xref: /linux/arch/x86/kvm/svm/svm.c (revision bf2c3138ae3694d4687cbe451c774c288ae2ad06)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12 
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31 #include <linux/string_choices.h>
32 #include <linux/mutex.h>
33 
34 #include <asm/apic.h>
35 #include <asm/msr.h>
36 #include <asm/perf_event.h>
37 #include <asm/tlbflush.h>
38 #include <asm/desc.h>
39 #include <asm/debugreg.h>
40 #include <asm/kvm_para.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/spec-ctrl.h>
43 #include <asm/cpu_device_id.h>
44 #include <asm/traps.h>
45 #include <asm/reboot.h>
46 #include <asm/fpu/api.h>
47 
48 #include <trace/events/ipi.h>
49 
50 #include "trace.h"
51 
52 #include "svm.h"
53 #include "svm_ops.h"
54 
55 #include "kvm_onhyperv.h"
56 #include "svm_onhyperv.h"
57 
58 MODULE_AUTHOR("Qumranet");
59 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions");
60 MODULE_LICENSE("GPL");
61 
62 #ifdef MODULE
63 static const struct x86_cpu_id svm_cpu_id[] = {
64 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
65 	{}
66 };
67 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
68 #endif
69 
70 #define SEG_TYPE_LDT 2
71 #define SEG_TYPE_BUSY_TSS16 3
72 
73 static bool erratum_383_found __read_mostly;
74 
75 /*
76  * Set osvw_len to higher value when updated Revision Guides
77  * are published and we know what the new status bits are
78  */
79 static uint64_t osvw_len = 4, osvw_status;
80 
81 static DEFINE_PER_CPU(u64, current_tsc_ratio);
82 
83 /*
84  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
85  * pause_filter_count: On processors that support Pause filtering(indicated
86  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
87  *	count value. On VMRUN this value is loaded into an internal counter.
88  *	Each time a pause instruction is executed, this counter is decremented
89  *	until it reaches zero at which time a #VMEXIT is generated if pause
90  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
91  *	Intercept Filtering for more details.
92  *	This also indicate if ple logic enabled.
93  *
94  * pause_filter_thresh: In addition, some processor families support advanced
95  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
96  *	the amount of time a guest is allowed to execute in a pause loop.
97  *	In this mode, a 16-bit pause filter threshold field is added in the
98  *	VMCB. The threshold value is a cycle count that is used to reset the
99  *	pause counter. As with simple pause filtering, VMRUN loads the pause
100  *	count value from VMCB into an internal counter. Then, on each pause
101  *	instruction the hardware checks the elapsed number of cycles since
102  *	the most recent pause instruction against the pause filter threshold.
103  *	If the elapsed cycle count is greater than the pause filter threshold,
104  *	then the internal pause count is reloaded from the VMCB and execution
105  *	continues. If the elapsed cycle count is less than the pause filter
106  *	threshold, then the internal pause count is decremented. If the count
107  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
108  *	triggered. If advanced pause filtering is supported and pause filter
109  *	threshold field is set to zero, the filter will operate in the simpler,
110  *	count only mode.
111  */
112 
113 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
114 module_param(pause_filter_thresh, ushort, 0444);
115 
116 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
117 module_param(pause_filter_count, ushort, 0444);
118 
119 /* Default doubles per-vcpu window every exit. */
120 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
121 module_param(pause_filter_count_grow, ushort, 0444);
122 
123 /* Default resets per-vcpu window every exit to pause_filter_count. */
124 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
125 module_param(pause_filter_count_shrink, ushort, 0444);
126 
127 /* Default is to compute the maximum so we can never overflow. */
128 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
129 module_param(pause_filter_count_max, ushort, 0444);
130 
131 /*
132  * Use nested page tables by default.  Note, NPT may get forced off by
133  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
134  */
135 bool npt_enabled = true;
136 module_param_named(npt, npt_enabled, bool, 0444);
137 
138 /* allow nested virtualization in KVM/SVM */
139 static int nested = true;
140 module_param(nested, int, 0444);
141 
142 /* enable/disable Next RIP Save */
143 int nrips = true;
144 module_param(nrips, int, 0444);
145 
146 /* enable/disable Virtual VMLOAD VMSAVE */
147 static int vls = true;
148 module_param(vls, int, 0444);
149 
150 /* enable/disable Virtual GIF */
151 int vgif = true;
152 module_param(vgif, int, 0444);
153 
154 /* enable/disable LBR virtualization */
155 int lbrv = true;
156 module_param(lbrv, int, 0444);
157 
158 static int tsc_scaling = true;
159 module_param(tsc_scaling, int, 0444);
160 
161 module_param(enable_device_posted_irqs, bool, 0444);
162 
163 bool __read_mostly dump_invalid_vmcb;
164 module_param(dump_invalid_vmcb, bool, 0644);
165 
166 
167 bool intercept_smi = true;
168 module_param(intercept_smi, bool, 0444);
169 
170 bool vnmi = true;
171 module_param(vnmi, bool, 0444);
172 
173 module_param(enable_mediated_pmu, bool, 0444);
174 
175 static bool svm_gp_erratum_intercept = true;
176 
177 static u8 rsm_ins_bytes[] = "\x0f\xaa";
178 
179 static unsigned long iopm_base;
180 
181 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
182 
183 static DEFINE_MUTEX(vmcb_dump_mutex);
184 
185 /*
186  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
187  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
188  *
189  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
190  * defer the restoration of TSC_AUX until the CPU returns to userspace.
191  */
192 int tsc_aux_uret_slot __ro_after_init = -1;
193 
194 static int get_npt_level(void)
195 {
196 #ifdef CONFIG_X86_64
197 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
198 #else
199 	return PT32E_ROOT_LEVEL;
200 #endif
201 }
202 
203 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
204 {
205 	struct vcpu_svm *svm = to_svm(vcpu);
206 	u64 old_efer = vcpu->arch.efer;
207 	vcpu->arch.efer = efer;
208 
209 	if (!npt_enabled) {
210 		/* Shadow paging assumes NX to be available.  */
211 		efer |= EFER_NX;
212 
213 		if (!(efer & EFER_LMA))
214 			efer &= ~EFER_LME;
215 	}
216 
217 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
218 		if (!(efer & EFER_SVME)) {
219 			svm_leave_nested(vcpu);
220 			/* #GP intercept is still needed for vmware backdoor */
221 			if (!enable_vmware_backdoor)
222 				clr_exception_intercept(svm, GP_VECTOR);
223 
224 			/*
225 			 * Free the nested guest state, unless we are in SMM.
226 			 * In this case we will return to the nested guest
227 			 * as soon as we leave SMM.
228 			 */
229 			if (!is_smm(vcpu))
230 				svm_free_nested(svm);
231 
232 		} else {
233 			int ret = svm_allocate_nested(svm);
234 
235 			if (ret) {
236 				vcpu->arch.efer = old_efer;
237 				return ret;
238 			}
239 
240 			/*
241 			 * Never intercept #GP for SEV guests, KVM can't
242 			 * decrypt guest memory to workaround the erratum.
243 			 */
244 			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
245 				set_exception_intercept(svm, GP_VECTOR);
246 		}
247 	}
248 
249 	svm->vmcb->save.efer = efer | EFER_SVME;
250 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
251 	return 0;
252 }
253 
254 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
255 {
256 	struct vcpu_svm *svm = to_svm(vcpu);
257 	u32 ret = 0;
258 
259 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
260 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
261 	return ret;
262 }
263 
264 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
265 {
266 	struct vcpu_svm *svm = to_svm(vcpu);
267 
268 	if (mask == 0)
269 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
270 	else
271 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
272 
273 }
274 
275 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
276 					   int emul_type,
277 					   bool commit_side_effects)
278 {
279 	struct vcpu_svm *svm = to_svm(vcpu);
280 	unsigned long old_rflags;
281 
282 	/*
283 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
284 	 * the type of exit and the #VC handler in the guest.
285 	 */
286 	if (sev_es_guest(vcpu->kvm))
287 		goto done;
288 
289 	if (nrips && svm->vmcb->control.next_rip != 0) {
290 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
291 		svm->next_rip = svm->vmcb->control.next_rip;
292 	}
293 
294 	if (!svm->next_rip) {
295 		if (unlikely(!commit_side_effects))
296 			old_rflags = svm->vmcb->save.rflags;
297 
298 		if (!kvm_emulate_instruction(vcpu, emul_type))
299 			return 0;
300 
301 		if (unlikely(!commit_side_effects))
302 			svm->vmcb->save.rflags = old_rflags;
303 	} else {
304 		kvm_rip_write(vcpu, svm->next_rip);
305 	}
306 
307 done:
308 	if (likely(commit_side_effects))
309 		svm_set_interrupt_shadow(vcpu, 0);
310 
311 	return 1;
312 }
313 
314 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
315 {
316 	return __svm_skip_emulated_instruction(vcpu, EMULTYPE_SKIP, true);
317 }
318 
319 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu, u8 vector)
320 {
321 	const int emul_type = EMULTYPE_SKIP | EMULTYPE_SKIP_SOFT_INT |
322 			      EMULTYPE_SET_SOFT_INT_VECTOR(vector);
323 	unsigned long rip, old_rip = kvm_rip_read(vcpu);
324 	struct vcpu_svm *svm = to_svm(vcpu);
325 
326 	/*
327 	 * Due to architectural shortcomings, the CPU doesn't always provide
328 	 * NextRIP, e.g. if KVM intercepted an exception that occurred while
329 	 * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
330 	 * the instruction even if NextRIP is supported to acquire the next
331 	 * RIP so that it can be shoved into the NextRIP field, otherwise
332 	 * hardware will fail to advance guest RIP during event injection.
333 	 * Drop the exception/interrupt if emulation fails and effectively
334 	 * retry the instruction, it's the least awful option.  If NRIPS is
335 	 * in use, the skip must not commit any side effects such as clearing
336 	 * the interrupt shadow or RFLAGS.RF.
337 	 */
338 	if (!__svm_skip_emulated_instruction(vcpu, emul_type, !nrips))
339 		return -EIO;
340 
341 	rip = kvm_rip_read(vcpu);
342 
343 	/*
344 	 * Save the injection information, even when using next_rip, as the
345 	 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
346 	 * doesn't complete due to a VM-Exit occurring while the CPU is
347 	 * vectoring the event.   Decoding the instruction isn't guaranteed to
348 	 * work as there may be no backing instruction, e.g. if the event is
349 	 * being injected by L1 for L2, or if the guest is patching INT3 into
350 	 * a different instruction.
351 	 */
352 	svm->soft_int_injected = true;
353 	svm->soft_int_csbase = svm->vmcb->save.cs.base;
354 	svm->soft_int_old_rip = old_rip;
355 	svm->soft_int_next_rip = rip;
356 
357 	if (nrips)
358 		kvm_rip_write(vcpu, old_rip);
359 
360 	if (static_cpu_has(X86_FEATURE_NRIPS))
361 		svm->vmcb->control.next_rip = rip;
362 
363 	return 0;
364 }
365 
366 static void svm_inject_exception(struct kvm_vcpu *vcpu)
367 {
368 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
369 	struct vcpu_svm *svm = to_svm(vcpu);
370 
371 	kvm_deliver_exception_payload(vcpu, ex);
372 
373 	if (kvm_exception_is_soft(ex->vector) &&
374 	    svm_update_soft_interrupt_rip(vcpu, ex->vector))
375 		return;
376 
377 	svm->vmcb->control.event_inj = ex->vector
378 		| SVM_EVTINJ_VALID
379 		| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
380 		| SVM_EVTINJ_TYPE_EXEPT;
381 	svm->vmcb->control.event_inj_err = ex->error_code;
382 }
383 
384 static void svm_init_erratum_383(void)
385 {
386 	u64 val;
387 
388 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
389 		return;
390 
391 	/* Use _safe variants to not break nested virtualization */
392 	if (native_read_msr_safe(MSR_AMD64_DC_CFG, &val))
393 		return;
394 
395 	val |= (1ULL << 47);
396 
397 	native_write_msr_safe(MSR_AMD64_DC_CFG, val);
398 
399 	erratum_383_found = true;
400 }
401 
402 static void svm_init_osvw(struct kvm_vcpu *vcpu)
403 {
404 	/*
405 	 * Guests should see errata 400 and 415 as fixed (assuming that
406 	 * HLT and IO instructions are intercepted).
407 	 */
408 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
409 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
410 
411 	/*
412 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
413 	 * all osvw.status bits inside that length, including bit 0 (which is
414 	 * reserved for erratum 298), are valid. However, if host processor's
415 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
416 	 * be conservative here and therefore we tell the guest that erratum 298
417 	 * is present (because we really don't know).
418 	 */
419 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
420 		vcpu->arch.osvw.status |= 1;
421 }
422 
423 static bool __kvm_is_svm_supported(void)
424 {
425 	int cpu = smp_processor_id();
426 	struct cpuinfo_x86 *c = &cpu_data(cpu);
427 
428 	if (c->x86_vendor != X86_VENDOR_AMD &&
429 	    c->x86_vendor != X86_VENDOR_HYGON) {
430 		pr_err("CPU %d isn't AMD or Hygon\n", cpu);
431 		return false;
432 	}
433 
434 	if (!cpu_has(c, X86_FEATURE_SVM)) {
435 		pr_err("SVM not supported by CPU %d\n", cpu);
436 		return false;
437 	}
438 
439 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
440 		pr_info("KVM is unsupported when running as an SEV guest\n");
441 		return false;
442 	}
443 
444 	return true;
445 }
446 
447 static bool kvm_is_svm_supported(void)
448 {
449 	bool supported;
450 
451 	migrate_disable();
452 	supported = __kvm_is_svm_supported();
453 	migrate_enable();
454 
455 	return supported;
456 }
457 
458 static int svm_check_processor_compat(void)
459 {
460 	if (!__kvm_is_svm_supported())
461 		return -EIO;
462 
463 	return 0;
464 }
465 
466 static void __svm_write_tsc_multiplier(u64 multiplier)
467 {
468 	if (multiplier == __this_cpu_read(current_tsc_ratio))
469 		return;
470 
471 	wrmsrq(MSR_AMD64_TSC_RATIO, multiplier);
472 	__this_cpu_write(current_tsc_ratio, multiplier);
473 }
474 
475 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd)
476 {
477 	return &sd->save_area->host_sev_es_save;
478 }
479 
480 static inline void kvm_cpu_svm_disable(void)
481 {
482 	uint64_t efer;
483 
484 	wrmsrq(MSR_VM_HSAVE_PA, 0);
485 	rdmsrq(MSR_EFER, efer);
486 	if (efer & EFER_SVME) {
487 		/*
488 		 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
489 		 * NMI aren't blocked.
490 		 */
491 		stgi();
492 		wrmsrq(MSR_EFER, efer & ~EFER_SVME);
493 	}
494 }
495 
496 static void svm_emergency_disable_virtualization_cpu(void)
497 {
498 	kvm_rebooting = true;
499 
500 	kvm_cpu_svm_disable();
501 }
502 
503 static void svm_disable_virtualization_cpu(void)
504 {
505 	/* Make sure we clean up behind us */
506 	if (tsc_scaling)
507 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
508 
509 	kvm_cpu_svm_disable();
510 
511 	amd_pmu_disable_virt();
512 }
513 
514 static int svm_enable_virtualization_cpu(void)
515 {
516 
517 	struct svm_cpu_data *sd;
518 	uint64_t efer;
519 	int me = raw_smp_processor_id();
520 
521 	rdmsrq(MSR_EFER, efer);
522 	if (efer & EFER_SVME)
523 		return -EBUSY;
524 
525 	sd = per_cpu_ptr(&svm_data, me);
526 	sd->asid_generation = 1;
527 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
528 	sd->next_asid = sd->max_asid + 1;
529 	sd->min_asid = max_sev_asid + 1;
530 
531 	wrmsrq(MSR_EFER, efer | EFER_SVME);
532 
533 	wrmsrq(MSR_VM_HSAVE_PA, sd->save_area_pa);
534 
535 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
536 		/*
537 		 * Set the default value, even if we don't use TSC scaling
538 		 * to avoid having stale value in the msr
539 		 */
540 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
541 	}
542 
543 
544 	/*
545 	 * Get OSVW bits.
546 	 *
547 	 * Note that it is possible to have a system with mixed processor
548 	 * revisions and therefore different OSVW bits. If bits are not the same
549 	 * on different processors then choose the worst case (i.e. if erratum
550 	 * is present on one processor and not on another then assume that the
551 	 * erratum is present everywhere).
552 	 */
553 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
554 		u64 len, status = 0;
555 		int err;
556 
557 		err = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &len);
558 		if (!err)
559 			err = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, &status);
560 
561 		if (err)
562 			osvw_status = osvw_len = 0;
563 		else {
564 			if (len < osvw_len)
565 				osvw_len = len;
566 			osvw_status |= status;
567 			osvw_status &= (1ULL << osvw_len) - 1;
568 		}
569 	} else
570 		osvw_status = osvw_len = 0;
571 
572 	svm_init_erratum_383();
573 
574 	amd_pmu_enable_virt();
575 
576 	return 0;
577 }
578 
579 static void svm_cpu_uninit(int cpu)
580 {
581 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
582 
583 	if (!sd->save_area)
584 		return;
585 
586 	kfree(sd->sev_vmcbs);
587 	__free_page(__sme_pa_to_page(sd->save_area_pa));
588 	sd->save_area_pa = 0;
589 	sd->save_area = NULL;
590 }
591 
592 static int svm_cpu_init(int cpu)
593 {
594 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
595 	struct page *save_area_page;
596 	int ret = -ENOMEM;
597 
598 	memset(sd, 0, sizeof(struct svm_cpu_data));
599 	save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL);
600 	if (!save_area_page)
601 		return ret;
602 
603 	ret = sev_cpu_init(sd);
604 	if (ret)
605 		goto free_save_area;
606 
607 	sd->save_area = page_address(save_area_page);
608 	sd->save_area_pa = __sme_page_pa(save_area_page);
609 	return 0;
610 
611 free_save_area:
612 	__free_page(save_area_page);
613 	return ret;
614 
615 }
616 
617 static void set_dr_intercepts(struct vcpu_svm *svm)
618 {
619 	struct vmcb *vmcb = svm->vmcb01.ptr;
620 
621 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
622 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
623 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
624 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
625 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
626 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
627 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
628 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
629 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
630 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
631 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
632 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
633 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
634 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
635 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
636 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
637 
638 	recalc_intercepts(svm);
639 }
640 
641 static void clr_dr_intercepts(struct vcpu_svm *svm)
642 {
643 	struct vmcb *vmcb = svm->vmcb01.ptr;
644 
645 	vmcb->control.intercepts[INTERCEPT_DR] = 0;
646 
647 	recalc_intercepts(svm);
648 }
649 
650 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
651 {
652 	/*
653 	 * For non-nested case:
654 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
655 	 * save it.
656 	 *
657 	 * For nested case:
658 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
659 	 * save it.
660 	 */
661 	void *msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm :
662 					    to_svm(vcpu)->msrpm;
663 
664 	return svm_test_msr_bitmap_write(msrpm, msr);
665 }
666 
667 void svm_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set)
668 {
669 	struct vcpu_svm *svm = to_svm(vcpu);
670 	void *msrpm = svm->msrpm;
671 
672 	/* Don't disable interception for MSRs userspace wants to handle. */
673 	if (type & MSR_TYPE_R) {
674 		if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
675 			svm_clear_msr_bitmap_read(msrpm, msr);
676 		else
677 			svm_set_msr_bitmap_read(msrpm, msr);
678 	}
679 
680 	if (type & MSR_TYPE_W) {
681 		if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
682 			svm_clear_msr_bitmap_write(msrpm, msr);
683 		else
684 			svm_set_msr_bitmap_write(msrpm, msr);
685 	}
686 
687 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
688 	svm->nested.force_msr_bitmap_recalc = true;
689 }
690 
691 void *svm_alloc_permissions_map(unsigned long size, gfp_t gfp_mask)
692 {
693 	unsigned int order = get_order(size);
694 	struct page *pages = alloc_pages(gfp_mask, order);
695 	void *pm;
696 
697 	if (!pages)
698 		return NULL;
699 
700 	/*
701 	 * Set all bits in the permissions map so that all MSR and I/O accesses
702 	 * are intercepted by default.
703 	 */
704 	pm = page_address(pages);
705 	memset(pm, 0xff, PAGE_SIZE * (1 << order));
706 
707 	return pm;
708 }
709 
710 static void svm_recalc_lbr_msr_intercepts(struct kvm_vcpu *vcpu)
711 {
712 	struct vcpu_svm *svm = to_svm(vcpu);
713 	bool intercept = !(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK);
714 
715 	if (intercept == svm->lbr_msrs_intercepted)
716 		return;
717 
718 	svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHFROMIP, MSR_TYPE_RW, intercept);
719 	svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHTOIP, MSR_TYPE_RW, intercept);
720 	svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTFROMIP, MSR_TYPE_RW, intercept);
721 	svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTTOIP, MSR_TYPE_RW, intercept);
722 
723 	if (sev_es_guest(vcpu->kvm))
724 		svm_set_intercept_for_msr(vcpu, MSR_IA32_DEBUGCTLMSR, MSR_TYPE_RW, intercept);
725 
726 	svm->lbr_msrs_intercepted = intercept;
727 }
728 
729 void svm_vcpu_free_msrpm(void *msrpm)
730 {
731 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
732 }
733 
734 static void svm_recalc_pmu_msr_intercepts(struct kvm_vcpu *vcpu)
735 {
736 	bool intercept = !kvm_vcpu_has_mediated_pmu(vcpu);
737 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
738 	int i;
739 
740 	if (!enable_mediated_pmu)
741 		return;
742 
743 	/* Legacy counters are always available for AMD CPUs with a PMU. */
744 	for (i = 0; i < min(pmu->nr_arch_gp_counters, AMD64_NUM_COUNTERS); i++)
745 		svm_set_intercept_for_msr(vcpu, MSR_K7_PERFCTR0 + i,
746 					  MSR_TYPE_RW, intercept);
747 
748 	intercept |= !guest_cpu_cap_has(vcpu, X86_FEATURE_PERFCTR_CORE);
749 	for (i = 0; i < pmu->nr_arch_gp_counters; i++)
750 		svm_set_intercept_for_msr(vcpu, MSR_F15H_PERF_CTR + 2 * i,
751 					  MSR_TYPE_RW, intercept);
752 
753 	for ( ; i < kvm_pmu_cap.num_counters_gp; i++)
754 		svm_enable_intercept_for_msr(vcpu, MSR_F15H_PERF_CTR + 2 * i,
755 					     MSR_TYPE_RW);
756 
757 	intercept = kvm_need_perf_global_ctrl_intercept(vcpu);
758 	svm_set_intercept_for_msr(vcpu, MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
759 				  MSR_TYPE_RW, intercept);
760 	svm_set_intercept_for_msr(vcpu, MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
761 				  MSR_TYPE_RW, intercept);
762 	svm_set_intercept_for_msr(vcpu, MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
763 				  MSR_TYPE_RW, intercept);
764 	svm_set_intercept_for_msr(vcpu, MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET,
765 				  MSR_TYPE_RW, intercept);
766 }
767 
768 static void svm_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
769 {
770 	struct vcpu_svm *svm = to_svm(vcpu);
771 
772 	svm_disable_intercept_for_msr(vcpu, MSR_STAR, MSR_TYPE_RW);
773 	svm_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
774 
775 #ifdef CONFIG_X86_64
776 	svm_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
777 	svm_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
778 	svm_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
779 	svm_disable_intercept_for_msr(vcpu, MSR_LSTAR, MSR_TYPE_RW);
780 	svm_disable_intercept_for_msr(vcpu, MSR_CSTAR, MSR_TYPE_RW);
781 	svm_disable_intercept_for_msr(vcpu, MSR_SYSCALL_MASK, MSR_TYPE_RW);
782 #endif
783 
784 	if (lbrv)
785 		svm_recalc_lbr_msr_intercepts(vcpu);
786 
787 	if (cpu_feature_enabled(X86_FEATURE_IBPB))
788 		svm_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
789 					  !guest_has_pred_cmd_msr(vcpu));
790 
791 	if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D))
792 		svm_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
793 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
794 
795 	/*
796 	 * Disable interception of SPEC_CTRL if KVM doesn't need to manually
797 	 * context switch the MSR (SPEC_CTRL is virtualized by the CPU), or if
798 	 * the guest has a non-zero SPEC_CTRL value, i.e. is likely actively
799 	 * using SPEC_CTRL.
