xref: /linux/arch/x86/kvm/svm/svm.c (revision c924c5e9b8c65b3a479a90e5e37d74cc8cd9fe0a)
1  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2  
3  #include <linux/kvm_host.h>
4  
5  #include "irq.h"
6  #include "mmu.h"
7  #include "kvm_cache_regs.h"
8  #include "x86.h"
9  #include "smm.h"
10  #include "cpuid.h"
11  #include "pmu.h"
12  
13  #include <linux/module.h>
14  #include <linux/mod_devicetable.h>
15  #include <linux/kernel.h>
16  #include <linux/vmalloc.h>
17  #include <linux/highmem.h>
18  #include <linux/amd-iommu.h>
19  #include <linux/sched.h>
20  #include <linux/trace_events.h>
21  #include <linux/slab.h>
22  #include <linux/hashtable.h>
23  #include <linux/objtool.h>
24  #include <linux/psp-sev.h>
25  #include <linux/file.h>
26  #include <linux/pagemap.h>
27  #include <linux/swap.h>
28  #include <linux/rwsem.h>
29  #include <linux/cc_platform.h>
30  #include <linux/smp.h>
31  #include <linux/string_choices.h>
32  
33  #include <asm/apic.h>
34  #include <asm/perf_event.h>
35  #include <asm/tlbflush.h>
36  #include <asm/desc.h>
37  #include <asm/debugreg.h>
38  #include <asm/kvm_para.h>
39  #include <asm/irq_remapping.h>
40  #include <asm/spec-ctrl.h>
41  #include <asm/cpu_device_id.h>
42  #include <asm/traps.h>
43  #include <asm/reboot.h>
44  #include <asm/fpu/api.h>
45  
46  #include <trace/events/ipi.h>
47  
48  #include "trace.h"
49  
50  #include "svm.h"
51  #include "svm_ops.h"
52  
53  #include "kvm_onhyperv.h"
54  #include "svm_onhyperv.h"
55  
56  MODULE_AUTHOR("Qumranet");
57  MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions");
58  MODULE_LICENSE("GPL");
59  
60  #ifdef MODULE
61  static const struct x86_cpu_id svm_cpu_id[] = {
62  	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
63  	{}
64  };
65  MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
66  #endif
67  
68  #define SEG_TYPE_LDT 2
69  #define SEG_TYPE_BUSY_TSS16 3
70  
71  static bool erratum_383_found __read_mostly;
72  
73  u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
74  
75  /*
76   * Set osvw_len to higher value when updated Revision Guides
77   * are published and we know what the new status bits are
78   */
79  static uint64_t osvw_len = 4, osvw_status;
80  
81  static DEFINE_PER_CPU(u64, current_tsc_ratio);
82  
83  #define X2APIC_MSR(x)	(APIC_BASE_MSR + (x >> 4))
84  
85  static const struct svm_direct_access_msrs {
86  	u32 index;   /* Index of the MSR */
87  	bool always; /* True if intercept is initially cleared */
88  } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
89  	{ .index = MSR_STAR,				.always = true  },
90  	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
91  	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
92  	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
93  #ifdef CONFIG_X86_64
94  	{ .index = MSR_GS_BASE,				.always = true  },
95  	{ .index = MSR_FS_BASE,				.always = true  },
96  	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
97  	{ .index = MSR_LSTAR,				.always = true  },
98  	{ .index = MSR_CSTAR,				.always = true  },
99  	{ .index = MSR_SYSCALL_MASK,			.always = true  },
100  #endif
101  	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
102  	{ .index = MSR_IA32_PRED_CMD,			.always = false },
103  	{ .index = MSR_IA32_FLUSH_CMD,			.always = false },
104  	{ .index = MSR_IA32_DEBUGCTLMSR,		.always = false },
105  	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
106  	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
107  	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
108  	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
109  	{ .index = MSR_IA32_XSS,			.always = false },
110  	{ .index = MSR_EFER,				.always = false },
111  	{ .index = MSR_IA32_CR_PAT,			.always = false },
112  	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
113  	{ .index = MSR_TSC_AUX,				.always = false },
114  	{ .index = X2APIC_MSR(APIC_ID),			.always = false },
115  	{ .index = X2APIC_MSR(APIC_LVR),		.always = false },
116  	{ .index = X2APIC_MSR(APIC_TASKPRI),		.always = false },
117  	{ .index = X2APIC_MSR(APIC_ARBPRI),		.always = false },
118  	{ .index = X2APIC_MSR(APIC_PROCPRI),		.always = false },
119  	{ .index = X2APIC_MSR(APIC_EOI),		.always = false },
120  	{ .index = X2APIC_MSR(APIC_RRR),		.always = false },
121  	{ .index = X2APIC_MSR(APIC_LDR),		.always = false },
122  	{ .index = X2APIC_MSR(APIC_DFR),		.always = false },
123  	{ .index = X2APIC_MSR(APIC_SPIV),		.always = false },
124  	{ .index = X2APIC_MSR(APIC_ISR),		.always = false },
125  	{ .index = X2APIC_MSR(APIC_TMR),		.always = false },
126  	{ .index = X2APIC_MSR(APIC_IRR),		.always = false },
127  	{ .index = X2APIC_MSR(APIC_ESR),		.always = false },
128  	{ .index = X2APIC_MSR(APIC_ICR),		.always = false },
129  	{ .index = X2APIC_MSR(APIC_ICR2),		.always = false },
130  
131  	/*
132  	 * Note:
133  	 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
134  	 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
135  	 * the AVIC hardware would generate GP fault. Therefore, always
136  	 * intercept the MSR 0x832, and do not setup direct_access_msr.
137  	 */
138  	{ .index = X2APIC_MSR(APIC_LVTTHMR),		.always = false },
139  	{ .index = X2APIC_MSR(APIC_LVTPC),		.always = false },
140  	{ .index = X2APIC_MSR(APIC_LVT0),		.always = false },
141  	{ .index = X2APIC_MSR(APIC_LVT1),		.always = false },
142  	{ .index = X2APIC_MSR(APIC_LVTERR),		.always = false },
143  	{ .index = X2APIC_MSR(APIC_TMICT),		.always = false },
144  	{ .index = X2APIC_MSR(APIC_TMCCT),		.always = false },
145  	{ .index = X2APIC_MSR(APIC_TDCR),		.always = false },
146  	{ .index = MSR_INVALID,				.always = false },
147  };
148  
149  /*
150   * These 2 parameters are used to config the controls for Pause-Loop Exiting:
151   * pause_filter_count: On processors that support Pause filtering(indicated
152   *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
153   *	count value. On VMRUN this value is loaded into an internal counter.
154   *	Each time a pause instruction is executed, this counter is decremented
155   *	until it reaches zero at which time a #VMEXIT is generated if pause
156   *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
157   *	Intercept Filtering for more details.
158   *	This also indicate if ple logic enabled.
159   *
160   * pause_filter_thresh: In addition, some processor families support advanced
161   *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
162   *	the amount of time a guest is allowed to execute in a pause loop.
163   *	In this mode, a 16-bit pause filter threshold field is added in the
164   *	VMCB. The threshold value is a cycle count that is used to reset the
165   *	pause counter. As with simple pause filtering, VMRUN loads the pause
166   *	count value from VMCB into an internal counter. Then, on each pause
167   *	instruction the hardware checks the elapsed number of cycles since
168   *	the most recent pause instruction against the pause filter threshold.
169   *	If the elapsed cycle count is greater than the pause filter threshold,
170   *	then the internal pause count is reloaded from the VMCB and execution
171   *	continues. If the elapsed cycle count is less than the pause filter
172   *	threshold, then the internal pause count is decremented. If the count
173   *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
174   *	triggered. If advanced pause filtering is supported and pause filter
175   *	threshold field is set to zero, the filter will operate in the simpler,
176   *	count only mode.
177   */
178  
179  static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
180  module_param(pause_filter_thresh, ushort, 0444);
181  
182  static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
183  module_param(pause_filter_count, ushort, 0444);
184  
185  /* Default doubles per-vcpu window every exit. */
186  static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
187  module_param(pause_filter_count_grow, ushort, 0444);
188  
189  /* Default resets per-vcpu window every exit to pause_filter_count. */
190  static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
191  module_param(pause_filter_count_shrink, ushort, 0444);
192  
193  /* Default is to compute the maximum so we can never overflow. */
194  static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
195  module_param(pause_filter_count_max, ushort, 0444);
196  
197  /*
198   * Use nested page tables by default.  Note, NPT may get forced off by
199   * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
200   */
201  bool npt_enabled = true;
202  module_param_named(npt, npt_enabled, bool, 0444);
203  
204  /* allow nested virtualization in KVM/SVM */
205  static int nested = true;
206  module_param(nested, int, 0444);
207  
208  /* enable/disable Next RIP Save */
209  int nrips = true;
210  module_param(nrips, int, 0444);
211  
212  /* enable/disable Virtual VMLOAD VMSAVE */
213  static int vls = true;
214  module_param(vls, int, 0444);
215  
216  /* enable/disable Virtual GIF */
217  int vgif = true;
218  module_param(vgif, int, 0444);
219  
220  /* enable/disable LBR virtualization */
221  int lbrv = true;
222  module_param(lbrv, int, 0444);
223  
224  static int tsc_scaling = true;
225  module_param(tsc_scaling, int, 0444);
226  
227  /*
228   * enable / disable AVIC.  Because the defaults differ for APICv
229   * support between VMX and SVM we cannot use module_param_named.
230   */
231  static bool avic;
232  module_param(avic, bool, 0444);
233  
234  bool __read_mostly dump_invalid_vmcb;
235  module_param(dump_invalid_vmcb, bool, 0644);
236  
237  
238  bool intercept_smi = true;
239  module_param(intercept_smi, bool, 0444);
240  
241  bool vnmi = true;
242  module_param(vnmi, bool, 0444);
243  
244  static bool svm_gp_erratum_intercept = true;
245  
246  static u8 rsm_ins_bytes[] = "\x0f\xaa";
247  
248  static unsigned long iopm_base;
249  
250  DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
251  
252  /*
253   * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
254   * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
255   *
256   * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
257   * defer the restoration of TSC_AUX until the CPU returns to userspace.
258   */
259  static int tsc_aux_uret_slot __read_mostly = -1;
260  
261  static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
262  
263  #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
264  #define MSRS_RANGE_SIZE 2048
265  #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
266  
svm_msrpm_offset(u32 msr)267  u32 svm_msrpm_offset(u32 msr)
268  {
269  	u32 offset;
270  	int i;
271  
272  	for (i = 0; i < NUM_MSR_MAPS; i++) {
273  		if (msr < msrpm_ranges[i] ||
274  		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
275  			continue;
276  
277  		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
278  		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
279  
280  		/* Now we have the u8 offset - but need the u32 offset */
281  		return offset / 4;
282  	}
283  
284  	/* MSR not in any range */
285  	return MSR_INVALID;
286  }
287  
get_npt_level(void)288  static int get_npt_level(void)
289  {
290  #ifdef CONFIG_X86_64
291  	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
292  #else
293  	return PT32E_ROOT_LEVEL;
294  #endif
295  }
296  
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)297  int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
298  {
299  	struct vcpu_svm *svm = to_svm(vcpu);
300  	u64 old_efer = vcpu->arch.efer;
301  	vcpu->arch.efer = efer;
302  
303  	if (!npt_enabled) {
304  		/* Shadow paging assumes NX to be available.  */
305  		efer |= EFER_NX;
306  
307  		if (!(efer & EFER_LMA))
308  			efer &= ~EFER_LME;
309  	}
310  
311  	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
312  		if (!(efer & EFER_SVME)) {
313  			svm_leave_nested(vcpu);
314  			svm_set_gif(svm, true);
315  			/* #GP intercept is still needed for vmware backdoor */
316  			if (!enable_vmware_backdoor)
317  				clr_exception_intercept(svm, GP_VECTOR);
318  
319  			/*
320  			 * Free the nested guest state, unless we are in SMM.
321  			 * In this case we will return to the nested guest
322  			 * as soon as we leave SMM.
323  			 */
324  			if (!is_smm(vcpu))
325  				svm_free_nested(svm);
326  
327  		} else {
328  			int ret = svm_allocate_nested(svm);
329  
330  			if (ret) {
331  				vcpu->arch.efer = old_efer;
332  				return ret;
333  			}
334  
335  			/*
336  			 * Never intercept #GP for SEV guests, KVM can't
337  			 * decrypt guest memory to workaround the erratum.
338  			 */
339  			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
340  				set_exception_intercept(svm, GP_VECTOR);
341  		}
342  	}
343  
344  	svm->vmcb->save.efer = efer | EFER_SVME;
345  	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
346  	return 0;
347  }
348  
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)349  static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
350  {
351  	struct vcpu_svm *svm = to_svm(vcpu);
352  	u32 ret = 0;
353  
354  	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
355  		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
356  	return ret;
357  }
358  
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)359  static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
360  {
361  	struct vcpu_svm *svm = to_svm(vcpu);
362  
363  	if (mask == 0)
364  		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
365  	else
366  		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
367  
368  }
369  
__svm_skip_emulated_instruction(struct kvm_vcpu * vcpu,bool commit_side_effects)370  static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
371  					   bool commit_side_effects)
372  {
373  	struct vcpu_svm *svm = to_svm(vcpu);
374  	unsigned long old_rflags;
375  
376  	/*
377  	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
378  	 * the type of exit and the #VC handler in the guest.
379  	 */
380  	if (sev_es_guest(vcpu->kvm))
381  		goto done;
382  
383  	if (nrips && svm->vmcb->control.next_rip != 0) {
384  		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
385  		svm->next_rip = svm->vmcb->control.next_rip;
386  	}
387  
388  	if (!svm->next_rip) {
389  		if (unlikely(!commit_side_effects))
390  			old_rflags = svm->vmcb->save.rflags;
391  
392  		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
393  			return 0;
394  
395  		if (unlikely(!commit_side_effects))
396  			svm->vmcb->save.rflags = old_rflags;
397  	} else {
398  		kvm_rip_write(vcpu, svm->next_rip);
399  	}
400  
401  done:
402  	if (likely(commit_side_effects))
403  		svm_set_interrupt_shadow(vcpu, 0);
404  
405  	return 1;
406  }
407  
svm_skip_emulated_instruction(struct kvm_vcpu * vcpu)408  static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
409  {
410  	return __svm_skip_emulated_instruction(vcpu, true);
411  }
412  
svm_update_soft_interrupt_rip(struct kvm_vcpu * vcpu)413  static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
414  {
415  	unsigned long rip, old_rip = kvm_rip_read(vcpu);
416  	struct vcpu_svm *svm = to_svm(vcpu);
417  
418  	/*
419  	 * Due to architectural shortcomings, the CPU doesn't always provide
420  	 * NextRIP, e.g. if KVM intercepted an exception that occurred while
421  	 * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
422  	 * the instruction even if NextRIP is supported to acquire the next
423  	 * RIP so that it can be shoved into the NextRIP field, otherwise
424  	 * hardware will fail to advance guest RIP during event injection.
425  	 * Drop the exception/interrupt if emulation fails and effectively
426  	 * retry the instruction, it's the least awful option.  If NRIPS is
427  	 * in use, the skip must not commit any side effects such as clearing
428  	 * the interrupt shadow or RFLAGS.RF.
429  	 */
430  	if (!__svm_skip_emulated_instruction(vcpu, !nrips))
431  		return -EIO;
432  
433  	rip = kvm_rip_read(vcpu);
434  
435  	/*
436  	 * Save the injection information, even when using next_rip, as the
437  	 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
438  	 * doesn't complete due to a VM-Exit occurring while the CPU is
439  	 * vectoring the event.   Decoding the instruction isn't guaranteed to
440  	 * work as there may be no backing instruction, e.g. if the event is
441  	 * being injected by L1 for L2, or if the guest is patching INT3 into
442  	 * a different instruction.
443  	 */
444  	svm->soft_int_injected = true;
445  	svm->soft_int_csbase = svm->vmcb->save.cs.base;
446  	svm->soft_int_old_rip = old_rip;
447  	svm->soft_int_next_rip = rip;
448  
449  	if (nrips)
450  		kvm_rip_write(vcpu, old_rip);
451  
452  	if (static_cpu_has(X86_FEATURE_NRIPS))
453  		svm->vmcb->control.next_rip = rip;
454  
455  	return 0;
456  }
457  
svm_inject_exception(struct kvm_vcpu * vcpu)458  static void svm_inject_exception(struct kvm_vcpu *vcpu)
459  {
460  	struct kvm_queued_exception *ex = &vcpu->arch.exception;
461  	struct vcpu_svm *svm = to_svm(vcpu);
462  
463  	kvm_deliver_exception_payload(vcpu, ex);
464  
465  	if (kvm_exception_is_soft(ex->vector) &&
466  	    svm_update_soft_interrupt_rip(vcpu))
467  		return;
468  
469  	svm->vmcb->control.event_inj = ex->vector
470  		| SVM_EVTINJ_VALID
471  		| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
472  		| SVM_EVTINJ_TYPE_EXEPT;
473  	svm->vmcb->control.event_inj_err = ex->error_code;
474  }
475  
svm_init_erratum_383(void)476  static void svm_init_erratum_383(void)
477  {
478  	u32 low, high;
479  	int err;
480  	u64 val;
481  
482  	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
483  		return;
484  
485  	/* Use _safe variants to not break nested virtualization */
486  	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
487  	if (err)
488  		return;
489  
490  	val |= (1ULL << 47);
491  
492  	low  = lower_32_bits(val);
493  	high = upper_32_bits(val);
494  
495  	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
496  
497  	erratum_383_found = true;
498  }
499  
svm_init_osvw(struct kvm_vcpu * vcpu)500  static void svm_init_osvw(struct kvm_vcpu *vcpu)
501  {
502  	/*
503  	 * Guests should see errata 400 and 415 as fixed (assuming that
504  	 * HLT and IO instructions are intercepted).
505  	 */
506  	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
507  	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
508  
509  	/*
510  	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
511  	 * all osvw.status bits inside that length, including bit 0 (which is
512  	 * reserved for erratum 298), are valid. However, if host processor's
513  	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
514  	 * be conservative here and therefore we tell the guest that erratum 298
515  	 * is present (because we really don't know).
516  	 */
517  	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
518  		vcpu->arch.osvw.status |= 1;
519  }
520  
__kvm_is_svm_supported(void)521  static bool __kvm_is_svm_supported(void)
522  {
523  	int cpu = smp_processor_id();
524  	struct cpuinfo_x86 *c = &cpu_data(cpu);
525  
526  	if (c->x86_vendor != X86_VENDOR_AMD &&
527  	    c->x86_vendor != X86_VENDOR_HYGON) {
528  		pr_err("CPU %d isn't AMD or Hygon\n", cpu);
529  		return false;
530  	}
531  
532  	if (!cpu_has(c, X86_FEATURE_SVM)) {
533  		pr_err("SVM not supported by CPU %d\n", cpu);
534  		return false;
535  	}
536  
537  	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
538  		pr_info("KVM is unsupported when running as an SEV guest\n");
539  		return false;
540  	}
541  
542  	return true;
543  }
544  
kvm_is_svm_supported(void)545  static bool kvm_is_svm_supported(void)
546  {
547  	bool supported;
548  
549  	migrate_disable();
550  	supported = __kvm_is_svm_supported();
551  	migrate_enable();
552  
553  	return supported;
554  }
555  
svm_check_processor_compat(void)556  static int svm_check_processor_compat(void)
557  {
558  	if (!__kvm_is_svm_supported())
559  		return -EIO;
560  
561  	return 0;
562  }
563  
__svm_write_tsc_multiplier(u64 multiplier)564  static void __svm_write_tsc_multiplier(u64 multiplier)
565  {
566  	if (multiplier == __this_cpu_read(current_tsc_ratio))
567  		return;
568  
569  	wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
570  	__this_cpu_write(current_tsc_ratio, multiplier);
571  }
572  
sev_es_host_save_area(struct svm_cpu_data * sd)573  static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd)
574  {
575  	return &sd->save_area->host_sev_es_save;
576  }
577  
kvm_cpu_svm_disable(void)578  static inline void kvm_cpu_svm_disable(void)
579  {
580  	uint64_t efer;
581  
582  	wrmsrl(MSR_VM_HSAVE_PA, 0);
583  	rdmsrl(MSR_EFER, efer);
584  	if (efer & EFER_SVME) {
585  		/*
586  		 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
587  		 * NMI aren't blocked.
588  		 */
589  		stgi();
590  		wrmsrl(MSR_EFER, efer & ~EFER_SVME);
591  	}
592  }
593  
svm_emergency_disable_virtualization_cpu(void)594  static void svm_emergency_disable_virtualization_cpu(void)
595  {
596  	kvm_rebooting = true;
597  
598  	kvm_cpu_svm_disable();
599  }
600  
svm_disable_virtualization_cpu(void)601  static void svm_disable_virtualization_cpu(void)
602  {
603  	/* Make sure we clean up behind us */
604  	if (tsc_scaling)
605  		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
606  
607  	kvm_cpu_svm_disable();
608  
609  	amd_pmu_disable_virt();
610  
611  	if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
612  		msr_clear_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
613  }
614  
svm_enable_virtualization_cpu(void)615  static int svm_enable_virtualization_cpu(void)
616  {
617  
618  	struct svm_cpu_data *sd;
619  	uint64_t efer;
620  	int me = raw_smp_processor_id();
621  
622  	rdmsrl(MSR_EFER, efer);
623  	if (efer & EFER_SVME)
624  		return -EBUSY;
625  
626  	sd = per_cpu_ptr(&svm_data, me);
627  	sd->asid_generation = 1;
628  	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
629  	sd->next_asid = sd->max_asid + 1;
630  	sd->min_asid = max_sev_asid + 1;
631  
632  	wrmsrl(MSR_EFER, efer | EFER_SVME);
633  
634  	wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
635  
636  	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
637  		/*
638  		 * Set the default value, even if we don't use TSC scaling
639  		 * to avoid having stale value in the msr
640  		 */
641  		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
642  	}
643  
644  
645  	/*
646  	 * Get OSVW bits.
647  	 *
648  	 * Note that it is possible to have a system with mixed processor
649  	 * revisions and therefore different OSVW bits. If bits are not the same
650  	 * on different processors then choose the worst case (i.e. if erratum
651  	 * is present on one processor and not on another then assume that the
652  	 * erratum is present everywhere).
653  	 */
654  	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
655  		uint64_t len, status = 0;
656  		int err;
657  
658  		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
659  		if (!err)
660  			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
661  						      &err);
662  
663  		if (err)
664  			osvw_status = osvw_len = 0;
665  		else {
666  			if (len < osvw_len)
667  				osvw_len = len;
668  			osvw_status |= status;
669  			osvw_status &= (1ULL << osvw_len) - 1;
670  		}
671  	} else
672  		osvw_status = osvw_len = 0;
673  
674  	svm_init_erratum_383();
675  
676  	amd_pmu_enable_virt();
677  
678  	/*
679  	 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type
680  	 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests.
681  	 * Since Linux does not change the value of TSC_AUX once set, prime the
682  	 * TSC_AUX field now to avoid a RDMSR on every vCPU run.
