1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2020-2021 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49 * page table is updated.
50 */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING (2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 _dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61 * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62 * power of 2MB.
63 */
64 static uint64_t max_svm_range_pages;
65
66 struct criu_svm_metadata {
67 struct list_head list;
68 struct kfd_criu_svm_range_priv_data data;
69 };
70
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 const struct mmu_notifier_range *range,
75 unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 .invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82
83 /**
84 * svm_range_unlink - unlink svm_range from lists and interval tree
85 * @prange: svm range structure to be removed
86 *
87 * Remove the svm_range from the svms and svm_bo lists and the svms
88 * interval tree.
89 *
90 * Context: The caller must hold svms->lock
91 */
svm_range_unlink(struct svm_range * prange)92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 prange, prange->start, prange->last);
96
97 if (prange->svm_bo) {
98 spin_lock(&prange->svm_bo->list_lock);
99 list_del(&prange->svm_bo_list);
100 spin_unlock(&prange->svm_bo->list_lock);
101 }
102
103 list_del(&prange->list);
104 if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107
108 static void
svm_range_add_notifier_locked(struct mm_struct * mm,struct svm_range * prange)109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 prange, prange->start, prange->last);
113
114 mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 prange->start << PAGE_SHIFT,
116 prange->npages << PAGE_SHIFT,
117 &svm_range_mn_ops);
118 }
119
120 /**
121 * svm_range_add_to_svms - add svm range to svms
122 * @prange: svm range structure to be added
123 *
124 * Add the svm range to svms interval tree and link list
125 *
126 * Context: The caller must hold svms->lock
127 */
svm_range_add_to_svms(struct svm_range * prange)128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 prange, prange->start, prange->last);
132
133 list_move_tail(&prange->list, &prange->svms->list);
134 prange->it_node.start = prange->start;
135 prange->it_node.last = prange->last;
136 interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138
svm_range_remove_notifier(struct svm_range * prange)139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 prange->svms, prange,
143 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145
146 if (prange->notifier.interval_tree.start != 0 &&
147 prange->notifier.interval_tree.last != 0)
148 mmu_interval_notifier_remove(&prange->notifier);
149 }
150
151 static bool
svm_is_valid_dma_mapping_addr(struct device * dev,dma_addr_t dma_addr)152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157
158 static int
svm_range_dma_map_dev(struct amdgpu_device * adev,struct svm_range * prange,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns,uint32_t gpuidx)159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 unsigned long offset, unsigned long npages,
161 unsigned long *hmm_pfns, uint32_t gpuidx)
162 {
163 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 dma_addr_t *addr = prange->dma_addr[gpuidx];
165 struct device *dev = adev->dev;
166 struct page *page;
167 int i, r;
168
169 if (!addr) {
170 addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 if (!addr)
172 return -ENOMEM;
173 prange->dma_addr[gpuidx] = addr;
174 }
175
176 addr += offset;
177 for (i = 0; i < npages; i++) {
178 if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180
181 page = hmm_pfn_to_page(hmm_pfns[i]);
182 if (is_zone_device_page(page)) {
183 struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184
185 addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 bo_adev->vm_manager.vram_base_offset -
187 bo_adev->kfd.pgmap.range.start;
188 addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 continue;
191 }
192 addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 r = dma_mapping_error(dev, addr[i]);
194 if (r) {
195 dev_err(dev, "failed %d dma_map_page\n", r);
196 return r;
197 }
198 pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 }
201
202 return 0;
203 }
204
205 static int
svm_range_dma_map(struct svm_range * prange,unsigned long * bitmap,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns)206 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
207 unsigned long offset, unsigned long npages,
208 unsigned long *hmm_pfns)
209 {
210 struct kfd_process *p;
211 uint32_t gpuidx;
212 int r;
213
214 p = container_of(prange->svms, struct kfd_process, svms);
215
216 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
217 struct kfd_process_device *pdd;
218
219 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
220 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
221 if (!pdd) {
222 pr_debug("failed to find device idx %d\n", gpuidx);
223 return -EINVAL;
224 }
225
226 r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
227 hmm_pfns, gpuidx);
228 if (r)
229 break;
230 }
231
232 return r;
233 }
234
svm_range_dma_unmap_dev(struct device * dev,dma_addr_t * dma_addr,unsigned long offset,unsigned long npages)235 void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
236 unsigned long offset, unsigned long npages)
237 {
238 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
239 int i;
240
241 if (!dma_addr)
242 return;
243
244 for (i = offset; i < offset + npages; i++) {
245 if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
246 continue;
247 pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
248 dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
249 dma_addr[i] = 0;
250 }
251 }
252
svm_range_dma_unmap(struct svm_range * prange)253 void svm_range_dma_unmap(struct svm_range *prange)
254 {
255 struct kfd_process_device *pdd;
256 dma_addr_t *dma_addr;
257 struct device *dev;
258 struct kfd_process *p;
259 uint32_t gpuidx;
260
261 p = container_of(prange->svms, struct kfd_process, svms);
262
263 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
264 dma_addr = prange->dma_addr[gpuidx];
265 if (!dma_addr)
266 continue;
267
268 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
269 if (!pdd) {
270 pr_debug("failed to find device idx %d\n", gpuidx);
271 continue;
272 }
273 dev = &pdd->dev->adev->pdev->dev;
274
275 svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages);
276 }
277 }
278
svm_range_free(struct svm_range * prange,bool do_unmap)279 static void svm_range_free(struct svm_range *prange, bool do_unmap)
280 {
281 uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
282 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
283 uint32_t gpuidx;
284
285 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286 prange->start, prange->last);
287
288 svm_range_vram_node_free(prange);
289 if (do_unmap)
290 svm_range_dma_unmap(prange);
291
292 if (do_unmap && !p->xnack_enabled) {
293 pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
294 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
295 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
296 }
297
298 /* free dma_addr array for each gpu */
299 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
300 if (prange->dma_addr[gpuidx]) {
301 kvfree(prange->dma_addr[gpuidx]);
302 prange->dma_addr[gpuidx] = NULL;
303 }
304 }
305
306 mutex_destroy(&prange->lock);
307 mutex_destroy(&prange->migrate_mutex);
308 kfree(prange);
309 }
310
311 static void
svm_range_set_default_attributes(struct svm_range_list * svms,int32_t * location,int32_t * prefetch_loc,uint8_t * granularity,uint32_t * flags)312 svm_range_set_default_attributes(struct svm_range_list *svms, int32_t *location,
313 int32_t *prefetch_loc, uint8_t *granularity,
314 uint32_t *flags)
315 {
316 *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
317 *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
318 *granularity = svms->default_granularity;
319 *flags =
320 KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
321 }
322
323 static struct
svm_range_new(struct svm_range_list * svms,uint64_t start,uint64_t last,bool update_mem_usage)324 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
325 uint64_t last, bool update_mem_usage)
326 {
327 uint64_t size = last - start + 1;
328 struct svm_range *prange;
329 struct kfd_process *p;
330
331 prange = kzalloc(sizeof(*prange), GFP_KERNEL);
332 if (!prange)
333 return NULL;
334
335 p = container_of(svms, struct kfd_process, svms);
336 if (!p->xnack_enabled && update_mem_usage &&
337 amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
338 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
339 pr_info("SVM mapping failed, exceeds resident system memory limit\n");
340 kfree(prange);
341 return NULL;
342 }
343 prange->npages = size;
344 prange->svms = svms;
345 prange->start = start;
346 prange->last = last;
347 INIT_LIST_HEAD(&prange->list);
348 INIT_LIST_HEAD(&prange->update_list);
349 INIT_LIST_HEAD(&prange->svm_bo_list);
350 INIT_LIST_HEAD(&prange->deferred_list);
351 INIT_LIST_HEAD(&prange->child_list);
352 atomic_set(&prange->invalid, 0);
353 prange->validate_timestamp = 0;
354 prange->vram_pages = 0;
355 mutex_init(&prange->migrate_mutex);
356 mutex_init(&prange->lock);
357
358 if (p->xnack_enabled)
359 bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
360 MAX_GPU_INSTANCE);
361
362 svm_range_set_default_attributes(svms, &prange->preferred_loc,
363 &prange->prefetch_loc,
364 &prange->granularity, &prange->flags);
365
366 pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
367
368 return prange;
369 }
370
svm_bo_ref_unless_zero(struct svm_range_bo * svm_bo)371 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
372 {
373 if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
374 return false;
375
376 return true;
377 }
378
svm_range_bo_release(struct kref * kref)379 static void svm_range_bo_release(struct kref *kref)
380 {
381 struct svm_range_bo *svm_bo;
382
383 svm_bo = container_of(kref, struct svm_range_bo, kref);
384 pr_debug("svm_bo 0x%p\n", svm_bo);
385
386 spin_lock(&svm_bo->list_lock);
387 while (!list_empty(&svm_bo->range_list)) {
388 struct svm_range *prange =
389 list_first_entry(&svm_bo->range_list,
390 struct svm_range, svm_bo_list);
391 /* list_del_init tells a concurrent svm_range_vram_node_new when
392 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
393 */
394 list_del_init(&prange->svm_bo_list);
395 spin_unlock(&svm_bo->list_lock);
396
397 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
398 prange->start, prange->last);
399 mutex_lock(&prange->lock);
400 prange->svm_bo = NULL;
401 /* prange should not hold vram page now */
402 WARN_ONCE(prange->actual_loc, "prange should not hold vram page");
403 mutex_unlock(&prange->lock);
404
405 spin_lock(&svm_bo->list_lock);
406 }
407 spin_unlock(&svm_bo->list_lock);
408
409 if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
410 struct kfd_process_device *pdd;
411 struct kfd_process *p;
412 struct mm_struct *mm;
413
414 mm = svm_bo->eviction_fence->mm;
415 /*
416 * The forked child process takes svm_bo device pages ref, svm_bo could be
417 * released after parent process is gone.
418 */
419 p = kfd_lookup_process_by_mm(mm);
420 if (p) {
421 pdd = kfd_get_process_device_data(svm_bo->node, p);
422 if (pdd)
423 atomic64_sub(amdgpu_bo_size(svm_bo->bo), &pdd->vram_usage);
424 kfd_unref_process(p);
425 }
426 mmput(mm);
427 }
428
429 if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
430 /* We're not in the eviction worker. Signal the fence. */
431 dma_fence_signal(&svm_bo->eviction_fence->base);
432 dma_fence_put(&svm_bo->eviction_fence->base);
433 amdgpu_bo_unref(&svm_bo->bo);
434 kfree(svm_bo);
435 }
436
svm_range_bo_wq_release(struct work_struct * work)437 static void svm_range_bo_wq_release(struct work_struct *work)
438 {
439 struct svm_range_bo *svm_bo;
440
441 svm_bo = container_of(work, struct svm_range_bo, release_work);
442 svm_range_bo_release(&svm_bo->kref);
443 }
444
svm_range_bo_release_async(struct kref * kref)445 static void svm_range_bo_release_async(struct kref *kref)
446 {
447 struct svm_range_bo *svm_bo;
448
449 svm_bo = container_of(kref, struct svm_range_bo, kref);
450 pr_debug("svm_bo 0x%p\n", svm_bo);
451 INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
452 schedule_work(&svm_bo->release_work);
453 }
454
svm_range_bo_unref_async(struct svm_range_bo * svm_bo)455 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
456 {
457 kref_put(&svm_bo->kref, svm_range_bo_release_async);
458 }
459
svm_range_bo_unref(struct svm_range_bo * svm_bo)460 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
461 {
462 if (svm_bo)
463 kref_put(&svm_bo->kref, svm_range_bo_release);
464 }
465
466 static bool
svm_range_validate_svm_bo(struct kfd_node * node,struct svm_range * prange)467 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
468 {
469 mutex_lock(&prange->lock);
470 if (!prange->svm_bo) {
471 mutex_unlock(&prange->lock);
472 return false;
473 }
474 if (prange->ttm_res) {
475 /* We still have a reference, all is well */
476 mutex_unlock(&prange->lock);
477 return true;
478 }
479 if (svm_bo_ref_unless_zero(prange->svm_bo)) {
480 /*
481 * Migrate from GPU to GPU, remove range from source svm_bo->node
482 * range list, and return false to allocate svm_bo from destination
483 * node.