800 	 */
801 	if (cpu_feature_enabled(X86_FEATURE_V_SPEC_CTRL))
802 		svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
803 					  !guest_has_spec_ctrl_msr(vcpu));
804 	else
805 		svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
806 					  !svm->spec_ctrl);
807 
808 	/*
809 	 * Intercept SYSENTER_EIP and SYSENTER_ESP when emulating an Intel CPU,
810 	 * as AMD hardware only store 32 bits, whereas Intel CPUs track 64 bits.
811 	 */
812 	svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW,
813 				  guest_cpuid_is_intel_compatible(vcpu));
814 	svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW,
815 				  guest_cpuid_is_intel_compatible(vcpu));
816 
817 	if (kvm_aperfmperf_in_guest(vcpu->kvm)) {
818 		svm_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R);
819 		svm_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R);
820 	}
821 
822 	if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) {
823 		bool shstk_enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
824 
825 		svm_set_intercept_for_msr(vcpu, MSR_IA32_U_CET, MSR_TYPE_RW, !shstk_enabled);
826 		svm_set_intercept_for_msr(vcpu, MSR_IA32_S_CET, MSR_TYPE_RW, !shstk_enabled);
827 		svm_set_intercept_for_msr(vcpu, MSR_IA32_PL0_SSP, MSR_TYPE_RW, !shstk_enabled);
828 		svm_set_intercept_for_msr(vcpu, MSR_IA32_PL1_SSP, MSR_TYPE_RW, !shstk_enabled);
829 		svm_set_intercept_for_msr(vcpu, MSR_IA32_PL2_SSP, MSR_TYPE_RW, !shstk_enabled);
830 		svm_set_intercept_for_msr(vcpu, MSR_IA32_PL3_SSP, MSR_TYPE_RW, !shstk_enabled);
831 	}
832 
833 	if (sev_es_guest(vcpu->kvm))
834 		sev_es_recalc_msr_intercepts(vcpu);
835 
836 	svm_recalc_pmu_msr_intercepts(vcpu);
837 
838 	/*
839 	 * x2APIC intercepts are modified on-demand and cannot be filtered by
840 	 * userspace.
841 	 */
842 }
843 
844 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
845 {
846 	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
847 	to_vmcb->save.br_from		= from_vmcb->save.br_from;
848 	to_vmcb->save.br_to		= from_vmcb->save.br_to;
849 	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
850 	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;
851 
852 	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
853 }
854 
855 static void __svm_enable_lbrv(struct kvm_vcpu *vcpu)
856 {
857 	to_svm(vcpu)->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
858 }
859 
860 void svm_enable_lbrv(struct kvm_vcpu *vcpu)
861 {
862 	__svm_enable_lbrv(vcpu);
863 	svm_recalc_lbr_msr_intercepts(vcpu);
864 }
865 
866 static void __svm_disable_lbrv(struct kvm_vcpu *vcpu)
867 {
868 	KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm);
869 	to_svm(vcpu)->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
870 }
871 
872 void svm_update_lbrv(struct kvm_vcpu *vcpu)
873 {
874 	struct vcpu_svm *svm = to_svm(vcpu);
875 	bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
876 	bool enable_lbrv = (svm->vmcb->save.dbgctl & DEBUGCTLMSR_LBR) ||
877 			    (is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
878 			    (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
879 
880 	if (enable_lbrv && !current_enable_lbrv)
881 		__svm_enable_lbrv(vcpu);
882 	else if (!enable_lbrv && current_enable_lbrv)
883 		__svm_disable_lbrv(vcpu);
884 
885 	/*
886 	 * During nested transitions, it is possible that the current VMCB has
887 	 * LBR_CTL set, but the previous LBR_CTL had it cleared (or vice versa).
888 	 * In this case, even though LBR_CTL does not need an update, intercepts
889 	 * do, so always recalculate the intercepts here.
890 	 */
891 	svm_recalc_lbr_msr_intercepts(vcpu);
892 }
893 
894 void disable_nmi_singlestep(struct vcpu_svm *svm)
895 {
896 	svm->nmi_singlestep = false;
897 
898 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
899 		/* Clear our flags if they were not set by the guest */
900 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
901 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
902 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
903 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
904 	}
905 }
906 
907 static void grow_ple_window(struct kvm_vcpu *vcpu)
908 {
909 	struct vcpu_svm *svm = to_svm(vcpu);
910 	struct vmcb_control_area *control = &svm->vmcb->control;
911 	int old = control->pause_filter_count;
912 
913 	if (kvm_pause_in_guest(vcpu->kvm))
914 		return;
915 
916 	control->pause_filter_count = __grow_ple_window(old,
917 							pause_filter_count,
918 							pause_filter_count_grow,
919 							pause_filter_count_max);
920 
921 	if (control->pause_filter_count != old) {
922 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
923 		trace_kvm_ple_window_update(vcpu->vcpu_id,
924 					    control->pause_filter_count, old);
925 	}
926 }
927 
928 static void shrink_ple_window(struct kvm_vcpu *vcpu)
929 {
930 	struct vcpu_svm *svm = to_svm(vcpu);
931 	struct vmcb_control_area *control = &svm->vmcb->control;
932 	int old = control->pause_filter_count;
933 
934 	if (kvm_pause_in_guest(vcpu->kvm))
935 		return;
936 
937 	control->pause_filter_count =
938 				__shrink_ple_window(old,
939 						    pause_filter_count,
940 						    pause_filter_count_shrink,
941 						    pause_filter_count);
942 	if (control->pause_filter_count != old) {
943 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
944 		trace_kvm_ple_window_update(vcpu->vcpu_id,
945 					    control->pause_filter_count, old);
946 	}
947 }
948 
949 static void svm_hardware_unsetup(void)
950 {
951 	int cpu;
952 
953 	avic_hardware_unsetup();
954 
955 	sev_hardware_unsetup();
956 
957 	for_each_possible_cpu(cpu)
958 		svm_cpu_uninit(cpu);
959 
960 	__free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE));
961 	iopm_base = 0;
962 }
963 
964 static void init_seg(struct vmcb_seg *seg)
965 {
966 	seg->selector = 0;
967 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
968 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
969 	seg->limit = 0xffff;
970 	seg->base = 0;
971 }
972 
973 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
974 {
975 	seg->selector = 0;
976 	seg->attrib = SVM_SELECTOR_P_MASK | type;
977 	seg->limit = 0xffff;
978 	seg->base = 0;
979 }
980 
981 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
982 {
983 	struct vcpu_svm *svm = to_svm(vcpu);
984 
985 	return svm->nested.ctl.tsc_offset;
986 }
987 
988 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
989 {
990 	struct vcpu_svm *svm = to_svm(vcpu);
991 
992 	return svm->tsc_ratio_msr;
993 }
994 
995 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
996 {
997 	struct vcpu_svm *svm = to_svm(vcpu);
998 
999 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1000 	svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
1001 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1002 }
1003 
1004 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1005 {
1006 	preempt_disable();
1007 	if (to_svm(vcpu)->guest_state_loaded)
1008 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1009 	preempt_enable();
1010 }
1011 
1012 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1013 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu)
1014 {
1015 	struct vcpu_svm *svm = to_svm(vcpu);
1016 
1017 	/*
1018 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1019 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1020 	 */
1021 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1022 		if (!npt_enabled ||
1023 		    !guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID))
1024 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1025 		else
1026 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1027 	}
1028 
1029 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1030 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP))
1031 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1032 		else
1033 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
1034 	}
1035 
1036 	/*
1037 	 * No need to toggle VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK here, it is
1038 	 * always set if vls is enabled. If the intercepts are set, the bit is
1039 	 * meaningless anyway.
1040 	 */
1041 	if (guest_cpuid_is_intel_compatible(vcpu)) {
1042 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
1043 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
1044 	} else {
1045 		/*
1046 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1047 		 * in VMCB and clear intercepts to avoid #VMEXIT.
1048 		 */
1049 		if (vls) {
1050 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1051 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1052 		}
1053 	}
1054 
1055 	if (kvm_need_rdpmc_intercept(vcpu))
1056 		svm_set_intercept(svm, INTERCEPT_RDPMC);
1057 	else
1058 		svm_clr_intercept(svm, INTERCEPT_RDPMC);
1059 }
1060 
1061 static void svm_recalc_intercepts(struct kvm_vcpu *vcpu)
1062 {
1063 	svm_recalc_instruction_intercepts(vcpu);
1064 	svm_recalc_msr_intercepts(vcpu);
1065 }
1066 
1067 static void init_vmcb(struct kvm_vcpu *vcpu, bool init_event)
1068 {
1069 	struct vcpu_svm *svm = to_svm(vcpu);
1070 	struct vmcb *vmcb = svm->vmcb01.ptr;
1071 	struct vmcb_control_area *control = &vmcb->control;
1072 	struct vmcb_save_area *save = &vmcb->save;
1073 
1074 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1075 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1076 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1077 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1078 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1079 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1080 	if (!kvm_vcpu_apicv_active(vcpu))
1081 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1082 
1083 	set_dr_intercepts(svm);
1084 
1085 	set_exception_intercept(svm, PF_VECTOR);
1086 	set_exception_intercept(svm, UD_VECTOR);
1087 	set_exception_intercept(svm, MC_VECTOR);
1088 	set_exception_intercept(svm, AC_VECTOR);
1089 	set_exception_intercept(svm, DB_VECTOR);
1090 	/*
1091 	 * Guest access to VMware backdoor ports could legitimately
1092 	 * trigger #GP because of TSS I/O permission bitmap.
1093 	 * We intercept those #GP and allow access to them anyway
1094 	 * as VMware does.
1095 	 */
1096 	if (enable_vmware_backdoor)
1097 		set_exception_intercept(svm, GP_VECTOR);
1098 
1099 	svm_set_intercept(svm, INTERCEPT_INTR);
1100 	svm_set_intercept(svm, INTERCEPT_NMI);
1101 
1102 	if (intercept_smi)
1103 		svm_set_intercept(svm, INTERCEPT_SMI);
1104 
1105 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1106 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1107 	svm_set_intercept(svm, INTERCEPT_CPUID);
1108 	svm_set_intercept(svm, INTERCEPT_INVD);
1109 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1110 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1111 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1112 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1113 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1114 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1115 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1116 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1117 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1118 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1119 	svm_set_intercept(svm, INTERCEPT_STGI);
1120 	svm_set_intercept(svm, INTERCEPT_CLGI);
1121 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1122 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1123 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1124 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1125 	svm_set_intercept(svm, INTERCEPT_RSM);
1126 
1127 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1128 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1129 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1130 	}
1131 
1132 	if (!kvm_hlt_in_guest(vcpu->kvm)) {
1133 		if (cpu_feature_enabled(X86_FEATURE_IDLE_HLT))
1134 			svm_set_intercept(svm, INTERCEPT_IDLE_HLT);
1135 		else
1136 			svm_set_intercept(svm, INTERCEPT_HLT);
1137 	}
1138 
1139 	control->iopm_base_pa = iopm_base;
1140 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1141 	control->int_ctl = V_INTR_MASKING_MASK;
1142 
1143 	init_seg(&save->es);
1144 	init_seg(&save->ss);
1145 	init_seg(&save->ds);
1146 	init_seg(&save->fs);
1147 	init_seg(&save->gs);
1148 
1149 	save->cs.selector = 0xf000;
1150 	save->cs.base = 0xffff0000;
1151 	/* Executable/Readable Code Segment */
1152 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1153 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1154 	save->cs.limit = 0xffff;
1155 
1156 	save->gdtr.base = 0;
1157 	save->gdtr.limit = 0xffff;
1158 	save->idtr.base = 0;
1159 	save->idtr.limit = 0xffff;
1160 
1161 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1162 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1163 
1164 	if (npt_enabled) {
1165 		/* Setup VMCB for Nested Paging */
1166 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1167 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1168 		clr_exception_intercept(svm, PF_VECTOR);
1169 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1170 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1171 		save->g_pat = vcpu->arch.pat;
1172 		save->cr3 = 0;
1173 	}
1174 	svm->current_vmcb->asid_generation = 0;
1175 	svm->asid = 0;
1176 
1177 	svm->nested.vmcb12_gpa = INVALID_GPA;
1178 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1179 
1180 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1181 		control->pause_filter_count = pause_filter_count;
1182 		if (pause_filter_thresh)
1183 			control->pause_filter_thresh = pause_filter_thresh;
1184 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1185 	} else {
1186 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1187 	}
1188 
1189 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_ERAPS))
1190 		svm->vmcb->control.erap_ctl |= ERAP_CONTROL_ALLOW_LARGER_RAP;
1191 
1192 	if (kvm_vcpu_apicv_active(vcpu))
1193 		avic_init_vmcb(svm, vmcb);
1194 
1195 	if (vnmi)
1196 		svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1197 
1198 	if (vgif) {
1199 		svm_clr_intercept(svm, INTERCEPT_STGI);
1200 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1201 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1202 	}
1203 
1204 	if (vls)
1205 		svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1206 
1207 	if (vcpu->kvm->arch.bus_lock_detection_enabled)
1208 		svm_set_intercept(svm, INTERCEPT_BUSLOCK);
1209 
1210 	if (sev_guest(vcpu->kvm))
1211 		sev_init_vmcb(svm, init_event);
1212 
1213 	svm_hv_init_vmcb(vmcb);
1214 
1215 	kvm_make_request(KVM_REQ_RECALC_INTERCEPTS, vcpu);
1216 
1217 	vmcb_mark_all_dirty(vmcb);
1218 
1219 	enable_gif(svm);
1220 }
1221 
1222 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1223 {
1224 	struct vcpu_svm *svm = to_svm(vcpu);
1225 
1226 	svm_init_osvw(vcpu);
1227 
1228 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
1229 		vcpu->arch.microcode_version = 0x01000065;
1230 	svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1231 
1232 	svm->nmi_masked = false;
1233 	svm->awaiting_iret_completion = false;
1234 }
1235 
1236 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1237 {
1238 	struct vcpu_svm *svm = to_svm(vcpu);
1239 
1240 	svm->spec_ctrl = 0;
1241 	svm->virt_spec_ctrl = 0;
1242 
1243 	init_vmcb(vcpu, init_event);
1244 
1245 	if (!init_event)
1246 		__svm_vcpu_reset(vcpu);
1247 }
1248 
1249 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1250 {
1251 	svm->current_vmcb = target_vmcb;
1252 	svm->vmcb = target_vmcb->ptr;
1253 }
1254 
1255 static int svm_vcpu_precreate(struct kvm *kvm)
1256 {
1257 	return avic_alloc_physical_id_table(kvm);
1258 }
1259 
1260 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1261 {
1262 	struct vcpu_svm *svm;
1263 	struct page *vmcb01_page;
1264 	int err;
1265 
1266 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1267 	svm = to_svm(vcpu);
1268 
1269 	err = -ENOMEM;
1270 	vmcb01_page = snp_safe_alloc_page();
1271 	if (!vmcb01_page)
1272 		goto out;
1273 
1274 	err = sev_vcpu_create(vcpu);
1275 	if (err)
1276 		goto error_free_vmcb_page;
1277 
1278 	err = avic_init_vcpu(svm);
1279 	if (err)
1280 		goto error_free_sev;
1281 
1282 	svm->msrpm = svm_vcpu_alloc_msrpm();
1283 	if (!svm->msrpm) {
1284 		err = -ENOMEM;
1285 		goto error_free_sev;
1286 	}
1287 
1288 	svm->x2avic_msrs_intercepted = true;
1289 	svm->lbr_msrs_intercepted = true;
1290 
1291 	svm->vmcb01.ptr = page_address(vmcb01_page);
1292 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1293 	svm_switch_vmcb(svm, &svm->vmcb01);
1294 
1295 	svm->guest_state_loaded = false;
1296 
1297 	return 0;
1298 
1299 error_free_sev:
1300 	sev_free_vcpu(vcpu);
1301 error_free_vmcb_page:
1302 	__free_page(vmcb01_page);
1303 out:
1304 	return err;
1305 }
1306 
1307 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1308 {
1309 	struct vcpu_svm *svm = to_svm(vcpu);
1310 
1311 	WARN_ON_ONCE(!list_empty(&svm->ir_list));
1312 
1313 	svm_leave_nested(vcpu);
1314 	svm_free_nested(svm);
1315 
1316 	sev_free_vcpu(vcpu);
1317 
1318 	__free_page(__sme_pa_to_page(svm->vmcb01.pa));
1319 	svm_vcpu_free_msrpm(svm->msrpm);
1320 }
1321 
1322 #ifdef CONFIG_CPU_MITIGATIONS
1323 static DEFINE_SPINLOCK(srso_lock);
1324 static atomic_t srso_nr_vms;
1325 
1326 static void svm_srso_clear_bp_spec_reduce(void *ign)
1327 {
1328 	struct svm_cpu_data *sd = this_cpu_ptr(&svm_data);
1329 
1330 	if (!sd->bp_spec_reduce_set)
1331 		return;
1332 
1333 	msr_clear_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1334 	sd->bp_spec_reduce_set = false;
1335 }
1336 
1337 static void svm_srso_vm_destroy(void)
1338 {
1339 	if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1340 		return;
1341 
1342 	if (atomic_dec_return(&srso_nr_vms))
1343 		return;
1344 
1345 	guard(spinlock)(&srso_lock);
1346 
1347 	/*
1348 	 * Verify a new VM didn't come along, acquire the lock, and increment
1349 	 * the count before this task acquired the lock.
1350 	 */
1351 	if (atomic_read(&srso_nr_vms))
1352 		return;
1353 
1354 	on_each_cpu(svm_srso_clear_bp_spec_reduce, NULL, 1);
1355 }
1356 
1357 static void svm_srso_vm_init(void)
1358 {
1359 	if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1360 		return;
1361 
1362 	/*
1363 	 * Acquire the lock on 0 => 1 transitions to ensure a potential 1 => 0
1364 	 * transition, i.e. destroying the last VM, is fully complete, e.g. so
1365 	 * that a delayed IPI doesn't clear BP_SPEC_REDUCE after a vCPU runs.
1366 	 */
1367 	if (atomic_inc_not_zero(&srso_nr_vms))
1368 		return;
1369 
1370 	guard(spinlock)(&srso_lock);
1371 
1372 	atomic_inc(&srso_nr_vms);
1373 }
1374 #else
1375 static void svm_srso_vm_init(void) { }
1376 static void svm_srso_vm_destroy(void) { }
1377 #endif
1378 
1379 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1380 {
1381 	struct vcpu_svm *svm = to_svm(vcpu);
1382 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1383 
1384 	if (sev_es_guest(vcpu->kvm))
1385 		sev_es_unmap_ghcb(svm);
1386 
1387 	if (svm->guest_state_loaded)
1388 		return;
1389 
1390 	/*
1391 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1392 	 * or subsequent vmload of host save area.
1393 	 */
1394 	vmsave(sd->save_area_pa);
1395 	if (sev_es_guest(vcpu->kvm))
1396 		sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd));
1397 
1398 	if (tsc_scaling)
1399 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1400 
1401 	/*
1402 	 * TSC_AUX is always virtualized (context switched by hardware) for
1403 	 * SEV-ES guests when the feature is available.  For non-SEV-ES guests,
1404 	 * context switch TSC_AUX via the user_return MSR infrastructure (not
1405 	 * all CPUs support TSC_AUX virtualization).
1406 	 */
1407 	if (likely(tsc_aux_uret_slot >= 0) &&
1408 	    (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1409 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1410 
1411 	if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE) &&
1412 	    !sd->bp_spec_reduce_set) {
1413 		sd->bp_spec_reduce_set = true;
1414 		msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1415 	}
1416 	svm->guest_state_loaded = true;
1417 }
1418 
1419 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1420 {
1421 	to_svm(vcpu)->guest_state_loaded = false;
1422 }
1423 
1424 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1425 {
1426 	if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1427 		shrink_ple_window(vcpu);
1428 
1429 	if (kvm_vcpu_apicv_active(vcpu))
1430 		avic_vcpu_load(vcpu, cpu);
1431 }
1432 
1433 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1434 {
1435 	if (kvm_vcpu_apicv_active(vcpu))
1436 		avic_vcpu_put(vcpu);
1437 
1438 	svm_prepare_host_switch(vcpu);
1439 
1440 	++vcpu->stat.host_state_reload;
1441 }
1442 
1443 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1444 {
1445 	struct vcpu_svm *svm = to_svm(vcpu);
1446 	unsigned long rflags = svm->vmcb->save.rflags;
1447 
1448 	if (svm->nmi_singlestep) {
1449 		/* Hide our flags if they were not set by the guest */
1450 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1451 			rflags &= ~X86_EFLAGS_TF;
1452 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1453 			rflags &= ~X86_EFLAGS_RF;
1454 	}
1455 	return rflags;
1456 }
1457 
1458 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1459 {
1460 	if (to_svm(vcpu)->nmi_singlestep)
1461 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1462 
1463        /*
1464         * Any change of EFLAGS.VM is accompanied by a reload of SS
1465         * (caused by either a task switch or an inter-privilege IRET),
1466         * so we do not need to update the CPL here.
