouldn't be guaranteed to work either.
3767 	 */
3768 	list_for_each_entry(prange, &update_list, update_list) {
3769 		bool migrated;
3770 
3771 		mutex_lock(&prange->migrate_mutex);
3772 
3773 		r = svm_range_trigger_migration(mm, prange, &migrated);
3774 		if (r)
3775 			goto out_unlock_range;
3776 
3777 		if (migrated && (!p->xnack_enabled ||
3778 		    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3779 		    prange->mapped_to_gpu) {
3780 			pr_debug("restore_work will update mappings of GPUs\n");
3781 			mutex_unlock(&prange->migrate_mutex);
3782 			continue;
3783 		}
3784 
3785 		if (!migrated && !update_mapping) {
3786 			mutex_unlock(&prange->migrate_mutex);
3787 			continue;
3788 		}
3789 
3790 		flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3791 
3792 		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3793 					       MAX_GPU_INSTANCE, true, true, flush_tlb);
3794 		if (r)
3795 			pr_debug("failed %d to map svm range\n", r);
3796 
3797 out_unlock_range:
3798 		mutex_unlock(&prange->migrate_mutex);
3799 		if (r)
3800 			ret = r;
3801 	}
3802 
3803 	list_for_each_entry(prange, &remap_list, update_list) {
3804 		pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
3805 			 prange, prange->start, prange->last);
3806 		mutex_lock(&prange->migrate_mutex);
3807 		r = svm_range_validate_and_map(mm,  prange->start, prange->last, prange,
3808 					       MAX_GPU_INSTANCE, true, true, prange->mapped_to_gpu);
3809 		if (r)
3810 			pr_debug("failed %d on remap svm range\n", r);
3811 		mutex_unlock(&prange->migrate_mutex);
3812 		if (r)
3813 			ret = r;
3814 	}
3815 
3816 	dynamic_svm_range_dump(svms);
3817 
3818 	mutex_unlock(&svms->lock);
3819 	mmap_read_unlock(mm);
3820 out:
3821 	mutex_unlock(&process_info->lock);
3822 
3823 	pr_debug("process pid %d svms 0x%p [0x%llx 0x%llx] done, r=%d\n",
3824 		 p->lead_thread->pid, &p->svms, start, start + size - 1, r);
3825 
3826 	return ret ? ret : r;
3827 }
3828 
3829 static int
3830 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3831 		   uint64_t start, uint64_t size, uint32_t nattr,
3832 		   struct kfd_ioctl_svm_attribute *attrs)
3833 {
3834 	DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3835 	DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3836 	bool get_preferred_loc = false;
3837 	bool get_prefetch_loc = false;
3838 	bool get_granularity = false;
3839 	bool get_accessible = false;
3840 	bool get_flags = false;
3841 	uint64_t last = start + size - 1UL;
3842 	uint8_t granularity = 0xff;
3843 	struct interval_tree_node *node;
3844 	struct svm_range_list *svms;
3845 	struct svm_range *prange;
3846 	uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3847 	uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3848 	uint32_t flags_and = 0xffffffff;
3849 	uint32_t flags_or = 0;
3850 	int gpuidx;
3851 	uint32_t i;
3852 	int r = 0;
3853 
3854 	pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3855 		 start + size - 1, nattr);
3856 
3857 	/* Flush pending deferred work to avoid racing with deferred actions from
3858 	 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3859 	 * can still race with get_attr because we don't hold the mmap lock. But that
3860 	 * would be a race condition in the application anyway, and undefined
3861 	 * behaviour is acceptable in that case.
