1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31
32 #include <asm/apic.h>
33 #include <asm/perf_event.h>
34 #include <asm/tlbflush.h>
35 #include <asm/desc.h>
36 #include <asm/debugreg.h>
37 #include <asm/kvm_para.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/spec-ctrl.h>
40 #include <asm/cpu_device_id.h>
41 #include <asm/traps.h>
42 #include <asm/reboot.h>
43 #include <asm/fpu/api.h>
44
45 #include <trace/events/ipi.h>
46
47 #include "trace.h"
48
49 #include "svm.h"
50 #include "svm_ops.h"
51
52 #include "kvm_onhyperv.h"
53 #include "svm_onhyperv.h"
54
55 MODULE_AUTHOR("Qumranet");
56 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions");
57 MODULE_LICENSE("GPL");
58
59 #ifdef MODULE
60 static const struct x86_cpu_id svm_cpu_id[] = {
61 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
62 {}
63 };
64 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
65 #endif
66
67 #define SEG_TYPE_LDT 2
68 #define SEG_TYPE_BUSY_TSS16 3
69
70 static bool erratum_383_found __read_mostly;
71
72 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
73
74 /*
75 * Set osvw_len to higher value when updated Revision Guides
76 * are published and we know what the new status bits are
77 */
78 static uint64_t osvw_len = 4, osvw_status;
79
80 static DEFINE_PER_CPU(u64, current_tsc_ratio);
81
82 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4))
83
84 static const struct svm_direct_access_msrs {
85 u32 index; /* Index of the MSR */
86 bool always; /* True if intercept is initially cleared */
87 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
88 { .index = MSR_STAR, .always = true },
89 { .index = MSR_IA32_SYSENTER_CS, .always = true },
90 { .index = MSR_IA32_SYSENTER_EIP, .always = false },
91 { .index = MSR_IA32_SYSENTER_ESP, .always = false },
92 #ifdef CONFIG_X86_64
93 { .index = MSR_GS_BASE, .always = true },
94 { .index = MSR_FS_BASE, .always = true },
95 { .index = MSR_KERNEL_GS_BASE, .always = true },
96 { .index = MSR_LSTAR, .always = true },
97 { .index = MSR_CSTAR, .always = true },
98 { .index = MSR_SYSCALL_MASK, .always = true },
99 #endif
100 { .index = MSR_IA32_SPEC_CTRL, .always = false },
101 { .index = MSR_IA32_PRED_CMD, .always = false },
102 { .index = MSR_IA32_FLUSH_CMD, .always = false },
103 { .index = MSR_IA32_DEBUGCTLMSR, .always = false },
104 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
105 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
106 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
107 { .index = MSR_IA32_LASTINTTOIP, .always = false },
108 { .index = MSR_IA32_XSS, .always = false },
109 { .index = MSR_EFER, .always = false },
110 { .index = MSR_IA32_CR_PAT, .always = false },
111 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true },
112 { .index = MSR_TSC_AUX, .always = false },
113 { .index = X2APIC_MSR(APIC_ID), .always = false },
114 { .index = X2APIC_MSR(APIC_LVR), .always = false },
115 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false },
116 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false },
117 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false },
118 { .index = X2APIC_MSR(APIC_EOI), .always = false },
119 { .index = X2APIC_MSR(APIC_RRR), .always = false },
120 { .index = X2APIC_MSR(APIC_LDR), .always = false },
121 { .index = X2APIC_MSR(APIC_DFR), .always = false },
122 { .index = X2APIC_MSR(APIC_SPIV), .always = false },
123 { .index = X2APIC_MSR(APIC_ISR), .always = false },
124 { .index = X2APIC_MSR(APIC_TMR), .always = false },
125 { .index = X2APIC_MSR(APIC_IRR), .always = false },
126 { .index = X2APIC_MSR(APIC_ESR), .always = false },
127 { .index = X2APIC_MSR(APIC_ICR), .always = false },
128 { .index = X2APIC_MSR(APIC_ICR2), .always = false },
129
130 /*
131 * Note:
132 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
133 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
134 * the AVIC hardware would generate GP fault. Therefore, always
135 * intercept the MSR 0x832, and do not setup direct_access_msr.
136 */
137 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false },
138 { .index = X2APIC_MSR(APIC_LVTPC), .always = false },
139 { .index = X2APIC_MSR(APIC_LVT0), .always = false },
140 { .index = X2APIC_MSR(APIC_LVT1), .always = false },
141 { .index = X2APIC_MSR(APIC_LVTERR), .always = false },
142 { .index = X2APIC_MSR(APIC_TMICT), .always = false },
143 { .index = X2APIC_MSR(APIC_TMCCT), .always = false },
144 { .index = X2APIC_MSR(APIC_TDCR), .always = false },
145 { .index = MSR_INVALID, .always = false },
146 };
147
148 /*
149 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
150 * pause_filter_count: On processors that support Pause filtering(indicated
151 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
152 * count value. On VMRUN this value is loaded into an internal counter.
153 * Each time a pause instruction is executed, this counter is decremented
154 * until it reaches zero at which time a #VMEXIT is generated if pause
155 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
156 * Intercept Filtering for more details.
157 * This also indicate if ple logic enabled.
158 *
159 * pause_filter_thresh: In addition, some processor families support advanced
160 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
161 * the amount of time a guest is allowed to execute in a pause loop.
162 * In this mode, a 16-bit pause filter threshold field is added in the
163 * VMCB. The threshold value is a cycle count that is used to reset the
164 * pause counter. As with simple pause filtering, VMRUN loads the pause
165 * count value from VMCB into an internal counter. Then, on each pause
166 * instruction the hardware checks the elapsed number of cycles since
167 * the most recent pause instruction against the pause filter threshold.
168 * If the elapsed cycle count is greater than the pause filter threshold,
169 * then the internal pause count is reloaded from the VMCB and execution
170 * continues. If the elapsed cycle count is less than the pause filter
171 * threshold, then the internal pause count is decremented. If the count
172 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
173 * triggered. If advanced pause filtering is supported and pause filter
174 * threshold field is set to zero, the filter will operate in the simpler,
175 * count only mode.
176 */
177
178 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
179 module_param(pause_filter_thresh, ushort, 0444);
180
181 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
182 module_param(pause_filter_count, ushort, 0444);
183
184 /* Default doubles per-vcpu window every exit. */
185 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
186 module_param(pause_filter_count_grow, ushort, 0444);
187
188 /* Default resets per-vcpu window every exit to pause_filter_count. */
189 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
190 module_param(pause_filter_count_shrink, ushort, 0444);
191
192 /* Default is to compute the maximum so we can never overflow. */
193 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
194 module_param(pause_filter_count_max, ushort, 0444);
195
196 /*
197 * Use nested page tables by default. Note, NPT may get forced off by
198 * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
199 */
200 bool npt_enabled = true;
201 module_param_named(npt, npt_enabled, bool, 0444);
202
203 /* allow nested virtualization in KVM/SVM */
204 static int nested = true;
205 module_param(nested, int, 0444);
206
207 /* enable/disable Next RIP Save */
208 int nrips = true;
209 module_param(nrips, int, 0444);
210
211 /* enable/disable Virtual VMLOAD VMSAVE */
212 static int vls = true;
213 module_param(vls, int, 0444);
214
215 /* enable/disable Virtual GIF */
216 int vgif = true;
217 module_param(vgif, int, 0444);
218
219 /* enable/disable LBR virtualization */
220 int lbrv = true;
221 module_param(lbrv, int, 0444);
222
223 static int tsc_scaling = true;
224 module_param(tsc_scaling, int, 0444);
225
226 /*
227 * enable / disable AVIC. Because the defaults differ for APICv
228 * support between VMX and SVM we cannot use module_param_named.
229 */
230 static bool avic;
231 module_param(avic, bool, 0444);
232
233 bool __read_mostly dump_invalid_vmcb;
234 module_param(dump_invalid_vmcb, bool, 0644);
235
236
237 bool intercept_smi = true;
238 module_param(intercept_smi, bool, 0444);
239
240 bool vnmi = true;
241 module_param(vnmi, bool, 0444);
242
243 static bool svm_gp_erratum_intercept = true;
244
245 static u8 rsm_ins_bytes[] = "\x0f\xaa";
246
247 static unsigned long iopm_base;
248
249 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
250
251 /*
252 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via
253 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
254 *
255 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
256 * defer the restoration of TSC_AUX until the CPU returns to userspace.
257 */
258 static int tsc_aux_uret_slot __read_mostly = -1;
259
260 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
261
262 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
263 #define MSRS_RANGE_SIZE 2048
264 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
265
svm_msrpm_offset(u32 msr)266 u32 svm_msrpm_offset(u32 msr)
267 {
268 u32 offset;
269 int i;
270
271 for (i = 0; i < NUM_MSR_MAPS; i++) {
272 if (msr < msrpm_ranges[i] ||
273 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
274 continue;
275
276 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
277 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
278
279 /* Now we have the u8 offset - but need the u32 offset */
280 return offset / 4;
281 }
282
283 /* MSR not in any range */
284 return MSR_INVALID;
285 }
286
287 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
288
get_npt_level(void)289 static int get_npt_level(void)
290 {
291 #ifdef CONFIG_X86_64
292 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
293 #else
294 return PT32E_ROOT_LEVEL;
295 #endif
296 }
297
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)298 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
299 {
300 struct vcpu_svm *svm = to_svm(vcpu);
301 u64 old_efer = vcpu->arch.efer;
302 vcpu->arch.efer = efer;
303
304 if (!npt_enabled) {
305 /* Shadow paging assumes NX to be available. */
306 efer |= EFER_NX;
307
308 if (!(efer & EFER_LMA))
309 efer &= ~EFER_LME;
310 }
311
312 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
313 if (!(efer & EFER_SVME)) {
314 svm_leave_nested(vcpu);
315 svm_set_gif(svm, true);
316 /* #GP intercept is still needed for vmware backdoor */
317 if (!enable_vmware_backdoor)
318 clr_exception_intercept(svm, GP_VECTOR);
319
320 /*
321 * Free the nested guest state, unless we are in SMM.
322 * In this case we will return to the nested guest
323 * as soon as we leave SMM.
324 */
325 if (!is_smm(vcpu))
326 svm_free_nested(svm);
327
328 } else {
329 int ret = svm_allocate_nested(svm);
330
331 if (ret) {
332 vcpu->arch.efer = old_efer;
333 return ret;
334 }
335
336 /*
337 * Never intercept #GP for SEV guests, KVM can't
338 * decrypt guest memory to workaround the erratum.
339 */
340 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
341 set_exception_intercept(svm, GP_VECTOR);
342 }
343 }
344
345 svm->vmcb->save.efer = efer | EFER_SVME;
346 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
347 return 0;
348 }
349
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)350 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
351 {
352 struct vcpu_svm *svm = to_svm(vcpu);
353 u32 ret = 0;
354
355 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
356 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
357 return ret;
358 }
359
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)360 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
361 {
362 struct vcpu_svm *svm = to_svm(vcpu);
363
364 if (mask == 0)
365 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
366 else
367 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
368
369 }
370
__svm_skip_emulated_instruction(struct kvm_vcpu * vcpu,bool commit_side_effects)371 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
372 bool commit_side_effects)
373 {
374 struct vcpu_svm *svm = to_svm(vcpu);
375 unsigned long old_rflags;
376
377 /*
378 * SEV-ES does not expose the next RIP. The RIP update is controlled by
379 * the type of exit and the #VC handler in the guest.
380 */
381 if (sev_es_guest(vcpu->kvm))
382 goto done;
383
384 if (nrips && svm->vmcb->control.next_rip != 0) {
385 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
386 svm->next_rip = svm->vmcb->control.next_rip;
387 }
388
389 if (!svm->next_rip) {
390 if (unlikely(!commit_side_effects))
391 old_rflags = svm->vmcb->save.rflags;
392
393 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
394 return 0;
395
396 if (unlikely(!commit_side_effects))
397 svm->vmcb->save.rflags = old_rflags;
398 } else {
399 kvm_rip_write(vcpu, svm->next_rip);
400 }
401
402 done:
403 if (likely(commit_side_effects))
404 svm_set_interrupt_shadow(vcpu, 0);
405
406 return 1;
407 }
408
svm_skip_emulated_instruction(struct kvm_vcpu * vcpu)409 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
410 {
411 return __svm_skip_emulated_instruction(vcpu, true);
412 }
413
svm_update_soft_interrupt_rip(struct kvm_vcpu * vcpu)414 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
415 {
416 unsigned long rip, old_rip = kvm_rip_read(vcpu);
417 struct vcpu_svm *svm = to_svm(vcpu);
418
419 /*
420 * Due to architectural shortcomings, the CPU doesn't always provide
421 * NextRIP, e.g. if KVM intercepted an exception that occurred while
422 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip
423 * the instruction even if NextRIP is supported to acquire the next
424 * RIP so that it can be shoved into the NextRIP field, otherwise
425 * hardware will fail to advance guest RIP during event injection.