683  	 */
684  	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
685  		u32 __maybe_unused msr_hi;
686  
687  		rdmsr(MSR_TSC_AUX, sev_es_host_save_area(sd)->tsc_aux, msr_hi);
688  	}
689  
690  	if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
691  		msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
692  
693  	return 0;
694  }
695  
svm_cpu_uninit(int cpu)696  static void svm_cpu_uninit(int cpu)
697  {
698  	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
699  
700  	if (!sd->save_area)
701  		return;
702  
703  	kfree(sd->sev_vmcbs);
704  	__free_page(__sme_pa_to_page(sd->save_area_pa));
705  	sd->save_area_pa = 0;
706  	sd->save_area = NULL;
707  }
708  
svm_cpu_init(int cpu)709  static int svm_cpu_init(int cpu)
710  {
711  	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
712  	struct page *save_area_page;
713  	int ret = -ENOMEM;
714  
715  	memset(sd, 0, sizeof(struct svm_cpu_data));
716  	save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL);
717  	if (!save_area_page)
718  		return ret;
719  
720  	ret = sev_cpu_init(sd);
721  	if (ret)
722  		goto free_save_area;
723  
724  	sd->save_area = page_address(save_area_page);
725  	sd->save_area_pa = __sme_page_pa(save_area_page);
726  	return 0;
727  
728  free_save_area:
729  	__free_page(save_area_page);
730  	return ret;
731  
732  }
733  
set_dr_intercepts(struct vcpu_svm * svm)734  static void set_dr_intercepts(struct vcpu_svm *svm)
735  {
736  	struct vmcb *vmcb = svm->vmcb01.ptr;
737  
738  	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
739  	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
740  	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
741  	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
742  	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
743  	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
744  	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
745  	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
746  	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
747  	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
748  	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
749  	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
750  	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
751  	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
752  	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
753  	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
754  
755  	recalc_intercepts(svm);
756  }
757  
clr_dr_intercepts(struct vcpu_svm * svm)758  static void clr_dr_intercepts(struct vcpu_svm *svm)
759  {
760  	struct vmcb *vmcb = svm->vmcb01.ptr;
761  
762  	vmcb->control.intercepts[INTERCEPT_DR] = 0;
763  
764  	recalc_intercepts(svm);
765  }
766  
direct_access_msr_slot(u32 msr)767  static int direct_access_msr_slot(u32 msr)
768  {
769  	u32 i;
770  
771  	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
772  		if (direct_access_msrs[i].index == msr)
773  			return i;
774  
775  	return -ENOENT;
776  }
777  
set_shadow_msr_intercept(struct kvm_vcpu * vcpu,u32 msr,int read,int write)778  static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
779  				     int write)
780  {
781  	struct vcpu_svm *svm = to_svm(vcpu);
782  	int slot = direct_access_msr_slot(msr);
783  
784  	if (slot == -ENOENT)
785  		return;
786  
787  	/* Set the shadow bitmaps to the desired intercept states */
788  	if (read)
789  		set_bit(slot, svm->shadow_msr_intercept.read);
790  	else
791  		clear_bit(slot, svm->shadow_msr_intercept.read);
792  
793  	if (write)
794  		set_bit(slot, svm->shadow_msr_intercept.write);
795  	else
796  		clear_bit(slot, svm->shadow_msr_intercept.write);
797  }
798  
valid_msr_intercept(u32 index)799  static bool valid_msr_intercept(u32 index)
800  {
801  	return direct_access_msr_slot(index) != -ENOENT;
802  }
803  
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)804  static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
805  {
806  	u8 bit_write;
807  	unsigned long tmp;
808  	u32 offset;
809  	u32 *msrpm;
810  
811  	/*
812  	 * For non-nested case:
813  	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
814  	 * save it.
815  	 *
816  	 * For nested case:
817  	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
818  	 * save it.
819  	 */
820  	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
821  				      to_svm(vcpu)->msrpm;
822  
823  	offset    = svm_msrpm_offset(msr);
824  	bit_write = 2 * (msr & 0x0f) + 1;
825  	tmp       = msrpm[offset];
826  
827  	BUG_ON(offset == MSR_INVALID);
828  
829  	return test_bit(bit_write, &tmp);
830  }
831  
set_msr_interception_bitmap(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)832  static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
833  					u32 msr, int read, int write)
834  {
835  	struct vcpu_svm *svm = to_svm(vcpu);
836  	u8 bit_read, bit_write;
837  	unsigned long tmp;
838  	u32 offset;
839  
840  	/*
841  	 * If this warning triggers extend the direct_access_msrs list at the
842  	 * beginning of the file
843  	 */
844  	WARN_ON(!valid_msr_intercept(msr));
845  
846  	/* Enforce non allowed MSRs to trap */
847  	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
848  		read = 0;
849  
850  	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
851  		write = 0;
852  
853  	offset    = svm_msrpm_offset(msr);
854  	bit_read  = 2 * (msr & 0x0f);
855  	bit_write = 2 * (msr & 0x0f) + 1;
856  	tmp       = msrpm[offset];
857  
858  	BUG_ON(offset == MSR_INVALID);
859  
860  	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
861  	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
862  
863  	msrpm[offset] = tmp;
864  
865  	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
866  	svm->nested.force_msr_bitmap_recalc = true;
867  }
868  
set_msr_interception(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)869  void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
870  			  int read, int write)
871  {
872  	set_shadow_msr_intercept(vcpu, msr, read, write);
873  	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
874  }
875  
svm_vcpu_alloc_msrpm(void)876  u32 *svm_vcpu_alloc_msrpm(void)
877  {
878  	unsigned int order = get_order(MSRPM_SIZE);
879  	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
880  	u32 *msrpm;
881  
882  	if (!pages)
883  		return NULL;
884  
885  	msrpm = page_address(pages);
886  	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
887  
888  	return msrpm;
889  }
890  
svm_vcpu_init_msrpm(struct kvm_vcpu * vcpu,u32 * msrpm)891  void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
892  {
893  	int i;
894  
895  	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
896  		if (!direct_access_msrs[i].always)
897  			continue;
898  		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
899  	}
900  }
901  
svm_set_x2apic_msr_interception(struct vcpu_svm * svm,bool intercept)902  void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
903  {
904  	int i;
905  
906  	if (intercept == svm->x2avic_msrs_intercepted)
907  		return;
908  
909  	if (!x2avic_enabled)
910  		return;
911  
912  	for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
913  		int index = direct_access_msrs[i].index;
914  
915  		if ((index < APIC_BASE_MSR) ||
916  		    (index > APIC_BASE_MSR + 0xff))
917  			continue;
918  		set_msr_interception(&svm->vcpu, svm->msrpm, index,
919  				     !intercept, !intercept);
920  	}
921  
922  	svm->x2avic_msrs_intercepted = intercept;
923  }
924  
svm_vcpu_free_msrpm(u32 * msrpm)925  void svm_vcpu_free_msrpm(u32 *msrpm)
926  {
927  	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
928  }
929  
svm_msr_filter_changed(struct kvm_vcpu * vcpu)930  static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
931  {
932  	struct vcpu_svm *svm = to_svm(vcpu);
933  	u32 i;
934  
935  	/*
936  	 * Set intercept permissions for all direct access MSRs again. They
937  	 * will automatically get filtered through the MSR filter, so we are
938  	 * back in sync after this.
939  	 */
940  	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
941  		u32 msr = direct_access_msrs[i].index;
942  		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
943  		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
944  
945  		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
946  	}
947  }
948  
add_msr_offset(u32 offset)949  static void add_msr_offset(u32 offset)
950  {
951  	int i;
952  
953  	for (i = 0; i < MSRPM_OFFSETS; ++i) {
954  
955  		/* Offset already in list? */
956  		if (msrpm_offsets[i] == offset)
957  			return;
958  
959  		/* Slot used by another offset? */
960  		if (msrpm_offsets[i] != MSR_INVALID)
961  			continue;
962  
963  		/* Add offset to list */
964  		msrpm_offsets[i] = offset;
965  
966  		return;
967  	}
968  
969  	/*
970  	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
971  	 * increase MSRPM_OFFSETS in this case.
972  	 */
973  	BUG();
974  }
975  
init_msrpm_offsets(void)976  static void init_msrpm_offsets(void)
977  {
978  	int i;
979  
980  	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
981  
982  	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
983  		u32 offset;
984  
985  		offset = svm_msrpm_offset(direct_access_msrs[i].index);
986  		BUG_ON(offset == MSR_INVALID);
987  
988  		add_msr_offset(offset);
989  	}
990  }
991  
svm_copy_lbrs(struct vmcb * to_vmcb,struct vmcb * from_vmcb)992  void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
993  {
994  	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
995  	to_vmcb->save.br_from		= from_vmcb->save.br_from;
996  	to_vmcb->save.br_to		= from_vmcb->save.br_to;
997  	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
998  	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;
999  
1000  	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
1001  }
1002  
svm_enable_lbrv(struct kvm_vcpu * vcpu)1003  void svm_enable_lbrv(struct kvm_vcpu *vcpu)
1004  {
1005  	struct vcpu_svm *svm = to_svm(vcpu);
1006  
1007  	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1008  	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1009  	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1010  	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1011  	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1012  
1013  	if (sev_es_guest(vcpu->kvm))
1014  		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_DEBUGCTLMSR, 1, 1);
1015  
1016  	/* Move the LBR msrs to the vmcb02 so that the guest can see them. */
1017  	if (is_guest_mode(vcpu))
1018  		svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
1019  }
1020  
svm_disable_lbrv(struct kvm_vcpu * vcpu)1021  static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
1022  {
1023  	struct vcpu_svm *svm = to_svm(vcpu);
1024  
1025  	KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm);
1026  
1027  	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1028  	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1029  	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1030  	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1031  	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1032  
1033  	/*
1034  	 * Move the LBR msrs back to the vmcb01 to avoid copying them
1035  	 * on nested guest entries.
1036  	 */
1037  	if (is_guest_mode(vcpu))
1038  		svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
1039  }
1040  
svm_get_lbr_vmcb(struct vcpu_svm * svm)1041  static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
1042  {
1043  	/*
1044  	 * If LBR virtualization is disabled, the LBR MSRs are always kept in
1045  	 * vmcb01.  If LBR virtualization is enabled and L1 is running VMs of
1046  	 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
1047  	 */
1048  	return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
1049  								   svm->vmcb01.ptr;
1050  }
1051  
svm_update_lbrv(struct kvm_vcpu * vcpu)1052  void svm_update_lbrv(struct kvm_vcpu *vcpu)
1053  {
1054  	struct vcpu_svm *svm = to_svm(vcpu);
1055  	bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
1056  	bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
1057  			    (is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
1058  			    (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
1059  
1060  	if (enable_lbrv == current_enable_lbrv)
1061  		return;
1062  
1063  	if (enable_lbrv)
1064  		svm_enable_lbrv(vcpu);
1065  	else
1066  		svm_disable_lbrv(vcpu);
1067  }
1068  
disable_nmi_singlestep(struct vcpu_svm * svm)1069  void disable_nmi_singlestep(struct vcpu_svm *svm)
1070  {
1071  	svm->nmi_singlestep = false;
1072  
1073  	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1074  		/* Clear our flags if they were not set by the guest */
1075  		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1076  			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1077  		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1078  			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1079  	}
1080  }
1081  
grow_ple_window(struct kvm_vcpu * vcpu)1082  static void grow_ple_window(struct kvm_vcpu *vcpu)
1083  {
1084  	struct vcpu_svm *svm = to_svm(vcpu);
1085  	struct vmcb_control_area *control = &svm->vmcb->control;
1086  	int old = control->pause_filter_count;
1087  
1088  	if (kvm_pause_in_guest(vcpu->kvm))
1089  		return;
1090  
1091  	control->pause_filter_count = __grow_ple_window(old,
1092  							pause_filter_count,
1093  							pause_filter_count_grow,
1094  							pause_filter_count_max);
1095  
1096  	if (control->pause_filter_count != old) {
1097  		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1098  		trace_kvm_ple_window_update(vcpu->vcpu_id,
1099  					    control->pause_filter_count, old);
1100  	}
1101  }
1102  
shrink_ple_window(struct kvm_vcpu * vcpu)1103  static void shrink_ple_window(struct kvm_vcpu *vcpu)
1104  {
1105  	struct vcpu_svm *svm = to_svm(vcpu);
1106  	struct vmcb_control_area *control = &svm->vmcb->control;
1107  	int old = control->pause_filter_count;
1108  
1109  	if (kvm_pause_in_guest(vcpu->kvm))
1110  		return;
1111  
1112  	control->pause_filter_count =
1113  				__shrink_ple_window(old,
1114  						    pause_filter_count,
1115  						    pause_filter_count_shrink,
1116  						    pause_filter_count);
1117  	if (control->pause_filter_count != old) {
1118  		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1119  		trace_kvm_ple_window_update(vcpu->vcpu_id,
1120  					    control->pause_filter_count, old);
1121  	}
1122  }
1123  
svm_hardware_unsetup(void)1124  static void svm_hardware_unsetup(void)
1125  {
1126  	int cpu;
1127  
1128  	sev_hardware_unsetup();
1129  
1130  	for_each_possible_cpu(cpu)
1131  		svm_cpu_uninit(cpu);
1132  
1133  	__free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE));
1134  	iopm_base = 0;
1135  }
1136  
init_seg(struct vmcb_seg * seg)1137  static void init_seg(struct vmcb_seg *seg)
1138  {
1139  	seg->selector = 0;
1140  	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1141  		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1142  	seg->limit = 0xffff;
1143  	seg->base = 0;
1144  }
1145  
init_sys_seg(struct vmcb_seg * seg,uint32_t type)1146  static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1147  {
1148  	seg->selector = 0;
1149  	seg->attrib = SVM_SELECTOR_P_MASK | type;
1150  	seg->limit = 0xffff;
1151  	seg->base = 0;
1152  }
1153  
svm_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1154  static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1155  {
1156  	struct vcpu_svm *svm = to_svm(vcpu);
1157  
1158  	return svm->nested.ctl.tsc_offset;
1159  }
1160  
svm_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1161  static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1162  {
1163  	struct vcpu_svm *svm = to_svm(vcpu);
1164  
1165  	return svm->tsc_ratio_msr;
1166  }
1167  
svm_write_tsc_offset(struct kvm_vcpu * vcpu)1168  static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
1169  {
1170  	struct vcpu_svm *svm = to_svm(vcpu);
1171  
1172  	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1173  	svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
1174  	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1175  }
1176  
svm_write_tsc_multiplier(struct kvm_vcpu * vcpu)1177  void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1178  {
1179  	preempt_disable();
1180  	if (to_svm(vcpu)->guest_state_loaded)
1181  		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1182  	preempt_enable();
1183  }
1184  
1185  /* Evaluate instruction intercepts that depend on guest CPUID features. */
svm_recalc_instruction_intercepts(struct kvm_vcpu * vcpu,struct vcpu_svm * svm)1186  static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1187  					      struct vcpu_svm *svm)
1188  {
1189  	/*
1190  	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1191  	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1192  	 */
1193  	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1194  		if (!npt_enabled ||
1195  		    !guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID))
1196  			svm_set_intercept(svm, INTERCEPT_INVPCID);
1197  		else
1198  			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1199  	}
1200  
1201  	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1202  		if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP))
1203  			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1204  		else
1205  			svm_set_intercept(svm, INTERCEPT_RDTSCP);
1206  	}
1207  }
1208  
init_vmcb_after_set_cpuid(struct kvm_vcpu * vcpu)1209  static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1210  {
1211  	struct vcpu_svm *svm = to_svm(vcpu);
1212  
1213  	if (guest_cpuid_is_intel_compatible(vcpu)) {
1214  		/*
1215  		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1216  		 * accesses because the processor only stores 32 bits.
1217  		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1218  		 */
1219  		svm_set_intercept(svm, INTERCEPT_VMLOAD);
1220  		svm_set_intercept(svm, INTERCEPT_VMSAVE);
1221  		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1222  
1223  		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1224  		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1225  	} else {
1226  		/*
1227  		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1228  		 * in VMCB and clear intercepts to avoid #VMEXIT.
1229  		 */
1230  		if (vls) {
1231  			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1232  			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1233  			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1234  		}
1235  		/* No need to intercept these MSRs */
1236  		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1237  		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1238  	}
1239  }
1240  
init_vmcb(struct kvm_vcpu * vcpu)1241  static void init_vmcb(struct kvm_vcpu *vcpu)
1242  {
1243  	struct vcpu_svm *svm = to_svm(vcpu);
1244  	struct vmcb *vmcb = svm->vmcb01.ptr;
1245  	struct vmcb_control_area *control = &vmcb->control;
1246  	struct vmcb_save_area *save = &vmcb->save;
1247  
1248  	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1249  	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1250  	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1251  	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1252  	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1253  	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1254  	if (!kvm_vcpu_apicv_active(vcpu))
1255  		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1256  
1257  	set_dr_intercepts(svm);
1258  
1259  	set_exception_intercept(svm, PF_VECTOR);
1260  	set_exception_intercept(svm, UD_VECTOR);
1261  	set_exception_intercept(svm, MC_VECTOR);
1262  	set_exception_intercept(svm, AC_VECTOR);
1263  	set_exception_intercept(svm, DB_VECTOR);
1264  	/*
1265  	 * Guest access to VMware backdoor ports could legitimately
1266  	 * trigger #GP because of TSS I/O permission bitmap.
1267  	 * We intercept those #GP and allow access to them anyway
1268  	 * as VMware does.
1269  	 */
1270  	if (enable_vmware_backdoor)
1271  		set_exception_intercept(svm, GP_VECTOR);
1272  
1273  	svm_set_intercept(svm, INTERCEPT_INTR);
1274  	svm_set_intercept(svm, INTERCEPT_NMI);
1275  
1276  	if (intercept_smi)
1277  		svm_set_intercept(svm, INTERCEPT_SMI);
1278  
1279  	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1280  	svm_set_intercept(svm, INTERCEPT_RDPMC);
1281  	svm_set_intercept(svm, INTERCEPT_CPUID);
1282  	svm_set_intercept(svm, INTERCEPT_INVD);
1283  	svm_set_intercept(svm, INTERCEPT_INVLPG);
1284  	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1285  	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1286  	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1287  	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1288  	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1289  	svm_set_intercept(svm, INTERCEPT_VMRUN);
1290  	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1291  	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1292  	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1293  	svm_set_intercept(svm, INTERCEPT_STGI);
1294  	svm_set_intercept(svm, INTERCEPT_CLGI);
1295  	svm_set_intercept(svm, INTERCEPT_SKINIT);
1296  	svm_set_intercept(svm, INTERCEPT_WBINVD);
1297  	svm_set_intercept(svm, INTERCEPT_XSETBV);
1298  	svm_set_intercept(svm, INTERCEPT_RDPRU);
1299  	svm_set_intercept(svm, INTERCEPT_RSM);
1300  
1301  	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1302  		svm_set_intercept(svm, INTERCEPT_MONITOR);
1303  		svm_set_intercept(svm, INTERCEPT_MWAIT);
1304  	}
1305  
1306  	if (!kvm_hlt_in_guest(vcpu->kvm)) {
1307  		if (cpu_feature_enabled(X86_FEATURE_IDLE_HLT))
1308  			svm_set_intercept(svm, INTERCEPT_IDLE_HLT);
1309  		else
1310  			svm_set_intercept(svm, INTERCEPT_HLT);
1311  	}
1312  
1313  	control->iopm_base_pa = iopm_base;
1314  	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1315  	control->int_ctl = V_INTR_MASKING_MASK;
1316  
1317  	init_seg(&save->es);
1318  	init_seg(&save->ss);
1319  	init_seg(&save->ds);
1320  	init_seg(&save->fs);
1321  	init_seg(&save->gs);
1322  
1323  	save->cs.selector = 0xf000;
1324  	save->cs.base = 0xffff0000;
1325  	/* Executable/Readable Code Segment */
1326  	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1327  		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1328  	save->cs.limit = 0xffff;
1329  
1330  	save->gdtr.base = 0;
1331  	save->gdtr.limit = 0xffff;
1332  	save->idtr.base = 0;
1333  	save->idtr.limit = 0xffff;
1334  
1335  	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1336  	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1337  
1338  	if (npt_enabled) {
1339  		/* Setup VMCB for Nested Paging */
1340  		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1341  		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1342  		clr_exception_intercept(svm, PF_VECTOR);
1343  		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1344  		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1345  		save->g_pat = vcpu->arch.pat;
1346  		save->cr3 = 0;
1347  	}
1348  	svm->current_vmcb->asid_generation = 0;
1349  	svm->asid = 0;
1350  
1351  	svm->nested.vmcb12_gpa = INVALID_GPA;
1352  	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1353  
1354  	if (!kvm_pause_in_guest(vcpu->kvm)) {
1355  		control->pause_filter_count = pause_filter_count;
1356  		if (pause_filter_thresh)
1357  			control->pause_filter_thresh = pause_filter_thresh;
1358  		svm_set_intercept(svm, INTERCEPT_PAUSE);
1359  	} else {
1360  		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1361  	}
1362  
1363  	svm_recalc_instruction_intercepts(vcpu, svm);
1364  
1365  	/*
1366  	 * If the host supports V_SPEC_CTRL then disable the interception
1367  	 * of MSR_IA32_SPEC_CTRL.
1368  	 */
1369  	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1370  		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1371  
1372  	if (kvm_vcpu_apicv_active(vcpu))
1373  		avic_init_vmcb(svm, vmcb);
1374  
1375  	if (vnmi)
1376  		svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1377  
1378  	if (vgif) {
1379  		svm_clr_intercept(svm, INTERCEPT_STGI);
1380  		svm_clr_intercept(svm, INTERCEPT_CLGI);
1381  		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1382  	}
1383  
1384  	if (sev_guest(vcpu->kvm))
1385  		sev_init_vmcb(svm);
1386  
1387  	svm_hv_init_vmcb(vmcb);
1388  	init_vmcb_after_set_cpuid(vcpu);
1389  
1390  	vmcb_mark_all_dirty(vmcb);
1391  
1392  	enable_gif(svm);
1393  }
1394  
__svm_vcpu_reset(struct kvm_vcpu * vcpu)1395  static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1396  {
1397  	struct vcpu_svm *svm = to_svm(vcpu);
1398  
1399  	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1400  
1401  	svm_init_osvw(vcpu);
1402  
1403  	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
1404  		vcpu->arch.microcode_version = 0x01000065;
1405  	svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1406  
1407  	svm->nmi_masked = false;
1408  	svm->awaiting_iret_completion = false;
1409  
1410  	if (sev_es_guest(vcpu->kvm))
1411  		sev_es_vcpu_reset(svm);
1412  }
1413  
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)1414  static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1415  {
1416  	struct vcpu_svm *svm = to_svm(vcpu);
1417  
1418  	svm->spec_ctrl = 0;
1419  	svm->virt_spec_ctrl = 0;
1420  
1421  	if (init_event)
1422  		sev_snp_init_protected_guest_state(vcpu);
1423  
1424  	init_vmcb(vcpu);
1425  
1426  	if (!init_event)
1427  		__svm_vcpu_reset(vcpu);
1428  }
1429  
svm_switch_vmcb(struct vcpu_svm * svm,struct kvm_vmcb_info * target_vmcb)1430  void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1431  {
1432  	svm->current_vmcb = target_vmcb;
1433  	svm->vmcb = target_vmcb->ptr;
1434  }
1435  
svm_vcpu_create(struct kvm_vcpu * vcpu)1436  static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1437  {
1438  	struct vcpu_svm *svm;
1439  	struct page *vmcb01_page;
1440  	struct page *vmsa_page = NULL;
1441  	int err;
1442  
1443  	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1444  	svm = to_svm(vcpu);
1445  
1446  	err = -ENOMEM;
1447  	vmcb01_page = snp_safe_alloc_page();
1448  	if (!vmcb01_page)
1449  		goto out;
1450  
1451  	if (sev_es_guest(vcpu->kvm)) {
1452  		/*
1453  		 * SEV-ES guests require a separate VMSA page used to contain
1454  		 * the encrypted register state of the guest.