484 */
485 if (prange->svm_bo->node != node) {
486 mutex_unlock(&prange->lock);
487
488 spin_lock(&prange->svm_bo->list_lock);
489 list_del_init(&prange->svm_bo_list);
490 spin_unlock(&prange->svm_bo->list_lock);
491
492 svm_range_bo_unref(prange->svm_bo);
493 return false;
494 }
495 if (READ_ONCE(prange->svm_bo->evicting)) {
496 struct dma_fence *f;
497 struct svm_range_bo *svm_bo;
498 /* The BO is getting evicted,
499 * we need to get a new one
500 */
501 mutex_unlock(&prange->lock);
502 svm_bo = prange->svm_bo;
503 f = dma_fence_get(&svm_bo->eviction_fence->base);
504 svm_range_bo_unref(prange->svm_bo);
505 /* wait for the fence to avoid long spin-loop
506 * at list_empty_careful
507 */
508 dma_fence_wait(f, false);
509 dma_fence_put(f);
510 } else {
511 /* The BO was still around and we got
512 * a new reference to it
513 */
514 mutex_unlock(&prange->lock);
515 pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
516 prange->svms, prange->start, prange->last);
517
518 prange->ttm_res = prange->svm_bo->bo->tbo.resource;
519 return true;
520 }
521
522 } else {
523 mutex_unlock(&prange->lock);
524 }
525
526 /* We need a new svm_bo. Spin-loop to wait for concurrent
527 * svm_range_bo_release to finish removing this range from
528 * its range list and set prange->svm_bo to null. After this,
529 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
530 */
531 while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
532 cond_resched();
533
534 return false;
535 }
536
svm_range_bo_new(void)537 static struct svm_range_bo *svm_range_bo_new(void)
538 {
539 struct svm_range_bo *svm_bo;
540
541 svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
542 if (!svm_bo)
543 return NULL;
544
545 kref_init(&svm_bo->kref);
546 INIT_LIST_HEAD(&svm_bo->range_list);
547 spin_lock_init(&svm_bo->list_lock);
548
549 return svm_bo;
550 }
551
552 int
svm_range_vram_node_new(struct kfd_node * node,struct svm_range * prange,bool clear)553 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
554 bool clear)
555 {
556 struct kfd_process_device *pdd;
557 struct amdgpu_bo_param bp;
558 struct svm_range_bo *svm_bo;
559 struct amdgpu_bo_user *ubo;
560 struct amdgpu_bo *bo;
561 struct kfd_process *p;
562 struct mm_struct *mm;
563 int r;
564
565 p = container_of(prange->svms, struct kfd_process, svms);
566 pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
567 prange->start, prange->last);
568
569 if (svm_range_validate_svm_bo(node, prange))
570 return 0;
571
572 svm_bo = svm_range_bo_new();
573 if (!svm_bo) {
574 pr_debug("failed to alloc svm bo\n");
575 return -ENOMEM;
576 }
577 mm = get_task_mm(p->lead_thread);
578 if (!mm) {
579 pr_debug("failed to get mm\n");
580 kfree(svm_bo);
581 return -ESRCH;
582 }
583 svm_bo->node = node;
584 svm_bo->eviction_fence =
585 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
586 mm,
587 svm_bo);
588 mmput(mm);
589 INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
590 svm_bo->evicting = 0;
591 memset(&bp, 0, sizeof(bp));
592 bp.size = prange->npages * PAGE_SIZE;
593 bp.byte_align = PAGE_SIZE;
594 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
595 bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
596 bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
597 bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
598 bp.type = ttm_bo_type_device;
599 bp.resv = NULL;
600 if (node->xcp)
601 bp.xcp_id_plus1 = node->xcp->id + 1;
602
603 r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
604 if (r) {
605 pr_debug("failed %d to create bo\n", r);
606 goto create_bo_failed;
607 }
608 bo = &ubo->bo;
609
610 pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
611 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
612 bp.xcp_id_plus1 - 1);
613
614 r = amdgpu_bo_reserve(bo, true);
615 if (r) {
616 pr_debug("failed %d to reserve bo\n", r);
617 goto reserve_bo_failed;
618 }
619
620 if (clear) {
621 r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
622 if (r) {
623 pr_debug("failed %d to sync bo\n", r);
624 amdgpu_bo_unreserve(bo);
625 goto reserve_bo_failed;
626 }
627 }
628
629 r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
630 if (r) {
631 pr_debug("failed %d to reserve bo\n", r);
632 amdgpu_bo_unreserve(bo);
633 goto reserve_bo_failed;
634 }
635 amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
636
637 amdgpu_bo_unreserve(bo);
638
639 svm_bo->bo = bo;
640 prange->svm_bo = svm_bo;
641 prange->ttm_res = bo->tbo.resource;
642 prange->offset = 0;
643
644 spin_lock(&svm_bo->list_lock);
645 list_add(&prange->svm_bo_list, &svm_bo->range_list);
646 spin_unlock(&svm_bo->list_lock);
647
648 pdd = svm_range_get_pdd_by_node(prange, node);
649 if (pdd)
650 atomic64_add(amdgpu_bo_size(bo), &pdd->vram_usage);
651
652 return 0;
653
654 reserve_bo_failed:
655 amdgpu_bo_unref(&bo);
656 create_bo_failed:
657 dma_fence_put(&svm_bo->eviction_fence->base);
658 kfree(svm_bo);
659 prange->ttm_res = NULL;
660
661 return r;
662 }
663
svm_range_vram_node_free(struct svm_range * prange)664 void svm_range_vram_node_free(struct svm_range *prange)
665 {
666 /* serialize prange->svm_bo unref */
667 mutex_lock(&prange->lock);
668 /* prange->svm_bo has not been unref */
669 if (prange->ttm_res) {
670 prange->ttm_res = NULL;
671 mutex_unlock(&prange->lock);
672 svm_range_bo_unref(prange->svm_bo);
673 } else
674 mutex_unlock(&prange->lock);
675 }
676
677 struct kfd_node *
svm_range_get_node_by_id(struct svm_range * prange,uint32_t gpu_id)678 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
679 {
680 struct kfd_process *p;
681 struct kfd_process_device *pdd;
682
683 p = container_of(prange->svms, struct kfd_process, svms);
684 pdd = kfd_process_device_data_by_id(p, gpu_id);
685 if (!pdd) {
686 pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
687 return NULL;
688 }
689
690 return pdd->dev;
691 }
692
693 struct kfd_process_device *
svm_range_get_pdd_by_node(struct svm_range * prange,struct kfd_node * node)694 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
695 {
696 struct kfd_process *p;
697
698 p = container_of(prange->svms, struct kfd_process, svms);
699
700 return kfd_get_process_device_data(node, p);
701 }
702
svm_range_bo_validate(void * param,struct amdgpu_bo * bo)703 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
704 {
705 struct ttm_operation_ctx ctx = { false, false };
706
707 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
708
709 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
710 }
711
712 static int
svm_range_check_attr(struct kfd_process * p,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)713 svm_range_check_attr(struct kfd_process *p,
714 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
715 {
716 uint32_t i;
717
718 for (i = 0; i < nattr; i++) {
719 uint32_t val = attrs[i].value;
720 int gpuidx = MAX_GPU_INSTANCE;
721
722 switch (attrs[i].type) {
723 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
724 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
725 val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
726 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
727 break;
728 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
729 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
730 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
731 break;
732 case KFD_IOCTL_SVM_ATTR_ACCESS:
733 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
734 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
735 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
736 break;
737 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
738 break;
739 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
740 break;
741 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
742 break;
743 default:
744 pr_debug("unknown attr type 0x%x\n", attrs[i].type);
745 return -EINVAL;
746 }
747
748 if (gpuidx < 0) {
749 pr_debug("no GPU 0x%x found\n", val);
750 return -EINVAL;
751 } else if (gpuidx < MAX_GPU_INSTANCE &&
752 !test_bit(gpuidx, p->svms.bitmap_supported)) {
753 pr_debug("GPU 0x%x not supported\n", val);
754 return -EINVAL;
755 }
756 }
757
758 return 0;
759 }
760
761 static void
svm_range_apply_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,bool * update_mapping)762 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
763 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
764 bool *update_mapping)
765 {
766 uint32_t i;
767 int gpuidx;
768
769 for (i = 0; i < nattr; i++) {
770 switch (attrs[i].type) {
771 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
772 prange->preferred_loc = attrs[i].value;
773 break;
774 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
775 prange->prefetch_loc = attrs[i].value;
776 break;
777 case KFD_IOCTL_SVM_ATTR_ACCESS:
778 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
779 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
780 if (!p->xnack_enabled)
781 *update_mapping = true;
782
783 gpuidx = kfd_process_gpuidx_from_gpuid(p,
784 attrs[i].value);
785 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
786 bitmap_clear(prange->bitmap_access, gpuidx, 1);
787 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
788 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
789 bitmap_set(prange->bitmap_access, gpuidx, 1);
790 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
791 } else {
792 bitmap_clear(prange->bitmap_access, gpuidx, 1);
793 bitmap_set(prange->bitmap_aip, gpuidx, 1);
794 }
795 break;
796 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
797 *update_mapping = true;
798 prange->flags |= attrs[i].value;
799 break;
800 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
801 *update_mapping = true;
802 prange->flags &= ~attrs[i].value;
803 break;
804 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
805 prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
806 break;
807 default:
808 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
809 }
810 }
811 }
812
813 static bool
svm_range_is_same_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)814 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
815 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
816 {
817 uint32_t i;
818 int gpuidx;
819
820 for (i = 0; i < nattr; i++) {
821 switch (attrs[i].type) {
822 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
823 if (prange->preferred_loc != attrs[i].value)
824 return false;
825 break;
826 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
827 /* Prefetch should always trigger a migration even
828 * if the value of the attribute didn't change.
829 */
830 return false;
831 case KFD_IOCTL_SVM_ATTR_ACCESS:
832 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
833 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
834 gpuidx = kfd_process_gpuidx_from_gpuid(p,
835 attrs[i].value);
836 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
837 if (test_bit(gpuidx, prange->bitmap_access) ||
838 test_bit(gpuidx, prange->bitmap_aip))
839 return false;
840 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
841 if (!test_bit(gpuidx, prange->bitmap_access))
842 return false;
843 } else {
844 if (!test_bit(gpuidx, prange->bitmap_aip))
845 return false;
846 }
847 break;
848 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
849 if ((prange->flags & attrs[i].value) != attrs[i].value)
850 return false;
851 break;
852 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
853 if ((prange->flags & attrs[i].value) != 0)
854 return false;
855 break;
856 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
857 if (prange->granularity != attrs[i].value)
858 return false;
859 break;
860 default:
861 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
862 }
863 }
864
865 return true;
866 }
867
868 /**
869 * svm_range_debug_dump - print all range information from svms
870 * @svms: svm range list header
871 *
872 * debug output svm range start, end, prefetch location from svms
873 * interval tree and link list
874 *
875 * Context: The caller must hold svms->lock
876 */
svm_range_debug_dump(struct svm_range_list * svms)877 static void svm_range_debug_dump(struct svm_range_list *svms)
878 {
879 struct interval_tree_node *node;
880 struct svm_range *prange;
881
882 pr_debug("dump svms 0x%p list\n", svms);
883 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
884
885 list_for_each_entry(prange, &svms->list, list) {
886 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
887 prange, prange->start, prange->npages,
888 prange->start + prange->npages - 1,
889 prange->actual_loc);
890 }
891
892 pr_debug("dump svms 0x%p interval tree\n", svms);
893 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
894 node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
895 while (node) {
896 prange = container_of(node, struct svm_range, it_node);
897 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
898 prange, prange->start, prange->npages,
899 prange->start + prange->npages - 1,
900 prange->actual_loc);
901 node = interval_tree_iter_next(node, 0, ~0ULL);
902 }
903 }
904
905 static void *
svm_range_copy_array(void * psrc,size_t size,uint64_t num_elements,uint64_t offset,uint64_t * vram_pages)906 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
907 uint64_t offset, uint64_t *vram_pages)
908 {
909 unsigned char *src = (unsigned char *)psrc + offset;
910 unsigned char *dst;
911 uint64_t i;
912
913 dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
914 if (!dst)
915 return NULL;
916
917 if (!vram_pages) {
918 memcpy(dst, src, num_elements * size);
919 return (void *)dst;
920 }
921
922 *vram_pages = 0;
923 for (i = 0; i < num_elements; i++) {
924 dma_addr_t *temp;
925 temp = (dma_addr_t *)dst + i;
926 *temp = *((dma_addr_t *)src + i);
927 if (*temp&SVM_RANGE_VRAM_DOMAIN)
928 (*vram_pages)++;
929 }
930
931 return (void *)dst;
932 }
933
934 static int
svm_range_copy_dma_addrs(struct svm_range * dst,struct svm_range * src)935 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
936 {
937 int i;
938
939 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
940 if (!src->dma_addr[i])
941 continue;
942 dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
943 sizeof(*src->dma_addr[i]), src->npages, 0, NULL);
944 if (!dst->dma_addr[i])
945 return -ENOMEM;
946 }
947
948 return 0;
949 }
950
951 static int
svm_range_split_array(void * ppnew,void * ppold,size_t size,uint64_t old_start,uint64_t old_n,uint64_t new_start,uint64_t new_n,uint64_t * new_vram_pages)952 svm_range_split_array(void *ppnew, void *ppold, size_t size,
953 uint64_t old_start, uint64_t old_n,
954 uint64_t new_start, uint64_t new_n, uint64_t *new_vram_pages)
955 {
956 unsigned char *new, *old, *pold;
957 uint64_t d;
958
959 if (!ppold)
960 return 0;
961 pold = *(unsigned char **)ppold;
962 if (!pold)
963 return 0;
964
965 d = (new_start - old_start) * size;
966 /* get dma addr array for new range and calculte its vram page number */
967 new = svm_range_copy_array(pold, size, new_n, d, new_vram_pages);
968 if (!new)
969 return -ENOMEM;
970 d = (new_start == old_start) ? new_n * size : 0;
971 old = svm_range_copy_array(pold, size, old_n, d, NULL);
972 if (!old) {
973 kvfree(new);
974 return -ENOMEM;
975 }
976 kvfree(pold);
977 *(void **)ppold = old;
978 *(void **)ppnew = new;
979
980 return 0;
981 }
982
983 static int
svm_range_split_pages(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)984 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
985 uint64_t start, uint64_t last)
986 {
987 uint64_t npages = last - start + 1;
988 int i, r;
989
990 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
991 r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
992 sizeof(*old->dma_addr[i]), old->start,
993 npages, new->start, new->npages,
994 old->actual_loc ? &new->vram_pages : NULL);
995 if (r)
996 return r;
997 }
998 if (old->actual_loc)
999 old->vram_pages -= new->vram_pages;
1000
1001 return 0;
1002 }
1003
1004 static int
svm_range_split_nodes(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1005 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
1006 uint64_t start, uint64_t last)
1007 {
1008 uint64_t npages = last - start + 1;
1009
1010 pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
1011 new->svms, new, new->start, start, last);
1012
1013 if (new->start == old->start) {
1014 new->offset = old->offset;
1015 old->offset += new->npages;
1016 } else {
1017 new->offset = old->offset + npages;
1018 }
1019
1020 new->svm_bo = svm_range_bo_ref(old->svm_bo);
1021 new->ttm_res = old->ttm_res;
1022
1023 spin_lock(&new->svm_bo->list_lock);
1024 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1025 spin_unlock(&new->svm_bo->list_lock);
1026
1027 return 0;
1028 }
1029
1030 /**
1031 * svm_range_split_adjust - split range and adjust
1032 *
1033 * @new: new range
1034 * @old: the old range
1035 * @start: the old range adjust to start address in pages
1036 * @last: the old range adjust to last address in pages
1037 *
1038 * Copy system memory dma_addr or vram ttm_res in old range to new
1039 * range from new_start up to size new->npages, the remaining old range is from
1040 * start to last
1041 *
1042 * Return:
1043 * 0 - OK, -ENOMEM - out of memory
1044 */
1045 static int
svm_range_split_adjust(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1046 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1047 uint64_t start, uint64_t last)
1048 {
1049 int r;
1050
1051 pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1052 new->svms, new->start, old->start, old->last, start, last);
1053
1054 if (new->start < old->start ||
1055 new->last > old->last) {
1056 WARN_ONCE(1, "invalid new range start or last\n");
1057 return -EINVAL;
1058 }
1059
1060 r = svm_range_split_pages(new, old, start, last);
1061 if (r)
1062 return r;
1063
1064 if (old->actual_loc && old->ttm_res) {
1065 r = svm_range_split_nodes(new, old, start, last);
1066 if (r)
1067 return r;
1068 }
1069
1070 old->npages = last - start + 1;
1071 old->start = start;
1072 old->last = last;
1073 new->flags = old->flags;
1074 new->preferred_loc = old->preferred_loc;
1075 new->prefetch_loc = old->prefetch_loc;
1076 new->actual_loc = old->actual_loc;
1077 new->granularity = old->granularity;
1078 new->mapped_to_gpu = old->mapped_to_gpu;
1079 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1080 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1081 atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
1082
1083 return 0;
1084 }
1085
1086 /**
1087 * svm_range_split - split a range in 2 ranges
1088 *
1089 * @prange: the svm range to split
1090 * @start: the remaining range start address in pages
1091 * @last: the remaining range last address in pages
1092 * @new: the result new range generated
1093 *
1094 * Two cases only:
1095 * case 1: if start == prange->start
1096 * prange ==> prange[start, last]
1097 * new range [last + 1, prange->last]
1098 *
1099 * case 2: if last == prange->last
1100 * prange ==> prange[start, last]
1101 * new range [prange->start, start - 1]
1102 *
1103 * Return:
1104 * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1105 */
1106 static int
svm_range_split(struct svm_range * prange,uint64_t start,uint64_t last,struct svm_range ** new)1107 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1108 struct svm_range **new)
1109 {
1110 uint64_t old_start = prange->start;
1111 uint64_t old_last = prange->last;
1112 struct svm_range_list *svms;
1113 int r = 0;
1114
1115 pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1116 old_start, old_last, start, last);
1117
1118 if (old_start != start && old_last != last)
1119 return -EINVAL;
1120 if (start < old_start || last > old_last)
1121 return -EINVAL;
1122
1123 svms = prange->svms;
1124 if (old_start == start)
1125 *new = svm_range_new(svms, last + 1, old_last, false);
1126 else
1127 *new = svm_range_new(svms, old_start, start - 1, false);
1128 if (!*new)
1129 return -ENOMEM;
1130
1131 r = svm_range_split_adjust(*new, prange, start, last);
1132 if (r) {
1133 pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1134 r, old_start, old_last, start, last);
1135 svm_range_free(*new, false);
1136 *new = NULL;
1137 }
1138
1139 return r;
1140 }
1141
1142 static int
svm_range_split_tail(struct svm_range * prange,uint64_t new_last,struct list_head * insert_list,struct list_head * remap_list)1143 svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
1144 struct list_head *insert_list, struct list_head *remap_list)
1145 {
1146 struct svm_range *tail = NULL;
1147 int r = svm_range_split(prange, prange->start, new_last, &tail);
1148
1149 if (!r) {
1150 list_add(&tail->list, insert_list);
1151 if (!IS_ALIGNED(new_last + 1, 1UL << prange->granularity))
1152 list_add(&tail->update_list, remap_list);
1153 }
1154 return r;
1155 }
1156
1157 static int
svm_range_split_head(struct svm_range * prange,uint64_t new_start,struct list_head * insert_list,struct list_head * remap_list)1158 svm_range_split_head(struct svm_range *prange, uint64_t new_start,
1159 struct list_head *insert_list, struct list_head *remap_list)
1160 {
1161 struct svm_range *head = NULL;
1162 int r = svm_range_split(prange, new_start, prange->last, &head);
1163
1164 if (!r) {
1165 list_add(&head->list, insert_list);
1166 if (!IS_ALIGNED(new_start, 1UL << prange->granularity))
1167 list_add(&head->update_list, remap_list);
1168 }
1169 return r;
1170 }
1171
1172 static void
svm_range_add_child(struct svm_range * prange,struct mm_struct * mm,struct svm_range * pchild,enum svm_work_list_ops op)1173 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
1174 struct svm_range *pchild, enum svm_work_list_ops op)
1175 {
1176 pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1177 pchild, pchild->start, pchild->last, prange, op);
1178
1179 pchild->work_item.mm = mm;
1180 pchild->work_item.op = op;
1181 list_add_tail(&pchild->child_list, &prange->child_list);
1182 }
1183
1184 static bool
svm_nodes_in_same_hive(struct kfd_node * node_a,struct kfd_node * node_b)1185 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1186 {
1187 return (node_a->adev == node_b->adev ||
1188 amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1189 }
1190
1191 static uint64_t
svm_range_get_pte_flags(struct kfd_node * node,struct svm_range * prange,int domain)1192 svm_range_get_pte_flags(struct kfd_node *node,
1193 struct svm_range *prange, int domain)
1194 {
1195 struct kfd_node *bo_node;
1196 uint32_t flags = prange->flags;
1197 uint32_t mapping_flags = 0;
1198 uint32_t gc_ip_version = KFD_GC_VERSION(node);
1199 uint64_t pte_flags;
1200 bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1201 bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1202 bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1203 unsigned int mtype_local;
1204
1205 if (domain == SVM_RANGE_VRAM_DOMAIN)
1206 bo_node = prange->svm_bo->node;
1207
1208 switch (gc_ip_version) {
1209 case IP_VERSION(9, 4, 1):
1210 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1211 if (bo_node == node) {
1212 mapping_flags |= coherent ?