426 * Drop the exception/interrupt if emulation fails and effectively
427 * retry the instruction, it's the least awful option. If NRIPS is
428 * in use, the skip must not commit any side effects such as clearing
429 * the interrupt shadow or RFLAGS.RF.
430 */
431 if (!__svm_skip_emulated_instruction(vcpu, !nrips))
432 return -EIO;
433
434 rip = kvm_rip_read(vcpu);
435
436 /*
437 * Save the injection information, even when using next_rip, as the
438 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
439 * doesn't complete due to a VM-Exit occurring while the CPU is
440 * vectoring the event. Decoding the instruction isn't guaranteed to
441 * work as there may be no backing instruction, e.g. if the event is
442 * being injected by L1 for L2, or if the guest is patching INT3 into
443 * a different instruction.
444 */
445 svm->soft_int_injected = true;
446 svm->soft_int_csbase = svm->vmcb->save.cs.base;
447 svm->soft_int_old_rip = old_rip;
448 svm->soft_int_next_rip = rip;
449
450 if (nrips)
451 kvm_rip_write(vcpu, old_rip);
452
453 if (static_cpu_has(X86_FEATURE_NRIPS))
454 svm->vmcb->control.next_rip = rip;
455
456 return 0;
457 }
458
svm_inject_exception(struct kvm_vcpu * vcpu)459 static void svm_inject_exception(struct kvm_vcpu *vcpu)
460 {
461 struct kvm_queued_exception *ex = &vcpu->arch.exception;
462 struct vcpu_svm *svm = to_svm(vcpu);
463
464 kvm_deliver_exception_payload(vcpu, ex);
465
466 if (kvm_exception_is_soft(ex->vector) &&
467 svm_update_soft_interrupt_rip(vcpu))
468 return;
469
470 svm->vmcb->control.event_inj = ex->vector
471 | SVM_EVTINJ_VALID
472 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
473 | SVM_EVTINJ_TYPE_EXEPT;
474 svm->vmcb->control.event_inj_err = ex->error_code;
475 }
476
svm_init_erratum_383(void)477 static void svm_init_erratum_383(void)
478 {
479 u32 low, high;
480 int err;
481 u64 val;
482
483 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
484 return;
485
486 /* Use _safe variants to not break nested virtualization */
487 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
488 if (err)
489 return;
490
491 val |= (1ULL << 47);
492
493 low = lower_32_bits(val);
494 high = upper_32_bits(val);
495
496 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
497
498 erratum_383_found = true;
499 }
500
svm_init_osvw(struct kvm_vcpu * vcpu)501 static void svm_init_osvw(struct kvm_vcpu *vcpu)
502 {
503 /*
504 * Guests should see errata 400 and 415 as fixed (assuming that
505 * HLT and IO instructions are intercepted).
506 */
507 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
508 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
509
510 /*
511 * By increasing VCPU's osvw.length to 3 we are telling the guest that
512 * all osvw.status bits inside that length, including bit 0 (which is
513 * reserved for erratum 298), are valid. However, if host processor's
514 * osvw_len is 0 then osvw_status[0] carries no information. We need to
515 * be conservative here and therefore we tell the guest that erratum 298
516 * is present (because we really don't know).
517 */
518 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
519 vcpu->arch.osvw.status |= 1;
520 }
521
__kvm_is_svm_supported(void)522 static bool __kvm_is_svm_supported(void)
523 {
524 int cpu = smp_processor_id();
525 struct cpuinfo_x86 *c = &cpu_data(cpu);
526
527 if (c->x86_vendor != X86_VENDOR_AMD &&
528 c->x86_vendor != X86_VENDOR_HYGON) {
529 pr_err("CPU %d isn't AMD or Hygon\n", cpu);
530 return false;
531 }
532
533 if (!cpu_has(c, X86_FEATURE_SVM)) {
534 pr_err("SVM not supported by CPU %d\n", cpu);
535 return false;
536 }
537
538 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
539 pr_info("KVM is unsupported when running as an SEV guest\n");
540 return false;
541 }
542
543 return true;
544 }
545
kvm_is_svm_supported(void)546 static bool kvm_is_svm_supported(void)
547 {
548 bool supported;
549
550 migrate_disable();
551 supported = __kvm_is_svm_supported();
552 migrate_enable();
553
554 return supported;
555 }
556
svm_check_processor_compat(void)557 static int svm_check_processor_compat(void)
558 {
559 if (!__kvm_is_svm_supported())
560 return -EIO;
561
562 return 0;
563 }
564
__svm_write_tsc_multiplier(u64 multiplier)565 static void __svm_write_tsc_multiplier(u64 multiplier)
566 {
567 if (multiplier == __this_cpu_read(current_tsc_ratio))
568 return;
569
570 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
571 __this_cpu_write(current_tsc_ratio, multiplier);
572 }
573
sev_es_host_save_area(struct svm_cpu_data * sd)574 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd)
575 {
576 return &sd->save_area->host_sev_es_save;
577 }
578
kvm_cpu_svm_disable(void)579 static inline void kvm_cpu_svm_disable(void)
580 {
581 uint64_t efer;
582
583 wrmsrl(MSR_VM_HSAVE_PA, 0);
584 rdmsrl(MSR_EFER, efer);
585 if (efer & EFER_SVME) {
586 /*
587 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
588 * NMI aren't blocked.
589 */
590 stgi();
591 wrmsrl(MSR_EFER, efer & ~EFER_SVME);
592 }
593 }
594
svm_emergency_disable_virtualization_cpu(void)595 static void svm_emergency_disable_virtualization_cpu(void)
596 {
597 kvm_rebooting = true;
598
599 kvm_cpu_svm_disable();
600 }
601
svm_disable_virtualization_cpu(void)602 static void svm_disable_virtualization_cpu(void)
603 {
604 /* Make sure we clean up behind us */
605 if (tsc_scaling)
606 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
607
608 kvm_cpu_svm_disable();
609
610 amd_pmu_disable_virt();
611 }
612
svm_enable_virtualization_cpu(void)613 static int svm_enable_virtualization_cpu(void)
614 {
615
616 struct svm_cpu_data *sd;
617 uint64_t efer;
618 int me = raw_smp_processor_id();
619
620 rdmsrl(MSR_EFER, efer);
621 if (efer & EFER_SVME)
622 return -EBUSY;
623
624 sd = per_cpu_ptr(&svm_data, me);
625 sd->asid_generation = 1;
626 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
627 sd->next_asid = sd->max_asid + 1;
628 sd->min_asid = max_sev_asid + 1;
629
630 wrmsrl(MSR_EFER, efer | EFER_SVME);
631
632 wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
633
634 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
635 /*
636 * Set the default value, even if we don't use TSC scaling
637 * to avoid having stale value in the msr
638 */
639 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
640 }
641
642
643 /*
644 * Get OSVW bits.
645 *
646 * Note that it is possible to have a system with mixed processor
647 * revisions and therefore different OSVW bits. If bits are not the same
648 * on different processors then choose the worst case (i.e. if erratum
649 * is present on one processor and not on another then assume that the
650 * erratum is present everywhere).
651 */
652 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
653 uint64_t len, status = 0;
654 int err;
655
656 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
657 if (!err)
658 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
659 &err);
660
661 if (err)
662 osvw_status = osvw_len = 0;
663 else {
664 if (len < osvw_len)
665 osvw_len = len;
666 osvw_status |= status;
667 osvw_status &= (1ULL << osvw_len) - 1;
668 }
669 } else
670 osvw_status = osvw_len = 0;
671
672 svm_init_erratum_383();
673
674 amd_pmu_enable_virt();
675
676 /*
677 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type
678 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests.
679 * Since Linux does not change the value of TSC_AUX once set, prime the
680 * TSC_AUX field now to avoid a RDMSR on every vCPU run.
681 */
682 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
683 u32 __maybe_unused msr_hi;
684
685 rdmsr(MSR_TSC_AUX, sev_es_host_save_area(sd)->tsc_aux, msr_hi);
686 }
687
688 return 0;
689 }
690
svm_cpu_uninit(int cpu)691 static void svm_cpu_uninit(int cpu)
692 {
693 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
694
695 if (!sd->save_area)
696 return;
697
698 kfree(sd->sev_vmcbs);
699 __free_page(__sme_pa_to_page(sd->save_area_pa));
700 sd->save_area_pa = 0;
701 sd->save_area = NULL;
702 }
703
svm_cpu_init(int cpu)704 static int svm_cpu_init(int cpu)
705 {
706 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
707 struct page *save_area_page;
708 int ret = -ENOMEM;
709
710 memset(sd, 0, sizeof(struct svm_cpu_data));
711 save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL);
712 if (!save_area_page)
713 return ret;
714
715 ret = sev_cpu_init(sd);
716 if (ret)
717 goto free_save_area;
718
719 sd->save_area = page_address(save_area_page);
720 sd->save_area_pa = __sme_page_pa(save_area_page);
721 return 0;
722
723 free_save_area:
724 __free_page(save_area_page);
725 return ret;
726
727 }
728
set_dr_intercepts(struct vcpu_svm * svm)729 static void set_dr_intercepts(struct vcpu_svm *svm)
730 {
731 struct vmcb *vmcb = svm->vmcb01.ptr;
732
733 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
734 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
735 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
736 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
737 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
738 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
739 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
740 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
741 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
742 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
743 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
744 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
745 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
746 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
747 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
748 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
749
750 recalc_intercepts(svm);
751 }
752
clr_dr_intercepts(struct vcpu_svm * svm)753 static void clr_dr_intercepts(struct vcpu_svm *svm)
754 {
755 struct vmcb *vmcb = svm->vmcb01.ptr;
756
757 vmcb->control.intercepts[INTERCEPT_DR] = 0;
758
759 recalc_intercepts(svm);
760 }
761
direct_access_msr_slot(u32 msr)762 static int direct_access_msr_slot(u32 msr)
763 {
764 u32 i;
765
766 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
767 if (direct_access_msrs[i].index == msr)
768 return i;
769
770 return -ENOENT;
771 }
772
set_shadow_msr_intercept(struct kvm_vcpu * vcpu,u32 msr,int read,int write)773 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
774 int write)
775 {
776 struct vcpu_svm *svm = to_svm(vcpu);
777 int slot = direct_access_msr_slot(msr);
778
779 if (slot == -ENOENT)
780 return;
781
782 /* Set the shadow bitmaps to the desired intercept states */
783 if (read)
784 set_bit(slot, svm->shadow_msr_intercept.read);
785 else
786 clear_bit(slot, svm->shadow_msr_intercept.read);
787
788 if (write)
789 set_bit(slot, svm->shadow_msr_intercept.write);
790 else
791 clear_bit(slot, svm->shadow_msr_intercept.write);
792 }
793
valid_msr_intercept(u32 index)794 static bool valid_msr_intercept(u32 index)
795 {
796 return direct_access_msr_slot(index) != -ENOENT;
797 }
798
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)799 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
800 {
801 u8 bit_write;
802 unsigned long tmp;
803 u32 offset;
804 u32 *msrpm;
805
806 /*
807 * For non-nested case:
808 * If the L01 MSR bitmap does not intercept the MSR, then we need to
809 * save it.
810 *
811 * For nested case:
812 * If the L02 MSR bitmap does not intercept the MSR, then we need to
813 * save it.