1467         */
1468 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1469 }
1470 
1471 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1472 {
1473 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1474 
1475 	return sev_es_guest(vcpu->kvm)
1476 		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1477 		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1478 }
1479 
1480 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1481 {
1482 	kvm_register_mark_available(vcpu, reg);
1483 
1484 	switch (reg) {
1485 	case VCPU_EXREG_PDPTR:
1486 		/*
1487 		 * When !npt_enabled, mmu->pdptrs[] is already available since
1488 		 * it is always updated per SDM when moving to CRs.
1489 		 */
1490 		if (npt_enabled)
1491 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1492 		break;
1493 	default:
1494 		KVM_BUG_ON(1, vcpu->kvm);
1495 	}
1496 }
1497 
1498 static void svm_set_vintr(struct vcpu_svm *svm)
1499 {
1500 	struct vmcb_control_area *control;
1501 
1502 	/*
1503 	 * The following fields are ignored when AVIC is enabled
1504 	 */
1505 	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1506 
1507 	svm_set_intercept(svm, INTERCEPT_VINTR);
1508 
1509 	/*
1510 	 * Recalculating intercepts may have cleared the VINTR intercept.  If
1511 	 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1512 	 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1513 	 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1514 	 * interrupts will never be unblocked while L2 is running.
1515 	 */
1516 	if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1517 		return;
1518 
1519 	/*
1520 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1521 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1522 	 */
1523 	control = &svm->vmcb->control;
1524 	control->int_vector = 0x0;
1525 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1526 	control->int_ctl |= V_IRQ_MASK |
1527 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1528 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1529 }
1530 
1531 static void svm_clear_vintr(struct vcpu_svm *svm)
1532 {
1533 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1534 
1535 	/* Drop int_ctl fields related to VINTR injection.  */
1536 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1537 	if (is_guest_mode(&svm->vcpu)) {
1538 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1539 
1540 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1541 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1542 
1543 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1544 			V_IRQ_INJECTION_BITS_MASK;
1545 
1546 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1547 	}
1548 
1549 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1550 }
1551 
1552 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1553 {
1554 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1555 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1556 
1557 	switch (seg) {
1558 	case VCPU_SREG_CS: return &save->cs;
1559 	case VCPU_SREG_DS: return &save->ds;
1560 	case VCPU_SREG_ES: return &save->es;
1561 	case VCPU_SREG_FS: return &save01->fs;
1562 	case VCPU_SREG_GS: return &save01->gs;
1563 	case VCPU_SREG_SS: return &save->ss;
1564 	case VCPU_SREG_TR: return &save01->tr;
1565 	case VCPU_SREG_LDTR: return &save01->ldtr;
1566 	}
1567 	BUG();
1568 	return NULL;
1569 }
1570 
1571 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1572 {
1573 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1574 
1575 	return s->base;
1576 }
1577 
1578 static void svm_get_segment(struct kvm_vcpu *vcpu,
1579 			    struct kvm_segment *var, int seg)
1580 {
1581 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1582 
1583 	var->base = s->base;
1584 	var->limit = s->limit;
1585 	var->selector = s->selector;
1586 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1587 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1588 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1589 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1590 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1591 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1592 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1593 
1594 	/*
1595 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1596 	 * However, the SVM spec states that the G bit is not observed by the
1597 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1598 	 * So let's synthesize a legal G bit for all segments, this helps
1599 	 * running KVM nested. It also helps cross-vendor migration, because
1600 	 * Intel's vmentry has a check on the 'G' bit.
1601 	 */
1602 	var->g = s->limit > 0xfffff;
1603 
1604 	/*
1605 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1606 	 * for cross vendor migration purposes by "not present"
1607 	 */
1608 	var->unusable = !var->present;
1609 
1610 	switch (seg) {
1611 	case VCPU_SREG_TR:
1612 		/*
1613 		 * Work around a bug where the busy flag in the tr selector
1614 		 * isn't exposed
1615 		 */
1616 		var->type |= 0x2;
1617 		break;
1618 	case VCPU_SREG_DS:
1619 	case VCPU_SREG_ES:
1620 	case VCPU_SREG_FS:
1621 	case VCPU_SREG_GS:
1622 		/*
1623 		 * The accessed bit must always be set in the segment
1624 		 * descriptor cache, although it can be cleared in the
1625 		 * descriptor, the cached bit always remains at 1. Since
1626 		 * Intel has a check on this, set it here to support
1627 		 * cross-vendor migration.
1628 		 */
1629 		if (!var->unusable)
1630 			var->type |= 0x1;
1631 		break;
1632 	case VCPU_SREG_SS:
1633 		/*
1634 		 * On AMD CPUs sometimes the DB bit in the segment
1635 		 * descriptor is left as 1, although the whole segment has
1636 		 * been made unusable. Clear it here to pass an Intel VMX
1637 		 * entry check when cross vendor migrating.
1638 		 */
1639 		if (var->unusable)
1640 			var->db = 0;
1641 		/* This is symmetric with svm_set_segment() */
1642 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1643 		break;
1644 	}
1645 }
1646 
1647 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1648 {
1649 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1650 
1651 	return save->cpl;
1652 }
1653 
1654 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1655 {
1656 	struct kvm_segment cs;
1657 
1658 	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1659 	*db = cs.db;
1660 	*l = cs.l;
1661 }
1662 
1663 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1664 {
1665 	struct vcpu_svm *svm = to_svm(vcpu);
1666 
1667 	dt->size = svm->vmcb->save.idtr.limit;
1668 	dt->address = svm->vmcb->save.idtr.base;
1669 }
1670 
1671 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1672 {
1673 	struct vcpu_svm *svm = to_svm(vcpu);
1674 
1675 	svm->vmcb->save.idtr.limit = dt->size;
1676 	svm->vmcb->save.idtr.base = dt->address ;
1677 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1678 }
1679 
1680 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1681 {
1682 	struct vcpu_svm *svm = to_svm(vcpu);
1683 
1684 	dt->size = svm->vmcb->save.gdtr.limit;
1685 	dt->address = svm->vmcb->save.gdtr.base;
1686 }
1687 
1688 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1689 {
1690 	struct vcpu_svm *svm = to_svm(vcpu);
1691 
1692 	svm->vmcb->save.gdtr.limit = dt->size;
1693 	svm->vmcb->save.gdtr.base = dt->address ;
1694 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1695 }
1696 
1697 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1698 {
1699 	struct vcpu_svm *svm = to_svm(vcpu);
1700 
1701 	/*
1702 	 * For guests that don't set guest_state_protected, the cr3 update is
1703 	 * handled via kvm_mmu_load() while entering the guest. For guests
1704 	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1705 	 * VMCB save area now, since the save area will become the initial
1706 	 * contents of the VMSA, and future VMCB save area updates won't be
1707 	 * seen.
1708 	 */
1709 	if (sev_es_guest(vcpu->kvm)) {
1710 		svm->vmcb->save.cr3 = cr3;
1711 		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1712 	}
1713 }
1714 
1715 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1716 {
1717 	return true;
1718 }
1719 
1720 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1721 {
1722 	struct vcpu_svm *svm = to_svm(vcpu);
1723 	u64 hcr0 = cr0;
1724 	bool old_paging = is_paging(vcpu);
1725 
1726 #ifdef CONFIG_X86_64
1727 	if (vcpu->arch.efer & EFER_LME) {
1728 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1729 			vcpu->arch.efer |= EFER_LMA;
1730 			if (!vcpu->arch.guest_state_protected)
1731 				svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1732 		}
1733 
1734 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1735 			vcpu->arch.efer &= ~EFER_LMA;
1736 			if (!vcpu->arch.guest_state_protected)
1737 				svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1738 		}
1739 	}
1740 #endif
1741 	vcpu->arch.cr0 = cr0;
1742 
1743 	if (!npt_enabled) {
1744 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1745 		if (old_paging != is_paging(vcpu))
1746 			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1747 	}
1748 
1749 	/*
1750 	 * re-enable caching here because the QEMU bios
1751 	 * does not do it - this results in some delay at
1752 	 * reboot
1753 	 */
1754 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1755 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1756 
1757 	svm->vmcb->save.cr0 = hcr0;
1758 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1759 
1760 	/*
1761 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1762 	 * tracking is done using the CR write traps.
1763 	 */
1764 	if (sev_es_guest(vcpu->kvm))
1765 		return;
1766 
1767 	if (hcr0 == cr0) {
1768 		/* Selective CR0 write remains on.  */
1769 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1770 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1771 	} else {
1772 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1773 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1774 	}
1775 }
1776 
1777 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1778 {
1779 	return true;
1780 }
1781 
1782 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1783 {
1784 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1785 	unsigned long old_cr4 = vcpu->arch.cr4;
1786 
1787 	vcpu->arch.cr4 = cr4;
1788 	if (!npt_enabled) {
1789 		cr4 |= X86_CR4_PAE;
1790 
1791 		if (!is_paging(vcpu))
1792 			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1793 	}
1794 	cr4 |= host_cr4_mce;
1795 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1796 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1797 
1798 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1799 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
1800 }
1801 
1802 static void svm_set_segment(struct kvm_vcpu *vcpu,
1803 			    struct kvm_segment *var, int seg)
1804 {
1805 	struct vcpu_svm *svm = to_svm(vcpu);
1806 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1807 
1808 	s->base = var->base;
1809 	s->limit = var->limit;
1810 	s->selector = var->selector;
1811 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1812 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1813 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1814 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1815 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1816 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1817 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1818 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1819 
1820 	/*
1821 	 * This is always accurate, except if SYSRET returned to a segment
1822 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1823 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1824 	 * would entail passing the CPL to userspace and back.
1825 	 */
1826 	if (seg == VCPU_SREG_SS)
1827 		/* This is symmetric with svm_get_segment() */
1828 		svm->vmcb->save.cpl = (var->dpl & 3);
1829 
1830 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1831 }
1832 
1833 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1834 {
1835 	struct vcpu_svm *svm = to_svm(vcpu);
1836 
1837 	clr_exception_intercept(svm, BP_VECTOR);
1838 
1839 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1840 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1841 			set_exception_intercept(svm, BP_VECTOR);
1842 	}
1843 }
1844 
1845 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1846 {
1847 	if (sd->next_asid > sd->max_asid) {
1848 		++sd->asid_generation;
1849 		sd->next_asid = sd->min_asid;
1850 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1851 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1852 	}
1853 
1854 	svm->current_vmcb->asid_generation = sd->asid_generation;
1855 	svm->asid = sd->next_asid++;
1856 }
1857 
1858 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1859 {
1860 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1861 
1862 	if (vcpu->arch.guest_state_protected)
1863 		return;
1864 
1865 	if (unlikely(value != vmcb->save.dr6)) {
1866 		vmcb->save.dr6 = value;
1867 		vmcb_mark_dirty(vmcb, VMCB_DR);
1868 	}
1869 }
1870 
1871 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1872 {
1873 	struct vcpu_svm *svm = to_svm(vcpu);
1874 
1875 	if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
1876 		return;
1877 
1878 	get_debugreg(vcpu->arch.db[0], 0);
1879 	get_debugreg(vcpu->arch.db[1], 1);
1880 	get_debugreg(vcpu->arch.db[2], 2);
1881 	get_debugreg(vcpu->arch.db[3], 3);
1882 	/*
1883 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1884 	 * because db_interception might need it.  We can do it before vmentry.
1885 	 */
1886 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1887 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1888 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1889 	set_dr_intercepts(svm);
1890 }
1891 
1892 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1893 {
1894 	struct vcpu_svm *svm = to_svm(vcpu);
1895 
1896 	if (vcpu->arch.guest_state_protected)
1897 		return;
1898 
1899 	svm->vmcb->save.dr7 = value;
1900 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1901 }
1902 
1903 static int pf_interception(struct kvm_vcpu *vcpu)
1904 {
1905 	struct vcpu_svm *svm = to_svm(vcpu);
1906 
1907 	u64 fault_address = svm->vmcb->control.exit_info_2;
1908 	u64 error_code = svm->vmcb->control.exit_info_1;
1909 
1910 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
1911 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1912 			svm->vmcb->control.insn_bytes : NULL,
1913 			svm->vmcb->control.insn_len);
1914 }
1915 
1916 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1917 					 void *insn, int insn_len);
1918 
1919 static int npf_interception(struct kvm_vcpu *vcpu)
1920 {
1921 	struct vcpu_svm *svm = to_svm(vcpu);
1922 	int rc;
1923 
1924 	u64 error_code = svm->vmcb->control.exit_info_1;
1925 	gpa_t gpa = svm->vmcb->control.exit_info_2;
1926 
1927 	/*
1928 	 * WARN if hardware generates a fault with an error code that collides
1929 	 * with KVM-defined sythentic flags.  Clear the flags and continue on,
1930 	 * i.e. don't terminate the VM, as KVM can't possibly be relying on a
1931 	 * flag that KVM doesn't know about.
1932 	 */
1933 	if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK))
1934 		error_code &= ~PFERR_SYNTHETIC_MASK;
1935 
1936 	/*
1937 	 * Expedite fast MMIO kicks if the next RIP is known and KVM is allowed
1938 	 * emulate a page fault, e.g. skipping the current instruction is wrong
1939 	 * if the #NPF occurred while vectoring an event.
1940 	 */
1941 	if ((error_code & PFERR_RSVD_MASK) && !is_guest_mode(vcpu)) {
1942 		const int emul_type = EMULTYPE_PF | EMULTYPE_NO_DECODE;
1943 
1944 		if (svm_check_emulate_instruction(vcpu, emul_type, NULL, 0))
1945 			return 1;
1946 
1947 		if (nrips && svm->vmcb->control.next_rip &&
1948 		    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
1949 			trace_kvm_fast_mmio(gpa);
1950 			return kvm_skip_emulated_instruction(vcpu);
1951 		}
1952 	}
1953 
1954 	if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK))
1955 		error_code |= PFERR_PRIVATE_ACCESS;
1956 
1957 	trace_kvm_page_fault(vcpu, gpa, error_code);
1958 	rc = kvm_mmu_page_fault(vcpu, gpa, error_code,
1959 				static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1960 				svm->vmcb->control.insn_bytes : NULL,
1961 				svm->vmcb->control.insn_len);
1962 
1963 	if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK)
1964 		sev_handle_rmp_fault(vcpu, gpa, error_code);
1965 
1966 	return rc;
1967 }
1968 
1969 static int db_interception(struct kvm_vcpu *vcpu)
1970 {
1971 	struct kvm_run *kvm_run = vcpu->run;
1972 	struct vcpu_svm *svm = to_svm(vcpu);
1973 
1974 	if (!(vcpu->guest_debug &
1975 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1976 		!svm->nmi_singlestep) {
1977 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1978 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1979 		return 1;
1980 	}
1981 
1982 	if (svm->nmi_singlestep) {
1983 		disable_nmi_singlestep(svm);
1984 		/* Make sure we check for pending NMIs upon entry */
1985 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1986 	}
1987 
1988 	if (vcpu->guest_debug &
1989 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1990 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1991 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1992 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1993 		kvm_run->debug.arch.pc =
1994 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1995 		kvm_run->debug.arch.exception = DB_VECTOR;
1996 		return 0;
1997 	}
1998 
1999 	return 1;
2000 }
2001 
2002 static int bp_interception(struct kvm_vcpu *vcpu)
2003 {
2004 	struct vcpu_svm *svm = to_svm(vcpu);
2005 	struct kvm_run *kvm_run = vcpu->run;
2006 
2007 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2008 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2009 	kvm_run->debug.arch.exception = BP_VECTOR;
2010 	return 0;
2011 }
2012 
2013 static int ud_interception(struct kvm_vcpu *vcpu)
2014 {
2015 	return handle_ud(vcpu);
2016 }
2017 
2018 static int ac_interception(struct kvm_vcpu *vcpu)
2019 {
2020 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2021 	return 1;
2022 }
2023 
2024 static bool is_erratum_383(void)
2025 {
2026 	int i;
2027 	u64 value;
2028 
2029 	if (!erratum_383_found)
2030 		return false;
2031 
2032 	if (native_read_msr_safe(MSR_IA32_MC0_STATUS, &value))
2033 		return false;
2034 
2035 	/* Bit 62 may or may not be set for this mce */
2036 	value &= ~(1ULL << 62);
2037 
2038 	if (value != 0xb600000000010015ULL)
2039 		return false;
2040 
2041 	/* Clear MCi_STATUS registers */
2042 	for (i = 0; i < 6; ++i)
2043 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0);
2044 
2045 	if (!native_read_msr_safe(MSR_IA32_MCG_STATUS, &value)) {
2046 		value &= ~(1ULL << 2);
2047 		native_write_msr_safe(MSR_IA32_MCG_STATUS, value);
2048 	}
2049 
2050 	/* Flush tlb to evict multi-match entries */
2051 	__flush_tlb_all();
2052 
2053 	return true;
2054 }
2055 
2056 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2057 {
2058 	if (is_erratum_383()) {
2059 		/*
2060 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2061 		 * guest.
2062 		 */
2063 		pr_err("Guest triggered AMD Erratum 383\n");
2064 
2065 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2066 
2067 		return;
2068 	}
2069 
2070 	/*
2071 	 * On an #MC intercept the MCE handler is not called automatically in
2072 	 * the host. So do it by hand here.
2073 	 */
2074 	kvm_machine_check();
2075 }
2076 
2077 static int mc_interception(struct kvm_vcpu *vcpu)
2078 {
2079 	return 1;
2080 }
2081 
2082 static int shutdown_interception(struct kvm_vcpu *vcpu)
2083 {
2084 	struct kvm_run *kvm_run = vcpu->run;
2085 	struct vcpu_svm *svm = to_svm(vcpu);
2086 
2087 
2088 	/*
2089 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2090 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2091 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2092 	 * userspace.  At a platform view, INIT is acceptable behavior as
2093 	 * there exist bare metal platforms that automatically INIT the CPU
2094 	 * in response to shutdown.
2095 	 *
2096 	 * The VM save area for SEV-ES guests has already been encrypted so it
2097 	 * cannot be reinitialized, i.e. synthesizing INIT is futile.
2098 	 */
2099 	if (!sev_es_guest(vcpu->kvm)) {
2100 		clear_page(svm->vmcb);
2101 #ifdef CONFIG_KVM_SMM
2102 		if (is_smm(vcpu))
2103 			kvm_smm_changed(vcpu, false);
2104 #endif
2105 		kvm_vcpu_reset(vcpu, true);
2106 	}
2107 
2108 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2109 	return 0;
2110 }
2111 
2112 static int io_interception(struct kvm_vcpu *vcpu)
2113 {
2114 	struct vcpu_svm *svm = to_svm(vcpu);
2115 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2116 	int size, in, string;
2117 	unsigned port;
2118 
2119 	++vcpu->stat.io_exits;
2120 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2121 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2122 	port = io_info >> 16;
2123 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2124 
2125 	if (string) {
2126 		if (sev_es_guest(vcpu->kvm))
2127 			return sev_es_string_io(svm, size, port, in);
2128 		else
2129 			return kvm_emulate_instruction(vcpu, 0);
2130 	}
2131 
2132 	svm->next_rip = svm->vmcb->control.exit_info_2;
2133 
2134 	return kvm_fast_pio(vcpu, size, port, in);
2135 }
2136 
2137 static int nmi_interception(struct kvm_vcpu *vcpu)
2138 {
2139 	return 1;
2140 }
2141 
2142 static int smi_interception(struct kvm_vcpu *vcpu)
2143 {
2144 	return 1;
2145 }
2146 
2147 static int intr_interception(struct kvm_vcpu *vcpu)
2148 {
2149 	++vcpu->stat.irq_exits;
2150 	return 1;
2151 }
2152 
2153 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2154 {
2155 	struct vcpu_svm *svm = to_svm(vcpu);
2156 	struct vmcb *vmcb12;
2157 	struct kvm_host_map map;
2158 	int ret;
2159 
2160 	if (nested_svm_check_permissions(vcpu))
2161 		return 1;
2162 
2163 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2164 	if (ret) {
2165 		if (ret == -EINVAL)
2166 			kvm_inject_gp(vcpu, 0);
2167 		return 1;
2168 	}
2169 
2170 	vmcb12 = map.hva;
2171 
2172 	ret = kvm_skip_emulated_instruction(vcpu);
2173 
2174 	/* KVM always performs VMLOAD/VMSAVE on VMCB01 (see __svm_vcpu_run()) */
2175 	if (vmload) {
2176 		svm_copy_vmloadsave_state(svm->vmcb01.ptr, vmcb12);
2177 		svm->sysenter_eip_hi = 0;
2178 		svm->sysenter_esp_hi = 0;
2179 	} else {
2180 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb01.ptr);
2181 	}
2182 
2183 	kvm_vcpu_unmap(vcpu, &map);
2184 
2185 	return ret;
2186 }
2187 
2188 static int vmload_interception(struct kvm_vcpu *vcpu)
2189 {
2190 	return vmload_vmsave_interception(vcpu, true);
2191 }
2192 
2193 static int vmsave_interception(struct kvm_vcpu *vcpu)
2194 {
2195 	return vmload_vmsave_interception(vcpu, false);
2196 }
2197 
2198 static int vmrun_interception(struct kvm_vcpu *vcpu)
2199 {
2200 	if (nested_svm_check_permissions(vcpu))
2201 		return 1;
2202 
2203 	return nested_svm_vmrun(vcpu);
2204 }
2205 
2206 enum {
2207 	NONE_SVM_INSTR,
2208 	SVM_INSTR_VMRUN,
2209 	SVM_INSTR_VMLOAD,
2210 	SVM_INSTR_VMSAVE,
2211 };
2212 
2213 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2214 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2215 {
2216 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2217 
2218 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2219 		return NONE_SVM_INSTR;
2220 
2221 	switch (ctxt->modrm) {
2222 	case 0xd8: /* VMRUN */
2223 		return SVM_INSTR_VMRUN;
2224 	case 0xda: /* VMLOAD */
2225 		return SVM_INSTR_VMLOAD;
2226 	case 0xdb: /* VMSAVE */
2227 		return SVM_INSTR_VMSAVE;
2228 	default:
2229 		break;
2230 	}
2231 
2232 	return NONE_SVM_INSTR;
2233 }
2234 
2235 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2236 {
2237 	const int guest_mode_exit_codes[] = {
2238 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2239 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2240 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2241 	};
2242 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2243 		[SVM_INSTR_VMRUN] = vmrun_interception,
2244 		[SVM_INSTR_VMLOAD] = vmload_interception,
2245 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2246 	};
2247 	struct vcpu_svm *svm = to_svm(vcpu);
2248 	int ret;
2249 
2250 	if (is_guest_mode(vcpu)) {
2251 		/* Returns '1' or -errno on failure, '0' on success. */
2252 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2253 		if (ret)
2254 			return ret;
2255 		return 1;
2256 	}
2257 	return svm_instr_handlers[opcode](vcpu);
2258 }
2259 
2260 /*
2261  * #GP handling code. Note that #GP can be triggered under the following two
2262  * cases:
2263  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2264  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2265  *      regions (e.g. SMM memory on host).
