xref: /linux/arch/x86/kvm/svm/svm.c (revision 8b690556d8fe074b4f9835075050fba3fb180e93)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12 
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31 #include <linux/string_choices.h>
32 #include <linux/mutex.h>
33 
34 #include <asm/apic.h>
35 #include <asm/msr.h>
36 #include <asm/perf_event.h>
37 #include <asm/tlbflush.h>
38 #include <asm/desc.h>
39 #include <asm/debugreg.h>
40 #include <asm/kvm_para.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/spec-ctrl.h>
43 #include <asm/cpu_device_id.h>
44 #include <asm/traps.h>
45 #include <asm/reboot.h>
46 #include <asm/fpu/api.h>
47 
48 #include <trace/events/ipi.h>
49 
50 #include "trace.h"
51 
52 #include "svm.h"
53 #include "svm_ops.h"
54 
55 #include "kvm_onhyperv.h"
56 #include "svm_onhyperv.h"
57 
58 MODULE_AUTHOR("Qumranet");
59 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions");
60 MODULE_LICENSE("GPL");
61 
62 #ifdef MODULE
63 static const struct x86_cpu_id svm_cpu_id[] = {
64 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
65 	{}
66 };
67 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
68 #endif
69 
70 #define SEG_TYPE_LDT 2
71 #define SEG_TYPE_BUSY_TSS16 3
72 
73 static bool erratum_383_found __read_mostly;
74 
75 /*
76  * Set osvw_len to higher value when updated Revision Guides
77  * are published and we know what the new status bits are
78  */
79 static uint64_t osvw_len = 4, osvw_status;
80 
81 static DEFINE_PER_CPU(u64, current_tsc_ratio);
82 
83 /*
84  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
85  * pause_filter_count: On processors that support Pause filtering(indicated
86  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
87  *	count value. On VMRUN this value is loaded into an internal counter.
88  *	Each time a pause instruction is executed, this counter is decremented
89  *	until it reaches zero at which time a #VMEXIT is generated if pause
90  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
91  *	Intercept Filtering for more details.
92  *	This also indicate if ple logic enabled.
93  *
94  * pause_filter_thresh: In addition, some processor families support advanced
95  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
96  *	the amount of time a guest is allowed to execute in a pause loop.
97  *	In this mode, a 16-bit pause filter threshold field is added in the
98  *	VMCB. The threshold value is a cycle count that is used to reset the
99  *	pause counter. As with simple pause filtering, VMRUN loads the pause
100  *	count value from VMCB into an internal counter. Then, on each pause
101  *	instruction the hardware checks the elapsed number of cycles since
102  *	the most recent pause instruction against the pause filter threshold.
103  *	If the elapsed cycle count is greater than the pause filter threshold,
104  *	then the internal pause count is reloaded from the VMCB and execution
105  *	continues. If the elapsed cycle count is less than the pause filter
106  *	threshold, then the internal pause count is decremented. If the count
107  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
108  *	triggered. If advanced pause filtering is supported and pause filter
109  *	threshold field is set to zero, the filter will operate in the simpler,
110  *	count only mode.
111  */
112 
113 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
114 module_param(pause_filter_thresh, ushort, 0444);
115 
116 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
117 module_param(pause_filter_count, ushort, 0444);
118 
119 /* Default doubles per-vcpu window every exit. */
120 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
121 module_param(pause_filter_count_grow, ushort, 0444);
122 
123 /* Default resets per-vcpu window every exit to pause_filter_count. */
124 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
125 module_param(pause_filter_count_shrink, ushort, 0444);
126 
127 /* Default is to compute the maximum so we can never overflow. */
128 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
129 module_param(pause_filter_count_max, ushort, 0444);
130 
131 /*
132  * Use nested page tables by default.  Note, NPT may get forced off by
133  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
134  */
135 bool npt_enabled = true;
136 module_param_named(npt, npt_enabled, bool, 0444);
137 
138 /* allow nested virtualization in KVM/SVM */
139 static int nested = true;
140 module_param(nested, int, 0444);
141 
142 /* enable/disable Next RIP Save */
143 int nrips = true;
144 module_param(nrips, int, 0444);
145 
146 /* enable/disable Virtual VMLOAD VMSAVE */
147 static int vls = true;
148 module_param(vls, int, 0444);
149 
150 /* enable/disable Virtual GIF */
151 int vgif = true;
152 module_param(vgif, int, 0444);
153 
154 /* enable/disable LBR virtualization */
155 int lbrv = true;
156 module_param(lbrv, int, 0444);
157 
158 static int tsc_scaling = true;
159 module_param(tsc_scaling, int, 0444);
160 
161 module_param(enable_device_posted_irqs, bool, 0444);
162 
163 bool __read_mostly dump_invalid_vmcb;
164 module_param(dump_invalid_vmcb, bool, 0644);
165 
166 
167 bool intercept_smi = true;
168 module_param(intercept_smi, bool, 0444);
169 
170 bool vnmi = true;
171 module_param(vnmi, bool, 0444);
172 
173 static bool svm_gp_erratum_intercept = true;
174 
175 static u8 rsm_ins_bytes[] = "\x0f\xaa";
176 
177 static unsigned long iopm_base;
178 
179 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
180 
181 static DEFINE_MUTEX(vmcb_dump_mutex);
182 
183 /*
184  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
185  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
186  *
187  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
188  * defer the restoration of TSC_AUX until the CPU returns to userspace.
189  */
190 int tsc_aux_uret_slot __ro_after_init = -1;
191 
get_npt_level(void)192 static int get_npt_level(void)
193 {
194 #ifdef CONFIG_X86_64
195 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
196 #else
197 	return PT32E_ROOT_LEVEL;
198 #endif
199 }
200 
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)201 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
202 {
203 	struct vcpu_svm *svm = to_svm(vcpu);
204 	u64 old_efer = vcpu->arch.efer;
205 	vcpu->arch.efer = efer;
206 
207 	if (!npt_enabled) {
208 		/* Shadow paging assumes NX to be available.  */
209 		efer |= EFER_NX;
210 
211 		if (!(efer & EFER_LMA))
212 			efer &= ~EFER_LME;
213 	}
214 
215 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
216 		if (!(efer & EFER_SVME)) {
217 			svm_leave_nested(vcpu);
218 			svm_set_gif(svm, true);
219 			/* #GP intercept is still needed for vmware backdoor */
220 			if (!enable_vmware_backdoor)
221 				clr_exception_intercept(svm, GP_VECTOR);
222 
223 			/*
224 			 * Free the nested guest state, unless we are in SMM.
225 			 * In this case we will return to the nested guest
226 			 * as soon as we leave SMM.
227 			 */
228 			if (!is_smm(vcpu))
229 				svm_free_nested(svm);
230 
231 		} else {
232 			int ret = svm_allocate_nested(svm);
233 
234 			if (ret) {
235 				vcpu->arch.efer = old_efer;
236 				return ret;
237 			}
238 
239 			/*
240 			 * Never intercept #GP for SEV guests, KVM can't
241 			 * decrypt guest memory to workaround the erratum.
242 			 */
243 			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
244 				set_exception_intercept(svm, GP_VECTOR);
245 		}
246 	}
247 
248 	svm->vmcb->save.efer = efer | EFER_SVME;
249 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
250 	return 0;
251 }
252 
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)253 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
254 {
255 	struct vcpu_svm *svm = to_svm(vcpu);
256 	u32 ret = 0;
257 
258 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
259 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
260 	return ret;
261 }
262 
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)263 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
264 {
265 	struct vcpu_svm *svm = to_svm(vcpu);
266 
267 	if (mask == 0)
268 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
269 	else
270 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
271 
272 }
273 
__svm_skip_emulated_instruction(struct kvm_vcpu * vcpu,bool commit_side_effects)274 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
275 					   bool commit_side_effects)
276 {
277 	struct vcpu_svm *svm = to_svm(vcpu);
278 	unsigned long old_rflags;
279 
280 	/*
281 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
282 	 * the type of exit and the #VC handler in the guest.
283 	 */
284 	if (sev_es_guest(vcpu->kvm))
285 		goto done;
286 
287 	if (nrips && svm->vmcb->control.next_rip != 0) {
288 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
289 		svm->next_rip = svm->vmcb->control.next_rip;
290 	}
291 
292 	if (!svm->next_rip) {
293 		if (unlikely(!commit_side_effects))
294 			old_rflags = svm->vmcb->save.rflags;
295 
296 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
297 			return 0;
298 
299 		if (unlikely(!commit_side_effects))
300 			svm->vmcb->save.rflags = old_rflags;
301 	} else {
302 		kvm_rip_write(vcpu, svm->next_rip);
303 	}
304 
305 done:
306 	if (likely(commit_side_effects))
307 		svm_set_interrupt_shadow(vcpu, 0);
308 
309 	return 1;
310 }
311 
svm_skip_emulated_instruction(struct kvm_vcpu * vcpu)312 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
313 {
314 	return __svm_skip_emulated_instruction(vcpu, true);
315 }
316 
svm_update_soft_interrupt_rip(struct kvm_vcpu * vcpu)317 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
318 {
319 	unsigned long rip, old_rip = kvm_rip_read(vcpu);
320 	struct vcpu_svm *svm = to_svm(vcpu);
321 
322 	/*
323 	 * Due to architectural shortcomings, the CPU doesn't always provide
324 	 * NextRIP, e.g. if KVM intercepted an exception that occurred while
325 	 * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
326 	 * the instruction even if NextRIP is supported to acquire the next
327 	 * RIP so that it can be shoved into the NextRIP field, otherwise
328 	 * hardware will fail to advance guest RIP during event injection.
329 	 * Drop the exception/interrupt if emulation fails and effectively
330 	 * retry the instruction, it's the least awful option.  If NRIPS is
331 	 * in use, the skip must not commit any side effects such as clearing
332 	 * the interrupt shadow or RFLAGS.RF.
333 	 */
334 	if (!__svm_skip_emulated_instruction(vcpu, !nrips))
335 		return -EIO;
336 
337 	rip = kvm_rip_read(vcpu);
338 
339 	/*
340 	 * Save the injection information, even when using next_rip, as the
341 	 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
342 	 * doesn't complete due to a VM-Exit occurring while the CPU is
343 	 * vectoring the event.   Decoding the instruction isn't guaranteed to
344 	 * work as there may be no backing instruction, e.g. if the event is
345 	 * being injected by L1 for L2, or if the guest is patching INT3 into
346 	 * a different instruction.
347 	 */
348 	svm->soft_int_injected = true;
349 	svm->soft_int_csbase = svm->vmcb->save.cs.base;
350 	svm->soft_int_old_rip = old_rip;
351 	svm->soft_int_next_rip = rip;
352 
353 	if (nrips)
354 		kvm_rip_write(vcpu, old_rip);
355 
356 	if (static_cpu_has(X86_FEATURE_NRIPS))
357 		svm->vmcb->control.next_rip = rip;
358 
359 	return 0;
360 }
361 
svm_inject_exception(struct kvm_vcpu * vcpu)362 static void svm_inject_exception(struct kvm_vcpu *vcpu)
363 {
364 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
365 	struct vcpu_svm *svm = to_svm(vcpu);
366 
367 	kvm_deliver_exception_payload(vcpu, ex);
368 
369 	if (kvm_exception_is_soft(ex->vector) &&
370 	    svm_update_soft_interrupt_rip(vcpu))
371 		return;
372 
373 	svm->vmcb->control.event_inj = ex->vector
374 		| SVM_EVTINJ_VALID
375 		| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
376 		| SVM_EVTINJ_TYPE_EXEPT;
377 	svm->vmcb->control.event_inj_err = ex->error_code;
378 }
379 
svm_init_erratum_383(void)380 static void svm_init_erratum_383(void)
381 {
382 	u64 val;
383 
384 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
385 		return;
386 
387 	/* Use _safe variants to not break nested virtualization */
388 	if (native_read_msr_safe(MSR_AMD64_DC_CFG, &val))
389 		return;
390 
391 	val |= (1ULL << 47);
392 
393 	native_write_msr_safe(MSR_AMD64_DC_CFG, val);
394 
395 	erratum_383_found = true;
396 }
397 
svm_init_osvw(struct kvm_vcpu * vcpu)398 static void svm_init_osvw(struct kvm_vcpu *vcpu)
399 {
400 	/*
401 	 * Guests should see errata 400 and 415 as fixed (assuming that
402 	 * HLT and IO instructions are intercepted).
403 	 */
404 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
405 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
406 
407 	/*
408 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
409 	 * all osvw.status bits inside that length, including bit 0 (which is
410 	 * reserved for erratum 298), are valid. However, if host processor's
411 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
412 	 * be conservative here and therefore we tell the guest that erratum 298
413 	 * is present (because we really don't know).
414 	 */
415 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
416 		vcpu->arch.osvw.status |= 1;
417 }
418 
__kvm_is_svm_supported(void)419 static bool __kvm_is_svm_supported(void)
420 {
421 	int cpu = smp_processor_id();
422 	struct cpuinfo_x86 *c = &cpu_data(cpu);
423 
424 	if (c->x86_vendor != X86_VENDOR_AMD &&
425 	    c->x86_vendor != X86_VENDOR_HYGON) {
426 		pr_err("CPU %d isn't AMD or Hygon\n", cpu);
427 		return false;
428 	}
429 
430 	if (!cpu_has(c, X86_FEATURE_SVM)) {
431 		pr_err("SVM not supported by CPU %d\n", cpu);
432 		return false;
433 	}
434 
435 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
436 		pr_info("KVM is unsupported when running as an SEV guest\n");
437 		return false;
438 	}
439 
440 	return true;
441 }
442 
kvm_is_svm_supported(void)443 static bool kvm_is_svm_supported(void)
444 {
445 	bool supported;
446 
447 	migrate_disable();
448 	supported = __kvm_is_svm_supported();
449 	migrate_enable();
450 
451 	return supported;
452 }
453 
svm_check_processor_compat(void)454 static int svm_check_processor_compat(void)
455 {
456 	if (!__kvm_is_svm_supported())
457 		return -EIO;
458 
459 	return 0;
460 }
461 
__svm_write_tsc_multiplier(u64 multiplier)462 static void __svm_write_tsc_multiplier(u64 multiplier)
463 {
464 	if (multiplier == __this_cpu_read(current_tsc_ratio))
465 		return;
466 
467 	wrmsrq(MSR_AMD64_TSC_RATIO, multiplier);
468 	__this_cpu_write(current_tsc_ratio, multiplier);
469 }
470 
sev_es_host_save_area(struct svm_cpu_data * sd)471 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd)
472 {
473 	return &sd->save_area->host_sev_es_save;
474 }
475 
kvm_cpu_svm_disable(void)476 static inline void kvm_cpu_svm_disable(void)
477 {
478 	uint64_t efer;
479 
480 	wrmsrq(MSR_VM_HSAVE_PA, 0);
481 	rdmsrq(MSR_EFER, efer);
482 	if (efer & EFER_SVME) {
483 		/*
484 		 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
485 		 * NMI aren't blocked.
486 		 */
487 		stgi();
488 		wrmsrq(MSR_EFER, efer & ~EFER_SVME);
489 	}
490 }
491 
svm_emergency_disable_virtualization_cpu(void)492 static void svm_emergency_disable_virtualization_cpu(void)
493 {
494 	kvm_rebooting = true;
495 
496 	kvm_cpu_svm_disable();
497 }
498 
svm_disable_virtualization_cpu(void)499 static void svm_disable_virtualization_cpu(void)
500 {
501 	/* Make sure we clean up behind us */
502 	if (tsc_scaling)
503 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
504 
505 	kvm_cpu_svm_disable();
506 
507 	amd_pmu_disable_virt();
508 }
509 
svm_enable_virtualization_cpu(void)510 static int svm_enable_virtualization_cpu(void)
511 {
512 
513 	struct svm_cpu_data *sd;
514 	uint64_t efer;
515 	int me = raw_smp_processor_id();
516 
517 	rdmsrq(MSR_EFER, efer);
518 	if (efer & EFER_SVME)
519 		return -EBUSY;
520 
521 	sd = per_cpu_ptr(&svm_data, me);
522 	sd->asid_generation = 1;
523 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
524 	sd->next_asid = sd->max_asid + 1;
525 	sd->min_asid = max_sev_asid + 1;
526 
527 	wrmsrq(MSR_EFER, efer | EFER_SVME);
528 
529 	wrmsrq(MSR_VM_HSAVE_PA, sd->save_area_pa);
530 
531 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
532 		/*
533 		 * Set the default value, even if we don't use TSC scaling
534 		 * to avoid having stale value in the msr
535 		 */
536 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
537 	}
538 
539 
540 	/*
541 	 * Get OSVW bits.
542 	 *
543 	 * Note that it is possible to have a system with mixed processor
544 	 * revisions and therefore different OSVW bits. If bits are not the same
545 	 * on different processors then choose the worst case (i.e. if erratum
546 	 * is present on one processor and not on another then assume that the
547 	 * erratum is present everywhere).
548 	 */
549 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
550 		u64 len, status = 0;
551 		int err;
552 
553 		err = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &len);
554 		if (!err)
555 			err = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, &status);
556 
557 		if (err)
558 			osvw_status = osvw_len = 0;
559 		else {
560 			if (len < osvw_len)
561 				osvw_len = len;
562 			osvw_status |= status;
563 			osvw_status &= (1ULL << osvw_len) - 1;
564 		}
565 	} else
566 		osvw_status = osvw_len = 0;
567 
568 	svm_init_erratum_383();
569 
570 	amd_pmu_enable_virt();
571 
572 	return 0;
573 }
574 
svm_cpu_uninit(int cpu)575 static void svm_cpu_uninit(int cpu)
576 {
577 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
578 
579 	if (!sd->save_area)
580 		return;
581 
582 	kfree(sd->sev_vmcbs);
583 	__free_page(__sme_pa_to_page(sd->save_area_pa));
584 	sd->save_area_pa = 0;
585 	sd->save_area = NULL;
586 }
587 
svm_cpu_init(int cpu)588 static int svm_cpu_init(int cpu)
589 {
590 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
591 	struct page *save_area_page;
592 	int ret = -ENOMEM;
593 
594 	memset(sd, 0, sizeof(struct svm_cpu_data));
595 	save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL);
596 	if (!save_area_page)
597 		return ret;
598 
599 	ret = sev_cpu_init(sd);
600 	if (ret)
601 		goto free_save_area;
602 
603 	sd->save_area = page_address(save_area_page);
604 	sd->save_area_pa = __sme_page_pa(save_area_page);
605 	return 0;
606 
607 free_save_area:
608 	__free_page(save_area_page);
609 	return ret;
610 
611 }
612 
set_dr_intercepts(struct vcpu_svm * svm)613 static void set_dr_intercepts(struct vcpu_svm *svm)
614 {
615 	struct vmcb *vmcb = svm->vmcb01.ptr;
616 
617 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
618 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
619 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
620 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
621 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
622 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
623 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
624 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
625 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
626 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
627 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
628 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
629 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
630 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
631 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
632 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
633 
634 	recalc_intercepts(svm);
635 }
636 
clr_dr_intercepts(struct vcpu_svm * svm)637 static void clr_dr_intercepts(struct vcpu_svm *svm)
638 {
639 	struct vmcb *vmcb = svm->vmcb01.ptr;
640 
641 	vmcb->control.intercepts[INTERCEPT_DR] = 0;
642 
643 	recalc_intercepts(svm);
644 }
645 
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)646 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
647 {
648 	/*
649 	 * For non-nested case:
650 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
651 	 * save it.
652 	 *
653 	 * For nested case:
654 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
655 	 * save it.
656 	 */
657 	void *msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm :
658 					    to_svm(vcpu)->msrpm;
659 
660 	return svm_test_msr_bitmap_write(msrpm, msr);
661 }
662 
svm_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool set)663 void svm_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set)
664 {
665 	struct vcpu_svm *svm = to_svm(vcpu);
666 	void *msrpm = svm->msrpm;
667 
668 	/* Don't disable interception for MSRs userspace wants to handle. */
669 	if (type & MSR_TYPE_R) {
670 		if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
671 			svm_clear_msr_bitmap_read(msrpm, msr);
672 		else
673 			svm_set_msr_bitmap_read(msrpm, msr);
674 	}
675 
676 	if (type & MSR_TYPE_W) {
677 		if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
678 			svm_clear_msr_bitmap_write(msrpm, msr);
679 		else
680 			svm_set_msr_bitmap_write(msrpm, msr);
681 	}
682 
683 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
684 	svm->nested.force_msr_bitmap_recalc = true;
685 }
686 
svm_alloc_permissions_map(unsigned long size,gfp_t gfp_mask)687 void *svm_alloc_permissions_map(unsigned long size, gfp_t gfp_mask)
688 {
689 	unsigned int order = get_order(size);
690 	struct page *pages = alloc_pages(gfp_mask, order);
691 	void *pm;
692 
693 	if (!pages)
694 		return NULL;
695 
696 	/*
697 	 * Set all bits in the permissions map so that all MSR and I/O accesses
698 	 * are intercepted by default.
699 	 */
700 	pm = page_address(pages);
701 	memset(pm, 0xff, PAGE_SIZE * (1 << order));
702 
703 	return pm;
704 }
705 
svm_recalc_lbr_msr_intercepts(struct kvm_vcpu * vcpu)706 static void svm_recalc_lbr_msr_intercepts(struct kvm_vcpu *vcpu)
707 {
708 	struct vcpu_svm *svm = to_svm(vcpu);
709 	bool intercept = !(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK);
710 
711 	if (intercept == svm->lbr_msrs_intercepted)
712 		return;
713 
714 	svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHFROMIP, MSR_TYPE_RW, intercept);
715 	svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHTOIP, MSR_TYPE_RW, intercept);
716 	svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTFROMIP, MSR_TYPE_RW, intercept);
717 	svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTTOIP, MSR_TYPE_RW, intercept);
718 
719 	if (sev_es_guest(vcpu->kvm))
720 		svm_set_intercept_for_msr(vcpu, MSR_IA32_DEBUGCTLMSR, MSR_TYPE_RW, intercept);
721 
722 	svm->lbr_msrs_intercepted = intercept;
723 }
724 
svm_vcpu_free_msrpm(void * msrpm)725 void svm_vcpu_free_msrpm(void *msrpm)
726 {
727 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
728 }
729 
svm_recalc_msr_intercepts(struct kvm_vcpu * vcpu)730 static void svm_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
731 {
732 	struct vcpu_svm *svm = to_svm(vcpu);
733 
734 	svm_disable_intercept_for_msr(vcpu, MSR_STAR, MSR_TYPE_RW);
735 	svm_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
736 
737 #ifdef CONFIG_X86_64
738 	svm_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
739 	svm_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
740 	svm_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
741 	svm_disable_intercept_for_msr(vcpu, MSR_LSTAR, MSR_TYPE_RW);
742 	svm_disable_intercept_for_msr(vcpu, MSR_CSTAR, MSR_TYPE_RW);
743 	svm_disable_intercept_for_msr(vcpu, MSR_SYSCALL_MASK, MSR_TYPE_RW);
744 #endif
745 
746 	if (lbrv)
747 		svm_recalc_lbr_msr_intercepts(vcpu);
748 
749 	if (cpu_feature_enabled(X86_FEATURE_IBPB))
750 		svm_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
751 					  !guest_has_pred_cmd_msr(vcpu));
752 
753 	if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D))
754 		svm_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
755 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
756 
757 	/*
758 	 * Disable interception of SPEC_CTRL if KVM doesn't need to manually
759 	 * context switch the MSR (SPEC_CTRL is virtualized by the CPU), or if
760 	 * the guest has a non-zero SPEC_CTRL value, i.e. is likely actively
761 	 * using SPEC_CTRL.