1455  		 */
1456  		vmsa_page = snp_safe_alloc_page();
1457  		if (!vmsa_page)
1458  			goto error_free_vmcb_page;
1459  	}
1460  
1461  	err = avic_init_vcpu(svm);
1462  	if (err)
1463  		goto error_free_vmsa_page;
1464  
1465  	svm->msrpm = svm_vcpu_alloc_msrpm();
1466  	if (!svm->msrpm) {
1467  		err = -ENOMEM;
1468  		goto error_free_vmsa_page;
1469  	}
1470  
1471  	svm->x2avic_msrs_intercepted = true;
1472  
1473  	svm->vmcb01.ptr = page_address(vmcb01_page);
1474  	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1475  	svm_switch_vmcb(svm, &svm->vmcb01);
1476  
1477  	if (vmsa_page)
1478  		svm->sev_es.vmsa = page_address(vmsa_page);
1479  
1480  	svm->guest_state_loaded = false;
1481  
1482  	return 0;
1483  
1484  error_free_vmsa_page:
1485  	if (vmsa_page)
1486  		__free_page(vmsa_page);
1487  error_free_vmcb_page:
1488  	__free_page(vmcb01_page);
1489  out:
1490  	return err;
1491  }
1492  
svm_clear_current_vmcb(struct vmcb * vmcb)1493  static void svm_clear_current_vmcb(struct vmcb *vmcb)
1494  {
1495  	int i;
1496  
1497  	for_each_online_cpu(i)
1498  		cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1499  }
1500  
svm_vcpu_free(struct kvm_vcpu * vcpu)1501  static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1502  {
1503  	struct vcpu_svm *svm = to_svm(vcpu);
1504  
1505  	/*
1506  	 * The vmcb page can be recycled, causing a false negative in
1507  	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1508  	 * vmcb page recorded as its current vmcb.
1509  	 */
1510  	svm_clear_current_vmcb(svm->vmcb);
1511  
1512  	svm_leave_nested(vcpu);
1513  	svm_free_nested(svm);
1514  
1515  	sev_free_vcpu(vcpu);
1516  
1517  	__free_page(__sme_pa_to_page(svm->vmcb01.pa));
1518  	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1519  }
1520  
svm_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1521  static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1522  {
1523  	struct vcpu_svm *svm = to_svm(vcpu);
1524  	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1525  
1526  	if (sev_es_guest(vcpu->kvm))
1527  		sev_es_unmap_ghcb(svm);
1528  
1529  	if (svm->guest_state_loaded)
1530  		return;
1531  
1532  	/*
1533  	 * Save additional host state that will be restored on VMEXIT (sev-es)
1534  	 * or subsequent vmload of host save area.
1535  	 */
1536  	vmsave(sd->save_area_pa);
1537  	if (sev_es_guest(vcpu->kvm))
1538  		sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd));
1539  
1540  	if (tsc_scaling)
1541  		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1542  
1543  	/*
1544  	 * TSC_AUX is always virtualized for SEV-ES guests when the feature is
1545  	 * available. The user return MSR support is not required in this case
1546  	 * because TSC_AUX is restored on #VMEXIT from the host save area
1547  	 * (which has been initialized in svm_enable_virtualization_cpu()).
1548  	 */
1549  	if (likely(tsc_aux_uret_slot >= 0) &&
1550  	    (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1551  		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1552  
1553  	svm->guest_state_loaded = true;
1554  }
1555  
svm_prepare_host_switch(struct kvm_vcpu * vcpu)1556  static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1557  {
1558  	to_svm(vcpu)->guest_state_loaded = false;
1559  }
1560  
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1561  static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1562  {
1563  	struct vcpu_svm *svm = to_svm(vcpu);
1564  	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1565  
1566  	if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1567  		shrink_ple_window(vcpu);
1568  
1569  	if (sd->current_vmcb != svm->vmcb) {
1570  		sd->current_vmcb = svm->vmcb;
1571  
1572  		if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT) &&
1573  		    static_branch_likely(&switch_vcpu_ibpb))
1574  			indirect_branch_prediction_barrier();
1575  	}
1576  	if (kvm_vcpu_apicv_active(vcpu))
1577  		avic_vcpu_load(vcpu, cpu);
1578  }
1579  
svm_vcpu_put(struct kvm_vcpu * vcpu)1580  static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1581  {
1582  	if (kvm_vcpu_apicv_active(vcpu))
1583  		avic_vcpu_put(vcpu);
1584  
1585  	svm_prepare_host_switch(vcpu);
1586  
1587  	++vcpu->stat.host_state_reload;
1588  }
1589  
svm_get_rflags(struct kvm_vcpu * vcpu)1590  static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1591  {
1592  	struct vcpu_svm *svm = to_svm(vcpu);
1593  	unsigned long rflags = svm->vmcb->save.rflags;
1594  
1595  	if (svm->nmi_singlestep) {
1596  		/* Hide our flags if they were not set by the guest */
1597  		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1598  			rflags &= ~X86_EFLAGS_TF;
1599  		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1600  			rflags &= ~X86_EFLAGS_RF;
1601  	}
1602  	return rflags;
1603  }
1604  
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1605  static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1606  {
1607  	if (to_svm(vcpu)->nmi_singlestep)
1608  		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1609  
1610         /*
1611          * Any change of EFLAGS.VM is accompanied by a reload of SS
1612          * (caused by either a task switch or an inter-privilege IRET),
1613          * so we do not need to update the CPL here.
1614          */
1615  	to_svm(vcpu)->vmcb->save.rflags = rflags;
1616  }
1617  
svm_get_if_flag(struct kvm_vcpu * vcpu)1618  static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1619  {
1620  	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1621  
1622  	return sev_es_guest(vcpu->kvm)
1623  		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1624  		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1625  }
1626  
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1627  static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1628  {
1629  	kvm_register_mark_available(vcpu, reg);
1630  
1631  	switch (reg) {
1632  	case VCPU_EXREG_PDPTR:
1633  		/*
1634  		 * When !npt_enabled, mmu->pdptrs[] is already available since
1635  		 * it is always updated per SDM when moving to CRs.
1636  		 */
1637  		if (npt_enabled)
1638  			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1639  		break;
1640  	default:
1641  		KVM_BUG_ON(1, vcpu->kvm);
1642  	}
1643  }
1644  
svm_set_vintr(struct vcpu_svm * svm)1645  static void svm_set_vintr(struct vcpu_svm *svm)
1646  {
1647  	struct vmcb_control_area *control;
1648  
1649  	/*
1650  	 * The following fields are ignored when AVIC is enabled
1651  	 */
1652  	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1653  
1654  	svm_set_intercept(svm, INTERCEPT_VINTR);
1655  
1656  	/*
1657  	 * Recalculating intercepts may have cleared the VINTR intercept.  If
1658  	 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1659  	 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1660  	 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1661  	 * interrupts will never be unblocked while L2 is running.
1662  	 */
1663  	if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1664  		return;
1665  
1666  	/*
1667  	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1668  	 * Actual injection of virtual interrupts happens through EVENTINJ.
1669  	 */
1670  	control = &svm->vmcb->control;
1671  	control->int_vector = 0x0;
1672  	control->int_ctl &= ~V_INTR_PRIO_MASK;
1673  	control->int_ctl |= V_IRQ_MASK |
1674  		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1675  	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1676  }
1677  
svm_clear_vintr(struct vcpu_svm * svm)1678  static void svm_clear_vintr(struct vcpu_svm *svm)
1679  {
1680  	svm_clr_intercept(svm, INTERCEPT_VINTR);
1681  
1682  	/* Drop int_ctl fields related to VINTR injection.  */
1683  	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1684  	if (is_guest_mode(&svm->vcpu)) {
1685  		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1686  
1687  		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1688  			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1689  
1690  		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1691  			V_IRQ_INJECTION_BITS_MASK;
1692  
1693  		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1694  	}
1695  
1696  	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1697  }
1698  
svm_seg(struct kvm_vcpu * vcpu,int seg)1699  static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1700  {
1701  	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1702  	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1703  
1704  	switch (seg) {
1705  	case VCPU_SREG_CS: return &save->cs;
1706  	case VCPU_SREG_DS: return &save->ds;
1707  	case VCPU_SREG_ES: return &save->es;
1708  	case VCPU_SREG_FS: return &save01->fs;
1709  	case VCPU_SREG_GS: return &save01->gs;
1710  	case VCPU_SREG_SS: return &save->ss;
1711  	case VCPU_SREG_TR: return &save01->tr;
1712  	case VCPU_SREG_LDTR: return &save01->ldtr;
1713  	}
1714  	BUG();
1715  	return NULL;
1716  }
1717  
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1718  static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1719  {
1720  	struct vmcb_seg *s = svm_seg(vcpu, seg);
1721  
1722  	return s->base;
1723  }
1724  
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1725  static void svm_get_segment(struct kvm_vcpu *vcpu,
1726  			    struct kvm_segment *var, int seg)
1727  {
1728  	struct vmcb_seg *s = svm_seg(vcpu, seg);
1729  
1730  	var->base = s->base;
1731  	var->limit = s->limit;
1732  	var->selector = s->selector;
1733  	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1734  	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1735  	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1736  	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1737  	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1738  	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1739  	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1740  
1741  	/*
1742  	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1743  	 * However, the SVM spec states that the G bit is not observed by the
1744  	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1745  	 * So let's synthesize a legal G bit for all segments, this helps
1746  	 * running KVM nested. It also helps cross-vendor migration, because
1747  	 * Intel's vmentry has a check on the 'G' bit.
1748  	 */
1749  	var->g = s->limit > 0xfffff;
1750  
1751  	/*
1752  	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1753  	 * for cross vendor migration purposes by "not present"
1754  	 */
1755  	var->unusable = !var->present;
1756  
1757  	switch (seg) {
1758  	case VCPU_SREG_TR:
1759  		/*
1760  		 * Work around a bug where the busy flag in the tr selector
1761  		 * isn't exposed
1762  		 */
1763  		var->type |= 0x2;
1764  		break;
1765  	case VCPU_SREG_DS:
1766  	case VCPU_SREG_ES:
1767  	case VCPU_SREG_FS:
1768  	case VCPU_SREG_GS:
1769  		/*
1770  		 * The accessed bit must always be set in the segment
1771  		 * descriptor cache, although it can be cleared in the
1772  		 * descriptor, the cached bit always remains at 1. Since
1773  		 * Intel has a check on this, set it here to support
1774  		 * cross-vendor migration.
1775  		 */
1776  		if (!var->unusable)
1777  			var->type |= 0x1;
1778  		break;
1779  	case VCPU_SREG_SS:
1780  		/*
1781  		 * On AMD CPUs sometimes the DB bit in the segment
1782  		 * descriptor is left as 1, although the whole segment has
1783  		 * been made unusable. Clear it here to pass an Intel VMX
1784  		 * entry check when cross vendor migrating.
1785  		 */
1786  		if (var->unusable)
1787  			var->db = 0;
1788  		/* This is symmetric with svm_set_segment() */
1789  		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1790  		break;
1791  	}
1792  }
1793  
svm_get_cpl(struct kvm_vcpu * vcpu)1794  static int svm_get_cpl(struct kvm_vcpu *vcpu)
1795  {
1796  	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1797  
1798  	return save->cpl;
1799  }
1800  
svm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)1801  static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1802  {
1803  	struct kvm_segment cs;
1804  
1805  	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1806  	*db = cs.db;
1807  	*l = cs.l;
1808  }
1809  
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1810  static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1811  {
1812  	struct vcpu_svm *svm = to_svm(vcpu);
1813  
1814  	dt->size = svm->vmcb->save.idtr.limit;
1815  	dt->address = svm->vmcb->save.idtr.base;
1816  }
1817  
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1818  static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1819  {
1820  	struct vcpu_svm *svm = to_svm(vcpu);
1821  
1822  	svm->vmcb->save.idtr.limit = dt->size;
1823  	svm->vmcb->save.idtr.base = dt->address ;
1824  	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1825  }
1826  
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1827  static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1828  {
1829  	struct vcpu_svm *svm = to_svm(vcpu);
1830  
1831  	dt->size = svm->vmcb->save.gdtr.limit;
1832  	dt->address = svm->vmcb->save.gdtr.base;
1833  }
1834  
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1835  static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1836  {
1837  	struct vcpu_svm *svm = to_svm(vcpu);
1838  
1839  	svm->vmcb->save.gdtr.limit = dt->size;
1840  	svm->vmcb->save.gdtr.base = dt->address ;
1841  	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1842  }
1843  
sev_post_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1844  static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1845  {
1846  	struct vcpu_svm *svm = to_svm(vcpu);
1847  
1848  	/*
1849  	 * For guests that don't set guest_state_protected, the cr3 update is
1850  	 * handled via kvm_mmu_load() while entering the guest. For guests
1851  	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1852  	 * VMCB save area now, since the save area will become the initial
1853  	 * contents of the VMSA, and future VMCB save area updates won't be
1854  	 * seen.
1855  	 */
1856  	if (sev_es_guest(vcpu->kvm)) {
1857  		svm->vmcb->save.cr3 = cr3;
1858  		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1859  	}
1860  }
1861  
svm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1862  static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1863  {
1864  	return true;
1865  }
1866  
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1867  void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1868  {
1869  	struct vcpu_svm *svm = to_svm(vcpu);
1870  	u64 hcr0 = cr0;
1871  	bool old_paging = is_paging(vcpu);
1872  
1873  #ifdef CONFIG_X86_64
1874  	if (vcpu->arch.efer & EFER_LME) {
1875  		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1876  			vcpu->arch.efer |= EFER_LMA;
1877  			if (!vcpu->arch.guest_state_protected)
1878  				svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1879  		}
1880  
1881  		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1882  			vcpu->arch.efer &= ~EFER_LMA;
1883  			if (!vcpu->arch.guest_state_protected)
1884  				svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1885  		}
1886  	}
1887  #endif
1888  	vcpu->arch.cr0 = cr0;
1889  
1890  	if (!npt_enabled) {
1891  		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1892  		if (old_paging != is_paging(vcpu))
1893  			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1894  	}
1895  
1896  	/*
1897  	 * re-enable caching here because the QEMU bios
1898  	 * does not do it - this results in some delay at
1899  	 * reboot
1900  	 */
1901  	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1902  		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1903  
1904  	svm->vmcb->save.cr0 = hcr0;
1905  	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1906  
1907  	/*
1908  	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1909  	 * tracking is done using the CR write traps.
1910  	 */
1911  	if (sev_es_guest(vcpu->kvm))
1912  		return;
1913  
1914  	if (hcr0 == cr0) {
1915  		/* Selective CR0 write remains on.  */
1916  		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1917  		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1918  	} else {
1919  		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1920  		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1921  	}
1922  }
1923  
svm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1924  static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1925  {
1926  	return true;
1927  }
1928  
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1929  void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1930  {
1931  	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1932  	unsigned long old_cr4 = vcpu->arch.cr4;
1933  
1934  	vcpu->arch.cr4 = cr4;
1935  	if (!npt_enabled) {
1936  		cr4 |= X86_CR4_PAE;
1937  
1938  		if (!is_paging(vcpu))
1939  			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1940  	}
1941  	cr4 |= host_cr4_mce;
1942  	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1943  	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1944  
1945  	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1946  		vcpu->arch.cpuid_dynamic_bits_dirty = true;
1947  }
1948  
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1949  static void svm_set_segment(struct kvm_vcpu *vcpu,
1950  			    struct kvm_segment *var, int seg)
1951  {
1952  	struct vcpu_svm *svm = to_svm(vcpu);
1953  	struct vmcb_seg *s = svm_seg(vcpu, seg);
1954  
1955  	s->base = var->base;
1956  	s->limit = var->limit;
1957  	s->selector = var->selector;
1958  	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1959  	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1960  	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1961  	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1962  	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1963  	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1964  	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1965  	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1966  
1967  	/*
1968  	 * This is always accurate, except if SYSRET returned to a segment
1969  	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1970  	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1971  	 * would entail passing the CPL to userspace and back.
1972  	 */
1973  	if (seg == VCPU_SREG_SS)
1974  		/* This is symmetric with svm_get_segment() */
1975  		svm->vmcb->save.cpl = (var->dpl & 3);
1976  
1977  	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1978  }
1979  
svm_update_exception_bitmap(struct kvm_vcpu * vcpu)1980  static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1981  {
1982  	struct vcpu_svm *svm = to_svm(vcpu);
1983  
1984  	clr_exception_intercept(svm, BP_VECTOR);
1985  
1986  	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1987  		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1988  			set_exception_intercept(svm, BP_VECTOR);
1989  	}
1990  }
1991  
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)1992  static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1993  {
1994  	if (sd->next_asid > sd->max_asid) {
1995  		++sd->asid_generation;
1996  		sd->next_asid = sd->min_asid;
1997  		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1998  		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1999  	}
2000  
2001  	svm->current_vmcb->asid_generation = sd->asid_generation;
2002  	svm->asid = sd->next_asid++;
2003  }
2004  
svm_set_dr6(struct kvm_vcpu * vcpu,unsigned long value)2005  static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2006  {
2007  	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
2008  
2009  	if (vcpu->arch.guest_state_protected)
2010  		return;
2011  
2012  	if (unlikely(value != vmcb->save.dr6)) {
2013  		vmcb->save.dr6 = value;
2014  		vmcb_mark_dirty(vmcb, VMCB_DR);
2015  	}
2016  }
2017  
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)2018  static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2019  {
2020  	struct vcpu_svm *svm = to_svm(vcpu);
2021  
2022  	if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
2023  		return;
2024  
2025  	get_debugreg(vcpu->arch.db[0], 0);
2026  	get_debugreg(vcpu->arch.db[1], 1);
2027  	get_debugreg(vcpu->arch.db[2], 2);
2028  	get_debugreg(vcpu->arch.db[3], 3);
2029  	/*
2030  	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
2031  	 * because db_interception might need it.  We can do it before vmentry.
2032  	 */
2033  	vcpu->arch.dr6 = svm->vmcb->save.dr6;
2034  	vcpu->arch.dr7 = svm->vmcb->save.dr7;
2035  	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2036  	set_dr_intercepts(svm);
2037  }
2038  
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)2039  static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2040  {
2041  	struct vcpu_svm *svm = to_svm(vcpu);
2042  
2043  	if (vcpu->arch.guest_state_protected)
2044  		return;
2045  
2046  	svm->vmcb->save.dr7 = value;
2047  	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
2048  }
2049  
pf_interception(struct kvm_vcpu * vcpu)2050  static int pf_interception(struct kvm_vcpu *vcpu)
2051  {
2052  	struct vcpu_svm *svm = to_svm(vcpu);
2053  
2054  	u64 fault_address = svm->vmcb->control.exit_info_2;
2055  	u64 error_code = svm->vmcb->control.exit_info_1;
2056  
2057  	return kvm_handle_page_fault(vcpu, error_code, fault_address,
2058  			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2059  			svm->vmcb->control.insn_bytes : NULL,
2060  			svm->vmcb->control.insn_len);
2061  }
2062  
npf_interception(struct kvm_vcpu * vcpu)2063  static int npf_interception(struct kvm_vcpu *vcpu)
2064  {
2065  	struct vcpu_svm *svm = to_svm(vcpu);
2066  	int rc;
2067  
2068  	u64 fault_address = svm->vmcb->control.exit_info_2;
2069  	u64 error_code = svm->vmcb->control.exit_info_1;
2070  
2071  	/*
2072  	 * WARN if hardware generates a fault with an error code that collides
2073  	 * with KVM-defined sythentic flags.  Clear the flags and continue on,
2074  	 * i.e. don't terminate the VM, as KVM can't possibly be relying on a
2075  	 * flag that KVM doesn't know about.
2076  	 */
2077  	if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK))
2078  		error_code &= ~PFERR_SYNTHETIC_MASK;
2079  
2080  	if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK))
2081  		error_code |= PFERR_PRIVATE_ACCESS;
2082  
2083  	trace_kvm_page_fault(vcpu, fault_address, error_code);
2084  	rc = kvm_mmu_page_fault(vcpu, fault_address, error_code,
2085  				static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2086  				svm->vmcb->control.insn_bytes : NULL,
2087  				svm->vmcb->control.insn_len);
2088  
2089  	if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK)
2090  		sev_handle_rmp_fault(vcpu, fault_address, error_code);
2091  
2092  	return rc;
2093  }
2094  
db_interception(struct kvm_vcpu * vcpu)2095  static int db_interception(struct kvm_vcpu *vcpu)
2096  {
2097  	struct kvm_run *kvm_run = vcpu->run;
2098  	struct vcpu_svm *svm = to_svm(vcpu);
2099  
2100  	if (!(vcpu->guest_debug &
2101  	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2102  		!svm->nmi_singlestep) {
2103  		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2104  		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2105  		return 1;
2106  	}
2107  
2108  	if (svm->nmi_singlestep) {
2109  		disable_nmi_singlestep(svm);
2110  		/* Make sure we check for pending NMIs upon entry */
2111  		kvm_make_request(KVM_REQ_EVENT, vcpu);
2112  	}
2113  
2114  	if (vcpu->guest_debug &
2115  	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2116  		kvm_run->exit_reason = KVM_EXIT_DEBUG;
2117  		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2118  		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2119  		kvm_run->debug.arch.pc =
2120  			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2121  		kvm_run->debug.arch.exception = DB_VECTOR;
2122  		return 0;
2123  	}
2124  
2125  	return 1;
2126  }
2127  
bp_interception(struct kvm_vcpu * vcpu)2128  static int bp_interception(struct kvm_vcpu *vcpu)
2129  {
2130  	struct vcpu_svm *svm = to_svm(vcpu);
2131  	struct kvm_run *kvm_run = vcpu->run;
2132  
2133  	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2134  	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2135  	kvm_run->debug.arch.exception = BP_VECTOR;
2136  	return 0;
2137  }
2138  
ud_interception(struct kvm_vcpu * vcpu)2139  static int ud_interception(struct kvm_vcpu *vcpu)
2140  {
2141  	return handle_ud(vcpu);
2142  }
2143  
ac_interception(struct kvm_vcpu * vcpu)2144  static int ac_interception(struct kvm_vcpu *vcpu)
2145  {
2146  	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2147  	return 1;
2148  }
2149  
is_erratum_383(void)2150  static bool is_erratum_383(void)
2151  {
2152  	int err, i;
2153  	u64 value;
2154  
2155  	if (!erratum_383_found)
2156  		return false;
2157  
2158  	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2159  	if (err)
2160  		return false;
2161  
2162  	/* Bit 62 may or may not be set for this mce */
2163  	value &= ~(1ULL << 62);
2164  
2165  	if (value != 0xb600000000010015ULL)
2166  		return false;
2167  
2168  	/* Clear MCi_STATUS registers */
2169  	for (i = 0; i < 6; ++i)
2170  		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2171  
2172  	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2173  	if (!err) {
2174  		u32 low, high;
2175  
2176  		value &= ~(1ULL << 2);
2177  		low    = lower_32_bits(value);
2178  		high   = upper_32_bits(value);
2179  
2180  		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2181  	}
2182  
2183  	/* Flush tlb to evict multi-match entries */
2184  	__flush_tlb_all();
2185  
2186  	return true;
2187  }
2188  
svm_handle_mce(struct kvm_vcpu * vcpu)2189  static void svm_handle_mce(struct kvm_vcpu *vcpu)
2190  {
2191  	if (is_erratum_383()) {
2192  		/*
2193  		 * Erratum 383 triggered. Guest state is corrupt so kill the
2194  		 * guest.