814 */
815 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
816 to_svm(vcpu)->msrpm;
817
818 offset = svm_msrpm_offset(msr);
819 bit_write = 2 * (msr & 0x0f) + 1;
820 tmp = msrpm[offset];
821
822 BUG_ON(offset == MSR_INVALID);
823
824 return test_bit(bit_write, &tmp);
825 }
826
set_msr_interception_bitmap(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)827 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
828 u32 msr, int read, int write)
829 {
830 struct vcpu_svm *svm = to_svm(vcpu);
831 u8 bit_read, bit_write;
832 unsigned long tmp;
833 u32 offset;
834
835 /*
836 * If this warning triggers extend the direct_access_msrs list at the
837 * beginning of the file
838 */
839 WARN_ON(!valid_msr_intercept(msr));
840
841 /* Enforce non allowed MSRs to trap */
842 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
843 read = 0;
844
845 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
846 write = 0;
847
848 offset = svm_msrpm_offset(msr);
849 bit_read = 2 * (msr & 0x0f);
850 bit_write = 2 * (msr & 0x0f) + 1;
851 tmp = msrpm[offset];
852
853 BUG_ON(offset == MSR_INVALID);
854
855 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
856 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
857
858 msrpm[offset] = tmp;
859
860 svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
861 svm->nested.force_msr_bitmap_recalc = true;
862 }
863
set_msr_interception(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)864 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
865 int read, int write)
866 {
867 set_shadow_msr_intercept(vcpu, msr, read, write);
868 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
869 }
870
svm_vcpu_alloc_msrpm(void)871 u32 *svm_vcpu_alloc_msrpm(void)
872 {
873 unsigned int order = get_order(MSRPM_SIZE);
874 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
875 u32 *msrpm;
876
877 if (!pages)
878 return NULL;
879
880 msrpm = page_address(pages);
881 memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
882
883 return msrpm;
884 }
885
svm_vcpu_init_msrpm(struct kvm_vcpu * vcpu,u32 * msrpm)886 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
887 {
888 int i;
889
890 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
891 if (!direct_access_msrs[i].always)
892 continue;
893 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
894 }
895 }
896
svm_set_x2apic_msr_interception(struct vcpu_svm * svm,bool intercept)897 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
898 {
899 int i;
900
901 if (intercept == svm->x2avic_msrs_intercepted)
902 return;
903
904 if (!x2avic_enabled)
905 return;
906
907 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
908 int index = direct_access_msrs[i].index;
909
910 if ((index < APIC_BASE_MSR) ||
911 (index > APIC_BASE_MSR + 0xff))
912 continue;
913 set_msr_interception(&svm->vcpu, svm->msrpm, index,
914 !intercept, !intercept);
915 }
916
917 svm->x2avic_msrs_intercepted = intercept;
918 }
919
svm_vcpu_free_msrpm(u32 * msrpm)920 void svm_vcpu_free_msrpm(u32 *msrpm)
921 {
922 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
923 }
924
svm_msr_filter_changed(struct kvm_vcpu * vcpu)925 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
926 {
927 struct vcpu_svm *svm = to_svm(vcpu);
928 u32 i;
929
930 /*
931 * Set intercept permissions for all direct access MSRs again. They
932 * will automatically get filtered through the MSR filter, so we are
933 * back in sync after this.
934 */
935 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
936 u32 msr = direct_access_msrs[i].index;
937 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
938 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
939
940 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
941 }
942 }
943
add_msr_offset(u32 offset)944 static void add_msr_offset(u32 offset)
945 {
946 int i;
947
948 for (i = 0; i < MSRPM_OFFSETS; ++i) {
949
950 /* Offset already in list? */
951 if (msrpm_offsets[i] == offset)
952 return;
953
954 /* Slot used by another offset? */
955 if (msrpm_offsets[i] != MSR_INVALID)
956 continue;
957
958 /* Add offset to list */
959 msrpm_offsets[i] = offset;
960
961 return;
962 }
963
964 /*
965 * If this BUG triggers the msrpm_offsets table has an overflow. Just
966 * increase MSRPM_OFFSETS in this case.
967 */
968 BUG();
969 }
970
init_msrpm_offsets(void)971 static void init_msrpm_offsets(void)
972 {
973 int i;
974
975 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
976
977 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
978 u32 offset;
979
980 offset = svm_msrpm_offset(direct_access_msrs[i].index);
981 BUG_ON(offset == MSR_INVALID);
982
983 add_msr_offset(offset);
984 }
985 }
986
svm_copy_lbrs(struct vmcb * to_vmcb,struct vmcb * from_vmcb)987 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
988 {
989 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl;
990 to_vmcb->save.br_from = from_vmcb->save.br_from;
991 to_vmcb->save.br_to = from_vmcb->save.br_to;
992 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from;
993 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to;
994
995 vmcb_mark_dirty(to_vmcb, VMCB_LBR);
996 }
997
svm_enable_lbrv(struct kvm_vcpu * vcpu)998 void svm_enable_lbrv(struct kvm_vcpu *vcpu)
999 {
1000 struct vcpu_svm *svm = to_svm(vcpu);
1001
1002 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1003 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1004 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1005 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1006 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1007
1008 if (sev_es_guest(vcpu->kvm))
1009 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_DEBUGCTLMSR, 1, 1);
1010
1011 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */
1012 if (is_guest_mode(vcpu))
1013 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
1014 }
1015
svm_disable_lbrv(struct kvm_vcpu * vcpu)1016 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
1017 {
1018 struct vcpu_svm *svm = to_svm(vcpu);
1019
1020 KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm);
1021
1022 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1023 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1024 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1025 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1026 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1027
1028 /*
1029 * Move the LBR msrs back to the vmcb01 to avoid copying them
1030 * on nested guest entries.
1031 */
1032 if (is_guest_mode(vcpu))
1033 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
1034 }
1035
svm_get_lbr_vmcb(struct vcpu_svm * svm)1036 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
1037 {
1038 /*
1039 * If LBR virtualization is disabled, the LBR MSRs are always kept in
1040 * vmcb01. If LBR virtualization is enabled and L1 is running VMs of
1041 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
1042 */
1043 return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
1044 svm->vmcb01.ptr;
1045 }
1046
svm_update_lbrv(struct kvm_vcpu * vcpu)1047 void svm_update_lbrv(struct kvm_vcpu *vcpu)
1048 {
1049 struct vcpu_svm *svm = to_svm(vcpu);
1050 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
1051 bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
1052 (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) &&
1053 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
1054
1055 if (enable_lbrv == current_enable_lbrv)
1056 return;
1057
1058 if (enable_lbrv)
1059 svm_enable_lbrv(vcpu);
1060 else
1061 svm_disable_lbrv(vcpu);
1062 }
1063
disable_nmi_singlestep(struct vcpu_svm * svm)1064 void disable_nmi_singlestep(struct vcpu_svm *svm)
1065 {
1066 svm->nmi_singlestep = false;
1067
1068 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1069 /* Clear our flags if they were not set by the guest */
1070 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1071 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1072 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1073 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1074 }
1075 }
1076
grow_ple_window(struct kvm_vcpu * vcpu)1077 static void grow_ple_window(struct kvm_vcpu *vcpu)
1078 {
1079 struct vcpu_svm *svm = to_svm(vcpu);
1080 struct vmcb_control_area *control = &svm->vmcb->control;
1081 int old = control->pause_filter_count;
1082
1083 if (kvm_pause_in_guest(vcpu->kvm))
1084 return;
1085
1086 control->pause_filter_count = __grow_ple_window(old,
1087 pause_filter_count,
1088 pause_filter_count_grow,
1089 pause_filter_count_max);
1090
1091 if (control->pause_filter_count != old) {
1092 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1093 trace_kvm_ple_window_update(vcpu->vcpu_id,
1094 control->pause_filter_count, old);
1095 }
1096 }
1097
shrink_ple_window(struct kvm_vcpu * vcpu)1098 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1099 {
1100 struct vcpu_svm *svm = to_svm(vcpu);
1101 struct vmcb_control_area *control = &svm->vmcb->control;
1102 int old = control->pause_filter_count;
1103
1104 if (kvm_pause_in_guest(vcpu->kvm))
1105 return;
1106
1107 control->pause_filter_count =
1108 __shrink_ple_window(old,
1109 pause_filter_count,
1110 pause_filter_count_shrink,
1111 pause_filter_count);
1112 if (control->pause_filter_count != old) {
1113 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1114 trace_kvm_ple_window_update(vcpu->vcpu_id,
1115 control->pause_filter_count, old);
1116 }
1117 }
1118
svm_hardware_unsetup(void)1119 static void svm_hardware_unsetup(void)
1120 {
1121 int cpu;
1122
1123 sev_hardware_unsetup();
1124
1125 for_each_possible_cpu(cpu)
1126 svm_cpu_uninit(cpu);
1127
1128 __free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE));
1129 iopm_base = 0;
1130 }
1131
init_seg(struct vmcb_seg * seg)1132 static void init_seg(struct vmcb_seg *seg)
1133 {
1134 seg->selector = 0;
1135 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1136 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1137 seg->limit = 0xffff;
1138 seg->base = 0;
1139 }
1140
init_sys_seg(struct vmcb_seg * seg,uint32_t type)1141 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1142 {
1143 seg->selector = 0;
1144 seg->attrib = SVM_SELECTOR_P_MASK | type;
1145 seg->limit = 0xffff;
1146 seg->base = 0;
1147 }
1148
svm_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1149 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1150 {
1151 struct vcpu_svm *svm = to_svm(vcpu);
1152
1153 return svm->nested.ctl.tsc_offset;
1154 }
1155
svm_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1156 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1157 {
1158 struct vcpu_svm *svm = to_svm(vcpu);
1159
1160 return svm->tsc_ratio_msr;
1161 }
1162
svm_write_tsc_offset(struct kvm_vcpu * vcpu)1163 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
1164 {
1165 struct vcpu_svm *svm = to_svm(vcpu);
1166
1167 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1168 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
1169 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1170 }
1171
svm_write_tsc_multiplier(struct kvm_vcpu * vcpu)1172 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1173 {
1174 preempt_disable();
1175 if (to_svm(vcpu)->guest_state_loaded)
1176 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1177 preempt_enable();
1178 }
1179
1180 /* Evaluate instruction intercepts that depend on guest CPUID features. */
svm_recalc_instruction_intercepts(struct kvm_vcpu * vcpu,struct vcpu_svm * svm)1181 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1182 struct vcpu_svm *svm)
1183 {
1184 /*
1185 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1186 * roots, or if INVPCID is disabled in the guest to inject #UD.
1187 */
1188 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1189 if (!npt_enabled ||
1190 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1191 svm_set_intercept(svm, INTERCEPT_INVPCID);
1192 else
1193 svm_clr_intercept(svm, INTERCEPT_INVPCID);
1194 }
1195
1196 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1197 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1198 svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1199 else
1200 svm_set_intercept(svm, INTERCEPT_RDTSCP);
1201 }
1202 }
1203
init_vmcb_after_set_cpuid(struct kvm_vcpu * vcpu)1204 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1205 {
1206 struct vcpu_svm *svm = to_svm(vcpu);
1207
1208 if (guest_cpuid_is_intel_compatible(vcpu)) {
1209 /*
1210 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1211 * accesses because the processor only stores 32 bits.
1212 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1213 */
1214 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1215 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1216 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1217
1218 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1219 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1220 } else {
1221 /*
1222 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1223 * in VMCB and clear intercepts to avoid #VMEXIT.
1224 */
1225 if (vls) {
1226 svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1227 svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1228 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1229 }
1230 /* No need to intercept these MSRs */
1231 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1232 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1233 }
1234 }
1235
init_vmcb(struct kvm_vcpu * vcpu)1236 static void init_vmcb(struct kvm_vcpu *vcpu)
1237 {
1238 struct vcpu_svm *svm = to_svm(vcpu);
1239 struct vmcb *vmcb = svm->vmcb01.ptr;
1240 struct vmcb_control_area *control = &vmcb->control;
1241 struct vmcb_save_area *save = &vmcb->save;
1242
1243 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1244 svm_set_intercept(svm, INTERCEPT_CR3_READ);
1245 svm_set_intercept(svm, INTERCEPT_CR4_READ);
1246 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1247 svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1248 svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1249 if (!kvm_vcpu_apicv_active(vcpu))
1250 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1251
1252 set_dr_intercepts(svm);
1253
1254 set_exception_intercept(svm, PF_VECTOR);
1255 set_exception_intercept(svm, UD_VECTOR);
1256 set_exception_intercept(svm, MC_VECTOR);
1257 set_exception_intercept(svm, AC_VECTOR);
1258 set_exception_intercept(svm, DB_VECTOR);
1259 /*
1260 * Guest access to VMware backdoor ports could legitimately
1261 * trigger #GP because of TSS I/O permission bitmap.
1262 * We intercept those #GP and allow access to them anyway
1263 * as VMware does.