762 	 */
763 	if (cpu_feature_enabled(X86_FEATURE_V_SPEC_CTRL))
764 		svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
765 					  !guest_has_spec_ctrl_msr(vcpu));
766 	else
767 		svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
768 					  !svm->spec_ctrl);
769 
770 	/*
771 	 * Intercept SYSENTER_EIP and SYSENTER_ESP when emulating an Intel CPU,
772 	 * as AMD hardware only store 32 bits, whereas Intel CPUs track 64 bits.
773 	 */
774 	svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW,
775 				  guest_cpuid_is_intel_compatible(vcpu));
776 	svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW,
777 				  guest_cpuid_is_intel_compatible(vcpu));
778 
779 	if (kvm_aperfmperf_in_guest(vcpu->kvm)) {
780 		svm_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R);
781 		svm_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R);
782 	}
783 
784 	if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) {
785 		bool shstk_enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
786 
787 		svm_set_intercept_for_msr(vcpu, MSR_IA32_U_CET, MSR_TYPE_RW, !shstk_enabled);
788 		svm_set_intercept_for_msr(vcpu, MSR_IA32_S_CET, MSR_TYPE_RW, !shstk_enabled);
789 		svm_set_intercept_for_msr(vcpu, MSR_IA32_PL0_SSP, MSR_TYPE_RW, !shstk_enabled);
790 		svm_set_intercept_for_msr(vcpu, MSR_IA32_PL1_SSP, MSR_TYPE_RW, !shstk_enabled);
791 		svm_set_intercept_for_msr(vcpu, MSR_IA32_PL2_SSP, MSR_TYPE_RW, !shstk_enabled);
792 		svm_set_intercept_for_msr(vcpu, MSR_IA32_PL3_SSP, MSR_TYPE_RW, !shstk_enabled);
793 	}
794 
795 	if (sev_es_guest(vcpu->kvm))
796 		sev_es_recalc_msr_intercepts(vcpu);
797 
798 	/*
799 	 * x2APIC intercepts are modified on-demand and cannot be filtered by
800 	 * userspace.
801 	 */
802 }
803 
svm_copy_lbrs(struct vmcb * to_vmcb,struct vmcb * from_vmcb)804 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
805 {
806 	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
807 	to_vmcb->save.br_from		= from_vmcb->save.br_from;
808 	to_vmcb->save.br_to		= from_vmcb->save.br_to;
809 	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
810 	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;
811 
812 	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
813 }
814 
__svm_enable_lbrv(struct kvm_vcpu * vcpu)815 static void __svm_enable_lbrv(struct kvm_vcpu *vcpu)
816 {
817 	to_svm(vcpu)->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
818 }
819 
svm_enable_lbrv(struct kvm_vcpu * vcpu)820 void svm_enable_lbrv(struct kvm_vcpu *vcpu)
821 {
822 	__svm_enable_lbrv(vcpu);
823 	svm_recalc_lbr_msr_intercepts(vcpu);
824 }
825 
__svm_disable_lbrv(struct kvm_vcpu * vcpu)826 static void __svm_disable_lbrv(struct kvm_vcpu *vcpu)
827 {
828 	KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm);
829 	to_svm(vcpu)->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
830 }
831 
svm_update_lbrv(struct kvm_vcpu * vcpu)832 void svm_update_lbrv(struct kvm_vcpu *vcpu)
833 {
834 	struct vcpu_svm *svm = to_svm(vcpu);
835 	bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
836 	bool enable_lbrv = (svm->vmcb->save.dbgctl & DEBUGCTLMSR_LBR) ||
837 			    (is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
838 			    (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
839 
840 	if (enable_lbrv && !current_enable_lbrv)
841 		__svm_enable_lbrv(vcpu);
842 	else if (!enable_lbrv && current_enable_lbrv)
843 		__svm_disable_lbrv(vcpu);
844 
845 	/*
846 	 * During nested transitions, it is possible that the current VMCB has
847 	 * LBR_CTL set, but the previous LBR_CTL had it cleared (or vice versa).
848 	 * In this case, even though LBR_CTL does not need an update, intercepts
849 	 * do, so always recalculate the intercepts here.
850 	 */
851 	svm_recalc_lbr_msr_intercepts(vcpu);
852 }
853 
disable_nmi_singlestep(struct vcpu_svm * svm)854 void disable_nmi_singlestep(struct vcpu_svm *svm)
855 {
856 	svm->nmi_singlestep = false;
857 
858 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
859 		/* Clear our flags if they were not set by the guest */
860 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
861 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
862 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
863 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
864 	}
865 }
866 
grow_ple_window(struct kvm_vcpu * vcpu)867 static void grow_ple_window(struct kvm_vcpu *vcpu)
868 {
869 	struct vcpu_svm *svm = to_svm(vcpu);
870 	struct vmcb_control_area *control = &svm->vmcb->control;
871 	int old = control->pause_filter_count;
872 
873 	if (kvm_pause_in_guest(vcpu->kvm))
874 		return;
875 
876 	control->pause_filter_count = __grow_ple_window(old,
877 							pause_filter_count,
878 							pause_filter_count_grow,
879 							pause_filter_count_max);
880 
881 	if (control->pause_filter_count != old) {
882 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
883 		trace_kvm_ple_window_update(vcpu->vcpu_id,
884 					    control->pause_filter_count, old);
885 	}
886 }
887 
shrink_ple_window(struct kvm_vcpu * vcpu)888 static void shrink_ple_window(struct kvm_vcpu *vcpu)
889 {
890 	struct vcpu_svm *svm = to_svm(vcpu);
891 	struct vmcb_control_area *control = &svm->vmcb->control;
892 	int old = control->pause_filter_count;
893 
894 	if (kvm_pause_in_guest(vcpu->kvm))
895 		return;
896 
897 	control->pause_filter_count =
898 				__shrink_ple_window(old,
899 						    pause_filter_count,
900 						    pause_filter_count_shrink,
901 						    pause_filter_count);
902 	if (control->pause_filter_count != old) {
903 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
904 		trace_kvm_ple_window_update(vcpu->vcpu_id,
905 					    control->pause_filter_count, old);
906 	}
907 }
908 
svm_hardware_unsetup(void)909 static void svm_hardware_unsetup(void)
910 {
911 	int cpu;
912 
913 	avic_hardware_unsetup();
914 
915 	sev_hardware_unsetup();
916 
917 	for_each_possible_cpu(cpu)
918 		svm_cpu_uninit(cpu);
919 
920 	__free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE));
921 	iopm_base = 0;
922 }
923 
init_seg(struct vmcb_seg * seg)924 static void init_seg(struct vmcb_seg *seg)
925 {
926 	seg->selector = 0;
927 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
928 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
929 	seg->limit = 0xffff;
930 	seg->base = 0;
931 }
932 
init_sys_seg(struct vmcb_seg * seg,uint32_t type)933 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
934 {
935 	seg->selector = 0;
936 	seg->attrib = SVM_SELECTOR_P_MASK | type;
937 	seg->limit = 0xffff;
938 	seg->base = 0;
939 }
940 
svm_get_l2_tsc_offset(struct kvm_vcpu * vcpu)941 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
942 {
943 	struct vcpu_svm *svm = to_svm(vcpu);
944 
945 	return svm->nested.ctl.tsc_offset;
946 }
947 
svm_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)948 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
949 {
950 	struct vcpu_svm *svm = to_svm(vcpu);
951 
952 	return svm->tsc_ratio_msr;
953 }
954 
svm_write_tsc_offset(struct kvm_vcpu * vcpu)955 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
956 {
957 	struct vcpu_svm *svm = to_svm(vcpu);
958 
959 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
960 	svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
961 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
962 }
963 
svm_write_tsc_multiplier(struct kvm_vcpu * vcpu)964 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
965 {
966 	preempt_disable();
967 	if (to_svm(vcpu)->guest_state_loaded)
968 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
969 	preempt_enable();
970 }
971 
972 /* Evaluate instruction intercepts that depend on guest CPUID features. */
svm_recalc_instruction_intercepts(struct kvm_vcpu * vcpu)973 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu)
974 {
975 	struct vcpu_svm *svm = to_svm(vcpu);
976 
977 	/*
978 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
979 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
980 	 */
981 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
982 		if (!npt_enabled ||
983 		    !guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID))
984 			svm_set_intercept(svm, INTERCEPT_INVPCID);
985 		else
986 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
987 	}
988 
989 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
990 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP))
991 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
992 		else
993 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
994 	}
995 
996 	if (guest_cpuid_is_intel_compatible(vcpu)) {
997 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
998 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
999 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1000 	} else {
1001 		/*
1002 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1003 		 * in VMCB and clear intercepts to avoid #VMEXIT.
1004 		 */
1005 		if (vls) {
1006 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1007 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1008 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1009 		}
1010 	}
1011 }
1012 
svm_recalc_intercepts(struct kvm_vcpu * vcpu)1013 static void svm_recalc_intercepts(struct kvm_vcpu *vcpu)
1014 {
1015 	svm_recalc_instruction_intercepts(vcpu);
1016 	svm_recalc_msr_intercepts(vcpu);
1017 }
1018 
init_vmcb(struct kvm_vcpu * vcpu,bool init_event)1019 static void init_vmcb(struct kvm_vcpu *vcpu, bool init_event)
1020 {
1021 	struct vcpu_svm *svm = to_svm(vcpu);
1022 	struct vmcb *vmcb = svm->vmcb01.ptr;
1023 	struct vmcb_control_area *control = &vmcb->control;
1024 	struct vmcb_save_area *save = &vmcb->save;
1025 
1026 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1027 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1028 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1029 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1030 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1031 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1032 	if (!kvm_vcpu_apicv_active(vcpu))
1033 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1034 
1035 	set_dr_intercepts(svm);
1036 
1037 	set_exception_intercept(svm, PF_VECTOR);
1038 	set_exception_intercept(svm, UD_VECTOR);
1039 	set_exception_intercept(svm, MC_VECTOR);
1040 	set_exception_intercept(svm, AC_VECTOR);
1041 	set_exception_intercept(svm, DB_VECTOR);
1042 	/*
1043 	 * Guest access to VMware backdoor ports could legitimately
1044 	 * trigger #GP because of TSS I/O permission bitmap.
1045 	 * We intercept those #GP and allow access to them anyway
1046 	 * as VMware does.
1047 	 */
1048 	if (enable_vmware_backdoor)
1049 		set_exception_intercept(svm, GP_VECTOR);
1050 
1051 	svm_set_intercept(svm, INTERCEPT_INTR);
1052 	svm_set_intercept(svm, INTERCEPT_NMI);
1053 
1054 	if (intercept_smi)
1055 		svm_set_intercept(svm, INTERCEPT_SMI);
1056 
1057 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1058 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1059 	svm_set_intercept(svm, INTERCEPT_CPUID);
1060 	svm_set_intercept(svm, INTERCEPT_INVD);
1061 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1062 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1063 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1064 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1065 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1066 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1067 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1068 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1069 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1070 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1071 	svm_set_intercept(svm, INTERCEPT_STGI);
1072 	svm_set_intercept(svm, INTERCEPT_CLGI);
1073 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1074 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1075 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1076 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1077 	svm_set_intercept(svm, INTERCEPT_RSM);
1078 
1079 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1080 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1081 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1082 	}
1083 
1084 	if (!kvm_hlt_in_guest(vcpu->kvm)) {
1085 		if (cpu_feature_enabled(X86_FEATURE_IDLE_HLT))
1086 			svm_set_intercept(svm, INTERCEPT_IDLE_HLT);
1087 		else
1088 			svm_set_intercept(svm, INTERCEPT_HLT);
1089 	}
1090 
1091 	control->iopm_base_pa = iopm_base;
1092 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1093 	control->int_ctl = V_INTR_MASKING_MASK;
1094 
1095 	init_seg(&save->es);
1096 	init_seg(&save->ss);
1097 	init_seg(&save->ds);
1098 	init_seg(&save->fs);
1099 	init_seg(&save->gs);
1100 
1101 	save->cs.selector = 0xf000;
1102 	save->cs.base = 0xffff0000;
1103 	/* Executable/Readable Code Segment */
1104 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1105 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1106 	save->cs.limit = 0xffff;
1107 
1108 	save->gdtr.base = 0;
1109 	save->gdtr.limit = 0xffff;
1110 	save->idtr.base = 0;
1111 	save->idtr.limit = 0xffff;
1112 
1113 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1114 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1115 
1116 	if (npt_enabled) {
1117 		/* Setup VMCB for Nested Paging */
1118 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1119 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1120 		clr_exception_intercept(svm, PF_VECTOR);
1121 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1122 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1123 		save->g_pat = vcpu->arch.pat;
1124 		save->cr3 = 0;
1125 	}
1126 	svm->current_vmcb->asid_generation = 0;
1127 	svm->asid = 0;
1128 
1129 	svm->nested.vmcb12_gpa = INVALID_GPA;
1130 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1131 
1132 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1133 		control->pause_filter_count = pause_filter_count;
1134 		if (pause_filter_thresh)
1135 			control->pause_filter_thresh = pause_filter_thresh;
1136 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1137 	} else {
1138 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1139 	}
1140 
1141 	if (kvm_vcpu_apicv_active(vcpu))
1142 		avic_init_vmcb(svm, vmcb);
1143 
1144 	if (vnmi)
1145 		svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1146 
1147 	if (vgif) {
1148 		svm_clr_intercept(svm, INTERCEPT_STGI);
1149 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1150 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1151 	}
1152 
1153 	if (vcpu->kvm->arch.bus_lock_detection_enabled)
1154 		svm_set_intercept(svm, INTERCEPT_BUSLOCK);
1155 
1156 	if (sev_guest(vcpu->kvm))
1157 		sev_init_vmcb(svm, init_event);
1158 
1159 	svm_hv_init_vmcb(vmcb);
1160 
1161 	kvm_make_request(KVM_REQ_RECALC_INTERCEPTS, vcpu);
1162 
1163 	vmcb_mark_all_dirty(vmcb);
1164 
1165 	enable_gif(svm);
1166 }
1167 
__svm_vcpu_reset(struct kvm_vcpu * vcpu)1168 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1169 {
1170 	struct vcpu_svm *svm = to_svm(vcpu);
1171 
1172 	svm_init_osvw(vcpu);
1173 
1174 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
1175 		vcpu->arch.microcode_version = 0x01000065;
1176 	svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1177 
1178 	svm->nmi_masked = false;
1179 	svm->awaiting_iret_completion = false;
1180 }
1181 
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)1182 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1183 {
1184 	struct vcpu_svm *svm = to_svm(vcpu);
1185 
1186 	svm->spec_ctrl = 0;
1187 	svm->virt_spec_ctrl = 0;
1188 
1189 	init_vmcb(vcpu, init_event);
1190 
1191 	if (!init_event)
1192 		__svm_vcpu_reset(vcpu);
1193 }
1194 
svm_switch_vmcb(struct vcpu_svm * svm,struct kvm_vmcb_info * target_vmcb)1195 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1196 {
1197 	svm->current_vmcb = target_vmcb;
1198 	svm->vmcb = target_vmcb->ptr;
1199 }
1200 
svm_vcpu_create(struct kvm_vcpu * vcpu)1201 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1202 {
1203 	struct vcpu_svm *svm;
1204 	struct page *vmcb01_page;
1205 	int err;
1206 
1207 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1208 	svm = to_svm(vcpu);
1209 
1210 	err = -ENOMEM;
1211 	vmcb01_page = snp_safe_alloc_page();
1212 	if (!vmcb01_page)
1213 		goto out;
1214 
1215 	err = sev_vcpu_create(vcpu);
1216 	if (err)
1217 		goto error_free_vmcb_page;
1218 
1219 	err = avic_init_vcpu(svm);
1220 	if (err)
1221 		goto error_free_sev;
1222 
1223 	svm->msrpm = svm_vcpu_alloc_msrpm();
1224 	if (!svm->msrpm) {
1225 		err = -ENOMEM;
1226 		goto error_free_sev;
1227 	}
1228 
1229 	svm->x2avic_msrs_intercepted = true;
1230 	svm->lbr_msrs_intercepted = true;
1231 
1232 	svm->vmcb01.ptr = page_address(vmcb01_page);
1233 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1234 	svm_switch_vmcb(svm, &svm->vmcb01);
1235 
1236 	svm->guest_state_loaded = false;
1237 
1238 	return 0;
1239 
1240 error_free_sev:
1241 	sev_free_vcpu(vcpu);
1242 error_free_vmcb_page:
1243 	__free_page(vmcb01_page);
1244 out:
1245 	return err;
1246 }
1247 
svm_vcpu_free(struct kvm_vcpu * vcpu)1248 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1249 {
1250 	struct vcpu_svm *svm = to_svm(vcpu);
1251 
1252 	WARN_ON_ONCE(!list_empty(&svm->ir_list));
1253 
1254 	svm_leave_nested(vcpu);
1255 	svm_free_nested(svm);
1256 
1257 	sev_free_vcpu(vcpu);
1258 
1259 	__free_page(__sme_pa_to_page(svm->vmcb01.pa));
1260 	svm_vcpu_free_msrpm(svm->msrpm);
1261 }
1262 
1263 #ifdef CONFIG_CPU_MITIGATIONS
1264 static DEFINE_SPINLOCK(srso_lock);
1265 static atomic_t srso_nr_vms;
1266 
svm_srso_clear_bp_spec_reduce(void * ign)1267 static void svm_srso_clear_bp_spec_reduce(void *ign)
1268 {
1269 	struct svm_cpu_data *sd = this_cpu_ptr(&svm_data);
1270 
1271 	if (!sd->bp_spec_reduce_set)
1272 		return;
1273 
1274 	msr_clear_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1275 	sd->bp_spec_reduce_set = false;
1276 }
1277 
svm_srso_vm_destroy(void)1278 static void svm_srso_vm_destroy(void)
1279 {
1280 	if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1281 		return;
1282 
1283 	if (atomic_dec_return(&srso_nr_vms))
1284 		return;
1285 
1286 	guard(spinlock)(&srso_lock);
1287 
1288 	/*
1289 	 * Verify a new VM didn't come along, acquire the lock, and increment
1290 	 * the count before this task acquired the lock.
1291 	 */
1292 	if (atomic_read(&srso_nr_vms))
1293 		return;
1294 
1295 	on_each_cpu(svm_srso_clear_bp_spec_reduce, NULL, 1);
1296 }
1297 
svm_srso_vm_init(void)1298 static void svm_srso_vm_init(void)
1299 {
1300 	if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1301 		return;
1302 
1303 	/*
1304 	 * Acquire the lock on 0 => 1 transitions to ensure a potential 1 => 0
1305 	 * transition, i.e. destroying the last VM, is fully complete, e.g. so
1306 	 * that a delayed IPI doesn't clear BP_SPEC_REDUCE after a vCPU runs.
1307 	 */
1308 	if (atomic_inc_not_zero(&srso_nr_vms))
1309 		return;
1310 
1311 	guard(spinlock)(&srso_lock);
1312 
1313 	atomic_inc(&srso_nr_vms);
1314 }
1315 #else
svm_srso_vm_init(void)1316 static void svm_srso_vm_init(void) { }
svm_srso_vm_destroy(void)1317 static void svm_srso_vm_destroy(void) { }
1318 #endif
1319 
svm_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1320 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1321 {
1322 	struct vcpu_svm *svm = to_svm(vcpu);
1323 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1324 
1325 	if (sev_es_guest(vcpu->kvm))
1326 		sev_es_unmap_ghcb(svm);
1327 
1328 	if (svm->guest_state_loaded)
1329 		return;
1330 
1331 	/*
1332 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1333 	 * or subsequent vmload of host save area.
1334 	 */
1335 	vmsave(sd->save_area_pa);
1336 	if (sev_es_guest(vcpu->kvm))
1337 		sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd));
1338 
1339 	if (tsc_scaling)
1340 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1341 
1342 	/*
1343 	 * TSC_AUX is always virtualized (context switched by hardware) for
1344 	 * SEV-ES guests when the feature is available.  For non-SEV-ES guests,
1345 	 * context switch TSC_AUX via the user_return MSR infrastructure (not
1346 	 * all CPUs support TSC_AUX virtualization).
1347 	 */
1348 	if (likely(tsc_aux_uret_slot >= 0) &&
1349 	    (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1350 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1351 
1352 	if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE) &&
1353 	    !sd->bp_spec_reduce_set) {
1354 		sd->bp_spec_reduce_set = true;
1355 		msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1356 	}
1357 	svm->guest_state_loaded = true;
1358 }
1359 
svm_prepare_host_switch(struct kvm_vcpu * vcpu)1360 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1361 {
1362 	to_svm(vcpu)->guest_state_loaded = false;
1363 }
1364 
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1365 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1366 {
1367 	if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1368 		shrink_ple_window(vcpu);
1369 
1370 	if (kvm_vcpu_apicv_active(vcpu))
1371 		avic_vcpu_load(vcpu, cpu);
1372 }
1373 
svm_vcpu_put(struct kvm_vcpu * vcpu)1374 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1375 {
1376 	if (kvm_vcpu_apicv_active(vcpu))
1377 		avic_vcpu_put(vcpu);
1378 
1379 	svm_prepare_host_switch(vcpu);
1380 
1381 	++vcpu->stat.host_state_reload;
1382 }
1383 
svm_get_rflags(struct kvm_vcpu * vcpu)1384 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1385 {
1386 	struct vcpu_svm *svm = to_svm(vcpu);
1387 	unsigned long rflags = svm->vmcb->save.rflags;
1388 
1389 	if (svm->nmi_singlestep) {
1390 		/* Hide our flags if they were not set by the guest */
1391 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1392 			rflags &= ~X86_EFLAGS_TF;
1393 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1394 			rflags &= ~X86_EFLAGS_RF;
1395 	}
1396 	return rflags;
1397 }
1398 
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1399 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1400 {
1401 	if (to_svm(vcpu)->nmi_singlestep)
1402 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1403 
1404        /*
1405         * Any change of EFLAGS.VM is accompanied by a reload of SS
1406         * (caused by either a task switch or an inter-privilege IRET),
1407         * so we do not need to update the CPL here.