2266  *   2) VMware backdoor
2267  */
2268 static int gp_interception(struct kvm_vcpu *vcpu)
2269 {
2270 	struct vcpu_svm *svm = to_svm(vcpu);
2271 	u32 error_code = svm->vmcb->control.exit_info_1;
2272 	int opcode;
2273 
2274 	/* Both #GP cases have zero error_code */
2275 	if (error_code)
2276 		goto reinject;
2277 
2278 	/* Decode the instruction for usage later */
2279 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2280 		goto reinject;
2281 
2282 	opcode = svm_instr_opcode(vcpu);
2283 
2284 	if (opcode == NONE_SVM_INSTR) {
2285 		if (!enable_vmware_backdoor)
2286 			goto reinject;
2287 
2288 		/*
2289 		 * VMware backdoor emulation on #GP interception only handles
2290 		 * IN{S}, OUT{S}, and RDPMC.
2291 		 */
2292 		if (!is_guest_mode(vcpu))
2293 			return kvm_emulate_instruction(vcpu,
2294 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2295 	} else {
2296 		/* All SVM instructions expect page aligned RAX */
2297 		if (svm->vmcb->save.rax & ~PAGE_MASK)
2298 			goto reinject;
2299 
2300 		return emulate_svm_instr(vcpu, opcode);
2301 	}
2302 
2303 reinject:
2304 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2305 	return 1;
2306 }
2307 
2308 void svm_set_gif(struct vcpu_svm *svm, bool value)
2309 {
2310 	if (value) {
2311 		/*
2312 		 * If VGIF is enabled, the STGI intercept is only added to
2313 		 * detect the opening of the SMI/NMI window; remove it now.
2314 		 * Likewise, clear the VINTR intercept, we will set it
2315 		 * again while processing KVM_REQ_EVENT if needed.
2316 		 */
2317 		if (vgif)
2318 			svm_clr_intercept(svm, INTERCEPT_STGI);
2319 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2320 			svm_clear_vintr(svm);
2321 
2322 		enable_gif(svm);
2323 		if (svm->vcpu.arch.smi_pending ||
2324 		    svm->vcpu.arch.nmi_pending ||
2325 		    kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2326 		    kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2327 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2328 	} else {
2329 		disable_gif(svm);
2330 
2331 		/*
2332 		 * After a CLGI no interrupts should come.  But if vGIF is
2333 		 * in use, we still rely on the VINTR intercept (rather than
2334 		 * STGI) to detect an open interrupt window.
2335 		*/
2336 		if (!vgif)
2337 			svm_clear_vintr(svm);
2338 	}
2339 }
2340 
2341 static int stgi_interception(struct kvm_vcpu *vcpu)
2342 {
2343 	int ret;
2344 
2345 	if (nested_svm_check_permissions(vcpu))
2346 		return 1;
2347 
2348 	ret = kvm_skip_emulated_instruction(vcpu);
2349 	svm_set_gif(to_svm(vcpu), true);
2350 	return ret;
2351 }
2352 
2353 static int clgi_interception(struct kvm_vcpu *vcpu)
2354 {
2355 	int ret;
2356 
2357 	if (nested_svm_check_permissions(vcpu))
2358 		return 1;
2359 
2360 	ret = kvm_skip_emulated_instruction(vcpu);
2361 	svm_set_gif(to_svm(vcpu), false);
2362 	return ret;
2363 }
2364 
2365 static int invlpga_interception(struct kvm_vcpu *vcpu)
2366 {
2367 	gva_t gva = kvm_rax_read(vcpu);
2368 	u32 asid = kvm_rcx_read(vcpu);
2369 
2370 	/* FIXME: Handle an address size prefix. */
2371 	if (!is_long_mode(vcpu))
2372 		gva = (u32)gva;
2373 
2374 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2375 
2376 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2377 	kvm_mmu_invlpg(vcpu, gva);
2378 
2379 	return kvm_skip_emulated_instruction(vcpu);
2380 }
2381 
2382 static int skinit_interception(struct kvm_vcpu *vcpu)
2383 {
2384 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2385 
2386 	kvm_queue_exception(vcpu, UD_VECTOR);
2387 	return 1;
2388 }
2389 
2390 static int task_switch_interception(struct kvm_vcpu *vcpu)
2391 {
2392 	struct vcpu_svm *svm = to_svm(vcpu);
2393 	u16 tss_selector;
2394 	int reason;
2395 	int int_type = svm->vmcb->control.exit_int_info &
2396 		SVM_EXITINTINFO_TYPE_MASK;
2397 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2398 	uint32_t type =
2399 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2400 	uint32_t idt_v =
2401 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2402 	bool has_error_code = false;
2403 	u32 error_code = 0;
2404 
2405 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2406 
2407 	if (svm->vmcb->control.exit_info_2 &
2408 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2409 		reason = TASK_SWITCH_IRET;
2410 	else if (svm->vmcb->control.exit_info_2 &
2411 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2412 		reason = TASK_SWITCH_JMP;
2413 	else if (idt_v)
2414 		reason = TASK_SWITCH_GATE;
2415 	else
2416 		reason = TASK_SWITCH_CALL;
2417 
2418 	if (reason == TASK_SWITCH_GATE) {
2419 		switch (type) {
2420 		case SVM_EXITINTINFO_TYPE_NMI:
2421 			vcpu->arch.nmi_injected = false;
2422 			break;
2423 		case SVM_EXITINTINFO_TYPE_EXEPT:
2424 			if (svm->vmcb->control.exit_info_2 &
2425 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2426 				has_error_code = true;
2427 				error_code =
2428 					(u32)svm->vmcb->control.exit_info_2;
2429 			}
2430 			kvm_clear_exception_queue(vcpu);
2431 			break;
2432 		case SVM_EXITINTINFO_TYPE_INTR:
2433 		case SVM_EXITINTINFO_TYPE_SOFT:
2434 			kvm_clear_interrupt_queue(vcpu);
2435 			break;
2436 		default:
2437 			break;
2438 		}
2439 	}
2440 
2441 	if (reason != TASK_SWITCH_GATE ||
2442 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2443 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2444 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2445 		if (!svm_skip_emulated_instruction(vcpu))
2446 			return 0;
2447 	}
2448 
2449 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2450 		int_vec = -1;
2451 
2452 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2453 			       has_error_code, error_code);
2454 }
2455 
2456 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2457 {
2458 	if (!sev_es_guest(svm->vcpu.kvm))
2459 		svm_clr_intercept(svm, INTERCEPT_IRET);
2460 }
2461 
2462 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2463 {
2464 	if (!sev_es_guest(svm->vcpu.kvm))
2465 		svm_set_intercept(svm, INTERCEPT_IRET);
2466 }
2467 
2468 static int iret_interception(struct kvm_vcpu *vcpu)
2469 {
2470 	struct vcpu_svm *svm = to_svm(vcpu);
2471 
2472 	WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2473 
2474 	++vcpu->stat.nmi_window_exits;
2475 	svm->awaiting_iret_completion = true;
2476 
2477 	svm_clr_iret_intercept(svm);
2478 	svm->nmi_iret_rip = kvm_rip_read(vcpu);
2479 
2480 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2481 	return 1;
2482 }
2483 
2484 static int invlpg_interception(struct kvm_vcpu *vcpu)
2485 {
2486 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2487 		return kvm_emulate_instruction(vcpu, 0);
2488 
2489 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2490 	return kvm_skip_emulated_instruction(vcpu);
2491 }
2492 
2493 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2494 {
2495 	return kvm_emulate_instruction(vcpu, 0);
2496 }
2497 
2498 static int rsm_interception(struct kvm_vcpu *vcpu)
2499 {
2500 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2501 }
2502 
2503 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2504 					    unsigned long val)
2505 {
2506 	struct vcpu_svm *svm = to_svm(vcpu);
2507 	unsigned long cr0 = vcpu->arch.cr0;
2508 	bool ret = false;
2509 
2510 	if (!is_guest_mode(vcpu) ||
2511 	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2512 		return false;
2513 
2514 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2515 	val &= ~SVM_CR0_SELECTIVE_MASK;
2516 
2517 	if (cr0 ^ val) {
2518 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2519 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2520 	}
2521 
2522 	return ret;
2523 }
2524 
2525 #define CR_VALID (1ULL << 63)
2526 
2527 static int cr_interception(struct kvm_vcpu *vcpu)
2528 {
2529 	struct vcpu_svm *svm = to_svm(vcpu);
2530 	int reg, cr;
2531 	unsigned long val;
2532 	int err;
2533 
2534 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2535 		return emulate_on_interception(vcpu);
2536 
2537 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2538 		return emulate_on_interception(vcpu);
2539 
2540 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2541 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2542 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2543 	else
2544 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2545 
2546 	err = 0;
2547 	if (cr >= 16) { /* mov to cr */
2548 		cr -= 16;
2549 		val = kvm_register_read(vcpu, reg);
2550 		trace_kvm_cr_write(cr, val);
2551 		switch (cr) {
2552 		case 0:
2553 			if (!check_selective_cr0_intercepted(vcpu, val))
2554 				err = kvm_set_cr0(vcpu, val);
2555 			else
2556 				return 1;
2557 
2558 			break;
2559 		case 3:
2560 			err = kvm_set_cr3(vcpu, val);
2561 			break;
2562 		case 4:
2563 			err = kvm_set_cr4(vcpu, val);
2564 			break;
2565 		case 8:
2566 			err = kvm_set_cr8(vcpu, val);
2567 			break;
2568 		default:
2569 			WARN(1, "unhandled write to CR%d", cr);
2570 			kvm_queue_exception(vcpu, UD_VECTOR);
2571 			return 1;
2572 		}
2573 	} else { /* mov from cr */
2574 		switch (cr) {
2575 		case 0:
2576 			val = kvm_read_cr0(vcpu);
2577 			break;
2578 		case 2:
2579 			val = vcpu->arch.cr2;
2580 			break;
2581 		case 3:
2582 			val = kvm_read_cr3(vcpu);
2583 			break;
2584 		case 4:
2585 			val = kvm_read_cr4(vcpu);
2586 			break;
2587 		case 8:
2588 			val = kvm_get_cr8(vcpu);
2589 			break;
2590 		default:
2591 			WARN(1, "unhandled read from CR%d", cr);
2592 			kvm_queue_exception(vcpu, UD_VECTOR);
2593 			return 1;
2594 		}
2595 		kvm_register_write(vcpu, reg, val);
2596 		trace_kvm_cr_read(cr, val);
2597 	}
2598 	return kvm_complete_insn_gp(vcpu, err);
2599 }
2600 
2601 static int cr_trap(struct kvm_vcpu *vcpu)
2602 {
2603 	struct vcpu_svm *svm = to_svm(vcpu);
2604 	unsigned long old_value, new_value;
2605 	unsigned int cr;
2606 	int ret = 0;
2607 
2608 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2609 
2610 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2611 	switch (cr) {
2612 	case 0:
2613 		old_value = kvm_read_cr0(vcpu);
2614 		svm_set_cr0(vcpu, new_value);
2615 
2616 		kvm_post_set_cr0(vcpu, old_value, new_value);
2617 		break;
2618 	case 4:
2619 		old_value = kvm_read_cr4(vcpu);
2620 		svm_set_cr4(vcpu, new_value);
2621 
2622 		kvm_post_set_cr4(vcpu, old_value, new_value);
2623 		break;
2624 	case 8:
2625 		ret = kvm_set_cr8(vcpu, new_value);
2626 		break;
2627 	default:
2628 		WARN(1, "unhandled CR%d write trap", cr);
2629 		kvm_queue_exception(vcpu, UD_VECTOR);
2630 		return 1;
2631 	}
2632 
2633 	return kvm_complete_insn_gp(vcpu, ret);
2634 }
2635 
2636 static int dr_interception(struct kvm_vcpu *vcpu)
2637 {
2638 	struct vcpu_svm *svm = to_svm(vcpu);
2639 	int reg, dr;
2640 	int err = 0;
2641 
2642 	/*
2643 	 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2644 	 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2645 	 */
2646 	if (sev_es_guest(vcpu->kvm))
2647 		return 1;
2648 
2649 	if (vcpu->guest_debug == 0) {
2650 		/*
2651 		 * No more DR vmexits; force a reload of the debug registers
2652 		 * and reenter on this instruction.  The next vmexit will
2653 		 * retrieve the full state of the debug registers.
2654 		 */
2655 		clr_dr_intercepts(svm);
2656 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2657 		return 1;
2658 	}
2659 
2660 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2661 		return emulate_on_interception(vcpu);
2662 
2663 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2664 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2665 	if (dr >= 16) { /* mov to DRn  */
2666 		dr -= 16;
2667 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
2668 	} else {
2669 		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
2670 	}
2671 
2672 	return kvm_complete_insn_gp(vcpu, err);
2673 }
2674 
2675 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2676 {
2677 	int r;
2678 
2679 	u8 cr8_prev = kvm_get_cr8(vcpu);
2680 	/* instruction emulation calls kvm_set_cr8() */
2681 	r = cr_interception(vcpu);
2682 	if (lapic_in_kernel(vcpu))
2683 		return r;
2684 	if (cr8_prev <= kvm_get_cr8(vcpu))
2685 		return r;
2686 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2687 	return 0;
2688 }
2689 
2690 static int efer_trap(struct kvm_vcpu *vcpu)
2691 {
2692 	struct msr_data msr_info;
2693 	int ret;
2694 
2695 	/*
2696 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2697 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2698 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2699 	 * the guest doesn't have X86_FEATURE_SVM.
2700 	 */
2701 	msr_info.host_initiated = false;
2702 	msr_info.index = MSR_EFER;
2703 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2704 	ret = kvm_set_msr_common(vcpu, &msr_info);
2705 
2706 	return kvm_complete_insn_gp(vcpu, ret);
2707 }
2708 
2709 static int svm_get_feature_msr(u32 msr, u64 *data)
2710 {
2711 	*data = 0;
2712 
2713 	switch (msr) {
2714 	case MSR_AMD64_DE_CFG:
2715 		if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2716 			*data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2717 		break;
2718 	default:
2719 		return KVM_MSR_RET_UNSUPPORTED;
2720 	}
2721 
2722 	return 0;
2723 }
2724 
2725 static bool sev_es_prevent_msr_access(struct kvm_vcpu *vcpu,
2726 				      struct msr_data *msr_info)
2727 {
2728 	return sev_es_guest(vcpu->kvm) && vcpu->arch.guest_state_protected &&
2729 	       msr_info->index != MSR_IA32_XSS &&
2730 	       !msr_write_intercepted(vcpu, msr_info->index);
2731 }
2732 
2733 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2734 {
2735 	struct vcpu_svm *svm = to_svm(vcpu);
2736 
2737 	if (sev_es_prevent_msr_access(vcpu, msr_info)) {
2738 		msr_info->data = 0;
2739 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2740 	}
2741 
2742 	switch (msr_info->index) {
2743 	case MSR_AMD64_TSC_RATIO:
2744 		if (!msr_info->host_initiated &&
2745 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR))
2746 			return 1;
2747 		msr_info->data = svm->tsc_ratio_msr;
2748 		break;
2749 	case MSR_STAR:
2750 		msr_info->data = svm->vmcb01.ptr->save.star;
2751 		break;
2752 #ifdef CONFIG_X86_64
2753 	case MSR_LSTAR:
2754 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2755 		break;
2756 	case MSR_CSTAR:
2757 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2758 		break;
2759 	case MSR_GS_BASE:
2760 		msr_info->data = svm->vmcb01.ptr->save.gs.base;
2761 		break;
2762 	case MSR_FS_BASE:
2763 		msr_info->data = svm->vmcb01.ptr->save.fs.base;
2764 		break;
2765 	case MSR_KERNEL_GS_BASE:
2766 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2767 		break;
2768 	case MSR_SYSCALL_MASK:
2769 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2770 		break;
2771 #endif
2772 	case MSR_IA32_SYSENTER_CS:
2773 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2774 		break;
2775 	case MSR_IA32_SYSENTER_EIP:
2776 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2777 		if (guest_cpuid_is_intel_compatible(vcpu))
2778 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2779 		break;
2780 	case MSR_IA32_SYSENTER_ESP:
2781 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2782 		if (guest_cpuid_is_intel_compatible(vcpu))
2783 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2784 		break;
2785 	case MSR_IA32_S_CET:
2786 		msr_info->data = svm->vmcb->save.s_cet;
2787 		break;
2788 	case MSR_IA32_INT_SSP_TAB:
2789 		msr_info->data = svm->vmcb->save.isst_addr;
2790 		break;
2791 	case MSR_KVM_INTERNAL_GUEST_SSP:
2792 		msr_info->data = svm->vmcb->save.ssp;
2793 		break;
2794 	case MSR_TSC_AUX:
2795 		msr_info->data = svm->tsc_aux;
2796 		break;
2797 	case MSR_IA32_DEBUGCTLMSR:
2798 		msr_info->data = svm->vmcb->save.dbgctl;
2799 		break;
2800 	case MSR_IA32_LASTBRANCHFROMIP:
2801 		msr_info->data = svm->vmcb->save.br_from;
2802 		break;
2803 	case MSR_IA32_LASTBRANCHTOIP:
2804 		msr_info->data = svm->vmcb->save.br_to;
2805 		break;
2806 	case MSR_IA32_LASTINTFROMIP:
2807 		msr_info->data = svm->vmcb->save.last_excp_from;
2808 		break;
2809 	case MSR_IA32_LASTINTTOIP:
2810 		msr_info->data = svm->vmcb->save.last_excp_to;
2811 		break;
2812 	case MSR_VM_HSAVE_PA:
2813 		msr_info->data = svm->nested.hsave_msr;
2814 		break;
2815 	case MSR_VM_CR:
2816 		msr_info->data = svm->nested.vm_cr_msr;
2817 		break;
2818 	case MSR_IA32_SPEC_CTRL:
2819 		if (!msr_info->host_initiated &&
2820 		    !guest_has_spec_ctrl_msr(vcpu))
2821 			return 1;
2822 
2823 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2824 			msr_info->data = svm->vmcb->save.spec_ctrl;
2825 		else
2826 			msr_info->data = svm->spec_ctrl;
2827 		break;
2828 	case MSR_AMD64_VIRT_SPEC_CTRL:
2829 		if (!msr_info->host_initiated &&
2830 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2831 			return 1;
2832 
2833 		msr_info->data = svm->virt_spec_ctrl;
2834 		break;
2835 	case MSR_F15H_IC_CFG: {
2836 
2837 		int family, model;
2838 
2839 		family = guest_cpuid_family(vcpu);
2840 		model  = guest_cpuid_model(vcpu);
2841 
2842 		if (family < 0 || model < 0)
2843 			return kvm_get_msr_common(vcpu, msr_info);
2844 
2845 		msr_info->data = 0;
2846 
2847 		if (family == 0x15 &&
2848 		    (model >= 0x2 && model < 0x20))
2849 			msr_info->data = 0x1E;
2850 		}
2851 		break;
2852 	case MSR_AMD64_DE_CFG:
2853 		msr_info->data = svm->msr_decfg;
2854 		break;
2855 	default:
2856 		return kvm_get_msr_common(vcpu, msr_info);
2857 	}
2858 	return 0;
2859 }
2860 
2861 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2862 {
2863 	struct vcpu_svm *svm = to_svm(vcpu);
2864 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2865 		return kvm_complete_insn_gp(vcpu, err);
2866 
2867 	svm_vmgexit_inject_exception(svm, X86_TRAP_GP);
2868 	return 1;
2869 }
2870 
2871 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2872 {
2873 	struct vcpu_svm *svm = to_svm(vcpu);
2874 	int svm_dis, chg_mask;
2875 
2876 	if (data & ~SVM_VM_CR_VALID_MASK)
2877 		return 1;
2878 
2879 	chg_mask = SVM_VM_CR_VALID_MASK;
2880 
2881 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2882 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2883 
2884 	svm->nested.vm_cr_msr &= ~chg_mask;
2885 	svm->nested.vm_cr_msr |= (data & chg_mask);
2886 
2887 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2888 
2889 	/* check for svm_disable while efer.svme is set */
2890 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2891 		return 1;
2892 
2893 	return 0;
2894 }
2895 
2896 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2897 {
2898 	struct vcpu_svm *svm = to_svm(vcpu);
2899 	int ret = 0;
2900 
2901 	u32 ecx = msr->index;
2902 	u64 data = msr->data;
2903 
2904 	if (sev_es_prevent_msr_access(vcpu, msr))
2905 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2906 
2907 	switch (ecx) {
2908 	case MSR_AMD64_TSC_RATIO:
2909 
2910 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) {
2911 
2912 			if (!msr->host_initiated)
2913 				return 1;
2914 			/*
2915 			 * In case TSC scaling is not enabled, always
2916 			 * leave this MSR at the default value.
2917 			 *
2918 			 * Due to bug in qemu 6.2.0, it would try to set
2919 			 * this msr to 0 if tsc scaling is not enabled.
2920 			 * Ignore this value as well.