3862 	 */
3863 	flush_work(&p->svms.deferred_list_work);
3864 
3865 	mmap_read_lock(mm);
3866 	r = svm_range_is_valid(p, start, size);
3867 	mmap_read_unlock(mm);
3868 	if (r) {
3869 		pr_debug("invalid range r=%d\n", r);
3870 		return r;
3871 	}
3872 
3873 	for (i = 0; i < nattr; i++) {
3874 		switch (attrs[i].type) {
3875 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3876 			get_preferred_loc = true;
3877 			break;
3878 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3879 			get_prefetch_loc = true;
3880 			break;
3881 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3882 			get_accessible = true;
3883 			break;
3884 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3885 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3886 			get_flags = true;
3887 			break;
3888 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3889 			get_granularity = true;
3890 			break;
3891 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3892 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3893 			fallthrough;
3894 		default:
3895 			pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3896 			return -EINVAL;
3897 		}
3898 	}
3899 
3900 	svms = &p->svms;
3901 
3902 	mutex_lock(&svms->lock);
3903 
3904 	node = interval_tree_iter_first(&svms->objects, start, last);
3905 	if (!node) {
3906 		pr_debug("range attrs not found return default values\n");
3907 		svm_range_set_default_attributes(svms, &location, &prefetch_loc,
3908 						 &granularity, &flags_and);
3909 		flags_or = flags_and;
3910 		if (p->xnack_enabled)
3911 			bitmap_copy(bitmap_access, svms->bitmap_supported,
3912 				    MAX_GPU_INSTANCE);
3913 		else
3914 			bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3915 		bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3916 		goto fill_values;
3917 	}
3918 	bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3919 	bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3920 
3921 	while (node) {
3922 		struct interval_tree_node *next;
3923 
3924 		prange = container_of(node, struct svm_range, it_node);
3925 		next = interval_tree_iter_next(node, start, last);
3926 
3927 		if (get_preferred_loc) {
3928 			if (prange->preferred_loc ==
3929 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3930 			    (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3931 			     location != prange->preferred_loc)) {
3932 				location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3933 				get_preferred_loc = false;
3934 			} else {
3935 				location = prange->preferred_loc;
3936 			}
3937 		}
3938 		if (get_prefetch_loc) {
3939 			if (prange->prefetch_loc ==
3940 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3941 			    (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3942 			     prefetch_loc != prange->prefetch_loc)) {
3943 				prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3944 				get_prefetch_loc = false;
3945 			} else {
3946 				prefetch_loc = prange->prefetch_loc;
3947 			}
3948 		}
3949 		if (get_accessible) {
3950 			bitmap_and(bitmap_access, bitmap_access,
3951 				   prange->bitmap_access, MAX_GPU_INSTANCE);
3952 			bitmap_and(bitmap_aip, bitmap_aip,
3953 				   prange->bitmap_aip, MAX_GPU_INSTANCE);
3954 		}
3955 		if (get_flags) {
3956 			flags_and &= prange->flags;
3957 			flags_or |= prange->flags;
3958 		}
3959 
3960 		if (get_granularity && prange->granularity < granularity)
3961 			granularity = prange->granularity;
3962 
3963 		node = next;
3964 	}
3965 fill_values:
3966 	mutex_unlock(&svms->lock);
3967 
3968 	for (i = 0; i < nattr; i++) {
3969 		switch (attrs[i].type) {
3970 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3971 			attrs[i].value = location;
3972 			break;
3973 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3974 			attrs[i].value = prefetch_loc;
3975 			break;
3976 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3977 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
3978 							       attrs[i].value);
3979 			if (gpuidx < 0) {
3980 				pr_debug("invalid gpuid %x\n", attrs[i].value);
3981 				return -EINVAL;
3982 			}
3983 			if (test_bit(gpuidx, bitmap_access))
3984 				attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3985 			else if (test_bit(gpuidx, bitmap_aip))
3986 				attrs[i].type =
3987 					KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3988 			else
3989 				attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3990 			break;
3991 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3992 			attrs[i].value = flags_and;
3993 			break;
3994 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3995 			attrs[i].value = ~flags_or;
3996 			break;
3997 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3998 			attrs[i].value = (uint32_t)granularity;
3999 			break;
4000 		}
4001 	}
4002 
4003 	return 0;
4004 }
4005 
4006 int kfd_criu_resume_svm(struct kfd_process *p)
4007 {
4008 	struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
4009 	int nattr_common = 4, nattr_accessibility = 1;
4010 	struct criu_svm_metadata *criu_svm_md = NULL;
4011 	struct svm_range_list *svms = &p->svms;
4012 	struct criu_svm_metadata *next = NULL;
4013 	uint32_t set_flags = 0xffffffff;
4014 	int i, j, num_attrs, ret = 0;
4015 	uint64_t set_attr_size;