1408         */
1409 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1410 }
1411 
svm_get_if_flag(struct kvm_vcpu * vcpu)1412 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1413 {
1414 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1415 
1416 	return sev_es_guest(vcpu->kvm)
1417 		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1418 		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1419 }
1420 
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1421 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1422 {
1423 	kvm_register_mark_available(vcpu, reg);
1424 
1425 	switch (reg) {
1426 	case VCPU_EXREG_PDPTR:
1427 		/*
1428 		 * When !npt_enabled, mmu->pdptrs[] is already available since
1429 		 * it is always updated per SDM when moving to CRs.
1430 		 */
1431 		if (npt_enabled)
1432 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1433 		break;
1434 	default:
1435 		KVM_BUG_ON(1, vcpu->kvm);
1436 	}
1437 }
1438 
svm_set_vintr(struct vcpu_svm * svm)1439 static void svm_set_vintr(struct vcpu_svm *svm)
1440 {
1441 	struct vmcb_control_area *control;
1442 
1443 	/*
1444 	 * The following fields are ignored when AVIC is enabled
1445 	 */
1446 	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1447 
1448 	svm_set_intercept(svm, INTERCEPT_VINTR);
1449 
1450 	/*
1451 	 * Recalculating intercepts may have cleared the VINTR intercept.  If
1452 	 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1453 	 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1454 	 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1455 	 * interrupts will never be unblocked while L2 is running.
1456 	 */
1457 	if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1458 		return;
1459 
1460 	/*
1461 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1462 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1463 	 */
1464 	control = &svm->vmcb->control;
1465 	control->int_vector = 0x0;
1466 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1467 	control->int_ctl |= V_IRQ_MASK |
1468 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1469 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1470 }
1471 
svm_clear_vintr(struct vcpu_svm * svm)1472 static void svm_clear_vintr(struct vcpu_svm *svm)
1473 {
1474 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1475 
1476 	/* Drop int_ctl fields related to VINTR injection.  */
1477 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1478 	if (is_guest_mode(&svm->vcpu)) {
1479 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1480 
1481 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1482 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1483 
1484 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1485 			V_IRQ_INJECTION_BITS_MASK;
1486 
1487 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1488 	}
1489 
1490 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1491 }
1492 
svm_seg(struct kvm_vcpu * vcpu,int seg)1493 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1494 {
1495 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1496 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1497 
1498 	switch (seg) {
1499 	case VCPU_SREG_CS: return &save->cs;
1500 	case VCPU_SREG_DS: return &save->ds;
1501 	case VCPU_SREG_ES: return &save->es;
1502 	case VCPU_SREG_FS: return &save01->fs;
1503 	case VCPU_SREG_GS: return &save01->gs;
1504 	case VCPU_SREG_SS: return &save->ss;
1505 	case VCPU_SREG_TR: return &save01->tr;
1506 	case VCPU_SREG_LDTR: return &save01->ldtr;
1507 	}
1508 	BUG();
1509 	return NULL;
1510 }
1511 
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1512 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1513 {
1514 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1515 
1516 	return s->base;
1517 }
1518 
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1519 static void svm_get_segment(struct kvm_vcpu *vcpu,
1520 			    struct kvm_segment *var, int seg)
1521 {
1522 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1523 
1524 	var->base = s->base;
1525 	var->limit = s->limit;
1526 	var->selector = s->selector;
1527 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1528 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1529 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1530 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1531 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1532 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1533 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1534 
1535 	/*
1536 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1537 	 * However, the SVM spec states that the G bit is not observed by the
1538 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1539 	 * So let's synthesize a legal G bit for all segments, this helps
1540 	 * running KVM nested. It also helps cross-vendor migration, because
1541 	 * Intel's vmentry has a check on the 'G' bit.
1542 	 */
1543 	var->g = s->limit > 0xfffff;
1544 
1545 	/*
1546 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1547 	 * for cross vendor migration purposes by "not present"
1548 	 */
1549 	var->unusable = !var->present;
1550 
1551 	switch (seg) {
1552 	case VCPU_SREG_TR:
1553 		/*
1554 		 * Work around a bug where the busy flag in the tr selector
1555 		 * isn't exposed
1556 		 */
1557 		var->type |= 0x2;
1558 		break;
1559 	case VCPU_SREG_DS:
1560 	case VCPU_SREG_ES:
1561 	case VCPU_SREG_FS:
1562 	case VCPU_SREG_GS:
1563 		/*
1564 		 * The accessed bit must always be set in the segment
1565 		 * descriptor cache, although it can be cleared in the
1566 		 * descriptor, the cached bit always remains at 1. Since
1567 		 * Intel has a check on this, set it here to support
1568 		 * cross-vendor migration.
1569 		 */
1570 		if (!var->unusable)
1571 			var->type |= 0x1;
1572 		break;
1573 	case VCPU_SREG_SS:
1574 		/*
1575 		 * On AMD CPUs sometimes the DB bit in the segment
1576 		 * descriptor is left as 1, although the whole segment has
1577 		 * been made unusable. Clear it here to pass an Intel VMX
1578 		 * entry check when cross vendor migrating.
1579 		 */
1580 		if (var->unusable)
1581 			var->db = 0;
1582 		/* This is symmetric with svm_set_segment() */
1583 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1584 		break;
1585 	}
1586 }
1587 
svm_get_cpl(struct kvm_vcpu * vcpu)1588 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1589 {
1590 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1591 
1592 	return save->cpl;
1593 }
1594 
svm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)1595 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1596 {
1597 	struct kvm_segment cs;
1598 
1599 	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1600 	*db = cs.db;
1601 	*l = cs.l;
1602 }
1603 
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1604 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1605 {
1606 	struct vcpu_svm *svm = to_svm(vcpu);
1607 
1608 	dt->size = svm->vmcb->save.idtr.limit;
1609 	dt->address = svm->vmcb->save.idtr.base;
1610 }
1611 
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1612 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1613 {
1614 	struct vcpu_svm *svm = to_svm(vcpu);
1615 
1616 	svm->vmcb->save.idtr.limit = dt->size;
1617 	svm->vmcb->save.idtr.base = dt->address ;
1618 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1619 }
1620 
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1621 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1622 {
1623 	struct vcpu_svm *svm = to_svm(vcpu);
1624 
1625 	dt->size = svm->vmcb->save.gdtr.limit;
1626 	dt->address = svm->vmcb->save.gdtr.base;
1627 }
1628 
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1629 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1630 {
1631 	struct vcpu_svm *svm = to_svm(vcpu);
1632 
1633 	svm->vmcb->save.gdtr.limit = dt->size;
1634 	svm->vmcb->save.gdtr.base = dt->address ;
1635 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1636 }
1637 
sev_post_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1638 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1639 {
1640 	struct vcpu_svm *svm = to_svm(vcpu);
1641 
1642 	/*
1643 	 * For guests that don't set guest_state_protected, the cr3 update is
1644 	 * handled via kvm_mmu_load() while entering the guest. For guests
1645 	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1646 	 * VMCB save area now, since the save area will become the initial
1647 	 * contents of the VMSA, and future VMCB save area updates won't be
1648 	 * seen.
1649 	 */
1650 	if (sev_es_guest(vcpu->kvm)) {
1651 		svm->vmcb->save.cr3 = cr3;
1652 		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1653 	}
1654 }
1655 
svm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1656 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1657 {
1658 	return true;
1659 }
1660 
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1661 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1662 {
1663 	struct vcpu_svm *svm = to_svm(vcpu);
1664 	u64 hcr0 = cr0;
1665 	bool old_paging = is_paging(vcpu);
1666 
1667 #ifdef CONFIG_X86_64
1668 	if (vcpu->arch.efer & EFER_LME) {
1669 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1670 			vcpu->arch.efer |= EFER_LMA;
1671 			if (!vcpu->arch.guest_state_protected)
1672 				svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1673 		}
1674 
1675 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1676 			vcpu->arch.efer &= ~EFER_LMA;
1677 			if (!vcpu->arch.guest_state_protected)
1678 				svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1679 		}
1680 	}
1681 #endif
1682 	vcpu->arch.cr0 = cr0;
1683 
1684 	if (!npt_enabled) {
1685 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1686 		if (old_paging != is_paging(vcpu))
1687 			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1688 	}
1689 
1690 	/*
1691 	 * re-enable caching here because the QEMU bios
1692 	 * does not do it - this results in some delay at
1693 	 * reboot
1694 	 */
1695 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1696 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1697 
1698 	svm->vmcb->save.cr0 = hcr0;
1699 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1700 
1701 	/*
1702 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1703 	 * tracking is done using the CR write traps.
1704 	 */
1705 	if (sev_es_guest(vcpu->kvm))
1706 		return;
1707 
1708 	if (hcr0 == cr0) {
1709 		/* Selective CR0 write remains on.  */
1710 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1711 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1712 	} else {
1713 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1714 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1715 	}
1716 }
1717 
svm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1718 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1719 {
1720 	return true;
1721 }
1722 
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1723 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1724 {
1725 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1726 	unsigned long old_cr4 = vcpu->arch.cr4;
1727 
1728 	vcpu->arch.cr4 = cr4;
1729 	if (!npt_enabled) {
1730 		cr4 |= X86_CR4_PAE;
1731 
1732 		if (!is_paging(vcpu))
1733 			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1734 	}
1735 	cr4 |= host_cr4_mce;
1736 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1737 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1738 
1739 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1740 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
1741 }
1742 
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1743 static void svm_set_segment(struct kvm_vcpu *vcpu,
1744 			    struct kvm_segment *var, int seg)
1745 {
1746 	struct vcpu_svm *svm = to_svm(vcpu);
1747 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1748 
1749 	s->base = var->base;
1750 	s->limit = var->limit;
1751 	s->selector = var->selector;
1752 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1753 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1754 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1755 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1756 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1757 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1758 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1759 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1760 
1761 	/*
1762 	 * This is always accurate, except if SYSRET returned to a segment
1763 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1764 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1765 	 * would entail passing the CPL to userspace and back.
1766 	 */
1767 	if (seg == VCPU_SREG_SS)
1768 		/* This is symmetric with svm_get_segment() */
1769 		svm->vmcb->save.cpl = (var->dpl & 3);
1770 
1771 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1772 }
1773 
svm_update_exception_bitmap(struct kvm_vcpu * vcpu)1774 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1775 {
1776 	struct vcpu_svm *svm = to_svm(vcpu);
1777 
1778 	clr_exception_intercept(svm, BP_VECTOR);
1779 
1780 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1781 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1782 			set_exception_intercept(svm, BP_VECTOR);
1783 	}
1784 }
1785 
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)1786 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1787 {
1788 	if (sd->next_asid > sd->max_asid) {
1789 		++sd->asid_generation;
1790 		sd->next_asid = sd->min_asid;
1791 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1792 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1793 	}
1794 
1795 	svm->current_vmcb->asid_generation = sd->asid_generation;
1796 	svm->asid = sd->next_asid++;
1797 }
1798 
svm_set_dr6(struct kvm_vcpu * vcpu,unsigned long value)1799 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1800 {
1801 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1802 
1803 	if (vcpu->arch.guest_state_protected)
1804 		return;
1805 
1806 	if (unlikely(value != vmcb->save.dr6)) {
1807 		vmcb->save.dr6 = value;
1808 		vmcb_mark_dirty(vmcb, VMCB_DR);
1809 	}
1810 }
1811 
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)1812 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1813 {
1814 	struct vcpu_svm *svm = to_svm(vcpu);
1815 
1816 	if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
1817 		return;
1818 
1819 	get_debugreg(vcpu->arch.db[0], 0);
1820 	get_debugreg(vcpu->arch.db[1], 1);
1821 	get_debugreg(vcpu->arch.db[2], 2);
1822 	get_debugreg(vcpu->arch.db[3], 3);
1823 	/*
1824 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1825 	 * because db_interception might need it.  We can do it before vmentry.
1826 	 */
1827 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1828 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1829 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1830 	set_dr_intercepts(svm);
1831 }
1832 
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)1833 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1834 {
1835 	struct vcpu_svm *svm = to_svm(vcpu);
1836 
1837 	if (vcpu->arch.guest_state_protected)
1838 		return;
1839 
1840 	svm->vmcb->save.dr7 = value;
1841 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1842 }
1843 
pf_interception(struct kvm_vcpu * vcpu)1844 static int pf_interception(struct kvm_vcpu *vcpu)
1845 {
1846 	struct vcpu_svm *svm = to_svm(vcpu);
1847 
1848 	u64 fault_address = svm->vmcb->control.exit_info_2;
1849 	u64 error_code = svm->vmcb->control.exit_info_1;
1850 
1851 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
1852 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1853 			svm->vmcb->control.insn_bytes : NULL,
1854 			svm->vmcb->control.insn_len);
1855 }
1856 
npf_interception(struct kvm_vcpu * vcpu)1857 static int npf_interception(struct kvm_vcpu *vcpu)
1858 {
1859 	struct vcpu_svm *svm = to_svm(vcpu);
1860 	int rc;
1861 
1862 	u64 fault_address = svm->vmcb->control.exit_info_2;
1863 	u64 error_code = svm->vmcb->control.exit_info_1;
1864 
1865 	/*
1866 	 * WARN if hardware generates a fault with an error code that collides
1867 	 * with KVM-defined sythentic flags.  Clear the flags and continue on,
1868 	 * i.e. don't terminate the VM, as KVM can't possibly be relying on a
1869 	 * flag that KVM doesn't know about.
1870 	 */
1871 	if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK))
1872 		error_code &= ~PFERR_SYNTHETIC_MASK;
1873 
1874 	if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK))
1875 		error_code |= PFERR_PRIVATE_ACCESS;
1876 
1877 	trace_kvm_page_fault(vcpu, fault_address, error_code);
1878 	rc = kvm_mmu_page_fault(vcpu, fault_address, error_code,
1879 				static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1880 				svm->vmcb->control.insn_bytes : NULL,
1881 				svm->vmcb->control.insn_len);
1882 
1883 	if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK)
1884 		sev_handle_rmp_fault(vcpu, fault_address, error_code);
1885 
1886 	return rc;
1887 }
1888 
db_interception(struct kvm_vcpu * vcpu)1889 static int db_interception(struct kvm_vcpu *vcpu)
1890 {
1891 	struct kvm_run *kvm_run = vcpu->run;
1892 	struct vcpu_svm *svm = to_svm(vcpu);
1893 
1894 	if (!(vcpu->guest_debug &
1895 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1896 		!svm->nmi_singlestep) {
1897 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1898 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1899 		return 1;
1900 	}
1901 
1902 	if (svm->nmi_singlestep) {
1903 		disable_nmi_singlestep(svm);
1904 		/* Make sure we check for pending NMIs upon entry */
1905 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1906 	}
1907 
1908 	if (vcpu->guest_debug &
1909 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1910 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1911 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1912 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1913 		kvm_run->debug.arch.pc =
1914 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1915 		kvm_run->debug.arch.exception = DB_VECTOR;
1916 		return 0;
1917 	}
1918 
1919 	return 1;
1920 }
1921 
bp_interception(struct kvm_vcpu * vcpu)1922 static int bp_interception(struct kvm_vcpu *vcpu)
1923 {
1924 	struct vcpu_svm *svm = to_svm(vcpu);
1925 	struct kvm_run *kvm_run = vcpu->run;
1926 
1927 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1928 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1929 	kvm_run->debug.arch.exception = BP_VECTOR;
1930 	return 0;
1931 }
1932 
ud_interception(struct kvm_vcpu * vcpu)1933 static int ud_interception(struct kvm_vcpu *vcpu)
1934 {
1935 	return handle_ud(vcpu);
1936 }
1937 
ac_interception(struct kvm_vcpu * vcpu)1938 static int ac_interception(struct kvm_vcpu *vcpu)
1939 {
1940 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
1941 	return 1;
1942 }
1943 
is_erratum_383(void)1944 static bool is_erratum_383(void)
1945 {
1946 	int i;
1947 	u64 value;
1948 
1949 	if (!erratum_383_found)
1950 		return false;
1951 
1952 	if (native_read_msr_safe(MSR_IA32_MC0_STATUS, &value))
1953 		return false;
1954 
1955 	/* Bit 62 may or may not be set for this mce */
1956 	value &= ~(1ULL << 62);
1957 
1958 	if (value != 0xb600000000010015ULL)
1959 		return false;
1960 
1961 	/* Clear MCi_STATUS registers */
1962 	for (i = 0; i < 6; ++i)
1963 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0);
1964 
1965 	if (!native_read_msr_safe(MSR_IA32_MCG_STATUS, &value)) {
1966 		value &= ~(1ULL << 2);
1967 		native_write_msr_safe(MSR_IA32_MCG_STATUS, value);
1968 	}
1969 
1970 	/* Flush tlb to evict multi-match entries */
1971 	__flush_tlb_all();
1972 
1973 	return true;
1974 }
1975 
svm_handle_mce(struct kvm_vcpu * vcpu)1976 static void svm_handle_mce(struct kvm_vcpu *vcpu)
1977 {
1978 	if (is_erratum_383()) {
1979 		/*
1980 		 * Erratum 383 triggered. Guest state is corrupt so kill the
1981 		 * guest.
1982 		 */
1983 		pr_err("Guest triggered AMD Erratum 383\n");
1984 
1985 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1986 
1987 		return;
1988 	}
1989 
1990 	/*
1991 	 * On an #MC intercept the MCE handler is not called automatically in
1992 	 * the host. So do it by hand here.
1993 	 */
1994 	kvm_machine_check();
1995 }
1996 
mc_interception(struct kvm_vcpu * vcpu)1997 static int mc_interception(struct kvm_vcpu *vcpu)
1998 {
1999 	return 1;
2000 }
2001 
shutdown_interception(struct kvm_vcpu * vcpu)2002 static int shutdown_interception(struct kvm_vcpu *vcpu)
2003 {
2004 	struct kvm_run *kvm_run = vcpu->run;
2005 	struct vcpu_svm *svm = to_svm(vcpu);
2006 
2007 
2008 	/*
2009 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2010 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2011 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2012 	 * userspace.  At a platform view, INIT is acceptable behavior as
2013 	 * there exist bare metal platforms that automatically INIT the CPU
2014 	 * in response to shutdown.
2015 	 *
2016 	 * The VM save area for SEV-ES guests has already been encrypted so it
2017 	 * cannot be reinitialized, i.e. synthesizing INIT is futile.
2018 	 */
2019 	if (!sev_es_guest(vcpu->kvm)) {
2020 		clear_page(svm->vmcb);
2021 #ifdef CONFIG_KVM_SMM
2022 		if (is_smm(vcpu))
2023 			kvm_smm_changed(vcpu, false);
2024 #endif
2025 		kvm_vcpu_reset(vcpu, true);
2026 	}
2027 
2028 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2029 	return 0;
2030 }
2031 
io_interception(struct kvm_vcpu * vcpu)2032 static int io_interception(struct kvm_vcpu *vcpu)
2033 {
2034 	struct vcpu_svm *svm = to_svm(vcpu);
2035 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2036 	int size, in, string;
2037 	unsigned port;
2038 
2039 	++vcpu->stat.io_exits;
2040 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2041 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2042 	port = io_info >> 16;
2043 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2044 
2045 	if (string) {
2046 		if (sev_es_guest(vcpu->kvm))
2047 			return sev_es_string_io(svm, size, port, in);
2048 		else
2049 			return kvm_emulate_instruction(vcpu, 0);
2050 	}
2051 
2052 	svm->next_rip = svm->vmcb->control.exit_info_2;
2053 
2054 	return kvm_fast_pio(vcpu, size, port, in);
2055 }
2056 
nmi_interception(struct kvm_vcpu * vcpu)2057 static int nmi_interception(struct kvm_vcpu *vcpu)
2058 {
2059 	return 1;
2060 }
2061 
smi_interception(struct kvm_vcpu * vcpu)2062 static int smi_interception(struct kvm_vcpu *vcpu)
2063 {
2064 	return 1;
2065 }
2066 
intr_interception(struct kvm_vcpu * vcpu)2067 static int intr_interception(struct kvm_vcpu *vcpu)
2068 {
2069 	++vcpu->stat.irq_exits;
2070 	return 1;
2071 }
2072 
vmload_vmsave_interception(struct kvm_vcpu * vcpu,bool vmload)2073 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2074 {
2075 	struct vcpu_svm *svm = to_svm(vcpu);
2076 	struct vmcb *vmcb12;
2077 	struct kvm_host_map map;
2078 	int ret;
2079 
2080 	if (nested_svm_check_permissions(vcpu))
2081 		return 1;
2082 
2083 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2084 	if (ret) {
2085 		if (ret == -EINVAL)
2086 			kvm_inject_gp(vcpu, 0);
2087 		return 1;
2088 	}
2089 
2090 	vmcb12 = map.hva;
2091 
2092 	ret = kvm_skip_emulated_instruction(vcpu);
2093 
2094 	if (vmload) {
2095 		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2096 		svm->sysenter_eip_hi = 0;
2097 		svm->sysenter_esp_hi = 0;
2098 	} else {
2099 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2100 	}
2101 
2102 	kvm_vcpu_unmap(vcpu, &map);
2103 
2104 	return ret;
2105 }
2106 
vmload_interception(struct kvm_vcpu * vcpu)2107 static int vmload_interception(struct kvm_vcpu *vcpu)
2108 {
2109 	return vmload_vmsave_interception(vcpu, true);
2110 }
2111 
vmsave_interception(struct kvm_vcpu * vcpu)2112 static int vmsave_interception(struct kvm_vcpu *vcpu)
2113 {
2114 	return vmload_vmsave_interception(vcpu, false);
2115 }
2116 
vmrun_interception(struct kvm_vcpu * vcpu)2117 static int vmrun_interception(struct kvm_vcpu *vcpu)
2118 {
2119 	if (nested_svm_check_permissions(vcpu))
2120 		return 1;
2121 
2122 	return nested_svm_vmrun(vcpu);
2123 }
2124 
2125 enum {
2126 	NONE_SVM_INSTR,
2127 	SVM_INSTR_VMRUN,
2128 	SVM_INSTR_VMLOAD,
2129 	SVM_INSTR_VMSAVE,
2130 };
2131 
2132 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
svm_instr_opcode(struct kvm_vcpu * vcpu)2133 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2134 {
2135 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2136 
2137 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2138 		return NONE_SVM_INSTR;
2139 
2140 	switch (ctxt->modrm) {
2141 	case 0xd8: /* VMRUN */
2142 		return SVM_INSTR_VMRUN;
2143 	case 0xda: /* VMLOAD */
2144 		return SVM_INSTR_VMLOAD;
2145 	case 0xdb: /* VMSAVE */
2146 		return SVM_INSTR_VMSAVE;
2147 	default:
2148 		break;
2149 	}
2150 
2151 	return NONE_SVM_INSTR;
2152 }
2153 
emulate_svm_instr(struct kvm_vcpu * vcpu,int opcode)2154 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2155 {
2156 	const int guest_mode_exit_codes[] = {
2157 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2158 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2159 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2160 	};
2161 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2162 		[SVM_INSTR_VMRUN] = vmrun_interception,
2163 		[SVM_INSTR_VMLOAD] = vmload_interception,
2164 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2165 	};
2166 	struct vcpu_svm *svm = to_svm(vcpu);
2167 	int ret;
2168 
2169 	if (is_guest_mode(vcpu)) {
2170 		/* Returns '1' or -errno on failure, '0' on success. */
2171 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2172 		if (ret)
2173 			return ret;
2174 		return 1;
2175 	}
2176 	return svm_instr_handlers[opcode](vcpu);
2177 }
2178 
2179 /*
2180  * #GP handling code. Note that #GP can be triggered under the following two
2181  * cases:
2182  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2183  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2184  *      regions (e.g. SMM memory on host).