2195  		 */
2196  		pr_err("Guest triggered AMD Erratum 383\n");
2197  
2198  		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2199  
2200  		return;
2201  	}
2202  
2203  	/*
2204  	 * On an #MC intercept the MCE handler is not called automatically in
2205  	 * the host. So do it by hand here.
2206  	 */
2207  	kvm_machine_check();
2208  }
2209  
mc_interception(struct kvm_vcpu * vcpu)2210  static int mc_interception(struct kvm_vcpu *vcpu)
2211  {
2212  	return 1;
2213  }
2214  
shutdown_interception(struct kvm_vcpu * vcpu)2215  static int shutdown_interception(struct kvm_vcpu *vcpu)
2216  {
2217  	struct kvm_run *kvm_run = vcpu->run;
2218  	struct vcpu_svm *svm = to_svm(vcpu);
2219  
2220  
2221  	/*
2222  	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2223  	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2224  	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2225  	 * userspace.  At a platform view, INIT is acceptable behavior as
2226  	 * there exist bare metal platforms that automatically INIT the CPU
2227  	 * in response to shutdown.
2228  	 *
2229  	 * The VM save area for SEV-ES guests has already been encrypted so it
2230  	 * cannot be reinitialized, i.e. synthesizing INIT is futile.
2231  	 */
2232  	if (!sev_es_guest(vcpu->kvm)) {
2233  		clear_page(svm->vmcb);
2234  		kvm_vcpu_reset(vcpu, true);
2235  	}
2236  
2237  	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2238  	return 0;
2239  }
2240  
io_interception(struct kvm_vcpu * vcpu)2241  static int io_interception(struct kvm_vcpu *vcpu)
2242  {
2243  	struct vcpu_svm *svm = to_svm(vcpu);
2244  	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2245  	int size, in, string;
2246  	unsigned port;
2247  
2248  	++vcpu->stat.io_exits;
2249  	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2250  	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2251  	port = io_info >> 16;
2252  	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2253  
2254  	if (string) {
2255  		if (sev_es_guest(vcpu->kvm))
2256  			return sev_es_string_io(svm, size, port, in);
2257  		else
2258  			return kvm_emulate_instruction(vcpu, 0);
2259  	}
2260  
2261  	svm->next_rip = svm->vmcb->control.exit_info_2;
2262  
2263  	return kvm_fast_pio(vcpu, size, port, in);
2264  }
2265  
nmi_interception(struct kvm_vcpu * vcpu)2266  static int nmi_interception(struct kvm_vcpu *vcpu)
2267  {
2268  	return 1;
2269  }
2270  
smi_interception(struct kvm_vcpu * vcpu)2271  static int smi_interception(struct kvm_vcpu *vcpu)
2272  {
2273  	return 1;
2274  }
2275  
intr_interception(struct kvm_vcpu * vcpu)2276  static int intr_interception(struct kvm_vcpu *vcpu)
2277  {
2278  	++vcpu->stat.irq_exits;
2279  	return 1;
2280  }
2281  
vmload_vmsave_interception(struct kvm_vcpu * vcpu,bool vmload)2282  static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2283  {
2284  	struct vcpu_svm *svm = to_svm(vcpu);
2285  	struct vmcb *vmcb12;
2286  	struct kvm_host_map map;
2287  	int ret;
2288  
2289  	if (nested_svm_check_permissions(vcpu))
2290  		return 1;
2291  
2292  	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2293  	if (ret) {
2294  		if (ret == -EINVAL)
2295  			kvm_inject_gp(vcpu, 0);
2296  		return 1;
2297  	}
2298  
2299  	vmcb12 = map.hva;
2300  
2301  	ret = kvm_skip_emulated_instruction(vcpu);
2302  
2303  	if (vmload) {
2304  		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2305  		svm->sysenter_eip_hi = 0;
2306  		svm->sysenter_esp_hi = 0;
2307  	} else {
2308  		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2309  	}
2310  
2311  	kvm_vcpu_unmap(vcpu, &map);
2312  
2313  	return ret;
2314  }
2315  
vmload_interception(struct kvm_vcpu * vcpu)2316  static int vmload_interception(struct kvm_vcpu *vcpu)
2317  {
2318  	return vmload_vmsave_interception(vcpu, true);
2319  }
2320  
vmsave_interception(struct kvm_vcpu * vcpu)2321  static int vmsave_interception(struct kvm_vcpu *vcpu)
2322  {
2323  	return vmload_vmsave_interception(vcpu, false);
2324  }
2325  
vmrun_interception(struct kvm_vcpu * vcpu)2326  static int vmrun_interception(struct kvm_vcpu *vcpu)
2327  {
2328  	if (nested_svm_check_permissions(vcpu))
2329  		return 1;
2330  
2331  	return nested_svm_vmrun(vcpu);
2332  }
2333  
2334  enum {
2335  	NONE_SVM_INSTR,
2336  	SVM_INSTR_VMRUN,
2337  	SVM_INSTR_VMLOAD,
2338  	SVM_INSTR_VMSAVE,
2339  };
2340  
2341  /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
svm_instr_opcode(struct kvm_vcpu * vcpu)2342  static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2343  {
2344  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2345  
2346  	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2347  		return NONE_SVM_INSTR;
2348  
2349  	switch (ctxt->modrm) {
2350  	case 0xd8: /* VMRUN */
2351  		return SVM_INSTR_VMRUN;
2352  	case 0xda: /* VMLOAD */
2353  		return SVM_INSTR_VMLOAD;
2354  	case 0xdb: /* VMSAVE */
2355  		return SVM_INSTR_VMSAVE;
2356  	default:
2357  		break;
2358  	}
2359  
2360  	return NONE_SVM_INSTR;
2361  }
2362  
emulate_svm_instr(struct kvm_vcpu * vcpu,int opcode)2363  static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2364  {
2365  	const int guest_mode_exit_codes[] = {
2366  		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2367  		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2368  		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2369  	};
2370  	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2371  		[SVM_INSTR_VMRUN] = vmrun_interception,
2372  		[SVM_INSTR_VMLOAD] = vmload_interception,
2373  		[SVM_INSTR_VMSAVE] = vmsave_interception,
2374  	};
2375  	struct vcpu_svm *svm = to_svm(vcpu);
2376  	int ret;
2377  
2378  	if (is_guest_mode(vcpu)) {
2379  		/* Returns '1' or -errno on failure, '0' on success. */
2380  		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2381  		if (ret)
2382  			return ret;
2383  		return 1;
2384  	}
2385  	return svm_instr_handlers[opcode](vcpu);
2386  }
2387  
2388  /*
2389   * #GP handling code. Note that #GP can be triggered under the following two
2390   * cases:
2391   *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2392   *      some AMD CPUs when EAX of these instructions are in the reserved memory
2393   *      regions (e.g. SMM memory on host).
2394   *   2) VMware backdoor
2395   */
gp_interception(struct kvm_vcpu * vcpu)2396  static int gp_interception(struct kvm_vcpu *vcpu)
2397  {
2398  	struct vcpu_svm *svm = to_svm(vcpu);
2399  	u32 error_code = svm->vmcb->control.exit_info_1;
2400  	int opcode;
2401  
2402  	/* Both #GP cases have zero error_code */
2403  	if (error_code)
2404  		goto reinject;
2405  
2406  	/* Decode the instruction for usage later */
2407  	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2408  		goto reinject;
2409  
2410  	opcode = svm_instr_opcode(vcpu);
2411  
2412  	if (opcode == NONE_SVM_INSTR) {
2413  		if (!enable_vmware_backdoor)
2414  			goto reinject;
2415  
2416  		/*
2417  		 * VMware backdoor emulation on #GP interception only handles
2418  		 * IN{S}, OUT{S}, and RDPMC.
2419  		 */
2420  		if (!is_guest_mode(vcpu))
2421  			return kvm_emulate_instruction(vcpu,
2422  				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2423  	} else {
2424  		/* All SVM instructions expect page aligned RAX */
2425  		if (svm->vmcb->save.rax & ~PAGE_MASK)
2426  			goto reinject;
2427  
2428  		return emulate_svm_instr(vcpu, opcode);
2429  	}
2430  
2431  reinject:
2432  	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2433  	return 1;
2434  }
2435  
svm_set_gif(struct vcpu_svm * svm,bool value)2436  void svm_set_gif(struct vcpu_svm *svm, bool value)
2437  {
2438  	if (value) {
2439  		/*
2440  		 * If VGIF is enabled, the STGI intercept is only added to
2441  		 * detect the opening of the SMI/NMI window; remove it now.
2442  		 * Likewise, clear the VINTR intercept, we will set it
2443  		 * again while processing KVM_REQ_EVENT if needed.
2444  		 */
2445  		if (vgif)
2446  			svm_clr_intercept(svm, INTERCEPT_STGI);
2447  		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2448  			svm_clear_vintr(svm);
2449  
2450  		enable_gif(svm);
2451  		if (svm->vcpu.arch.smi_pending ||
2452  		    svm->vcpu.arch.nmi_pending ||
2453  		    kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2454  		    kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2455  			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2456  	} else {
2457  		disable_gif(svm);
2458  
2459  		/*
2460  		 * After a CLGI no interrupts should come.  But if vGIF is
2461  		 * in use, we still rely on the VINTR intercept (rather than
2462  		 * STGI) to detect an open interrupt window.
2463  		*/
2464  		if (!vgif)
2465  			svm_clear_vintr(svm);
2466  	}
2467  }
2468  
stgi_interception(struct kvm_vcpu * vcpu)2469  static int stgi_interception(struct kvm_vcpu *vcpu)
2470  {
2471  	int ret;
2472  
2473  	if (nested_svm_check_permissions(vcpu))
2474  		return 1;
2475  
2476  	ret = kvm_skip_emulated_instruction(vcpu);
2477  	svm_set_gif(to_svm(vcpu), true);
2478  	return ret;
2479  }
2480  
clgi_interception(struct kvm_vcpu * vcpu)2481  static int clgi_interception(struct kvm_vcpu *vcpu)
2482  {
2483  	int ret;
2484  
2485  	if (nested_svm_check_permissions(vcpu))
2486  		return 1;
2487  
2488  	ret = kvm_skip_emulated_instruction(vcpu);
2489  	svm_set_gif(to_svm(vcpu), false);
2490  	return ret;
2491  }
2492  
invlpga_interception(struct kvm_vcpu * vcpu)2493  static int invlpga_interception(struct kvm_vcpu *vcpu)
2494  {
2495  	gva_t gva = kvm_rax_read(vcpu);
2496  	u32 asid = kvm_rcx_read(vcpu);
2497  
2498  	/* FIXME: Handle an address size prefix. */
2499  	if (!is_long_mode(vcpu))
2500  		gva = (u32)gva;
2501  
2502  	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2503  
2504  	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2505  	kvm_mmu_invlpg(vcpu, gva);
2506  
2507  	return kvm_skip_emulated_instruction(vcpu);
2508  }
2509  
skinit_interception(struct kvm_vcpu * vcpu)2510  static int skinit_interception(struct kvm_vcpu *vcpu)
2511  {
2512  	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2513  
2514  	kvm_queue_exception(vcpu, UD_VECTOR);
2515  	return 1;
2516  }
2517  
task_switch_interception(struct kvm_vcpu * vcpu)2518  static int task_switch_interception(struct kvm_vcpu *vcpu)
2519  {
2520  	struct vcpu_svm *svm = to_svm(vcpu);
2521  	u16 tss_selector;
2522  	int reason;
2523  	int int_type = svm->vmcb->control.exit_int_info &
2524  		SVM_EXITINTINFO_TYPE_MASK;
2525  	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2526  	uint32_t type =
2527  		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2528  	uint32_t idt_v =
2529  		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2530  	bool has_error_code = false;
2531  	u32 error_code = 0;
2532  
2533  	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2534  
2535  	if (svm->vmcb->control.exit_info_2 &
2536  	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2537  		reason = TASK_SWITCH_IRET;
2538  	else if (svm->vmcb->control.exit_info_2 &
2539  		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2540  		reason = TASK_SWITCH_JMP;
2541  	else if (idt_v)
2542  		reason = TASK_SWITCH_GATE;
2543  	else
2544  		reason = TASK_SWITCH_CALL;
2545  
2546  	if (reason == TASK_SWITCH_GATE) {
2547  		switch (type) {
2548  		case SVM_EXITINTINFO_TYPE_NMI:
2549  			vcpu->arch.nmi_injected = false;
2550  			break;
2551  		case SVM_EXITINTINFO_TYPE_EXEPT:
2552  			if (svm->vmcb->control.exit_info_2 &
2553  			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2554  				has_error_code = true;
2555  				error_code =
2556  					(u32)svm->vmcb->control.exit_info_2;
2557  			}
2558  			kvm_clear_exception_queue(vcpu);
2559  			break;
2560  		case SVM_EXITINTINFO_TYPE_INTR:
2561  		case SVM_EXITINTINFO_TYPE_SOFT:
2562  			kvm_clear_interrupt_queue(vcpu);
2563  			break;
2564  		default:
2565  			break;
2566  		}
2567  	}
2568  
2569  	if (reason != TASK_SWITCH_GATE ||
2570  	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2571  	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2572  	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2573  		if (!svm_skip_emulated_instruction(vcpu))
2574  			return 0;
2575  	}
2576  
2577  	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2578  		int_vec = -1;
2579  
2580  	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2581  			       has_error_code, error_code);
2582  }
2583  
svm_clr_iret_intercept(struct vcpu_svm * svm)2584  static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2585  {
2586  	if (!sev_es_guest(svm->vcpu.kvm))
2587  		svm_clr_intercept(svm, INTERCEPT_IRET);
2588  }
2589  
svm_set_iret_intercept(struct vcpu_svm * svm)2590  static void svm_set_iret_intercept(struct vcpu_svm *svm)
2591  {
2592  	if (!sev_es_guest(svm->vcpu.kvm))
2593  		svm_set_intercept(svm, INTERCEPT_IRET);
2594  }
2595  
iret_interception(struct kvm_vcpu * vcpu)2596  static int iret_interception(struct kvm_vcpu *vcpu)
2597  {
2598  	struct vcpu_svm *svm = to_svm(vcpu);
2599  
2600  	WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2601  
2602  	++vcpu->stat.nmi_window_exits;
2603  	svm->awaiting_iret_completion = true;
2604  
2605  	svm_clr_iret_intercept(svm);
2606  	svm->nmi_iret_rip = kvm_rip_read(vcpu);
2607  
2608  	kvm_make_request(KVM_REQ_EVENT, vcpu);
2609  	return 1;
2610  }
2611  
invlpg_interception(struct kvm_vcpu * vcpu)2612  static int invlpg_interception(struct kvm_vcpu *vcpu)
2613  {
2614  	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2615  		return kvm_emulate_instruction(vcpu, 0);
2616  
2617  	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2618  	return kvm_skip_emulated_instruction(vcpu);
2619  }
2620  
emulate_on_interception(struct kvm_vcpu * vcpu)2621  static int emulate_on_interception(struct kvm_vcpu *vcpu)
2622  {
2623  	return kvm_emulate_instruction(vcpu, 0);
2624  }
2625  
rsm_interception(struct kvm_vcpu * vcpu)2626  static int rsm_interception(struct kvm_vcpu *vcpu)
2627  {
2628  	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2629  }
2630  
check_selective_cr0_intercepted(struct kvm_vcpu * vcpu,unsigned long val)2631  static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2632  					    unsigned long val)
2633  {
2634  	struct vcpu_svm *svm = to_svm(vcpu);
2635  	unsigned long cr0 = vcpu->arch.cr0;
2636  	bool ret = false;
2637  
2638  	if (!is_guest_mode(vcpu) ||
2639  	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2640  		return false;
2641  
2642  	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2643  	val &= ~SVM_CR0_SELECTIVE_MASK;
2644  
2645  	if (cr0 ^ val) {
2646  		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2647  		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2648  	}
2649  
2650  	return ret;
2651  }
2652  
2653  #define CR_VALID (1ULL << 63)
2654  
cr_interception(struct kvm_vcpu * vcpu)2655  static int cr_interception(struct kvm_vcpu *vcpu)
2656  {
2657  	struct vcpu_svm *svm = to_svm(vcpu);
2658  	int reg, cr;
2659  	unsigned long val;
2660  	int err;
2661  
2662  	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2663  		return emulate_on_interception(vcpu);
2664  
2665  	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2666  		return emulate_on_interception(vcpu);
2667  
2668  	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2669  	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2670  		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2671  	else
2672  		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2673  
2674  	err = 0;
2675  	if (cr >= 16) { /* mov to cr */
2676  		cr -= 16;
2677  		val = kvm_register_read(vcpu, reg);
2678  		trace_kvm_cr_write(cr, val);
2679  		switch (cr) {
2680  		case 0:
2681  			if (!check_selective_cr0_intercepted(vcpu, val))
2682  				err = kvm_set_cr0(vcpu, val);
2683  			else
2684  				return 1;
2685  
2686  			break;
2687  		case 3:
2688  			err = kvm_set_cr3(vcpu, val);
2689  			break;
2690  		case 4:
2691  			err = kvm_set_cr4(vcpu, val);
2692  			break;
2693  		case 8:
2694  			err = kvm_set_cr8(vcpu, val);
2695  			break;
2696  		default:
2697  			WARN(1, "unhandled write to CR%d", cr);
2698  			kvm_queue_exception(vcpu, UD_VECTOR);
2699  			return 1;
2700  		}
2701  	} else { /* mov from cr */
2702  		switch (cr) {
2703  		case 0:
2704  			val = kvm_read_cr0(vcpu);
2705  			break;
2706  		case 2:
2707  			val = vcpu->arch.cr2;
2708  			break;
2709  		case 3:
2710  			val = kvm_read_cr3(vcpu);
2711  			break;
2712  		case 4:
2713  			val = kvm_read_cr4(vcpu);
2714  			break;
2715  		case 8:
2716  			val = kvm_get_cr8(vcpu);
2717  			break;
2718  		default:
2719  			WARN(1, "unhandled read from CR%d", cr);
2720  			kvm_queue_exception(vcpu, UD_VECTOR);
2721  			return 1;
2722  		}
2723  		kvm_register_write(vcpu, reg, val);
2724  		trace_kvm_cr_read(cr, val);
2725  	}
2726  	return kvm_complete_insn_gp(vcpu, err);
2727  }
2728  
cr_trap(struct kvm_vcpu * vcpu)2729  static int cr_trap(struct kvm_vcpu *vcpu)
2730  {
2731  	struct vcpu_svm *svm = to_svm(vcpu);
2732  	unsigned long old_value, new_value;
2733  	unsigned int cr;
2734  	int ret = 0;
2735  
2736  	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2737  
2738  	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2739  	switch (cr) {
2740  	case 0:
2741  		old_value = kvm_read_cr0(vcpu);
2742  		svm_set_cr0(vcpu, new_value);
2743  
2744  		kvm_post_set_cr0(vcpu, old_value, new_value);
2745  		break;
2746  	case 4:
2747  		old_value = kvm_read_cr4(vcpu);
2748  		svm_set_cr4(vcpu, new_value);
2749  
2750  		kvm_post_set_cr4(vcpu, old_value, new_value);
2751  		break;
2752  	case 8:
2753  		ret = kvm_set_cr8(vcpu, new_value);
2754  		break;
2755  	default:
2756  		WARN(1, "unhandled CR%d write trap", cr);
2757  		kvm_queue_exception(vcpu, UD_VECTOR);
2758  		return 1;
2759  	}
2760  
2761  	return kvm_complete_insn_gp(vcpu, ret);
2762  }
2763  
dr_interception(struct kvm_vcpu * vcpu)2764  static int dr_interception(struct kvm_vcpu *vcpu)
2765  {
2766  	struct vcpu_svm *svm = to_svm(vcpu);
2767  	int reg, dr;
2768  	int err = 0;
2769  
2770  	/*
2771  	 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2772  	 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2773  	 */
2774  	if (sev_es_guest(vcpu->kvm))
2775  		return 1;
2776  
2777  	if (vcpu->guest_debug == 0) {
2778  		/*
2779  		 * No more DR vmexits; force a reload of the debug registers
2780  		 * and reenter on this instruction.  The next vmexit will
2781  		 * retrieve the full state of the debug registers.
2782  		 */
2783  		clr_dr_intercepts(svm);
2784  		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2785  		return 1;
2786  	}
2787  
2788  	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2789  		return emulate_on_interception(vcpu);
2790  
2791  	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2792  	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2793  	if (dr >= 16) { /* mov to DRn  */
2794  		dr -= 16;
2795  		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
2796  	} else {
2797  		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
2798  	}
2799  
2800  	return kvm_complete_insn_gp(vcpu, err);
2801  }
2802  
cr8_write_interception(struct kvm_vcpu * vcpu)2803  static int cr8_write_interception(struct kvm_vcpu *vcpu)
2804  {
2805  	int r;
2806  
2807  	u8 cr8_prev = kvm_get_cr8(vcpu);
2808  	/* instruction emulation calls kvm_set_cr8() */
2809  	r = cr_interception(vcpu);
2810  	if (lapic_in_kernel(vcpu))
2811  		return r;
2812  	if (cr8_prev <= kvm_get_cr8(vcpu))
2813  		return r;
2814  	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2815  	return 0;
2816  }
2817  
efer_trap(struct kvm_vcpu * vcpu)2818  static int efer_trap(struct kvm_vcpu *vcpu)
2819  {
2820  	struct msr_data msr_info;
2821  	int ret;
2822  
2823  	/*
2824  	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2825  	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2826  	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2827  	 * the guest doesn't have X86_FEATURE_SVM.