4016 	struct mm_struct *mm;
4017 
4018 	if (list_empty(&svms->criu_svm_metadata_list)) {
4019 		pr_debug("No SVM data from CRIU restore stage 2\n");
4020 		return ret;
4021 	}
4022 
4023 	mm = get_task_mm(p->lead_thread);
4024 	if (!mm) {
4025 		pr_err("failed to get mm for the target process\n");
4026 		return -ESRCH;
4027 	}
4028 
4029 	num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
4030 
4031 	i = j = 0;
4032 	list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
4033 		pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
4034 			 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
4035 
4036 		for (j = 0; j < num_attrs; j++) {
4037 			pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
4038 				 i, j, criu_svm_md->data.attrs[j].type,
4039 				 i, j, criu_svm_md->data.attrs[j].value);
4040 			switch (criu_svm_md->data.attrs[j].type) {
4041 			/* During Checkpoint operation, the query for
4042 			 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
4043 			 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
4044 			 * not used by the range which was checkpointed. Care
4045 			 * must be taken to not restore with an invalid value
4046 			 * otherwise the gpuidx value will be invalid and
4047 			 * set_attr would eventually fail so just replace those
4048 			 * with another dummy attribute such as
4049 			 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
4050 			 */
4051 			case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
4052 				if (criu_svm_md->data.attrs[j].value ==
4053 				    KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
4054 					criu_svm_md->data.attrs[j].type =
4055 						KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4056 					criu_svm_md->data.attrs[j].value = 0;
4057 				}
4058 				break;
4059 			case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
4060 				set_flags = criu_svm_md->data.attrs[j].value;
4061 				break;
4062 			default:
4063 				break;
4064 			}
4065 		}
4066 
4067 		/* CLR_FLAGS is not available via get_attr during checkpoint but
4068 		 * it needs to be inserted before restoring the ranges so
4069 		 * allocate extra space for it before calling set_attr
4070 		 */
4071 		set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4072 						(num_attrs + 1);
4073 		set_attr_new = krealloc(set_attr, set_attr_size,
4074 					    GFP_KERNEL);
4075 		if (!set_attr_new) {
4076 			ret = -ENOMEM;
4077 			goto exit;
4078 		}
4079 		set_attr = set_attr_new;
4080 
4081 		memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
4082 					sizeof(struct kfd_ioctl_svm_attribute));
4083 		set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
4084 		set_attr[num_attrs].value = ~set_flags;
4085 
4086 		ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
4087 					 criu_svm_md->data.size, num_attrs + 1,
4088 					 set_attr);
4089 		if (ret) {
4090 			pr_err("CRIU: failed to set range attributes\n");
4091 			goto exit;
4092 		}
4093 
4094 		i++;
4095 	}
4096 exit:
4097 	kfree(set_attr);
4098 	list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
4099 		pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
4100 						criu_svm_md->data.start_addr);
4101 		kfree(criu_svm_md);
4102 	}
4103 
4104 	mmput(mm);
4105 	return ret;
4106 
4107 }
4108 
4109 int kfd_criu_restore_svm(struct kfd_process *p,
4110 			 uint8_t __user *user_priv_ptr,
4111 			 uint64_t *priv_data_offset,
4112 			 uint64_t max_priv_data_size)
4113 {
4114 	uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
4115 	int nattr_common = 4, nattr_accessibility = 1;
4116 	struct criu_svm_metadata *criu_svm_md = NULL;
4117 	struct svm_range_list *svms = &p->svms;
4118 	uint32_t num_devices;
4119 	int ret = 0;
4120 
4121 	num_devices = p->n_pdds;
4122 	/* Handle one SVM range object at a time, also the number of gpus are
4123 	 * assumed to be same on the restore node, checking must be done while
4124 	 * evaluating the topology earlier
4125 	 */
4126 
4127 	svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
4128 		(nattr_common + nattr_accessibility * num_devices);
4129 	svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
4130 
4131 	svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4132 								svm_attrs_size;
4133 
4134 	criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
4135 	if (!criu_svm_md) {
4136 		pr_err("failed to allocate memory to store svm metadata\n");
4137 		return -ENOMEM;
4138 	}
4139 	if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
4140 		ret = -EINVAL;
4141 		goto exit;
4142 	}
4143 
4144 	ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
4145 			     svm_priv_data_size);
4146 	if (ret) {
4147 		ret = -EFAULT;
4148 		goto exit;
4149 	}
4150 	*priv_data_offset += svm_priv_data_size;
4151 
4152 	list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
4153 
4154 	return 0;
4155 
4156 
4157 exit:
4158 	kfree(criu_svm_md);
4159 	return ret;
4160 }
4161 
4162 void svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
4163 			uint64_t *svm_priv_data_size)
4164 {
4165 	uint64_t total_size, accessibility_size, common_attr_size;
4166 	int nattr_common = 4, nattr_accessibility = 1;
4167 	int num_devices = p->n_pdds;
4168 	struct svm_range_list *svms;
4169 	struct svm_range *prange;