2921 			 */
2922 			if (data != 0 && data != svm->tsc_ratio_msr)
2923 				return 1;
2924 			break;
2925 		}
2926 
2927 		if (data & SVM_TSC_RATIO_RSVD)
2928 			return 1;
2929 
2930 		svm->tsc_ratio_msr = data;
2931 
2932 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) &&
2933 		    is_guest_mode(vcpu))
2934 			nested_svm_update_tsc_ratio_msr(vcpu);
2935 
2936 		break;
2937 	case MSR_IA32_CR_PAT:
2938 		ret = kvm_set_msr_common(vcpu, msr);
2939 		if (ret)
2940 			break;
2941 
2942 		svm->vmcb01.ptr->save.g_pat = data;
2943 		if (is_guest_mode(vcpu))
2944 			nested_vmcb02_compute_g_pat(svm);
2945 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2946 		break;
2947 	case MSR_IA32_SPEC_CTRL:
2948 		if (!msr->host_initiated &&
2949 		    !guest_has_spec_ctrl_msr(vcpu))
2950 			return 1;
2951 
2952 		if (kvm_spec_ctrl_test_value(data))
2953 			return 1;
2954 
2955 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2956 			svm->vmcb->save.spec_ctrl = data;
2957 		else
2958 			svm->spec_ctrl = data;
2959 		if (!data)
2960 			break;
2961 
2962 		/*
2963 		 * For non-nested:
2964 		 * When it's written (to non-zero) for the first time, pass
2965 		 * it through.
2966 		 *
2967 		 * For nested:
2968 		 * The handling of the MSR bitmap for L2 guests is done in
2969 		 * nested_svm_merge_msrpm().
2970 		 * We update the L1 MSR bit as well since it will end up
2971 		 * touching the MSR anyway now.
2972 		 */
2973 		svm_disable_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
2974 		break;
2975 	case MSR_AMD64_VIRT_SPEC_CTRL:
2976 		if (!msr->host_initiated &&
2977 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2978 			return 1;
2979 
2980 		if (data & ~SPEC_CTRL_SSBD)
2981 			return 1;
2982 
2983 		svm->virt_spec_ctrl = data;
2984 		break;
2985 	case MSR_STAR:
2986 		svm->vmcb01.ptr->save.star = data;
2987 		break;
2988 #ifdef CONFIG_X86_64
2989 	case MSR_LSTAR:
2990 		svm->vmcb01.ptr->save.lstar = data;
2991 		break;
2992 	case MSR_CSTAR:
2993 		svm->vmcb01.ptr->save.cstar = data;
2994 		break;
2995 	case MSR_GS_BASE:
2996 		svm->vmcb01.ptr->save.gs.base = data;
2997 		break;
2998 	case MSR_FS_BASE:
2999 		svm->vmcb01.ptr->save.fs.base = data;
3000 		break;
3001 	case MSR_KERNEL_GS_BASE:
3002 		svm->vmcb01.ptr->save.kernel_gs_base = data;
3003 		break;
3004 	case MSR_SYSCALL_MASK:
3005 		svm->vmcb01.ptr->save.sfmask = data;
3006 		break;
3007 #endif
3008 	case MSR_IA32_SYSENTER_CS:
3009 		svm->vmcb01.ptr->save.sysenter_cs = data;
3010 		break;
3011 	case MSR_IA32_SYSENTER_EIP:
3012 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
3013 		/*
3014 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3015 		 * when we spoof an Intel vendor ID (for cross vendor migration).
3016 		 * In this case we use this intercept to track the high
3017 		 * 32 bit part of these msrs to support Intel's
3018 		 * implementation of SYSENTER/SYSEXIT.
3019 		 */
3020 		svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
3021 		break;
3022 	case MSR_IA32_SYSENTER_ESP:
3023 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3024 		svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
3025 		break;
3026 	case MSR_IA32_S_CET:
3027 		svm->vmcb->save.s_cet = data;
3028 		vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET);
3029 		break;
3030 	case MSR_IA32_INT_SSP_TAB:
3031 		svm->vmcb->save.isst_addr = data;
3032 		vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET);
3033 		break;
3034 	case MSR_KVM_INTERNAL_GUEST_SSP:
3035 		svm->vmcb->save.ssp = data;
3036 		vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET);
3037 		break;
3038 	case MSR_TSC_AUX:
3039 		/*
3040 		 * TSC_AUX is always virtualized for SEV-ES guests when the
3041 		 * feature is available. The user return MSR support is not
3042 		 * required in this case because TSC_AUX is restored on #VMEXIT
3043 		 * from the host save area.
3044 		 */
3045 		if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
3046 			break;
3047 
3048 		/*
3049 		 * TSC_AUX is usually changed only during boot and never read
3050 		 * directly.  Intercept TSC_AUX and switch it via user return.
3051 		 */
3052 		preempt_disable();
3053 		ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3054 		preempt_enable();
3055 		if (ret)
3056 			break;
3057 
3058 		svm->tsc_aux = data;
3059 		break;
3060 	case MSR_IA32_DEBUGCTLMSR:
3061 		if (!lbrv) {
3062 			kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3063 			break;
3064 		}
3065 
3066 		/*
3067 		 * Suppress BTF as KVM doesn't virtualize BTF, but there's no
3068 		 * way to communicate lack of support to the guest.
3069 		 */
3070 		if (data & DEBUGCTLMSR_BTF) {
3071 			kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
3072 			data &= ~DEBUGCTLMSR_BTF;
3073 		}
3074 
3075 		if (data & DEBUGCTL_RESERVED_BITS)
3076 			return 1;
3077 
3078 		if (svm->vmcb->save.dbgctl == data)
3079 			break;
3080 
3081 		svm->vmcb->save.dbgctl = data;
3082 		vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
3083 		svm_update_lbrv(vcpu);
3084 		break;
3085 	case MSR_VM_HSAVE_PA:
3086 		/*
3087 		 * Old kernels did not validate the value written to
3088 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3089 		 * value to allow live migrating buggy or malicious guests
3090 		 * originating from those kernels.
3091 		 */
3092 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
3093 			return 1;
3094 
3095 		svm->nested.hsave_msr = data & PAGE_MASK;
3096 		break;
3097 	case MSR_VM_CR:
3098 		return svm_set_vm_cr(vcpu, data);
3099 	case MSR_VM_IGNNE:
3100 		kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3101 		break;
3102 	case MSR_AMD64_DE_CFG: {
3103 		u64 supported_de_cfg;
3104 
3105 		if (svm_get_feature_msr(ecx, &supported_de_cfg))
3106 			return 1;
3107 
3108 		if (data & ~supported_de_cfg)
3109 			return 1;
3110 
3111 		svm->msr_decfg = data;
3112 		break;
3113 	}
3114 	default:
3115 		return kvm_set_msr_common(vcpu, msr);
3116 	}
3117 	return ret;
3118 }
3119 
3120 static int msr_interception(struct kvm_vcpu *vcpu)
3121 {
3122 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
3123 		return kvm_emulate_wrmsr(vcpu);
3124 	else
3125 		return kvm_emulate_rdmsr(vcpu);
3126 }
3127 
3128 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3129 {
3130 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3131 	svm_clear_vintr(to_svm(vcpu));
3132 
3133 	/*
3134 	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3135 	 * In this case AVIC was temporarily disabled for
3136 	 * requesting the IRQ window and we have to re-enable it.
3137 	 *
3138 	 * If running nested, still remove the VM wide AVIC inhibit to
3139 	 * support case in which the interrupt window was requested when the
3140 	 * vCPU was not running nested.
3141 
3142 	 * All vCPUs which run still run nested, will remain to have their
3143 	 * AVIC still inhibited due to per-cpu AVIC inhibition.
3144 	 */
3145 	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3146 
3147 	++vcpu->stat.irq_window_exits;
3148 	return 1;
3149 }
3150 
3151 static int pause_interception(struct kvm_vcpu *vcpu)
3152 {
3153 	bool in_kernel;
3154 	/*
3155 	 * CPL is not made available for an SEV-ES guest, therefore
3156 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3157 	 * set in_kernel to false as well.
3158 	 */
3159 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3160 
3161 	grow_ple_window(vcpu);
3162 
3163 	kvm_vcpu_on_spin(vcpu, in_kernel);
3164 	return kvm_skip_emulated_instruction(vcpu);
3165 }
3166 
3167 static int invpcid_interception(struct kvm_vcpu *vcpu)
3168 {
3169 	struct vcpu_svm *svm = to_svm(vcpu);
3170 	unsigned long type;
3171 	gva_t gva;
3172 
3173 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
3174 		kvm_queue_exception(vcpu, UD_VECTOR);
3175 		return 1;
3176 	}
3177 
3178 	/*
3179 	 * For an INVPCID intercept:
3180 	 * EXITINFO1 provides the linear address of the memory operand.
3181 	 * EXITINFO2 provides the contents of the register operand.
3182 	 */
3183 	type = svm->vmcb->control.exit_info_2;
3184 	gva = svm->vmcb->control.exit_info_1;
3185 
3186 	/*
3187 	 * FIXME: Perform segment checks for 32-bit mode, and inject #SS if the
3188 	 *        stack segment is used.  The intercept takes priority over all
3189 	 *        #GP checks except CPL>0, but somehow still generates a linear
3190 	 *        address?  The APM is sorely lacking.
3191 	 */
3192 	if (is_noncanonical_address(gva, vcpu, 0)) {
3193 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3194 		return 1;
3195 	}
3196 
3197 	return kvm_handle_invpcid(vcpu, type, gva);
3198 }
3199 
3200 static inline int complete_userspace_buslock(struct kvm_vcpu *vcpu)
3201 {
3202 	struct vcpu_svm *svm = to_svm(vcpu);
3203 
3204 	/*
3205 	 * If userspace has NOT changed RIP, then KVM's ABI is to let the guest
3206 	 * execute the bus-locking instruction.  Set the bus lock counter to '1'
3207 	 * to effectively step past the bus lock.
3208 	 */
3209 	if (kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))
3210 		svm->vmcb->control.bus_lock_counter = 1;
3211 
3212 	return 1;
3213 }
3214 
3215 static int bus_lock_exit(struct kvm_vcpu *vcpu)
3216 {
3217 	struct vcpu_svm *svm = to_svm(vcpu);
3218 
3219 	vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
3220 	vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
3221 
3222 	vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
3223 	vcpu->arch.complete_userspace_io = complete_userspace_buslock;
3224 
3225 	if (is_guest_mode(vcpu))
3226 		svm->nested.ctl.bus_lock_rip = vcpu->arch.cui_linear_rip;
3227 
3228 	return 0;
3229 }
3230 
3231 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3232 	[SVM_EXIT_READ_CR0]			= cr_interception,
3233 	[SVM_EXIT_READ_CR3]			= cr_interception,
3234 	[SVM_EXIT_READ_CR4]			= cr_interception,
3235 	[SVM_EXIT_READ_CR8]			= cr_interception,
3236 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3237 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3238 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3239 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3240 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3241 	[SVM_EXIT_READ_DR0]			= dr_interception,
3242 	[SVM_EXIT_READ_DR1]			= dr_interception,
3243 	[SVM_EXIT_READ_DR2]			= dr_interception,
3244 	[SVM_EXIT_READ_DR3]			= dr_interception,
3245 	[SVM_EXIT_READ_DR4]			= dr_interception,
3246 	[SVM_EXIT_READ_DR5]			= dr_interception,
3247 	[SVM_EXIT_READ_DR6]			= dr_interception,
3248 	[SVM_EXIT_READ_DR7]			= dr_interception,
3249 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3250 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3251 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3252 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3253 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3254 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3255 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3256 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3257 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3258 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3259 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3260 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3261 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3262 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3263 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3264 	[SVM_EXIT_INTR]				= intr_interception,
3265 	[SVM_EXIT_NMI]				= nmi_interception,
3266 	[SVM_EXIT_SMI]				= smi_interception,
3267 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3268 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3269 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3270 	[SVM_EXIT_IRET]                         = iret_interception,
3271 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3272 	[SVM_EXIT_PAUSE]			= pause_interception,
3273 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3274 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3275 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3276 	[SVM_EXIT_IOIO]				= io_interception,
3277 	[SVM_EXIT_MSR]				= msr_interception,
3278 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3279 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3280 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3281 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3282 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3283 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3284 	[SVM_EXIT_STGI]				= stgi_interception,
3285 	[SVM_EXIT_CLGI]				= clgi_interception,
3286 	[SVM_EXIT_SKINIT]			= skinit_interception,
3287 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3288 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3289 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3290 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3291 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3292 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3293 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3294 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3295 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3296 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3297 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3298 	[SVM_EXIT_IDLE_HLT]			= kvm_emulate_halt,
3299 	[SVM_EXIT_NPF]				= npf_interception,
3300 	[SVM_EXIT_BUS_LOCK]			= bus_lock_exit,
3301 	[SVM_EXIT_RSM]                          = rsm_interception,
3302 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3303 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3304 #ifdef CONFIG_KVM_AMD_SEV
3305 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3306 #endif
3307 };
3308 
3309 static void dump_vmcb(struct kvm_vcpu *vcpu)
3310 {
3311 	struct vcpu_svm *svm = to_svm(vcpu);
3312 	struct vmcb_control_area *control = &svm->vmcb->control;
3313 	struct vmcb_save_area *save = &svm->vmcb->save;
3314 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3315 	char *vm_type;
3316 
3317 	if (!dump_invalid_vmcb) {
3318 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3319 		return;
3320 	}
3321 
3322 	guard(mutex)(&vmcb_dump_mutex);
3323 
3324 	vm_type = sev_snp_guest(vcpu->kvm) ? "SEV-SNP" :
3325 		  sev_es_guest(vcpu->kvm) ? "SEV-ES" :
3326 		  sev_guest(vcpu->kvm) ? "SEV" : "SVM";
3327 
3328 	pr_err("%s vCPU%u VMCB %p, last attempted VMRUN on CPU %d\n",
3329 	       vm_type, vcpu->vcpu_id, svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3330 	pr_err("VMCB Control Area:\n");
3331 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3332 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3333 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3334 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3335 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3336 	pr_err("%-20s%08x %08x\n", "intercepts:",
3337               control->intercepts[INTERCEPT_WORD3],
3338 	       control->intercepts[INTERCEPT_WORD4]);
3339 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3340 	pr_err("%-20s%d\n", "pause filter threshold:",
3341 	       control->pause_filter_thresh);
3342 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3343 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3344 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3345 	pr_err("%-20s%d\n", "asid:", control->asid);
3346 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3347 	pr_err("%-20s%d\n", "erap_ctl:", control->erap_ctl);
3348 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3349 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3350 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3351 	pr_err("%-20s%016llx\n", "exit_code:", control->exit_code);
3352 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3353 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3354 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3355 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3356 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3357 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3358 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3359 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3360 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3361 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3362 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3363 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3364 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3365 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3366 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3367 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3368 	pr_err("%-20s%016llx\n", "allowed_sev_features:", control->allowed_sev_features);
3369 	pr_err("%-20s%016llx\n", "guest_sev_features:", control->guest_sev_features);
3370 
3371 	if (sev_es_guest(vcpu->kvm)) {
3372 		save = sev_decrypt_vmsa(vcpu);
3373 		if (!save)
3374 			goto no_vmsa;
3375 
3376 		save01 = save;
3377 	}
3378 
3379 	pr_err("VMCB State Save Area:\n");
3380 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3381 	       "es:",
3382 	       save->es.selector, save->es.attrib,
3383 	       save->es.limit, save->es.base);
3384 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3385 	       "cs:",
3386 	       save->cs.selector, save->cs.attrib,
3387 	       save->cs.limit, save->cs.base);
3388 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3389 	       "ss:",
3390 	       save->ss.selector, save->ss.attrib,
3391 	       save->ss.limit, save->ss.base);
3392 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3393 	       "ds:",
3394 	       save->ds.selector, save->ds.attrib,
3395 	       save->ds.limit, save->ds.base);
3396 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3397 	       "fs:",
3398 	       save01->fs.selector, save01->fs.attrib,
3399 	       save01->fs.limit, save01->fs.base);
3400 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3401 	       "gs:",
3402 	       save01->gs.selector, save01->gs.attrib,
3403 	       save01->gs.limit, save01->gs.base);
3404 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3405 	       "gdtr:",
3406 	       save->gdtr.selector, save->gdtr.attrib,
3407 	       save->gdtr.limit, save->gdtr.base);
3408 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3409 	       "ldtr:",
3410 	       save01->ldtr.selector, save01->ldtr.attrib,
3411 	       save01->ldtr.limit, save01->ldtr.base);
3412 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3413 	       "idtr:",
3414 	       save->idtr.selector, save->idtr.attrib,
3415 	       save->idtr.limit, save->idtr.base);
3416 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3417 	       "tr:",
3418 	       save01->tr.selector, save01->tr.attrib,
3419 	       save01->tr.limit, save01->tr.base);
3420 	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3421 	       save->vmpl, save->cpl, save->efer);
3422 	pr_err("%-15s %016llx %-13s %016llx\n",
3423 	       "cr0:", save->cr0, "cr2:", save->cr2);
3424 	pr_err("%-15s %016llx %-13s %016llx\n",
3425 	       "cr3:", save->cr3, "cr4:", save->cr4);
3426 	pr_err("%-15s %016llx %-13s %016llx\n",
3427 	       "dr6:", save->dr6, "dr7:", save->dr7);
3428 	pr_err("%-15s %016llx %-13s %016llx\n",
3429 	       "rip:", save->rip, "rflags:", save->rflags);
3430 	pr_err("%-15s %016llx %-13s %016llx\n",
3431 	       "rsp:", save->rsp, "rax:", save->rax);
3432 	pr_err("%-15s %016llx %-13s %016llx\n",
3433 	       "s_cet:", save->s_cet, "ssp:", save->ssp);
3434 	pr_err("%-15s %016llx\n",
3435 	       "isst_addr:", save->isst_addr);
3436 	pr_err("%-15s %016llx %-13s %016llx\n",
3437 	       "star:", save01->star, "lstar:", save01->lstar);
3438 	pr_err("%-15s %016llx %-13s %016llx\n",
3439 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3440 	pr_err("%-15s %016llx %-13s %016llx\n",
3441 	       "kernel_gs_base:", save01->kernel_gs_base,
3442 	       "sysenter_cs:", save01->sysenter_cs);
3443 	pr_err("%-15s %016llx %-13s %016llx\n",
3444 	       "sysenter_esp:", save01->sysenter_esp,
3445 	       "sysenter_eip:", save01->sysenter_eip);
3446 	pr_err("%-15s %016llx %-13s %016llx\n",
3447 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3448 	pr_err("%-15s %016llx %-13s %016llx\n",
3449 	       "br_from:", save->br_from, "br_to:", save->br_to);
3450 	pr_err("%-15s %016llx %-13s %016llx\n",
3451 	       "excp_from:", save->last_excp_from,
3452 	       "excp_to:", save->last_excp_to);
3453 
3454 	if (sev_es_guest(vcpu->kvm)) {
3455 		struct sev_es_save_area *vmsa = (struct sev_es_save_area *)save;
3456 
3457 		pr_err("%-15s %016llx\n",
3458 		       "sev_features", vmsa->sev_features);
3459 
3460 		pr_err("%-15s %016llx %-13s %016llx\n",
3461 		       "pl0_ssp:", vmsa->pl0_ssp, "pl1_ssp:", vmsa->pl1_ssp);
3462 		pr_err("%-15s %016llx %-13s %016llx\n",
3463 		       "pl2_ssp:", vmsa->pl2_ssp, "pl3_ssp:", vmsa->pl3_ssp);
3464 		pr_err("%-15s %016llx\n",
3465 		       "u_cet:", vmsa->u_cet);
3466 
3467 		pr_err("%-15s %016llx %-13s %016llx\n",
3468 		       "rax:", vmsa->rax, "rbx:", vmsa->rbx);
3469 		pr_err("%-15s %016llx %-13s %016llx\n",
3470 		       "rcx:", vmsa->rcx, "rdx:", vmsa->rdx);
3471 		pr_err("%-15s %016llx %-13s %016llx\n",
3472 		       "rsi:", vmsa->rsi, "rdi:", vmsa->rdi);
3473 		pr_err("%-15s %016llx %-13s %016llx\n",
3474 		       "rbp:", vmsa->rbp, "rsp:", vmsa->rsp);
3475 		pr_err("%-15s %016llx %-13s %016llx\n",
3476 		       "r8:", vmsa->r8, "r9:", vmsa->r9);
3477 		pr_err("%-15s %016llx %-13s %016llx\n",
3478 		       "r10:", vmsa->r10, "r11:", vmsa->r11);
3479 		pr_err("%-15s %016llx %-13s %016llx\n",
3480 		       "r12:", vmsa->r12, "r13:", vmsa->r13);
3481 		pr_err("%-15s %016llx %-13s %016llx\n",
3482 		       "r14:", vmsa->r14, "r15:", vmsa->r15);
3483 		pr_err("%-15s %016llx %-13s %016llx\n",
3484 		       "xcr0:", vmsa->xcr0, "xss:", vmsa->xss);
3485 	} else {
3486 		pr_err("%-15s %016llx %-13s %016lx\n",
3487 		       "rax:", save->rax, "rbx:",
3488 		       vcpu->arch.regs[VCPU_REGS_RBX]);
3489 		pr_err("%-15s %016lx %-13s %016lx\n",
3490 		       "rcx:", vcpu->arch.regs[VCPU_REGS_RCX],
3491 		       "rdx:", vcpu->arch.regs[VCPU_REGS_RDX]);
3492 		pr_err("%-15s %016lx %-13s %016lx\n",
3493 		       "rsi:", vcpu->arch.regs[VCPU_REGS_RSI],
3494 		       "rdi:", vcpu->arch.regs[VCPU_REGS_RDI]);
3495 		pr_err("%-15s %016lx %-13s %016llx\n",
3496 		       "rbp:", vcpu->arch.regs[VCPU_REGS_RBP],
3497 		       "rsp:", save->rsp);
3498 #ifdef CONFIG_X86_64
3499 		pr_err("%-15s %016lx %-13s %016lx\n",
3500 		       "r8:", vcpu->arch.regs[VCPU_REGS_R8],
3501 		       "r9:", vcpu->arch.regs[VCPU_REGS_R9]);
3502 		pr_err("%-15s %016lx %-13s %016lx\n",
3503 		       "r10:", vcpu->arch.regs[VCPU_REGS_R10],
3504 		       "r11:", vcpu->arch.regs[VCPU_REGS_R11]);
3505 		pr_err("%-15s %016lx %-13s %016lx\n",
3506 		       "r12:", vcpu->arch.regs[VCPU_REGS_R12],
3507 		       "r13:", vcpu->arch.regs[VCPU_REGS_R13]);
3508 		pr_err("%-15s %016lx %-13s %016lx\n",
3509 		       "r14:", vcpu->arch.regs[VCPU_REGS_R14],
3510 		       "r15:", vcpu->arch.regs[VCPU_REGS_R15]);
3511 #endif
3512 	}
3513 
3514 no_vmsa:
3515 	if (sev_es_guest(vcpu->kvm))
3516 		sev_free_decrypted_vmsa(vcpu, save);
3517 }
3518 
3519 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 __exit_code)
3520 {
3521 	u32 exit_code = __exit_code;
3522 
3523 	/*
3524 	 * SVM uses negative values, i.e. 64-bit values, to indicate that VMRUN
3525 	 * failed.  Report all such errors to userspace (note, VMEXIT_INVALID,
3526 	 * a.k.a. SVM_EXIT_ERR, is special cased by svm_handle_exit()).  Skip
3527 	 * the check when running as a VM, as KVM has historically left garbage
3528 	 * in bits 63:32, i.e. running KVM-on-KVM would hit false positives if
3529 	 * the underlying kernel is buggy.