2828  	 */
2829  	msr_info.host_initiated = false;
2830  	msr_info.index = MSR_EFER;
2831  	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2832  	ret = kvm_set_msr_common(vcpu, &msr_info);
2833  
2834  	return kvm_complete_insn_gp(vcpu, ret);
2835  }
2836  
svm_get_feature_msr(u32 msr,u64 * data)2837  static int svm_get_feature_msr(u32 msr, u64 *data)
2838  {
2839  	*data = 0;
2840  
2841  	switch (msr) {
2842  	case MSR_AMD64_DE_CFG:
2843  		if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2844  			*data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2845  		break;
2846  	default:
2847  		return KVM_MSR_RET_UNSUPPORTED;
2848  	}
2849  
2850  	return 0;
2851  }
2852  
2853  static bool
sev_es_prevent_msr_access(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2854  sev_es_prevent_msr_access(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2855  {
2856  	return sev_es_guest(vcpu->kvm) &&
2857  	       vcpu->arch.guest_state_protected &&
2858  	       svm_msrpm_offset(msr_info->index) != MSR_INVALID &&
2859  	       !msr_write_intercepted(vcpu, msr_info->index);
2860  }
2861  
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2862  static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2863  {
2864  	struct vcpu_svm *svm = to_svm(vcpu);
2865  
2866  	if (sev_es_prevent_msr_access(vcpu, msr_info)) {
2867  		msr_info->data = 0;
2868  		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2869  	}
2870  
2871  	switch (msr_info->index) {
2872  	case MSR_AMD64_TSC_RATIO:
2873  		if (!msr_info->host_initiated &&
2874  		    !guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR))
2875  			return 1;
2876  		msr_info->data = svm->tsc_ratio_msr;
2877  		break;
2878  	case MSR_STAR:
2879  		msr_info->data = svm->vmcb01.ptr->save.star;
2880  		break;
2881  #ifdef CONFIG_X86_64
2882  	case MSR_LSTAR:
2883  		msr_info->data = svm->vmcb01.ptr->save.lstar;
2884  		break;
2885  	case MSR_CSTAR:
2886  		msr_info->data = svm->vmcb01.ptr->save.cstar;
2887  		break;
2888  	case MSR_GS_BASE:
2889  		msr_info->data = svm->vmcb01.ptr->save.gs.base;
2890  		break;
2891  	case MSR_FS_BASE:
2892  		msr_info->data = svm->vmcb01.ptr->save.fs.base;
2893  		break;
2894  	case MSR_KERNEL_GS_BASE:
2895  		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2896  		break;
2897  	case MSR_SYSCALL_MASK:
2898  		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2899  		break;
2900  #endif
2901  	case MSR_IA32_SYSENTER_CS:
2902  		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2903  		break;
2904  	case MSR_IA32_SYSENTER_EIP:
2905  		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2906  		if (guest_cpuid_is_intel_compatible(vcpu))
2907  			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2908  		break;
2909  	case MSR_IA32_SYSENTER_ESP:
2910  		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2911  		if (guest_cpuid_is_intel_compatible(vcpu))
2912  			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2913  		break;
2914  	case MSR_TSC_AUX:
2915  		msr_info->data = svm->tsc_aux;
2916  		break;
2917  	case MSR_IA32_DEBUGCTLMSR:
2918  		msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
2919  		break;
2920  	case MSR_IA32_LASTBRANCHFROMIP:
2921  		msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
2922  		break;
2923  	case MSR_IA32_LASTBRANCHTOIP:
2924  		msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
2925  		break;
2926  	case MSR_IA32_LASTINTFROMIP:
2927  		msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
2928  		break;
2929  	case MSR_IA32_LASTINTTOIP:
2930  		msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
2931  		break;
2932  	case MSR_VM_HSAVE_PA:
2933  		msr_info->data = svm->nested.hsave_msr;
2934  		break;
2935  	case MSR_VM_CR:
2936  		msr_info->data = svm->nested.vm_cr_msr;
2937  		break;
2938  	case MSR_IA32_SPEC_CTRL:
2939  		if (!msr_info->host_initiated &&
2940  		    !guest_has_spec_ctrl_msr(vcpu))
2941  			return 1;
2942  
2943  		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2944  			msr_info->data = svm->vmcb->save.spec_ctrl;
2945  		else
2946  			msr_info->data = svm->spec_ctrl;
2947  		break;
2948  	case MSR_AMD64_VIRT_SPEC_CTRL:
2949  		if (!msr_info->host_initiated &&
2950  		    !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2951  			return 1;
2952  
2953  		msr_info->data = svm->virt_spec_ctrl;
2954  		break;
2955  	case MSR_F15H_IC_CFG: {
2956  
2957  		int family, model;
2958  
2959  		family = guest_cpuid_family(vcpu);
2960  		model  = guest_cpuid_model(vcpu);
2961  
2962  		if (family < 0 || model < 0)
2963  			return kvm_get_msr_common(vcpu, msr_info);
2964  
2965  		msr_info->data = 0;
2966  
2967  		if (family == 0x15 &&
2968  		    (model >= 0x2 && model < 0x20))
2969  			msr_info->data = 0x1E;
2970  		}
2971  		break;
2972  	case MSR_AMD64_DE_CFG:
2973  		msr_info->data = svm->msr_decfg;
2974  		break;
2975  	default:
2976  		return kvm_get_msr_common(vcpu, msr_info);
2977  	}
2978  	return 0;
2979  }
2980  
svm_complete_emulated_msr(struct kvm_vcpu * vcpu,int err)2981  static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2982  {
2983  	struct vcpu_svm *svm = to_svm(vcpu);
2984  	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2985  		return kvm_complete_insn_gp(vcpu, err);
2986  
2987  	svm_vmgexit_inject_exception(svm, X86_TRAP_GP);
2988  	return 1;
2989  }
2990  
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)2991  static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2992  {
2993  	struct vcpu_svm *svm = to_svm(vcpu);
2994  	int svm_dis, chg_mask;
2995  
2996  	if (data & ~SVM_VM_CR_VALID_MASK)
2997  		return 1;
2998  
2999  	chg_mask = SVM_VM_CR_VALID_MASK;
3000  
3001  	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3002  		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3003  
3004  	svm->nested.vm_cr_msr &= ~chg_mask;
3005  	svm->nested.vm_cr_msr |= (data & chg_mask);
3006  
3007  	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3008  
3009  	/* check for svm_disable while efer.svme is set */
3010  	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3011  		return 1;
3012  
3013  	return 0;
3014  }
3015  
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)3016  static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3017  {
3018  	struct vcpu_svm *svm = to_svm(vcpu);
3019  	int ret = 0;
3020  
3021  	u32 ecx = msr->index;
3022  	u64 data = msr->data;
3023  
3024  	if (sev_es_prevent_msr_access(vcpu, msr))
3025  		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
3026  
3027  	switch (ecx) {
3028  	case MSR_AMD64_TSC_RATIO:
3029  
3030  		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) {
3031  
3032  			if (!msr->host_initiated)
3033  				return 1;
3034  			/*
3035  			 * In case TSC scaling is not enabled, always
3036  			 * leave this MSR at the default value.
3037  			 *
3038  			 * Due to bug in qemu 6.2.0, it would try to set
3039  			 * this msr to 0 if tsc scaling is not enabled.
3040  			 * Ignore this value as well.
3041  			 */
3042  			if (data != 0 && data != svm->tsc_ratio_msr)
3043  				return 1;
3044  			break;
3045  		}
3046  
3047  		if (data & SVM_TSC_RATIO_RSVD)
3048  			return 1;
3049  
3050  		svm->tsc_ratio_msr = data;
3051  
3052  		if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) &&
3053  		    is_guest_mode(vcpu))
3054  			nested_svm_update_tsc_ratio_msr(vcpu);
3055  
3056  		break;
3057  	case MSR_IA32_CR_PAT:
3058  		ret = kvm_set_msr_common(vcpu, msr);
3059  		if (ret)
3060  			break;
3061  
3062  		svm->vmcb01.ptr->save.g_pat = data;
3063  		if (is_guest_mode(vcpu))
3064  			nested_vmcb02_compute_g_pat(svm);
3065  		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3066  		break;
3067  	case MSR_IA32_SPEC_CTRL:
3068  		if (!msr->host_initiated &&
3069  		    !guest_has_spec_ctrl_msr(vcpu))
3070  			return 1;
3071  
3072  		if (kvm_spec_ctrl_test_value(data))
3073  			return 1;
3074  
3075  		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3076  			svm->vmcb->save.spec_ctrl = data;
3077  		else
3078  			svm->spec_ctrl = data;
3079  		if (!data)
3080  			break;
3081  
3082  		/*
3083  		 * For non-nested:
3084  		 * When it's written (to non-zero) for the first time, pass
3085  		 * it through.
3086  		 *
3087  		 * For nested:
3088  		 * The handling of the MSR bitmap for L2 guests is done in
3089  		 * nested_svm_vmrun_msrpm.
3090  		 * We update the L1 MSR bit as well since it will end up
3091  		 * touching the MSR anyway now.
3092  		 */
3093  		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
3094  		break;
3095  	case MSR_AMD64_VIRT_SPEC_CTRL:
3096  		if (!msr->host_initiated &&
3097  		    !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
3098  			return 1;
3099  
3100  		if (data & ~SPEC_CTRL_SSBD)
3101  			return 1;
3102  
3103  		svm->virt_spec_ctrl = data;
3104  		break;
3105  	case MSR_STAR:
3106  		svm->vmcb01.ptr->save.star = data;
3107  		break;
3108  #ifdef CONFIG_X86_64
3109  	case MSR_LSTAR:
3110  		svm->vmcb01.ptr->save.lstar = data;
3111  		break;
3112  	case MSR_CSTAR:
3113  		svm->vmcb01.ptr->save.cstar = data;
3114  		break;
3115  	case MSR_GS_BASE:
3116  		svm->vmcb01.ptr->save.gs.base = data;
3117  		break;
3118  	case MSR_FS_BASE:
3119  		svm->vmcb01.ptr->save.fs.base = data;
3120  		break;
3121  	case MSR_KERNEL_GS_BASE:
3122  		svm->vmcb01.ptr->save.kernel_gs_base = data;
3123  		break;
3124  	case MSR_SYSCALL_MASK:
3125  		svm->vmcb01.ptr->save.sfmask = data;
3126  		break;
3127  #endif
3128  	case MSR_IA32_SYSENTER_CS:
3129  		svm->vmcb01.ptr->save.sysenter_cs = data;
3130  		break;
3131  	case MSR_IA32_SYSENTER_EIP:
3132  		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
3133  		/*
3134  		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3135  		 * when we spoof an Intel vendor ID (for cross vendor migration).
3136  		 * In this case we use this intercept to track the high
3137  		 * 32 bit part of these msrs to support Intel's
3138  		 * implementation of SYSENTER/SYSEXIT.
3139  		 */
3140  		svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
3141  		break;
3142  	case MSR_IA32_SYSENTER_ESP:
3143  		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3144  		svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
3145  		break;
3146  	case MSR_TSC_AUX:
3147  		/*
3148  		 * TSC_AUX is always virtualized for SEV-ES guests when the
3149  		 * feature is available. The user return MSR support is not
3150  		 * required in this case because TSC_AUX is restored on #VMEXIT
3151  		 * from the host save area (which has been initialized in
3152  		 * svm_enable_virtualization_cpu()).
3153  		 */
3154  		if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
3155  			break;
3156  
3157  		/*
3158  		 * TSC_AUX is usually changed only during boot and never read
3159  		 * directly.  Intercept TSC_AUX instead of exposing it to the
3160  		 * guest via direct_access_msrs, and switch it via user return.
3161  		 */
3162  		preempt_disable();
3163  		ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3164  		preempt_enable();
3165  		if (ret)
3166  			break;
3167  
3168  		svm->tsc_aux = data;
3169  		break;
3170  	case MSR_IA32_DEBUGCTLMSR:
3171  		if (!lbrv) {
3172  			kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3173  			break;
3174  		}
3175  
3176  		/*
3177  		 * AMD changed the architectural behavior of bits 5:2.  On CPUs
3178  		 * without BusLockTrap, bits 5:2 control "external pins", but
3179  		 * on CPUs that support BusLockDetect, bit 2 enables BusLockTrap
3180  		 * and bits 5:3 are reserved-to-zero.  Sadly, old KVM allowed
3181  		 * the guest to set bits 5:2 despite not actually virtualizing
3182  		 * Performance-Monitoring/Breakpoint external pins.  Drop bits
3183  		 * 5:2 for backwards compatibility.
3184  		 */
3185  		data &= ~GENMASK(5, 2);
3186  
3187  		/*
3188  		 * Suppress BTF as KVM doesn't virtualize BTF, but there's no
3189  		 * way to communicate lack of support to the guest.
3190  		 */
3191  		if (data & DEBUGCTLMSR_BTF) {
3192  			kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
3193  			data &= ~DEBUGCTLMSR_BTF;
3194  		}
3195  
3196  		if (data & DEBUGCTL_RESERVED_BITS)
3197  			return 1;
3198  
3199  		svm_get_lbr_vmcb(svm)->save.dbgctl = data;
3200  		svm_update_lbrv(vcpu);
3201  		break;
3202  	case MSR_VM_HSAVE_PA:
3203  		/*
3204  		 * Old kernels did not validate the value written to
3205  		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3206  		 * value to allow live migrating buggy or malicious guests
3207  		 * originating from those kernels.
3208  		 */
3209  		if (!msr->host_initiated && !page_address_valid(vcpu, data))
3210  			return 1;
3211  
3212  		svm->nested.hsave_msr = data & PAGE_MASK;
3213  		break;
3214  	case MSR_VM_CR:
3215  		return svm_set_vm_cr(vcpu, data);
3216  	case MSR_VM_IGNNE:
3217  		kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3218  		break;
3219  	case MSR_AMD64_DE_CFG: {
3220  		u64 supported_de_cfg;
3221  
3222  		if (svm_get_feature_msr(ecx, &supported_de_cfg))
3223  			return 1;
3224  
3225  		if (data & ~supported_de_cfg)
3226  			return 1;
3227  
3228  		svm->msr_decfg = data;
3229  		break;
3230  	}
3231  	default:
3232  		return kvm_set_msr_common(vcpu, msr);
3233  	}
3234  	return ret;
3235  }
3236  
msr_interception(struct kvm_vcpu * vcpu)3237  static int msr_interception(struct kvm_vcpu *vcpu)
3238  {
3239  	if (to_svm(vcpu)->vmcb->control.exit_info_1)
3240  		return kvm_emulate_wrmsr(vcpu);
3241  	else
3242  		return kvm_emulate_rdmsr(vcpu);
3243  }
3244  
interrupt_window_interception(struct kvm_vcpu * vcpu)3245  static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3246  {
3247  	kvm_make_request(KVM_REQ_EVENT, vcpu);
3248  	svm_clear_vintr(to_svm(vcpu));
3249  
3250  	/*
3251  	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3252  	 * In this case AVIC was temporarily disabled for
3253  	 * requesting the IRQ window and we have to re-enable it.
3254  	 *
3255  	 * If running nested, still remove the VM wide AVIC inhibit to
3256  	 * support case in which the interrupt window was requested when the
3257  	 * vCPU was not running nested.
3258  
3259  	 * All vCPUs which run still run nested, will remain to have their
3260  	 * AVIC still inhibited due to per-cpu AVIC inhibition.
3261  	 */
3262  	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3263  
3264  	++vcpu->stat.irq_window_exits;
3265  	return 1;
3266  }
3267  
pause_interception(struct kvm_vcpu * vcpu)3268  static int pause_interception(struct kvm_vcpu *vcpu)
3269  {
3270  	bool in_kernel;
3271  	/*
3272  	 * CPL is not made available for an SEV-ES guest, therefore
3273  	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3274  	 * set in_kernel to false as well.
3275  	 */
3276  	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3277  
3278  	grow_ple_window(vcpu);
3279  
3280  	kvm_vcpu_on_spin(vcpu, in_kernel);
3281  	return kvm_skip_emulated_instruction(vcpu);
3282  }
3283  
invpcid_interception(struct kvm_vcpu * vcpu)3284  static int invpcid_interception(struct kvm_vcpu *vcpu)
3285  {
3286  	struct vcpu_svm *svm = to_svm(vcpu);
3287  	unsigned long type;
3288  	gva_t gva;
3289  
3290  	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
3291  		kvm_queue_exception(vcpu, UD_VECTOR);
3292  		return 1;
3293  	}
3294  
3295  	/*
3296  	 * For an INVPCID intercept:
3297  	 * EXITINFO1 provides the linear address of the memory operand.
3298  	 * EXITINFO2 provides the contents of the register operand.
3299  	 */
3300  	type = svm->vmcb->control.exit_info_2;
3301  	gva = svm->vmcb->control.exit_info_1;
3302  
3303  	/*
3304  	 * FIXME: Perform segment checks for 32-bit mode, and inject #SS if the
3305  	 *        stack segment is used.  The intercept takes priority over all
3306  	 *        #GP checks except CPL>0, but somehow still generates a linear
3307  	 *        address?  The APM is sorely lacking.