1264 */
1265 if (enable_vmware_backdoor)
1266 set_exception_intercept(svm, GP_VECTOR);
1267
1268 svm_set_intercept(svm, INTERCEPT_INTR);
1269 svm_set_intercept(svm, INTERCEPT_NMI);
1270
1271 if (intercept_smi)
1272 svm_set_intercept(svm, INTERCEPT_SMI);
1273
1274 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1275 svm_set_intercept(svm, INTERCEPT_RDPMC);
1276 svm_set_intercept(svm, INTERCEPT_CPUID);
1277 svm_set_intercept(svm, INTERCEPT_INVD);
1278 svm_set_intercept(svm, INTERCEPT_INVLPG);
1279 svm_set_intercept(svm, INTERCEPT_INVLPGA);
1280 svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1281 svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1282 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1283 svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1284 svm_set_intercept(svm, INTERCEPT_VMRUN);
1285 svm_set_intercept(svm, INTERCEPT_VMMCALL);
1286 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1287 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1288 svm_set_intercept(svm, INTERCEPT_STGI);
1289 svm_set_intercept(svm, INTERCEPT_CLGI);
1290 svm_set_intercept(svm, INTERCEPT_SKINIT);
1291 svm_set_intercept(svm, INTERCEPT_WBINVD);
1292 svm_set_intercept(svm, INTERCEPT_XSETBV);
1293 svm_set_intercept(svm, INTERCEPT_RDPRU);
1294 svm_set_intercept(svm, INTERCEPT_RSM);
1295
1296 if (!kvm_mwait_in_guest(vcpu->kvm)) {
1297 svm_set_intercept(svm, INTERCEPT_MONITOR);
1298 svm_set_intercept(svm, INTERCEPT_MWAIT);
1299 }
1300
1301 if (!kvm_hlt_in_guest(vcpu->kvm))
1302 svm_set_intercept(svm, INTERCEPT_HLT);
1303
1304 control->iopm_base_pa = iopm_base;
1305 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1306 control->int_ctl = V_INTR_MASKING_MASK;
1307
1308 init_seg(&save->es);
1309 init_seg(&save->ss);
1310 init_seg(&save->ds);
1311 init_seg(&save->fs);
1312 init_seg(&save->gs);
1313
1314 save->cs.selector = 0xf000;
1315 save->cs.base = 0xffff0000;
1316 /* Executable/Readable Code Segment */
1317 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1318 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1319 save->cs.limit = 0xffff;
1320
1321 save->gdtr.base = 0;
1322 save->gdtr.limit = 0xffff;
1323 save->idtr.base = 0;
1324 save->idtr.limit = 0xffff;
1325
1326 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1327 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1328
1329 if (npt_enabled) {
1330 /* Setup VMCB for Nested Paging */
1331 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1332 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1333 clr_exception_intercept(svm, PF_VECTOR);
1334 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1335 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1336 save->g_pat = vcpu->arch.pat;
1337 save->cr3 = 0;
1338 }
1339 svm->current_vmcb->asid_generation = 0;
1340 svm->asid = 0;
1341
1342 svm->nested.vmcb12_gpa = INVALID_GPA;
1343 svm->nested.last_vmcb12_gpa = INVALID_GPA;
1344
1345 if (!kvm_pause_in_guest(vcpu->kvm)) {
1346 control->pause_filter_count = pause_filter_count;
1347 if (pause_filter_thresh)
1348 control->pause_filter_thresh = pause_filter_thresh;
1349 svm_set_intercept(svm, INTERCEPT_PAUSE);
1350 } else {
1351 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1352 }
1353
1354 svm_recalc_instruction_intercepts(vcpu, svm);
1355
1356 /*
1357 * If the host supports V_SPEC_CTRL then disable the interception
1358 * of MSR_IA32_SPEC_CTRL.
1359 */
1360 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1361 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1362
1363 if (kvm_vcpu_apicv_active(vcpu))
1364 avic_init_vmcb(svm, vmcb);
1365
1366 if (vnmi)
1367 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1368
1369 if (vgif) {
1370 svm_clr_intercept(svm, INTERCEPT_STGI);
1371 svm_clr_intercept(svm, INTERCEPT_CLGI);
1372 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1373 }
1374
1375 if (sev_guest(vcpu->kvm))
1376 sev_init_vmcb(svm);
1377
1378 svm_hv_init_vmcb(vmcb);
1379 init_vmcb_after_set_cpuid(vcpu);
1380
1381 vmcb_mark_all_dirty(vmcb);
1382
1383 enable_gif(svm);
1384 }
1385
__svm_vcpu_reset(struct kvm_vcpu * vcpu)1386 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1387 {
1388 struct vcpu_svm *svm = to_svm(vcpu);
1389
1390 svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1391
1392 svm_init_osvw(vcpu);
1393
1394 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
1395 vcpu->arch.microcode_version = 0x01000065;
1396 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1397
1398 svm->nmi_masked = false;
1399 svm->awaiting_iret_completion = false;
1400
1401 if (sev_es_guest(vcpu->kvm))
1402 sev_es_vcpu_reset(svm);
1403 }
1404
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)1405 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1406 {
1407 struct vcpu_svm *svm = to_svm(vcpu);
1408
1409 svm->spec_ctrl = 0;
1410 svm->virt_spec_ctrl = 0;
1411
1412 if (init_event)
1413 sev_snp_init_protected_guest_state(vcpu);
1414
1415 init_vmcb(vcpu);
1416
1417 if (!init_event)
1418 __svm_vcpu_reset(vcpu);
1419 }
1420
svm_switch_vmcb(struct vcpu_svm * svm,struct kvm_vmcb_info * target_vmcb)1421 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1422 {
1423 svm->current_vmcb = target_vmcb;
1424 svm->vmcb = target_vmcb->ptr;
1425 }
1426
svm_vcpu_create(struct kvm_vcpu * vcpu)1427 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1428 {
1429 struct vcpu_svm *svm;
1430 struct page *vmcb01_page;
1431 struct page *vmsa_page = NULL;
1432 int err;
1433
1434 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1435 svm = to_svm(vcpu);
1436
1437 err = -ENOMEM;
1438 vmcb01_page = snp_safe_alloc_page();
1439 if (!vmcb01_page)
1440 goto out;
1441
1442 if (sev_es_guest(vcpu->kvm)) {
1443 /*
1444 * SEV-ES guests require a separate VMSA page used to contain
1445 * the encrypted register state of the guest.
1446 */
1447 vmsa_page = snp_safe_alloc_page();
1448 if (!vmsa_page)
1449 goto error_free_vmcb_page;
1450 }
1451
1452 err = avic_init_vcpu(svm);
1453 if (err)
1454 goto error_free_vmsa_page;
1455
1456 svm->msrpm = svm_vcpu_alloc_msrpm();
1457 if (!svm->msrpm) {
1458 err = -ENOMEM;
1459 goto error_free_vmsa_page;
1460 }
1461
1462 svm->x2avic_msrs_intercepted = true;
1463
1464 svm->vmcb01.ptr = page_address(vmcb01_page);
1465 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1466 svm_switch_vmcb(svm, &svm->vmcb01);
1467
1468 if (vmsa_page)
1469 svm->sev_es.vmsa = page_address(vmsa_page);
1470
1471 svm->guest_state_loaded = false;
1472
1473 return 0;
1474
1475 error_free_vmsa_page:
1476 if (vmsa_page)
1477 __free_page(vmsa_page);
1478 error_free_vmcb_page:
1479 __free_page(vmcb01_page);
1480 out:
1481 return err;
1482 }
1483
svm_clear_current_vmcb(struct vmcb * vmcb)1484 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1485 {
1486 int i;
1487
1488 for_each_online_cpu(i)
1489 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1490 }
1491
svm_vcpu_free(struct kvm_vcpu * vcpu)1492 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1493 {
1494 struct vcpu_svm *svm = to_svm(vcpu);
1495
1496 /*
1497 * The vmcb page can be recycled, causing a false negative in
1498 * svm_vcpu_load(). So, ensure that no logical CPU has this
1499 * vmcb page recorded as its current vmcb.
1500 */
1501 svm_clear_current_vmcb(svm->vmcb);
1502
1503 svm_leave_nested(vcpu);
1504 svm_free_nested(svm);
1505
1506 sev_free_vcpu(vcpu);
1507
1508 __free_page(__sme_pa_to_page(svm->vmcb01.pa));
1509 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1510 }
1511
svm_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1512 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1513 {
1514 struct vcpu_svm *svm = to_svm(vcpu);
1515 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1516
1517 if (sev_es_guest(vcpu->kvm))
1518 sev_es_unmap_ghcb(svm);
1519
1520 if (svm->guest_state_loaded)
1521 return;
1522
1523 /*
1524 * Save additional host state that will be restored on VMEXIT (sev-es)
1525 * or subsequent vmload of host save area.
1526 */
1527 vmsave(sd->save_area_pa);
1528 if (sev_es_guest(vcpu->kvm))
1529 sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd));
1530
1531 if (tsc_scaling)
1532 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1533
1534 /*
1535 * TSC_AUX is always virtualized for SEV-ES guests when the feature is
1536 * available. The user return MSR support is not required in this case
1537 * because TSC_AUX is restored on #VMEXIT from the host save area
1538 * (which has been initialized in svm_enable_virtualization_cpu()).
1539 */
1540 if (likely(tsc_aux_uret_slot >= 0) &&
1541 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1542 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1543
1544 svm->guest_state_loaded = true;
1545 }
1546
svm_prepare_host_switch(struct kvm_vcpu * vcpu)1547 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1548 {
1549 to_svm(vcpu)->guest_state_loaded = false;
1550 }
1551
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1552 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1553 {
1554 struct vcpu_svm *svm = to_svm(vcpu);
1555 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1556
1557 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1558 shrink_ple_window(vcpu);
1559
1560 if (sd->current_vmcb != svm->vmcb) {
1561 sd->current_vmcb = svm->vmcb;
1562
1563 if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT))
1564 indirect_branch_prediction_barrier();
1565 }
1566 if (kvm_vcpu_apicv_active(vcpu))
1567 avic_vcpu_load(vcpu, cpu);
1568 }
1569
svm_vcpu_put(struct kvm_vcpu * vcpu)1570 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1571 {
1572 if (kvm_vcpu_apicv_active(vcpu))
1573 avic_vcpu_put(vcpu);
1574
1575 svm_prepare_host_switch(vcpu);
1576
1577 ++vcpu->stat.host_state_reload;
1578 }
1579
svm_get_rflags(struct kvm_vcpu * vcpu)1580 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1581 {
1582 struct vcpu_svm *svm = to_svm(vcpu);
1583 unsigned long rflags = svm->vmcb->save.rflags;
1584
1585 if (svm->nmi_singlestep) {
1586 /* Hide our flags if they were not set by the guest */
1587 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1588 rflags &= ~X86_EFLAGS_TF;
1589 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1590 rflags &= ~X86_EFLAGS_RF;
1591 }
1592 return rflags;
1593 }
1594
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1595 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1596 {
1597 if (to_svm(vcpu)->nmi_singlestep)
1598 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1599
1600 /*
1601 * Any change of EFLAGS.VM is accompanied by a reload of SS
1602 * (caused by either a task switch or an inter-privilege IRET),
1603 * so we do not need to update the CPL here.
1604 */
1605 to_svm(vcpu)->vmcb->save.rflags = rflags;
1606 }
1607
svm_get_if_flag(struct kvm_vcpu * vcpu)1608 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1609 {
1610 struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1611
1612 return sev_es_guest(vcpu->kvm)
1613 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1614 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1615 }
1616
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1617 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1618 {
1619 kvm_register_mark_available(vcpu, reg);
1620
1621 switch (reg) {
1622 case VCPU_EXREG_PDPTR:
1623 /*
1624 * When !npt_enabled, mmu->pdptrs[] is already available since
1625 * it is always updated per SDM when moving to CRs.
1626 */
1627 if (npt_enabled)
1628 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1629 break;
1630 default:
1631 KVM_BUG_ON(1, vcpu->kvm);
1632 }
1633 }
1634
svm_set_vintr(struct vcpu_svm * svm)1635 static void svm_set_vintr(struct vcpu_svm *svm)
1636 {
1637 struct vmcb_control_area *control;
1638
1639 /*
1640 * The following fields are ignored when AVIC is enabled
1641 */
1642 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1643
1644 svm_set_intercept(svm, INTERCEPT_VINTR);
1645
1646 /*
1647 * Recalculating intercepts may have cleared the VINTR intercept. If
1648 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1649 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1650 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1651 * interrupts will never be unblocked while L2 is running.
1652 */
1653 if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1654 return;
1655
1656 /*
1657 * This is just a dummy VINTR to actually cause a vmexit to happen.
1658 * Actual injection of virtual interrupts happens through EVENTINJ.
1659 */
1660 control = &svm->vmcb->control;
1661 control->int_vector = 0x0;
1662 control->int_ctl &= ~V_INTR_PRIO_MASK;
1663 control->int_ctl |= V_IRQ_MASK |
1664 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1665 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1666 }
1667
svm_clear_vintr(struct vcpu_svm * svm)1668 static void svm_clear_vintr(struct vcpu_svm *svm)
1669 {
1670 svm_clr_intercept(svm, INTERCEPT_VINTR);
1671
1672 /* Drop int_ctl fields related to VINTR injection. */
1673 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1674 if (is_guest_mode(&svm->vcpu)) {
1675 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1676
1677 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1678 (svm->nested.ctl.int_ctl & V_TPR_MASK));
1679
1680 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1681 V_IRQ_INJECTION_BITS_MASK;
1682
1683 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1684 }
1685
1686 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1687 }
1688
svm_seg(struct kvm_vcpu * vcpu,int seg)1689 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1690 {
1691 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1692 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1693
1694 switch (seg) {
1695 case VCPU_SREG_CS: return &save->cs;
1696 case VCPU_SREG_DS: return &save->ds;
1697 case VCPU_SREG_ES: return &save->es;
1698 case VCPU_SREG_FS: return &save01->fs;
1699 case VCPU_SREG_GS: return &save01->gs;
1700 case VCPU_SREG_SS: return &save->ss;
1701 case VCPU_SREG_TR: return &save01->tr;
1702 case VCPU_SREG_LDTR: return &save01->ldtr;
1703 }
1704 BUG();
1705 return NULL;
1706 }
1707
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1708 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1709 {
1710 struct vmcb_seg *s = svm_seg(vcpu, seg);
1711
1712 return s->base;
1713 }
1714
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1715 static void svm_get_segment(struct kvm_vcpu *vcpu,
1716 struct kvm_segment *var, int seg)
1717 {
1718 struct vmcb_seg *s = svm_seg(vcpu, seg);
1719
1720 var->base = s->base;
1721 var->limit = s->limit;
1722 var->selector = s->selector;
1723 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1724 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1725 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1726 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1727 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1728 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1729 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1730
1731 /*
1732 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1733 * However, the SVM spec states that the G bit is not observed by the
1734 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1735 * So let's synthesize a legal G bit for all segments, this helps
1736 * running KVM nested. It also helps cross-vendor migration, because
1737 * Intel's vmentry has a check on the 'G' bit.