2185  *   2) VMware backdoor
2186  */
gp_interception(struct kvm_vcpu * vcpu)2187 static int gp_interception(struct kvm_vcpu *vcpu)
2188 {
2189 	struct vcpu_svm *svm = to_svm(vcpu);
2190 	u32 error_code = svm->vmcb->control.exit_info_1;
2191 	int opcode;
2192 
2193 	/* Both #GP cases have zero error_code */
2194 	if (error_code)
2195 		goto reinject;
2196 
2197 	/* Decode the instruction for usage later */
2198 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2199 		goto reinject;
2200 
2201 	opcode = svm_instr_opcode(vcpu);
2202 
2203 	if (opcode == NONE_SVM_INSTR) {
2204 		if (!enable_vmware_backdoor)
2205 			goto reinject;
2206 
2207 		/*
2208 		 * VMware backdoor emulation on #GP interception only handles
2209 		 * IN{S}, OUT{S}, and RDPMC.
2210 		 */
2211 		if (!is_guest_mode(vcpu))
2212 			return kvm_emulate_instruction(vcpu,
2213 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2214 	} else {
2215 		/* All SVM instructions expect page aligned RAX */
2216 		if (svm->vmcb->save.rax & ~PAGE_MASK)
2217 			goto reinject;
2218 
2219 		return emulate_svm_instr(vcpu, opcode);
2220 	}
2221 
2222 reinject:
2223 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2224 	return 1;
2225 }
2226 
svm_set_gif(struct vcpu_svm * svm,bool value)2227 void svm_set_gif(struct vcpu_svm *svm, bool value)
2228 {
2229 	if (value) {
2230 		/*
2231 		 * If VGIF is enabled, the STGI intercept is only added to
2232 		 * detect the opening of the SMI/NMI window; remove it now.
2233 		 * Likewise, clear the VINTR intercept, we will set it
2234 		 * again while processing KVM_REQ_EVENT if needed.
2235 		 */
2236 		if (vgif)
2237 			svm_clr_intercept(svm, INTERCEPT_STGI);
2238 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2239 			svm_clear_vintr(svm);
2240 
2241 		enable_gif(svm);
2242 		if (svm->vcpu.arch.smi_pending ||
2243 		    svm->vcpu.arch.nmi_pending ||
2244 		    kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2245 		    kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2246 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2247 	} else {
2248 		disable_gif(svm);
2249 
2250 		/*
2251 		 * After a CLGI no interrupts should come.  But if vGIF is
2252 		 * in use, we still rely on the VINTR intercept (rather than
2253 		 * STGI) to detect an open interrupt window.
2254 		*/
2255 		if (!vgif)
2256 			svm_clear_vintr(svm);
2257 	}
2258 }
2259 
stgi_interception(struct kvm_vcpu * vcpu)2260 static int stgi_interception(struct kvm_vcpu *vcpu)
2261 {
2262 	int ret;
2263 
2264 	if (nested_svm_check_permissions(vcpu))
2265 		return 1;
2266 
2267 	ret = kvm_skip_emulated_instruction(vcpu);
2268 	svm_set_gif(to_svm(vcpu), true);
2269 	return ret;
2270 }
2271 
clgi_interception(struct kvm_vcpu * vcpu)2272 static int clgi_interception(struct kvm_vcpu *vcpu)
2273 {
2274 	int ret;
2275 
2276 	if (nested_svm_check_permissions(vcpu))
2277 		return 1;
2278 
2279 	ret = kvm_skip_emulated_instruction(vcpu);
2280 	svm_set_gif(to_svm(vcpu), false);
2281 	return ret;
2282 }
2283 
invlpga_interception(struct kvm_vcpu * vcpu)2284 static int invlpga_interception(struct kvm_vcpu *vcpu)
2285 {
2286 	gva_t gva = kvm_rax_read(vcpu);
2287 	u32 asid = kvm_rcx_read(vcpu);
2288 
2289 	/* FIXME: Handle an address size prefix. */
2290 	if (!is_long_mode(vcpu))
2291 		gva = (u32)gva;
2292 
2293 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2294 
2295 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2296 	kvm_mmu_invlpg(vcpu, gva);
2297 
2298 	return kvm_skip_emulated_instruction(vcpu);
2299 }
2300 
skinit_interception(struct kvm_vcpu * vcpu)2301 static int skinit_interception(struct kvm_vcpu *vcpu)
2302 {
2303 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2304 
2305 	kvm_queue_exception(vcpu, UD_VECTOR);
2306 	return 1;
2307 }
2308 
task_switch_interception(struct kvm_vcpu * vcpu)2309 static int task_switch_interception(struct kvm_vcpu *vcpu)
2310 {
2311 	struct vcpu_svm *svm = to_svm(vcpu);
2312 	u16 tss_selector;
2313 	int reason;
2314 	int int_type = svm->vmcb->control.exit_int_info &
2315 		SVM_EXITINTINFO_TYPE_MASK;
2316 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2317 	uint32_t type =
2318 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2319 	uint32_t idt_v =
2320 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2321 	bool has_error_code = false;
2322 	u32 error_code = 0;
2323 
2324 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2325 
2326 	if (svm->vmcb->control.exit_info_2 &
2327 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2328 		reason = TASK_SWITCH_IRET;
2329 	else if (svm->vmcb->control.exit_info_2 &
2330 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2331 		reason = TASK_SWITCH_JMP;
2332 	else if (idt_v)
2333 		reason = TASK_SWITCH_GATE;
2334 	else
2335 		reason = TASK_SWITCH_CALL;
2336 
2337 	if (reason == TASK_SWITCH_GATE) {
2338 		switch (type) {
2339 		case SVM_EXITINTINFO_TYPE_NMI:
2340 			vcpu->arch.nmi_injected = false;
2341 			break;
2342 		case SVM_EXITINTINFO_TYPE_EXEPT:
2343 			if (svm->vmcb->control.exit_info_2 &
2344 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2345 				has_error_code = true;
2346 				error_code =
2347 					(u32)svm->vmcb->control.exit_info_2;
2348 			}
2349 			kvm_clear_exception_queue(vcpu);
2350 			break;
2351 		case SVM_EXITINTINFO_TYPE_INTR:
2352 		case SVM_EXITINTINFO_TYPE_SOFT:
2353 			kvm_clear_interrupt_queue(vcpu);
2354 			break;
2355 		default:
2356 			break;
2357 		}
2358 	}
2359 
2360 	if (reason != TASK_SWITCH_GATE ||
2361 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2362 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2363 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2364 		if (!svm_skip_emulated_instruction(vcpu))
2365 			return 0;
2366 	}
2367 
2368 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2369 		int_vec = -1;
2370 
2371 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2372 			       has_error_code, error_code);
2373 }
2374 
svm_clr_iret_intercept(struct vcpu_svm * svm)2375 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2376 {
2377 	if (!sev_es_guest(svm->vcpu.kvm))
2378 		svm_clr_intercept(svm, INTERCEPT_IRET);
2379 }
2380 
svm_set_iret_intercept(struct vcpu_svm * svm)2381 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2382 {
2383 	if (!sev_es_guest(svm->vcpu.kvm))
2384 		svm_set_intercept(svm, INTERCEPT_IRET);
2385 }
2386 
iret_interception(struct kvm_vcpu * vcpu)2387 static int iret_interception(struct kvm_vcpu *vcpu)
2388 {
2389 	struct vcpu_svm *svm = to_svm(vcpu);
2390 
2391 	WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2392 
2393 	++vcpu->stat.nmi_window_exits;
2394 	svm->awaiting_iret_completion = true;
2395 
2396 	svm_clr_iret_intercept(svm);
2397 	svm->nmi_iret_rip = kvm_rip_read(vcpu);
2398 
2399 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2400 	return 1;
2401 }
2402 
invlpg_interception(struct kvm_vcpu * vcpu)2403 static int invlpg_interception(struct kvm_vcpu *vcpu)
2404 {
2405 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2406 		return kvm_emulate_instruction(vcpu, 0);
2407 
2408 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2409 	return kvm_skip_emulated_instruction(vcpu);
2410 }
2411 
emulate_on_interception(struct kvm_vcpu * vcpu)2412 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2413 {
2414 	return kvm_emulate_instruction(vcpu, 0);
2415 }
2416 
rsm_interception(struct kvm_vcpu * vcpu)2417 static int rsm_interception(struct kvm_vcpu *vcpu)
2418 {
2419 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2420 }
2421 
check_selective_cr0_intercepted(struct kvm_vcpu * vcpu,unsigned long val)2422 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2423 					    unsigned long val)
2424 {
2425 	struct vcpu_svm *svm = to_svm(vcpu);
2426 	unsigned long cr0 = vcpu->arch.cr0;
2427 	bool ret = false;
2428 
2429 	if (!is_guest_mode(vcpu) ||
2430 	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2431 		return false;
2432 
2433 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2434 	val &= ~SVM_CR0_SELECTIVE_MASK;
2435 
2436 	if (cr0 ^ val) {
2437 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2438 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2439 	}
2440 
2441 	return ret;
2442 }
2443 
2444 #define CR_VALID (1ULL << 63)
2445 
cr_interception(struct kvm_vcpu * vcpu)2446 static int cr_interception(struct kvm_vcpu *vcpu)
2447 {
2448 	struct vcpu_svm *svm = to_svm(vcpu);
2449 	int reg, cr;
2450 	unsigned long val;
2451 	int err;
2452 
2453 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2454 		return emulate_on_interception(vcpu);
2455 
2456 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2457 		return emulate_on_interception(vcpu);
2458 
2459 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2460 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2461 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2462 	else
2463 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2464 
2465 	err = 0;
2466 	if (cr >= 16) { /* mov to cr */
2467 		cr -= 16;
2468 		val = kvm_register_read(vcpu, reg);
2469 		trace_kvm_cr_write(cr, val);
2470 		switch (cr) {
2471 		case 0:
2472 			if (!check_selective_cr0_intercepted(vcpu, val))
2473 				err = kvm_set_cr0(vcpu, val);
2474 			else
2475 				return 1;
2476 
2477 			break;
2478 		case 3:
2479 			err = kvm_set_cr3(vcpu, val);
2480 			break;
2481 		case 4:
2482 			err = kvm_set_cr4(vcpu, val);
2483 			break;
2484 		case 8:
2485 			err = kvm_set_cr8(vcpu, val);
2486 			break;
2487 		default:
2488 			WARN(1, "unhandled write to CR%d", cr);
2489 			kvm_queue_exception(vcpu, UD_VECTOR);
2490 			return 1;
2491 		}
2492 	} else { /* mov from cr */
2493 		switch (cr) {
2494 		case 0:
2495 			val = kvm_read_cr0(vcpu);
2496 			break;
2497 		case 2:
2498 			val = vcpu->arch.cr2;
2499 			break;
2500 		case 3:
2501 			val = kvm_read_cr3(vcpu);
2502 			break;
2503 		case 4:
2504 			val = kvm_read_cr4(vcpu);
2505 			break;
2506 		case 8:
2507 			val = kvm_get_cr8(vcpu);
2508 			break;
2509 		default:
2510 			WARN(1, "unhandled read from CR%d", cr);
2511 			kvm_queue_exception(vcpu, UD_VECTOR);
2512 			return 1;
2513 		}
2514 		kvm_register_write(vcpu, reg, val);
2515 		trace_kvm_cr_read(cr, val);
2516 	}
2517 	return kvm_complete_insn_gp(vcpu, err);
2518 }
2519 
cr_trap(struct kvm_vcpu * vcpu)2520 static int cr_trap(struct kvm_vcpu *vcpu)
2521 {
2522 	struct vcpu_svm *svm = to_svm(vcpu);
2523 	unsigned long old_value, new_value;
2524 	unsigned int cr;
2525 	int ret = 0;
2526 
2527 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2528 
2529 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2530 	switch (cr) {
2531 	case 0:
2532 		old_value = kvm_read_cr0(vcpu);
2533 		svm_set_cr0(vcpu, new_value);
2534 
2535 		kvm_post_set_cr0(vcpu, old_value, new_value);
2536 		break;
2537 	case 4:
2538 		old_value = kvm_read_cr4(vcpu);
2539 		svm_set_cr4(vcpu, new_value);
2540 
2541 		kvm_post_set_cr4(vcpu, old_value, new_value);
2542 		break;
2543 	case 8:
2544 		ret = kvm_set_cr8(vcpu, new_value);
2545 		break;
2546 	default:
2547 		WARN(1, "unhandled CR%d write trap", cr);
2548 		kvm_queue_exception(vcpu, UD_VECTOR);
2549 		return 1;
2550 	}
2551 
2552 	return kvm_complete_insn_gp(vcpu, ret);
2553 }
2554 
dr_interception(struct kvm_vcpu * vcpu)2555 static int dr_interception(struct kvm_vcpu *vcpu)
2556 {
2557 	struct vcpu_svm *svm = to_svm(vcpu);
2558 	int reg, dr;
2559 	int err = 0;
2560 
2561 	/*
2562 	 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2563 	 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2564 	 */
2565 	if (sev_es_guest(vcpu->kvm))
2566 		return 1;
2567 
2568 	if (vcpu->guest_debug == 0) {
2569 		/*
2570 		 * No more DR vmexits; force a reload of the debug registers
2571 		 * and reenter on this instruction.  The next vmexit will
2572 		 * retrieve the full state of the debug registers.
2573 		 */
2574 		clr_dr_intercepts(svm);
2575 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2576 		return 1;
2577 	}
2578 
2579 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2580 		return emulate_on_interception(vcpu);
2581 
2582 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2583 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2584 	if (dr >= 16) { /* mov to DRn  */
2585 		dr -= 16;
2586 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
2587 	} else {
2588 		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
2589 	}
2590 
2591 	return kvm_complete_insn_gp(vcpu, err);
2592 }
2593 
cr8_write_interception(struct kvm_vcpu * vcpu)2594 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2595 {
2596 	int r;
2597 
2598 	u8 cr8_prev = kvm_get_cr8(vcpu);
2599 	/* instruction emulation calls kvm_set_cr8() */
2600 	r = cr_interception(vcpu);
2601 	if (lapic_in_kernel(vcpu))
2602 		return r;
2603 	if (cr8_prev <= kvm_get_cr8(vcpu))
2604 		return r;
2605 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2606 	return 0;
2607 }
2608 
efer_trap(struct kvm_vcpu * vcpu)2609 static int efer_trap(struct kvm_vcpu *vcpu)
2610 {
2611 	struct msr_data msr_info;
2612 	int ret;
2613 
2614 	/*
2615 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2616 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2617 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2618 	 * the guest doesn't have X86_FEATURE_SVM.
2619 	 */
2620 	msr_info.host_initiated = false;
2621 	msr_info.index = MSR_EFER;
2622 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2623 	ret = kvm_set_msr_common(vcpu, &msr_info);
2624 
2625 	return kvm_complete_insn_gp(vcpu, ret);
2626 }
2627 
svm_get_feature_msr(u32 msr,u64 * data)2628 static int svm_get_feature_msr(u32 msr, u64 *data)
2629 {
2630 	*data = 0;
2631 
2632 	switch (msr) {
2633 	case MSR_AMD64_DE_CFG:
2634 		if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2635 			*data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2636 		break;
2637 	default:
2638 		return KVM_MSR_RET_UNSUPPORTED;
2639 	}
2640 
2641 	return 0;
2642 }
2643 
sev_es_prevent_msr_access(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2644 static bool sev_es_prevent_msr_access(struct kvm_vcpu *vcpu,
2645 				      struct msr_data *msr_info)
2646 {
2647 	return sev_es_guest(vcpu->kvm) && vcpu->arch.guest_state_protected &&
2648 	       msr_info->index != MSR_IA32_XSS &&
2649 	       !msr_write_intercepted(vcpu, msr_info->index);
2650 }
2651 
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2652 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2653 {
2654 	struct vcpu_svm *svm = to_svm(vcpu);
2655 
2656 	if (sev_es_prevent_msr_access(vcpu, msr_info)) {
2657 		msr_info->data = 0;
2658 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2659 	}
2660 
2661 	switch (msr_info->index) {
2662 	case MSR_AMD64_TSC_RATIO:
2663 		if (!msr_info->host_initiated &&
2664 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR))
2665 			return 1;
2666 		msr_info->data = svm->tsc_ratio_msr;
2667 		break;
2668 	case MSR_STAR:
2669 		msr_info->data = svm->vmcb01.ptr->save.star;
2670 		break;
2671 #ifdef CONFIG_X86_64
2672 	case MSR_LSTAR:
2673 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2674 		break;
2675 	case MSR_CSTAR:
2676 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2677 		break;
2678 	case MSR_GS_BASE:
2679 		msr_info->data = svm->vmcb01.ptr->save.gs.base;
2680 		break;
2681 	case MSR_FS_BASE:
2682 		msr_info->data = svm->vmcb01.ptr->save.fs.base;
2683 		break;
2684 	case MSR_KERNEL_GS_BASE:
2685 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2686 		break;
2687 	case MSR_SYSCALL_MASK:
2688 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2689 		break;
2690 #endif
2691 	case MSR_IA32_SYSENTER_CS:
2692 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2693 		break;
2694 	case MSR_IA32_SYSENTER_EIP:
2695 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2696 		if (guest_cpuid_is_intel_compatible(vcpu))
2697 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2698 		break;
2699 	case MSR_IA32_SYSENTER_ESP:
2700 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2701 		if (guest_cpuid_is_intel_compatible(vcpu))
2702 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2703 		break;
2704 	case MSR_IA32_S_CET:
2705 		msr_info->data = svm->vmcb->save.s_cet;
2706 		break;
2707 	case MSR_IA32_INT_SSP_TAB:
2708 		msr_info->data = svm->vmcb->save.isst_addr;
2709 		break;
2710 	case MSR_KVM_INTERNAL_GUEST_SSP:
2711 		msr_info->data = svm->vmcb->save.ssp;
2712 		break;
2713 	case MSR_TSC_AUX:
2714 		msr_info->data = svm->tsc_aux;
2715 		break;
2716 	case MSR_IA32_DEBUGCTLMSR:
2717 		msr_info->data = svm->vmcb->save.dbgctl;
2718 		break;
2719 	case MSR_IA32_LASTBRANCHFROMIP:
2720 		msr_info->data = svm->vmcb->save.br_from;
2721 		break;
2722 	case MSR_IA32_LASTBRANCHTOIP:
2723 		msr_info->data = svm->vmcb->save.br_to;
2724 		break;
2725 	case MSR_IA32_LASTINTFROMIP:
2726 		msr_info->data = svm->vmcb->save.last_excp_from;
2727 		break;
2728 	case MSR_IA32_LASTINTTOIP:
2729 		msr_info->data = svm->vmcb->save.last_excp_to;
2730 		break;
2731 	case MSR_VM_HSAVE_PA:
2732 		msr_info->data = svm->nested.hsave_msr;
2733 		break;
2734 	case MSR_VM_CR:
2735 		msr_info->data = svm->nested.vm_cr_msr;
2736 		break;
2737 	case MSR_IA32_SPEC_CTRL:
2738 		if (!msr_info->host_initiated &&
2739 		    !guest_has_spec_ctrl_msr(vcpu))
2740 			return 1;
2741 
2742 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2743 			msr_info->data = svm->vmcb->save.spec_ctrl;
2744 		else
2745 			msr_info->data = svm->spec_ctrl;
2746 		break;
2747 	case MSR_AMD64_VIRT_SPEC_CTRL:
2748 		if (!msr_info->host_initiated &&
2749 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2750 			return 1;
2751 
2752 		msr_info->data = svm->virt_spec_ctrl;
2753 		break;
2754 	case MSR_F15H_IC_CFG: {
2755 
2756 		int family, model;
2757 
2758 		family = guest_cpuid_family(vcpu);
2759 		model  = guest_cpuid_model(vcpu);
2760 
2761 		if (family < 0 || model < 0)
2762 			return kvm_get_msr_common(vcpu, msr_info);
2763 
2764 		msr_info->data = 0;
2765 
2766 		if (family == 0x15 &&
2767 		    (model >= 0x2 && model < 0x20))
2768 			msr_info->data = 0x1E;
2769 		}
2770 		break;
2771 	case MSR_AMD64_DE_CFG:
2772 		msr_info->data = svm->msr_decfg;
2773 		break;
2774 	default:
2775 		return kvm_get_msr_common(vcpu, msr_info);
2776 	}
2777 	return 0;
2778 }
2779 
svm_complete_emulated_msr(struct kvm_vcpu * vcpu,int err)2780 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2781 {
2782 	struct vcpu_svm *svm = to_svm(vcpu);
2783 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2784 		return kvm_complete_insn_gp(vcpu, err);
2785 
2786 	svm_vmgexit_inject_exception(svm, X86_TRAP_GP);
2787 	return 1;
2788 }
2789 
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)2790 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2791 {
2792 	struct vcpu_svm *svm = to_svm(vcpu);
2793 	int svm_dis, chg_mask;
2794 
2795 	if (data & ~SVM_VM_CR_VALID_MASK)
2796 		return 1;
2797 
2798 	chg_mask = SVM_VM_CR_VALID_MASK;
2799 
2800 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2801 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2802 
2803 	svm->nested.vm_cr_msr &= ~chg_mask;
2804 	svm->nested.vm_cr_msr |= (data & chg_mask);
2805 
2806 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2807 
2808 	/* check for svm_disable while efer.svme is set */
2809 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2810 		return 1;
2811 
2812 	return 0;
2813 }
2814 
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2815 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2816 {
2817 	struct vcpu_svm *svm = to_svm(vcpu);
2818 	int ret = 0;
2819 
2820 	u32 ecx = msr->index;
2821 	u64 data = msr->data;
2822 
2823 	if (sev_es_prevent_msr_access(vcpu, msr))
2824 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2825 
2826 	switch (ecx) {
2827 	case MSR_AMD64_TSC_RATIO:
2828 
2829 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) {
2830 
2831 			if (!msr->host_initiated)
2832 				return 1;
2833 			/*
2834 			 * In case TSC scaling is not enabled, always
2835 			 * leave this MSR at the default value.