4170 	uint32_t count = 0;
4171 
4172 	*svm_priv_data_size = 0;
4173 
4174 	svms = &p->svms;
4175 
4176 	mutex_lock(&svms->lock);
4177 	list_for_each_entry(prange, &svms->list, list) {
4178 		pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
4179 			 prange, prange->start, prange->npages,
4180 			 prange->start + prange->npages - 1);
4181 		count++;
4182 	}
4183 	mutex_unlock(&svms->lock);
4184 
4185 	*num_svm_ranges = count;
4186 	/* Only the accessbility attributes need to be queried for all the gpus
4187 	 * individually, remaining ones are spanned across the entire process
4188 	 * regardless of the various gpu nodes. Of the remaining attributes,
4189 	 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4190 	 *
4191 	 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4192 	 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4193 	 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4194 	 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4195 	 *
4196 	 * ** ACCESSBILITY ATTRIBUTES **
4197 	 * (Considered as one, type is altered during query, value is gpuid)
4198 	 * KFD_IOCTL_SVM_ATTR_ACCESS
4199 	 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4200 	 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4201 	 */
4202 	if (*num_svm_ranges > 0) {
4203 		common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4204 			nattr_common;
4205 		accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4206 			nattr_accessibility * num_devices;
4207 
4208 		total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4209 			common_attr_size + accessibility_size;
4210 
4211 		*svm_priv_data_size = *num_svm_ranges * total_size;
4212 	}
4213 
4214 	pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4215 		 *svm_priv_data_size);
4216 }
4217 
4218 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4219 			    uint8_t __user *user_priv_data,
4220 			    uint64_t *priv_data_offset)
4221 {
4222 	struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4223 	struct kfd_ioctl_svm_attribute *query_attr = NULL;
4224 	uint64_t svm_priv_data_size, query_attr_size = 0;
4225 	int index, nattr_common = 4, ret = 0;
4226 	struct svm_range_list *svms;
4227 	int num_devices = p->n_pdds;
4228 	struct svm_range *prange;
4229 	struct mm_struct *mm;
4230 
4231 	svms = &p->svms;
4232 
4233 	mm = get_task_mm(p->lead_thread);
4234 	if (!mm) {
4235 		pr_err("failed to get mm for the target process\n");
4236 		return -ESRCH;
4237 	}
4238 
4239 	query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4240 				(nattr_common + num_devices);
4241 
4242 	query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4243 	if (!query_attr) {
4244 		ret = -ENOMEM;
4245 		goto exit;
4246 	}
4247 
4248 	query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4249 	query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4250 	query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4251 	query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4252 
4253 	for (index = 0; index < num_devices; index++) {
4254 		struct kfd_process_device *pdd = p->pdds[index];
4255 
4256 		query_attr[index + nattr_common].type =
4257 			KFD_IOCTL_SVM_ATTR_ACCESS;
4258 		query_attr[index + nattr_common].value = pdd->user_gpu_id;
4259 	}
4260 
4261 	svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4262 
4263 	svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4264 	if (!svm_priv) {
4265 		ret = -ENOMEM;
4266 		goto exit_query;
4267 	}
4268 
4269 	index = 0;
4270 	list_for_each_entry(prange, &svms->list, list) {
4271 
4272 		svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4273 		svm_priv->start_addr = prange->start;
4274 		svm_priv->size = prange->npages;
4275 		memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4276 		pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4277 			 prange, prange->start, prange->npages,
4278 			 prange->start + prange->npages - 1,
4279 			 prange->npages * PAGE_SIZE);
4280 
4281 		ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4282 					 svm_priv->size,
4283 					 (nattr_common + num_devices),
4284 					 svm_priv->attrs);
4285 		if (ret) {
4286 			pr_err("CRIU: failed to obtain range attributes\n");
4287 			goto exit_priv;
4288 		}
4289 
4290 		if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4291 				 svm_priv_data_size)) {
4292 			pr_err("Failed to copy svm priv to user\n");
4293 			ret = -EFAULT;
4294 			goto exit_priv;
4295 		}
4296 
4297 		*priv_data_offset += svm_priv_data_size;
4298 
4299 	}
4300 
4301 
4302 exit_priv:
4303 	kfree(svm_priv);
4304 exit_query:
4305 	kfree(query_attr);
4306 exit:
4307 	mmput(mm);
4308 	return ret;
4309 }
4310 
4311 int
4312 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4313 	  uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4314 {
4315 	struct mm_struct *mm = current->mm;
4316 	int r;
4317 
4318 	start >>= PAGE_SHIFT;
4319 	size >>= PAGE_SHIFT;
4320 
4321 	switch (op) {
4322 	case KFD_IOCTL_SVM_OP_SET_ATTR:
4323 		r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4324 		break;
4325 	case KFD_IOCTL_SVM_OP_GET_ATTR:
4326 		r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4327 		break;
4328 	default:
4329 		r = -EINVAL;
4330 		break;
4331 	}
4332 
4333 	return r;
4334 }
4335