1213 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1214 } else {
1215 mapping_flags |= coherent ?
1216 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1217 if (svm_nodes_in_same_hive(node, bo_node))
1218 snoop = true;
1219 }
1220 } else {
1221 mapping_flags |= coherent ?
1222 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1223 }
1224 break;
1225 case IP_VERSION(9, 4, 2):
1226 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1227 if (bo_node == node) {
1228 mapping_flags |= coherent ?
1229 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1230 if (node->adev->gmc.xgmi.connected_to_cpu)
1231 snoop = true;
1232 } else {
1233 mapping_flags |= coherent ?
1234 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1235 if (svm_nodes_in_same_hive(node, bo_node))
1236 snoop = true;
1237 }
1238 } else {
1239 mapping_flags |= coherent ?
1240 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1241 }
1242 break;
1243 case IP_VERSION(9, 4, 3):
1244 case IP_VERSION(9, 4, 4):
1245 case IP_VERSION(9, 5, 0):
1246 if (ext_coherent)
1247 mtype_local = (gc_ip_version < IP_VERSION(9, 5, 0) && !node->adev->rev_id) ?
1248 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_CC;
1249 else
1250 mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1251 amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1252 snoop = true;
1253 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1254 /* local HBM region close to partition */
1255 if (bo_node->adev == node->adev &&
1256 (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1257 mapping_flags |= mtype_local;
1258 /* local HBM region far from partition or remote XGMI GPU
1259 * with regular system scope coherence
1260 */
1261 else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent)
1262 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1263 /* PCIe P2P on GPUs pre-9.5.0 */
1264 else if (gc_ip_version < IP_VERSION(9, 5, 0) &&
1265 !svm_nodes_in_same_hive(bo_node, node))
1266 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1267 /* Other remote memory */
1268 else
1269 mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1270 /* system memory accessed by the APU */
1271 } else if (node->adev->flags & AMD_IS_APU) {
1272 /* On NUMA systems, locality is determined per-page
1273 * in amdgpu_gmc_override_vm_pte_flags
1274 */
1275 if (num_possible_nodes() <= 1)
1276 mapping_flags |= mtype_local;
1277 else
1278 mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1279 /* system memory accessed by the dGPU */
1280 } else {
1281 if (gc_ip_version < IP_VERSION(9, 5, 0))
1282 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1283 else
1284 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1285 }
1286 break;
1287 case IP_VERSION(12, 0, 0):
1288 case IP_VERSION(12, 0, 1):
1289 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1290 break;
1291 default:
1292 mapping_flags |= coherent ?
1293 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1294 }
1295
1296 mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1297
1298 if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1299 mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1300 if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1301 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1302
1303 pte_flags = AMDGPU_PTE_VALID;
1304 pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1305 pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1306 if (gc_ip_version >= IP_VERSION(12, 0, 0))
1307 pte_flags |= AMDGPU_PTE_IS_PTE;
1308
1309 pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1310 return pte_flags;
1311 }
1312
1313 static int
svm_range_unmap_from_gpu(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t start,uint64_t last,struct dma_fence ** fence)1314 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1315 uint64_t start, uint64_t last,
1316 struct dma_fence **fence)
1317 {
1318 uint64_t init_pte_value = 0;
1319
1320 pr_debug("[0x%llx 0x%llx]\n", start, last);
1321
1322 return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start,
1323 last, init_pte_value, 0, 0, NULL, NULL,
1324 fence);
1325 }
1326
1327 static int
svm_range_unmap_from_gpus(struct svm_range * prange,unsigned long start,unsigned long last,uint32_t trigger)1328 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1329 unsigned long last, uint32_t trigger)
1330 {
1331 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1332 struct kfd_process_device *pdd;
1333 struct dma_fence *fence = NULL;
1334 struct kfd_process *p;
1335 uint32_t gpuidx;
1336 int r = 0;
1337
1338 if (!prange->mapped_to_gpu) {
1339 pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1340 prange, prange->start, prange->last);
1341 return 0;
1342 }
1343
1344 if (prange->start == start && prange->last == last) {
1345 pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1346 prange->mapped_to_gpu = false;
1347 }
1348
1349 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1350 MAX_GPU_INSTANCE);
1351 p = container_of(prange->svms, struct kfd_process, svms);
1352
1353 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1354 pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1355 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1356 if (!pdd) {
1357 pr_debug("failed to find device idx %d\n", gpuidx);
1358 return -EINVAL;
1359 }
1360
1361 kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1362 start, last, trigger);
1363
1364 r = svm_range_unmap_from_gpu(pdd->dev->adev,
1365 drm_priv_to_vm(pdd->drm_priv),
1366 start, last, &fence);
1367 if (r)
1368 break;
1369
1370 if (fence) {
1371 r = dma_fence_wait(fence, false);
1372 dma_fence_put(fence);
1373 fence = NULL;
1374 if (r)
1375 break;
1376 }
1377 kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1378 }
1379
1380 return r;
1381 }
1382
1383 static int
svm_range_map_to_gpu(struct kfd_process_device * pdd,struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,dma_addr_t * dma_addr,struct amdgpu_device * bo_adev,struct dma_fence ** fence,bool flush_tlb)1384 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1385 unsigned long offset, unsigned long npages, bool readonly,
1386 dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1387 struct dma_fence **fence, bool flush_tlb)
1388 {
1389 struct amdgpu_device *adev = pdd->dev->adev;
1390 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1391 uint64_t pte_flags;
1392 unsigned long last_start;
1393 int last_domain;
1394 int r = 0;
1395 int64_t i, j;
1396
1397 last_start = prange->start + offset;
1398
1399 pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1400 last_start, last_start + npages - 1, readonly);
1401
1402 for (i = offset; i < offset + npages; i++) {
1403 last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1404 dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1405
1406 /* Collect all pages in the same address range and memory domain
1407 * that can be mapped with a single call to update mapping.
1408 */
1409 if (i < offset + npages - 1 &&
1410 last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1411 continue;
1412
1413 pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1414 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1415
1416 pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1417 if (readonly)
1418 pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1419
1420 pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1421 prange->svms, last_start, prange->start + i,
1422 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1423 pte_flags);
1424
1425 /* For dGPU mode, we use same vm_manager to allocate VRAM for
1426 * different memory partition based on fpfn/lpfn, we should use
1427 * same vm_manager.vram_base_offset regardless memory partition.
1428 */
1429 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true,
1430 NULL, last_start, prange->start + i,
1431 pte_flags,
1432 (last_start - prange->start) << PAGE_SHIFT,
1433 bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1434 NULL, dma_addr, &vm->last_update);
1435
1436 for (j = last_start - prange->start; j <= i; j++)
1437 dma_addr[j] |= last_domain;
1438
1439 if (r) {
1440 pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1441 goto out;
1442 }
1443 last_start = prange->start + i + 1;
1444 }
1445
1446 r = amdgpu_vm_update_pdes(adev, vm, false);
1447 if (r) {
1448 pr_debug("failed %d to update directories 0x%lx\n", r,
1449 prange->start);
1450 goto out;
1451 }
1452
1453 if (fence)
1454 *fence = dma_fence_get(vm->last_update);
1455
1456 out:
1457 return r;
1458 }
1459
1460 static int
svm_range_map_to_gpus(struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,unsigned long * bitmap,bool wait,bool flush_tlb)1461 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1462 unsigned long npages, bool readonly,
1463 unsigned long *bitmap, bool wait, bool flush_tlb)
1464 {
1465 struct kfd_process_device *pdd;
1466 struct amdgpu_device *bo_adev = NULL;
1467 struct kfd_process *p;
1468 struct dma_fence *fence = NULL;
1469 uint32_t gpuidx;
1470 int r = 0;
1471
1472 if (prange->svm_bo && prange->ttm_res)
1473 bo_adev = prange->svm_bo->node->adev;
1474
1475 p = container_of(prange->svms, struct kfd_process, svms);
1476 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1477 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1478 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1479 if (!pdd) {
1480 pr_debug("failed to find device idx %d\n", gpuidx);
1481 return -EINVAL;
1482 }
1483
1484 pdd = kfd_bind_process_to_device(pdd->dev, p);
1485 if (IS_ERR(pdd))
1486 return -EINVAL;
1487
1488 if (bo_adev && pdd->dev->adev != bo_adev &&
1489 !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1490 pr_debug("cannot map to device idx %d\n", gpuidx);
1491 continue;
1492 }
1493
1494 r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1495 prange->dma_addr[gpuidx],
1496 bo_adev, wait ? &fence : NULL,
1497 flush_tlb);
1498 if (r)
1499 break;
1500
1501 if (fence) {
1502 r = dma_fence_wait(fence, false);
1503 dma_fence_put(fence);
1504 fence = NULL;
1505 if (r) {
1506 pr_debug("failed %d to dma fence wait\n", r);
1507 break;
1508 }
1509 }
1510
1511 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1512 }
1513
1514 return r;
1515 }
1516
1517 struct svm_validate_context {
1518 struct kfd_process *process;
1519 struct svm_range *prange;
1520 bool intr;
1521 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1522 struct drm_exec exec;
1523 };
1524
svm_range_reserve_bos(struct svm_validate_context * ctx,bool intr)1525 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1526 {
1527 struct kfd_process_device *pdd;
1528 struct amdgpu_vm *vm;
1529 uint32_t gpuidx;
1530 int r;
1531
1532 drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0, 0);
1533 drm_exec_until_all_locked(&ctx->exec) {
1534 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1535 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1536 if (!pdd) {
1537 pr_debug("failed to find device idx %d\n", gpuidx);
1538 r = -EINVAL;
1539 goto unreserve_out;
1540 }
1541 vm = drm_priv_to_vm(pdd->drm_priv);
1542
1543 r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1544 drm_exec_retry_on_contention(&ctx->exec);
1545 if (unlikely(r)) {
1546 pr_debug("failed %d to reserve bo\n", r);
1547 goto unreserve_out;
1548 }
1549 }
1550 }
1551
1552 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1553 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1554 if (!pdd) {
1555 pr_debug("failed to find device idx %d\n", gpuidx);
1556 r = -EINVAL;
1557 goto unreserve_out;
1558 }
1559
1560 r = amdgpu_vm_validate(pdd->dev->adev,
1561 drm_priv_to_vm(pdd->drm_priv), NULL,
1562 svm_range_bo_validate, NULL);
1563 if (r) {
1564 pr_debug("failed %d validate pt bos\n", r);
1565 goto unreserve_out;
1566 }
1567 }
1568
1569 return 0;
1570
1571 unreserve_out:
1572 drm_exec_fini(&ctx->exec);
1573 return r;
1574 }
1575
svm_range_unreserve_bos(struct svm_validate_context * ctx)1576 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1577 {
1578 drm_exec_fini(&ctx->exec);
1579 }
1580
kfd_svm_page_owner(struct kfd_process * p,int32_t gpuidx)1581 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1582 {
1583 struct kfd_process_device *pdd;
1584
1585 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1586 if (!pdd)
1587 return NULL;
1588
1589 return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1590 }
1591
1592 /*
1593 * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1594 *
1595 * To prevent concurrent destruction or change of range attributes, the
1596 * svm_read_lock must be held. The caller must not hold the svm_write_lock
1597 * because that would block concurrent evictions and lead to deadlocks. To
1598 * serialize concurrent migrations or validations of the same range, the
1599 * prange->migrate_mutex must be held.
1600 *
1601 * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1602 * eviction fence.
1603 *
1604 * The following sequence ensures race-free validation and GPU mapping:
1605 *
1606 * 1. Reserve page table (and SVM BO if range is in VRAM)
1607 * 2. hmm_range_fault to get page addresses (if system memory)
1608 * 3. DMA-map pages (if system memory)
1609 * 4-a. Take notifier lock
1610 * 4-b. Check that pages still valid (mmu_interval_read_retry)
1611 * 4-c. Check that the range was not split or otherwise invalidated
1612 * 4-d. Update GPU page table
1613 * 4.e. Release notifier lock
1614 * 5. Release page table (and SVM BO) reservation
1615 */
svm_range_validate_and_map(struct mm_struct * mm,unsigned long map_start,unsigned long map_last,struct svm_range * prange,int32_t gpuidx,bool intr,bool wait,bool flush_tlb)1616 static int svm_range_validate_and_map(struct mm_struct *mm,
1617 unsigned long map_start, unsigned long map_last,
1618 struct svm_range *prange, int32_t gpuidx,
1619 bool intr, bool wait, bool flush_tlb)
1620 {
1621 struct svm_validate_context *ctx;
1622 unsigned long start, end, addr;
1623 struct kfd_process *p;
1624 void *owner;
1625 int32_t idx;
1626 int r = 0;
1627
1628 ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1629 if (!ctx)
1630 return -ENOMEM;
1631 ctx->process = container_of(prange->svms, struct kfd_process, svms);
1632 ctx->prange = prange;
1633 ctx->intr = intr;
1634
1635 if (gpuidx < MAX_GPU_INSTANCE) {
1636 bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1637 bitmap_set(ctx->bitmap, gpuidx, 1);
1638 } else if (ctx->process->xnack_enabled) {
1639 bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1640
1641 /* If prefetch range to GPU, or GPU retry fault migrate range to
1642 * GPU, which has ACCESS attribute to the range, create mapping
1643 * on that GPU.
1644 */
1645 if (prange->actual_loc) {
1646 gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1647 prange->actual_loc);
1648 if (gpuidx < 0) {
1649 WARN_ONCE(1, "failed get device by id 0x%x\n",
1650 prange->actual_loc);
1651 r = -EINVAL;
1652 goto free_ctx;
1653 }
1654 if (test_bit(gpuidx, prange->bitmap_access))
1655 bitmap_set(ctx->bitmap, gpuidx, 1);
1656 }
1657
1658 /*
1659 * If prange is already mapped or with always mapped flag,
1660 * update mapping on GPUs with ACCESS attribute
1661 */
1662 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1663 if (prange->mapped_to_gpu ||
1664 prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1665 bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1666 }
1667 } else {
1668 bitmap_or(ctx->bitmap, prange->bitmap_access,
1669 prange->bitmap_aip, MAX_GPU_INSTANCE);
1670 }
1671
1672 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1673 r = 0;
1674 goto free_ctx;
1675 }
1676
1677 if (prange->actual_loc && !prange->ttm_res) {
1678 /* This should never happen. actual_loc gets set by
1679 * svm_migrate_ram_to_vram after allocating a BO.