1738 */
1739 var->g = s->limit > 0xfffff;
1740
1741 /*
1742 * AMD's VMCB does not have an explicit unusable field, so emulate it
1743 * for cross vendor migration purposes by "not present"
1744 */
1745 var->unusable = !var->present;
1746
1747 switch (seg) {
1748 case VCPU_SREG_TR:
1749 /*
1750 * Work around a bug where the busy flag in the tr selector
1751 * isn't exposed
1752 */
1753 var->type |= 0x2;
1754 break;
1755 case VCPU_SREG_DS:
1756 case VCPU_SREG_ES:
1757 case VCPU_SREG_FS:
1758 case VCPU_SREG_GS:
1759 /*
1760 * The accessed bit must always be set in the segment
1761 * descriptor cache, although it can be cleared in the
1762 * descriptor, the cached bit always remains at 1. Since
1763 * Intel has a check on this, set it here to support
1764 * cross-vendor migration.
1765 */
1766 if (!var->unusable)
1767 var->type |= 0x1;
1768 break;
1769 case VCPU_SREG_SS:
1770 /*
1771 * On AMD CPUs sometimes the DB bit in the segment
1772 * descriptor is left as 1, although the whole segment has
1773 * been made unusable. Clear it here to pass an Intel VMX
1774 * entry check when cross vendor migrating.
1775 */
1776 if (var->unusable)
1777 var->db = 0;
1778 /* This is symmetric with svm_set_segment() */
1779 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1780 break;
1781 }
1782 }
1783
svm_get_cpl(struct kvm_vcpu * vcpu)1784 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1785 {
1786 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1787
1788 return save->cpl;
1789 }
1790
svm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)1791 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1792 {
1793 struct kvm_segment cs;
1794
1795 svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1796 *db = cs.db;
1797 *l = cs.l;
1798 }
1799
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1800 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1801 {
1802 struct vcpu_svm *svm = to_svm(vcpu);
1803
1804 dt->size = svm->vmcb->save.idtr.limit;
1805 dt->address = svm->vmcb->save.idtr.base;
1806 }
1807
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1808 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1809 {
1810 struct vcpu_svm *svm = to_svm(vcpu);
1811
1812 svm->vmcb->save.idtr.limit = dt->size;
1813 svm->vmcb->save.idtr.base = dt->address ;
1814 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1815 }
1816
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1817 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1818 {
1819 struct vcpu_svm *svm = to_svm(vcpu);
1820
1821 dt->size = svm->vmcb->save.gdtr.limit;
1822 dt->address = svm->vmcb->save.gdtr.base;
1823 }
1824
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1825 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1826 {
1827 struct vcpu_svm *svm = to_svm(vcpu);
1828
1829 svm->vmcb->save.gdtr.limit = dt->size;
1830 svm->vmcb->save.gdtr.base = dt->address ;
1831 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1832 }
1833
sev_post_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1834 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1835 {
1836 struct vcpu_svm *svm = to_svm(vcpu);
1837
1838 /*
1839 * For guests that don't set guest_state_protected, the cr3 update is
1840 * handled via kvm_mmu_load() while entering the guest. For guests
1841 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1842 * VMCB save area now, since the save area will become the initial
1843 * contents of the VMSA, and future VMCB save area updates won't be
1844 * seen.
1845 */
1846 if (sev_es_guest(vcpu->kvm)) {
1847 svm->vmcb->save.cr3 = cr3;
1848 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1849 }
1850 }
1851
svm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1852 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1853 {
1854 return true;
1855 }
1856
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1857 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1858 {
1859 struct vcpu_svm *svm = to_svm(vcpu);
1860 u64 hcr0 = cr0;
1861 bool old_paging = is_paging(vcpu);
1862
1863 #ifdef CONFIG_X86_64
1864 if (vcpu->arch.efer & EFER_LME) {
1865 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1866 vcpu->arch.efer |= EFER_LMA;
1867 if (!vcpu->arch.guest_state_protected)
1868 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1869 }
1870
1871 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1872 vcpu->arch.efer &= ~EFER_LMA;
1873 if (!vcpu->arch.guest_state_protected)
1874 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1875 }
1876 }
1877 #endif
1878 vcpu->arch.cr0 = cr0;
1879
1880 if (!npt_enabled) {
1881 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1882 if (old_paging != is_paging(vcpu))
1883 svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1884 }
1885
1886 /*
1887 * re-enable caching here because the QEMU bios
1888 * does not do it - this results in some delay at
1889 * reboot
1890 */
1891 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1892 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1893
1894 svm->vmcb->save.cr0 = hcr0;
1895 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1896
1897 /*
1898 * SEV-ES guests must always keep the CR intercepts cleared. CR
1899 * tracking is done using the CR write traps.
1900 */
1901 if (sev_es_guest(vcpu->kvm))
1902 return;
1903
1904 if (hcr0 == cr0) {
1905 /* Selective CR0 write remains on. */
1906 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1907 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1908 } else {
1909 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1910 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1911 }
1912 }
1913
svm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1914 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1915 {
1916 return true;
1917 }
1918
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1919 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1920 {
1921 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1922 unsigned long old_cr4 = vcpu->arch.cr4;
1923
1924 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1925 svm_flush_tlb_current(vcpu);
1926
1927 vcpu->arch.cr4 = cr4;
1928 if (!npt_enabled) {
1929 cr4 |= X86_CR4_PAE;
1930
1931 if (!is_paging(vcpu))
1932 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1933 }
1934 cr4 |= host_cr4_mce;
1935 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1936 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1937
1938 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1939 kvm_update_cpuid_runtime(vcpu);
1940 }
1941
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1942 static void svm_set_segment(struct kvm_vcpu *vcpu,
1943 struct kvm_segment *var, int seg)
1944 {
1945 struct vcpu_svm *svm = to_svm(vcpu);
1946 struct vmcb_seg *s = svm_seg(vcpu, seg);
1947
1948 s->base = var->base;
1949 s->limit = var->limit;
1950 s->selector = var->selector;
1951 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1952 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1953 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1954 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1955 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1956 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1957 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1958 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1959
1960 /*
1961 * This is always accurate, except if SYSRET returned to a segment
1962 * with SS.DPL != 3. Intel does not have this quirk, and always
1963 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1964 * would entail passing the CPL to userspace and back.
1965 */
1966 if (seg == VCPU_SREG_SS)
1967 /* This is symmetric with svm_get_segment() */
1968 svm->vmcb->save.cpl = (var->dpl & 3);
1969
1970 vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1971 }
1972
svm_update_exception_bitmap(struct kvm_vcpu * vcpu)1973 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1974 {
1975 struct vcpu_svm *svm = to_svm(vcpu);
1976
1977 clr_exception_intercept(svm, BP_VECTOR);
1978
1979 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1980 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1981 set_exception_intercept(svm, BP_VECTOR);
1982 }
1983 }
1984
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)1985 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1986 {
1987 if (sd->next_asid > sd->max_asid) {
1988 ++sd->asid_generation;
1989 sd->next_asid = sd->min_asid;
1990 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1991 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1992 }
1993
1994 svm->current_vmcb->asid_generation = sd->asid_generation;
1995 svm->asid = sd->next_asid++;
1996 }
1997
svm_set_dr6(struct vcpu_svm * svm,unsigned long value)1998 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1999 {
2000 struct vmcb *vmcb = svm->vmcb;
2001
2002 if (svm->vcpu.arch.guest_state_protected)
2003 return;
2004
2005 if (unlikely(value != vmcb->save.dr6)) {
2006 vmcb->save.dr6 = value;
2007 vmcb_mark_dirty(vmcb, VMCB_DR);
2008 }
2009 }
2010
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)2011 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2012 {
2013 struct vcpu_svm *svm = to_svm(vcpu);
2014
2015 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
2016 return;
2017
2018 get_debugreg(vcpu->arch.db[0], 0);
2019 get_debugreg(vcpu->arch.db[1], 1);
2020 get_debugreg(vcpu->arch.db[2], 2);
2021 get_debugreg(vcpu->arch.db[3], 3);
2022 /*
2023 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
2024 * because db_interception might need it. We can do it before vmentry.
2025 */
2026 vcpu->arch.dr6 = svm->vmcb->save.dr6;
2027 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2028 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2029 set_dr_intercepts(svm);
2030 }
2031
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)2032 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2033 {
2034 struct vcpu_svm *svm = to_svm(vcpu);
2035
2036 if (vcpu->arch.guest_state_protected)
2037 return;
2038
2039 svm->vmcb->save.dr7 = value;
2040 vmcb_mark_dirty(svm->vmcb, VMCB_DR);
2041 }
2042
pf_interception(struct kvm_vcpu * vcpu)2043 static int pf_interception(struct kvm_vcpu *vcpu)
2044 {
2045 struct vcpu_svm *svm = to_svm(vcpu);
2046
2047 u64 fault_address = svm->vmcb->control.exit_info_2;
2048 u64 error_code = svm->vmcb->control.exit_info_1;
2049
2050 return kvm_handle_page_fault(vcpu, error_code, fault_address,
2051 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2052 svm->vmcb->control.insn_bytes : NULL,
2053 svm->vmcb->control.insn_len);
2054 }
2055
npf_interception(struct kvm_vcpu * vcpu)2056 static int npf_interception(struct kvm_vcpu *vcpu)
2057 {
2058 struct vcpu_svm *svm = to_svm(vcpu);
2059 int rc;
2060
2061 u64 fault_address = svm->vmcb->control.exit_info_2;
2062 u64 error_code = svm->vmcb->control.exit_info_1;
2063
2064 /*
2065 * WARN if hardware generates a fault with an error code that collides
2066 * with KVM-defined sythentic flags. Clear the flags and continue on,
2067 * i.e. don't terminate the VM, as KVM can't possibly be relying on a
2068 * flag that KVM doesn't know about.
2069 */
2070 if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK))
2071 error_code &= ~PFERR_SYNTHETIC_MASK;
2072
2073 if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK))
2074 error_code |= PFERR_PRIVATE_ACCESS;
2075
2076 trace_kvm_page_fault(vcpu, fault_address, error_code);
2077 rc = kvm_mmu_page_fault(vcpu, fault_address, error_code,
2078 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2079 svm->vmcb->control.insn_bytes : NULL,
2080 svm->vmcb->control.insn_len);
2081
2082 if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK)
2083 sev_handle_rmp_fault(vcpu, fault_address, error_code);
2084
2085 return rc;
2086 }
2087
db_interception(struct kvm_vcpu * vcpu)2088 static int db_interception(struct kvm_vcpu *vcpu)
2089 {
2090 struct kvm_run *kvm_run = vcpu->run;
2091 struct vcpu_svm *svm = to_svm(vcpu);
2092
2093 if (!(vcpu->guest_debug &
2094 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2095 !svm->nmi_singlestep) {
2096 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2097 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2098 return 1;
2099 }
2100
2101 if (svm->nmi_singlestep) {
2102 disable_nmi_singlestep(svm);
2103 /* Make sure we check for pending NMIs upon entry */
2104 kvm_make_request(KVM_REQ_EVENT, vcpu);
2105 }
2106
2107 if (vcpu->guest_debug &
2108 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2109 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2110 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2111 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2112 kvm_run->debug.arch.pc =
2113 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2114 kvm_run->debug.arch.exception = DB_VECTOR;
2115 return 0;
2116 }
2117
2118 return 1;
2119 }
2120
bp_interception(struct kvm_vcpu * vcpu)2121 static int bp_interception(struct kvm_vcpu *vcpu)
2122 {
2123 struct vcpu_svm *svm = to_svm(vcpu);
2124 struct kvm_run *kvm_run = vcpu->run;
2125
2126 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2127 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2128 kvm_run->debug.arch.exception = BP_VECTOR;
2129 return 0;
2130 }
2131
ud_interception(struct kvm_vcpu * vcpu)2132 static int ud_interception(struct kvm_vcpu *vcpu)
2133 {
2134 return handle_ud(vcpu);
2135 }
2136
ac_interception(struct kvm_vcpu * vcpu)2137 static int ac_interception(struct kvm_vcpu *vcpu)
2138 {
2139 kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2140 return 1;
2141 }
2142
is_erratum_383(void)2143 static bool is_erratum_383(void)
2144 {
2145 int err, i;
2146 u64 value;
2147
2148 if (!erratum_383_found)
2149 return false;
2150
2151 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2152 if (err)
2153 return false;
2154
2155 /* Bit 62 may or may not be set for this mce */
2156 value &= ~(1ULL << 62);
2157
2158 if (value != 0xb600000000010015ULL)
2159 return false;
2160
2161 /* Clear MCi_STATUS registers */
2162 for (i = 0; i < 6; ++i)
2163 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2164
2165 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2166 if (!err) {
2167 u32 low, high;
2168
2169 value &= ~(1ULL << 2);
2170 low = lower_32_bits(value);
2171 high = upper_32_bits(value);
2172
2173 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2174 }
2175
2176 /* Flush tlb to evict multi-match entries */
2177 __flush_tlb_all();
2178
2179 return true;
2180 }
2181
svm_handle_mce(struct kvm_vcpu * vcpu)2182 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2183 {
2184 if (is_erratum_383()) {
2185 /*
2186 * Erratum 383 triggered. Guest state is corrupt so kill the
2187 * guest.