2836 			 *
2837 			 * Due to bug in qemu 6.2.0, it would try to set
2838 			 * this msr to 0 if tsc scaling is not enabled.
2839 			 * Ignore this value as well.
2840 			 */
2841 			if (data != 0 && data != svm->tsc_ratio_msr)
2842 				return 1;
2843 			break;
2844 		}
2845 
2846 		if (data & SVM_TSC_RATIO_RSVD)
2847 			return 1;
2848 
2849 		svm->tsc_ratio_msr = data;
2850 
2851 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) &&
2852 		    is_guest_mode(vcpu))
2853 			nested_svm_update_tsc_ratio_msr(vcpu);
2854 
2855 		break;
2856 	case MSR_IA32_CR_PAT:
2857 		ret = kvm_set_msr_common(vcpu, msr);
2858 		if (ret)
2859 			break;
2860 
2861 		svm->vmcb01.ptr->save.g_pat = data;
2862 		if (is_guest_mode(vcpu))
2863 			nested_vmcb02_compute_g_pat(svm);
2864 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2865 		break;
2866 	case MSR_IA32_SPEC_CTRL:
2867 		if (!msr->host_initiated &&
2868 		    !guest_has_spec_ctrl_msr(vcpu))
2869 			return 1;
2870 
2871 		if (kvm_spec_ctrl_test_value(data))
2872 			return 1;
2873 
2874 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2875 			svm->vmcb->save.spec_ctrl = data;
2876 		else
2877 			svm->spec_ctrl = data;
2878 		if (!data)
2879 			break;
2880 
2881 		/*
2882 		 * For non-nested:
2883 		 * When it's written (to non-zero) for the first time, pass
2884 		 * it through.
2885 		 *
2886 		 * For nested:
2887 		 * The handling of the MSR bitmap for L2 guests is done in
2888 		 * nested_svm_merge_msrpm().
2889 		 * We update the L1 MSR bit as well since it will end up
2890 		 * touching the MSR anyway now.
2891 		 */
2892 		svm_disable_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
2893 		break;
2894 	case MSR_AMD64_VIRT_SPEC_CTRL:
2895 		if (!msr->host_initiated &&
2896 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2897 			return 1;
2898 
2899 		if (data & ~SPEC_CTRL_SSBD)
2900 			return 1;
2901 
2902 		svm->virt_spec_ctrl = data;
2903 		break;
2904 	case MSR_STAR:
2905 		svm->vmcb01.ptr->save.star = data;
2906 		break;
2907 #ifdef CONFIG_X86_64
2908 	case MSR_LSTAR:
2909 		svm->vmcb01.ptr->save.lstar = data;
2910 		break;
2911 	case MSR_CSTAR:
2912 		svm->vmcb01.ptr->save.cstar = data;
2913 		break;
2914 	case MSR_GS_BASE:
2915 		svm->vmcb01.ptr->save.gs.base = data;
2916 		break;
2917 	case MSR_FS_BASE:
2918 		svm->vmcb01.ptr->save.fs.base = data;
2919 		break;
2920 	case MSR_KERNEL_GS_BASE:
2921 		svm->vmcb01.ptr->save.kernel_gs_base = data;
2922 		break;
2923 	case MSR_SYSCALL_MASK:
2924 		svm->vmcb01.ptr->save.sfmask = data;
2925 		break;
2926 #endif
2927 	case MSR_IA32_SYSENTER_CS:
2928 		svm->vmcb01.ptr->save.sysenter_cs = data;
2929 		break;
2930 	case MSR_IA32_SYSENTER_EIP:
2931 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2932 		/*
2933 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2934 		 * when we spoof an Intel vendor ID (for cross vendor migration).
2935 		 * In this case we use this intercept to track the high
2936 		 * 32 bit part of these msrs to support Intel's
2937 		 * implementation of SYSENTER/SYSEXIT.
2938 		 */
2939 		svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
2940 		break;
2941 	case MSR_IA32_SYSENTER_ESP:
2942 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2943 		svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
2944 		break;
2945 	case MSR_IA32_S_CET:
2946 		svm->vmcb->save.s_cet = data;
2947 		vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET);
2948 		break;
2949 	case MSR_IA32_INT_SSP_TAB:
2950 		svm->vmcb->save.isst_addr = data;
2951 		vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET);
2952 		break;
2953 	case MSR_KVM_INTERNAL_GUEST_SSP:
2954 		svm->vmcb->save.ssp = data;
2955 		vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET);
2956 		break;
2957 	case MSR_TSC_AUX:
2958 		/*
2959 		 * TSC_AUX is always virtualized for SEV-ES guests when the
2960 		 * feature is available. The user return MSR support is not
2961 		 * required in this case because TSC_AUX is restored on #VMEXIT
2962 		 * from the host save area.
2963 		 */
2964 		if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
2965 			break;
2966 
2967 		/*
2968 		 * TSC_AUX is usually changed only during boot and never read
2969 		 * directly.  Intercept TSC_AUX and switch it via user return.
2970 		 */
2971 		preempt_disable();
2972 		ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
2973 		preempt_enable();
2974 		if (ret)
2975 			break;
2976 
2977 		svm->tsc_aux = data;
2978 		break;
2979 	case MSR_IA32_DEBUGCTLMSR:
2980 		if (!lbrv) {
2981 			kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
2982 			break;
2983 		}
2984 
2985 		/*
2986 		 * Suppress BTF as KVM doesn't virtualize BTF, but there's no
2987 		 * way to communicate lack of support to the guest.
2988 		 */
2989 		if (data & DEBUGCTLMSR_BTF) {
2990 			kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
2991 			data &= ~DEBUGCTLMSR_BTF;
2992 		}
2993 
2994 		if (data & DEBUGCTL_RESERVED_BITS)
2995 			return 1;
2996 
2997 		if (svm->vmcb->save.dbgctl == data)
2998 			break;
2999 
3000 		svm->vmcb->save.dbgctl = data;
3001 		vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
3002 		svm_update_lbrv(vcpu);
3003 		break;
3004 	case MSR_VM_HSAVE_PA:
3005 		/*
3006 		 * Old kernels did not validate the value written to
3007 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3008 		 * value to allow live migrating buggy or malicious guests
3009 		 * originating from those kernels.
3010 		 */
3011 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
3012 			return 1;
3013 
3014 		svm->nested.hsave_msr = data & PAGE_MASK;
3015 		break;
3016 	case MSR_VM_CR:
3017 		return svm_set_vm_cr(vcpu, data);
3018 	case MSR_VM_IGNNE:
3019 		kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3020 		break;
3021 	case MSR_AMD64_DE_CFG: {
3022 		u64 supported_de_cfg;
3023 
3024 		if (svm_get_feature_msr(ecx, &supported_de_cfg))
3025 			return 1;
3026 
3027 		if (data & ~supported_de_cfg)
3028 			return 1;
3029 
3030 		svm->msr_decfg = data;
3031 		break;
3032 	}
3033 	default:
3034 		return kvm_set_msr_common(vcpu, msr);
3035 	}
3036 	return ret;
3037 }
3038 
msr_interception(struct kvm_vcpu * vcpu)3039 static int msr_interception(struct kvm_vcpu *vcpu)
3040 {
3041 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
3042 		return kvm_emulate_wrmsr(vcpu);
3043 	else
3044 		return kvm_emulate_rdmsr(vcpu);
3045 }
3046 
interrupt_window_interception(struct kvm_vcpu * vcpu)3047 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3048 {
3049 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3050 	svm_clear_vintr(to_svm(vcpu));
3051 
3052 	/*
3053 	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3054 	 * In this case AVIC was temporarily disabled for
3055 	 * requesting the IRQ window and we have to re-enable it.
3056 	 *
3057 	 * If running nested, still remove the VM wide AVIC inhibit to
3058 	 * support case in which the interrupt window was requested when the
3059 	 * vCPU was not running nested.
3060 
3061 	 * All vCPUs which run still run nested, will remain to have their
3062 	 * AVIC still inhibited due to per-cpu AVIC inhibition.
3063 	 */
3064 	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3065 
3066 	++vcpu->stat.irq_window_exits;
3067 	return 1;
3068 }
3069 
pause_interception(struct kvm_vcpu * vcpu)3070 static int pause_interception(struct kvm_vcpu *vcpu)
3071 {
3072 	bool in_kernel;
3073 	/*
3074 	 * CPL is not made available for an SEV-ES guest, therefore
3075 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3076 	 * set in_kernel to false as well.
3077 	 */
3078 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3079 
3080 	grow_ple_window(vcpu);
3081 
3082 	kvm_vcpu_on_spin(vcpu, in_kernel);
3083 	return kvm_skip_emulated_instruction(vcpu);
3084 }
3085 
invpcid_interception(struct kvm_vcpu * vcpu)3086 static int invpcid_interception(struct kvm_vcpu *vcpu)
3087 {
3088 	struct vcpu_svm *svm = to_svm(vcpu);
3089 	unsigned long type;
3090 	gva_t gva;
3091 
3092 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
3093 		kvm_queue_exception(vcpu, UD_VECTOR);
3094 		return 1;
3095 	}
3096 
3097 	/*
3098 	 * For an INVPCID intercept:
3099 	 * EXITINFO1 provides the linear address of the memory operand.
3100 	 * EXITINFO2 provides the contents of the register operand.
3101 	 */
3102 	type = svm->vmcb->control.exit_info_2;
3103 	gva = svm->vmcb->control.exit_info_1;
3104 
3105 	/*
3106 	 * FIXME: Perform segment checks for 32-bit mode, and inject #SS if the
3107 	 *        stack segment is used.  The intercept takes priority over all
3108 	 *        #GP checks except CPL>0, but somehow still generates a linear
3109 	 *        address?  The APM is sorely lacking.
3110 	 */
3111 	if (is_noncanonical_address(gva, vcpu, 0)) {
3112 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3113 		return 1;
3114 	}
3115 
3116 	return kvm_handle_invpcid(vcpu, type, gva);
3117 }
3118 
complete_userspace_buslock(struct kvm_vcpu * vcpu)3119 static inline int complete_userspace_buslock(struct kvm_vcpu *vcpu)
3120 {
3121 	struct vcpu_svm *svm = to_svm(vcpu);
3122 
3123 	/*
3124 	 * If userspace has NOT changed RIP, then KVM's ABI is to let the guest
3125 	 * execute the bus-locking instruction.  Set the bus lock counter to '1'
3126 	 * to effectively step past the bus lock.
3127 	 */
3128 	if (kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))
3129 		svm->vmcb->control.bus_lock_counter = 1;
3130 
3131 	return 1;
3132 }
3133 
bus_lock_exit(struct kvm_vcpu * vcpu)3134 static int bus_lock_exit(struct kvm_vcpu *vcpu)
3135 {
3136 	struct vcpu_svm *svm = to_svm(vcpu);
3137 
3138 	vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
3139 	vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
3140 
3141 	vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
3142 	vcpu->arch.complete_userspace_io = complete_userspace_buslock;
3143 
3144 	if (is_guest_mode(vcpu))
3145 		svm->nested.ctl.bus_lock_rip = vcpu->arch.cui_linear_rip;
3146 
3147 	return 0;
3148 }
3149 
3150 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3151 	[SVM_EXIT_READ_CR0]			= cr_interception,
3152 	[SVM_EXIT_READ_CR3]			= cr_interception,
3153 	[SVM_EXIT_READ_CR4]			= cr_interception,
3154 	[SVM_EXIT_READ_CR8]			= cr_interception,
3155 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3156 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3157 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3158 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3159 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3160 	[SVM_EXIT_READ_DR0]			= dr_interception,
3161 	[SVM_EXIT_READ_DR1]			= dr_interception,
3162 	[SVM_EXIT_READ_DR2]			= dr_interception,
3163 	[SVM_EXIT_READ_DR3]			= dr_interception,
3164 	[SVM_EXIT_READ_DR4]			= dr_interception,
3165 	[SVM_EXIT_READ_DR5]			= dr_interception,
3166 	[SVM_EXIT_READ_DR6]			= dr_interception,
3167 	[SVM_EXIT_READ_DR7]			= dr_interception,
3168 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3169 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3170 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3171 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3172 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3173 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3174 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3175 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3176 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3177 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3178 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3179 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3180 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3181 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3182 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3183 	[SVM_EXIT_INTR]				= intr_interception,
3184 	[SVM_EXIT_NMI]				= nmi_interception,
3185 	[SVM_EXIT_SMI]				= smi_interception,
3186 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3187 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3188 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3189 	[SVM_EXIT_IRET]                         = iret_interception,
3190 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3191 	[SVM_EXIT_PAUSE]			= pause_interception,
3192 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3193 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3194 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3195 	[SVM_EXIT_IOIO]				= io_interception,
3196 	[SVM_EXIT_MSR]				= msr_interception,
3197 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3198 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3199 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3200 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3201 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3202 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3203 	[SVM_EXIT_STGI]				= stgi_interception,
3204 	[SVM_EXIT_CLGI]				= clgi_interception,
3205 	[SVM_EXIT_SKINIT]			= skinit_interception,
3206 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3207 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3208 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3209 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3210 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3211 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3212 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3213 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3214 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3215 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3216 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3217 	[SVM_EXIT_IDLE_HLT]			= kvm_emulate_halt,
3218 	[SVM_EXIT_NPF]				= npf_interception,
3219 	[SVM_EXIT_BUS_LOCK]			= bus_lock_exit,
3220 	[SVM_EXIT_RSM]                          = rsm_interception,
3221 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3222 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3223 #ifdef CONFIG_KVM_AMD_SEV
3224 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3225 #endif
3226 };
3227 
dump_vmcb(struct kvm_vcpu * vcpu)3228 static void dump_vmcb(struct kvm_vcpu *vcpu)
3229 {
3230 	struct vcpu_svm *svm = to_svm(vcpu);
3231 	struct vmcb_control_area *control = &svm->vmcb->control;
3232 	struct vmcb_save_area *save = &svm->vmcb->save;
3233 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3234 	char *vm_type;
3235 
3236 	if (!dump_invalid_vmcb) {
3237 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3238 		return;
3239 	}
3240 
3241 	guard(mutex)(&vmcb_dump_mutex);
3242 
3243 	vm_type = sev_snp_guest(vcpu->kvm) ? "SEV-SNP" :
3244 		  sev_es_guest(vcpu->kvm) ? "SEV-ES" :
3245 		  sev_guest(vcpu->kvm) ? "SEV" : "SVM";
3246 
3247 	pr_err("%s vCPU%u VMCB %p, last attempted VMRUN on CPU %d\n",
3248 	       vm_type, vcpu->vcpu_id, svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3249 	pr_err("VMCB Control Area:\n");
3250 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3251 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3252 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3253 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3254 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3255 	pr_err("%-20s%08x %08x\n", "intercepts:",
3256               control->intercepts[INTERCEPT_WORD3],
3257 	       control->intercepts[INTERCEPT_WORD4]);
3258 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3259 	pr_err("%-20s%d\n", "pause filter threshold:",
3260 	       control->pause_filter_thresh);
3261 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3262 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3263 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3264 	pr_err("%-20s%d\n", "asid:", control->asid);
3265 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3266 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3267 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3268 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3269 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3270 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3271 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3272 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3273 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3274 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3275 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3276 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3277 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3278 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3279 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3280 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3281 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3282 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3283 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3284 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3285 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3286 	pr_err("%-20s%016llx\n", "allowed_sev_features:", control->allowed_sev_features);
3287 	pr_err("%-20s%016llx\n", "guest_sev_features:", control->guest_sev_features);
3288 
3289 	if (sev_es_guest(vcpu->kvm)) {
3290 		save = sev_decrypt_vmsa(vcpu);
3291 		if (!save)
3292 			goto no_vmsa;
3293 
3294 		save01 = save;
3295 	}
3296 
3297 	pr_err("VMCB State Save Area:\n");
3298 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3299 	       "es:",
3300 	       save->es.selector, save->es.attrib,
3301 	       save->es.limit, save->es.base);
3302 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3303 	       "cs:",
3304 	       save->cs.selector, save->cs.attrib,
3305 	       save->cs.limit, save->cs.base);
3306 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3307 	       "ss:",
3308 	       save->ss.selector, save->ss.attrib,
3309 	       save->ss.limit, save->ss.base);
3310 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3311 	       "ds:",
3312 	       save->ds.selector, save->ds.attrib,
3313 	       save->ds.limit, save->ds.base);
3314 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3315 	       "fs:",
3316 	       save01->fs.selector, save01->fs.attrib,
3317 	       save01->fs.limit, save01->fs.base);
3318 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3319 	       "gs:",
3320 	       save01->gs.selector, save01->gs.attrib,
3321 	       save01->gs.limit, save01->gs.base);
3322 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3323 	       "gdtr:",
3324 	       save->gdtr.selector, save->gdtr.attrib,
3325 	       save->gdtr.limit, save->gdtr.base);
3326 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3327 	       "ldtr:",
3328 	       save01->ldtr.selector, save01->ldtr.attrib,
3329 	       save01->ldtr.limit, save01->ldtr.base);
3330 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3331 	       "idtr:",
3332 	       save->idtr.selector, save->idtr.attrib,
3333 	       save->idtr.limit, save->idtr.base);
3334 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3335 	       "tr:",
3336 	       save01->tr.selector, save01->tr.attrib,
3337 	       save01->tr.limit, save01->tr.base);
3338 	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3339 	       save->vmpl, save->cpl, save->efer);
3340 	pr_err("%-15s %016llx %-13s %016llx\n",
3341 	       "cr0:", save->cr0, "cr2:", save->cr2);
3342 	pr_err("%-15s %016llx %-13s %016llx\n",
3343 	       "cr3:", save->cr3, "cr4:", save->cr4);
3344 	pr_err("%-15s %016llx %-13s %016llx\n",
3345 	       "dr6:", save->dr6, "dr7:", save->dr7);
3346 	pr_err("%-15s %016llx %-13s %016llx\n",
3347 	       "rip:", save->rip, "rflags:", save->rflags);
3348 	pr_err("%-15s %016llx %-13s %016llx\n",
3349 	       "rsp:", save->rsp, "rax:", save->rax);
3350 	pr_err("%-15s %016llx %-13s %016llx\n",
3351 	       "s_cet:", save->s_cet, "ssp:", save->ssp);
3352 	pr_err("%-15s %016llx\n",
3353 	       "isst_addr:", save->isst_addr);
3354 	pr_err("%-15s %016llx %-13s %016llx\n",
3355 	       "star:", save01->star, "lstar:", save01->lstar);
3356 	pr_err("%-15s %016llx %-13s %016llx\n",
3357 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3358 	pr_err("%-15s %016llx %-13s %016llx\n",
3359 	       "kernel_gs_base:", save01->kernel_gs_base,
3360 	       "sysenter_cs:", save01->sysenter_cs);
3361 	pr_err("%-15s %016llx %-13s %016llx\n",
3362 	       "sysenter_esp:", save01->sysenter_esp,
3363 	       "sysenter_eip:", save01->sysenter_eip);
3364 	pr_err("%-15s %016llx %-13s %016llx\n",
3365 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3366 	pr_err("%-15s %016llx %-13s %016llx\n",
3367 	       "br_from:", save->br_from, "br_to:", save->br_to);
3368 	pr_err("%-15s %016llx %-13s %016llx\n",
3369 	       "excp_from:", save->last_excp_from,
3370 	       "excp_to:", save->last_excp_to);
3371 
3372 	if (sev_es_guest(vcpu->kvm)) {
3373 		struct sev_es_save_area *vmsa = (struct sev_es_save_area *)save;
3374 
3375 		pr_err("%-15s %016llx\n",
3376 		       "sev_features", vmsa->sev_features);
3377 
3378 		pr_err("%-15s %016llx %-13s %016llx\n",
3379 		       "pl0_ssp:", vmsa->pl0_ssp, "pl1_ssp:", vmsa->pl1_ssp);
3380 		pr_err("%-15s %016llx %-13s %016llx\n",
3381 		       "pl2_ssp:", vmsa->pl2_ssp, "pl3_ssp:", vmsa->pl3_ssp);
3382 		pr_err("%-15s %016llx\n",
3383 		       "u_cet:", vmsa->u_cet);
3384 
3385 		pr_err("%-15s %016llx %-13s %016llx\n",
3386 		       "rax:", vmsa->rax, "rbx:", vmsa->rbx);
3387 		pr_err("%-15s %016llx %-13s %016llx\n",
3388 		       "rcx:", vmsa->rcx, "rdx:", vmsa->rdx);
3389 		pr_err("%-15s %016llx %-13s %016llx\n",
3390 		       "rsi:", vmsa->rsi, "rdi:", vmsa->rdi);
3391 		pr_err("%-15s %016llx %-13s %016llx\n",
3392 		       "rbp:", vmsa->rbp, "rsp:", vmsa->rsp);
3393 		pr_err("%-15s %016llx %-13s %016llx\n",
3394 		       "r8:", vmsa->r8, "r9:", vmsa->r9);
3395 		pr_err("%-15s %016llx %-13s %016llx\n",
3396 		       "r10:", vmsa->r10, "r11:", vmsa->r11);
3397 		pr_err("%-15s %016llx %-13s %016llx\n",
3398 		       "r12:", vmsa->r12, "r13:", vmsa->r13);
3399 		pr_err("%-15s %016llx %-13s %016llx\n",
3400 		       "r14:", vmsa->r14, "r15:", vmsa->r15);
3401 		pr_err("%-15s %016llx %-13s %016llx\n",
3402 		       "xcr0:", vmsa->xcr0, "xss:", vmsa->xss);
3403 	} else {
3404 		pr_err("%-15s %016llx %-13s %016lx\n",
3405 		       "rax:", save->rax, "rbx:",
3406 		       vcpu->arch.regs[VCPU_REGS_RBX]);
3407 		pr_err("%-15s %016lx %-13s %016lx\n",
3408 		       "rcx:", vcpu->arch.regs[VCPU_REGS_RCX],
3409 		       "rdx:", vcpu->arch.regs[VCPU_REGS_RDX]);
3410 		pr_err("%-15s %016lx %-13s %016lx\n",
3411 		       "rsi:", vcpu->arch.regs[VCPU_REGS_RSI],
3412 		       "rdi:", vcpu->arch.regs[VCPU_REGS_RDI]);
3413 		pr_err("%-15s %016lx %-13s %016llx\n",
3414 		       "rbp:", vcpu->arch.regs[VCPU_REGS_RBP],
3415 		       "rsp:", save->rsp);
3416 #ifdef CONFIG_X86_64
3417 		pr_err("%-15s %016lx %-13s %016lx\n",
3418 		       "r8:", vcpu->arch.regs[VCPU_REGS_R8],
3419 		       "r9:", vcpu->arch.regs[VCPU_REGS_R9]);
3420 		pr_err("%-15s %016lx %-13s %016lx\n",
3421 		       "r10:", vcpu->arch.regs[VCPU_REGS_R10],
3422 		       "r11:", vcpu->arch.regs[VCPU_REGS_R11]);
3423 		pr_err("%-15s %016lx %-13s %016lx\n",
3424 		       "r12:", vcpu->arch.regs[VCPU_REGS_R12],
3425 		       "r13:", vcpu->arch.regs[VCPU_REGS_R13]);
3426 		pr_err("%-15s %016lx %-13s %016lx\n",
3427 		       "r14:", vcpu->arch.regs[VCPU_REGS_R14],
3428 		       "r15:", vcpu->arch.regs[VCPU_REGS_R15]);
3429 #endif
3430 	}
3431 
3432 no_vmsa:
3433 	if (sev_es_guest(vcpu->kvm))
3434 		sev_free_decrypted_vmsa(vcpu, save);
3435 }
3436 
svm_check_exit_valid(u64 exit_code)3437 static bool svm_check_exit_valid(u64 exit_code)
3438 {
3439 	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3440 		svm_exit_handlers[exit_code]);
3441 }
3442 
svm_handle_invalid_exit(struct kvm_vcpu * vcpu,u64 exit_code)3443 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3444 {
3445 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3446 	dump_vmcb(vcpu);
3447 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3448 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3449 	vcpu->run->internal.ndata = 2;
3450 	vcpu->run->internal.data[0] = exit_code;
3451 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3452 	return 0;
3453 }
3454 
svm_invoke_exit_handler(struct kvm_vcpu * vcpu,u64 exit_code)3455 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3456 {
3457 	if (!svm_check_exit_valid(exit_code))
3458 		return svm_handle_invalid_exit(vcpu, exit_code);
3459 
3460 #ifdef CONFIG_MITIGATION_RETPOLINE
3461 	if (exit_code == SVM_EXIT_MSR)
3462 		return msr_interception(vcpu);
3463 	else if (exit_code == SVM_EXIT_VINTR)
3464 		return interrupt_window_interception(vcpu);
3465 	else if (exit_code == SVM_EXIT_INTR)
3466 		return intr_interception(vcpu);
3467 	else if (exit_code == SVM_EXIT_HLT || exit_code == SVM_EXIT_IDLE_HLT)
3468 		return kvm_emulate_halt(vcpu);
3469 	else if (exit_code == SVM_EXIT_NPF)
3470 		return npf_interception(vcpu);
3471 #ifdef CONFIG_KVM_AMD_SEV
3472 	else if (exit_code == SVM_EXIT_VMGEXIT)
3473 		return sev_handle_vmgexit(vcpu);
3474 #endif
3475 #endif
3476 	return svm_exit_handlers[exit_code](vcpu);
3477 }
3478 
svm_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)3479 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3480 			      u64 *info1, u64 *info2,
3481 			      u32 *intr_info, u32 *error_code)
3482 {
3483 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3484 
3485 	*reason = control->exit_code;
3486 	*info1 = control->exit_info_1;
3487 	*info2 = control->exit_info_2;
3488 	*intr_info = control->exit_int_info;
3489 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3490 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3491 		*error_code = control->exit_int_info_err;
3492 	else
3493 		*error_code = 0;
3494 }
3495 
svm_get_entry_info(struct kvm_vcpu * vcpu,u32 * intr_info,u32 * error_code)3496 static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info,
3497 			       u32 *error_code)
3498 {
3499 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3500 
3501 	*intr_info = control->event_inj;
3502 
3503 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3504 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3505 		*error_code = control->event_inj_err;
3506 	else
3507 		*error_code = 0;
3508 
3509 }
3510 
svm_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)3511 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3512 {
3513 	struct vcpu_svm *svm = to_svm(vcpu);
3514 	struct kvm_run *kvm_run = vcpu->run;
3515 	u32 exit_code = svm->vmcb->control.exit_code;
3516 
3517 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3518 	if (!sev_es_guest(vcpu->kvm)) {
3519 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3520 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3521 		if (npt_enabled)
3522 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3523 	}
3524 
3525 	if (is_guest_mode(vcpu)) {
3526 		int vmexit;
3527 
3528 		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3529 
3530 		vmexit = nested_svm_exit_special(svm);
3531 
3532 		if (vmexit == NESTED_EXIT_CONTINUE)
3533 			vmexit = nested_svm_exit_handled(svm);
3534 
3535 		if (vmexit == NESTED_EXIT_DONE)
3536 			return 1;
3537 	}
3538 
3539 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3540 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3541 		kvm_run->fail_entry.hardware_entry_failure_reason
3542 			= svm->vmcb->control.exit_code;
3543 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3544 		dump_vmcb(vcpu);
3545 		return 0;
3546 	}
3547 
3548 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3549 		return 1;
3550 
3551 	return svm_invoke_exit_handler(vcpu, exit_code);
3552 }
3553 
pre_svm_run(struct kvm_vcpu * vcpu)3554 static int pre_svm_run(struct kvm_vcpu *vcpu)
3555 {
3556 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3557 	struct vcpu_svm *svm = to_svm(vcpu);
3558 
3559 	/*
3560 	 * If the previous vmrun of the vmcb occurred on a different physical
3561 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3562 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3563 	 */
3564 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3565 		svm->current_vmcb->asid_generation = 0;
3566 		vmcb_mark_all_dirty(svm->vmcb);
3567 		svm->current_vmcb->cpu = vcpu->cpu;
3568         }
3569 
3570 	if (sev_guest(vcpu->kvm))
3571 		return pre_sev_run(svm, vcpu->cpu);
3572 
3573 	/* FIXME: handle wraparound of asid_generation */
3574 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3575 		new_asid(svm, sd);
3576 
3577 	return 0;
3578 }
3579 
svm_inject_nmi(struct kvm_vcpu * vcpu)3580 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3581 {
3582 	struct vcpu_svm *svm = to_svm(vcpu);
3583 
3584 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3585 
3586 	if (svm->nmi_l1_to_l2)
3587 		return;
3588 
3589 	/*
3590 	 * No need to manually track NMI masking when vNMI is enabled, hardware
3591 	 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
3592 	 * case where software directly injects an NMI.