1680 */
1681 WARN_ONCE(1, "VRAM BO missing during validation\n");
1682 r = -EINVAL;
1683 goto free_ctx;
1684 }
1685
1686 r = svm_range_reserve_bos(ctx, intr);
1687 if (r)
1688 goto free_ctx;
1689
1690 p = container_of(prange->svms, struct kfd_process, svms);
1691 owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1692 MAX_GPU_INSTANCE));
1693 for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1694 if (kfd_svm_page_owner(p, idx) != owner) {
1695 owner = NULL;
1696 break;
1697 }
1698 }
1699
1700 start = map_start << PAGE_SHIFT;
1701 end = (map_last + 1) << PAGE_SHIFT;
1702 for (addr = start; !r && addr < end; ) {
1703 struct hmm_range *hmm_range = NULL;
1704 unsigned long map_start_vma;
1705 unsigned long map_last_vma;
1706 struct vm_area_struct *vma;
1707 unsigned long next = 0;
1708 unsigned long offset;
1709 unsigned long npages;
1710 bool readonly;
1711
1712 vma = vma_lookup(mm, addr);
1713 if (vma) {
1714 readonly = !(vma->vm_flags & VM_WRITE);
1715
1716 next = min(vma->vm_end, end);
1717 npages = (next - addr) >> PAGE_SHIFT;
1718 WRITE_ONCE(p->svms.faulting_task, current);
1719 r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1720 readonly, owner, NULL,
1721 &hmm_range);
1722 WRITE_ONCE(p->svms.faulting_task, NULL);
1723 if (r)
1724 pr_debug("failed %d to get svm range pages\n", r);
1725 } else {
1726 r = -EFAULT;
1727 }
1728
1729 if (!r) {
1730 offset = (addr >> PAGE_SHIFT) - prange->start;
1731 r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1732 hmm_range->hmm_pfns);
1733 if (r)
1734 pr_debug("failed %d to dma map range\n", r);
1735 }
1736
1737 svm_range_lock(prange);
1738
1739 /* Free backing memory of hmm_range if it was initialized
1740 * Overrride return value to TRY AGAIN only if prior returns
1741 * were successful
1742 */
1743 if (hmm_range && amdgpu_hmm_range_get_pages_done(hmm_range) && !r) {
1744 pr_debug("hmm update the range, need validate again\n");
1745 r = -EAGAIN;
1746 }
1747
1748 if (!r && !list_empty(&prange->child_list)) {
1749 pr_debug("range split by unmap in parallel, validate again\n");
1750 r = -EAGAIN;
1751 }
1752
1753 if (!r) {
1754 map_start_vma = max(map_start, prange->start + offset);
1755 map_last_vma = min(map_last, prange->start + offset + npages - 1);
1756 if (map_start_vma <= map_last_vma) {
1757 offset = map_start_vma - prange->start;
1758 npages = map_last_vma - map_start_vma + 1;
1759 r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1760 ctx->bitmap, wait, flush_tlb);
1761 }
1762 }
1763
1764 if (!r && next == end)
1765 prange->mapped_to_gpu = true;
1766
1767 svm_range_unlock(prange);
1768
1769 addr = next;
1770 }
1771
1772 svm_range_unreserve_bos(ctx);
1773 if (!r)
1774 prange->validate_timestamp = ktime_get_boottime();
1775
1776 free_ctx:
1777 kfree(ctx);
1778
1779 return r;
1780 }
1781
1782 /**
1783 * svm_range_list_lock_and_flush_work - flush pending deferred work
1784 *
1785 * @svms: the svm range list
1786 * @mm: the mm structure
1787 *
1788 * Context: Returns with mmap write lock held, pending deferred work flushed
1789 *
1790 */
1791 void
svm_range_list_lock_and_flush_work(struct svm_range_list * svms,struct mm_struct * mm)1792 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1793 struct mm_struct *mm)
1794 {
1795 retry_flush_work:
1796 flush_work(&svms->deferred_list_work);
1797 mmap_write_lock(mm);
1798
1799 if (list_empty(&svms->deferred_range_list))
1800 return;
1801 mmap_write_unlock(mm);
1802 pr_debug("retry flush\n");
1803 goto retry_flush_work;
1804 }
1805
svm_range_restore_work(struct work_struct * work)1806 static void svm_range_restore_work(struct work_struct *work)
1807 {
1808 struct delayed_work *dwork = to_delayed_work(work);
1809 struct amdkfd_process_info *process_info;
1810 struct svm_range_list *svms;
1811 struct svm_range *prange;
1812 struct kfd_process *p;
1813 struct mm_struct *mm;
1814 int evicted_ranges;
1815 int invalid;
1816 int r;
1817
1818 svms = container_of(dwork, struct svm_range_list, restore_work);
1819 evicted_ranges = atomic_read(&svms->evicted_ranges);
1820 if (!evicted_ranges)
1821 return;
1822
1823 pr_debug("restore svm ranges\n");
1824
1825 p = container_of(svms, struct kfd_process, svms);
1826 process_info = p->kgd_process_info;
1827
1828 /* Keep mm reference when svm_range_validate_and_map ranges */
1829 mm = get_task_mm(p->lead_thread);
1830 if (!mm) {
1831 pr_debug("svms 0x%p process mm gone\n", svms);
1832 return;
1833 }
1834
1835 mutex_lock(&process_info->lock);
1836 svm_range_list_lock_and_flush_work(svms, mm);
1837 mutex_lock(&svms->lock);
1838
1839 evicted_ranges = atomic_read(&svms->evicted_ranges);
1840
1841 list_for_each_entry(prange, &svms->list, list) {
1842 invalid = atomic_read(&prange->invalid);
1843 if (!invalid)
1844 continue;
1845
1846 pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1847 prange->svms, prange, prange->start, prange->last,
1848 invalid);
1849
1850 /*
1851 * If range is migrating, wait for migration is done.
1852 */
1853 mutex_lock(&prange->migrate_mutex);
1854
1855 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
1856 MAX_GPU_INSTANCE, false, true, false);
1857 if (r)
1858 pr_debug("failed %d to map 0x%lx to gpus\n", r,
1859 prange->start);
1860
1861 mutex_unlock(&prange->migrate_mutex);
1862 if (r)
1863 goto out_reschedule;
1864
1865 if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1866 goto out_reschedule;
1867 }
1868
1869 if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1870 evicted_ranges)
1871 goto out_reschedule;
1872
1873 evicted_ranges = 0;
1874
1875 r = kgd2kfd_resume_mm(mm);
1876 if (r) {
1877 /* No recovery from this failure. Probably the CP is
1878 * hanging. No point trying again.
1879 */
1880 pr_debug("failed %d to resume KFD\n", r);
1881 }
1882
1883 pr_debug("restore svm ranges successfully\n");
1884
1885 out_reschedule:
1886 mutex_unlock(&svms->lock);
1887 mmap_write_unlock(mm);
1888 mutex_unlock(&process_info->lock);
1889
1890 /* If validation failed, reschedule another attempt */
1891 if (evicted_ranges) {
1892 pr_debug("reschedule to restore svm range\n");
1893 queue_delayed_work(system_freezable_wq, &svms->restore_work,
1894 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1895
1896 kfd_smi_event_queue_restore_rescheduled(mm);
1897 }
1898 mmput(mm);
1899 }
1900
1901 /**
1902 * svm_range_evict - evict svm range
1903 * @prange: svm range structure
1904 * @mm: current process mm_struct
1905 * @start: starting process queue number
1906 * @last: last process queue number
1907 * @event: mmu notifier event when range is evicted or migrated
1908 *
1909 * Stop all queues of the process to ensure GPU doesn't access the memory, then
1910 * return to let CPU evict the buffer and proceed CPU pagetable update.
1911 *
1912 * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1913 * If invalidation happens while restore work is running, restore work will
1914 * restart to ensure to get the latest CPU pages mapping to GPU, then start
1915 * the queues.
1916 */
1917 static int
svm_range_evict(struct svm_range * prange,struct mm_struct * mm,unsigned long start,unsigned long last,enum mmu_notifier_event event)1918 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1919 unsigned long start, unsigned long last,
1920 enum mmu_notifier_event event)
1921 {
1922 struct svm_range_list *svms = prange->svms;
1923 struct svm_range *pchild;
1924 struct kfd_process *p;
1925 int r = 0;
1926
1927 p = container_of(svms, struct kfd_process, svms);
1928
1929 pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1930 svms, prange->start, prange->last, start, last);
1931
1932 if (!p->xnack_enabled ||
1933 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1934 int evicted_ranges;
1935 bool mapped = prange->mapped_to_gpu;
1936
1937 list_for_each_entry(pchild, &prange->child_list, child_list) {
1938 if (!pchild->mapped_to_gpu)
1939 continue;
1940 mapped = true;
1941 mutex_lock_nested(&pchild->lock, 1);
1942 if (pchild->start <= last && pchild->last >= start) {
1943 pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1944 pchild->start, pchild->last);
1945 atomic_inc(&pchild->invalid);
1946 }
1947 mutex_unlock(&pchild->lock);
1948 }
1949
1950 if (!mapped)
1951 return r;
1952
1953 if (prange->start <= last && prange->last >= start)
1954 atomic_inc(&prange->invalid);
1955
1956 evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1957 if (evicted_ranges != 1)
1958 return r;
1959
1960 pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1961 prange->svms, prange->start, prange->last);
1962
1963 /* First eviction, stop the queues */
1964 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1965 if (r)
1966 pr_debug("failed to quiesce KFD\n");
1967
1968 pr_debug("schedule to restore svm %p ranges\n", svms);
1969 queue_delayed_work(system_freezable_wq, &svms->restore_work,
1970 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1971 } else {
1972 unsigned long s, l;
1973 uint32_t trigger;
1974
1975 if (event == MMU_NOTIFY_MIGRATE)
1976 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1977 else
1978 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1979
1980 pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1981 prange->svms, start, last);
1982 list_for_each_entry(pchild, &prange->child_list, child_list) {
1983 mutex_lock_nested(&pchild->lock, 1);
1984 s = max(start, pchild->start);
1985 l = min(last, pchild->last);
1986 if (l >= s)
1987 svm_range_unmap_from_gpus(pchild, s, l, trigger);
1988 mutex_unlock(&pchild->lock);
1989 }
1990 s = max(start, prange->start);
1991 l = min(last, prange->last);
1992 if (l >= s)
1993 svm_range_unmap_from_gpus(prange, s, l, trigger);
1994 }
1995
1996 return r;
1997 }
1998
svm_range_clone(struct svm_range * old)1999 static struct svm_range *svm_range_clone(struct svm_range *old)
2000 {
2001 struct svm_range *new;
2002
2003 new = svm_range_new(old->svms, old->start, old->last, false);
2004 if (!new)
2005 return NULL;
2006 if (svm_range_copy_dma_addrs(new, old)) {
2007 svm_range_free(new, false);
2008 return NULL;
2009 }
2010 if (old->svm_bo) {
2011 new->ttm_res = old->ttm_res;
2012 new->offset = old->offset;
2013 new->svm_bo = svm_range_bo_ref(old->svm_bo);
2014 spin_lock(&new->svm_bo->list_lock);
2015 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
2016 spin_unlock(&new->svm_bo->list_lock);
2017 }
2018 new->flags = old->flags;
2019 new->preferred_loc = old->preferred_loc;
2020 new->prefetch_loc = old->prefetch_loc;
2021 new->actual_loc = old->actual_loc;
2022 new->granularity = old->granularity;
2023 new->mapped_to_gpu = old->mapped_to_gpu;
2024 new->vram_pages = old->vram_pages;
2025 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
2026 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
2027 atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
2028
2029 return new;
2030 }
2031
svm_range_set_max_pages(struct amdgpu_device * adev)2032 void svm_range_set_max_pages(struct amdgpu_device *adev)
2033 {
2034 uint64_t max_pages;
2035 uint64_t pages, _pages;
2036 uint64_t min_pages = 0;
2037 int i, id;
2038
2039 for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
2040 if (adev->kfd.dev->nodes[i]->xcp)
2041 id = adev->kfd.dev->nodes[i]->xcp->id;
2042 else
2043 id = -1;
2044 pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2045 pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2046 pages = rounddown_pow_of_two(pages);
2047 min_pages = min_not_zero(min_pages, pages);
2048 }
2049
2050 do {
2051 max_pages = READ_ONCE(max_svm_range_pages);
2052 _pages = min_not_zero(max_pages, min_pages);
2053 } while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2054 }
2055
2056 static int
svm_range_split_new(struct svm_range_list * svms,uint64_t start,uint64_t last,uint64_t max_pages,struct list_head * insert_list,struct list_head * update_list)2057 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2058 uint64_t max_pages, struct list_head *insert_list,
2059 struct list_head *update_list)
2060 {
2061 struct svm_range *prange;
2062 uint64_t l;
2063
2064 pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2065 max_pages, start, last);
2066
2067 while (last >= start) {
2068 l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2069
2070 prange = svm_range_new(svms, start, l, true);
2071 if (!prange)
2072 return -ENOMEM;
2073 list_add(&prange->list, insert_list);
2074 list_add(&prange->update_list, update_list);
2075
2076 start = l + 1;
2077 }
2078 return 0;
2079 }
2080
2081 /**
2082 * svm_range_add - add svm range and handle overlap
2083 * @p: the range add to this process svms
2084 * @start: page size aligned
2085 * @size: page size aligned
2086 * @nattr: number of attributes
2087 * @attrs: array of attributes
2088 * @update_list: output, the ranges need validate and update GPU mapping
2089 * @insert_list: output, the ranges need insert to svms
2090 * @remove_list: output, the ranges are replaced and need remove from svms
2091 * @remap_list: output, remap unaligned svm ranges
2092 *
2093 * Check if the virtual address range has overlap with any existing ranges,
2094 * split partly overlapping ranges and add new ranges in the gaps. All changes
2095 * should be applied to the range_list and interval tree transactionally. If
2096 * any range split or allocation fails, the entire update fails. Therefore any
2097 * existing overlapping svm_ranges are cloned and the original svm_ranges left
2098 * unchanged.
2099 *
2100 * If the transaction succeeds, the caller can update and insert clones and
2101 * new ranges, then free the originals.
2102 *
2103 * Otherwise the caller can free the clones and new ranges, while the old
2104 * svm_ranges remain unchanged.