2188 */
2189 pr_err("Guest triggered AMD Erratum 383\n");
2190
2191 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2192
2193 return;
2194 }
2195
2196 /*
2197 * On an #MC intercept the MCE handler is not called automatically in
2198 * the host. So do it by hand here.
2199 */
2200 kvm_machine_check();
2201 }
2202
mc_interception(struct kvm_vcpu * vcpu)2203 static int mc_interception(struct kvm_vcpu *vcpu)
2204 {
2205 return 1;
2206 }
2207
shutdown_interception(struct kvm_vcpu * vcpu)2208 static int shutdown_interception(struct kvm_vcpu *vcpu)
2209 {
2210 struct kvm_run *kvm_run = vcpu->run;
2211 struct vcpu_svm *svm = to_svm(vcpu);
2212
2213
2214 /*
2215 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put
2216 * the VMCB in a known good state. Unfortuately, KVM doesn't have
2217 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2218 * userspace. At a platform view, INIT is acceptable behavior as
2219 * there exist bare metal platforms that automatically INIT the CPU
2220 * in response to shutdown.
2221 *
2222 * The VM save area for SEV-ES guests has already been encrypted so it
2223 * cannot be reinitialized, i.e. synthesizing INIT is futile.
2224 */
2225 if (!sev_es_guest(vcpu->kvm)) {
2226 clear_page(svm->vmcb);
2227 kvm_vcpu_reset(vcpu, true);
2228 }
2229
2230 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2231 return 0;
2232 }
2233
io_interception(struct kvm_vcpu * vcpu)2234 static int io_interception(struct kvm_vcpu *vcpu)
2235 {
2236 struct vcpu_svm *svm = to_svm(vcpu);
2237 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2238 int size, in, string;
2239 unsigned port;
2240
2241 ++vcpu->stat.io_exits;
2242 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2243 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2244 port = io_info >> 16;
2245 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2246
2247 if (string) {
2248 if (sev_es_guest(vcpu->kvm))
2249 return sev_es_string_io(svm, size, port, in);
2250 else
2251 return kvm_emulate_instruction(vcpu, 0);
2252 }
2253
2254 svm->next_rip = svm->vmcb->control.exit_info_2;
2255
2256 return kvm_fast_pio(vcpu, size, port, in);
2257 }
2258
nmi_interception(struct kvm_vcpu * vcpu)2259 static int nmi_interception(struct kvm_vcpu *vcpu)
2260 {
2261 return 1;
2262 }
2263
smi_interception(struct kvm_vcpu * vcpu)2264 static int smi_interception(struct kvm_vcpu *vcpu)
2265 {
2266 return 1;
2267 }
2268
intr_interception(struct kvm_vcpu * vcpu)2269 static int intr_interception(struct kvm_vcpu *vcpu)
2270 {
2271 ++vcpu->stat.irq_exits;
2272 return 1;
2273 }
2274
vmload_vmsave_interception(struct kvm_vcpu * vcpu,bool vmload)2275 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2276 {
2277 struct vcpu_svm *svm = to_svm(vcpu);
2278 struct vmcb *vmcb12;
2279 struct kvm_host_map map;
2280 int ret;
2281
2282 if (nested_svm_check_permissions(vcpu))
2283 return 1;
2284
2285 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2286 if (ret) {
2287 if (ret == -EINVAL)
2288 kvm_inject_gp(vcpu, 0);
2289 return 1;
2290 }
2291
2292 vmcb12 = map.hva;
2293
2294 ret = kvm_skip_emulated_instruction(vcpu);
2295
2296 if (vmload) {
2297 svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2298 svm->sysenter_eip_hi = 0;
2299 svm->sysenter_esp_hi = 0;
2300 } else {
2301 svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2302 }
2303
2304 kvm_vcpu_unmap(vcpu, &map);
2305
2306 return ret;
2307 }
2308
vmload_interception(struct kvm_vcpu * vcpu)2309 static int vmload_interception(struct kvm_vcpu *vcpu)
2310 {
2311 return vmload_vmsave_interception(vcpu, true);
2312 }
2313
vmsave_interception(struct kvm_vcpu * vcpu)2314 static int vmsave_interception(struct kvm_vcpu *vcpu)
2315 {
2316 return vmload_vmsave_interception(vcpu, false);
2317 }
2318
vmrun_interception(struct kvm_vcpu * vcpu)2319 static int vmrun_interception(struct kvm_vcpu *vcpu)
2320 {
2321 if (nested_svm_check_permissions(vcpu))
2322 return 1;
2323
2324 return nested_svm_vmrun(vcpu);
2325 }
2326
2327 enum {
2328 NONE_SVM_INSTR,
2329 SVM_INSTR_VMRUN,
2330 SVM_INSTR_VMLOAD,
2331 SVM_INSTR_VMSAVE,
2332 };
2333
2334 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
svm_instr_opcode(struct kvm_vcpu * vcpu)2335 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2336 {
2337 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2338
2339 if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2340 return NONE_SVM_INSTR;
2341
2342 switch (ctxt->modrm) {
2343 case 0xd8: /* VMRUN */
2344 return SVM_INSTR_VMRUN;
2345 case 0xda: /* VMLOAD */
2346 return SVM_INSTR_VMLOAD;
2347 case 0xdb: /* VMSAVE */
2348 return SVM_INSTR_VMSAVE;
2349 default:
2350 break;
2351 }
2352
2353 return NONE_SVM_INSTR;
2354 }
2355
emulate_svm_instr(struct kvm_vcpu * vcpu,int opcode)2356 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2357 {
2358 const int guest_mode_exit_codes[] = {
2359 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2360 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2361 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2362 };
2363 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2364 [SVM_INSTR_VMRUN] = vmrun_interception,
2365 [SVM_INSTR_VMLOAD] = vmload_interception,
2366 [SVM_INSTR_VMSAVE] = vmsave_interception,
2367 };
2368 struct vcpu_svm *svm = to_svm(vcpu);
2369 int ret;
2370
2371 if (is_guest_mode(vcpu)) {
2372 /* Returns '1' or -errno on failure, '0' on success. */
2373 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2374 if (ret)
2375 return ret;
2376 return 1;
2377 }
2378 return svm_instr_handlers[opcode](vcpu);
2379 }
2380
2381 /*
2382 * #GP handling code. Note that #GP can be triggered under the following two
2383 * cases:
2384 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2385 * some AMD CPUs when EAX of these instructions are in the reserved memory
2386 * regions (e.g. SMM memory on host).
2387 * 2) VMware backdoor
2388 */
gp_interception(struct kvm_vcpu * vcpu)2389 static int gp_interception(struct kvm_vcpu *vcpu)
2390 {
2391 struct vcpu_svm *svm = to_svm(vcpu);
2392 u32 error_code = svm->vmcb->control.exit_info_1;
2393 int opcode;
2394
2395 /* Both #GP cases have zero error_code */
2396 if (error_code)
2397 goto reinject;
2398
2399 /* Decode the instruction for usage later */
2400 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2401 goto reinject;
2402
2403 opcode = svm_instr_opcode(vcpu);
2404
2405 if (opcode == NONE_SVM_INSTR) {
2406 if (!enable_vmware_backdoor)
2407 goto reinject;
2408
2409 /*
2410 * VMware backdoor emulation on #GP interception only handles
2411 * IN{S}, OUT{S}, and RDPMC.
2412 */
2413 if (!is_guest_mode(vcpu))
2414 return kvm_emulate_instruction(vcpu,
2415 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2416 } else {
2417 /* All SVM instructions expect page aligned RAX */
2418 if (svm->vmcb->save.rax & ~PAGE_MASK)
2419 goto reinject;
2420
2421 return emulate_svm_instr(vcpu, opcode);
2422 }
2423
2424 reinject:
2425 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2426 return 1;
2427 }
2428
svm_set_gif(struct vcpu_svm * svm,bool value)2429 void svm_set_gif(struct vcpu_svm *svm, bool value)
2430 {
2431 if (value) {
2432 /*
2433 * If VGIF is enabled, the STGI intercept is only added to
2434 * detect the opening of the SMI/NMI window; remove it now.
2435 * Likewise, clear the VINTR intercept, we will set it
2436 * again while processing KVM_REQ_EVENT if needed.
2437 */
2438 if (vgif)
2439 svm_clr_intercept(svm, INTERCEPT_STGI);
2440 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2441 svm_clear_vintr(svm);
2442
2443 enable_gif(svm);
2444 if (svm->vcpu.arch.smi_pending ||
2445 svm->vcpu.arch.nmi_pending ||
2446 kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2447 kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2448 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2449 } else {
2450 disable_gif(svm);
2451
2452 /*
2453 * After a CLGI no interrupts should come. But if vGIF is
2454 * in use, we still rely on the VINTR intercept (rather than
2455 * STGI) to detect an open interrupt window.