3593 	 */
3594 	if (!is_vnmi_enabled(svm)) {
3595 		svm->nmi_masked = true;
3596 		svm_set_iret_intercept(svm);
3597 	}
3598 	++vcpu->stat.nmi_injections;
3599 }
3600 
svm_is_vnmi_pending(struct kvm_vcpu * vcpu)3601 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3602 {
3603 	struct vcpu_svm *svm = to_svm(vcpu);
3604 
3605 	if (!is_vnmi_enabled(svm))
3606 		return false;
3607 
3608 	return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3609 }
3610 
svm_set_vnmi_pending(struct kvm_vcpu * vcpu)3611 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3612 {
3613 	struct vcpu_svm *svm = to_svm(vcpu);
3614 
3615 	if (!is_vnmi_enabled(svm))
3616 		return false;
3617 
3618 	if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3619 		return false;
3620 
3621 	svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3622 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3623 
3624 	/*
3625 	 * Because the pending NMI is serviced by hardware, KVM can't know when
3626 	 * the NMI is "injected", but for all intents and purposes, passing the
3627 	 * NMI off to hardware counts as injection.
3628 	 */
3629 	++vcpu->stat.nmi_injections;
3630 
3631 	return true;
3632 }
3633 
svm_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)3634 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3635 {
3636 	struct vcpu_svm *svm = to_svm(vcpu);
3637 	u32 type;
3638 
3639 	if (vcpu->arch.interrupt.soft) {
3640 		if (svm_update_soft_interrupt_rip(vcpu))
3641 			return;
3642 
3643 		type = SVM_EVTINJ_TYPE_SOFT;
3644 	} else {
3645 		type = SVM_EVTINJ_TYPE_INTR;
3646 	}
3647 
3648 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3649 			   vcpu->arch.interrupt.soft, reinjected);
3650 	++vcpu->stat.irq_injections;
3651 
3652 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3653 				       SVM_EVTINJ_VALID | type;
3654 }
3655 
svm_complete_interrupt_delivery(struct kvm_vcpu * vcpu,int delivery_mode,int trig_mode,int vector)3656 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3657 				     int trig_mode, int vector)
3658 {
3659 	/*
3660 	 * apic->apicv_active must be read after vcpu->mode.
3661 	 * Pairs with smp_store_release in vcpu_enter_guest.
3662 	 */
3663 	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3664 
3665 	/* Note, this is called iff the local APIC is in-kernel. */
3666 	if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3667 		/* Process the interrupt via kvm_check_and_inject_events(). */
3668 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3669 		kvm_vcpu_kick(vcpu);
3670 		return;
3671 	}
3672 
3673 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3674 	if (in_guest_mode) {
3675 		/*
3676 		 * Signal the doorbell to tell hardware to inject the IRQ.  If
3677 		 * the vCPU exits the guest before the doorbell chimes, hardware
3678 		 * will automatically process AVIC interrupts at the next VMRUN.
3679 		 */
3680 		avic_ring_doorbell(vcpu);
3681 	} else {
3682 		/*
3683 		 * Wake the vCPU if it was blocking.  KVM will then detect the
3684 		 * pending IRQ when checking if the vCPU has a wake event.
3685 		 */
3686 		kvm_vcpu_wake_up(vcpu);
3687 	}
3688 }
3689 
svm_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)3690 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3691 				  int trig_mode, int vector)
3692 {
3693 	kvm_lapic_set_irr(vector, apic);
3694 
3695 	/*
3696 	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3697 	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3698 	 * the read of guest_mode.  This guarantees that either VMRUN will see
3699 	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3700 	 * will signal the doorbell if the CPU has already entered the guest.
3701 	 */
3702 	smp_mb__after_atomic();
3703 	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3704 }
3705 
svm_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3706 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3707 {
3708 	struct vcpu_svm *svm = to_svm(vcpu);
3709 
3710 	/*
3711 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3712 	 * tracking is done using the CR write traps.
3713 	 */
3714 	if (sev_es_guest(vcpu->kvm))
3715 		return;
3716 
3717 	if (nested_svm_virtualize_tpr(vcpu))
3718 		return;
3719 
3720 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3721 
3722 	if (irr == -1)
3723 		return;
3724 
3725 	if (tpr >= irr)
3726 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3727 }
3728 
svm_get_nmi_mask(struct kvm_vcpu * vcpu)3729 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3730 {
3731 	struct vcpu_svm *svm = to_svm(vcpu);
3732 
3733 	if (is_vnmi_enabled(svm))
3734 		return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3735 	else
3736 		return svm->nmi_masked;
3737 }
3738 
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3739 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3740 {
3741 	struct vcpu_svm *svm = to_svm(vcpu);
3742 
3743 	if (is_vnmi_enabled(svm)) {
3744 		if (masked)
3745 			svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3746 		else
3747 			svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3748 
3749 	} else {
3750 		svm->nmi_masked = masked;
3751 		if (masked)
3752 			svm_set_iret_intercept(svm);
3753 		else
3754 			svm_clr_iret_intercept(svm);
3755 	}
3756 }
3757 
svm_nmi_blocked(struct kvm_vcpu * vcpu)3758 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3759 {
3760 	struct vcpu_svm *svm = to_svm(vcpu);
3761 	struct vmcb *vmcb = svm->vmcb;
3762 
3763 	if (!gif_set(svm))
3764 		return true;
3765 
3766 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3767 		return false;
3768 
3769 	if (svm_get_nmi_mask(vcpu))
3770 		return true;
3771 
3772 	return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3773 }
3774 
svm_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)3775 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3776 {
3777 	struct vcpu_svm *svm = to_svm(vcpu);
3778 	if (svm->nested.nested_run_pending)
3779 		return -EBUSY;
3780 
3781 	if (svm_nmi_blocked(vcpu))
3782 		return 0;
3783 
3784 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3785 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3786 		return -EBUSY;
3787 	return 1;
3788 }
3789 
svm_interrupt_blocked(struct kvm_vcpu * vcpu)3790 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3791 {
3792 	struct vcpu_svm *svm = to_svm(vcpu);
3793 	struct vmcb *vmcb = svm->vmcb;
3794 
3795 	if (!gif_set(svm))
3796 		return true;
3797 
3798 	if (is_guest_mode(vcpu)) {
3799 		/* As long as interrupts are being delivered...  */
3800 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3801 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3802 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3803 			return true;
3804 
3805 		/* ... vmexits aren't blocked by the interrupt shadow  */
3806 		if (nested_exit_on_intr(svm))
3807 			return false;
3808 	} else {
3809 		if (!svm_get_if_flag(vcpu))
3810 			return true;
3811 	}
3812 
3813 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3814 }
3815 
svm_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)3816 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3817 {
3818 	struct vcpu_svm *svm = to_svm(vcpu);
3819 
3820 	if (svm->nested.nested_run_pending)
3821 		return -EBUSY;
3822 
3823 	if (svm_interrupt_blocked(vcpu))
3824 		return 0;
3825 
3826 	/*
3827 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3828 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3829 	 */
3830 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3831 		return -EBUSY;
3832 
3833 	return 1;
3834 }
3835 
svm_enable_irq_window(struct kvm_vcpu * vcpu)3836 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3837 {
3838 	struct vcpu_svm *svm = to_svm(vcpu);
3839 
3840 	/*
3841 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3842 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3843 	 * get that intercept, this function will be called again though and
3844 	 * we'll get the vintr intercept. However, if the vGIF feature is
3845 	 * enabled, the STGI interception will not occur. Enable the irq
3846 	 * window under the assumption that the hardware will set the GIF.
3847 	 */
3848 	if (vgif || gif_set(svm)) {
3849 		/*
3850 		 * IRQ window is not needed when AVIC is enabled,
3851 		 * unless we have pending ExtINT since it cannot be injected
3852 		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3853 		 * and fallback to injecting IRQ via V_IRQ.
3854 		 *
3855 		 * If running nested, AVIC is already locally inhibited
3856 		 * on this vCPU, therefore there is no need to request
3857 		 * the VM wide AVIC inhibition.
3858 		 */
3859 		if (!is_guest_mode(vcpu))
3860 			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3861 
3862 		svm_set_vintr(svm);
3863 	}
3864 }
3865 
svm_enable_nmi_window(struct kvm_vcpu * vcpu)3866 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3867 {
3868 	struct vcpu_svm *svm = to_svm(vcpu);
3869 
3870 	/*
3871 	 * If NMIs are outright masked, i.e. the vCPU is already handling an
3872 	 * NMI, and KVM has not yet intercepted an IRET, then there is nothing
3873 	 * more to do at this time as KVM has already enabled IRET intercepts.
3874 	 * If KVM has already intercepted IRET, then single-step over the IRET,
3875 	 * as NMIs aren't architecturally unmasked until the IRET completes.
3876 	 *
3877 	 * If vNMI is enabled, KVM should never request an NMI window if NMIs
3878 	 * are masked, as KVM allows at most one to-be-injected NMI and one
3879 	 * pending NMI.  If two NMIs arrive simultaneously, KVM will inject one
3880 	 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are
3881 	 * unmasked.  KVM _will_ request an NMI window in some situations, e.g.
3882 	 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately
3883 	 * inject the NMI.  In those situations, KVM needs to single-step over
3884 	 * the STI shadow or intercept STGI.
3885 	 */
3886 	if (svm_get_nmi_mask(vcpu)) {
3887 		WARN_ON_ONCE(is_vnmi_enabled(svm));
3888 
3889 		if (!svm->awaiting_iret_completion)
3890 			return; /* IRET will cause a vm exit */
3891 	}
3892 
3893 	/*
3894 	 * SEV-ES guests are responsible for signaling when a vCPU is ready to
3895 	 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3896 	 * KVM can't intercept and single-step IRET to detect when NMIs are
3897 	 * unblocked (architecturally speaking).  See SVM_VMGEXIT_NMI_COMPLETE.
3898 	 *
3899 	 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3900 	 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3901 	 * supported NAEs in the GHCB protocol.
3902 	 */
3903 	if (sev_es_guest(vcpu->kvm))
3904 		return;
3905 
3906 	if (!gif_set(svm)) {
3907 		if (vgif)
3908 			svm_set_intercept(svm, INTERCEPT_STGI);
3909 		return; /* STGI will cause a vm exit */
3910 	}
3911 
3912 	/*
3913 	 * Something prevents NMI from been injected. Single step over possible
3914 	 * problem (IRET or exception injection or interrupt shadow)
3915 	 */
3916 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3917 	svm->nmi_singlestep = true;
3918 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3919 }
3920 
svm_flush_tlb_asid(struct kvm_vcpu * vcpu)3921 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3922 {
3923 	struct vcpu_svm *svm = to_svm(vcpu);
3924 
3925 	/*
3926 	 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3927 	 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3928 	 * entries, and thus is a superset of Hyper-V's fine grained flushing.
3929 	 */
3930 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3931 
3932 	/*
3933 	 * Flush only the current ASID even if the TLB flush was invoked via
3934 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3935 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3936 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3937 	 * VM-Exit (via kvm_mmu_reset_context()).
3938 	 */
3939 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3940 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3941 	else
3942 		svm->current_vmcb->asid_generation--;
3943 }
3944 
svm_flush_tlb_current(struct kvm_vcpu * vcpu)3945 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3946 {
3947 	hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3948 
3949 	/*
3950 	 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3951 	 * flush the NPT mappings via hypercall as flushing the ASID only
3952 	 * affects virtual to physical mappings, it does not invalidate guest
3953 	 * physical to host physical mappings.
3954 	 */
3955 	if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3956 		hyperv_flush_guest_mapping(root_tdp);
3957 
3958 	svm_flush_tlb_asid(vcpu);
3959 }
3960 
svm_flush_tlb_all(struct kvm_vcpu * vcpu)3961 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3962 {
3963 	/*
3964 	 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3965 	 * flushes should be routed to hv_flush_remote_tlbs() without requesting
3966 	 * a "regular" remote flush.  Reaching this point means either there's
3967 	 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
3968 	 * which might be fatal to the guest.  Yell, but try to recover.
3969 	 */
3970 	if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3971 		hv_flush_remote_tlbs(vcpu->kvm);
3972 
3973 	svm_flush_tlb_asid(vcpu);
3974 }
3975 
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)3976 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3977 {
3978 	struct vcpu_svm *svm = to_svm(vcpu);
3979 
3980 	invlpga(gva, svm->vmcb->control.asid);
3981 }
3982 
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)3983 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3984 {
3985 	struct vcpu_svm *svm = to_svm(vcpu);
3986 
3987 	if (nested_svm_virtualize_tpr(vcpu))
3988 		return;
3989 
3990 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3991 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3992 		kvm_set_cr8(vcpu, cr8);
3993 	}
3994 }
3995 
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)3996 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3997 {
3998 	struct vcpu_svm *svm = to_svm(vcpu);
3999 	u64 cr8;
4000 
4001 	if (nested_svm_virtualize_tpr(vcpu))
4002 		return;
4003 
4004 	cr8 = kvm_get_cr8(vcpu);
4005 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4006 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4007 }
4008 
svm_complete_soft_interrupt(struct kvm_vcpu * vcpu,u8 vector,int type)4009 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
4010 					int type)
4011 {
4012 	bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
4013 	bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
4014 	struct vcpu_svm *svm = to_svm(vcpu);
4015 
4016 	/*
4017 	 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
4018 	 * associated with the original soft exception/interrupt.  next_rip is
4019 	 * cleared on all exits that can occur while vectoring an event, so KVM
4020 	 * needs to manually set next_rip for re-injection.  Unlike the !nrips
4021 	 * case below, this needs to be done if and only if KVM is re-injecting
4022 	 * the same event, i.e. if the event is a soft exception/interrupt,
4023 	 * otherwise next_rip is unused on VMRUN.
4024 	 */
4025 	if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
4026 	    kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
4027 		svm->vmcb->control.next_rip = svm->soft_int_next_rip;
4028 	/*
4029 	 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
4030 	 * injecting the soft exception/interrupt.  That advancement needs to
4031 	 * be unwound if vectoring didn't complete.  Note, the new event may
4032 	 * not be the injected event, e.g. if KVM injected an INTn, the INTn
4033 	 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
4034 	 * be the reported vectored event, but RIP still needs to be unwound.
4035 	 */
4036 	else if (!nrips && (is_soft || is_exception) &&
4037 		 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4038 		kvm_rip_write(vcpu, svm->soft_int_old_rip);
4039 }
4040 
svm_complete_interrupts(struct kvm_vcpu * vcpu)4041 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4042 {
4043 	struct vcpu_svm *svm = to_svm(vcpu);
4044 	u8 vector;
4045 	int type;
4046 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
4047 	bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4048 	bool soft_int_injected = svm->soft_int_injected;
4049 
4050 	svm->nmi_l1_to_l2 = false;
4051 	svm->soft_int_injected = false;
4052 
4053 	/*
4054 	 * If we've made progress since setting awaiting_iret_completion, we've
4055 	 * executed an IRET and can allow NMI injection.
4056 	 */
4057 	if (svm->awaiting_iret_completion &&
4058 	    kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4059 		svm->awaiting_iret_completion = false;
4060 		svm->nmi_masked = false;
4061 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4062 	}
4063 
4064 	vcpu->arch.nmi_injected = false;
4065 	kvm_clear_exception_queue(vcpu);
4066 	kvm_clear_interrupt_queue(vcpu);
4067 
4068 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4069 		return;
4070 
4071 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4072 
4073 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4074 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4075 
4076 	if (soft_int_injected)
4077 		svm_complete_soft_interrupt(vcpu, vector, type);
4078 
4079 	switch (type) {
4080 	case SVM_EXITINTINFO_TYPE_NMI:
4081 		vcpu->arch.nmi_injected = true;
4082 		svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4083 		break;
4084 	case SVM_EXITINTINFO_TYPE_EXEPT: {
4085 		u32 error_code = 0;
4086 
4087 		/*
4088 		 * Never re-inject a #VC exception.