2105 *
2106 * Context: Process context, caller must hold svms->lock
2107 *
2108 * Return:
2109 * 0 - OK, otherwise error code
2110 */
2111 static int
svm_range_add(struct kfd_process * p,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,struct list_head * update_list,struct list_head * insert_list,struct list_head * remove_list,struct list_head * remap_list)2112 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2113 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2114 struct list_head *update_list, struct list_head *insert_list,
2115 struct list_head *remove_list, struct list_head *remap_list)
2116 {
2117 unsigned long last = start + size - 1UL;
2118 struct svm_range_list *svms = &p->svms;
2119 struct interval_tree_node *node;
2120 struct svm_range *prange;
2121 struct svm_range *tmp;
2122 struct list_head new_list;
2123 int r = 0;
2124
2125 pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2126
2127 INIT_LIST_HEAD(update_list);
2128 INIT_LIST_HEAD(insert_list);
2129 INIT_LIST_HEAD(remove_list);
2130 INIT_LIST_HEAD(&new_list);
2131 INIT_LIST_HEAD(remap_list);
2132
2133 node = interval_tree_iter_first(&svms->objects, start, last);
2134 while (node) {
2135 struct interval_tree_node *next;
2136 unsigned long next_start;
2137
2138 pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2139 node->last);
2140
2141 prange = container_of(node, struct svm_range, it_node);
2142 next = interval_tree_iter_next(node, start, last);
2143 next_start = min(node->last, last) + 1;
2144
2145 if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2146 prange->mapped_to_gpu) {
2147 /* nothing to do */
2148 } else if (node->start < start || node->last > last) {
2149 /* node intersects the update range and its attributes
2150 * will change. Clone and split it, apply updates only
2151 * to the overlapping part
2152 */
2153 struct svm_range *old = prange;
2154
2155 prange = svm_range_clone(old);
2156 if (!prange) {
2157 r = -ENOMEM;
2158 goto out;
2159 }
2160
2161 list_add(&old->update_list, remove_list);
2162 list_add(&prange->list, insert_list);
2163 list_add(&prange->update_list, update_list);
2164
2165 if (node->start < start) {
2166 pr_debug("change old range start\n");
2167 r = svm_range_split_head(prange, start,
2168 insert_list, remap_list);
2169 if (r)
2170 goto out;
2171 }
2172 if (node->last > last) {
2173 pr_debug("change old range last\n");
2174 r = svm_range_split_tail(prange, last,
2175 insert_list, remap_list);
2176 if (r)
2177 goto out;
2178 }
2179 } else {
2180 /* The node is contained within start..last,
2181 * just update it
2182 */
2183 list_add(&prange->update_list, update_list);
2184 }
2185
2186 /* insert a new node if needed */
2187 if (node->start > start) {
2188 r = svm_range_split_new(svms, start, node->start - 1,
2189 READ_ONCE(max_svm_range_pages),
2190 &new_list, update_list);
2191 if (r)
2192 goto out;
2193 }
2194
2195 node = next;
2196 start = next_start;
2197 }
2198
2199 /* add a final range at the end if needed */
2200 if (start <= last)
2201 r = svm_range_split_new(svms, start, last,
2202 READ_ONCE(max_svm_range_pages),
2203 &new_list, update_list);
2204
2205 out:
2206 if (r) {
2207 list_for_each_entry_safe(prange, tmp, insert_list, list)
2208 svm_range_free(prange, false);
2209 list_for_each_entry_safe(prange, tmp, &new_list, list)
2210 svm_range_free(prange, true);
2211 } else {
2212 list_splice(&new_list, insert_list);
2213 }
2214
2215 return r;
2216 }
2217
2218 static void
svm_range_update_notifier_and_interval_tree(struct mm_struct * mm,struct svm_range * prange)2219 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2220 struct svm_range *prange)
2221 {
2222 unsigned long start;
2223 unsigned long last;
2224
2225 start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2226 last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2227
2228 if (prange->start == start && prange->last == last)
2229 return;
2230
2231 pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2232 prange->svms, prange, start, last, prange->start,
2233 prange->last);
2234
2235 if (start != 0 && last != 0) {
2236 interval_tree_remove(&prange->it_node, &prange->svms->objects);
2237 svm_range_remove_notifier(prange);
2238 }
2239 prange->it_node.start = prange->start;
2240 prange->it_node.last = prange->last;
2241
2242 interval_tree_insert(&prange->it_node, &prange->svms->objects);
2243 svm_range_add_notifier_locked(mm, prange);
2244 }
2245
2246 static void
svm_range_handle_list_op(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm)2247 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2248 struct mm_struct *mm)
2249 {
2250 switch (prange->work_item.op) {
2251 case SVM_OP_NULL:
2252 pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2253 svms, prange, prange->start, prange->last);
2254 break;
2255 case SVM_OP_UNMAP_RANGE:
2256 pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2257 svms, prange, prange->start, prange->last);
2258 svm_range_unlink(prange);
2259 svm_range_remove_notifier(prange);
2260 svm_range_free(prange, true);
2261 break;
2262 case SVM_OP_UPDATE_RANGE_NOTIFIER:
2263 pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2264 svms, prange, prange->start, prange->last);
2265 svm_range_update_notifier_and_interval_tree(mm, prange);
2266 break;
2267 case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2268 pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2269 svms, prange, prange->start, prange->last);
2270 svm_range_update_notifier_and_interval_tree(mm, prange);
2271 /* TODO: implement deferred validation and mapping */
2272 break;
2273 case SVM_OP_ADD_RANGE:
2274 pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2275 prange->start, prange->last);
2276 svm_range_add_to_svms(prange);
2277 svm_range_add_notifier_locked(mm, prange);
2278 break;
2279 case SVM_OP_ADD_RANGE_AND_MAP:
2280 pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2281 prange, prange->start, prange->last);
2282 svm_range_add_to_svms(prange);
2283 svm_range_add_notifier_locked(mm, prange);
2284 /* TODO: implement deferred validation and mapping */
2285 break;
2286 default:
2287 WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2288 prange->work_item.op);
2289 }
2290 }
2291
svm_range_drain_retry_fault(struct svm_range_list * svms)2292 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2293 {
2294 struct kfd_process_device *pdd;
2295 struct kfd_process *p;
2296 uint32_t i;
2297
2298 p = container_of(svms, struct kfd_process, svms);
2299
2300 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2301 pdd = p->pdds[i];
2302 if (!pdd)
2303 continue;
2304
2305 pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2306
2307 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2308 pdd->dev->adev->irq.retry_cam_enabled ?
2309 &pdd->dev->adev->irq.ih :
2310 &pdd->dev->adev->irq.ih1);
2311
2312 if (pdd->dev->adev->irq.retry_cam_enabled)
2313 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2314 &pdd->dev->adev->irq.ih_soft);
2315
2316
2317 pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2318 }
2319 }
2320
svm_range_deferred_list_work(struct work_struct * work)2321 static void svm_range_deferred_list_work(struct work_struct *work)
2322 {
2323 struct svm_range_list *svms;
2324 struct svm_range *prange;
2325 struct mm_struct *mm;
2326
2327 svms = container_of(work, struct svm_range_list, deferred_list_work);
2328 pr_debug("enter svms 0x%p\n", svms);
2329
2330 spin_lock(&svms->deferred_list_lock);
2331 while (!list_empty(&svms->deferred_range_list)) {
2332 prange = list_first_entry(&svms->deferred_range_list,
2333 struct svm_range, deferred_list);
2334 spin_unlock(&svms->deferred_list_lock);
2335
2336 pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2337 prange->start, prange->last, prange->work_item.op);
2338
2339 mm = prange->work_item.mm;
2340
2341 mmap_write_lock(mm);
2342
2343 /* Remove from deferred_list must be inside mmap write lock, for
2344 * two race cases:
2345 * 1. unmap_from_cpu may change work_item.op and add the range
2346 * to deferred_list again, cause use after free bug.
2347 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2348 * lock and continue because deferred_list is empty, but
2349 * deferred_list work is actually waiting for mmap lock.
2350 */
2351 spin_lock(&svms->deferred_list_lock);
2352 list_del_init(&prange->deferred_list);
2353 spin_unlock(&svms->deferred_list_lock);
2354
2355 mutex_lock(&svms->lock);
2356 mutex_lock(&prange->migrate_mutex);
2357 while (!list_empty(&prange->child_list)) {
2358 struct svm_range *pchild;
2359
2360 pchild = list_first_entry(&prange->child_list,
2361 struct svm_range, child_list);
2362 pr_debug("child prange 0x%p op %d\n", pchild,
2363 pchild->work_item.op);
2364 list_del_init(&pchild->child_list);
2365 svm_range_handle_list_op(svms, pchild, mm);
2366 }
2367 mutex_unlock(&prange->migrate_mutex);
2368
2369 svm_range_handle_list_op(svms, prange, mm);
2370 mutex_unlock(&svms->lock);
2371 mmap_write_unlock(mm);
2372
2373 /* Pairs with mmget in svm_range_add_list_work. If dropping the
2374 * last mm refcount, schedule release work to avoid circular locking
2375 */
2376 mmput_async(mm);
2377
2378 spin_lock(&svms->deferred_list_lock);
2379 }
2380 spin_unlock(&svms->deferred_list_lock);
2381 pr_debug("exit svms 0x%p\n", svms);
2382 }
2383
2384 void
svm_range_add_list_work(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm,enum svm_work_list_ops op)2385 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2386 struct mm_struct *mm, enum svm_work_list_ops op)
2387 {
2388 spin_lock(&svms->deferred_list_lock);
2389 /* if prange is on the deferred list */
2390 if (!list_empty(&prange->deferred_list)) {
2391 pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2392 WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2393 if (op != SVM_OP_NULL &&
2394 prange->work_item.op != SVM_OP_UNMAP_RANGE)
2395 prange->work_item.op = op;
2396 } else {
2397 prange->work_item.op = op;
2398
2399 /* Pairs with mmput in deferred_list_work */
2400 mmget(mm);
2401 prange->work_item.mm = mm;
2402 list_add_tail(&prange->deferred_list,
2403 &prange->svms->deferred_range_list);
2404 pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2405 prange, prange->start, prange->last, op);
2406 }
2407 spin_unlock(&svms->deferred_list_lock);
2408 }
2409
schedule_deferred_list_work(struct svm_range_list * svms)2410 void schedule_deferred_list_work(struct svm_range_list *svms)
2411 {
2412 spin_lock(&svms->deferred_list_lock);
2413 if (!list_empty(&svms->deferred_range_list))
2414 schedule_work(&svms->deferred_list_work);
2415 spin_unlock(&svms->deferred_list_lock);
2416 }
2417
2418 static void
svm_range_unmap_split(struct mm_struct * mm,struct svm_range * parent,struct svm_range * prange,unsigned long start,unsigned long last)2419 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
2420 struct svm_range *prange, unsigned long start,
2421 unsigned long last)
2422 {
2423 struct svm_range *head;
2424 struct svm_range *tail;
2425
2426 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2427 pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2428 prange->start, prange->last);
2429 return;
2430 }
2431 if (start > prange->last || last < prange->start)
2432 return;
2433
2434 head = tail = prange;
2435 if (start > prange->start)
2436 svm_range_split(prange, prange->start, start - 1, &tail);
2437 if (last < tail->last)
2438 svm_range_split(tail, last + 1, tail->last, &head);
2439
2440 if (head != prange && tail != prange) {
2441 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2442 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
2443 } else if (tail != prange) {
2444 svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
2445 } else if (head != prange) {
2446 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2447 } else if (parent != prange) {
2448 prange->work_item.op = SVM_OP_UNMAP_RANGE;
2449 }
2450 }
2451
2452 static void
svm_range_unmap_from_cpu(struct mm_struct * mm,struct svm_range * prange,unsigned long start,unsigned long last)2453 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2454 unsigned long start, unsigned long last)
2455 {
2456 uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2457 struct svm_range_list *svms;
2458 struct svm_range *pchild;
2459 struct kfd_process *p;
2460 unsigned long s, l;
2461 bool unmap_parent;
2462 uint32_t i;
2463
2464 if (atomic_read(&prange->queue_refcount)) {
2465 int r;
2466
2467 pr_warn("Freeing queue vital buffer 0x%lx, queue evicted\n",
2468 prange->start << PAGE_SHIFT);
2469 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
2470 if (r)
2471 pr_debug("failed %d to quiesce KFD queues\n", r);
2472 }
2473
2474 p = kfd_lookup_process_by_mm(mm);
2475 if (!p)
2476 return;
2477 svms = &p->svms;
2478
2479 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2480 prange, prange->start, prange->last, start, last);
2481
2482 /* calculate time stamps that are used to decide which page faults need be
2483 * dropped or handled before unmap pages from gpu vm
2484 */
2485 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2486 struct kfd_process_device *pdd;
2487 struct amdgpu_device *adev;
2488 struct amdgpu_ih_ring *ih;
2489 uint32_t checkpoint_wptr;
2490
2491 pdd = p->pdds[i];
2492 if (!pdd)
2493 continue;
2494
2495 adev = pdd->dev->adev;
2496
2497 /* Check and drain ih1 ring if cam not available */
2498 if (adev->irq.ih1.ring_size) {
2499 ih = &adev->irq.ih1;
2500 checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2501 if (ih->rptr != checkpoint_wptr) {
2502 svms->checkpoint_ts[i] =
2503 amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2504 continue;
2505 }
2506 }
2507
2508 /* check if dev->irq.ih_soft is not empty */
2509 ih = &adev->irq.ih_soft;
2510 checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2511 if (ih->rptr != checkpoint_wptr)
2512 svms->checkpoint_ts[i] = amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2513 }
2514
2515 unmap_parent = start <= prange->start && last >= prange->last;
2516
2517 list_for_each_entry(pchild, &prange->child_list, child_list) {
2518 mutex_lock_nested(&pchild->lock, 1);
2519 s = max(start, pchild->start);
2520 l = min(last, pchild->last);
2521 if (l >= s)
2522 svm_range_unmap_from_gpus(pchild, s, l, trigger);
2523 svm_range_unmap_split(mm, prange, pchild, start, last);
2524 mutex_unlock(&pchild->lock);
2525 }
2526 s = max(start, prange->start);
2527 l = min(last, prange->last);
2528 if (l >= s)
2529 svm_range_unmap_from_gpus(prange, s, l, trigger);
2530 svm_range_unmap_split(mm, prange, prange, start, last);
2531
2532 if (unmap_parent)
2533 svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2534 else
2535 svm_range_add_list_work(svms, prange, mm,
2536 SVM_OP_UPDATE_RANGE_NOTIFIER);
2537 schedule_deferred_list_work(svms);
2538
2539 kfd_unref_process(p);
2540 }
2541
2542 /**
2543 * svm_range_cpu_invalidate_pagetables - interval notifier callback
2544 * @mni: mmu_interval_notifier struct
2545 * @range: mmu_notifier_range struct
2546 * @cur_seq: value to pass to mmu_interval_set_seq()
2547 *
2548 * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2549 * is from migration, or CPU page invalidation callback.
2550 *
2551 * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2552 * work thread, and split prange if only part of prange is unmapped.
2553 *
2554 * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2555 * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2556 * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2557 * update GPU mapping to recover.
2558 *
2559 * Context: mmap lock, notifier_invalidate_start lock are held
2560 * for invalidate event, prange lock is held if this is from migration
2561 */
2562 static bool
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)2563 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2564 const struct mmu_notifier_range *range,
2565 unsigned long cur_seq)
2566 {
2567 struct svm_range *prange;
2568 unsigned long start;
2569 unsigned long last;
2570
2571 if (range->event == MMU_NOTIFY_RELEASE)
2572 return true;
2573 if (!mmget_not_zero(mni->mm))
2574 return true;
2575
2576 start = mni->interval_tree.start;
2577 last = mni->interval_tree.last;
2578 start = max(start, range->start) >> PAGE_SHIFT;
2579 last = min(last, range->end - 1) >> PAGE_SHIFT;
2580 pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2581 start, last, range->start >> PAGE_SHIFT,
2582 (range->end - 1) >> PAGE_SHIFT,
2583 mni->interval_tree.start >> PAGE_SHIFT,
2584 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2585
2586 prange = container_of(mni, struct svm_range, notifier);
2587
2588 svm_range_lock(prange);
2589 mmu_interval_set_seq(mni, cur_seq);
2590
2591 switch (range->event) {
2592 case MMU_NOTIFY_UNMAP:
2593 svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2594 break;
2595 default:
2596 svm_range_evict(prange, mni->mm, start, last, range->event);
2597 break;
2598 }
2599
2600 svm_range_unlock(prange);
2601 mmput(mni->mm);
2602
2603 return true;
2604 }
2605
2606 /**
2607 * svm_range_from_addr - find svm range from fault address
2608 * @svms: svm range list header
2609 * @addr: address to search range interval tree, in pages
2610 * @parent: parent range if range is on child list
2611 *
2612 * Context: The caller must hold svms->lock
2613 *
2614 * Return: the svm_range found or NULL
2615 */
2616 struct svm_range *
svm_range_from_addr(struct svm_range_list * svms,unsigned long addr,struct svm_range ** parent)2617 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2618 struct svm_range **parent)
2619 {
2620 struct interval_tree_node *node;
2621 struct svm_range *prange;
2622 struct svm_range *pchild;
2623
2624 node = interval_tree_iter_first(&svms->objects, addr, addr);
2625 if (!node)
2626 return NULL;
2627
2628 prange = container_of(node, struct svm_range, it_node);
2629 pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2630 addr, prange->start, prange->last, node->start, node->last);
2631
2632 if (addr >= prange->start && addr <= prange->last) {
2633 if (parent)
2634 *parent = prange;
2635 return prange;
2636 }
2637 list_for_each_entry(pchild, &prange->child_list, child_list)
2638 if (addr >= pchild->start && addr <= pchild->last) {
2639 pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2640 addr, pchild->start, pchild->last);
2641 if (parent)
2642 *parent = prange;
2643 return pchild;
2644 }
2645
2646 return NULL;
2647 }
2648
2649 /* svm_range_best_restore_location - decide the best fault restore location
2650 * @prange: svm range structure
2651 * @adev: the GPU on which vm fault happened
2652 *
2653 * This is only called when xnack is on, to decide the best location to restore
2654 * the range mapping after GPU vm fault. Caller uses the best location to do
2655 * migration if actual loc is not best location, then update GPU page table
2656 * mapping to the best location.