3308  	 */
3309  	if (is_noncanonical_address(gva, vcpu, 0)) {
3310  		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3311  		return 1;
3312  	}
3313  
3314  	return kvm_handle_invpcid(vcpu, type, gva);
3315  }
3316  
3317  static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3318  	[SVM_EXIT_READ_CR0]			= cr_interception,
3319  	[SVM_EXIT_READ_CR3]			= cr_interception,
3320  	[SVM_EXIT_READ_CR4]			= cr_interception,
3321  	[SVM_EXIT_READ_CR8]			= cr_interception,
3322  	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3323  	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3324  	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3325  	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3326  	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3327  	[SVM_EXIT_READ_DR0]			= dr_interception,
3328  	[SVM_EXIT_READ_DR1]			= dr_interception,
3329  	[SVM_EXIT_READ_DR2]			= dr_interception,
3330  	[SVM_EXIT_READ_DR3]			= dr_interception,
3331  	[SVM_EXIT_READ_DR4]			= dr_interception,
3332  	[SVM_EXIT_READ_DR5]			= dr_interception,
3333  	[SVM_EXIT_READ_DR6]			= dr_interception,
3334  	[SVM_EXIT_READ_DR7]			= dr_interception,
3335  	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3336  	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3337  	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3338  	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3339  	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3340  	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3341  	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3342  	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3343  	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3344  	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3345  	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3346  	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3347  	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3348  	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3349  	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3350  	[SVM_EXIT_INTR]				= intr_interception,
3351  	[SVM_EXIT_NMI]				= nmi_interception,
3352  	[SVM_EXIT_SMI]				= smi_interception,
3353  	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3354  	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3355  	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3356  	[SVM_EXIT_IRET]                         = iret_interception,
3357  	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3358  	[SVM_EXIT_PAUSE]			= pause_interception,
3359  	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3360  	[SVM_EXIT_INVLPG]			= invlpg_interception,
3361  	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3362  	[SVM_EXIT_IOIO]				= io_interception,
3363  	[SVM_EXIT_MSR]				= msr_interception,
3364  	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3365  	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3366  	[SVM_EXIT_VMRUN]			= vmrun_interception,
3367  	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3368  	[SVM_EXIT_VMLOAD]			= vmload_interception,
3369  	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3370  	[SVM_EXIT_STGI]				= stgi_interception,
3371  	[SVM_EXIT_CLGI]				= clgi_interception,
3372  	[SVM_EXIT_SKINIT]			= skinit_interception,
3373  	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3374  	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3375  	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3376  	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3377  	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3378  	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3379  	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3380  	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3381  	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3382  	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3383  	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3384  	[SVM_EXIT_IDLE_HLT]			= kvm_emulate_halt,
3385  	[SVM_EXIT_NPF]				= npf_interception,
3386  	[SVM_EXIT_RSM]                          = rsm_interception,
3387  	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3388  	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3389  #ifdef CONFIG_KVM_AMD_SEV
3390  	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3391  #endif
3392  };
3393  
dump_vmcb(struct kvm_vcpu * vcpu)3394  static void dump_vmcb(struct kvm_vcpu *vcpu)
3395  {
3396  	struct vcpu_svm *svm = to_svm(vcpu);
3397  	struct vmcb_control_area *control = &svm->vmcb->control;
3398  	struct vmcb_save_area *save = &svm->vmcb->save;
3399  	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3400  
3401  	if (!dump_invalid_vmcb) {
3402  		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3403  		return;
3404  	}
3405  
3406  	pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3407  	       svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3408  	pr_err("VMCB Control Area:\n");
3409  	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3410  	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3411  	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3412  	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3413  	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3414  	pr_err("%-20s%08x %08x\n", "intercepts:",
3415                control->intercepts[INTERCEPT_WORD3],
3416  	       control->intercepts[INTERCEPT_WORD4]);
3417  	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3418  	pr_err("%-20s%d\n", "pause filter threshold:",
3419  	       control->pause_filter_thresh);
3420  	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3421  	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3422  	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3423  	pr_err("%-20s%d\n", "asid:", control->asid);
3424  	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3425  	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3426  	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3427  	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3428  	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3429  	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3430  	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3431  	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3432  	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3433  	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3434  	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3435  	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3436  	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3437  	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3438  	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3439  	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3440  	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3441  	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3442  	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3443  	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3444  	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3445  	pr_err("VMCB State Save Area:\n");
3446  	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3447  	       "es:",
3448  	       save->es.selector, save->es.attrib,
3449  	       save->es.limit, save->es.base);
3450  	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3451  	       "cs:",
3452  	       save->cs.selector, save->cs.attrib,
3453  	       save->cs.limit, save->cs.base);
3454  	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3455  	       "ss:",
3456  	       save->ss.selector, save->ss.attrib,
3457  	       save->ss.limit, save->ss.base);
3458  	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3459  	       "ds:",
3460  	       save->ds.selector, save->ds.attrib,
3461  	       save->ds.limit, save->ds.base);
3462  	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3463  	       "fs:",
3464  	       save01->fs.selector, save01->fs.attrib,
3465  	       save01->fs.limit, save01->fs.base);
3466  	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3467  	       "gs:",
3468  	       save01->gs.selector, save01->gs.attrib,
3469  	       save01->gs.limit, save01->gs.base);
3470  	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3471  	       "gdtr:",
3472  	       save->gdtr.selector, save->gdtr.attrib,
3473  	       save->gdtr.limit, save->gdtr.base);
3474  	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3475  	       "ldtr:",
3476  	       save01->ldtr.selector, save01->ldtr.attrib,
3477  	       save01->ldtr.limit, save01->ldtr.base);
3478  	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3479  	       "idtr:",
3480  	       save->idtr.selector, save->idtr.attrib,
3481  	       save->idtr.limit, save->idtr.base);
3482  	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3483  	       "tr:",
3484  	       save01->tr.selector, save01->tr.attrib,
3485  	       save01->tr.limit, save01->tr.base);
3486  	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3487  	       save->vmpl, save->cpl, save->efer);
3488  	pr_err("%-15s %016llx %-13s %016llx\n",
3489  	       "cr0:", save->cr0, "cr2:", save->cr2);
3490  	pr_err("%-15s %016llx %-13s %016llx\n",
3491  	       "cr3:", save->cr3, "cr4:", save->cr4);
3492  	pr_err("%-15s %016llx %-13s %016llx\n",
3493  	       "dr6:", save->dr6, "dr7:", save->dr7);
3494  	pr_err("%-15s %016llx %-13s %016llx\n",
3495  	       "rip:", save->rip, "rflags:", save->rflags);
3496  	pr_err("%-15s %016llx %-13s %016llx\n",
3497  	       "rsp:", save->rsp, "rax:", save->rax);
3498  	pr_err("%-15s %016llx %-13s %016llx\n",
3499  	       "star:", save01->star, "lstar:", save01->lstar);
3500  	pr_err("%-15s %016llx %-13s %016llx\n",
3501  	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3502  	pr_err("%-15s %016llx %-13s %016llx\n",
3503  	       "kernel_gs_base:", save01->kernel_gs_base,
3504  	       "sysenter_cs:", save01->sysenter_cs);
3505  	pr_err("%-15s %016llx %-13s %016llx\n",
3506  	       "sysenter_esp:", save01->sysenter_esp,
3507  	       "sysenter_eip:", save01->sysenter_eip);
3508  	pr_err("%-15s %016llx %-13s %016llx\n",
3509  	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3510  	pr_err("%-15s %016llx %-13s %016llx\n",
3511  	       "br_from:", save->br_from, "br_to:", save->br_to);
3512  	pr_err("%-15s %016llx %-13s %016llx\n",
3513  	       "excp_from:", save->last_excp_from,
3514  	       "excp_to:", save->last_excp_to);
3515  }
3516  
svm_check_exit_valid(u64 exit_code)3517  static bool svm_check_exit_valid(u64 exit_code)
3518  {
3519  	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3520  		svm_exit_handlers[exit_code]);
3521  }
3522  
svm_handle_invalid_exit(struct kvm_vcpu * vcpu,u64 exit_code)3523  static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3524  {
3525  	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3526  	dump_vmcb(vcpu);
3527  	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3528  	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3529  	vcpu->run->internal.ndata = 2;
3530  	vcpu->run->internal.data[0] = exit_code;
3531  	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3532  	return 0;
3533  }
3534  
svm_invoke_exit_handler(struct kvm_vcpu * vcpu,u64 exit_code)3535  int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3536  {
3537  	if (!svm_check_exit_valid(exit_code))
3538  		return svm_handle_invalid_exit(vcpu, exit_code);
3539  
3540  #ifdef CONFIG_MITIGATION_RETPOLINE
3541  	if (exit_code == SVM_EXIT_MSR)
3542  		return msr_interception(vcpu);
3543  	else if (exit_code == SVM_EXIT_VINTR)
3544  		return interrupt_window_interception(vcpu);
3545  	else if (exit_code == SVM_EXIT_INTR)
3546  		return intr_interception(vcpu);
3547  	else if (exit_code == SVM_EXIT_HLT || exit_code == SVM_EXIT_IDLE_HLT)
3548  		return kvm_emulate_halt(vcpu);
3549  	else if (exit_code == SVM_EXIT_NPF)
3550  		return npf_interception(vcpu);
3551  #endif
3552  	return svm_exit_handlers[exit_code](vcpu);
3553  }
3554  
svm_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)3555  static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3556  			      u64 *info1, u64 *info2,
3557  			      u32 *intr_info, u32 *error_code)
3558  {
3559  	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3560  
3561  	*reason = control->exit_code;
3562  	*info1 = control->exit_info_1;
3563  	*info2 = control->exit_info_2;
3564  	*intr_info = control->exit_int_info;
3565  	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3566  	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3567  		*error_code = control->exit_int_info_err;
3568  	else
3569  		*error_code = 0;
3570  }
3571  
svm_get_entry_info(struct kvm_vcpu * vcpu,u32 * intr_info,u32 * error_code)3572  static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info,
3573  			       u32 *error_code)
3574  {
3575  	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3576  
3577  	*intr_info = control->event_inj;
3578  
3579  	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3580  	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3581  		*error_code = control->event_inj_err;
3582  	else
3583  		*error_code = 0;
3584  
3585  }
3586  
svm_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)3587  static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3588  {
3589  	struct vcpu_svm *svm = to_svm(vcpu);
3590  	struct kvm_run *kvm_run = vcpu->run;
3591  	u32 exit_code = svm->vmcb->control.exit_code;
3592  
3593  	/* SEV-ES guests must use the CR write traps to track CR registers. */
3594  	if (!sev_es_guest(vcpu->kvm)) {
3595  		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3596  			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3597  		if (npt_enabled)
3598  			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3599  	}
3600  
3601  	if (is_guest_mode(vcpu)) {
3602  		int vmexit;
3603  
3604  		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3605  
3606  		vmexit = nested_svm_exit_special(svm);
3607  
3608  		if (vmexit == NESTED_EXIT_CONTINUE)
3609  			vmexit = nested_svm_exit_handled(svm);
3610  
3611  		if (vmexit == NESTED_EXIT_DONE)
3612  			return 1;
3613  	}
3614  
3615  	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3616  		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3617  		kvm_run->fail_entry.hardware_entry_failure_reason
3618  			= svm->vmcb->control.exit_code;
3619  		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3620  		dump_vmcb(vcpu);
3621  		return 0;
3622  	}
3623  
3624  	if (exit_fastpath != EXIT_FASTPATH_NONE)
3625  		return 1;
3626  
3627  	return svm_invoke_exit_handler(vcpu, exit_code);
3628  }
3629  
pre_svm_run(struct kvm_vcpu * vcpu)3630  static int pre_svm_run(struct kvm_vcpu *vcpu)
3631  {
3632  	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3633  	struct vcpu_svm *svm = to_svm(vcpu);
3634  
3635  	/*
3636  	 * If the previous vmrun of the vmcb occurred on a different physical
3637  	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3638  	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3639  	 */
3640  	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3641  		svm->current_vmcb->asid_generation = 0;
3642  		vmcb_mark_all_dirty(svm->vmcb);
3643  		svm->current_vmcb->cpu = vcpu->cpu;
3644          }
3645  
3646  	if (sev_guest(vcpu->kvm))
3647  		return pre_sev_run(svm, vcpu->cpu);
3648  
3649  	/* FIXME: handle wraparound of asid_generation */
3650  	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3651  		new_asid(svm, sd);
3652  
3653  	return 0;
3654  }
3655  
svm_inject_nmi(struct kvm_vcpu * vcpu)3656  static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3657  {
3658  	struct vcpu_svm *svm = to_svm(vcpu);
3659  
3660  	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3661  
3662  	if (svm->nmi_l1_to_l2)
3663  		return;
3664  
3665  	/*
3666  	 * No need to manually track NMI masking when vNMI is enabled, hardware
3667  	 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
3668  	 * case where software directly injects an NMI.
3669  	 */
3670  	if (!is_vnmi_enabled(svm)) {
3671  		svm->nmi_masked = true;
3672  		svm_set_iret_intercept(svm);
3673  	}
3674  	++vcpu->stat.nmi_injections;
3675  }
3676  
svm_is_vnmi_pending(struct kvm_vcpu * vcpu)3677  static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3678  {
3679  	struct vcpu_svm *svm = to_svm(vcpu);
3680  
3681  	if (!is_vnmi_enabled(svm))
3682  		return false;
3683  
3684  	return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3685  }
3686  
svm_set_vnmi_pending(struct kvm_vcpu * vcpu)3687  static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3688  {
3689  	struct vcpu_svm *svm = to_svm(vcpu);
3690  
3691  	if (!is_vnmi_enabled(svm))
3692  		return false;
3693  
3694  	if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3695  		return false;
3696  
3697  	svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3698  	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3699  
3700  	/*
3701  	 * Because the pending NMI is serviced by hardware, KVM can't know when
3702  	 * the NMI is "injected", but for all intents and purposes, passing the
3703  	 * NMI off to hardware counts as injection.
3704  	 */
3705  	++vcpu->stat.nmi_injections;
3706  
3707  	return true;
3708  }
3709  
svm_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)3710  static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3711  {
3712  	struct vcpu_svm *svm = to_svm(vcpu);
3713  	u32 type;
3714  
3715  	if (vcpu->arch.interrupt.soft) {
3716  		if (svm_update_soft_interrupt_rip(vcpu))
3717  			return;
3718  
3719  		type = SVM_EVTINJ_TYPE_SOFT;
3720  	} else {
3721  		type = SVM_EVTINJ_TYPE_INTR;
3722  	}
3723  
3724  	trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3725  			   vcpu->arch.interrupt.soft, reinjected);
3726  	++vcpu->stat.irq_injections;
3727  
3728  	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3729  				       SVM_EVTINJ_VALID | type;
3730  }
3731  
svm_complete_interrupt_delivery(struct kvm_vcpu * vcpu,int delivery_mode,int trig_mode,int vector)3732  void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3733  				     int trig_mode, int vector)
3734  {
3735  	/*
3736  	 * apic->apicv_active must be read after vcpu->mode.
3737  	 * Pairs with smp_store_release in vcpu_enter_guest.
3738  	 */
3739  	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3740  
3741  	/* Note, this is called iff the local APIC is in-kernel. */
3742  	if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3743  		/* Process the interrupt via kvm_check_and_inject_events(). */
3744  		kvm_make_request(KVM_REQ_EVENT, vcpu);
3745  		kvm_vcpu_kick(vcpu);
3746  		return;
3747  	}
3748  
3749  	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3750  	if (in_guest_mode) {
3751  		/*
3752  		 * Signal the doorbell to tell hardware to inject the IRQ.  If
3753  		 * the vCPU exits the guest before the doorbell chimes, hardware
3754  		 * will automatically process AVIC interrupts at the next VMRUN.
3755  		 */
3756  		avic_ring_doorbell(vcpu);
3757  	} else {
3758  		/*
3759  		 * Wake the vCPU if it was blocking.  KVM will then detect the
3760  		 * pending IRQ when checking if the vCPU has a wake event.
3761  		 */
3762  		kvm_vcpu_wake_up(vcpu);
3763  	}
3764  }
3765  
svm_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)3766  static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3767  				  int trig_mode, int vector)
3768  {
3769  	kvm_lapic_set_irr(vector, apic);
3770  
3771  	/*
3772  	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3773  	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3774  	 * the read of guest_mode.  This guarantees that either VMRUN will see
3775  	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3776  	 * will signal the doorbell if the CPU has already entered the guest.
3777  	 */
3778  	smp_mb__after_atomic();
3779  	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3780  }
3781  
svm_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3782  static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3783  {
3784  	struct vcpu_svm *svm = to_svm(vcpu);
3785  
3786  	/*
3787  	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3788  	 * tracking is done using the CR write traps.
3789  	 */
3790  	if (sev_es_guest(vcpu->kvm))
3791  		return;
3792  
3793  	if (nested_svm_virtualize_tpr(vcpu))
3794  		return;
3795  
3796  	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3797  
3798  	if (irr == -1)
3799  		return;
3800  
3801  	if (tpr >= irr)
3802  		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3803  }
3804  
svm_get_nmi_mask(struct kvm_vcpu * vcpu)3805  static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3806  {
3807  	struct vcpu_svm *svm = to_svm(vcpu);
3808  
3809  	if (is_vnmi_enabled(svm))
3810  		return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3811  	else
3812  		return svm->nmi_masked;
3813  }
3814  
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3815  static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3816  {
3817  	struct vcpu_svm *svm = to_svm(vcpu);
3818  
3819  	if (is_vnmi_enabled(svm)) {
3820  		if (masked)
3821  			svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3822  		else
3823  			svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3824  
3825  	} else {
3826  		svm->nmi_masked = masked;
3827  		if (masked)
3828  			svm_set_iret_intercept(svm);
3829  		else
3830  			svm_clr_iret_intercept(svm);
3831  	}
3832  }
3833  
svm_nmi_blocked(struct kvm_vcpu * vcpu)3834  bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3835  {
3836  	struct vcpu_svm *svm = to_svm(vcpu);
3837  	struct vmcb *vmcb = svm->vmcb;
3838  
3839  	if (!gif_set(svm))
3840  		return true;
3841  
3842  	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3843  		return false;
3844  
3845  	if (svm_get_nmi_mask(vcpu))
3846  		return true;
3847  
3848  	return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3849  }
3850  
svm_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)3851  static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3852  {
3853  	struct vcpu_svm *svm = to_svm(vcpu);
3854  	if (svm->nested.nested_run_pending)
3855  		return -EBUSY;
3856  
3857  	if (svm_nmi_blocked(vcpu))
3858  		return 0;
3859  
3860  	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3861  	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3862  		return -EBUSY;
3863  	return 1;
3864  }
3865  
svm_interrupt_blocked(struct kvm_vcpu * vcpu)3866  bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3867  {
3868  	struct vcpu_svm *svm = to_svm(vcpu);
3869  	struct vmcb *vmcb = svm->vmcb;
3870  
3871  	if (!gif_set(svm))
3872  		return true;
3873  
3874  	if (is_guest_mode(vcpu)) {
3875  		/* As long as interrupts are being delivered...  */
3876  		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3877  		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3878  		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3879  			return true;
3880  
3881  		/* ... vmexits aren't blocked by the interrupt shadow  */
3882  		if (nested_exit_on_intr(svm))
3883  			return false;
3884  	} else {
3885  		if (!svm_get_if_flag(vcpu))
3886  			return true;
3887  	}
3888  
3889  	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3890  }
3891  
svm_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)3892  static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3893  {
3894  	struct vcpu_svm *svm = to_svm(vcpu);
3895  
3896  	if (svm->nested.nested_run_pending)
3897  		return -EBUSY;
3898  
3899  	if (svm_interrupt_blocked(vcpu))
3900  		return 0;
3901  
3902  	/*
3903  	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3904  	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3905  	 */
3906  	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3907  		return -EBUSY;
3908  
3909  	return 1;
3910  }
3911  
svm_enable_irq_window(struct kvm_vcpu * vcpu)3912  static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3913  {
3914  	struct vcpu_svm *svm = to_svm(vcpu);
3915  
3916  	/*
3917  	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3918  	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3919  	 * get that intercept, this function will be called again though and
3920  	 * we'll get the vintr intercept. However, if the vGIF feature is
3921  	 * enabled, the STGI interception will not occur. Enable the irq
3922  	 * window under the assumption that the hardware will set the GIF.
3923  	 */
3924  	if (vgif || gif_set(svm)) {
3925  		/*
3926  		 * IRQ window is not needed when AVIC is enabled,
3927  		 * unless we have pending ExtINT since it cannot be injected
3928  		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3929  		 * and fallback to injecting IRQ via V_IRQ.
3930  		 *
3931  		 * If running nested, AVIC is already locally inhibited
3932  		 * on this vCPU, therefore there is no need to request
3933  		 * the VM wide AVIC inhibition.
3934  		 */
3935  		if (!is_guest_mode(vcpu))
3936  			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3937  
3938  		svm_set_vintr(svm);
3939  	}
3940  }
3941  
svm_enable_nmi_window(struct kvm_vcpu * vcpu)3942  static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3943  {
3944  	struct vcpu_svm *svm = to_svm(vcpu);
3945  
3946  	/*
3947  	 * If NMIs are outright masked, i.e. the vCPU is already handling an
3948  	 * NMI, and KVM has not yet intercepted an IRET, then there is nothing
3949  	 * more to do at this time as KVM has already enabled IRET intercepts.
3950  	 * If KVM has already intercepted IRET, then single-step over the IRET,
3951  	 * as NMIs aren't architecturally unmasked until the IRET completes.
3952  	 *
3953  	 * If vNMI is enabled, KVM should never request an NMI window if NMIs
3954  	 * are masked, as KVM allows at most one to-be-injected NMI and one
3955  	 * pending NMI.  If two NMIs arrive simultaneously, KVM will inject one
3956  	 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are
3957  	 * unmasked.  KVM _will_ request an NMI window in some situations, e.g.
3958  	 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately
3959  	 * inject the NMI.  In those situations, KVM needs to single-step over
3960  	 * the STI shadow or intercept STGI.
3961  	 */
3962  	if (svm_get_nmi_mask(vcpu)) {
3963  		WARN_ON_ONCE(is_vnmi_enabled(svm));
3964  
3965  		if (!svm->awaiting_iret_completion)
3966  			return; /* IRET will cause a vm exit */
3967  	}
3968  
3969  	/*
3970  	 * SEV-ES guests are responsible for signaling when a vCPU is ready to
3971  	 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3972  	 * KVM can't intercept and single-step IRET to detect when NMIs are
3973  	 * unblocked (architecturally speaking).  See SVM_VMGEXIT_NMI_COMPLETE.
3974  	 *
3975  	 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3976  	 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3977  	 * supported NAEs in the GHCB protocol.
3978  	 */
3979  	if (sev_es_guest(vcpu->kvm))
3980  		return;
3981  
3982  	if (!gif_set(svm)) {
3983  		if (vgif)
3984  			svm_set_intercept(svm, INTERCEPT_STGI);
3985  		return; /* STGI will cause a vm exit */
3986  	}
3987  
3988  	/*
3989  	 * Something prevents NMI from been injected. Single step over possible
3990  	 * problem (IRET or exception injection or interrupt shadow)
3991  	 */
3992  	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3993  	svm->nmi_singlestep = true;
3994  	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3995  }
3996  
svm_flush_tlb_asid(struct kvm_vcpu * vcpu)3997  static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3998  {
3999  	struct vcpu_svm *svm = to_svm(vcpu);
4000  
4001  	/*
4002  	 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
4003  	 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
4004  	 * entries, and thus is a superset of Hyper-V's fine grained flushing.
4005  	 */
4006  	kvm_hv_vcpu_purge_flush_tlb(vcpu);
4007  
4008  	/*
4009  	 * Flush only the current ASID even if the TLB flush was invoked via
4010  	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
4011  	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
4012  	 * unconditionally does a TLB flush on both nested VM-Enter and nested
4013  	 * VM-Exit (via kvm_mmu_reset_context()).
4014  	 */
4015  	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4016  		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4017  	else
4018  		svm->current_vmcb->asid_generation--;
4019  }
4020  
svm_flush_tlb_current(struct kvm_vcpu * vcpu)4021  static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
4022  {
4023  	hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
4024  
4025  	/*
4026  	 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
4027  	 * flush the NPT mappings via hypercall as flushing the ASID only
4028  	 * affects virtual to physical mappings, it does not invalidate guest
4029  	 * physical to host physical mappings.
4030  	 */
4031  	if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
4032  		hyperv_flush_guest_mapping(root_tdp);
4033  
4034  	svm_flush_tlb_asid(vcpu);
4035  }
4036  
svm_flush_tlb_all(struct kvm_vcpu * vcpu)4037  static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
4038  {
4039  	/*
4040  	 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
4041  	 * flushes should be routed to hv_flush_remote_tlbs() without requesting
4042  	 * a "regular" remote flush.  Reaching this point means either there's
4043  	 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
4044  	 * which might be fatal to the guest.  Yell, but try to recover.
4045  	 */
4046  	if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
4047  		hv_flush_remote_tlbs(vcpu->kvm);
4048  
4049  	svm_flush_tlb_asid(vcpu);
4050  }
4051  
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)4052  static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
4053  {
4054  	struct vcpu_svm *svm = to_svm(vcpu);
4055  
4056  	invlpga(gva, svm->vmcb->control.asid);
4057  }
4058  
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)4059  static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4060  {
4061  	struct vcpu_svm *svm = to_svm(vcpu);
4062  
4063  	if (nested_svm_virtualize_tpr(vcpu))
4064  		return;
4065  
4066  	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
4067  		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4068  		kvm_set_cr8(vcpu, cr8);
4069  	}
4070  }
4071  
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)4072  static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4073  {
4074  	struct vcpu_svm *svm = to_svm(vcpu);
4075  	u64 cr8;
4076  
4077  	if (nested_svm_virtualize_tpr(vcpu) ||
4078  	    kvm_vcpu_apicv_active(vcpu))
4079  		return;
4080  
4081  	cr8 = kvm_get_cr8(vcpu);
4082  	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4083  	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4084  }
4085  
svm_complete_soft_interrupt(struct kvm_vcpu * vcpu,u8 vector,int type)4086  static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
4087  					int type)
4088  {
4089  	bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
4090  	bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
4091  	struct vcpu_svm *svm = to_svm(vcpu);
4092  
4093  	/*
4094  	 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
4095  	 * associated with the original soft exception/interrupt.  next_rip is
4096  	 * cleared on all exits that can occur while vectoring an event, so KVM
4097  	 * needs to manually set next_rip for re-injection.  Unlike the !nrips
4098  	 * case below, this needs to be done if and only if KVM is re-injecting
4099  	 * the same event, i.e. if the event is a soft exception/interrupt,
4100  	 * otherwise next_rip is unused on VMRUN.
4101  	 */
4102  	if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
4103  	    kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
4104  		svm->vmcb->control.next_rip = svm->soft_int_next_rip;
4105  	/*
4106  	 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
4107  	 * injecting the soft exception/interrupt.  That advancement needs to
4108  	 * be unwound if vectoring didn't complete.  Note, the new event may
4109  	 * not be the injected event, e.g. if KVM injected an INTn, the INTn
4110  	 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
4111  	 * be the reported vectored event, but RIP still needs to be unwound.
4112  	 */
4113  	else if (!nrips && (is_soft || is_exception) &&
4114  		 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4115  		kvm_rip_write(vcpu, svm->soft_int_old_rip);
4116  }
4117  
svm_complete_interrupts(struct kvm_vcpu * vcpu)4118  static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4119  {
4120  	struct vcpu_svm *svm = to_svm(vcpu);
4121  	u8 vector;
4122  	int type;
4123  	u32 exitintinfo = svm->vmcb->control.exit_int_info;
4124  	bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4125  	bool soft_int_injected = svm->soft_int_injected;
4126  
4127  	svm->nmi_l1_to_l2 = false;
4128  	svm->soft_int_injected = false;
4129  
4130  	/*
4131  	 * If we've made progress since setting awaiting_iret_completion, we've
4132  	 * executed an IRET and can allow NMI injection.
4133  	 */
4134  	if (svm->awaiting_iret_completion &&
4135  	    kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4136  		svm->awaiting_iret_completion = false;
4137  		svm->nmi_masked = false;
4138  		kvm_make_request(KVM_REQ_EVENT, vcpu);
4139  	}
4140  
4141  	vcpu->arch.nmi_injected = false;
4142  	kvm_clear_exception_queue(vcpu);
4143  	kvm_clear_interrupt_queue(vcpu);
4144  
4145  	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4146  		return;
4147  
4148  	kvm_make_request(KVM_REQ_EVENT, vcpu);
4149  
4150  	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4151  	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4152  
4153  	if (soft_int_injected)
4154  		svm_complete_soft_interrupt(vcpu, vector, type);
4155  
4156  	switch (type) {
4157  	case SVM_EXITINTINFO_TYPE_NMI:
4158  		vcpu->arch.nmi_injected = true;
4159  		svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4160  		break;
4161  	case SVM_EXITINTINFO_TYPE_EXEPT: {
4162  		u32 error_code = 0;
4163  
4164  		/*
4165  		 * Never re-inject a #VC exception.