4089 		 */
4090 		if (vector == X86_TRAP_VC)
4091 			break;
4092 
4093 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR)
4094 			error_code = svm->vmcb->control.exit_int_info_err;
4095 
4096 		kvm_requeue_exception(vcpu, vector,
4097 				      exitintinfo & SVM_EXITINTINFO_VALID_ERR,
4098 				      error_code);
4099 		break;
4100 	}
4101 	case SVM_EXITINTINFO_TYPE_INTR:
4102 		kvm_queue_interrupt(vcpu, vector, false);
4103 		break;
4104 	case SVM_EXITINTINFO_TYPE_SOFT:
4105 		kvm_queue_interrupt(vcpu, vector, true);
4106 		break;
4107 	default:
4108 		break;
4109 	}
4110 
4111 }
4112 
svm_cancel_injection(struct kvm_vcpu * vcpu)4113 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4114 {
4115 	struct vcpu_svm *svm = to_svm(vcpu);
4116 	struct vmcb_control_area *control = &svm->vmcb->control;
4117 
4118 	control->exit_int_info = control->event_inj;
4119 	control->exit_int_info_err = control->event_inj_err;
4120 	control->event_inj = 0;
4121 	svm_complete_interrupts(vcpu);
4122 }
4123 
svm_vcpu_pre_run(struct kvm_vcpu * vcpu)4124 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4125 {
4126 	if (to_kvm_sev_info(vcpu->kvm)->need_init)
4127 		return -EINVAL;
4128 
4129 	return 1;
4130 }
4131 
svm_exit_handlers_fastpath(struct kvm_vcpu * vcpu)4132 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4133 {
4134 	struct vcpu_svm *svm = to_svm(vcpu);
4135 	struct vmcb_control_area *control = &svm->vmcb->control;
4136 
4137 	/*
4138 	 * Next RIP must be provided as IRQs are disabled, and accessing guest
4139 	 * memory to decode the instruction might fault, i.e. might sleep.
4140 	 */
4141 	if (!nrips || !control->next_rip)
4142 		return EXIT_FASTPATH_NONE;
4143 
4144 	if (is_guest_mode(vcpu))
4145 		return EXIT_FASTPATH_NONE;
4146 
4147 	switch (control->exit_code) {
4148 	case SVM_EXIT_MSR:
4149 		if (!control->exit_info_1)
4150 			break;
4151 		return handle_fastpath_wrmsr(vcpu);
4152 	case SVM_EXIT_HLT:
4153 		return handle_fastpath_hlt(vcpu);
4154 	case SVM_EXIT_INVD:
4155 		return handle_fastpath_invd(vcpu);
4156 	default:
4157 		break;
4158 	}
4159 
4160 	return EXIT_FASTPATH_NONE;
4161 }
4162 
svm_vcpu_enter_exit(struct kvm_vcpu * vcpu,bool spec_ctrl_intercepted)4163 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4164 {
4165 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
4166 	struct vcpu_svm *svm = to_svm(vcpu);
4167 
4168 	guest_state_enter_irqoff();
4169 
4170 	/*
4171 	 * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of
4172 	 * VMRUN controls whether or not physical IRQs are masked (KVM always
4173 	 * runs with V_INTR_MASKING_MASK).  Toggle RFLAGS.IF here to avoid the
4174 	 * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow
4175 	 * into guest state if delivery of an event during VMRUN triggers a
4176 	 * #VMEXIT, and the guest_state transitions already tell lockdep that
4177 	 * IRQs are being enabled/disabled.  Note!  GIF=0 for the entirety of
4178 	 * this path, so IRQs aren't actually unmasked while running host code.
4179 	 */
4180 	raw_local_irq_enable();
4181 
4182 	amd_clear_divider();
4183 
4184 	if (sev_es_guest(vcpu->kvm))
4185 		__svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted,
4186 				      sev_es_host_save_area(sd));
4187 	else
4188 		__svm_vcpu_run(svm, spec_ctrl_intercepted);
4189 
4190 	raw_local_irq_disable();
4191 
4192 	guest_state_exit_irqoff();
4193 }
4194 
svm_vcpu_run(struct kvm_vcpu * vcpu,u64 run_flags)4195 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
4196 {
4197 	bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT;
4198 	struct vcpu_svm *svm = to_svm(vcpu);
4199 	bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4200 
4201 	trace_kvm_entry(vcpu, force_immediate_exit);
4202 
4203 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4204 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4205 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4206 
4207 	/*
4208 	 * Disable singlestep if we're injecting an interrupt/exception.
4209 	 * We don't want our modified rflags to be pushed on the stack where
4210 	 * we might not be able to easily reset them if we disabled NMI
4211 	 * singlestep later.
4212 	 */
4213 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4214 		/*
4215 		 * Event injection happens before external interrupts cause a
4216 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
4217 		 * is enough to force an immediate vmexit.
4218 		 */
4219 		disable_nmi_singlestep(svm);
4220 		force_immediate_exit = true;
4221 	}
4222 
4223 	if (force_immediate_exit)
4224 		smp_send_reschedule(vcpu->cpu);
4225 
4226 	if (pre_svm_run(vcpu)) {
4227 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4228 		vcpu->run->fail_entry.hardware_entry_failure_reason = SVM_EXIT_ERR;
4229 		vcpu->run->fail_entry.cpu = vcpu->cpu;
4230 		return EXIT_FASTPATH_EXIT_USERSPACE;
4231 	}
4232 
4233 	sync_lapic_to_cr8(vcpu);
4234 
4235 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4236 		svm->vmcb->control.asid = svm->asid;
4237 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4238 	}
4239 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
4240 
4241 	svm_hv_update_vp_id(svm->vmcb, vcpu);
4242 
4243 	/*
4244 	 * Run with all-zero DR6 unless the guest can write DR6 freely, so that
4245 	 * KVM can get the exact cause of a #DB.  Note, loading guest DR6 from
4246 	 * KVM's snapshot is only necessary when DR accesses won't exit.
4247 	 */
4248 	if (unlikely(run_flags & KVM_RUN_LOAD_GUEST_DR6))
4249 		svm_set_dr6(vcpu, vcpu->arch.dr6);
4250 	else if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)))
4251 		svm_set_dr6(vcpu, DR6_ACTIVE_LOW);
4252 
4253 	clgi();
4254 	kvm_load_guest_xsave_state(vcpu);
4255 
4256 	/*
4257 	 * Hardware only context switches DEBUGCTL if LBR virtualization is
4258 	 * enabled.  Manually load DEBUGCTL if necessary (and restore it after
4259 	 * VM-Exit), as running with the host's DEBUGCTL can negatively affect
4260 	 * guest state and can even be fatal, e.g. due to Bus Lock Detect.
4261 	 */
4262 	if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4263 	    vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4264 		update_debugctlmsr(svm->vmcb->save.dbgctl);
4265 
4266 	kvm_wait_lapic_expire(vcpu);
4267 
4268 	/*
4269 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4270 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4271 	 * is no need to worry about the conditional branch over the wrmsr
4272 	 * being speculatively taken.
4273 	 */
4274 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4275 		x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4276 
4277 	svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4278 
4279 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4280 		x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4281 
4282 	if (!sev_es_guest(vcpu->kvm)) {
4283 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
4284 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4285 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4286 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4287 	}
4288 	vcpu->arch.regs_dirty = 0;
4289 
4290 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4291 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4292 
4293 	if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4294 	    vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4295 		update_debugctlmsr(vcpu->arch.host_debugctl);
4296 
4297 	kvm_load_host_xsave_state(vcpu);
4298 	stgi();
4299 
4300 	/* Any pending NMI will happen here */
4301 
4302 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4303 		kvm_after_interrupt(vcpu);
4304 
4305 	sync_cr8_to_lapic(vcpu);
4306 
4307 	svm->next_rip = 0;
4308 	if (is_guest_mode(vcpu)) {
4309 		nested_sync_control_from_vmcb02(svm);
4310 
4311 		/* Track VMRUNs that have made past consistency checking */
4312 		if (svm->nested.nested_run_pending &&
4313 		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4314                         ++vcpu->stat.nested_run;
4315 
4316 		svm->nested.nested_run_pending = 0;
4317 	}
4318 
4319 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4320 	vmcb_mark_all_clean(svm->vmcb);
4321 
4322 	/* if exit due to PF check for async PF */
4323 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4324 		vcpu->arch.apf.host_apf_flags =
4325 			kvm_read_and_reset_apf_flags();
4326 
4327 	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4328 
4329 	/*
4330 	 * We need to handle MC intercepts here before the vcpu has a chance to
4331 	 * change the physical cpu
4332 	 */
4333 	if (unlikely(svm->vmcb->control.exit_code ==
4334 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4335 		svm_handle_mce(vcpu);
4336 
4337 	trace_kvm_exit(vcpu, KVM_ISA_SVM);
4338 
4339 	svm_complete_interrupts(vcpu);
4340 
4341 	return svm_exit_handlers_fastpath(vcpu);
4342 }
4343 
svm_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)4344 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4345 			     int root_level)
4346 {
4347 	struct vcpu_svm *svm = to_svm(vcpu);
4348 	unsigned long cr3;
4349 
4350 	if (npt_enabled) {
4351 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4352 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4353 
4354 		hv_track_root_tdp(vcpu, root_hpa);
4355 
4356 		cr3 = vcpu->arch.cr3;
4357 	} else if (root_level >= PT64_ROOT_4LEVEL) {
4358 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4359 	} else {
4360 		/* PCID in the guest should be impossible with a 32-bit MMU. */
4361 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4362 		cr3 = root_hpa;
4363 	}
4364 
4365 	svm->vmcb->save.cr3 = cr3;
4366 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4367 }
4368 
4369 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4370 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4371 {
4372 	/*
4373 	 * Patch in the VMMCALL instruction:
4374 	 */
4375 	hypercall[0] = 0x0f;
4376 	hypercall[1] = 0x01;
4377 	hypercall[2] = 0xd9;
4378 }
4379 
4380 /*
4381  * The kvm parameter can be NULL (module initialization, or invocation before
4382  * VM creation). Be sure to check the kvm parameter before using it.
4383  */
svm_has_emulated_msr(struct kvm * kvm,u32 index)4384 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4385 {
4386 	switch (index) {
4387 	case MSR_IA32_MCG_EXT_CTL:
4388 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4389 		return false;
4390 	case MSR_IA32_SMBASE:
4391 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4392 			return false;
4393 		/* SEV-ES guests do not support SMM, so report false */
4394 		if (kvm && sev_es_guest(kvm))
4395 			return false;
4396 		break;
4397 	default:
4398 		break;
4399 	}
4400 
4401 	return true;
4402 }
4403 
svm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)4404 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4405 {
4406 	struct vcpu_svm *svm = to_svm(vcpu);
4407 
4408 	/*
4409 	 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4410 	 * can only disable all variants of by disallowing CR4.OSXSAVE from
4411 	 * being set.  As a result, if the host has XSAVE and XSAVES, and the
4412 	 * guest has XSAVE enabled, the guest can execute XSAVES without
4413 	 * faulting.  Treat XSAVES as enabled in this case regardless of
4414 	 * whether it's advertised to the guest so that KVM context switches
4415 	 * XSS on VM-Enter/VM-Exit.  Failure to do so would effectively give
4416 	 * the guest read/write access to the host's XSS.
4417 	 */
4418 	guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES,
4419 			     boot_cpu_has(X86_FEATURE_XSAVES) &&
4420 			     guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE));
4421 
4422 	/*
4423 	 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that
4424 	 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4425 	 * SVM on Intel is bonkers and extremely unlikely to work).
4426 	 */
4427 	if (guest_cpuid_is_intel_compatible(vcpu))
4428 		guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4429 
4430 	if (sev_guest(vcpu->kvm))
4431 		sev_vcpu_after_set_cpuid(svm);
4432 }
4433 
svm_has_wbinvd_exit(void)4434 static bool svm_has_wbinvd_exit(void)
4435 {
4436 	return true;
4437 }
4438 
4439 #define PRE_EX(exit)  { .exit_code = (exit), \
4440 			.stage = X86_ICPT_PRE_EXCEPT, }
4441 #define POST_EX(exit) { .exit_code = (exit), \
4442 			.stage = X86_ICPT_POST_EXCEPT, }
4443 #define POST_MEM(exit) { .exit_code = (exit), \
4444 			.stage = X86_ICPT_POST_MEMACCESS, }
4445 
4446 static const struct __x86_intercept {
4447 	u32 exit_code;
4448 	enum x86_intercept_stage stage;
4449 } x86_intercept_map[] = {
4450 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4451 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4452 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4453 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4454 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4455 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4456 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4457 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4458 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4459 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4460 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4461 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4462 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4463 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4464 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4465 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4466 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4467 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4468 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4469 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4470 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4471 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4472 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4473 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4474 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4475 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4476 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4477 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4478 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4479 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4480 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4481 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4482 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4483 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4484 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4485 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4486 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4487 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4488 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4489 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4490 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4491 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4492 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4493 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4494 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4495 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4496 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4497 };
4498 
4499 #undef PRE_EX
4500 #undef POST_EX
4501 #undef POST_MEM
4502 
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)4503 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4504 			       struct x86_instruction_info *info,
4505 			       enum x86_intercept_stage stage,
4506 			       struct x86_exception *exception)
4507 {
4508 	struct vcpu_svm *svm = to_svm(vcpu);
4509 	int vmexit, ret = X86EMUL_CONTINUE;
4510 	struct __x86_intercept icpt_info;
4511 	struct vmcb *vmcb = svm->vmcb;
4512 
4513 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4514 		goto out;
4515 
4516 	icpt_info = x86_intercept_map[info->intercept];
4517 
4518 	if (stage != icpt_info.stage)
4519 		goto out;
4520 
4521 	switch (icpt_info.exit_code) {
4522 	case SVM_EXIT_READ_CR0:
4523 		if (info->intercept == x86_intercept_cr_read)
4524 			icpt_info.exit_code += info->modrm_reg;
4525 		break;
4526 	case SVM_EXIT_WRITE_CR0: {
4527 		unsigned long cr0, val;
4528 
4529 		if (info->intercept == x86_intercept_cr_write)
4530 			icpt_info.exit_code += info->modrm_reg;
4531 
4532 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4533 		    info->intercept == x86_intercept_clts)
4534 			break;
4535 
4536 		if (!(vmcb12_is_intercept(&svm->nested.ctl,
4537 					INTERCEPT_SELECTIVE_CR0)))
4538 			break;
4539 
4540 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4541 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4542 
4543 		if (info->intercept == x86_intercept_lmsw) {
4544 			cr0 &= 0xfUL;
4545 			val &= 0xfUL;
4546 			/* lmsw can't clear PE - catch this here */
4547 			if (cr0 & X86_CR0_PE)
4548 				val |= X86_CR0_PE;
4549 		}
4550 
4551 		if (cr0 ^ val)
4552 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4553 
4554 		break;
4555 	}
4556 	case SVM_EXIT_READ_DR0:
4557 	case SVM_EXIT_WRITE_DR0:
4558 		icpt_info.exit_code += info->modrm_reg;
4559 		break;
4560 	case SVM_EXIT_MSR:
4561 		if (info->intercept == x86_intercept_wrmsr)
4562 			vmcb->control.exit_info_1 = 1;
4563 		else
4564 			vmcb->control.exit_info_1 = 0;
4565 		break;
4566 	case SVM_EXIT_PAUSE:
4567 		/*
4568 		 * We get this for NOP only, but pause
4569 		 * is rep not, check this here
4570 		 */
4571 		if (info->rep_prefix != REPE_PREFIX)
4572 			goto out;
4573 		break;
4574 	case SVM_EXIT_IOIO: {
4575 		u64 exit_info;
4576 		u32 bytes;
4577 
4578 		if (info->intercept == x86_intercept_in ||
4579 		    info->intercept == x86_intercept_ins) {
4580 			exit_info = ((info->src_val & 0xffff) << 16) |
4581 				SVM_IOIO_TYPE_MASK;
4582 			bytes = info->dst_bytes;
4583 		} else {
4584 			exit_info = (info->dst_val & 0xffff) << 16;
4585 			bytes = info->src_bytes;
4586 		}
4587 
4588 		if (info->intercept == x86_intercept_outs ||
4589 		    info->intercept == x86_intercept_ins)
4590 			exit_info |= SVM_IOIO_STR_MASK;
4591 
4592 		if (info->rep_prefix)
4593 			exit_info |= SVM_IOIO_REP_MASK;
4594 
4595 		bytes = min(bytes, 4u);
4596 
4597 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4598 
4599 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4600 
4601 		vmcb->control.exit_info_1 = exit_info;
4602 		vmcb->control.exit_info_2 = info->next_rip;
4603 
4604 		break;
4605 	}
4606 	default:
4607 		break;
4608 	}
4609 
4610 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4611 	if (static_cpu_has(X86_FEATURE_NRIPS))
4612 		vmcb->control.next_rip  = info->next_rip;
4613 	vmcb->control.exit_code = icpt_info.exit_code;
4614 	vmexit = nested_svm_exit_handled(svm);
4615 
4616 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4617 					   : X86EMUL_CONTINUE;
4618 
4619 out:
4620 	return ret;
4621 }
4622 
svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)4623 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4624 {
4625 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4626 		vcpu->arch.at_instruction_boundary = true;
4627 }
4628 
svm_setup_mce(struct kvm_vcpu * vcpu)4629 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4630 {
4631 	/* [63:9] are reserved. */
4632 	vcpu->arch.mcg_cap &= 0x1ff;
4633 }
4634 
4635 #ifdef CONFIG_KVM_SMM
svm_smi_blocked(struct kvm_vcpu * vcpu)4636 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4637 {
4638 	struct vcpu_svm *svm = to_svm(vcpu);
4639 
4640 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4641 	if (!gif_set(svm))
4642 		return true;
4643 
4644 	return is_smm(vcpu);
4645 }
4646 
svm_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4647 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4648 {
4649 	struct vcpu_svm *svm = to_svm(vcpu);
4650 	if (svm->nested.nested_run_pending)
4651 		return -EBUSY;
4652 
4653 	if (svm_smi_blocked(vcpu))
4654 		return 0;
4655 
4656 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4657 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4658 		return -EBUSY;
4659 
4660 	return 1;
4661 }
4662 
svm_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)4663 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4664 {
4665 	struct vcpu_svm *svm = to_svm(vcpu);
4666 	struct kvm_host_map map_save;
4667 	int ret;
4668 
4669 	if (!is_guest_mode(vcpu))
4670 		return 0;
4671 
4672 	/*
4673 	 * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
4674 	 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4675 	 */
4676 
4677 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4678 		return 1;
4679 
4680 	smram->smram64.svm_guest_flag = 1;
4681 	smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4682 
4683 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4684 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4685 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4686 
4687 	ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4688 	if (ret)
4689 		return ret;
4690 
4691 	/*
4692 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4693 	 * VMCB01 is going to be used during SMM and thus the state will
4694 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4695 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4696 	 * format of the area is identical to guest save area offsetted
4697 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4698 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4699 	 * L1 hypervisor to save additional host context (e.g. KVM does
4700 	 * that, see svm_prepare_switch_to_guest()) which must be
4701 	 * preserved.
4702 	 */
4703 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4704 		return 1;
4705 
4706 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4707 
4708 	svm_copy_vmrun_state(map_save.hva + 0x400,
4709 			     &svm->vmcb01.ptr->save);
4710 
4711 	kvm_vcpu_unmap(vcpu, &map_save);
4712 	return 0;
4713 }
4714 
svm_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)4715 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4716 {
4717 	struct vcpu_svm *svm = to_svm(vcpu);
4718 	struct kvm_host_map map, map_save;
4719 	struct vmcb *vmcb12;
4720 	int ret;
4721 
4722 	const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4723 
4724 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4725 		return 0;
4726 
4727 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4728 	if (!smram64->svm_guest_flag)
4729 		return 0;
4730 
4731 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
4732 		return 1;
4733 
4734 	if (!(smram64->efer & EFER_SVME))
4735 		return 1;
4736 
4737 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4738 		return 1;
4739 
4740 	ret = 1;
4741 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4742 		goto unmap_map;
4743 
4744 	if (svm_allocate_nested(svm))
4745 		goto unmap_save;
4746 
4747 	/*
4748 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4749 	 * used during SMM (see svm_enter_smm())
4750 	 */
4751 
4752 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4753 
4754 	/*
4755 	 * Enter the nested guest now
4756 	 */
4757 
4758 	vmcb_mark_all_dirty(svm->vmcb01.ptr);
4759 
4760 	vmcb12 = map.hva;
4761 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4762 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4763 	ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4764 
4765 	if (ret)
4766 		goto unmap_save;
4767 
4768 	svm->nested.nested_run_pending = 1;
4769 
4770 unmap_save:
4771 	kvm_vcpu_unmap(vcpu, &map_save);
4772 unmap_map:
4773 	kvm_vcpu_unmap(vcpu, &map);
4774 	return ret;
4775 }
4776 
svm_enable_smi_window(struct kvm_vcpu * vcpu)4777 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4778 {
4779 	struct vcpu_svm *svm = to_svm(vcpu);
4780 
4781 	if (!gif_set(svm)) {
4782 		if (vgif)
4783 			svm_set_intercept(svm, INTERCEPT_STGI);
4784 		/* STGI will cause a vm exit */
4785 	} else {
4786 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4787 	}
4788 }
4789 #endif
4790 
svm_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)4791 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4792 					 void *insn, int insn_len)
4793 {
4794 	struct vcpu_svm *svm = to_svm(vcpu);
4795 	bool smep, smap, is_user;
4796 	u64 error_code;
4797 
4798 	/* Check that emulation is possible during event vectoring */
4799 	if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) &&
4800 	    !kvm_can_emulate_event_vectoring(emul_type))
4801 		return X86EMUL_UNHANDLEABLE_VECTORING;
4802 
4803 	/* Emulation is always possible when KVM has access to all guest state. */
4804 	if (!sev_guest(vcpu->kvm))
4805 		return X86EMUL_CONTINUE;
4806 
4807 	/* #UD and #GP should never be intercepted for SEV guests. */
4808 	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4809 				  EMULTYPE_TRAP_UD_FORCED |
4810 				  EMULTYPE_VMWARE_GP));
4811 
4812 	/*
4813 	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4814 	 * to guest register state.
4815 	 */
4816 	if (sev_es_guest(vcpu->kvm))
4817 		return X86EMUL_RETRY_INSTR;
4818 
4819 	/*
4820 	 * Emulation is possible if the instruction is already decoded, e.g.
4821 	 * when completing I/O after returning from userspace.
4822 	 */
4823 	if (emul_type & EMULTYPE_NO_DECODE)
4824 		return X86EMUL_CONTINUE;
4825 
4826 	/*
4827 	 * Emulation is possible for SEV guests if and only if a prefilled
4828 	 * buffer containing the bytes of the intercepted instruction is
4829 	 * available. SEV guest memory is encrypted with a guest specific key
4830 	 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
4831 	 * decode garbage.
4832 	 *
4833 	 * If KVM is NOT trying to simply skip an instruction, inject #UD if
4834 	 * KVM reached this point without an instruction buffer.  In practice,
4835 	 * this path should never be hit by a well-behaved guest, e.g. KVM
4836 	 * doesn't intercept #UD or #GP for SEV guests, but this path is still
4837 	 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4838 	 * access, and needs to be handled by KVM to avoid putting the guest
4839 	 * into an infinite loop.   Injecting #UD is somewhat arbitrary, but
4840 	 * its the least awful option given lack of insight into the guest.