2657 *
2658 * If the preferred loc is accessible by faulting GPU, use preferred loc.
2659 * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2660 * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2661 * if range actual loc is cpu, best_loc is cpu
2662 * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2663 * range actual loc.
2664 * Otherwise, GPU no access, best_loc is -1.
2665 *
2666 * Return:
2667 * -1 means vm fault GPU no access
2668 * 0 for CPU or GPU id
2669 */
2670 static int32_t
svm_range_best_restore_location(struct svm_range * prange,struct kfd_node * node,int32_t * gpuidx)2671 svm_range_best_restore_location(struct svm_range *prange,
2672 struct kfd_node *node,
2673 int32_t *gpuidx)
2674 {
2675 struct kfd_node *bo_node, *preferred_node;
2676 struct kfd_process *p;
2677 uint32_t gpuid;
2678 int r;
2679
2680 p = container_of(prange->svms, struct kfd_process, svms);
2681
2682 r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2683 if (r < 0) {
2684 pr_debug("failed to get gpuid from kgd\n");
2685 return -1;
2686 }
2687
2688 if (node->adev->flags & AMD_IS_APU)
2689 return 0;
2690
2691 if (prange->preferred_loc == gpuid ||
2692 prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2693 return prange->preferred_loc;
2694 } else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2695 preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2696 if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2697 return prange->preferred_loc;
2698 /* fall through */
2699 }
2700
2701 if (test_bit(*gpuidx, prange->bitmap_access))
2702 return gpuid;
2703
2704 if (test_bit(*gpuidx, prange->bitmap_aip)) {
2705 if (!prange->actual_loc)
2706 return 0;
2707
2708 bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2709 if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2710 return prange->actual_loc;
2711 else
2712 return 0;
2713 }
2714
2715 return -1;
2716 }
2717
2718 static int
svm_range_get_range_boundaries(struct kfd_process * p,int64_t addr,unsigned long * start,unsigned long * last,bool * is_heap_stack)2719 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2720 unsigned long *start, unsigned long *last,
2721 bool *is_heap_stack)
2722 {
2723 struct vm_area_struct *vma;
2724 struct interval_tree_node *node;
2725 struct rb_node *rb_node;
2726 unsigned long start_limit, end_limit;
2727
2728 vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2729 if (!vma) {
2730 pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2731 return -EFAULT;
2732 }
2733
2734 *is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2735
2736 start_limit = max(vma->vm_start >> PAGE_SHIFT,
2737 (unsigned long)ALIGN_DOWN(addr, 1UL << p->svms.default_granularity));
2738 end_limit = min(vma->vm_end >> PAGE_SHIFT,
2739 (unsigned long)ALIGN(addr + 1, 1UL << p->svms.default_granularity));
2740
2741 /* First range that starts after the fault address */
2742 node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2743 if (node) {
2744 end_limit = min(end_limit, node->start);
2745 /* Last range that ends before the fault address */
2746 rb_node = rb_prev(&node->rb);
2747 } else {
2748 /* Last range must end before addr because
2749 * there was no range after addr
2750 */
2751 rb_node = rb_last(&p->svms.objects.rb_root);
2752 }
2753 if (rb_node) {
2754 node = container_of(rb_node, struct interval_tree_node, rb);
2755 if (node->last >= addr) {
2756 WARN(1, "Overlap with prev node and page fault addr\n");
2757 return -EFAULT;
2758 }
2759 start_limit = max(start_limit, node->last + 1);
2760 }
2761
2762 *start = start_limit;
2763 *last = end_limit - 1;
2764
2765 pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2766 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2767 *start, *last, *is_heap_stack);
2768
2769 return 0;
2770 }
2771
2772 static int
svm_range_check_vm_userptr(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)2773 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2774 uint64_t *bo_s, uint64_t *bo_l)
2775 {
2776 struct amdgpu_bo_va_mapping *mapping;
2777 struct interval_tree_node *node;
2778 struct amdgpu_bo *bo = NULL;
2779 unsigned long userptr;
2780 uint32_t i;
2781 int r;
2782
2783 for (i = 0; i < p->n_pdds; i++) {
2784 struct amdgpu_vm *vm;
2785
2786 if (!p->pdds[i]->drm_priv)
2787 continue;
2788
2789 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2790 r = amdgpu_bo_reserve(vm->root.bo, false);
2791 if (r)
2792 return r;
2793
2794 /* Check userptr by searching entire vm->va interval tree */
2795 node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2796 while (node) {
2797 mapping = container_of((struct rb_node *)node,
2798 struct amdgpu_bo_va_mapping, rb);
2799 bo = mapping->bo_va->base.bo;
2800
2801 if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2802 start << PAGE_SHIFT,
2803 last << PAGE_SHIFT,
2804 &userptr)) {
2805 node = interval_tree_iter_next(node, 0, ~0ULL);
2806 continue;
2807 }
2808
2809 pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2810 start, last);
2811 if (bo_s && bo_l) {
2812 *bo_s = userptr >> PAGE_SHIFT;
2813 *bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2814 }
2815 amdgpu_bo_unreserve(vm->root.bo);
2816 return -EADDRINUSE;
2817 }
2818 amdgpu_bo_unreserve(vm->root.bo);
2819 }
2820 return 0;
2821 }
2822
2823 static struct
svm_range_create_unregistered_range(struct kfd_node * node,struct kfd_process * p,struct mm_struct * mm,int64_t addr)2824 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2825 struct kfd_process *p,
2826 struct mm_struct *mm,
2827 int64_t addr)
2828 {
2829 struct svm_range *prange = NULL;
2830 unsigned long start, last;
2831 uint32_t gpuid, gpuidx;
2832 bool is_heap_stack;
2833 uint64_t bo_s = 0;
2834 uint64_t bo_l = 0;
2835 int r;
2836
2837 if (svm_range_get_range_boundaries(p, addr, &start, &last,
2838 &is_heap_stack))
2839 return NULL;
2840
2841 r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2842 if (r != -EADDRINUSE)
2843 r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2844
2845 if (r == -EADDRINUSE) {
2846 if (addr >= bo_s && addr <= bo_l)
2847 return NULL;
2848
2849 /* Create one page svm range if 2MB range overlapping */
2850 start = addr;
2851 last = addr;
2852 }
2853
2854 prange = svm_range_new(&p->svms, start, last, true);
2855 if (!prange) {
2856 pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2857 return NULL;
2858 }
2859 if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2860 pr_debug("failed to get gpuid from kgd\n");
2861 svm_range_free(prange, true);
2862 return NULL;
2863 }
2864
2865 if (is_heap_stack)
2866 prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2867
2868 svm_range_add_to_svms(prange);
2869 svm_range_add_notifier_locked(mm, prange);
2870
2871 return prange;
2872 }
2873
2874 /* svm_range_skip_recover - decide if prange can be recovered
2875 * @prange: svm range structure
2876 *
2877 * GPU vm retry fault handle skip recover the range for cases:
2878 * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2879 * deferred list work will drain the stale fault before free the prange.
2880 * 2. prange is on deferred list to add interval notifier after split, or
2881 * 3. prange is child range, it is split from parent prange, recover later
2882 * after interval notifier is added.
2883 *
2884 * Return: true to skip recover, false to recover
2885 */
svm_range_skip_recover(struct svm_range * prange)2886 static bool svm_range_skip_recover(struct svm_range *prange)
2887 {
2888 struct svm_range_list *svms = prange->svms;
2889
2890 spin_lock(&svms->deferred_list_lock);
2891 if (list_empty(&prange->deferred_list) &&
2892 list_empty(&prange->child_list)) {
2893 spin_unlock(&svms->deferred_list_lock);
2894 return false;
2895 }
2896 spin_unlock(&svms->deferred_list_lock);
2897
2898 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2899 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2900 svms, prange, prange->start, prange->last);
2901 return true;
2902 }
2903 if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2904 prange->work_item.op == SVM_OP_ADD_RANGE) {
2905 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2906 svms, prange, prange->start, prange->last);
2907 return true;
2908 }
2909 return false;
2910 }
2911
2912 static void
svm_range_count_fault(struct kfd_node * node,struct kfd_process * p,int32_t gpuidx)2913 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2914 int32_t gpuidx)
2915 {
2916 struct kfd_process_device *pdd;
2917
2918 /* fault is on different page of same range
2919 * or fault is skipped to recover later
2920 * or fault is on invalid virtual address
2921 */
2922 if (gpuidx == MAX_GPU_INSTANCE) {
2923 uint32_t gpuid;
2924 int r;
2925
2926 r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2927 if (r < 0)
2928 return;
2929 }
2930
2931 /* fault is recovered
2932 * or fault cannot recover because GPU no access on the range
2933 */
2934 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2935 if (pdd)
2936 WRITE_ONCE(pdd->faults, pdd->faults + 1);
2937 }
2938
2939 static bool
svm_fault_allowed(struct vm_area_struct * vma,bool write_fault)2940 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2941 {
2942 unsigned long requested = VM_READ;
2943
2944 if (write_fault)
2945 requested |= VM_WRITE;
2946
2947 pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2948 vma->vm_flags);
2949 return (vma->vm_flags & requested) == requested;
2950 }
2951
2952 int
svm_range_restore_pages(struct amdgpu_device * adev,unsigned int pasid,uint32_t vmid,uint32_t node_id,uint64_t addr,uint64_t ts,bool write_fault)2953 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2954 uint32_t vmid, uint32_t node_id,
2955 uint64_t addr, uint64_t ts, bool write_fault)
2956 {
2957 unsigned long start, last, size;
2958 struct mm_struct *mm = NULL;
2959 struct svm_range_list *svms;
2960 struct svm_range *prange;
2961 struct kfd_process *p;
2962 ktime_t timestamp = ktime_get_boottime();
2963 struct kfd_node *node;
2964 int32_t best_loc;
2965 int32_t gpuid, gpuidx = MAX_GPU_INSTANCE;
2966 bool write_locked = false;
2967 struct vm_area_struct *vma;
2968 bool migration = false;
2969 int r = 0;
2970
2971 if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2972 pr_debug("device does not support SVM\n");
2973 return -EFAULT;
2974 }
2975
2976 p = kfd_lookup_process_by_pasid(pasid);
2977 if (!p) {
2978 pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2979 return 0;
2980 }
2981 svms = &p->svms;
2982
2983 pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2984
2985 if (atomic_read(&svms->drain_pagefaults)) {
2986 pr_debug("page fault handling disabled, drop fault 0x%llx\n", addr);
2987 r = 0;
2988 goto out;
2989 }
2990
2991 node = kfd_node_by_irq_ids(adev, node_id, vmid);
2992 if (!node) {
2993 pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2994 vmid);
2995 r = -EFAULT;
2996 goto out;
2997 }
2998
2999 if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
3000 pr_debug("failed to get gpuid/gpuidex for node_id: %d\n", node_id);
3001 r = -EFAULT;
3002 goto out;
3003 }
3004
3005 /* check if this page fault time stamp is before svms->checkpoint_ts */
3006 if (svms->checkpoint_ts[gpuidx] != 0) {
3007 if (amdgpu_ih_ts_after(ts, svms->checkpoint_ts[gpuidx])) {
3008 pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
3009 r = 0;
3010 goto out;
3011 } else
3012 /* ts is after svms->checkpoint_ts now, reset svms->checkpoint_ts
3013 * to zero to avoid following ts wrap around give wrong comparing
3014 */
3015 svms->checkpoint_ts[gpuidx] = 0;
3016 }
3017
3018 if (!p->xnack_enabled) {
3019 pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
3020 r = -EFAULT;
3021 goto out;
3022 }
3023
3024 /* p->lead_thread is available as kfd_process_wq_release flush the work
3025 * before releasing task ref.
3026 */
3027 mm = get_task_mm(p->lead_thread);
3028 if (!mm) {
3029 pr_debug("svms 0x%p failed to get mm\n", svms);
3030 r = 0;
3031 goto out;
3032 }
3033
3034 mmap_read_lock(mm);
3035 retry_write_locked:
3036 mutex_lock(&svms->lock);
3037 prange = svm_range_from_addr(svms, addr, NULL);
3038 if (!prange) {
3039 pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
3040 svms, addr);
3041 if (!write_locked) {
3042 /* Need the write lock to create new range with MMU notifier.
3043 * Also flush pending deferred work to make sure the interval
3044 * tree is up to date before we add a new range
3045 */
3046 mutex_unlock(&svms->lock);
3047 mmap_read_unlock(mm);
3048 mmap_write_lock(mm);
3049 write_locked = true;
3050 goto retry_write_locked;
3051 }
3052 prange = svm_range_create_unregistered_range(node, p, mm, addr);
3053 if (!prange) {
3054 pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
3055 svms, addr);
3056 mmap_write_downgrade(mm);
3057 r = -EFAULT;
3058 goto out_unlock_svms;
3059 }
3060 }
3061 if (write_locked)
3062 mmap_write_downgrade(mm);
3063
3064 mutex_lock(&prange->migrate_mutex);
3065
3066 if (svm_range_skip_recover(prange)) {
3067 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3068 r = 0;
3069 goto out_unlock_range;
3070 }
3071
3072 /* skip duplicate vm fault on different pages of same range */
3073 if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
3074 AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
3075 pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
3076 svms, prange->start, prange->last);
3077 r = 0;
3078 goto out_unlock_range;
3079 }
3080
3081 /* __do_munmap removed VMA, return success as we are handling stale
3082 * retry fault.
3083 */
3084 vma = vma_lookup(mm, addr << PAGE_SHIFT);
3085 if (!vma) {
3086 pr_debug("address 0x%llx VMA is removed\n", addr);
3087 r = 0;
3088 goto out_unlock_range;
3089 }
3090
3091 if (!svm_fault_allowed(vma, write_fault)) {
3092 pr_debug("fault addr 0x%llx no %s permission\n", addr,
3093 write_fault ? "write" : "read");
3094 r = -EPERM;
3095 goto out_unlock_range;
3096 }
3097
3098 best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3099 if (best_loc == -1) {
3100 pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3101 svms, prange->start, prange->last);
3102 r = -EACCES;
3103 goto out_unlock_range;
3104 }
3105
3106 pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3107 svms, prange->start, prange->last, best_loc,
3108 prange->actual_loc);
3109
3110 kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3111 write_fault, timestamp);
3112
3113 /* Align migration range start and size to granularity size */
3114 size = 1UL << prange->granularity;
3115 start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start);
3116 last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last);
3117 if (prange->actual_loc != 0 || best_loc != 0) {
3118 if (best_loc) {
3119 r = svm_migrate_to_vram(prange, best_loc, start, last,
3120 mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3121 if (r) {
3122 pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3123 r, addr);
3124 /* Fallback to system memory if migration to
3125 * VRAM failed
3126 */
3127 if (prange->actual_loc && prange->actual_loc != best_loc)
3128 r = svm_migrate_vram_to_ram(prange, mm, start, last,
3129 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3130 else
3131 r = 0;
3132 }
3133 } else {
3134 r = svm_migrate_vram_to_ram(prange, mm, start, last,
3135 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3136 }
3137 if (r) {
3138 pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3139 r, svms, start, last);
3140 goto out_migrate_fail;
3141 } else {
3142 migration = true;
3143 }
3144 }
3145
3146 r = svm_range_validate_and_map(mm, start, last, prange, gpuidx, false,
3147 false, false);
3148 if (r)
3149 pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3150 r, svms, start, last);
3151
3152 out_migrate_fail:
3153 kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3154 migration);
3155
3156 out_unlock_range:
3157 mutex_unlock(&prange->migrate_mutex);
3158 out_unlock_svms:
3159 mutex_unlock(&svms->lock);
3160 mmap_read_unlock(mm);
3161
3162 svm_range_count_fault(node, p, gpuidx);
3163
3164 mmput(mm);
3165 out:
3166 kfd_unref_process(p);
3167
3168 if (r == -EAGAIN) {
3169 pr_debug("recover vm fault later\n");
3170 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3171 r = 0;
3172 }
3173 return r;
3174 }
3175
3176 int
svm_range_switch_xnack_reserve_mem(struct kfd_process * p,bool xnack_enabled)3177 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3178 {
3179 struct svm_range *prange, *pchild;
3180 uint64_t reserved_size = 0;
3181 uint64_t size;
3182 int r = 0;
3183
3184 pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3185
3186 mutex_lock(&p->svms.lock);
3187
3188 list_for_each_entry(prange, &p->svms.list, list) {
3189 svm_range_lock(prange);
3190 list_for_each_entry(pchild, &prange->child_list, child_list) {
3191 size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3192 if (xnack_enabled) {
3193 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3194 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3195 } else {
3196 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3197 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3198 if (r)
3199 goto out_unlock;
3200 reserved_size += size;
3201 }
3202 }
3203
3204 size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3205 if (xnack_enabled) {
3206 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3207 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3208 } else {
3209 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3210 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3211 if (r)
3212 goto out_unlock;
3213 reserved_size += size;
3214 }
3215 out_unlock:
3216 svm_range_unlock(prange);
3217 if (r)
3218 break;
3219 }
3220
3221 if (r)
3222 amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3223 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3224 else
3225 /* Change xnack mode must be inside svms lock, to avoid race with
3226 * svm_range_deferred_list_work unreserve memory in parallel.