3530 	 */
3531 	if (!cpu_feature_enabled(X86_FEATURE_HYPERVISOR) &&
3532 	    (u64)exit_code != __exit_code)
3533 		goto unexpected_vmexit;
3534 
3535 #ifdef CONFIG_MITIGATION_RETPOLINE
3536 	if (exit_code == SVM_EXIT_MSR)
3537 		return msr_interception(vcpu);
3538 	else if (exit_code == SVM_EXIT_VINTR)
3539 		return interrupt_window_interception(vcpu);
3540 	else if (exit_code == SVM_EXIT_INTR)
3541 		return intr_interception(vcpu);
3542 	else if (exit_code == SVM_EXIT_HLT || exit_code == SVM_EXIT_IDLE_HLT)
3543 		return kvm_emulate_halt(vcpu);
3544 	else if (exit_code == SVM_EXIT_NPF)
3545 		return npf_interception(vcpu);
3546 #ifdef CONFIG_KVM_AMD_SEV
3547 	else if (exit_code == SVM_EXIT_VMGEXIT)
3548 		return sev_handle_vmgexit(vcpu);
3549 #endif
3550 #endif
3551 	if (exit_code >= ARRAY_SIZE(svm_exit_handlers))
3552 		goto unexpected_vmexit;
3553 
3554 	exit_code = array_index_nospec(exit_code, ARRAY_SIZE(svm_exit_handlers));
3555 	if (!svm_exit_handlers[exit_code])
3556 		goto unexpected_vmexit;
3557 
3558 	return svm_exit_handlers[exit_code](vcpu);
3559 
3560 unexpected_vmexit:
3561 	dump_vmcb(vcpu);
3562 	kvm_prepare_unexpected_reason_exit(vcpu, __exit_code);
3563 	return 0;
3564 }
3565 
3566 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3567 			      u64 *info1, u64 *info2,
3568 			      u32 *intr_info, u32 *error_code)
3569 {
3570 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3571 
3572 	*reason = control->exit_code;
3573 	*info1 = control->exit_info_1;
3574 	*info2 = control->exit_info_2;
3575 	*intr_info = control->exit_int_info;
3576 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3577 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3578 		*error_code = control->exit_int_info_err;
3579 	else
3580 		*error_code = 0;
3581 }
3582 
3583 static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info,
3584 			       u32 *error_code)
3585 {
3586 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3587 
3588 	*intr_info = control->event_inj;
3589 
3590 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3591 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3592 		*error_code = control->event_inj_err;
3593 	else
3594 		*error_code = 0;
3595 
3596 }
3597 
3598 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3599 {
3600 	struct vcpu_svm *svm = to_svm(vcpu);
3601 	struct kvm_run *kvm_run = vcpu->run;
3602 
3603 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3604 	if (!sev_es_guest(vcpu->kvm)) {
3605 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3606 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3607 		if (npt_enabled)
3608 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3609 	}
3610 
3611 	if (is_guest_mode(vcpu)) {
3612 		int vmexit;
3613 
3614 		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3615 
3616 		vmexit = nested_svm_exit_special(svm);
3617 
3618 		if (vmexit == NESTED_EXIT_CONTINUE)
3619 			vmexit = nested_svm_exit_handled(svm);
3620 
3621 		if (vmexit == NESTED_EXIT_DONE)
3622 			return 1;
3623 	}
3624 
3625 	if (svm_is_vmrun_failure(svm->vmcb->control.exit_code)) {
3626 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3627 		kvm_run->fail_entry.hardware_entry_failure_reason
3628 			= svm->vmcb->control.exit_code;
3629 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3630 		dump_vmcb(vcpu);
3631 		return 0;
3632 	}
3633 
3634 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3635 		return 1;
3636 
3637 	return svm_invoke_exit_handler(vcpu, svm->vmcb->control.exit_code);
3638 }
3639 
3640 static int pre_svm_run(struct kvm_vcpu *vcpu)
3641 {
3642 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3643 	struct vcpu_svm *svm = to_svm(vcpu);
3644 
3645 	/*
3646 	 * If the previous vmrun of the vmcb occurred on a different physical
3647 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3648 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3649 	 */
3650 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3651 		svm->current_vmcb->asid_generation = 0;
3652 		vmcb_mark_all_dirty(svm->vmcb);
3653 		svm->current_vmcb->cpu = vcpu->cpu;
3654         }
3655 
3656 	if (sev_guest(vcpu->kvm))
3657 		return pre_sev_run(svm, vcpu->cpu);
3658 
3659 	/* FIXME: handle wraparound of asid_generation */
3660 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3661 		new_asid(svm, sd);
3662 
3663 	return 0;
3664 }
3665 
3666 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3667 {
3668 	struct vcpu_svm *svm = to_svm(vcpu);
3669 
3670 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3671 
3672 	if (svm->nmi_l1_to_l2)
3673 		return;
3674 
3675 	/*
3676 	 * No need to manually track NMI masking when vNMI is enabled, hardware
3677 	 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
3678 	 * case where software directly injects an NMI.
3679 	 */
3680 	if (!is_vnmi_enabled(svm)) {
3681 		svm->nmi_masked = true;
3682 		svm_set_iret_intercept(svm);
3683 	}
3684 	++vcpu->stat.nmi_injections;
3685 }
3686 
3687 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3688 {
3689 	struct vcpu_svm *svm = to_svm(vcpu);
3690 
3691 	if (!is_vnmi_enabled(svm))
3692 		return false;
3693 
3694 	return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3695 }
3696 
3697 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3698 {
3699 	struct vcpu_svm *svm = to_svm(vcpu);
3700 
3701 	if (!is_vnmi_enabled(svm))
3702 		return false;
3703 
3704 	if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3705 		return false;
3706 
3707 	svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3708 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3709 
3710 	/*
3711 	 * Because the pending NMI is serviced by hardware, KVM can't know when
3712 	 * the NMI is "injected", but for all intents and purposes, passing the
3713 	 * NMI off to hardware counts as injection.
3714 	 */
3715 	++vcpu->stat.nmi_injections;
3716 
3717 	return true;
3718 }
3719 
3720 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3721 {
3722 	struct kvm_queued_interrupt *intr = &vcpu->arch.interrupt;
3723 	struct vcpu_svm *svm = to_svm(vcpu);
3724 	u32 type;
3725 
3726 	if (intr->soft) {
3727 		if (svm_update_soft_interrupt_rip(vcpu, intr->nr))
3728 			return;
3729 
3730 		type = SVM_EVTINJ_TYPE_SOFT;
3731 	} else {
3732 		type = SVM_EVTINJ_TYPE_INTR;
3733 	}
3734 
3735 	trace_kvm_inj_virq(intr->nr, intr->soft, reinjected);
3736 	++vcpu->stat.irq_injections;
3737 
3738 	svm->vmcb->control.event_inj = intr->nr | SVM_EVTINJ_VALID | type;
3739 }
3740 
3741 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3742 				     int trig_mode, int vector)
3743 {
3744 	/*
3745 	 * apic->apicv_active must be read after vcpu->mode.
3746 	 * Pairs with smp_store_release in vcpu_enter_guest.
3747 	 */
3748 	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3749 
3750 	/* Note, this is called iff the local APIC is in-kernel. */
3751 	if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3752 		/* Process the interrupt via kvm_check_and_inject_events(). */
3753 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3754 		kvm_vcpu_kick(vcpu);
3755 		return;
3756 	}
3757 
3758 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3759 	if (in_guest_mode) {
3760 		/*
3761 		 * Signal the doorbell to tell hardware to inject the IRQ.  If
3762 		 * the vCPU exits the guest before the doorbell chimes, hardware
3763 		 * will automatically process AVIC interrupts at the next VMRUN.
3764 		 */
3765 		avic_ring_doorbell(vcpu);
3766 	} else {
3767 		/*
3768 		 * Wake the vCPU if it was blocking.  KVM will then detect the
3769 		 * pending IRQ when checking if the vCPU has a wake event.
3770 		 */
3771 		kvm_vcpu_wake_up(vcpu);
3772 	}
3773 }
3774 
3775 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3776 				  int trig_mode, int vector)
3777 {
3778 	kvm_lapic_set_irr(vector, apic);
3779 
3780 	/*
3781 	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3782 	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3783 	 * the read of guest_mode.  This guarantees that either VMRUN will see
3784 	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3785 	 * will signal the doorbell if the CPU has already entered the guest.
3786 	 */
3787 	smp_mb__after_atomic();
3788 	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3789 }
3790 
3791 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3792 {
3793 	struct vcpu_svm *svm = to_svm(vcpu);
3794 
3795 	/*
3796 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3797 	 * tracking is done using the CR write traps.
3798 	 */
3799 	if (sev_es_guest(vcpu->kvm))
3800 		return;
3801 
3802 	if (nested_svm_virtualize_tpr(vcpu))
3803 		return;
3804 
3805 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3806 
3807 	if (irr == -1)
3808 		return;
3809 
3810 	if (tpr >= irr)
3811 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3812 }
3813 
3814 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3815 {
3816 	struct vcpu_svm *svm = to_svm(vcpu);
3817 
3818 	if (is_vnmi_enabled(svm))
3819 		return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3820 	else
3821 		return svm->nmi_masked;
3822 }
3823 
3824 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3825 {
3826 	struct vcpu_svm *svm = to_svm(vcpu);
3827 
3828 	if (is_vnmi_enabled(svm)) {
3829 		if (masked)
3830 			svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3831 		else
3832 			svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3833 
3834 	} else {
3835 		svm->nmi_masked = masked;
3836 		if (masked)
3837 			svm_set_iret_intercept(svm);
3838 		else
3839 			svm_clr_iret_intercept(svm);
3840 	}
3841 }
3842 
3843 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3844 {
3845 	struct vcpu_svm *svm = to_svm(vcpu);
3846 	struct vmcb *vmcb = svm->vmcb;
3847 
3848 	if (!gif_set(svm))
3849 		return true;
3850 
3851 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3852 		return false;
3853 
3854 	if (svm_get_nmi_mask(vcpu))
3855 		return true;
3856 
3857 	return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3858 }
3859 
3860 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3861 {
3862 	struct vcpu_svm *svm = to_svm(vcpu);
3863 	if (svm->nested.nested_run_pending)
3864 		return -EBUSY;
3865 
3866 	if (svm_nmi_blocked(vcpu))
3867 		return 0;
3868 
3869 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3870 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3871 		return -EBUSY;
3872 	return 1;
3873 }
3874 
3875 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3876 {
3877 	struct vcpu_svm *svm = to_svm(vcpu);
3878 	struct vmcb *vmcb = svm->vmcb;
3879 
3880 	if (!gif_set(svm))
3881 		return true;
3882 
3883 	if (is_guest_mode(vcpu)) {
3884 		/* As long as interrupts are being delivered...  */
3885 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3886 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3887 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3888 			return true;
3889 
3890 		/* ... vmexits aren't blocked by the interrupt shadow  */
3891 		if (nested_exit_on_intr(svm))
3892 			return false;
3893 	} else {
3894 		if (!svm_get_if_flag(vcpu))
3895 			return true;
3896 	}
3897 
3898 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3899 }
3900 
3901 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3902 {
3903 	struct vcpu_svm *svm = to_svm(vcpu);
3904 
3905 	if (svm->nested.nested_run_pending)
3906 		return -EBUSY;
3907 
3908 	if (svm_interrupt_blocked(vcpu))
3909 		return 0;
3910 
3911 	/*
3912 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3913 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3914 	 */
3915 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3916 		return -EBUSY;
3917 
3918 	return 1;
3919 }
3920 
3921 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3922 {
3923 	struct vcpu_svm *svm = to_svm(vcpu);
3924 
3925 	/*
3926 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3927 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3928 	 * get that intercept, this function will be called again though and
3929 	 * we'll get the vintr intercept. However, if the vGIF feature is
3930 	 * enabled, the STGI interception will not occur. Enable the irq
3931 	 * window under the assumption that the hardware will set the GIF.
3932 	 */
3933 	if (vgif || gif_set(svm)) {
3934 		/*
3935 		 * IRQ window is not needed when AVIC is enabled,
3936 		 * unless we have pending ExtINT since it cannot be injected
3937 		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3938 		 * and fallback to injecting IRQ via V_IRQ.
3939 		 *
3940 		 * If running nested, AVIC is already locally inhibited
3941 		 * on this vCPU, therefore there is no need to request
3942 		 * the VM wide AVIC inhibition.
3943 		 */
3944 		if (!is_guest_mode(vcpu))
3945 			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3946 
3947 		svm_set_vintr(svm);
3948 	}
3949 }
3950 
3951 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3952 {
3953 	struct vcpu_svm *svm = to_svm(vcpu);
3954 
3955 	/*
3956 	 * If NMIs are outright masked, i.e. the vCPU is already handling an
3957 	 * NMI, and KVM has not yet intercepted an IRET, then there is nothing
3958 	 * more to do at this time as KVM has already enabled IRET intercepts.
3959 	 * If KVM has already intercepted IRET, then single-step over the IRET,
3960 	 * as NMIs aren't architecturally unmasked until the IRET completes.
3961 	 *
3962 	 * If vNMI is enabled, KVM should never request an NMI window if NMIs
3963 	 * are masked, as KVM allows at most one to-be-injected NMI and one
3964 	 * pending NMI.  If two NMIs arrive simultaneously, KVM will inject one
3965 	 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are
3966 	 * unmasked.  KVM _will_ request an NMI window in some situations, e.g.
3967 	 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately
3968 	 * inject the NMI.  In those situations, KVM needs to single-step over
3969 	 * the STI shadow or intercept STGI.
3970 	 */
3971 	if (svm_get_nmi_mask(vcpu)) {
3972 		WARN_ON_ONCE(is_vnmi_enabled(svm));
3973 
3974 		if (!svm->awaiting_iret_completion)
3975 			return; /* IRET will cause a vm exit */
3976 	}
3977 
3978 	/*
3979 	 * SEV-ES guests are responsible for signaling when a vCPU is ready to
3980 	 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3981 	 * KVM can't intercept and single-step IRET to detect when NMIs are
3982 	 * unblocked (architecturally speaking).  See SVM_VMGEXIT_NMI_COMPLETE.
3983 	 *
3984 	 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3985 	 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3986 	 * supported NAEs in the GHCB protocol.
3987 	 */
3988 	if (sev_es_guest(vcpu->kvm))
3989 		return;
3990 
3991 	if (!gif_set(svm)) {
3992 		if (vgif)
3993 			svm_set_intercept(svm, INTERCEPT_STGI);
3994 		return; /* STGI will cause a vm exit */
3995 	}
3996 
3997 	/*
3998 	 * Something prevents NMI from been injected. Single step over possible
3999 	 * problem (IRET or exception injection or interrupt shadow)
4000 	 */
4001 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
4002 	svm->nmi_singlestep = true;
4003 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4004 }
4005 
4006 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
4007 {
4008 	struct vcpu_svm *svm = to_svm(vcpu);
4009 
4010 	/*
4011 	 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
4012 	 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
4013 	 * entries, and thus is a superset of Hyper-V's fine grained flushing.
4014 	 */
4015 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
4016 
4017 	/*
4018 	 * Flush only the current ASID even if the TLB flush was invoked via
4019 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
4020 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
4021 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
4022 	 * VM-Exit (via kvm_mmu_reset_context()).
4023 	 */
4024 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4025 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4026 	else
4027 		svm->current_vmcb->asid_generation--;
4028 }
4029 
4030 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
4031 {
4032 	hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
4033 
4034 	/*
4035 	 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
4036 	 * flush the NPT mappings via hypercall as flushing the ASID only
4037 	 * affects virtual to physical mappings, it does not invalidate guest
4038 	 * physical to host physical mappings.
4039 	 */
4040 	if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
4041 		hyperv_flush_guest_mapping(root_tdp);
4042 
4043 	svm_flush_tlb_asid(vcpu);
4044 }
4045 
4046 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
4047 {
4048 	/*
4049 	 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
4050 	 * flushes should be routed to hv_flush_remote_tlbs() without requesting
4051 	 * a "regular" remote flush.  Reaching this point means either there's
4052 	 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
4053 	 * which might be fatal to the guest.  Yell, but try to recover.
4054 	 */
4055 	if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
4056 		hv_flush_remote_tlbs(vcpu->kvm);
4057 
4058 	svm_flush_tlb_asid(vcpu);
4059 }
4060 
4061 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
4062 {
4063 	struct vcpu_svm *svm = to_svm(vcpu);
4064 
4065 	invlpga(gva, svm->vmcb->control.asid);
4066 }
4067 
4068 static void svm_flush_tlb_guest(struct kvm_vcpu *vcpu)
4069 {
4070 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_ERAPS);
4071 
4072 	svm_flush_tlb_asid(vcpu);
4073 }
4074 
4075 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4076 {
4077 	struct vcpu_svm *svm = to_svm(vcpu);
4078 
4079 	if (nested_svm_virtualize_tpr(vcpu))
4080 		return;
4081 
4082 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
4083 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4084 		kvm_set_cr8(vcpu, cr8);
4085 	}
4086 }
4087 
4088 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4089 {
4090 	struct vcpu_svm *svm = to_svm(vcpu);
4091 	u64 cr8;
4092 
4093 	if (nested_svm_virtualize_tpr(vcpu))
4094 		return;
4095 
4096 	cr8 = kvm_get_cr8(vcpu);
4097 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4098 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4099 }
4100 
4101 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
4102 					int type)
4103 {
4104 	bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
4105 	bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
4106 	struct vcpu_svm *svm = to_svm(vcpu);
4107 
4108 	/*
4109 	 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
4110 	 * associated with the original soft exception/interrupt.  next_rip is
4111 	 * cleared on all exits that can occur while vectoring an event, so KVM
4112 	 * needs to manually set next_rip for re-injection.  Unlike the !nrips
4113 	 * case below, this needs to be done if and only if KVM is re-injecting
4114 	 * the same event, i.e. if the event is a soft exception/interrupt,
4115 	 * otherwise next_rip is unused on VMRUN.
4116 	 */
4117 	if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
4118 	    kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
4119 		svm->vmcb->control.next_rip = svm->soft_int_next_rip;
4120 	/*
4121 	 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
4122 	 * injecting the soft exception/interrupt.  That advancement needs to
4123 	 * be unwound if vectoring didn't complete.  Note, the new event may
4124 	 * not be the injected event, e.g. if KVM injected an INTn, the INTn
4125 	 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
4126 	 * be the reported vectored event, but RIP still needs to be unwound.
4127 	 */
4128 	else if (!nrips && (is_soft || is_exception) &&
4129 		 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4130 		kvm_rip_write(vcpu, svm->soft_int_old_rip);
4131 }
4132 
4133 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4134 {
4135 	struct vcpu_svm *svm = to_svm(vcpu);
4136 	u8 vector;
4137 	int type;
4138 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
4139 	bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4140 	bool soft_int_injected = svm->soft_int_injected;
4141 
4142 	svm->nmi_l1_to_l2 = false;
4143 	svm->soft_int_injected = false;
4144 
4145 	/*
4146 	 * If we've made progress since setting awaiting_iret_completion, we've
4147 	 * executed an IRET and can allow NMI injection.
4148 	 */
4149 	if (svm->awaiting_iret_completion &&
4150 	    kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4151 		svm->awaiting_iret_completion = false;
4152 		svm->nmi_masked = false;
4153 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4154 	}
4155 
4156 	vcpu->arch.nmi_injected = false;
4157 	kvm_clear_exception_queue(vcpu);
4158 	kvm_clear_interrupt_queue(vcpu);
4159 
4160 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4161 		return;
4162 
4163 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4164 
4165 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4166 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4167 
4168 	if (soft_int_injected)
4169 		svm_complete_soft_interrupt(vcpu, vector, type);
4170 
4171 	switch (type) {
4172 	case SVM_EXITINTINFO_TYPE_NMI:
4173 		vcpu->arch.nmi_injected = true;
4174 		svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4175 		break;
4176 	case SVM_EXITINTINFO_TYPE_EXEPT: {
4177 		u32 error_code = 0;
4178 
4179 		/*
4180 		 * Never re-inject a #VC exception.
4181 		 */
4182 		if (vector == X86_TRAP_VC)
4183 			break;
4184 
4185 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR)
4186 			error_code = svm->vmcb->control.exit_int_info_err;
4187 
4188 		kvm_requeue_exception(vcpu, vector,
4189 				      exitintinfo & SVM_EXITINTINFO_VALID_ERR,
4190 				      error_code);
4191 		break;
4192 	}
4193 	case SVM_EXITINTINFO_TYPE_INTR:
4194 		kvm_queue_interrupt(vcpu, vector, false);
4195 		break;
4196 	case SVM_EXITINTINFO_TYPE_SOFT:
4197 		kvm_queue_interrupt(vcpu, vector, true);
4198 		break;
4199 	default:
4200 		break;
4201 	}
4202 
4203 }
4204 
4205 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4206 {
4207 	struct vcpu_svm *svm = to_svm(vcpu);
4208 	struct vmcb_control_area *control = &svm->vmcb->control;
4209 
4210 	control->exit_int_info = control->event_inj;
4211 	control->exit_int_info_err = control->event_inj_err;
4212 	control->event_inj = 0;
4213 	svm_complete_interrupts(vcpu);
4214 }
4215 
4216 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4217 {
4218 	if (to_kvm_sev_info(vcpu->kvm)->need_init)
4219 		return -EINVAL;
4220 
4221 	return 1;
4222 }
4223 
4224 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4225 {
4226 	struct vcpu_svm *svm = to_svm(vcpu);
4227 	struct vmcb_control_area *control = &svm->vmcb->control;
4228 
4229 	/*
4230 	 * Next RIP must be provided as IRQs are disabled, and accessing guest
4231 	 * memory to decode the instruction might fault, i.e. might sleep.