4166  		 */
4167  		if (vector == X86_TRAP_VC)
4168  			break;
4169  
4170  		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR)
4171  			error_code = svm->vmcb->control.exit_int_info_err;
4172  
4173  		kvm_requeue_exception(vcpu, vector,
4174  				      exitintinfo & SVM_EXITINTINFO_VALID_ERR,
4175  				      error_code);
4176  		break;
4177  	}
4178  	case SVM_EXITINTINFO_TYPE_INTR:
4179  		kvm_queue_interrupt(vcpu, vector, false);
4180  		break;
4181  	case SVM_EXITINTINFO_TYPE_SOFT:
4182  		kvm_queue_interrupt(vcpu, vector, true);
4183  		break;
4184  	default:
4185  		break;
4186  	}
4187  
4188  }
4189  
svm_cancel_injection(struct kvm_vcpu * vcpu)4190  static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4191  {
4192  	struct vcpu_svm *svm = to_svm(vcpu);
4193  	struct vmcb_control_area *control = &svm->vmcb->control;
4194  
4195  	control->exit_int_info = control->event_inj;
4196  	control->exit_int_info_err = control->event_inj_err;
4197  	control->event_inj = 0;
4198  	svm_complete_interrupts(vcpu);
4199  }
4200  
svm_vcpu_pre_run(struct kvm_vcpu * vcpu)4201  static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4202  {
4203  	if (to_kvm_sev_info(vcpu->kvm)->need_init)
4204  		return -EINVAL;
4205  
4206  	return 1;
4207  }
4208  
svm_exit_handlers_fastpath(struct kvm_vcpu * vcpu)4209  static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4210  {
4211  	struct vcpu_svm *svm = to_svm(vcpu);
4212  
4213  	if (is_guest_mode(vcpu))
4214  		return EXIT_FASTPATH_NONE;
4215  
4216  	switch (svm->vmcb->control.exit_code) {
4217  	case SVM_EXIT_MSR:
4218  		if (!svm->vmcb->control.exit_info_1)
4219  			break;
4220  		return handle_fastpath_set_msr_irqoff(vcpu);
4221  	case SVM_EXIT_HLT:
4222  		return handle_fastpath_hlt(vcpu);
4223  	default:
4224  		break;
4225  	}
4226  
4227  	return EXIT_FASTPATH_NONE;
4228  }
4229  
svm_vcpu_enter_exit(struct kvm_vcpu * vcpu,bool spec_ctrl_intercepted)4230  static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4231  {
4232  	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
4233  	struct vcpu_svm *svm = to_svm(vcpu);
4234  
4235  	guest_state_enter_irqoff();
4236  
4237  	/*
4238  	 * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of
4239  	 * VMRUN controls whether or not physical IRQs are masked (KVM always
4240  	 * runs with V_INTR_MASKING_MASK).  Toggle RFLAGS.IF here to avoid the
4241  	 * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow
4242  	 * into guest state if delivery of an event during VMRUN triggers a
4243  	 * #VMEXIT, and the guest_state transitions already tell lockdep that
4244  	 * IRQs are being enabled/disabled.  Note!  GIF=0 for the entirety of
4245  	 * this path, so IRQs aren't actually unmasked while running host code.
4246  	 */
4247  	raw_local_irq_enable();
4248  
4249  	amd_clear_divider();
4250  
4251  	if (sev_es_guest(vcpu->kvm))
4252  		__svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted,
4253  				      sev_es_host_save_area(sd));
4254  	else
4255  		__svm_vcpu_run(svm, spec_ctrl_intercepted);
4256  
4257  	raw_local_irq_disable();
4258  
4259  	guest_state_exit_irqoff();
4260  }
4261  
svm_vcpu_run(struct kvm_vcpu * vcpu,bool force_immediate_exit)4262  static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu,
4263  					  bool force_immediate_exit)
4264  {
4265  	struct vcpu_svm *svm = to_svm(vcpu);
4266  	bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4267  
4268  	trace_kvm_entry(vcpu, force_immediate_exit);
4269  
4270  	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4271  	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4272  	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4273  
4274  	/*
4275  	 * Disable singlestep if we're injecting an interrupt/exception.
4276  	 * We don't want our modified rflags to be pushed on the stack where
4277  	 * we might not be able to easily reset them if we disabled NMI
4278  	 * singlestep later.
4279  	 */
4280  	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4281  		/*
4282  		 * Event injection happens before external interrupts cause a
4283  		 * vmexit and interrupts are disabled here, so smp_send_reschedule
4284  		 * is enough to force an immediate vmexit.
4285  		 */
4286  		disable_nmi_singlestep(svm);
4287  		force_immediate_exit = true;
4288  	}
4289  
4290  	if (force_immediate_exit)
4291  		smp_send_reschedule(vcpu->cpu);
4292  
4293  	if (pre_svm_run(vcpu)) {
4294  		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4295  		vcpu->run->fail_entry.hardware_entry_failure_reason = SVM_EXIT_ERR;
4296  		vcpu->run->fail_entry.cpu = vcpu->cpu;
4297  		return EXIT_FASTPATH_EXIT_USERSPACE;
4298  	}
4299  
4300  	sync_lapic_to_cr8(vcpu);
4301  
4302  	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4303  		svm->vmcb->control.asid = svm->asid;
4304  		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4305  	}
4306  	svm->vmcb->save.cr2 = vcpu->arch.cr2;
4307  
4308  	svm_hv_update_vp_id(svm->vmcb, vcpu);
4309  
4310  	/*
4311  	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
4312  	 * of a #DB.
4313  	 */
4314  	if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)))
4315  		svm_set_dr6(vcpu, DR6_ACTIVE_LOW);
4316  
4317  	clgi();
4318  	kvm_load_guest_xsave_state(vcpu);
4319  
4320  	/*
4321  	 * Hardware only context switches DEBUGCTL if LBR virtualization is
4322  	 * enabled.  Manually load DEBUGCTL if necessary (and restore it after
4323  	 * VM-Exit), as running with the host's DEBUGCTL can negatively affect
4324  	 * guest state and can even be fatal, e.g. due to Bus Lock Detect.
4325  	 */
4326  	if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4327  	    vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4328  		update_debugctlmsr(svm->vmcb->save.dbgctl);
4329  
4330  	kvm_wait_lapic_expire(vcpu);
4331  
4332  	/*
4333  	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4334  	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4335  	 * is no need to worry about the conditional branch over the wrmsr
4336  	 * being speculatively taken.
4337  	 */
4338  	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4339  		x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4340  
4341  	svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4342  
4343  	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4344  		x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4345  
4346  	if (!sev_es_guest(vcpu->kvm)) {
4347  		vcpu->arch.cr2 = svm->vmcb->save.cr2;
4348  		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4349  		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4350  		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4351  	}
4352  	vcpu->arch.regs_dirty = 0;
4353  
4354  	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4355  		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4356  
4357  	if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4358  	    vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4359  		update_debugctlmsr(vcpu->arch.host_debugctl);
4360  
4361  	kvm_load_host_xsave_state(vcpu);
4362  	stgi();
4363  
4364  	/* Any pending NMI will happen here */
4365  
4366  	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4367  		kvm_after_interrupt(vcpu);
4368  
4369  	sync_cr8_to_lapic(vcpu);
4370  
4371  	svm->next_rip = 0;
4372  	if (is_guest_mode(vcpu)) {
4373  		nested_sync_control_from_vmcb02(svm);
4374  
4375  		/* Track VMRUNs that have made past consistency checking */
4376  		if (svm->nested.nested_run_pending &&
4377  		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4378                          ++vcpu->stat.nested_run;
4379  
4380  		svm->nested.nested_run_pending = 0;
4381  	}
4382  
4383  	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4384  	vmcb_mark_all_clean(svm->vmcb);
4385  
4386  	/* if exit due to PF check for async PF */
4387  	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4388  		vcpu->arch.apf.host_apf_flags =
4389  			kvm_read_and_reset_apf_flags();
4390  
4391  	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4392  
4393  	/*
4394  	 * We need to handle MC intercepts here before the vcpu has a chance to
4395  	 * change the physical cpu
4396  	 */
4397  	if (unlikely(svm->vmcb->control.exit_code ==
4398  		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4399  		svm_handle_mce(vcpu);
4400  
4401  	trace_kvm_exit(vcpu, KVM_ISA_SVM);
4402  
4403  	svm_complete_interrupts(vcpu);
4404  
4405  	return svm_exit_handlers_fastpath(vcpu);
4406  }
4407  
svm_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)4408  static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4409  			     int root_level)
4410  {
4411  	struct vcpu_svm *svm = to_svm(vcpu);
4412  	unsigned long cr3;
4413  
4414  	if (npt_enabled) {
4415  		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4416  		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4417  
4418  		hv_track_root_tdp(vcpu, root_hpa);
4419  
4420  		cr3 = vcpu->arch.cr3;
4421  	} else if (root_level >= PT64_ROOT_4LEVEL) {
4422  		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4423  	} else {
4424  		/* PCID in the guest should be impossible with a 32-bit MMU. */
4425  		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4426  		cr3 = root_hpa;
4427  	}
4428  
4429  	svm->vmcb->save.cr3 = cr3;
4430  	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4431  }
4432  
4433  static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4434  svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4435  {
4436  	/*
4437  	 * Patch in the VMMCALL instruction:
4438  	 */
4439  	hypercall[0] = 0x0f;
4440  	hypercall[1] = 0x01;
4441  	hypercall[2] = 0xd9;
4442  }
4443  
4444  /*
4445   * The kvm parameter can be NULL (module initialization, or invocation before
4446   * VM creation). Be sure to check the kvm parameter before using it.
4447   */
svm_has_emulated_msr(struct kvm * kvm,u32 index)4448  static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4449  {
4450  	switch (index) {
4451  	case MSR_IA32_MCG_EXT_CTL:
4452  	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4453  		return false;
4454  	case MSR_IA32_SMBASE:
4455  		if (!IS_ENABLED(CONFIG_KVM_SMM))
4456  			return false;
4457  		/* SEV-ES guests do not support SMM, so report false */
4458  		if (kvm && sev_es_guest(kvm))
4459  			return false;
4460  		break;
4461  	default:
4462  		break;
4463  	}
4464  
4465  	return true;
4466  }
4467  
svm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)4468  static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4469  {
4470  	struct vcpu_svm *svm = to_svm(vcpu);
4471  
4472  	/*
4473  	 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4474  	 * can only disable all variants of by disallowing CR4.OSXSAVE from
4475  	 * being set.  As a result, if the host has XSAVE and XSAVES, and the
4476  	 * guest has XSAVE enabled, the guest can execute XSAVES without
4477  	 * faulting.  Treat XSAVES as enabled in this case regardless of
4478  	 * whether it's advertised to the guest so that KVM context switches
4479  	 * XSS on VM-Enter/VM-Exit.  Failure to do so would effectively give
4480  	 * the guest read/write access to the host's XSS.
4481  	 */
4482  	guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES,
4483  			     boot_cpu_has(X86_FEATURE_XSAVES) &&
4484  			     guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE));
4485  
4486  	/*
4487  	 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that
4488  	 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4489  	 * SVM on Intel is bonkers and extremely unlikely to work).
4490  	 */
4491  	if (guest_cpuid_is_intel_compatible(vcpu))
4492  		guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4493  
4494  	svm_recalc_instruction_intercepts(vcpu, svm);
4495  
4496  	if (boot_cpu_has(X86_FEATURE_IBPB))
4497  		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
4498  				     !!guest_has_pred_cmd_msr(vcpu));
4499  
4500  	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
4501  		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
4502  				     !!guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
4503  
4504  	if (sev_guest(vcpu->kvm))
4505  		sev_vcpu_after_set_cpuid(svm);
4506  
4507  	init_vmcb_after_set_cpuid(vcpu);
4508  }
4509  
svm_has_wbinvd_exit(void)4510  static bool svm_has_wbinvd_exit(void)
4511  {
4512  	return true;
4513  }
4514  
4515  #define PRE_EX(exit)  { .exit_code = (exit), \
4516  			.stage = X86_ICPT_PRE_EXCEPT, }
4517  #define POST_EX(exit) { .exit_code = (exit), \
4518  			.stage = X86_ICPT_POST_EXCEPT, }
4519  #define POST_MEM(exit) { .exit_code = (exit), \
4520  			.stage = X86_ICPT_POST_MEMACCESS, }
4521  
4522  static const struct __x86_intercept {
4523  	u32 exit_code;
4524  	enum x86_intercept_stage stage;
4525  } x86_intercept_map[] = {
4526  	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4527  	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4528  	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4529  	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4530  	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4531  	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4532  	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4533  	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4534  	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4535  	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4536  	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4537  	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4538  	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4539  	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4540  	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4541  	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4542  	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4543  	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4544  	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4545  	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4546  	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4547  	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4548  	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4549  	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4550  	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4551  	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4552  	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4553  	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4554  	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4555  	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4556  	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4557  	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4558  	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4559  	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4560  	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4561  	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4562  	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4563  	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4564  	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4565  	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4566  	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4567  	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4568  	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4569  	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4570  	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4571  	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4572  	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4573  };
4574  
4575  #undef PRE_EX
4576  #undef POST_EX
4577  #undef POST_MEM
4578  
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)4579  static int svm_check_intercept(struct kvm_vcpu *vcpu,
4580  			       struct x86_instruction_info *info,
4581  			       enum x86_intercept_stage stage,
4582  			       struct x86_exception *exception)
4583  {
4584  	struct vcpu_svm *svm = to_svm(vcpu);
4585  	int vmexit, ret = X86EMUL_CONTINUE;
4586  	struct __x86_intercept icpt_info;
4587  	struct vmcb *vmcb = svm->vmcb;
4588  
4589  	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4590  		goto out;
4591  
4592  	icpt_info = x86_intercept_map[info->intercept];
4593  
4594  	if (stage != icpt_info.stage)
4595  		goto out;
4596  
4597  	switch (icpt_info.exit_code) {
4598  	case SVM_EXIT_READ_CR0:
4599  		if (info->intercept == x86_intercept_cr_read)
4600  			icpt_info.exit_code += info->modrm_reg;
4601  		break;
4602  	case SVM_EXIT_WRITE_CR0: {
4603  		unsigned long cr0, val;
4604  
4605  		if (info->intercept == x86_intercept_cr_write)
4606  			icpt_info.exit_code += info->modrm_reg;
4607  
4608  		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4609  		    info->intercept == x86_intercept_clts)
4610  			break;
4611  
4612  		if (!(vmcb12_is_intercept(&svm->nested.ctl,
4613  					INTERCEPT_SELECTIVE_CR0)))
4614  			break;
4615  
4616  		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4617  		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4618  
4619  		if (info->intercept == x86_intercept_lmsw) {
4620  			cr0 &= 0xfUL;
4621  			val &= 0xfUL;
4622  			/* lmsw can't clear PE - catch this here */
4623  			if (cr0 & X86_CR0_PE)
4624  				val |= X86_CR0_PE;
4625  		}
4626  
4627  		if (cr0 ^ val)
4628  			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4629  
4630  		break;
4631  	}
4632  	case SVM_EXIT_READ_DR0:
4633  	case SVM_EXIT_WRITE_DR0:
4634  		icpt_info.exit_code += info->modrm_reg;
4635  		break;
4636  	case SVM_EXIT_MSR:
4637  		if (info->intercept == x86_intercept_wrmsr)
4638  			vmcb->control.exit_info_1 = 1;
4639  		else
4640  			vmcb->control.exit_info_1 = 0;
4641  		break;
4642  	case SVM_EXIT_PAUSE:
4643  		/*
4644  		 * We get this for NOP only, but pause
4645  		 * is rep not, check this here
4646  		 */
4647  		if (info->rep_prefix != REPE_PREFIX)
4648  			goto out;
4649  		break;
4650  	case SVM_EXIT_IOIO: {
4651  		u64 exit_info;
4652  		u32 bytes;
4653  
4654  		if (info->intercept == x86_intercept_in ||
4655  		    info->intercept == x86_intercept_ins) {
4656  			exit_info = ((info->src_val & 0xffff) << 16) |
4657  				SVM_IOIO_TYPE_MASK;
4658  			bytes = info->dst_bytes;
4659  		} else {
4660  			exit_info = (info->dst_val & 0xffff) << 16;
4661  			bytes = info->src_bytes;
4662  		}
4663  
4664  		if (info->intercept == x86_intercept_outs ||
4665  		    info->intercept == x86_intercept_ins)
4666  			exit_info |= SVM_IOIO_STR_MASK;
4667  
4668  		if (info->rep_prefix)
4669  			exit_info |= SVM_IOIO_REP_MASK;
4670  
4671  		bytes = min(bytes, 4u);
4672  
4673  		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4674  
4675  		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4676  
4677  		vmcb->control.exit_info_1 = exit_info;
4678  		vmcb->control.exit_info_2 = info->next_rip;
4679  
4680  		break;
4681  	}
4682  	default:
4683  		break;
4684  	}
4685  
4686  	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4687  	if (static_cpu_has(X86_FEATURE_NRIPS))
4688  		vmcb->control.next_rip  = info->next_rip;
4689  	vmcb->control.exit_code = icpt_info.exit_code;
4690  	vmexit = nested_svm_exit_handled(svm);
4691  
4692  	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4693  					   : X86EMUL_CONTINUE;
4694  
4695  out:
4696  	return ret;
4697  }
4698  
svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)4699  static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4700  {
4701  	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4702  		vcpu->arch.at_instruction_boundary = true;
4703  }
4704  
svm_setup_mce(struct kvm_vcpu * vcpu)4705  static void svm_setup_mce(struct kvm_vcpu *vcpu)
4706  {
4707  	/* [63:9] are reserved. */
4708  	vcpu->arch.mcg_cap &= 0x1ff;
4709  }
4710  
4711  #ifdef CONFIG_KVM_SMM
svm_smi_blocked(struct kvm_vcpu * vcpu)4712  bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4713  {
4714  	struct vcpu_svm *svm = to_svm(vcpu);
4715  
4716  	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4717  	if (!gif_set(svm))
4718  		return true;
4719  
4720  	return is_smm(vcpu);
4721  }
4722  
svm_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4723  static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4724  {
4725  	struct vcpu_svm *svm = to_svm(vcpu);
4726  	if (svm->nested.nested_run_pending)
4727  		return -EBUSY;
4728  
4729  	if (svm_smi_blocked(vcpu))
4730  		return 0;
4731  
4732  	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4733  	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4734  		return -EBUSY;
4735  
4736  	return 1;
4737  }
4738  
svm_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)4739  static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4740  {
4741  	struct vcpu_svm *svm = to_svm(vcpu);
4742  	struct kvm_host_map map_save;
4743  	int ret;
4744  
4745  	if (!is_guest_mode(vcpu))
4746  		return 0;
4747  
4748  	/*
4749  	 * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
4750  	 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4751  	 */
4752  
4753  	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4754  		return 1;
4755  
4756  	smram->smram64.svm_guest_flag = 1;
4757  	smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4758  
4759  	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4760  	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4761  	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4762  
4763  	ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4764  	if (ret)
4765  		return ret;
4766  
4767  	/*
4768  	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4769  	 * VMCB01 is going to be used during SMM and thus the state will
4770  	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4771  	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4772  	 * format of the area is identical to guest save area offsetted
4773  	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4774  	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4775  	 * L1 hypervisor to save additional host context (e.g. KVM does
4776  	 * that, see svm_prepare_switch_to_guest()) which must be
4777  	 * preserved.
4778  	 */
4779  	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4780  		return 1;
4781  
4782  	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4783  
4784  	svm_copy_vmrun_state(map_save.hva + 0x400,
4785  			     &svm->vmcb01.ptr->save);
4786  
4787  	kvm_vcpu_unmap(vcpu, &map_save);
4788  	return 0;
4789  }
4790  
svm_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)4791  static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4792  {
4793  	struct vcpu_svm *svm = to_svm(vcpu);
4794  	struct kvm_host_map map, map_save;
4795  	struct vmcb *vmcb12;
4796  	int ret;
4797  
4798  	const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4799  
4800  	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4801  		return 0;
4802  
4803  	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4804  	if (!smram64->svm_guest_flag)
4805  		return 0;
4806  
4807  	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
4808  		return 1;
4809  
4810  	if (!(smram64->efer & EFER_SVME))
4811  		return 1;
4812  
4813  	if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4814  		return 1;
4815  
4816  	ret = 1;
4817  	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4818  		goto unmap_map;
4819  
4820  	if (svm_allocate_nested(svm))
4821  		goto unmap_save;
4822  
4823  	/*
4824  	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4825  	 * used during SMM (see svm_enter_smm())
4826  	 */
4827  
4828  	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4829  
4830  	/*
4831  	 * Enter the nested guest now
4832  	 */
4833  
4834  	vmcb_mark_all_dirty(svm->vmcb01.ptr);
4835  
4836  	vmcb12 = map.hva;
4837  	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4838  	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4839  	ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4840  
4841  	if (ret)
4842  		goto unmap_save;
4843  
4844  	svm->nested.nested_run_pending = 1;
4845  
4846  unmap_save:
4847  	kvm_vcpu_unmap(vcpu, &map_save);
4848  unmap_map:
4849  	kvm_vcpu_unmap(vcpu, &map);
4850  	return ret;
4851  }
4852  
svm_enable_smi_window(struct kvm_vcpu * vcpu)4853  static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4854  {
4855  	struct vcpu_svm *svm = to_svm(vcpu);
4856  
4857  	if (!gif_set(svm)) {
4858  		if (vgif)
4859  			svm_set_intercept(svm, INTERCEPT_STGI);
4860  		/* STGI will cause a vm exit */
4861  	} else {
4862  		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4863  	}
4864  }
4865  #endif
4866  
svm_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)4867  static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4868  					 void *insn, int insn_len)
4869  {
4870  	struct vcpu_svm *svm = to_svm(vcpu);
4871  	bool smep, smap, is_user;
4872  	u64 error_code;
4873  
4874  	/* Check that emulation is possible during event vectoring */
4875  	if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) &&
4876  	    !kvm_can_emulate_event_vectoring(emul_type))
4877  		return X86EMUL_UNHANDLEABLE_VECTORING;
4878  
4879  	/* Emulation is always possible when KVM has access to all guest state. */
4880  	if (!sev_guest(vcpu->kvm))
4881  		return X86EMUL_CONTINUE;
4882  
4883  	/* #UD and #GP should never be intercepted for SEV guests. */
4884  	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4885  				  EMULTYPE_TRAP_UD_FORCED |
4886  				  EMULTYPE_VMWARE_GP));
4887  
4888  	/*
4889  	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4890  	 * to guest register state.
4891  	 */
4892  	if (sev_es_guest(vcpu->kvm))
4893  		return X86EMUL_RETRY_INSTR;
4894  
4895  	/*
4896  	 * Emulation is possible if the instruction is already decoded, e.g.
4897  	 * when completing I/O after returning from userspace.
4898  	 */
4899  	if (emul_type & EMULTYPE_NO_DECODE)
4900  		return X86EMUL_CONTINUE;
4901  
4902  	/*
4903  	 * Emulation is possible for SEV guests if and only if a prefilled
4904  	 * buffer containing the bytes of the intercepted instruction is
4905  	 * available. SEV guest memory is encrypted with a guest specific key
4906  	 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
4907  	 * decode garbage.