3227 */
3228 p->xnack_enabled = xnack_enabled;
3229
3230 mutex_unlock(&p->svms.lock);
3231 return r;
3232 }
3233
svm_range_list_fini(struct kfd_process * p)3234 void svm_range_list_fini(struct kfd_process *p)
3235 {
3236 struct svm_range *prange;
3237 struct svm_range *next;
3238
3239 pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3240
3241 cancel_delayed_work_sync(&p->svms.restore_work);
3242
3243 /* Ensure list work is finished before process is destroyed */
3244 flush_work(&p->svms.deferred_list_work);
3245
3246 /*
3247 * Ensure no retry fault comes in afterwards, as page fault handler will
3248 * not find kfd process and take mm lock to recover fault.
3249 * stop kfd page fault handing, then wait pending page faults got drained
3250 */
3251 atomic_set(&p->svms.drain_pagefaults, 1);
3252 svm_range_drain_retry_fault(&p->svms);
3253
3254 list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3255 svm_range_unlink(prange);
3256 svm_range_remove_notifier(prange);
3257 svm_range_free(prange, true);
3258 }
3259
3260 mutex_destroy(&p->svms.lock);
3261
3262 pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3263 }
3264
svm_range_list_init(struct kfd_process * p)3265 int svm_range_list_init(struct kfd_process *p)
3266 {
3267 struct svm_range_list *svms = &p->svms;
3268 int i;
3269
3270 svms->objects = RB_ROOT_CACHED;
3271 mutex_init(&svms->lock);
3272 INIT_LIST_HEAD(&svms->list);
3273 atomic_set(&svms->evicted_ranges, 0);
3274 atomic_set(&svms->drain_pagefaults, 0);
3275 INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3276 INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3277 INIT_LIST_HEAD(&svms->deferred_range_list);
3278 INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3279 spin_lock_init(&svms->deferred_list_lock);
3280
3281 for (i = 0; i < p->n_pdds; i++)
3282 if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3283 bitmap_set(svms->bitmap_supported, i, 1);
3284
3285 /* Value of default granularity cannot exceed 0x1B, the
3286 * number of pages supported by a 4-level paging table
3287 */
3288 svms->default_granularity = min_t(u8, amdgpu_svm_default_granularity, 0x1B);
3289 pr_debug("Default SVM Granularity to use: %d\n", svms->default_granularity);
3290
3291 return 0;
3292 }
3293
3294 /**
3295 * svm_range_check_vm - check if virtual address range mapped already
3296 * @p: current kfd_process
3297 * @start: range start address, in pages
3298 * @last: range last address, in pages
3299 * @bo_s: mapping start address in pages if address range already mapped
3300 * @bo_l: mapping last address in pages if address range already mapped
3301 *
3302 * The purpose is to avoid virtual address ranges already allocated by
3303 * kfd_ioctl_alloc_memory_of_gpu ioctl.
3304 * It looks for each pdd in the kfd_process.
3305 *
3306 * Context: Process context
3307 *
3308 * Return 0 - OK, if the range is not mapped.
3309 * Otherwise error code:
3310 * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3311 * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3312 * a signal. Release all buffer reservations and return to user-space.
3313 */
3314 static int
svm_range_check_vm(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)3315 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3316 uint64_t *bo_s, uint64_t *bo_l)
3317 {
3318 struct amdgpu_bo_va_mapping *mapping;
3319 struct interval_tree_node *node;
3320 uint32_t i;
3321 int r;
3322
3323 for (i = 0; i < p->n_pdds; i++) {
3324 struct amdgpu_vm *vm;
3325
3326 if (!p->pdds[i]->drm_priv)
3327 continue;
3328
3329 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3330 r = amdgpu_bo_reserve(vm->root.bo, false);
3331 if (r)
3332 return r;
3333
3334 node = interval_tree_iter_first(&vm->va, start, last);
3335 if (node) {
3336 pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3337 start, last);
3338 mapping = container_of((struct rb_node *)node,
3339 struct amdgpu_bo_va_mapping, rb);
3340 if (bo_s && bo_l) {
3341 *bo_s = mapping->start;
3342 *bo_l = mapping->last;
3343 }
3344 amdgpu_bo_unreserve(vm->root.bo);
3345 return -EADDRINUSE;
3346 }
3347 amdgpu_bo_unreserve(vm->root.bo);
3348 }
3349
3350 return 0;
3351 }
3352
3353 /**
3354 * svm_range_is_valid - check if virtual address range is valid
3355 * @p: current kfd_process
3356 * @start: range start address, in pages
3357 * @size: range size, in pages
3358 *
3359 * Valid virtual address range means it belongs to one or more VMAs
3360 *
3361 * Context: Process context
3362 *
3363 * Return:
3364 * 0 - OK, otherwise error code
3365 */
3366 static int
svm_range_is_valid(struct kfd_process * p,uint64_t start,uint64_t size)3367 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3368 {
3369 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3370 struct vm_area_struct *vma;
3371 unsigned long end;
3372 unsigned long start_unchg = start;
3373
3374 start <<= PAGE_SHIFT;
3375 end = start + (size << PAGE_SHIFT);
3376 do {
3377 vma = vma_lookup(p->mm, start);
3378 if (!vma || (vma->vm_flags & device_vma))
3379 return -EFAULT;
3380 start = min(end, vma->vm_end);
3381 } while (start < end);
3382
3383 return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3384 NULL);
3385 }
3386
3387 /**
3388 * svm_range_best_prefetch_location - decide the best prefetch location
3389 * @prange: svm range structure
3390 *
3391 * For xnack off:
3392 * If range map to single GPU, the best prefetch location is prefetch_loc, which
3393 * can be CPU or GPU.
3394 *
3395 * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3396 * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3397 * the best prefetch location is always CPU, because GPU can not have coherent
3398 * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3399 *
3400 * For xnack on:
3401 * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3402 * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3403 *
3404 * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3405 * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3406 * prefetch location is always CPU.
3407 *
3408 * Context: Process context
3409 *
3410 * Return:
3411 * 0 for CPU or GPU id
3412 */
3413 static uint32_t
svm_range_best_prefetch_location(struct svm_range * prange)3414 svm_range_best_prefetch_location(struct svm_range *prange)
3415 {
3416 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3417 uint32_t best_loc = prange->prefetch_loc;
3418 struct kfd_process_device *pdd;
3419 struct kfd_node *bo_node;
3420 struct kfd_process *p;
3421 uint32_t gpuidx;
3422
3423 p = container_of(prange->svms, struct kfd_process, svms);
3424
3425 if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3426 goto out;
3427
3428 bo_node = svm_range_get_node_by_id(prange, best_loc);
3429 if (!bo_node) {
3430 WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3431 best_loc = 0;
3432 goto out;
3433 }
3434
3435 if (bo_node->adev->flags & AMD_IS_APU) {
3436 best_loc = 0;
3437 goto out;
3438 }
3439
3440 if (p->xnack_enabled)
3441 bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3442 else
3443 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3444 MAX_GPU_INSTANCE);
3445
3446 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3447 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3448 if (!pdd) {
3449 pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3450 continue;
3451 }
3452
3453 if (pdd->dev->adev == bo_node->adev)
3454 continue;
3455
3456 if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3457 best_loc = 0;
3458 break;
3459 }
3460 }
3461
3462 out:
3463 pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3464 p->xnack_enabled, &p->svms, prange->start, prange->last,
3465 best_loc);
3466
3467 return best_loc;
3468 }
3469
3470 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3471 * @mm: current process mm_struct
3472 * @prange: svm range structure
3473 * @migrated: output, true if migration is triggered
3474 *
3475 * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3476 * from ram to vram.
3477 * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3478 * from vram to ram.
3479 *
3480 * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3481 * and restore work:
3482 * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3483 * stops all queues, schedule restore work
3484 * 2. svm_range_restore_work wait for migration is done by
3485 * a. svm_range_validate_vram takes prange->migrate_mutex
3486 * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3487 * 3. restore work update mappings of GPU, resume all queues.
3488 *
3489 * Context: Process context
3490 *
3491 * Return:
3492 * 0 - OK, otherwise - error code of migration
3493 */
3494 static int
svm_range_trigger_migration(struct mm_struct * mm,struct svm_range * prange,bool * migrated)3495 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3496 bool *migrated)
3497 {
3498 uint32_t best_loc;
3499 int r = 0;
3500
3501 *migrated = false;
3502 best_loc = svm_range_best_prefetch_location(prange);
3503
3504 /* when best_loc is a gpu node and same as prange->actual_loc
3505 * we still need do migration as prange->actual_loc !=0 does
3506 * not mean all pages in prange are vram. hmm migrate will pick
3507 * up right pages during migration.
3508 */
3509 if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) ||
3510 (best_loc == 0 && prange->actual_loc == 0))
3511 return 0;
3512
3513 if (!best_loc) {
3514 r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
3515 KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3516 *migrated = !r;
3517 return r;
3518 }
3519
3520 r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last,
3521 mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3522 *migrated = !r;
3523
3524 return 0;
3525 }
3526
svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence * fence)3527 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3528 {
3529 /* Dereferencing fence->svm_bo is safe here because the fence hasn't
3530 * signaled yet and we're under the protection of the fence->lock.
3531 * After the fence is signaled in svm_range_bo_release, we cannot get
3532 * here any more.
3533 *
3534 * Reference is dropped in svm_range_evict_svm_bo_worker.
3535 */
3536 if (svm_bo_ref_unless_zero(fence->svm_bo)) {
3537 WRITE_ONCE(fence->svm_bo->evicting, 1);
3538 schedule_work(&fence->svm_bo->eviction_work);
3539 }
3540
3541 return 0;
3542 }
3543
svm_range_evict_svm_bo_worker(struct work_struct * work)3544 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3545 {
3546 struct svm_range_bo *svm_bo;
3547 struct mm_struct *mm;
3548 int r = 0;
3549
3550 svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3551
3552 if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3553 mm = svm_bo->eviction_fence->mm;
3554 } else {
3555 svm_range_bo_unref(svm_bo);
3556 return;
3557 }
3558
3559 mmap_read_lock(mm);
3560 spin_lock(&svm_bo->list_lock);
3561 while (!list_empty(&svm_bo->range_list) && !r) {
3562 struct svm_range *prange =
3563 list_first_entry(&svm_bo->range_list,
3564 struct svm_range, svm_bo_list);
3565 int retries = 3;
3566
3567 list_del_init(&prange->svm_bo_list);
3568 spin_unlock(&svm_bo->list_lock);
3569
3570 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3571 prange->start, prange->last);
3572
3573 mutex_lock(&prange->migrate_mutex);
3574 do {
3575 /* migrate all vram pages in this prange to sys ram
3576 * after that prange->actual_loc should be zero
3577 */
3578 r = svm_migrate_vram_to_ram(prange, mm,
3579 prange->start, prange->last,
3580 KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3581 } while (!r && prange->actual_loc && --retries);
3582
3583 if (!r && prange->actual_loc)
3584 pr_info_once("Migration failed during eviction");
3585
3586 if (!prange->actual_loc) {
3587 mutex_lock(&prange->lock);
3588 prange->svm_bo = NULL;
3589 mutex_unlock(&prange->lock);
3590 }
3591 mutex_unlock(&prange->migrate_mutex);
3592
3593 spin_lock(&svm_bo->list_lock);
3594 }
3595 spin_unlock(&svm_bo->list_lock);
3596 mmap_read_unlock(mm);
3597 mmput(mm);
3598
3599 dma_fence_signal(&svm_bo->eviction_fence->base);
3600
3601 /* This is the last reference to svm_bo, after svm_range_vram_node_free
3602 * has been called in svm_migrate_vram_to_ram
3603 */
3604 WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3605 svm_range_bo_unref(svm_bo);
3606 }
3607
3608 static int
svm_range_set_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3609 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3610 uint64_t start, uint64_t size, uint32_t nattr,
3611 struct kfd_ioctl_svm_attribute *attrs)
3612 {
3613 struct amdkfd_process_info *process_info = p->kgd_process_info;
3614 struct list_head update_list;
3615 struct list_head insert_list;
3616 struct list_head remove_list;
3617 struct list_head remap_list;
3618 struct svm_range_list *svms;
3619 struct svm_range *prange;
3620 struct svm_range *next;
3621 bool update_mapping = false;
3622 bool flush_tlb;
3623 int r, ret = 0;
3624
3625 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3626 p->pasid, &p->svms, start, start + size - 1, size);
3627
3628 r = svm_range_check_attr(p, nattr, attrs);
3629 if (r)
3630 return r;
3631
3632 svms = &p->svms;
3633
3634 mutex_lock(&process_info->lock);
3635
3636 svm_range_list_lock_and_flush_work(svms, mm);
3637
3638 r = svm_range_is_valid(p, start, size);
3639 if (r) {
3640 pr_debug("invalid range r=%d\n", r);
3641 mmap_write_unlock(mm);
3642 goto out;
3643 }
3644
3645 mutex_lock(&svms->lock);
3646
3647 /* Add new range and split existing ranges as needed */
3648 r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3649 &insert_list, &remove_list, &remap_list);
3650 if (r) {
3651 mutex_unlock(&svms->lock);
3652 mmap_write_unlock(mm);
3653 goto out;
3654 }
3655 /* Apply changes as a transaction */
3656 list_for_each_entry_safe(prange, next, &insert_list, list) {
3657 svm_range_add_to_svms(prange);
3658 svm_range_add_notifier_locked(mm, prange);
3659 }
3660 list_for_each_entry(prange, &update_list, update_list) {
3661 svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3662 /* TODO: unmap ranges from GPU that lost access */
3663 }
3664 list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3665 pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3666 prange->svms, prange, prange->start,
3667 prange->last);
3668 svm_range_unlink(prange);
3669 svm_range_remove_notifier(prange);
3670 svm_range_free(prange, false);
3671 }
3672
3673 mmap_write_downgrade(mm);
3674 /* Trigger migrations and revalidate and map to GPUs as needed. If
3675 * this fails we may be left with partially completed actions. There
3676 * is no clean way of rolling back to the previous state in such a
3677 * case because the rollback wouldn't be guaranteed to work either.