4232 	 */
4233 	if (!nrips || !control->next_rip)
4234 		return EXIT_FASTPATH_NONE;
4235 
4236 	if (is_guest_mode(vcpu))
4237 		return EXIT_FASTPATH_NONE;
4238 
4239 	switch (control->exit_code) {
4240 	case SVM_EXIT_MSR:
4241 		if (!control->exit_info_1)
4242 			break;
4243 		return handle_fastpath_wrmsr(vcpu);
4244 	case SVM_EXIT_HLT:
4245 		return handle_fastpath_hlt(vcpu);
4246 	case SVM_EXIT_INVD:
4247 		return handle_fastpath_invd(vcpu);
4248 	default:
4249 		break;
4250 	}
4251 
4252 	return EXIT_FASTPATH_NONE;
4253 }
4254 
4255 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4256 {
4257 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
4258 	struct vcpu_svm *svm = to_svm(vcpu);
4259 
4260 	guest_state_enter_irqoff();
4261 
4262 	/*
4263 	 * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of
4264 	 * VMRUN controls whether or not physical IRQs are masked (KVM always
4265 	 * runs with V_INTR_MASKING_MASK).  Toggle RFLAGS.IF here to avoid the
4266 	 * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow
4267 	 * into guest state if delivery of an event during VMRUN triggers a
4268 	 * #VMEXIT, and the guest_state transitions already tell lockdep that
4269 	 * IRQs are being enabled/disabled.  Note!  GIF=0 for the entirety of
4270 	 * this path, so IRQs aren't actually unmasked while running host code.
4271 	 */
4272 	raw_local_irq_enable();
4273 
4274 	amd_clear_divider();
4275 
4276 	if (sev_es_guest(vcpu->kvm))
4277 		__svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted,
4278 				      sev_es_host_save_area(sd));
4279 	else
4280 		__svm_vcpu_run(svm, spec_ctrl_intercepted);
4281 
4282 	raw_local_irq_disable();
4283 
4284 	guest_state_exit_irqoff();
4285 }
4286 
4287 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
4288 {
4289 	bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT;
4290 	struct vcpu_svm *svm = to_svm(vcpu);
4291 	bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4292 
4293 	trace_kvm_entry(vcpu, force_immediate_exit);
4294 
4295 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4296 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4297 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4298 
4299 	/*
4300 	 * Disable singlestep if we're injecting an interrupt/exception.
4301 	 * We don't want our modified rflags to be pushed on the stack where
4302 	 * we might not be able to easily reset them if we disabled NMI
4303 	 * singlestep later.
4304 	 */
4305 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4306 		/*
4307 		 * Event injection happens before external interrupts cause a
4308 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
4309 		 * is enough to force an immediate vmexit.
4310 		 */
4311 		disable_nmi_singlestep(svm);
4312 		force_immediate_exit = true;
4313 	}
4314 
4315 	if (force_immediate_exit)
4316 		smp_send_reschedule(vcpu->cpu);
4317 
4318 	if (pre_svm_run(vcpu)) {
4319 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4320 		vcpu->run->fail_entry.hardware_entry_failure_reason = SVM_EXIT_ERR;
4321 		vcpu->run->fail_entry.cpu = vcpu->cpu;
4322 		return EXIT_FASTPATH_EXIT_USERSPACE;
4323 	}
4324 
4325 	sync_lapic_to_cr8(vcpu);
4326 
4327 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4328 		svm->vmcb->control.asid = svm->asid;
4329 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4330 	}
4331 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
4332 
4333 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_ERAPS) &&
4334 	    kvm_register_is_dirty(vcpu, VCPU_EXREG_ERAPS))
4335 		svm->vmcb->control.erap_ctl |= ERAP_CONTROL_CLEAR_RAP;
4336 
4337 	svm_hv_update_vp_id(svm->vmcb, vcpu);
4338 
4339 	/*
4340 	 * Run with all-zero DR6 unless the guest can write DR6 freely, so that
4341 	 * KVM can get the exact cause of a #DB.  Note, loading guest DR6 from
4342 	 * KVM's snapshot is only necessary when DR accesses won't exit.
4343 	 */
4344 	if (unlikely(run_flags & KVM_RUN_LOAD_GUEST_DR6))
4345 		svm_set_dr6(vcpu, vcpu->arch.dr6);
4346 	else if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)))
4347 		svm_set_dr6(vcpu, DR6_ACTIVE_LOW);
4348 
4349 	clgi();
4350 
4351 	/*
4352 	 * Hardware only context switches DEBUGCTL if LBR virtualization is
4353 	 * enabled.  Manually load DEBUGCTL if necessary (and restore it after
4354 	 * VM-Exit), as running with the host's DEBUGCTL can negatively affect
4355 	 * guest state and can even be fatal, e.g. due to Bus Lock Detect.
4356 	 */
4357 	if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4358 	    vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4359 		update_debugctlmsr(svm->vmcb->save.dbgctl);
4360 
4361 	kvm_wait_lapic_expire(vcpu);
4362 
4363 	/*
4364 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4365 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4366 	 * is no need to worry about the conditional branch over the wrmsr
4367 	 * being speculatively taken.
4368 	 */
4369 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4370 		x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4371 
4372 	svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4373 
4374 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4375 		x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4376 
4377 	if (!sev_es_guest(vcpu->kvm)) {
4378 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
4379 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4380 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4381 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4382 	}
4383 	vcpu->arch.regs_dirty = 0;
4384 
4385 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4386 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4387 
4388 	if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4389 	    vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4390 		update_debugctlmsr(vcpu->arch.host_debugctl);
4391 
4392 	stgi();
4393 
4394 	/* Any pending NMI will happen here */
4395 
4396 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4397 		kvm_after_interrupt(vcpu);
4398 
4399 	sync_cr8_to_lapic(vcpu);
4400 
4401 	svm->next_rip = 0;
4402 	if (is_guest_mode(vcpu)) {
4403 		nested_sync_control_from_vmcb02(svm);
4404 
4405 		/* Track VMRUNs that have made past consistency checking */
4406 		if (svm->nested.nested_run_pending &&
4407 		    !svm_is_vmrun_failure(svm->vmcb->control.exit_code))
4408                         ++vcpu->stat.nested_run;
4409 
4410 		svm->nested.nested_run_pending = 0;
4411 	}
4412 
4413 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4414 
4415 	/*
4416 	 * Unconditionally mask off the CLEAR_RAP bit, the AND is just as cheap
4417 	 * as the TEST+Jcc to avoid it.
4418 	 */
4419 	if (cpu_feature_enabled(X86_FEATURE_ERAPS))
4420 		svm->vmcb->control.erap_ctl &= ~ERAP_CONTROL_CLEAR_RAP;
4421 
4422 	vmcb_mark_all_clean(svm->vmcb);
4423 
4424 	/* if exit due to PF check for async PF */
4425 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4426 		vcpu->arch.apf.host_apf_flags =
4427 			kvm_read_and_reset_apf_flags();
4428 
4429 	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4430 
4431 	if (!msr_write_intercepted(vcpu, MSR_AMD64_PERF_CNTR_GLOBAL_CTL))
4432 		rdmsrq(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, vcpu_to_pmu(vcpu)->global_ctrl);
4433 
4434 	trace_kvm_exit(vcpu, KVM_ISA_SVM);
4435 
4436 	svm_complete_interrupts(vcpu);
4437 
4438 	return svm_exit_handlers_fastpath(vcpu);
4439 }
4440 
4441 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4442 			     int root_level)
4443 {
4444 	struct vcpu_svm *svm = to_svm(vcpu);
4445 	unsigned long cr3;
4446 
4447 	if (npt_enabled) {
4448 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4449 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4450 
4451 		hv_track_root_tdp(vcpu, root_hpa);
4452 
4453 		cr3 = vcpu->arch.cr3;
4454 	} else if (root_level >= PT64_ROOT_4LEVEL) {
4455 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4456 	} else {
4457 		/* PCID in the guest should be impossible with a 32-bit MMU. */
4458 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4459 		cr3 = root_hpa;
4460 	}
4461 
4462 	svm->vmcb->save.cr3 = cr3;
4463 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4464 }
4465 
4466 static void
4467 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4468 {
4469 	/*
4470 	 * Patch in the VMMCALL instruction:
4471 	 */
4472 	hypercall[0] = 0x0f;
4473 	hypercall[1] = 0x01;
4474 	hypercall[2] = 0xd9;
4475 }
4476 
4477 /*
4478  * The kvm parameter can be NULL (module initialization, or invocation before
4479  * VM creation). Be sure to check the kvm parameter before using it.
4480  */
4481 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4482 {
4483 	switch (index) {
4484 	case MSR_IA32_MCG_EXT_CTL:
4485 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4486 		return false;
4487 	case MSR_IA32_SMBASE:
4488 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4489 			return false;
4490 		/* SEV-ES guests do not support SMM, so report false */
4491 		if (kvm && sev_es_guest(kvm))
4492 			return false;
4493 		break;
4494 	default:
4495 		break;
4496 	}
4497 
4498 	return true;
4499 }
4500 
4501 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4502 {
4503 	struct vcpu_svm *svm = to_svm(vcpu);
4504 
4505 	/*
4506 	 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4507 	 * can only disable all variants of by disallowing CR4.OSXSAVE from
4508 	 * being set.  As a result, if the host has XSAVE and XSAVES, and the
4509 	 * guest has XSAVE enabled, the guest can execute XSAVES without
4510 	 * faulting.  Treat XSAVES as enabled in this case regardless of
4511 	 * whether it's advertised to the guest so that KVM context switches
4512 	 * XSS on VM-Enter/VM-Exit.  Failure to do so would effectively give
4513 	 * the guest read/write access to the host's XSS.
4514 	 */
4515 	guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES,
4516 			     boot_cpu_has(X86_FEATURE_XSAVES) &&
4517 			     guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE));
4518 
4519 	/*
4520 	 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that
4521 	 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4522 	 * SVM on Intel is bonkers and extremely unlikely to work).
4523 	 */
4524 	if (guest_cpuid_is_intel_compatible(vcpu))
4525 		guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4526 
4527 	if (sev_guest(vcpu->kvm))
4528 		sev_vcpu_after_set_cpuid(svm);
4529 }
4530 
4531 static bool svm_has_wbinvd_exit(void)
4532 {
4533 	return true;
4534 }
4535 
4536 #define PRE_EX(exit)  { .exit_code = (exit), \
4537 			.stage = X86_ICPT_PRE_EXCEPT, }
4538 #define POST_EX(exit) { .exit_code = (exit), \
4539 			.stage = X86_ICPT_POST_EXCEPT, }
4540 #define POST_MEM(exit) { .exit_code = (exit), \
4541 			.stage = X86_ICPT_POST_MEMACCESS, }
4542 
4543 static const struct __x86_intercept {
4544 	u32 exit_code;
4545 	enum x86_intercept_stage stage;
4546 } x86_intercept_map[] = {
4547 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4548 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4549 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4550 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4551 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4552 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4553 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4554 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4555 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4556 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4557 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4558 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4559 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4560 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4561 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4562 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4563 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4564 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4565 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4566 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4567 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4568 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4569 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4570 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4571 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4572 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4573 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4574 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4575 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4576 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4577 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4578 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4579 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4580 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4581 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4582 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4583 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4584 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4585 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4586 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4587 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4588 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4589 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4590 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4591 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4592 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4593 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4594 };
4595 
4596 #undef PRE_EX
4597 #undef POST_EX
4598 #undef POST_MEM
4599 
4600 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4601 			       struct x86_instruction_info *info,
4602 			       enum x86_intercept_stage stage,
4603 			       struct x86_exception *exception)
4604 {
4605 	struct vcpu_svm *svm = to_svm(vcpu);
4606 	int vmexit, ret = X86EMUL_CONTINUE;
4607 	struct __x86_intercept icpt_info;
4608 	struct vmcb *vmcb = svm->vmcb;
4609 
4610 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4611 		goto out;
4612 
4613 	icpt_info = x86_intercept_map[info->intercept];
4614 
4615 	if (stage != icpt_info.stage)
4616 		goto out;
4617 
4618 	switch (icpt_info.exit_code) {
4619 	case SVM_EXIT_READ_CR0:
4620 		if (info->intercept == x86_intercept_cr_read)
4621 			icpt_info.exit_code += info->modrm_reg;
4622 		break;
4623 	case SVM_EXIT_WRITE_CR0: {
4624 		unsigned long cr0, val;
4625 
4626 		/*
4627 		 * Adjust the exit code accordingly if a CR other than CR0 is
4628 		 * being written, and skip straight to the common handling as
4629 		 * only CR0 has an additional selective intercept.
4630 		 */
4631 		if (info->intercept == x86_intercept_cr_write && info->modrm_reg) {
4632 			icpt_info.exit_code += info->modrm_reg;
4633 			break;
4634 		}
4635 
4636 		/*
4637 		 * Convert the exit_code to SVM_EXIT_CR0_SEL_WRITE if a
4638 		 * selective CR0 intercept is triggered (the common logic will
4639 		 * treat the selective intercept as being enabled).  Note, the
4640 		 * unconditional intercept has higher priority, i.e. this is
4641 		 * only relevant if *only* the selective intercept is enabled.
4642 		 */
4643 		if (vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_CR0_WRITE) ||
4644 		    !(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))
4645 			break;
4646 
4647 		/* CLTS never triggers INTERCEPT_SELECTIVE_CR0 */
4648 		if (info->intercept == x86_intercept_clts)
4649 			break;
4650 
4651 		/* LMSW always triggers INTERCEPT_SELECTIVE_CR0 */
4652 		if (info->intercept == x86_intercept_lmsw) {
4653 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4654 			break;
4655 		}
4656 
4657 		/*
4658 		 * MOV-to-CR0 only triggers INTERCEPT_SELECTIVE_CR0 if any bit
4659 		 * other than SVM_CR0_SELECTIVE_MASK is changed.
4660 		 */
4661 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4662 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4663 		if (cr0 ^ val)
4664 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4665 		break;
4666 	}
4667 	case SVM_EXIT_READ_DR0:
4668 	case SVM_EXIT_WRITE_DR0:
4669 		icpt_info.exit_code += info->modrm_reg;
4670 		break;
4671 	case SVM_EXIT_MSR:
4672 		if (info->intercept == x86_intercept_wrmsr)
4673 			vmcb->control.exit_info_1 = 1;
4674 		else
4675 			vmcb->control.exit_info_1 = 0;
4676 		break;
4677 	case SVM_EXIT_PAUSE:
4678 		/*
4679 		 * We get this for NOP only, but pause
4680 		 * is rep not, check this here
4681 		 */
4682 		if (info->rep_prefix != REPE_PREFIX)
4683 			goto out;
4684 		break;
4685 	case SVM_EXIT_IOIO: {
4686 		u64 exit_info;
4687 		u32 bytes;
4688 
4689 		if (info->intercept == x86_intercept_in ||
4690 		    info->intercept == x86_intercept_ins) {
4691 			exit_info = ((info->src_val & 0xffff) << 16) |
4692 				SVM_IOIO_TYPE_MASK;
4693 			bytes = info->dst_bytes;
4694 		} else {
4695 			exit_info = (info->dst_val & 0xffff) << 16;
4696 			bytes = info->src_bytes;
4697 		}
4698 
4699 		if (info->intercept == x86_intercept_outs ||
4700 		    info->intercept == x86_intercept_ins)
4701 			exit_info |= SVM_IOIO_STR_MASK;
4702 
4703 		if (info->rep_prefix)
4704 			exit_info |= SVM_IOIO_REP_MASK;
4705 
4706 		bytes = min(bytes, 4u);
4707 
4708 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4709 
4710 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4711 
4712 		vmcb->control.exit_info_1 = exit_info;
4713 		vmcb->control.exit_info_2 = info->next_rip;
4714 
4715 		break;
4716 	}
4717 	default:
4718 		break;
4719 	}
4720 
4721 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4722 	if (static_cpu_has(X86_FEATURE_NRIPS))
4723 		vmcb->control.next_rip  = info->next_rip;
4724 	vmcb->control.exit_code = icpt_info.exit_code;
4725 	vmexit = nested_svm_exit_handled(svm);
4726 
4727 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4728 					   : X86EMUL_CONTINUE;
4729 
4730 out:
4731 	return ret;
4732 }
4733 
4734 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4735 {
4736 	switch (to_svm(vcpu)->vmcb->control.exit_code) {
4737 	case SVM_EXIT_EXCP_BASE + MC_VECTOR:
4738 		svm_handle_mce(vcpu);
4739 		break;
4740 	case SVM_EXIT_INTR:
4741 		vcpu->arch.at_instruction_boundary = true;
4742 		break;
4743 	default:
4744 		break;
4745 	}
4746 }
4747 
4748 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4749 {
4750 	/* [63:9] are reserved. */
4751 	vcpu->arch.mcg_cap &= 0x1ff;
4752 }
4753 
4754 #ifdef CONFIG_KVM_SMM
4755 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4756 {
4757 	struct vcpu_svm *svm = to_svm(vcpu);
4758 
4759 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4760 	if (!gif_set(svm))
4761 		return true;
4762 
4763 	return is_smm(vcpu);
4764 }
4765 
4766 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4767 {
4768 	struct vcpu_svm *svm = to_svm(vcpu);
4769 	if (svm->nested.nested_run_pending)
4770 		return -EBUSY;
4771 
4772 	if (svm_smi_blocked(vcpu))
4773 		return 0;
4774 
4775 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4776 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4777 		return -EBUSY;
4778 
4779 	return 1;
4780 }
4781 
4782 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4783 {
4784 	struct vcpu_svm *svm = to_svm(vcpu);
4785 	struct kvm_host_map map_save;
4786 	int ret;
4787 
4788 	if (!is_guest_mode(vcpu))
4789 		return 0;
4790 
4791 	/*
4792 	 * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
4793 	 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4794 	 */
4795 
4796 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4797 		return 1;
4798 
4799 	smram->smram64.svm_guest_flag = 1;
4800 	smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4801 
4802 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4803 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4804 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4805 
4806 	ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4807 	if (ret)
4808 		return ret;
4809 
4810 	/*
4811 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4812 	 * VMCB01 is going to be used during SMM and thus the state will
4813 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4814 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4815 	 * format of the area is identical to guest save area offsetted
4816 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4817 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4818 	 * L1 hypervisor to save additional host context (e.g. KVM does
4819 	 * that, see svm_prepare_switch_to_guest()) which must be
4820 	 * preserved.
4821 	 */
4822 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4823 		return 1;
4824 
4825 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4826 
4827 	svm_copy_vmrun_state(map_save.hva + 0x400,
4828 			     &svm->vmcb01.ptr->save);
4829 
4830 	kvm_vcpu_unmap(vcpu, &map_save);
4831 	return 0;
4832 }
4833 
4834 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4835 {
4836 	struct vcpu_svm *svm = to_svm(vcpu);
4837 	struct kvm_host_map map, map_save;
4838 	struct vmcb *vmcb12;
4839 	int ret;
4840 
4841 	const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4842 
4843 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4844 		return 0;
4845 
4846 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4847 	if (!smram64->svm_guest_flag)
4848 		return 0;
4849 
4850 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
4851 		return 1;
4852 
4853 	if (!(smram64->efer & EFER_SVME))
4854 		return 1;
4855 
4856 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4857 		return 1;
4858 
4859 	ret = 1;
4860 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4861 		goto unmap_map;
4862 
4863 	if (svm_allocate_nested(svm))
4864 		goto unmap_save;
4865 
4866 	/*
4867 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4868 	 * used during SMM (see svm_enter_smm())
4869 	 */
4870 
4871 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4872 
4873 	/*
4874 	 * Enter the nested guest now
4875 	 */
4876 
4877 	vmcb_mark_all_dirty(svm->vmcb01.ptr);
4878 
4879 	vmcb12 = map.hva;
4880 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4881 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4882 	ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4883 
4884 	if (ret)
4885 		goto unmap_save;
4886 
4887 	svm->nested.nested_run_pending = 1;
4888 
4889 unmap_save:
4890 	kvm_vcpu_unmap(vcpu, &map_save);
4891 unmap_map:
4892 	kvm_vcpu_unmap(vcpu, &map);
4893 	return ret;
4894 }
4895 
4896 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4897 {
4898 	struct vcpu_svm *svm = to_svm(vcpu);
4899 
4900 	if (!gif_set(svm)) {
4901 		if (vgif)
4902 			svm_set_intercept(svm, INTERCEPT_STGI);
4903 		/* STGI will cause a vm exit */
4904 	} else {
4905 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4906 	}
4907 }
4908 #endif
4909 
4910 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4911 					 void *insn, int insn_len)
4912 {
4913 	struct vcpu_svm *svm = to_svm(vcpu);
4914 	bool smep, smap, is_user;
4915 	u64 error_code;
4916 
4917 	/* Check that emulation is possible during event vectoring */
4918 	if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) &&
4919 	    !kvm_can_emulate_event_vectoring(emul_type))
4920 		return X86EMUL_UNHANDLEABLE_VECTORING;
4921 
4922 	/* Emulation is always possible when KVM has access to all guest state. */
4923 	if (!sev_guest(vcpu->kvm))
4924 		return X86EMUL_CONTINUE;
4925 
4926 	/* #UD and #GP should never be intercepted for SEV guests. */
4927 	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4928 				  EMULTYPE_TRAP_UD_FORCED |
4929 				  EMULTYPE_VMWARE_GP));
4930 
4931 	/*
4932 	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4933 	 * to guest register state.
4934 	 */
4935 	if (sev_es_guest(vcpu->kvm))
4936 		return X86EMUL_RETRY_INSTR;
4937 
4938 	/*
4939 	 * Emulation is possible if the instruction is already decoded, e.g.
4940 	 * when completing I/O after returning from userspace.
4941 	 */
4942 	if (emul_type & EMULTYPE_NO_DECODE)
4943 		return X86EMUL_CONTINUE;
4944 
4945 	/*
4946 	 * Emulation is possible for SEV guests if and only if a prefilled
4947 	 * buffer containing the bytes of the intercepted instruction is
4948 	 * available. SEV guest memory is encrypted with a guest specific key
4949 	 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
4950 	 * decode garbage.
4951 	 *
4952 	 * If KVM is NOT trying to simply skip an instruction, inject #UD if
4953 	 * KVM reached this point without an instruction buffer.  In practice,
4954 	 * this path should never be hit by a well-behaved guest, e.g. KVM
4955 	 * doesn't intercept #UD or #GP for SEV guests, but this path is still
4956 	 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4957 	 * access, and needs to be handled by KVM to avoid putting the guest
4958 	 * into an infinite loop.   Injecting #UD is somewhat arbitrary, but
4959 	 * its the least awful option given lack of insight into the guest.
4960 	 *
4961 	 * If KVM is trying to skip an instruction, simply resume the guest.
4962 	 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4963 	 * will attempt to re-inject the INT3/INTO and skip the instruction.