2456 */
2457 if (!vgif)
2458 svm_clear_vintr(svm);
2459 }
2460 }
2461
stgi_interception(struct kvm_vcpu * vcpu)2462 static int stgi_interception(struct kvm_vcpu *vcpu)
2463 {
2464 int ret;
2465
2466 if (nested_svm_check_permissions(vcpu))
2467 return 1;
2468
2469 ret = kvm_skip_emulated_instruction(vcpu);
2470 svm_set_gif(to_svm(vcpu), true);
2471 return ret;
2472 }
2473
clgi_interception(struct kvm_vcpu * vcpu)2474 static int clgi_interception(struct kvm_vcpu *vcpu)
2475 {
2476 int ret;
2477
2478 if (nested_svm_check_permissions(vcpu))
2479 return 1;
2480
2481 ret = kvm_skip_emulated_instruction(vcpu);
2482 svm_set_gif(to_svm(vcpu), false);
2483 return ret;
2484 }
2485
invlpga_interception(struct kvm_vcpu * vcpu)2486 static int invlpga_interception(struct kvm_vcpu *vcpu)
2487 {
2488 gva_t gva = kvm_rax_read(vcpu);
2489 u32 asid = kvm_rcx_read(vcpu);
2490
2491 /* FIXME: Handle an address size prefix. */
2492 if (!is_long_mode(vcpu))
2493 gva = (u32)gva;
2494
2495 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2496
2497 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2498 kvm_mmu_invlpg(vcpu, gva);
2499
2500 return kvm_skip_emulated_instruction(vcpu);
2501 }
2502
skinit_interception(struct kvm_vcpu * vcpu)2503 static int skinit_interception(struct kvm_vcpu *vcpu)
2504 {
2505 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2506
2507 kvm_queue_exception(vcpu, UD_VECTOR);
2508 return 1;
2509 }
2510
task_switch_interception(struct kvm_vcpu * vcpu)2511 static int task_switch_interception(struct kvm_vcpu *vcpu)
2512 {
2513 struct vcpu_svm *svm = to_svm(vcpu);
2514 u16 tss_selector;
2515 int reason;
2516 int int_type = svm->vmcb->control.exit_int_info &
2517 SVM_EXITINTINFO_TYPE_MASK;
2518 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2519 uint32_t type =
2520 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2521 uint32_t idt_v =
2522 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2523 bool has_error_code = false;
2524 u32 error_code = 0;
2525
2526 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2527
2528 if (svm->vmcb->control.exit_info_2 &
2529 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2530 reason = TASK_SWITCH_IRET;
2531 else if (svm->vmcb->control.exit_info_2 &
2532 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2533 reason = TASK_SWITCH_JMP;
2534 else if (idt_v)
2535 reason = TASK_SWITCH_GATE;
2536 else
2537 reason = TASK_SWITCH_CALL;
2538
2539 if (reason == TASK_SWITCH_GATE) {
2540 switch (type) {
2541 case SVM_EXITINTINFO_TYPE_NMI:
2542 vcpu->arch.nmi_injected = false;
2543 break;
2544 case SVM_EXITINTINFO_TYPE_EXEPT:
2545 if (svm->vmcb->control.exit_info_2 &
2546 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2547 has_error_code = true;
2548 error_code =
2549 (u32)svm->vmcb->control.exit_info_2;
2550 }
2551 kvm_clear_exception_queue(vcpu);
2552 break;
2553 case SVM_EXITINTINFO_TYPE_INTR:
2554 case SVM_EXITINTINFO_TYPE_SOFT:
2555 kvm_clear_interrupt_queue(vcpu);
2556 break;
2557 default:
2558 break;
2559 }
2560 }
2561
2562 if (reason != TASK_SWITCH_GATE ||
2563 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2564 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2565 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2566 if (!svm_skip_emulated_instruction(vcpu))
2567 return 0;
2568 }
2569
2570 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2571 int_vec = -1;
2572
2573 return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2574 has_error_code, error_code);
2575 }
2576
svm_clr_iret_intercept(struct vcpu_svm * svm)2577 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2578 {
2579 if (!sev_es_guest(svm->vcpu.kvm))
2580 svm_clr_intercept(svm, INTERCEPT_IRET);
2581 }
2582
svm_set_iret_intercept(struct vcpu_svm * svm)2583 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2584 {
2585 if (!sev_es_guest(svm->vcpu.kvm))
2586 svm_set_intercept(svm, INTERCEPT_IRET);
2587 }
2588
iret_interception(struct kvm_vcpu * vcpu)2589 static int iret_interception(struct kvm_vcpu *vcpu)
2590 {
2591 struct vcpu_svm *svm = to_svm(vcpu);
2592
2593 WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2594
2595 ++vcpu->stat.nmi_window_exits;
2596 svm->awaiting_iret_completion = true;
2597
2598 svm_clr_iret_intercept(svm);
2599 svm->nmi_iret_rip = kvm_rip_read(vcpu);
2600
2601 kvm_make_request(KVM_REQ_EVENT, vcpu);
2602 return 1;
2603 }
2604
invlpg_interception(struct kvm_vcpu * vcpu)2605 static int invlpg_interception(struct kvm_vcpu *vcpu)
2606 {
2607 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2608 return kvm_emulate_instruction(vcpu, 0);
2609
2610 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2611 return kvm_skip_emulated_instruction(vcpu);
2612 }
2613
emulate_on_interception(struct kvm_vcpu * vcpu)2614 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2615 {
2616 return kvm_emulate_instruction(vcpu, 0);
2617 }
2618
rsm_interception(struct kvm_vcpu * vcpu)2619 static int rsm_interception(struct kvm_vcpu *vcpu)
2620 {
2621 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2622 }
2623
check_selective_cr0_intercepted(struct kvm_vcpu * vcpu,unsigned long val)2624 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2625 unsigned long val)
2626 {
2627 struct vcpu_svm *svm = to_svm(vcpu);
2628 unsigned long cr0 = vcpu->arch.cr0;
2629 bool ret = false;
2630
2631 if (!is_guest_mode(vcpu) ||
2632 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2633 return false;
2634
2635 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2636 val &= ~SVM_CR0_SELECTIVE_MASK;
2637
2638 if (cr0 ^ val) {
2639 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2640 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2641 }
2642
2643 return ret;
2644 }
2645
2646 #define CR_VALID (1ULL << 63)
2647
cr_interception(struct kvm_vcpu * vcpu)2648 static int cr_interception(struct kvm_vcpu *vcpu)
2649 {
2650 struct vcpu_svm *svm = to_svm(vcpu);
2651 int reg, cr;
2652 unsigned long val;
2653 int err;
2654
2655 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2656 return emulate_on_interception(vcpu);
2657
2658 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2659 return emulate_on_interception(vcpu);
2660
2661 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2662 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2663 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2664 else
2665 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2666
2667 err = 0;
2668 if (cr >= 16) { /* mov to cr */
2669 cr -= 16;
2670 val = kvm_register_read(vcpu, reg);
2671 trace_kvm_cr_write(cr, val);
2672 switch (cr) {
2673 case 0:
2674 if (!check_selective_cr0_intercepted(vcpu, val))
2675 err = kvm_set_cr0(vcpu, val);
2676 else
2677 return 1;
2678
2679 break;
2680 case 3:
2681 err = kvm_set_cr3(vcpu, val);
2682 break;
2683 case 4:
2684 err = kvm_set_cr4(vcpu, val);
2685 break;
2686 case 8:
2687 err = kvm_set_cr8(vcpu, val);
2688 break;
2689 default:
2690 WARN(1, "unhandled write to CR%d", cr);
2691 kvm_queue_exception(vcpu, UD_VECTOR);
2692 return 1;
2693 }
2694 } else { /* mov from cr */
2695 switch (cr) {
2696 case 0:
2697 val = kvm_read_cr0(vcpu);
2698 break;
2699 case 2:
2700 val = vcpu->arch.cr2;
2701 break;
2702 case 3:
2703 val = kvm_read_cr3(vcpu);
2704 break;
2705 case 4:
2706 val = kvm_read_cr4(vcpu);
2707 break;
2708 case 8:
2709 val = kvm_get_cr8(vcpu);
2710 break;
2711 default:
2712 WARN(1, "unhandled read from CR%d", cr);
2713 kvm_queue_exception(vcpu, UD_VECTOR);
2714 return 1;
2715 }
2716 kvm_register_write(vcpu, reg, val);
2717 trace_kvm_cr_read(cr, val);
2718 }
2719 return kvm_complete_insn_gp(vcpu, err);
2720 }
2721
cr_trap(struct kvm_vcpu * vcpu)2722 static int cr_trap(struct kvm_vcpu *vcpu)
2723 {
2724 struct vcpu_svm *svm = to_svm(vcpu);
2725 unsigned long old_value, new_value;
2726 unsigned int cr;
2727 int ret = 0;
2728
2729 new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2730
2731 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2732 switch (cr) {
2733 case 0:
2734 old_value = kvm_read_cr0(vcpu);
2735 svm_set_cr0(vcpu, new_value);
2736
2737 kvm_post_set_cr0(vcpu, old_value, new_value);
2738 break;
2739 case 4:
2740 old_value = kvm_read_cr4(vcpu);
2741 svm_set_cr4(vcpu, new_value);
2742
2743 kvm_post_set_cr4(vcpu, old_value, new_value);
2744 break;
2745 case 8:
2746 ret = kvm_set_cr8(vcpu, new_value);
2747 break;
2748 default:
2749 WARN(1, "unhandled CR%d write trap", cr);
2750 kvm_queue_exception(vcpu, UD_VECTOR);
2751 return 1;
2752 }
2753
2754 return kvm_complete_insn_gp(vcpu, ret);
2755 }
2756
dr_interception(struct kvm_vcpu * vcpu)2757 static int dr_interception(struct kvm_vcpu *vcpu)
2758 {
2759 struct vcpu_svm *svm = to_svm(vcpu);
2760 int reg, dr;
2761 int err = 0;
2762
2763 /*
2764 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2765 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2766 */
2767 if (sev_es_guest(vcpu->kvm))
2768 return 1;
2769
2770 if (vcpu->guest_debug == 0) {
2771 /*
2772 * No more DR vmexits; force a reload of the debug registers
2773 * and reenter on this instruction. The next vmexit will
2774 * retrieve the full state of the debug registers.
2775 */
2776 clr_dr_intercepts(svm);
2777 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2778 return 1;
2779 }
2780
2781 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2782 return emulate_on_interception(vcpu);
2783
2784 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2785 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2786 if (dr >= 16) { /* mov to DRn */
2787 dr -= 16;
2788 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
2789 } else {
2790 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
2791 }
2792
2793 return kvm_complete_insn_gp(vcpu, err);
2794 }
2795
cr8_write_interception(struct kvm_vcpu * vcpu)2796 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2797 {
2798 int r;
2799
2800 u8 cr8_prev = kvm_get_cr8(vcpu);
2801 /* instruction emulation calls kvm_set_cr8() */
2802 r = cr_interception(vcpu);
2803 if (lapic_in_kernel(vcpu))
2804 return r;
2805 if (cr8_prev <= kvm_get_cr8(vcpu))
2806 return r;
2807 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2808 return 0;
2809 }
2810
efer_trap(struct kvm_vcpu * vcpu)2811 static int efer_trap(struct kvm_vcpu *vcpu)
2812 {
2813 struct msr_data msr_info;
2814 int ret;
2815
2816 /*
2817 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2818 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2819 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2820 * the guest doesn't have X86_FEATURE_SVM.
2821 */
2822 msr_info.host_initiated = false;
2823 msr_info.index = MSR_EFER;
2824 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2825 ret = kvm_set_msr_common(vcpu, &msr_info);
2826
2827 return kvm_complete_insn_gp(vcpu, ret);
2828 }
2829
svm_get_feature_msr(u32 msr,u64 * data)2830 static int svm_get_feature_msr(u32 msr, u64 *data)
2831 {
2832 *data = 0;
2833
2834 switch (msr) {
2835 case MSR_AMD64_DE_CFG:
2836 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2837 *data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2838 break;
2839 default:
2840 return KVM_MSR_RET_UNSUPPORTED;
2841 }
2842
2843 return 0;
2844 }
2845
2846 static bool
sev_es_prevent_msr_access(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2847 sev_es_prevent_msr_access(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2848 {
2849 return sev_es_guest(vcpu->kvm) &&
2850 vcpu->arch.guest_state_protected &&
2851 svm_msrpm_offset(msr_info->index) != MSR_INVALID &&
2852 !msr_write_intercepted(vcpu, msr_info->index);
2853 }
2854
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2855 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2856 {
2857 struct vcpu_svm *svm = to_svm(vcpu);
2858
2859 if (sev_es_prevent_msr_access(vcpu, msr_info)) {
2860 msr_info->data = 0;
2861 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2862 }
2863
2864 switch (msr_info->index) {
2865 case MSR_AMD64_TSC_RATIO:
2866 if (!msr_info->host_initiated &&
2867 !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR))
2868 return 1;
2869 msr_info->data = svm->tsc_ratio_msr;
2870 break;
2871 case MSR_STAR:
2872 msr_info->data = svm->vmcb01.ptr->save.star;
2873 break;
2874 #ifdef CONFIG_X86_64
2875 case MSR_LSTAR:
2876 msr_info->data = svm->vmcb01.ptr->save.lstar;
2877 break;
2878 case MSR_CSTAR:
2879 msr_info->data = svm->vmcb01.ptr->save.cstar;
2880 break;
2881 case MSR_GS_BASE:
2882 msr_info->data = svm->vmcb01.ptr->save.gs.base;
2883 break;
2884 case MSR_FS_BASE:
2885 msr_info->data = svm->vmcb01.ptr->save.fs.base;
2886 break;
2887 case MSR_KERNEL_GS_BASE:
2888 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2889 break;
2890 case MSR_SYSCALL_MASK:
2891 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2892 break;
2893 #endif
2894 case MSR_IA32_SYSENTER_CS:
2895 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2896 break;
2897 case MSR_IA32_SYSENTER_EIP:
2898 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2899 if (guest_cpuid_is_intel_compatible(vcpu))
2900 msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2901 break;
2902 case MSR_IA32_SYSENTER_ESP:
2903 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2904 if (guest_cpuid_is_intel_compatible(vcpu))
2905 msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2906 break;
2907 case MSR_TSC_AUX:
2908 msr_info->data = svm->tsc_aux;
2909 break;
2910 case MSR_IA32_DEBUGCTLMSR:
2911 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
2912 break;
2913 case MSR_IA32_LASTBRANCHFROMIP:
2914 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
2915 break;
2916 case MSR_IA32_LASTBRANCHTOIP:
2917 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
2918 break;
2919 case MSR_IA32_LASTINTFROMIP:
2920 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
2921 break;
2922 case MSR_IA32_LASTINTTOIP:
2923 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
2924 break;
2925 case MSR_VM_HSAVE_PA:
2926 msr_info->data = svm->nested.hsave_msr;
2927 break;
2928 case MSR_VM_CR:
2929 msr_info->data = svm->nested.vm_cr_msr;
2930 break;
2931 case MSR_IA32_SPEC_CTRL:
2932 if (!msr_info->host_initiated &&
2933 !guest_has_spec_ctrl_msr(vcpu))
2934 return 1;
2935
2936 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2937 msr_info->data = svm->vmcb->save.spec_ctrl;
2938 else
2939 msr_info->data = svm->spec_ctrl;
2940 break;
2941 case MSR_AMD64_VIRT_SPEC_CTRL:
2942 if (!msr_info->host_initiated &&
2943 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2944 return 1;
2945
2946 msr_info->data = svm->virt_spec_ctrl;
2947 break;
2948 case MSR_F15H_IC_CFG: {
2949
2950 int family, model;
2951
2952 family = guest_cpuid_family(vcpu);
2953 model = guest_cpuid_model(vcpu);
2954
2955 if (family < 0 || model < 0)
2956 return kvm_get_msr_common(vcpu, msr_info);
2957
2958 msr_info->data = 0;
2959
2960 if (family == 0x15 &&
2961 (model >= 0x2 && model < 0x20))
2962 msr_info->data = 0x1E;
2963 }
2964 break;
2965 case MSR_AMD64_DE_CFG:
2966 msr_info->data = svm->msr_decfg;
2967 break;
2968 default:
2969 return kvm_get_msr_common(vcpu, msr_info);
2970 }
2971 return 0;
2972 }
2973
svm_complete_emulated_msr(struct kvm_vcpu * vcpu,int err)2974 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2975 {
2976 struct vcpu_svm *svm = to_svm(vcpu);
2977 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2978 return kvm_complete_insn_gp(vcpu, err);
2979
2980 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2981 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2982 X86_TRAP_GP |
2983 SVM_EVTINJ_TYPE_EXEPT |
2984 SVM_EVTINJ_VALID);
2985 return 1;
2986 }
2987
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)2988 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2989 {
2990 struct vcpu_svm *svm = to_svm(vcpu);
2991 int svm_dis, chg_mask;
2992
2993 if (data & ~SVM_VM_CR_VALID_MASK)
2994 return 1;
2995
2996 chg_mask = SVM_VM_CR_VALID_MASK;
2997
2998 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2999 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3000
3001 svm->nested.vm_cr_msr &= ~chg_mask;
3002 svm->nested.vm_cr_msr |= (data & chg_mask);
3003
3004 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3005
3006 /* check for svm_disable while efer.svme is set */
3007 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3008 return 1;
3009
3010 return 0;
3011 }
3012
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)3013 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3014 {
3015 struct vcpu_svm *svm = to_svm(vcpu);
3016 int ret = 0;
3017
3018 u32 ecx = msr->index;
3019 u64 data = msr->data;
3020
3021 if (sev_es_prevent_msr_access(vcpu, msr))
3022 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
3023
3024 switch (ecx) {
3025 case MSR_AMD64_TSC_RATIO:
3026
3027 if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) {
3028
3029 if (!msr->host_initiated)
3030 return 1;
3031 /*
3032 * In case TSC scaling is not enabled, always
3033 * leave this MSR at the default value.