4908  	 *
4909  	 * If KVM is NOT trying to simply skip an instruction, inject #UD if
4910  	 * KVM reached this point without an instruction buffer.  In practice,
4911  	 * this path should never be hit by a well-behaved guest, e.g. KVM
4912  	 * doesn't intercept #UD or #GP for SEV guests, but this path is still
4913  	 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4914  	 * access, and needs to be handled by KVM to avoid putting the guest
4915  	 * into an infinite loop.   Injecting #UD is somewhat arbitrary, but
4916  	 * its the least awful option given lack of insight into the guest.
4917  	 *
4918  	 * If KVM is trying to skip an instruction, simply resume the guest.
4919  	 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4920  	 * will attempt to re-inject the INT3/INTO and skip the instruction.
4921  	 * In that scenario, retrying the INT3/INTO and hoping the guest will
4922  	 * make forward progress is the only option that has a chance of
4923  	 * success (and in practice it will work the vast majority of the time).
4924  	 */
4925  	if (unlikely(!insn)) {
4926  		if (emul_type & EMULTYPE_SKIP)
4927  			return X86EMUL_UNHANDLEABLE;
4928  
4929  		kvm_queue_exception(vcpu, UD_VECTOR);
4930  		return X86EMUL_PROPAGATE_FAULT;
4931  	}
4932  
4933  	/*
4934  	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4935  	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4936  	 * the faulting instruction because the code fetch itself faulted, e.g.
4937  	 * the guest attempted to fetch from emulated MMIO or a guest page
4938  	 * table used to translate CS:RIP resides in emulated MMIO.
4939  	 */
4940  	if (likely(insn_len))
4941  		return X86EMUL_CONTINUE;
4942  
4943  	/*
4944  	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4945  	 *
4946  	 * Errata:
4947  	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4948  	 * possible that CPU microcode implementing DecodeAssist will fail to
4949  	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4950  	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
4951  	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4952  	 * gives up and does not fill the instruction bytes buffer.
4953  	 *
4954  	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4955  	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4956  	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4957  	 * GuestIntrBytes field of the VMCB.
4958  	 *
4959  	 * This does _not_ mean that the erratum has been encountered, as the
4960  	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4961  	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4962  	 * encountered a reserved/not-present #PF.
4963  	 *
4964  	 * To hit the erratum, the following conditions must be true:
4965  	 *    1. CR4.SMAP=1 (obviously).
4966  	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4967  	 *       have been hit as the guest would have encountered a SMEP
4968  	 *       violation #PF, not a #NPF.
4969  	 *    3. The #NPF is not due to a code fetch, in which case failure to
4970  	 *       retrieve the instruction bytes is legitimate (see abvoe).
4971  	 *
4972  	 * In addition, don't apply the erratum workaround if the #NPF occurred
4973  	 * while translating guest page tables (see below).
4974  	 */
4975  	error_code = svm->vmcb->control.exit_info_1;
4976  	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4977  		goto resume_guest;
4978  
4979  	smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4980  	smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4981  	is_user = svm_get_cpl(vcpu) == 3;
4982  	if (smap && (!smep || is_user)) {
4983  		pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4984  
4985  		/*
4986  		 * If the fault occurred in userspace, arbitrarily inject #GP
4987  		 * to avoid killing the guest and to hopefully avoid confusing
4988  		 * the guest kernel too much, e.g. injecting #PF would not be
4989  		 * coherent with respect to the guest's page tables.  Request
4990  		 * triple fault if the fault occurred in the kernel as there's
4991  		 * no fault that KVM can inject without confusing the guest.
4992  		 * In practice, the triple fault is moot as no sane SEV kernel
4993  		 * will execute from user memory while also running with SMAP=1.
4994  		 */
4995  		if (is_user)
4996  			kvm_inject_gp(vcpu, 0);
4997  		else
4998  			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4999  		return X86EMUL_PROPAGATE_FAULT;
5000  	}
5001  
5002  resume_guest:
5003  	/*
5004  	 * If the erratum was not hit, simply resume the guest and let it fault
5005  	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
5006  	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
5007  	 * userspace will kill the guest, and letting the emulator read garbage
5008  	 * will yield random behavior and potentially corrupt the guest.
5009  	 *
5010  	 * Simply resuming the guest is technically not a violation of the SEV
5011  	 * architecture.  AMD's APM states that all code fetches and page table
5012  	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
5013  	 * APM also states that encrypted accesses to MMIO are "ignored", but
5014  	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
5015  	 * the guest spin is technically "ignoring" the access.
5016  	 */
5017  	return X86EMUL_RETRY_INSTR;
5018  }
5019  
svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)5020  static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
5021  {
5022  	struct vcpu_svm *svm = to_svm(vcpu);
5023  
5024  	return !gif_set(svm);
5025  }
5026  
svm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)5027  static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
5028  {
5029  	if (!sev_es_guest(vcpu->kvm))
5030  		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
5031  
5032  	sev_vcpu_deliver_sipi_vector(vcpu, vector);
5033  }
5034  
svm_vm_destroy(struct kvm * kvm)5035  static void svm_vm_destroy(struct kvm *kvm)
5036  {
5037  	avic_vm_destroy(kvm);
5038  	sev_vm_destroy(kvm);
5039  }
5040  
svm_vm_init(struct kvm * kvm)5041  static int svm_vm_init(struct kvm *kvm)
5042  {
5043  	int type = kvm->arch.vm_type;
5044  
5045  	if (type != KVM_X86_DEFAULT_VM &&
5046  	    type != KVM_X86_SW_PROTECTED_VM) {
5047  		kvm->arch.has_protected_state =
5048  			(type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM);
5049  		to_kvm_sev_info(kvm)->need_init = true;
5050  
5051  		kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM);
5052  		kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem;
5053  	}
5054  
5055  	if (!pause_filter_count || !pause_filter_thresh)
5056  		kvm->arch.pause_in_guest = true;
5057  
5058  	if (enable_apicv) {
5059  		int ret = avic_vm_init(kvm);
5060  		if (ret)
5061  			return ret;
5062  	}
5063  
5064  	return 0;
5065  }
5066  
svm_alloc_apic_backing_page(struct kvm_vcpu * vcpu)5067  static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu)
5068  {
5069  	struct page *page = snp_safe_alloc_page();
5070  
5071  	if (!page)
5072  		return NULL;
5073  
5074  	return page_address(page);
5075  }
5076  
5077  static struct kvm_x86_ops svm_x86_ops __initdata = {
5078  	.name = KBUILD_MODNAME,
5079  
5080  	.check_processor_compatibility = svm_check_processor_compat,
5081  
5082  	.hardware_unsetup = svm_hardware_unsetup,
5083  	.enable_virtualization_cpu = svm_enable_virtualization_cpu,
5084  	.disable_virtualization_cpu = svm_disable_virtualization_cpu,
5085  	.emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu,
5086  	.has_emulated_msr = svm_has_emulated_msr,
5087  
5088  	.vcpu_create = svm_vcpu_create,
5089  	.vcpu_free = svm_vcpu_free,
5090  	.vcpu_reset = svm_vcpu_reset,
5091  
5092  	.vm_size = sizeof(struct kvm_svm),
5093  	.vm_init = svm_vm_init,
5094  	.vm_destroy = svm_vm_destroy,
5095  
5096  	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
5097  	.vcpu_load = svm_vcpu_load,
5098  	.vcpu_put = svm_vcpu_put,
5099  	.vcpu_blocking = avic_vcpu_blocking,
5100  	.vcpu_unblocking = avic_vcpu_unblocking,
5101  
5102  	.update_exception_bitmap = svm_update_exception_bitmap,
5103  	.get_feature_msr = svm_get_feature_msr,
5104  	.get_msr = svm_get_msr,
5105  	.set_msr = svm_set_msr,
5106  	.get_segment_base = svm_get_segment_base,
5107  	.get_segment = svm_get_segment,
5108  	.set_segment = svm_set_segment,
5109  	.get_cpl = svm_get_cpl,
5110  	.get_cpl_no_cache = svm_get_cpl,
5111  	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
5112  	.is_valid_cr0 = svm_is_valid_cr0,
5113  	.set_cr0 = svm_set_cr0,
5114  	.post_set_cr3 = sev_post_set_cr3,
5115  	.is_valid_cr4 = svm_is_valid_cr4,
5116  	.set_cr4 = svm_set_cr4,
5117  	.set_efer = svm_set_efer,
5118  	.get_idt = svm_get_idt,
5119  	.set_idt = svm_set_idt,
5120  	.get_gdt = svm_get_gdt,
5121  	.set_gdt = svm_set_gdt,
5122  	.set_dr6 = svm_set_dr6,
5123  	.set_dr7 = svm_set_dr7,
5124  	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5125  	.cache_reg = svm_cache_reg,
5126  	.get_rflags = svm_get_rflags,
5127  	.set_rflags = svm_set_rflags,
5128  	.get_if_flag = svm_get_if_flag,
5129  
5130  	.flush_tlb_all = svm_flush_tlb_all,
5131  	.flush_tlb_current = svm_flush_tlb_current,
5132  	.flush_tlb_gva = svm_flush_tlb_gva,
5133  	.flush_tlb_guest = svm_flush_tlb_asid,
5134  
5135  	.vcpu_pre_run = svm_vcpu_pre_run,
5136  	.vcpu_run = svm_vcpu_run,
5137  	.handle_exit = svm_handle_exit,
5138  	.skip_emulated_instruction = svm_skip_emulated_instruction,
5139  	.update_emulated_instruction = NULL,
5140  	.set_interrupt_shadow = svm_set_interrupt_shadow,
5141  	.get_interrupt_shadow = svm_get_interrupt_shadow,
5142  	.patch_hypercall = svm_patch_hypercall,
5143  	.inject_irq = svm_inject_irq,
5144  	.inject_nmi = svm_inject_nmi,
5145  	.is_vnmi_pending = svm_is_vnmi_pending,
5146  	.set_vnmi_pending = svm_set_vnmi_pending,
5147  	.inject_exception = svm_inject_exception,
5148  	.cancel_injection = svm_cancel_injection,
5149  	.interrupt_allowed = svm_interrupt_allowed,
5150  	.nmi_allowed = svm_nmi_allowed,
5151  	.get_nmi_mask = svm_get_nmi_mask,
5152  	.set_nmi_mask = svm_set_nmi_mask,
5153  	.enable_nmi_window = svm_enable_nmi_window,
5154  	.enable_irq_window = svm_enable_irq_window,
5155  	.update_cr8_intercept = svm_update_cr8_intercept,
5156  
5157  	.x2apic_icr_is_split = true,
5158  	.set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
5159  	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
5160  	.apicv_post_state_restore = avic_apicv_post_state_restore,
5161  	.required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
5162  
5163  	.get_exit_info = svm_get_exit_info,
5164  	.get_entry_info = svm_get_entry_info,
5165  
5166  	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
5167  
5168  	.has_wbinvd_exit = svm_has_wbinvd_exit,
5169  
5170  	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
5171  	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
5172  	.write_tsc_offset = svm_write_tsc_offset,
5173  	.write_tsc_multiplier = svm_write_tsc_multiplier,
5174  
5175  	.load_mmu_pgd = svm_load_mmu_pgd,
5176  
5177  	.check_intercept = svm_check_intercept,
5178  	.handle_exit_irqoff = svm_handle_exit_irqoff,
5179  
5180  	.nested_ops = &svm_nested_ops,
5181  
5182  	.deliver_interrupt = svm_deliver_interrupt,
5183  	.pi_update_irte = avic_pi_update_irte,
5184  	.setup_mce = svm_setup_mce,
5185  
5186  #ifdef CONFIG_KVM_SMM
5187  	.smi_allowed = svm_smi_allowed,
5188  	.enter_smm = svm_enter_smm,
5189  	.leave_smm = svm_leave_smm,
5190  	.enable_smi_window = svm_enable_smi_window,
5191  #endif
5192  
5193  #ifdef CONFIG_KVM_AMD_SEV
5194  	.dev_get_attr = sev_dev_get_attr,
5195  	.mem_enc_ioctl = sev_mem_enc_ioctl,
5196  	.mem_enc_register_region = sev_mem_enc_register_region,
5197  	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
5198  	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
5199  
5200  	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5201  	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
5202  #endif
5203  	.check_emulate_instruction = svm_check_emulate_instruction,
5204  
5205  	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
5206  
5207  	.msr_filter_changed = svm_msr_filter_changed,
5208  	.complete_emulated_msr = svm_complete_emulated_msr,
5209  
5210  	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5211  	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5212  	.alloc_apic_backing_page = svm_alloc_apic_backing_page,
5213  
5214  	.gmem_prepare = sev_gmem_prepare,
5215  	.gmem_invalidate = sev_gmem_invalidate,
5216  	.private_max_mapping_level = sev_private_max_mapping_level,
5217  };
5218  
5219  /*
5220   * The default MMIO mask is a single bit (excluding the present bit),
5221   * which could conflict with the memory encryption bit. Check for
5222   * memory encryption support and override the default MMIO mask if
5223   * memory encryption is enabled.
5224   */
svm_adjust_mmio_mask(void)5225  static __init void svm_adjust_mmio_mask(void)
5226  {
5227  	unsigned int enc_bit, mask_bit;
5228  	u64 msr, mask;
5229  
5230  	/* If there is no memory encryption support, use existing mask */
5231  	if (cpuid_eax(0x80000000) < 0x8000001f)
5232  		return;
5233  
5234  	/* If memory encryption is not enabled, use existing mask */
5235  	rdmsrl(MSR_AMD64_SYSCFG, msr);
5236  	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5237  		return;
5238  
5239  	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5240  	mask_bit = boot_cpu_data.x86_phys_bits;
5241  
5242  	/* Increment the mask bit if it is the same as the encryption bit */
5243  	if (enc_bit == mask_bit)
5244  		mask_bit++;
5245  
5246  	/*
5247  	 * If the mask bit location is below 52, then some bits above the
5248  	 * physical addressing limit will always be reserved, so use the
5249  	 * rsvd_bits() function to generate the mask. This mask, along with
5250  	 * the present bit, will be used to generate a page fault with
5251  	 * PFER.RSV = 1.
5252  	 *
5253  	 * If the mask bit location is 52 (or above), then clear the mask.
5254  	 */
5255  	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5256  
5257  	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5258  }
5259  
svm_set_cpu_caps(void)5260  static __init void svm_set_cpu_caps(void)
5261  {
5262  	kvm_set_cpu_caps();
5263  
5264  	kvm_caps.supported_perf_cap = 0;
5265  	kvm_caps.supported_xss = 0;
5266  
5267  	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
5268  	if (nested) {
5269  		kvm_cpu_cap_set(X86_FEATURE_SVM);
5270  		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5271  
5272  		/*
5273  		 * KVM currently flushes TLBs on *every* nested SVM transition,
5274  		 * and so for all intents and purposes KVM supports flushing by
5275  		 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
5276  		 */
5277  		kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);
5278  
5279  		if (nrips)
5280  			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5281  
5282  		if (npt_enabled)
5283  			kvm_cpu_cap_set(X86_FEATURE_NPT);
5284  
5285  		if (tsc_scaling)
5286  			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5287  
5288  		if (vls)
5289  			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5290  		if (lbrv)
5291  			kvm_cpu_cap_set(X86_FEATURE_LBRV);
5292  
5293  		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5294  			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5295  
5296  		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5297  			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5298  
5299  		if (vgif)
5300  			kvm_cpu_cap_set(X86_FEATURE_VGIF);
5301  
5302  		if (vnmi)
5303  			kvm_cpu_cap_set(X86_FEATURE_VNMI);
5304  
5305  		/* Nested VM can receive #VMEXIT instead of triggering #GP */
5306  		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5307  	}
5308  
5309  	/* CPUID 0x80000008 */
5310  	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5311  	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
5312  		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5313  
5314  	if (enable_pmu) {
5315  		/*
5316  		 * Enumerate support for PERFCTR_CORE if and only if KVM has
5317  		 * access to enough counters to virtualize "core" support,
5318  		 * otherwise limit vPMU support to the legacy number of counters.
5319  		 */
5320  		if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5321  			kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5322  							  kvm_pmu_cap.num_counters_gp);
5323  		else
5324  			kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5325  
5326  		if (kvm_pmu_cap.version != 2 ||
5327  		    !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5328  			kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5329  	}
5330  
5331  	/* CPUID 0x8000001F (SME/SEV features) */
5332  	sev_set_cpu_caps();
5333  
5334  	/* Don't advertise Bus Lock Detect to guest if SVM support is absent */
5335  	kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT);
5336  }
5337  
svm_hardware_setup(void)5338  static __init int svm_hardware_setup(void)
5339  {
5340  	int cpu;
5341  	struct page *iopm_pages;
5342  	void *iopm_va;
5343  	int r;
5344  	unsigned int order = get_order(IOPM_SIZE);
5345  
5346  	/*
5347  	 * NX is required for shadow paging and for NPT if the NX huge pages
5348  	 * mitigation is enabled.
5349  	 */
5350  	if (!boot_cpu_has(X86_FEATURE_NX)) {
5351  		pr_err_ratelimited("NX (Execute Disable) not supported\n");
5352  		return -EOPNOTSUPP;
5353  	}
5354  	kvm_enable_efer_bits(EFER_NX);
5355  
5356  	iopm_pages = alloc_pages(GFP_KERNEL, order);
5357  
5358  	if (!iopm_pages)
5359  		return -ENOMEM;
5360  
5361  	iopm_va = page_address(iopm_pages);
5362  	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
5363  	iopm_base = __sme_page_pa(iopm_pages);
5364  
5365  	init_msrpm_offsets();
5366  
5367  	kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5368  				     XFEATURE_MASK_BNDCSR);
5369  
5370  	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5371  		kvm_enable_efer_bits(EFER_FFXSR);
5372  
5373  	if (tsc_scaling) {
5374  		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5375  			tsc_scaling = false;
5376  		} else {
5377  			pr_info("TSC scaling supported\n");
5378  			kvm_caps.has_tsc_control = true;
5379  		}
5380  	}
5381  	kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5382  	kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5383  
5384  	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5385  
5386  	if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5387  		kvm_enable_efer_bits(EFER_AUTOIBRS);
5388  
5389  	/* Check for pause filtering support */
5390  	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5391  		pause_filter_count = 0;
5392  		pause_filter_thresh = 0;
5393  	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5394  		pause_filter_thresh = 0;
5395  	}
5396  
5397  	if (nested) {
5398  		pr_info("Nested Virtualization enabled\n");
5399  		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5400  	}
5401  
5402  	/*
5403  	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5404  	 * NPT isn't supported if the host is using 2-level paging since host
5405  	 * CR4 is unchanged on VMRUN.
5406  	 */
5407  	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5408  		npt_enabled = false;
5409  
5410  	if (!boot_cpu_has(X86_FEATURE_NPT))
5411  		npt_enabled = false;
5412  
5413  	/* Force VM NPT level equal to the host's paging level */
5414  	kvm_configure_mmu(npt_enabled, get_npt_level(),
5415  			  get_npt_level(), PG_LEVEL_1G);
5416  	pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled));
5417  
5418  	/* Setup shadow_me_value and shadow_me_mask */
5419  	kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5420  
5421  	svm_adjust_mmio_mask();
5422  
5423  	nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5424  
5425  	if (lbrv) {
5426  		if (!boot_cpu_has(X86_FEATURE_LBRV))
5427  			lbrv = false;
5428  		else
5429  			pr_info("LBR virtualization supported\n");
5430  	}
5431  	/*
5432  	 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5433  	 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5434  	 */
5435  	sev_hardware_setup();
5436  
5437  	svm_hv_hardware_setup();
5438  
5439  	for_each_possible_cpu(cpu) {
5440  		r = svm_cpu_init(cpu);
5441  		if (r)
5442  			goto err;
5443  	}
5444  
5445  	enable_apicv = avic = avic && avic_hardware_setup();
5446  
5447  	if (!enable_apicv) {
5448  		svm_x86_ops.vcpu_blocking = NULL;
5449  		svm_x86_ops.vcpu_unblocking = NULL;
5450  		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5451  	} else if (!x2avic_enabled) {
5452  		svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5453  	}
5454  
5455  	if (vls) {
5456  		if (!npt_enabled ||
5457  		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5458  		    !IS_ENABLED(CONFIG_X86_64)) {
5459  			vls = false;
5460  		} else {
5461  			pr_info("Virtual VMLOAD VMSAVE supported\n");
5462  		}
5463  	}
5464  
5465  	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5466  		svm_gp_erratum_intercept = false;
5467  
5468  	if (vgif) {
5469  		if (!boot_cpu_has(X86_FEATURE_VGIF))
5470  			vgif = false;
5471  		else
5472  			pr_info("Virtual GIF supported\n");
5473  	}
5474  
5475  	vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5476  	if (vnmi)
5477  		pr_info("Virtual NMI enabled\n");
5478  
5479  	if (!vnmi) {
5480  		svm_x86_ops.is_vnmi_pending = NULL;
5481  		svm_x86_ops.set_vnmi_pending = NULL;
5482  	}
5483  
5484  	if (!enable_pmu)
5485  		pr_info("PMU virtualization is disabled\n");
5486  
5487  	svm_set_cpu_caps();
5488  
5489  	/*
5490  	 * It seems that on AMD processors PTE's accessed bit is
5491  	 * being set by the CPU hardware before the NPF vmexit.
5492  	 * This is not expected behaviour and our tests fail because
5493  	 * of it.
5494  	 * A workaround here is to disable support for
5495  	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5496  	 * In this case userspace can know if there is support using
5497  	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5498  	 * it
5499  	 * If future AMD CPU models change the behaviour described above,
5500  	 * this variable can be changed accordingly
5501  	 */
5502  	allow_smaller_maxphyaddr = !npt_enabled;
5503  
5504  	return 0;
5505  
5506  err:
5507  	svm_hardware_unsetup();
5508  	return r;
5509  }
5510  
5511  
5512  static struct kvm_x86_init_ops svm_init_ops __initdata = {
5513  	.hardware_setup = svm_hardware_setup,
5514  
5515  	.runtime_ops = &svm_x86_ops,
5516  	.pmu_ops = &amd_pmu_ops,
5517  };
5518  
__svm_exit(void)5519  static void __svm_exit(void)
5520  {
5521  	kvm_x86_vendor_exit();
5522  }
5523  
svm_init(void)5524  static int __init svm_init(void)
5525  {
5526  	int r;
5527  
5528  	__unused_size_checks();
5529  
5530  	if (!kvm_is_svm_supported())
5531  		return -EOPNOTSUPP;
5532  
5533  	r = kvm_x86_vendor_init(&svm_init_ops);
5534  	if (r)
5535  		return r;
5536  
5537  	/*
5538  	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5539  	 * exposed to userspace!
5540  	 */
5541  	r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5542  		     THIS_MODULE);
5543  	if (r)
5544  		goto err_kvm_init;
5545  
5546  	return 0;
5547  
5548  err_kvm_init:
5549  	__svm_exit();
5550  	return r;
5551  }
5552  
svm_exit(void)5553  static void __exit svm_exit(void)
5554  {
5555  	kvm_exit();
5556  	__svm_exit();
5557  }
5558  
5559  module_init(svm_init)
5560  module_exit(svm_exit)
5561