4841 	 *
4842 	 * If KVM is trying to skip an instruction, simply resume the guest.
4843 	 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4844 	 * will attempt to re-inject the INT3/INTO and skip the instruction.
4845 	 * In that scenario, retrying the INT3/INTO and hoping the guest will
4846 	 * make forward progress is the only option that has a chance of
4847 	 * success (and in practice it will work the vast majority of the time).
4848 	 */
4849 	if (unlikely(!insn)) {
4850 		if (emul_type & EMULTYPE_SKIP)
4851 			return X86EMUL_UNHANDLEABLE;
4852 
4853 		kvm_queue_exception(vcpu, UD_VECTOR);
4854 		return X86EMUL_PROPAGATE_FAULT;
4855 	}
4856 
4857 	/*
4858 	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4859 	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4860 	 * the faulting instruction because the code fetch itself faulted, e.g.
4861 	 * the guest attempted to fetch from emulated MMIO or a guest page
4862 	 * table used to translate CS:RIP resides in emulated MMIO.
4863 	 */
4864 	if (likely(insn_len))
4865 		return X86EMUL_CONTINUE;
4866 
4867 	/*
4868 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4869 	 *
4870 	 * Errata:
4871 	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4872 	 * possible that CPU microcode implementing DecodeAssist will fail to
4873 	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4874 	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
4875 	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4876 	 * gives up and does not fill the instruction bytes buffer.
4877 	 *
4878 	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4879 	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4880 	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4881 	 * GuestIntrBytes field of the VMCB.
4882 	 *
4883 	 * This does _not_ mean that the erratum has been encountered, as the
4884 	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4885 	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4886 	 * encountered a reserved/not-present #PF.
4887 	 *
4888 	 * To hit the erratum, the following conditions must be true:
4889 	 *    1. CR4.SMAP=1 (obviously).
4890 	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4891 	 *       have been hit as the guest would have encountered a SMEP
4892 	 *       violation #PF, not a #NPF.
4893 	 *    3. The #NPF is not due to a code fetch, in which case failure to
4894 	 *       retrieve the instruction bytes is legitimate (see abvoe).
4895 	 *
4896 	 * In addition, don't apply the erratum workaround if the #NPF occurred
4897 	 * while translating guest page tables (see below).
4898 	 */
4899 	error_code = svm->vmcb->control.exit_info_1;
4900 	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4901 		goto resume_guest;
4902 
4903 	smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4904 	smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4905 	is_user = svm_get_cpl(vcpu) == 3;
4906 	if (smap && (!smep || is_user)) {
4907 		pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4908 
4909 		/*
4910 		 * If the fault occurred in userspace, arbitrarily inject #GP
4911 		 * to avoid killing the guest and to hopefully avoid confusing
4912 		 * the guest kernel too much, e.g. injecting #PF would not be
4913 		 * coherent with respect to the guest's page tables.  Request
4914 		 * triple fault if the fault occurred in the kernel as there's
4915 		 * no fault that KVM can inject without confusing the guest.
4916 		 * In practice, the triple fault is moot as no sane SEV kernel
4917 		 * will execute from user memory while also running with SMAP=1.
4918 		 */
4919 		if (is_user)
4920 			kvm_inject_gp(vcpu, 0);
4921 		else
4922 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4923 		return X86EMUL_PROPAGATE_FAULT;
4924 	}
4925 
4926 resume_guest:
4927 	/*
4928 	 * If the erratum was not hit, simply resume the guest and let it fault
4929 	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4930 	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4931 	 * userspace will kill the guest, and letting the emulator read garbage
4932 	 * will yield random behavior and potentially corrupt the guest.
4933 	 *
4934 	 * Simply resuming the guest is technically not a violation of the SEV
4935 	 * architecture.  AMD's APM states that all code fetches and page table
4936 	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4937 	 * APM also states that encrypted accesses to MMIO are "ignored", but
4938 	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4939 	 * the guest spin is technically "ignoring" the access.
4940 	 */
4941 	return X86EMUL_RETRY_INSTR;
4942 }
4943 
svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)4944 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4945 {
4946 	struct vcpu_svm *svm = to_svm(vcpu);
4947 
4948 	return !gif_set(svm);
4949 }
4950 
svm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)4951 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4952 {
4953 	if (!sev_es_guest(vcpu->kvm))
4954 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4955 
4956 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4957 }
4958 
svm_vm_destroy(struct kvm * kvm)4959 static void svm_vm_destroy(struct kvm *kvm)
4960 {
4961 	avic_vm_destroy(kvm);
4962 	sev_vm_destroy(kvm);
4963 
4964 	svm_srso_vm_destroy();
4965 }
4966 
svm_vm_init(struct kvm * kvm)4967 static int svm_vm_init(struct kvm *kvm)
4968 {
4969 	int type = kvm->arch.vm_type;
4970 
4971 	if (type != KVM_X86_DEFAULT_VM &&
4972 	    type != KVM_X86_SW_PROTECTED_VM) {
4973 		kvm->arch.has_protected_state =
4974 			(type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM);
4975 		to_kvm_sev_info(kvm)->need_init = true;
4976 
4977 		kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM);
4978 		kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem;
4979 	}
4980 
4981 	if (!pause_filter_count || !pause_filter_thresh)
4982 		kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE);
4983 
4984 	if (enable_apicv) {
4985 		int ret = avic_vm_init(kvm);
4986 		if (ret)
4987 			return ret;
4988 	}
4989 
4990 	svm_srso_vm_init();
4991 	return 0;
4992 }
4993 
svm_alloc_apic_backing_page(struct kvm_vcpu * vcpu)4994 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu)
4995 {
4996 	struct page *page = snp_safe_alloc_page();
4997 
4998 	if (!page)
4999 		return NULL;
5000 
5001 	return page_address(page);
5002 }
5003 
5004 struct kvm_x86_ops svm_x86_ops __initdata = {
5005 	.name = KBUILD_MODNAME,
5006 
5007 	.check_processor_compatibility = svm_check_processor_compat,
5008 
5009 	.hardware_unsetup = svm_hardware_unsetup,
5010 	.enable_virtualization_cpu = svm_enable_virtualization_cpu,
5011 	.disable_virtualization_cpu = svm_disable_virtualization_cpu,
5012 	.emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu,
5013 	.has_emulated_msr = svm_has_emulated_msr,
5014 
5015 	.vcpu_create = svm_vcpu_create,
5016 	.vcpu_free = svm_vcpu_free,
5017 	.vcpu_reset = svm_vcpu_reset,
5018 
5019 	.vm_size = sizeof(struct kvm_svm),
5020 	.vm_init = svm_vm_init,
5021 	.vm_destroy = svm_vm_destroy,
5022 
5023 	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
5024 	.vcpu_load = svm_vcpu_load,
5025 	.vcpu_put = svm_vcpu_put,
5026 	.vcpu_blocking = avic_vcpu_blocking,
5027 	.vcpu_unblocking = avic_vcpu_unblocking,
5028 
5029 	.update_exception_bitmap = svm_update_exception_bitmap,
5030 	.get_feature_msr = svm_get_feature_msr,
5031 	.get_msr = svm_get_msr,
5032 	.set_msr = svm_set_msr,
5033 	.get_segment_base = svm_get_segment_base,
5034 	.get_segment = svm_get_segment,
5035 	.set_segment = svm_set_segment,
5036 	.get_cpl = svm_get_cpl,
5037 	.get_cpl_no_cache = svm_get_cpl,
5038 	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
5039 	.is_valid_cr0 = svm_is_valid_cr0,
5040 	.set_cr0 = svm_set_cr0,
5041 	.post_set_cr3 = sev_post_set_cr3,
5042 	.is_valid_cr4 = svm_is_valid_cr4,
5043 	.set_cr4 = svm_set_cr4,
5044 	.set_efer = svm_set_efer,
5045 	.get_idt = svm_get_idt,
5046 	.set_idt = svm_set_idt,
5047 	.get_gdt = svm_get_gdt,
5048 	.set_gdt = svm_set_gdt,
5049 	.set_dr7 = svm_set_dr7,
5050 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5051 	.cache_reg = svm_cache_reg,
5052 	.get_rflags = svm_get_rflags,
5053 	.set_rflags = svm_set_rflags,
5054 	.get_if_flag = svm_get_if_flag,
5055 
5056 	.flush_tlb_all = svm_flush_tlb_all,
5057 	.flush_tlb_current = svm_flush_tlb_current,
5058 	.flush_tlb_gva = svm_flush_tlb_gva,
5059 	.flush_tlb_guest = svm_flush_tlb_asid,
5060 
5061 	.vcpu_pre_run = svm_vcpu_pre_run,
5062 	.vcpu_run = svm_vcpu_run,
5063 	.handle_exit = svm_handle_exit,
5064 	.skip_emulated_instruction = svm_skip_emulated_instruction,
5065 	.update_emulated_instruction = NULL,
5066 	.set_interrupt_shadow = svm_set_interrupt_shadow,
5067 	.get_interrupt_shadow = svm_get_interrupt_shadow,
5068 	.patch_hypercall = svm_patch_hypercall,
5069 	.inject_irq = svm_inject_irq,
5070 	.inject_nmi = svm_inject_nmi,
5071 	.is_vnmi_pending = svm_is_vnmi_pending,
5072 	.set_vnmi_pending = svm_set_vnmi_pending,
5073 	.inject_exception = svm_inject_exception,
5074 	.cancel_injection = svm_cancel_injection,
5075 	.interrupt_allowed = svm_interrupt_allowed,
5076 	.nmi_allowed = svm_nmi_allowed,
5077 	.get_nmi_mask = svm_get_nmi_mask,
5078 	.set_nmi_mask = svm_set_nmi_mask,
5079 	.enable_nmi_window = svm_enable_nmi_window,
5080 	.enable_irq_window = svm_enable_irq_window,
5081 	.update_cr8_intercept = svm_update_cr8_intercept,
5082 
5083 	.x2apic_icr_is_split = true,
5084 	.set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
5085 	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
5086 	.apicv_post_state_restore = avic_apicv_post_state_restore,
5087 	.required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
5088 
5089 	.get_exit_info = svm_get_exit_info,
5090 	.get_entry_info = svm_get_entry_info,
5091 
5092 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
5093 
5094 	.has_wbinvd_exit = svm_has_wbinvd_exit,
5095 
5096 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
5097 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
5098 	.write_tsc_offset = svm_write_tsc_offset,
5099 	.write_tsc_multiplier = svm_write_tsc_multiplier,
5100 
5101 	.load_mmu_pgd = svm_load_mmu_pgd,
5102 
5103 	.check_intercept = svm_check_intercept,
5104 	.handle_exit_irqoff = svm_handle_exit_irqoff,
5105 
5106 	.nested_ops = &svm_nested_ops,
5107 
5108 	.deliver_interrupt = svm_deliver_interrupt,
5109 	.pi_update_irte = avic_pi_update_irte,
5110 	.setup_mce = svm_setup_mce,
5111 
5112 #ifdef CONFIG_KVM_SMM
5113 	.smi_allowed = svm_smi_allowed,
5114 	.enter_smm = svm_enter_smm,
5115 	.leave_smm = svm_leave_smm,
5116 	.enable_smi_window = svm_enable_smi_window,
5117 #endif
5118 
5119 #ifdef CONFIG_KVM_AMD_SEV
5120 	.dev_get_attr = sev_dev_get_attr,
5121 	.mem_enc_ioctl = sev_mem_enc_ioctl,
5122 	.mem_enc_register_region = sev_mem_enc_register_region,
5123 	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
5124 	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
5125 
5126 	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5127 	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
5128 #endif
5129 	.check_emulate_instruction = svm_check_emulate_instruction,
5130 
5131 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
5132 
5133 	.recalc_intercepts = svm_recalc_intercepts,
5134 	.complete_emulated_msr = svm_complete_emulated_msr,
5135 
5136 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5137 	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5138 	.alloc_apic_backing_page = svm_alloc_apic_backing_page,
5139 
5140 	.gmem_prepare = sev_gmem_prepare,
5141 	.gmem_invalidate = sev_gmem_invalidate,
5142 	.gmem_max_mapping_level = sev_gmem_max_mapping_level,
5143 };
5144 
5145 /*
5146  * The default MMIO mask is a single bit (excluding the present bit),
5147  * which could conflict with the memory encryption bit. Check for
5148  * memory encryption support and override the default MMIO mask if
5149  * memory encryption is enabled.
5150  */
svm_adjust_mmio_mask(void)5151 static __init void svm_adjust_mmio_mask(void)
5152 {
5153 	unsigned int enc_bit, mask_bit;
5154 	u64 msr, mask;
5155 
5156 	/* If there is no memory encryption support, use existing mask */
5157 	if (cpuid_eax(0x80000000) < 0x8000001f)
5158 		return;
5159 
5160 	/* If memory encryption is not enabled, use existing mask */
5161 	rdmsrq(MSR_AMD64_SYSCFG, msr);
5162 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5163 		return;
5164 
5165 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5166 	mask_bit = boot_cpu_data.x86_phys_bits;
5167 
5168 	/* Increment the mask bit if it is the same as the encryption bit */
5169 	if (enc_bit == mask_bit)
5170 		mask_bit++;
5171 
5172 	/*
5173 	 * If the mask bit location is below 52, then some bits above the
5174 	 * physical addressing limit will always be reserved, so use the
5175 	 * rsvd_bits() function to generate the mask. This mask, along with
5176 	 * the present bit, will be used to generate a page fault with
5177 	 * PFER.RSV = 1.
5178 	 *
5179 	 * If the mask bit location is 52 (or above), then clear the mask.
5180 	 */
5181 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5182 
5183 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5184 }
5185 
svm_set_cpu_caps(void)5186 static __init void svm_set_cpu_caps(void)
5187 {
5188 	kvm_set_cpu_caps();
5189 
5190 	kvm_caps.supported_perf_cap = 0;
5191 
5192 	kvm_cpu_cap_clear(X86_FEATURE_IBT);
5193 
5194 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
5195 	if (nested) {
5196 		kvm_cpu_cap_set(X86_FEATURE_SVM);
5197 		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5198 
5199 		/*
5200 		 * KVM currently flushes TLBs on *every* nested SVM transition,
5201 		 * and so for all intents and purposes KVM supports flushing by
5202 		 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
5203 		 */
5204 		kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);
5205 
5206 		if (nrips)
5207 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5208 
5209 		if (npt_enabled)
5210 			kvm_cpu_cap_set(X86_FEATURE_NPT);
5211 
5212 		if (tsc_scaling)
5213 			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5214 
5215 		if (vls)
5216 			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5217 		if (lbrv)
5218 			kvm_cpu_cap_set(X86_FEATURE_LBRV);
5219 
5220 		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5221 			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5222 
5223 		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5224 			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5225 
5226 		if (vgif)
5227 			kvm_cpu_cap_set(X86_FEATURE_VGIF);
5228 
5229 		if (vnmi)
5230 			kvm_cpu_cap_set(X86_FEATURE_VNMI);
5231 
5232 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
5233 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5234 	}
5235 
5236 	if (cpu_feature_enabled(X86_FEATURE_BUS_LOCK_THRESHOLD))
5237 		kvm_caps.has_bus_lock_exit = true;
5238 
5239 	/* CPUID 0x80000008 */
5240 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5241 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
5242 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5243 
5244 	if (enable_pmu) {
5245 		/*
5246 		 * Enumerate support for PERFCTR_CORE if and only if KVM has
5247 		 * access to enough counters to virtualize "core" support,
5248 		 * otherwise limit vPMU support to the legacy number of counters.
5249 		 */
5250 		if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5251 			kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5252 							  kvm_pmu_cap.num_counters_gp);
5253 		else
5254 			kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5255 
5256 		if (kvm_pmu_cap.version != 2 ||
5257 		    !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5258 			kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5259 	}
5260 
5261 	/* CPUID 0x8000001F (SME/SEV features) */
5262 	sev_set_cpu_caps();
5263 
5264 	/*
5265 	 * Clear capabilities that are automatically configured by common code,
5266 	 * but that require explicit SVM support (that isn't yet implemented).
5267 	 */
5268 	kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT);
5269 	kvm_cpu_cap_clear(X86_FEATURE_MSR_IMM);
5270 }
5271 
svm_hardware_setup(void)5272 static __init int svm_hardware_setup(void)
5273 {
5274 	void *iopm_va;
5275 	int cpu, r;
5276 
5277 	/*
5278 	 * NX is required for shadow paging and for NPT if the NX huge pages
5279 	 * mitigation is enabled.
5280 	 */
5281 	if (!boot_cpu_has(X86_FEATURE_NX)) {
5282 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
5283 		return -EOPNOTSUPP;
5284 	}
5285 	kvm_enable_efer_bits(EFER_NX);
5286 
5287 	kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5288 				     XFEATURE_MASK_BNDCSR);
5289 
5290 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5291 		kvm_enable_efer_bits(EFER_FFXSR);
5292 
5293 	if (tsc_scaling) {
5294 		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5295 			tsc_scaling = false;
5296 		} else {
5297 			pr_info("TSC scaling supported\n");
5298 			kvm_caps.has_tsc_control = true;
5299 		}
5300 	}
5301 	kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5302 	kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5303 
5304 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5305 
5306 	if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5307 		kvm_enable_efer_bits(EFER_AUTOIBRS);
5308 
5309 	/* Check for pause filtering support */
5310 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5311 		pause_filter_count = 0;
5312 		pause_filter_thresh = 0;
5313 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5314 		pause_filter_thresh = 0;
5315 	}
5316 
5317 	if (nested) {
5318 		pr_info("Nested Virtualization enabled\n");
5319 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5320 
5321 		r = nested_svm_init_msrpm_merge_offsets();
5322 		if (r)
5323 			return r;
5324 	}
5325 
5326 	/*
5327 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5328 	 * NPT isn't supported if the host is using 2-level paging since host
5329 	 * CR4 is unchanged on VMRUN.
5330 	 */
5331 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5332 		npt_enabled = false;
5333 
5334 	if (!boot_cpu_has(X86_FEATURE_NPT))
5335 		npt_enabled = false;
5336 
5337 	/* Force VM NPT level equal to the host's paging level */
5338 	kvm_configure_mmu(npt_enabled, get_npt_level(),
5339 			  get_npt_level(), PG_LEVEL_1G);
5340 	pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled));
5341 
5342 	/*
5343 	 * It seems that on AMD processors PTE's accessed bit is
5344 	 * being set by the CPU hardware before the NPF vmexit.
5345 	 * This is not expected behaviour and our tests fail because
5346 	 * of it.
5347 	 * A workaround here is to disable support for
5348 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5349 	 * In this case userspace can know if there is support using
5350 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5351 	 * it
5352 	 * If future AMD CPU models change the behaviour described above,
5353 	 * this variable can be changed accordingly
5354 	 */
5355 	allow_smaller_maxphyaddr = !npt_enabled;
5356 
5357 	/* Setup shadow_me_value and shadow_me_mask */
5358 	kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5359 
5360 	svm_adjust_mmio_mask();
5361 
5362 	nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5363 
5364 	if (lbrv) {
5365 		if (!boot_cpu_has(X86_FEATURE_LBRV))
5366 			lbrv = false;
5367 		else
5368 			pr_info("LBR virtualization supported\n");
5369 	}
5370 
5371 	iopm_va = svm_alloc_permissions_map(IOPM_SIZE, GFP_KERNEL);
5372 	if (!iopm_va)
5373 		return -ENOMEM;
5374 
5375 	iopm_base = __sme_set(__pa(iopm_va));
5376 
5377 	/*
5378 	 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5379 	 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5380 	 */
5381 	sev_hardware_setup();
5382 
5383 	svm_hv_hardware_setup();
5384 
5385 	enable_apicv = avic_hardware_setup();
5386 	if (!enable_apicv) {
5387 		enable_ipiv = false;
5388 		svm_x86_ops.vcpu_blocking = NULL;
5389 		svm_x86_ops.vcpu_unblocking = NULL;
5390 		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5391 	}
5392 
5393 	if (vls) {
5394 		if (!npt_enabled ||
5395 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5396 		    !IS_ENABLED(CONFIG_X86_64)) {
5397 			vls = false;
5398 		} else {
5399 			pr_info("Virtual VMLOAD VMSAVE supported\n");
5400 		}
5401 	}
5402 
5403 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5404 		svm_gp_erratum_intercept = false;
5405 
5406 	if (vgif) {
5407 		if (!boot_cpu_has(X86_FEATURE_VGIF))
5408 			vgif = false;
5409 		else
5410 			pr_info("Virtual GIF supported\n");
5411 	}
5412 
5413 	vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5414 	if (vnmi)
5415 		pr_info("Virtual NMI enabled\n");
5416 
5417 	if (!vnmi) {
5418 		svm_x86_ops.is_vnmi_pending = NULL;
5419 		svm_x86_ops.set_vnmi_pending = NULL;
5420 	}
5421 
5422 	if (!enable_pmu)
5423 		pr_info("PMU virtualization is disabled\n");
5424 
5425 	svm_set_cpu_caps();
5426 
5427 	kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_CD_NW_CLEARED;
5428 
5429 	for_each_possible_cpu(cpu) {
5430 		r = svm_cpu_init(cpu);
5431 		if (r)
5432 			goto err;
5433 	}
5434 
5435 	return 0;
5436 
5437 err:
5438 	svm_hardware_unsetup();
5439 	return r;
5440 }
5441 
5442 
5443 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5444 	.hardware_setup = svm_hardware_setup,
5445 
5446 	.runtime_ops = &svm_x86_ops,
5447 	.pmu_ops = &amd_pmu_ops,
5448 };
5449 
__svm_exit(void)5450 static void __svm_exit(void)
5451 {
5452 	kvm_x86_vendor_exit();
5453 }
5454 
svm_init(void)5455 static int __init svm_init(void)
5456 {
5457 	int r;
5458 
5459 	KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_svm);
5460 
5461 	__unused_size_checks();
5462 
5463 	if (!kvm_is_svm_supported())
5464 		return -EOPNOTSUPP;
5465 
5466 	r = kvm_x86_vendor_init(&svm_init_ops);
5467 	if (r)
5468 		return r;
5469 
5470 	/*
5471 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5472 	 * exposed to userspace!
5473 	 */
5474 	r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5475 		     THIS_MODULE);
5476 	if (r)
5477 		goto err_kvm_init;
5478 
5479 	return 0;
5480 
5481 err_kvm_init:
5482 	__svm_exit();
5483 	return r;
5484 }
5485 
svm_exit(void)5486 static void __exit svm_exit(void)
5487 {
5488 	kvm_exit();
5489 	__svm_exit();
5490 }
5491 
5492 module_init(svm_init)
5493 module_exit(svm_exit)
5494