3678 */
3679 list_for_each_entry(prange, &update_list, update_list) {
3680 bool migrated;
3681
3682 mutex_lock(&prange->migrate_mutex);
3683
3684 r = svm_range_trigger_migration(mm, prange, &migrated);
3685 if (r)
3686 goto out_unlock_range;
3687
3688 if (migrated && (!p->xnack_enabled ||
3689 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3690 prange->mapped_to_gpu) {
3691 pr_debug("restore_work will update mappings of GPUs\n");
3692 mutex_unlock(&prange->migrate_mutex);
3693 continue;
3694 }
3695
3696 if (!migrated && !update_mapping) {
3697 mutex_unlock(&prange->migrate_mutex);
3698 continue;
3699 }
3700
3701 flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3702
3703 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3704 MAX_GPU_INSTANCE, true, true, flush_tlb);
3705 if (r)
3706 pr_debug("failed %d to map svm range\n", r);
3707
3708 out_unlock_range:
3709 mutex_unlock(&prange->migrate_mutex);
3710 if (r)
3711 ret = r;
3712 }
3713
3714 list_for_each_entry(prange, &remap_list, update_list) {
3715 pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
3716 prange, prange->start, prange->last);
3717 mutex_lock(&prange->migrate_mutex);
3718 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3719 MAX_GPU_INSTANCE, true, true, prange->mapped_to_gpu);
3720 if (r)
3721 pr_debug("failed %d on remap svm range\n", r);
3722 mutex_unlock(&prange->migrate_mutex);
3723 if (r)
3724 ret = r;
3725 }
3726
3727 dynamic_svm_range_dump(svms);
3728
3729 mutex_unlock(&svms->lock);
3730 mmap_read_unlock(mm);
3731 out:
3732 mutex_unlock(&process_info->lock);
3733
3734 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3735 &p->svms, start, start + size - 1, r);
3736
3737 return ret ? ret : r;
3738 }
3739
3740 static int
svm_range_get_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3741 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3742 uint64_t start, uint64_t size, uint32_t nattr,
3743 struct kfd_ioctl_svm_attribute *attrs)
3744 {
3745 DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3746 DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3747 bool get_preferred_loc = false;
3748 bool get_prefetch_loc = false;
3749 bool get_granularity = false;
3750 bool get_accessible = false;
3751 bool get_flags = false;
3752 uint64_t last = start + size - 1UL;
3753 uint8_t granularity = 0xff;
3754 struct interval_tree_node *node;
3755 struct svm_range_list *svms;
3756 struct svm_range *prange;
3757 uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3758 uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3759 uint32_t flags_and = 0xffffffff;
3760 uint32_t flags_or = 0;
3761 int gpuidx;
3762 uint32_t i;
3763 int r = 0;
3764
3765 pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3766 start + size - 1, nattr);
3767
3768 /* Flush pending deferred work to avoid racing with deferred actions from
3769 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3770 * can still race with get_attr because we don't hold the mmap lock. But that
3771 * would be a race condition in the application anyway, and undefined
3772 * behaviour is acceptable in that case.
3773 */
3774 flush_work(&p->svms.deferred_list_work);
3775
3776 mmap_read_lock(mm);
3777 r = svm_range_is_valid(p, start, size);
3778 mmap_read_unlock(mm);
3779 if (r) {
3780 pr_debug("invalid range r=%d\n", r);
3781 return r;
3782 }
3783
3784 for (i = 0; i < nattr; i++) {
3785 switch (attrs[i].type) {
3786 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3787 get_preferred_loc = true;
3788 break;
3789 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3790 get_prefetch_loc = true;
3791 break;
3792 case KFD_IOCTL_SVM_ATTR_ACCESS:
3793 get_accessible = true;
3794 break;
3795 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3796 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3797 get_flags = true;
3798 break;
3799 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3800 get_granularity = true;
3801 break;
3802 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3803 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3804 fallthrough;
3805 default:
3806 pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3807 return -EINVAL;
3808 }
3809 }
3810
3811 svms = &p->svms;
3812
3813 mutex_lock(&svms->lock);
3814
3815 node = interval_tree_iter_first(&svms->objects, start, last);
3816 if (!node) {
3817 pr_debug("range attrs not found return default values\n");
3818 svm_range_set_default_attributes(svms, &location, &prefetch_loc,
3819 &granularity, &flags_and);
3820 flags_or = flags_and;
3821 if (p->xnack_enabled)
3822 bitmap_copy(bitmap_access, svms->bitmap_supported,
3823 MAX_GPU_INSTANCE);
3824 else
3825 bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3826 bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3827 goto fill_values;
3828 }
3829 bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3830 bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3831
3832 while (node) {
3833 struct interval_tree_node *next;
3834
3835 prange = container_of(node, struct svm_range, it_node);
3836 next = interval_tree_iter_next(node, start, last);
3837
3838 if (get_preferred_loc) {
3839 if (prange->preferred_loc ==
3840 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3841 (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3842 location != prange->preferred_loc)) {
3843 location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3844 get_preferred_loc = false;
3845 } else {
3846 location = prange->preferred_loc;
3847 }
3848 }
3849 if (get_prefetch_loc) {
3850 if (prange->prefetch_loc ==
3851 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3852 (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3853 prefetch_loc != prange->prefetch_loc)) {
3854 prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3855 get_prefetch_loc = false;
3856 } else {
3857 prefetch_loc = prange->prefetch_loc;
3858 }
3859 }
3860 if (get_accessible) {
3861 bitmap_and(bitmap_access, bitmap_access,
3862 prange->bitmap_access, MAX_GPU_INSTANCE);
3863 bitmap_and(bitmap_aip, bitmap_aip,
3864 prange->bitmap_aip, MAX_GPU_INSTANCE);
3865 }
3866 if (get_flags) {
3867 flags_and &= prange->flags;
3868 flags_or |= prange->flags;
3869 }
3870
3871 if (get_granularity && prange->granularity < granularity)
3872 granularity = prange->granularity;
3873
3874 node = next;
3875 }
3876 fill_values:
3877 mutex_unlock(&svms->lock);
3878
3879 for (i = 0; i < nattr; i++) {
3880 switch (attrs[i].type) {
3881 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3882 attrs[i].value = location;
3883 break;
3884 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3885 attrs[i].value = prefetch_loc;
3886 break;
3887 case KFD_IOCTL_SVM_ATTR_ACCESS:
3888 gpuidx = kfd_process_gpuidx_from_gpuid(p,
3889 attrs[i].value);
3890 if (gpuidx < 0) {
3891 pr_debug("invalid gpuid %x\n", attrs[i].value);
3892 return -EINVAL;
3893 }
3894 if (test_bit(gpuidx, bitmap_access))
3895 attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3896 else if (test_bit(gpuidx, bitmap_aip))
3897 attrs[i].type =
3898 KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3899 else
3900 attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3901 break;
3902 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3903 attrs[i].value = flags_and;
3904 break;
3905 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3906 attrs[i].value = ~flags_or;
3907 break;
3908 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3909 attrs[i].value = (uint32_t)granularity;
3910 break;
3911 }
3912 }
3913
3914 return 0;
3915 }
3916
kfd_criu_resume_svm(struct kfd_process * p)3917 int kfd_criu_resume_svm(struct kfd_process *p)
3918 {
3919 struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3920 int nattr_common = 4, nattr_accessibility = 1;
3921 struct criu_svm_metadata *criu_svm_md = NULL;
3922 struct svm_range_list *svms = &p->svms;
3923 struct criu_svm_metadata *next = NULL;
3924 uint32_t set_flags = 0xffffffff;
3925 int i, j, num_attrs, ret = 0;
3926 uint64_t set_attr_size;
3927 struct mm_struct *mm;
3928
3929 if (list_empty(&svms->criu_svm_metadata_list)) {
3930 pr_debug("No SVM data from CRIU restore stage 2\n");
3931 return ret;
3932 }
3933
3934 mm = get_task_mm(p->lead_thread);
3935 if (!mm) {
3936 pr_err("failed to get mm for the target process\n");
3937 return -ESRCH;
3938 }
3939
3940 num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3941
3942 i = j = 0;
3943 list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3944 pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3945 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3946
3947 for (j = 0; j < num_attrs; j++) {
3948 pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3949 i, j, criu_svm_md->data.attrs[j].type,
3950 i, j, criu_svm_md->data.attrs[j].value);
3951 switch (criu_svm_md->data.attrs[j].type) {
3952 /* During Checkpoint operation, the query for
3953 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3954 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3955 * not used by the range which was checkpointed. Care
3956 * must be taken to not restore with an invalid value
3957 * otherwise the gpuidx value will be invalid and
3958 * set_attr would eventually fail so just replace those
3959 * with another dummy attribute such as
3960 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3961 */
3962 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3963 if (criu_svm_md->data.attrs[j].value ==
3964 KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3965 criu_svm_md->data.attrs[j].type =
3966 KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3967 criu_svm_md->data.attrs[j].value = 0;
3968 }
3969 break;
3970 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3971 set_flags = criu_svm_md->data.attrs[j].value;
3972 break;
3973 default:
3974 break;
3975 }
3976 }
3977
3978 /* CLR_FLAGS is not available via get_attr during checkpoint but
3979 * it needs to be inserted before restoring the ranges so
3980 * allocate extra space for it before calling set_attr
3981 */
3982 set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3983 (num_attrs + 1);
3984 set_attr_new = krealloc(set_attr, set_attr_size,
3985 GFP_KERNEL);
3986 if (!set_attr_new) {
3987 ret = -ENOMEM;
3988 goto exit;
3989 }
3990 set_attr = set_attr_new;
3991
3992 memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3993 sizeof(struct kfd_ioctl_svm_attribute));
3994 set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3995 set_attr[num_attrs].value = ~set_flags;
3996
3997 ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
3998 criu_svm_md->data.size, num_attrs + 1,
3999 set_attr);
4000 if (ret) {
4001 pr_err("CRIU: failed to set range attributes\n");
4002 goto exit;
4003 }
4004
4005 i++;
4006 }
4007 exit:
4008 kfree(set_attr);
4009 list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
4010 pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
4011 criu_svm_md->data.start_addr);
4012 kfree(criu_svm_md);
4013 }
4014
4015 mmput(mm);
4016 return ret;
4017
4018 }
4019
kfd_criu_restore_svm(struct kfd_process * p,uint8_t __user * user_priv_ptr,uint64_t * priv_data_offset,uint64_t max_priv_data_size)4020 int kfd_criu_restore_svm(struct kfd_process *p,
4021 uint8_t __user *user_priv_ptr,
4022 uint64_t *priv_data_offset,
4023 uint64_t max_priv_data_size)
4024 {
4025 uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
4026 int nattr_common = 4, nattr_accessibility = 1;
4027 struct criu_svm_metadata *criu_svm_md = NULL;
4028 struct svm_range_list *svms = &p->svms;
4029 uint32_t num_devices;
4030 int ret = 0;
4031
4032 num_devices = p->n_pdds;
4033 /* Handle one SVM range object at a time, also the number of gpus are
4034 * assumed to be same on the restore node, checking must be done while
4035 * evaluating the topology earlier
4036 */
4037
4038 svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
4039 (nattr_common + nattr_accessibility * num_devices);
4040 svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
4041
4042 svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4043 svm_attrs_size;
4044
4045 criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
4046 if (!criu_svm_md) {
4047 pr_err("failed to allocate memory to store svm metadata\n");
4048 return -ENOMEM;
4049 }
4050 if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
4051 ret = -EINVAL;
4052 goto exit;
4053 }
4054
4055 ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
4056 svm_priv_data_size);
4057 if (ret) {
4058 ret = -EFAULT;
4059 goto exit;
4060 }
4061 *priv_data_offset += svm_priv_data_size;
4062
4063 list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
4064
4065 return 0;
4066
4067
4068 exit:
4069 kfree(criu_svm_md);
4070 return ret;
4071 }
4072
svm_range_get_info(struct kfd_process * p,uint32_t * num_svm_ranges,uint64_t * svm_priv_data_size)4073 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
4074 uint64_t *svm_priv_data_size)
4075 {
4076 uint64_t total_size, accessibility_size, common_attr_size;
4077 int nattr_common = 4, nattr_accessibility = 1;
4078 int num_devices = p->n_pdds;
4079 struct svm_range_list *svms;
4080 struct svm_range *prange;
4081 uint32_t count = 0;
4082
4083 *svm_priv_data_size = 0;
4084
4085 svms = &p->svms;
4086 if (!svms)
4087 return -EINVAL;
4088
4089 mutex_lock(&svms->lock);
4090 list_for_each_entry(prange, &svms->list, list) {
4091 pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
4092 prange, prange->start, prange->npages,
4093 prange->start + prange->npages - 1);
4094 count++;
4095 }
4096 mutex_unlock(&svms->lock);
4097
4098 *num_svm_ranges = count;
4099 /* Only the accessbility attributes need to be queried for all the gpus
4100 * individually, remaining ones are spanned across the entire process
4101 * regardless of the various gpu nodes. Of the remaining attributes,
4102 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4103 *
4104 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4105 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4106 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4107 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4108 *
4109 * ** ACCESSBILITY ATTRIBUTES **
4110 * (Considered as one, type is altered during query, value is gpuid)
4111 * KFD_IOCTL_SVM_ATTR_ACCESS
4112 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4113 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4114 */
4115 if (*num_svm_ranges > 0) {
4116 common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4117 nattr_common;
4118 accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4119 nattr_accessibility * num_devices;
4120
4121 total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4122 common_attr_size + accessibility_size;
4123
4124 *svm_priv_data_size = *num_svm_ranges * total_size;
4125 }
4126
4127 pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4128 *svm_priv_data_size);
4129 return 0;
4130 }
4131
kfd_criu_checkpoint_svm(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_data_offset)4132 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4133 uint8_t __user *user_priv_data,
4134 uint64_t *priv_data_offset)
4135 {
4136 struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4137 struct kfd_ioctl_svm_attribute *query_attr = NULL;
4138 uint64_t svm_priv_data_size, query_attr_size = 0;
4139 int index, nattr_common = 4, ret = 0;
4140 struct svm_range_list *svms;
4141 int num_devices = p->n_pdds;
4142 struct svm_range *prange;
4143 struct mm_struct *mm;
4144
4145 svms = &p->svms;
4146 if (!svms)
4147 return -EINVAL;
4148
4149 mm = get_task_mm(p->lead_thread);
4150 if (!mm) {
4151 pr_err("failed to get mm for the target process\n");
4152 return -ESRCH;
4153 }
4154
4155 query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4156 (nattr_common + num_devices);
4157
4158 query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4159 if (!query_attr) {
4160 ret = -ENOMEM;
4161 goto exit;
4162 }
4163
4164 query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4165 query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4166 query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4167 query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4168
4169 for (index = 0; index < num_devices; index++) {
4170 struct kfd_process_device *pdd = p->pdds[index];
4171
4172 query_attr[index + nattr_common].type =
4173 KFD_IOCTL_SVM_ATTR_ACCESS;
4174 query_attr[index + nattr_common].value = pdd->user_gpu_id;
4175 }
4176
4177 svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4178
4179 svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4180 if (!svm_priv) {
4181 ret = -ENOMEM;
4182 goto exit_query;
4183 }
4184
4185 index = 0;
4186 list_for_each_entry(prange, &svms->list, list) {
4187
4188 svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4189 svm_priv->start_addr = prange->start;
4190 svm_priv->size = prange->npages;
4191 memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4192 pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4193 prange, prange->start, prange->npages,
4194 prange->start + prange->npages - 1,
4195 prange->npages * PAGE_SIZE);
4196
4197 ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4198 svm_priv->size,
4199 (nattr_common + num_devices),
4200 svm_priv->attrs);
4201 if (ret) {
4202 pr_err("CRIU: failed to obtain range attributes\n");
4203 goto exit_priv;
4204 }
4205
4206 if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4207 svm_priv_data_size)) {
4208 pr_err("Failed to copy svm priv to user\n");
4209 ret = -EFAULT;
4210 goto exit_priv;
4211 }
4212
4213 *priv_data_offset += svm_priv_data_size;
4214
4215 }
4216
4217
4218 exit_priv:
4219 kfree(svm_priv);
4220 exit_query:
4221 kfree(query_attr);
4222 exit:
4223 mmput(mm);
4224 return ret;
4225 }
4226
4227 int
svm_ioctl(struct kfd_process * p,enum kfd_ioctl_svm_op op,uint64_t start,uint64_t size,uint32_t nattrs,struct kfd_ioctl_svm_attribute * attrs)4228 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4229 uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4230 {
4231 struct mm_struct *mm = current->mm;
4232 int r;
4233
4234 start >>= PAGE_SHIFT;
4235 size >>= PAGE_SHIFT;
4236
4237 switch (op) {
4238 case KFD_IOCTL_SVM_OP_SET_ATTR:
4239 r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4240 break;
4241 case KFD_IOCTL_SVM_OP_GET_ATTR:
4242 r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4243 break;
4244 default:
4245 r = EINVAL;
4246 break;
4247 }
4248
4249 return r;
4250 }
4251