4964 	 * In that scenario, retrying the INT3/INTO and hoping the guest will
4965 	 * make forward progress is the only option that has a chance of
4966 	 * success (and in practice it will work the vast majority of the time).
4967 	 */
4968 	if (unlikely(!insn)) {
4969 		if (emul_type & EMULTYPE_SKIP)
4970 			return X86EMUL_UNHANDLEABLE;
4971 
4972 		kvm_queue_exception(vcpu, UD_VECTOR);
4973 		return X86EMUL_PROPAGATE_FAULT;
4974 	}
4975 
4976 	/*
4977 	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4978 	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4979 	 * the faulting instruction because the code fetch itself faulted, e.g.
4980 	 * the guest attempted to fetch from emulated MMIO or a guest page
4981 	 * table used to translate CS:RIP resides in emulated MMIO.
4982 	 */
4983 	if (likely(insn_len))
4984 		return X86EMUL_CONTINUE;
4985 
4986 	/*
4987 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4988 	 *
4989 	 * Errata:
4990 	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4991 	 * possible that CPU microcode implementing DecodeAssist will fail to
4992 	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4993 	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
4994 	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4995 	 * gives up and does not fill the instruction bytes buffer.
4996 	 *
4997 	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4998 	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4999 	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
5000 	 * GuestIntrBytes field of the VMCB.
5001 	 *
5002 	 * This does _not_ mean that the erratum has been encountered, as the
5003 	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
5004 	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
5005 	 * encountered a reserved/not-present #PF.
5006 	 *
5007 	 * To hit the erratum, the following conditions must be true:
5008 	 *    1. CR4.SMAP=1 (obviously).
5009 	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
5010 	 *       have been hit as the guest would have encountered a SMEP
5011 	 *       violation #PF, not a #NPF.
5012 	 *    3. The #NPF is not due to a code fetch, in which case failure to
5013 	 *       retrieve the instruction bytes is legitimate (see abvoe).
5014 	 *
5015 	 * In addition, don't apply the erratum workaround if the #NPF occurred
5016 	 * while translating guest page tables (see below).
5017 	 */
5018 	error_code = svm->vmcb->control.exit_info_1;
5019 	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
5020 		goto resume_guest;
5021 
5022 	smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
5023 	smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
5024 	is_user = svm_get_cpl(vcpu) == 3;
5025 	if (smap && (!smep || is_user)) {
5026 		pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
5027 
5028 		/*
5029 		 * If the fault occurred in userspace, arbitrarily inject #GP
5030 		 * to avoid killing the guest and to hopefully avoid confusing
5031 		 * the guest kernel too much, e.g. injecting #PF would not be
5032 		 * coherent with respect to the guest's page tables.  Request
5033 		 * triple fault if the fault occurred in the kernel as there's
5034 		 * no fault that KVM can inject without confusing the guest.
5035 		 * In practice, the triple fault is moot as no sane SEV kernel
5036 		 * will execute from user memory while also running with SMAP=1.
5037 		 */
5038 		if (is_user)
5039 			kvm_inject_gp(vcpu, 0);
5040 		else
5041 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5042 		return X86EMUL_PROPAGATE_FAULT;
5043 	}
5044 
5045 resume_guest:
5046 	/*
5047 	 * If the erratum was not hit, simply resume the guest and let it fault
5048 	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
5049 	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
5050 	 * userspace will kill the guest, and letting the emulator read garbage
5051 	 * will yield random behavior and potentially corrupt the guest.
5052 	 *
5053 	 * Simply resuming the guest is technically not a violation of the SEV
5054 	 * architecture.  AMD's APM states that all code fetches and page table
5055 	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
5056 	 * APM also states that encrypted accesses to MMIO are "ignored", but
5057 	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
5058 	 * the guest spin is technically "ignoring" the access.
5059 	 */
5060 	return X86EMUL_RETRY_INSTR;
5061 }
5062 
5063 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
5064 {
5065 	struct vcpu_svm *svm = to_svm(vcpu);
5066 
5067 	return !gif_set(svm);
5068 }
5069 
5070 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
5071 {
5072 	if (!sev_es_guest(vcpu->kvm))
5073 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
5074 
5075 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
5076 }
5077 
5078 static void svm_vm_destroy(struct kvm *kvm)
5079 {
5080 	avic_vm_destroy(kvm);
5081 	sev_vm_destroy(kvm);
5082 
5083 	svm_srso_vm_destroy();
5084 }
5085 
5086 static int svm_vm_init(struct kvm *kvm)
5087 {
5088 	int type = kvm->arch.vm_type;
5089 
5090 	if (type != KVM_X86_DEFAULT_VM &&
5091 	    type != KVM_X86_SW_PROTECTED_VM) {
5092 		kvm->arch.has_protected_state =
5093 			(type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM);
5094 		to_kvm_sev_info(kvm)->need_init = true;
5095 
5096 		kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM);
5097 		kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem;
5098 	}
5099 
5100 	if (!pause_filter_count || !pause_filter_thresh)
5101 		kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE);
5102 
5103 	if (enable_apicv) {
5104 		int ret = avic_vm_init(kvm);
5105 		if (ret)
5106 			return ret;
5107 	}
5108 
5109 	svm_srso_vm_init();
5110 	return 0;
5111 }
5112 
5113 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu)
5114 {
5115 	struct page *page = snp_safe_alloc_page();
5116 
5117 	if (!page)
5118 		return NULL;
5119 
5120 	return page_address(page);
5121 }
5122 
5123 struct kvm_x86_ops svm_x86_ops __initdata = {
5124 	.name = KBUILD_MODNAME,
5125 
5126 	.check_processor_compatibility = svm_check_processor_compat,
5127 
5128 	.hardware_unsetup = svm_hardware_unsetup,
5129 	.enable_virtualization_cpu = svm_enable_virtualization_cpu,
5130 	.disable_virtualization_cpu = svm_disable_virtualization_cpu,
5131 	.emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu,
5132 	.has_emulated_msr = svm_has_emulated_msr,
5133 
5134 	.vcpu_precreate = svm_vcpu_precreate,
5135 	.vcpu_create = svm_vcpu_create,
5136 	.vcpu_free = svm_vcpu_free,
5137 	.vcpu_reset = svm_vcpu_reset,
5138 
5139 	.vm_size = sizeof(struct kvm_svm),
5140 	.vm_init = svm_vm_init,
5141 	.vm_destroy = svm_vm_destroy,
5142 
5143 	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
5144 	.vcpu_load = svm_vcpu_load,
5145 	.vcpu_put = svm_vcpu_put,
5146 	.vcpu_blocking = avic_vcpu_blocking,
5147 	.vcpu_unblocking = avic_vcpu_unblocking,
5148 
5149 	.update_exception_bitmap = svm_update_exception_bitmap,
5150 	.get_feature_msr = svm_get_feature_msr,
5151 	.get_msr = svm_get_msr,
5152 	.set_msr = svm_set_msr,
5153 	.get_segment_base = svm_get_segment_base,
5154 	.get_segment = svm_get_segment,
5155 	.set_segment = svm_set_segment,
5156 	.get_cpl = svm_get_cpl,
5157 	.get_cpl_no_cache = svm_get_cpl,
5158 	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
5159 	.is_valid_cr0 = svm_is_valid_cr0,
5160 	.set_cr0 = svm_set_cr0,
5161 	.post_set_cr3 = sev_post_set_cr3,
5162 	.is_valid_cr4 = svm_is_valid_cr4,
5163 	.set_cr4 = svm_set_cr4,
5164 	.set_efer = svm_set_efer,
5165 	.get_idt = svm_get_idt,
5166 	.set_idt = svm_set_idt,
5167 	.get_gdt = svm_get_gdt,
5168 	.set_gdt = svm_set_gdt,
5169 	.set_dr7 = svm_set_dr7,
5170 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5171 	.cache_reg = svm_cache_reg,
5172 	.get_rflags = svm_get_rflags,
5173 	.set_rflags = svm_set_rflags,
5174 	.get_if_flag = svm_get_if_flag,
5175 
5176 	.flush_tlb_all = svm_flush_tlb_all,
5177 	.flush_tlb_current = svm_flush_tlb_current,
5178 	.flush_tlb_gva = svm_flush_tlb_gva,
5179 	.flush_tlb_guest = svm_flush_tlb_guest,
5180 
5181 	.vcpu_pre_run = svm_vcpu_pre_run,
5182 	.vcpu_run = svm_vcpu_run,
5183 	.handle_exit = svm_handle_exit,
5184 	.skip_emulated_instruction = svm_skip_emulated_instruction,
5185 	.update_emulated_instruction = NULL,
5186 	.set_interrupt_shadow = svm_set_interrupt_shadow,
5187 	.get_interrupt_shadow = svm_get_interrupt_shadow,
5188 	.patch_hypercall = svm_patch_hypercall,
5189 	.inject_irq = svm_inject_irq,
5190 	.inject_nmi = svm_inject_nmi,
5191 	.is_vnmi_pending = svm_is_vnmi_pending,
5192 	.set_vnmi_pending = svm_set_vnmi_pending,
5193 	.inject_exception = svm_inject_exception,
5194 	.cancel_injection = svm_cancel_injection,
5195 	.interrupt_allowed = svm_interrupt_allowed,
5196 	.nmi_allowed = svm_nmi_allowed,
5197 	.get_nmi_mask = svm_get_nmi_mask,
5198 	.set_nmi_mask = svm_set_nmi_mask,
5199 	.enable_nmi_window = svm_enable_nmi_window,
5200 	.enable_irq_window = svm_enable_irq_window,
5201 	.update_cr8_intercept = svm_update_cr8_intercept,
5202 
5203 	.x2apic_icr_is_split = true,
5204 	.set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
5205 	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
5206 	.apicv_post_state_restore = avic_apicv_post_state_restore,
5207 	.required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
5208 
5209 	.get_exit_info = svm_get_exit_info,
5210 	.get_entry_info = svm_get_entry_info,
5211 
5212 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
5213 
5214 	.has_wbinvd_exit = svm_has_wbinvd_exit,
5215 
5216 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
5217 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
5218 	.write_tsc_offset = svm_write_tsc_offset,
5219 	.write_tsc_multiplier = svm_write_tsc_multiplier,
5220 
5221 	.load_mmu_pgd = svm_load_mmu_pgd,
5222 
5223 	.check_intercept = svm_check_intercept,
5224 	.handle_exit_irqoff = svm_handle_exit_irqoff,
5225 
5226 	.nested_ops = &svm_nested_ops,
5227 
5228 	.deliver_interrupt = svm_deliver_interrupt,
5229 	.pi_update_irte = avic_pi_update_irte,
5230 	.setup_mce = svm_setup_mce,
5231 
5232 #ifdef CONFIG_KVM_SMM
5233 	.smi_allowed = svm_smi_allowed,
5234 	.enter_smm = svm_enter_smm,
5235 	.leave_smm = svm_leave_smm,
5236 	.enable_smi_window = svm_enable_smi_window,
5237 #endif
5238 
5239 #ifdef CONFIG_KVM_AMD_SEV
5240 	.dev_get_attr = sev_dev_get_attr,
5241 	.mem_enc_ioctl = sev_mem_enc_ioctl,
5242 	.mem_enc_register_region = sev_mem_enc_register_region,
5243 	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
5244 	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
5245 
5246 	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5247 	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
5248 #endif
5249 	.check_emulate_instruction = svm_check_emulate_instruction,
5250 
5251 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
5252 
5253 	.recalc_intercepts = svm_recalc_intercepts,
5254 	.complete_emulated_msr = svm_complete_emulated_msr,
5255 
5256 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5257 	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5258 	.alloc_apic_backing_page = svm_alloc_apic_backing_page,
5259 
5260 	.gmem_prepare = sev_gmem_prepare,
5261 	.gmem_invalidate = sev_gmem_invalidate,
5262 	.gmem_max_mapping_level = sev_gmem_max_mapping_level,
5263 };
5264 
5265 /*
5266  * The default MMIO mask is a single bit (excluding the present bit),
5267  * which could conflict with the memory encryption bit. Check for
5268  * memory encryption support and override the default MMIO mask if
5269  * memory encryption is enabled.
5270  */
5271 static __init void svm_adjust_mmio_mask(void)
5272 {
5273 	unsigned int enc_bit, mask_bit;
5274 	u64 msr, mask;
5275 
5276 	/* If there is no memory encryption support, use existing mask */
5277 	if (cpuid_eax(0x80000000) < 0x8000001f)
5278 		return;
5279 
5280 	/* If memory encryption is not enabled, use existing mask */
5281 	rdmsrq(MSR_AMD64_SYSCFG, msr);
5282 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5283 		return;
5284 
5285 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5286 	mask_bit = boot_cpu_data.x86_phys_bits;
5287 
5288 	/* Increment the mask bit if it is the same as the encryption bit */
5289 	if (enc_bit == mask_bit)
5290 		mask_bit++;
5291 
5292 	/*
5293 	 * If the mask bit location is below 52, then some bits above the
5294 	 * physical addressing limit will always be reserved, so use the
5295 	 * rsvd_bits() function to generate the mask. This mask, along with
5296 	 * the present bit, will be used to generate a page fault with
5297 	 * PFER.RSV = 1.
5298 	 *
5299 	 * If the mask bit location is 52 (or above), then clear the mask.
5300 	 */
5301 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5302 
5303 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5304 }
5305 
5306 static __init void svm_set_cpu_caps(void)
5307 {
5308 	kvm_initialize_cpu_caps();
5309 
5310 	kvm_caps.supported_perf_cap = 0;
5311 
5312 	kvm_cpu_cap_clear(X86_FEATURE_IBT);
5313 
5314 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
5315 	if (nested) {
5316 		kvm_cpu_cap_set(X86_FEATURE_SVM);
5317 		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5318 
5319 		/*
5320 		 * KVM currently flushes TLBs on *every* nested SVM transition,
5321 		 * and so for all intents and purposes KVM supports flushing by
5322 		 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
5323 		 */
5324 		kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);
5325 
5326 		if (nrips)
5327 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5328 
5329 		if (npt_enabled)
5330 			kvm_cpu_cap_set(X86_FEATURE_NPT);
5331 
5332 		if (tsc_scaling)
5333 			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5334 
5335 		if (vls)
5336 			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5337 		if (lbrv)
5338 			kvm_cpu_cap_set(X86_FEATURE_LBRV);
5339 
5340 		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5341 			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5342 
5343 		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5344 			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5345 
5346 		if (vgif)
5347 			kvm_cpu_cap_set(X86_FEATURE_VGIF);
5348 
5349 		if (vnmi)
5350 			kvm_cpu_cap_set(X86_FEATURE_VNMI);
5351 
5352 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
5353 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5354 	}
5355 
5356 	if (cpu_feature_enabled(X86_FEATURE_BUS_LOCK_THRESHOLD))
5357 		kvm_caps.has_bus_lock_exit = true;
5358 
5359 	/* CPUID 0x80000008 */
5360 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5361 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
5362 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5363 
5364 	if (enable_pmu) {
5365 		/*
5366 		 * Enumerate support for PERFCTR_CORE if and only if KVM has
5367 		 * access to enough counters to virtualize "core" support,
5368 		 * otherwise limit vPMU support to the legacy number of counters.
5369 		 */
5370 		if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5371 			kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5372 							  kvm_pmu_cap.num_counters_gp);
5373 		else
5374 			kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5375 
5376 		if (kvm_pmu_cap.version != 2 ||
5377 		    !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5378 			kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5379 	}
5380 
5381 	/* CPUID 0x8000001F (SME/SEV features) */
5382 	sev_set_cpu_caps();
5383 
5384 	/*
5385 	 * Clear capabilities that are automatically configured by common code,
5386 	 * but that require explicit SVM support (that isn't yet implemented).
5387 	 */
5388 	kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT);
5389 	kvm_cpu_cap_clear(X86_FEATURE_MSR_IMM);
5390 
5391 	kvm_setup_xss_caps();
5392 	kvm_finalize_cpu_caps();
5393 }
5394 
5395 static __init int svm_hardware_setup(void)
5396 {
5397 	void *iopm_va;
5398 	int cpu, r;
5399 
5400 	/*
5401 	 * NX is required for shadow paging and for NPT if the NX huge pages
5402 	 * mitigation is enabled.
5403 	 */
5404 	if (!boot_cpu_has(X86_FEATURE_NX)) {
5405 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
5406 		return -EOPNOTSUPP;
5407 	}
5408 	kvm_enable_efer_bits(EFER_NX);
5409 
5410 	kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5411 				     XFEATURE_MASK_BNDCSR);
5412 
5413 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5414 		kvm_enable_efer_bits(EFER_FFXSR);
5415 
5416 	if (tsc_scaling) {
5417 		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5418 			tsc_scaling = false;
5419 		} else {
5420 			pr_info("TSC scaling supported\n");
5421 			kvm_caps.has_tsc_control = true;
5422 		}
5423 	}
5424 	kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5425 	kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5426 
5427 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5428 
5429 	if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5430 		kvm_enable_efer_bits(EFER_AUTOIBRS);
5431 
5432 	/* Check for pause filtering support */
5433 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5434 		pause_filter_count = 0;
5435 		pause_filter_thresh = 0;
5436 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5437 		pause_filter_thresh = 0;
5438 	}
5439 
5440 	if (nested) {
5441 		pr_info("Nested Virtualization enabled\n");
5442 		kvm_enable_efer_bits(EFER_SVME);
5443 		if (!boot_cpu_has(X86_FEATURE_EFER_LMSLE_MBZ))
5444 			kvm_enable_efer_bits(EFER_LMSLE);
5445 
5446 		r = nested_svm_init_msrpm_merge_offsets();
5447 		if (r)
5448 			return r;
5449 	}
5450 
5451 	/*
5452 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5453 	 * NPT isn't supported if the host is using 2-level paging since host
5454 	 * CR4 is unchanged on VMRUN.
5455 	 */
5456 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5457 		npt_enabled = false;
5458 
5459 	if (!boot_cpu_has(X86_FEATURE_NPT))
5460 		npt_enabled = false;
5461 
5462 	/* Force VM NPT level equal to the host's paging level */
5463 	kvm_configure_mmu(npt_enabled, get_npt_level(),
5464 			  get_npt_level(), PG_LEVEL_1G);
5465 	pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled));
5466 
5467 	/*
5468 	 * It seems that on AMD processors PTE's accessed bit is
5469 	 * being set by the CPU hardware before the NPF vmexit.
5470 	 * This is not expected behaviour and our tests fail because
5471 	 * of it.
5472 	 * A workaround here is to disable support for
5473 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5474 	 * In this case userspace can know if there is support using
5475 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5476 	 * it
5477 	 * If future AMD CPU models change the behaviour described above,
5478 	 * this variable can be changed accordingly
5479 	 */
5480 	allow_smaller_maxphyaddr = !npt_enabled;
5481 
5482 	/* Setup shadow_me_value and shadow_me_mask */
5483 	kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5484 
5485 	svm_adjust_mmio_mask();
5486 
5487 	nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5488 
5489 	if (lbrv) {
5490 		if (!boot_cpu_has(X86_FEATURE_LBRV))
5491 			lbrv = false;
5492 		else
5493 			pr_info("LBR virtualization supported\n");
5494 	}
5495 
5496 	iopm_va = svm_alloc_permissions_map(IOPM_SIZE, GFP_KERNEL);
5497 	if (!iopm_va)
5498 		return -ENOMEM;
5499 
5500 	iopm_base = __sme_set(__pa(iopm_va));
5501 
5502 	/*
5503 	 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5504 	 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5505 	 */
5506 	sev_hardware_setup();
5507 
5508 	svm_hv_hardware_setup();
5509 
5510 	enable_apicv = avic_hardware_setup();
5511 	if (!enable_apicv) {
5512 		enable_ipiv = false;
5513 		svm_x86_ops.vcpu_blocking = NULL;
5514 		svm_x86_ops.vcpu_unblocking = NULL;
5515 		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5516 	}
5517 
5518 	if (vls) {
5519 		if (!npt_enabled ||
5520 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5521 		    !IS_ENABLED(CONFIG_X86_64)) {
5522 			vls = false;
5523 		} else {
5524 			pr_info("Virtual VMLOAD VMSAVE supported\n");
5525 		}
5526 	}
5527 
5528 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5529 		svm_gp_erratum_intercept = false;
5530 
5531 	if (vgif) {
5532 		if (!boot_cpu_has(X86_FEATURE_VGIF))
5533 			vgif = false;
5534 		else
5535 			pr_info("Virtual GIF supported\n");
5536 	}
5537 
5538 	vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5539 	if (vnmi)
5540 		pr_info("Virtual NMI enabled\n");
5541 
5542 	if (!vnmi) {
5543 		svm_x86_ops.is_vnmi_pending = NULL;
5544 		svm_x86_ops.set_vnmi_pending = NULL;
5545 	}
5546 
5547 	if (!enable_pmu)
5548 		pr_info("PMU virtualization is disabled\n");
5549 
5550 	svm_set_cpu_caps();
5551 
5552 	kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_CD_NW_CLEARED;
5553 
5554 	for_each_possible_cpu(cpu) {
5555 		r = svm_cpu_init(cpu);
5556 		if (r)
5557 			goto err;
5558 	}
5559 
5560 	return 0;
5561 
5562 err:
5563 	svm_hardware_unsetup();
5564 	return r;
5565 }
5566 
5567 
5568 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5569 	.hardware_setup = svm_hardware_setup,
5570 
5571 	.runtime_ops = &svm_x86_ops,
5572 	.pmu_ops = &amd_pmu_ops,
5573 };
5574 
5575 static void __svm_exit(void)
5576 {
5577 	kvm_x86_vendor_exit();
5578 }
5579 
5580 static int __init svm_init(void)
5581 {
5582 	int r;
5583 
5584 	KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_svm);
5585 
5586 	__unused_size_checks();
5587 
5588 	if (!kvm_is_svm_supported())
5589 		return -EOPNOTSUPP;
5590 
5591 	r = kvm_x86_vendor_init(&svm_init_ops);
5592 	if (r)
5593 		return r;
5594 
5595 	/*
5596 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5597 	 * exposed to userspace!
5598 	 */
5599 	r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5600 		     THIS_MODULE);
5601 	if (r)
5602 		goto err_kvm_init;
5603 
5604 	return 0;
5605 
5606 err_kvm_init:
5607 	__svm_exit();
5608 	return r;
5609 }
5610 
5611 static void __exit svm_exit(void)
5612 {
5613 	kvm_exit();
5614 	__svm_exit();
5615 }
5616 
5617 module_init(svm_init)
5618 module_exit(svm_exit)
5619