3034 *
3035 * Due to bug in qemu 6.2.0, it would try to set
3036 * this msr to 0 if tsc scaling is not enabled.
3037 * Ignore this value as well.
3038 */
3039 if (data != 0 && data != svm->tsc_ratio_msr)
3040 return 1;
3041 break;
3042 }
3043
3044 if (data & SVM_TSC_RATIO_RSVD)
3045 return 1;
3046
3047 svm->tsc_ratio_msr = data;
3048
3049 if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) &&
3050 is_guest_mode(vcpu))
3051 nested_svm_update_tsc_ratio_msr(vcpu);
3052
3053 break;
3054 case MSR_IA32_CR_PAT:
3055 ret = kvm_set_msr_common(vcpu, msr);
3056 if (ret)
3057 break;
3058
3059 svm->vmcb01.ptr->save.g_pat = data;
3060 if (is_guest_mode(vcpu))
3061 nested_vmcb02_compute_g_pat(svm);
3062 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3063 break;
3064 case MSR_IA32_SPEC_CTRL:
3065 if (!msr->host_initiated &&
3066 !guest_has_spec_ctrl_msr(vcpu))
3067 return 1;
3068
3069 if (kvm_spec_ctrl_test_value(data))
3070 return 1;
3071
3072 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3073 svm->vmcb->save.spec_ctrl = data;
3074 else
3075 svm->spec_ctrl = data;
3076 if (!data)
3077 break;
3078
3079 /*
3080 * For non-nested:
3081 * When it's written (to non-zero) for the first time, pass
3082 * it through.
3083 *
3084 * For nested:
3085 * The handling of the MSR bitmap for L2 guests is done in
3086 * nested_svm_vmrun_msrpm.
3087 * We update the L1 MSR bit as well since it will end up
3088 * touching the MSR anyway now.
3089 */
3090 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
3091 break;
3092 case MSR_AMD64_VIRT_SPEC_CTRL:
3093 if (!msr->host_initiated &&
3094 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
3095 return 1;
3096
3097 if (data & ~SPEC_CTRL_SSBD)
3098 return 1;
3099
3100 svm->virt_spec_ctrl = data;
3101 break;
3102 case MSR_STAR:
3103 svm->vmcb01.ptr->save.star = data;
3104 break;
3105 #ifdef CONFIG_X86_64
3106 case MSR_LSTAR:
3107 svm->vmcb01.ptr->save.lstar = data;
3108 break;
3109 case MSR_CSTAR:
3110 svm->vmcb01.ptr->save.cstar = data;
3111 break;
3112 case MSR_GS_BASE:
3113 svm->vmcb01.ptr->save.gs.base = data;
3114 break;
3115 case MSR_FS_BASE:
3116 svm->vmcb01.ptr->save.fs.base = data;
3117 break;
3118 case MSR_KERNEL_GS_BASE:
3119 svm->vmcb01.ptr->save.kernel_gs_base = data;
3120 break;
3121 case MSR_SYSCALL_MASK:
3122 svm->vmcb01.ptr->save.sfmask = data;
3123 break;
3124 #endif
3125 case MSR_IA32_SYSENTER_CS:
3126 svm->vmcb01.ptr->save.sysenter_cs = data;
3127 break;
3128 case MSR_IA32_SYSENTER_EIP:
3129 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
3130 /*
3131 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3132 * when we spoof an Intel vendor ID (for cross vendor migration).
3133 * In this case we use this intercept to track the high
3134 * 32 bit part of these msrs to support Intel's
3135 * implementation of SYSENTER/SYSEXIT.
3136 */
3137 svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
3138 break;
3139 case MSR_IA32_SYSENTER_ESP:
3140 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3141 svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
3142 break;
3143 case MSR_TSC_AUX:
3144 /*
3145 * TSC_AUX is always virtualized for SEV-ES guests when the
3146 * feature is available. The user return MSR support is not
3147 * required in this case because TSC_AUX is restored on #VMEXIT
3148 * from the host save area (which has been initialized in
3149 * svm_enable_virtualization_cpu()).
3150 */
3151 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
3152 break;
3153
3154 /*
3155 * TSC_AUX is usually changed only during boot and never read
3156 * directly. Intercept TSC_AUX instead of exposing it to the
3157 * guest via direct_access_msrs, and switch it via user return.
3158 */
3159 preempt_disable();
3160 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3161 preempt_enable();
3162 if (ret)
3163 break;
3164
3165 svm->tsc_aux = data;
3166 break;
3167 case MSR_IA32_DEBUGCTLMSR:
3168 if (!lbrv) {
3169 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3170 break;
3171 }
3172 if (data & DEBUGCTL_RESERVED_BITS)
3173 return 1;
3174
3175 svm_get_lbr_vmcb(svm)->save.dbgctl = data;
3176 svm_update_lbrv(vcpu);
3177 break;
3178 case MSR_VM_HSAVE_PA:
3179 /*
3180 * Old kernels did not validate the value written to
3181 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid
3182 * value to allow live migrating buggy or malicious guests
3183 * originating from those kernels.
3184 */
3185 if (!msr->host_initiated && !page_address_valid(vcpu, data))
3186 return 1;
3187
3188 svm->nested.hsave_msr = data & PAGE_MASK;
3189 break;
3190 case MSR_VM_CR:
3191 return svm_set_vm_cr(vcpu, data);
3192 case MSR_VM_IGNNE:
3193 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3194 break;
3195 case MSR_AMD64_DE_CFG: {
3196 u64 supported_de_cfg;
3197
3198 if (svm_get_feature_msr(ecx, &supported_de_cfg))
3199 return 1;
3200
3201 if (data & ~supported_de_cfg)
3202 return 1;
3203
3204 svm->msr_decfg = data;
3205 break;
3206 }
3207 default:
3208 return kvm_set_msr_common(vcpu, msr);
3209 }
3210 return ret;
3211 }
3212
msr_interception(struct kvm_vcpu * vcpu)3213 static int msr_interception(struct kvm_vcpu *vcpu)
3214 {
3215 if (to_svm(vcpu)->vmcb->control.exit_info_1)
3216 return kvm_emulate_wrmsr(vcpu);
3217 else
3218 return kvm_emulate_rdmsr(vcpu);
3219 }
3220
interrupt_window_interception(struct kvm_vcpu * vcpu)3221 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3222 {
3223 kvm_make_request(KVM_REQ_EVENT, vcpu);
3224 svm_clear_vintr(to_svm(vcpu));
3225
3226 /*
3227 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3228 * In this case AVIC was temporarily disabled for
3229 * requesting the IRQ window and we have to re-enable it.
3230 *
3231 * If running nested, still remove the VM wide AVIC inhibit to
3232 * support case in which the interrupt window was requested when the
3233 * vCPU was not running nested.
3234
3235 * All vCPUs which run still run nested, will remain to have their
3236 * AVIC still inhibited due to per-cpu AVIC inhibition.
3237 */
3238 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3239
3240 ++vcpu->stat.irq_window_exits;
3241 return 1;
3242 }
3243
pause_interception(struct kvm_vcpu * vcpu)3244 static int pause_interception(struct kvm_vcpu *vcpu)
3245 {
3246 bool in_kernel;
3247 /*
3248 * CPL is not made available for an SEV-ES guest, therefore
3249 * vcpu->arch.preempted_in_kernel can never be true. Just
3250 * set in_kernel to false as well.
3251 */
3252 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3253
3254 grow_ple_window(vcpu);
3255
3256 kvm_vcpu_on_spin(vcpu, in_kernel);
3257 return kvm_skip_emulated_instruction(vcpu);
3258 }
3259
invpcid_interception(struct kvm_vcpu * vcpu)3260 static int invpcid_interception(struct kvm_vcpu *vcpu)
3261 {
3262 struct vcpu_svm *svm = to_svm(vcpu);
3263 unsigned long type;
3264 gva_t gva;
3265
3266 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3267 kvm_queue_exception(vcpu, UD_VECTOR);
3268 return 1;
3269 }
3270
3271 /*
3272 * For an INVPCID intercept:
3273 * EXITINFO1 provides the linear address of the memory operand.
3274 * EXITINFO2 provides the contents of the register operand.
3275 */
3276 type = svm->vmcb->control.exit_info_2;
3277 gva = svm->vmcb->control.exit_info_1;
3278
3279 return kvm_handle_invpcid(vcpu, type, gva);
3280 }
3281
3282 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3283 [SVM_EXIT_READ_CR0] = cr_interception,
3284 [SVM_EXIT_READ_CR3] = cr_interception,
3285 [SVM_EXIT_READ_CR4] = cr_interception,
3286 [SVM_EXIT_READ_CR8] = cr_interception,
3287 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3288 [SVM_EXIT_WRITE_CR0] = cr_interception,
3289 [SVM_EXIT_WRITE_CR3] = cr_interception,
3290 [SVM_EXIT_WRITE_CR4] = cr_interception,
3291 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3292 [SVM_EXIT_READ_DR0] = dr_interception,
3293 [SVM_EXIT_READ_DR1] = dr_interception,
3294 [SVM_EXIT_READ_DR2] = dr_interception,
3295 [SVM_EXIT_READ_DR3] = dr_interception,
3296 [SVM_EXIT_READ_DR4] = dr_interception,
3297 [SVM_EXIT_READ_DR5] = dr_interception,
3298 [SVM_EXIT_READ_DR6] = dr_interception,
3299 [SVM_EXIT_READ_DR7] = dr_interception,
3300 [SVM_EXIT_WRITE_DR0] = dr_interception,
3301 [SVM_EXIT_WRITE_DR1] = dr_interception,
3302 [SVM_EXIT_WRITE_DR2] = dr_interception,
3303 [SVM_EXIT_WRITE_DR3] = dr_interception,
3304 [SVM_EXIT_WRITE_DR4] = dr_interception,
3305 [SVM_EXIT_WRITE_DR5] = dr_interception,
3306 [SVM_EXIT_WRITE_DR6] = dr_interception,
3307 [SVM_EXIT_WRITE_DR7] = dr_interception,
3308 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3309 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3310 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3311 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3312 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3313 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
3314 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
3315 [SVM_EXIT_INTR] = intr_interception,
3316 [SVM_EXIT_NMI] = nmi_interception,
3317 [SVM_EXIT_SMI] = smi_interception,
3318 [SVM_EXIT_VINTR] = interrupt_window_interception,
3319 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc,
3320 [SVM_EXIT_CPUID] = kvm_emulate_cpuid,
3321 [SVM_EXIT_IRET] = iret_interception,
3322 [SVM_EXIT_INVD] = kvm_emulate_invd,
3323 [SVM_EXIT_PAUSE] = pause_interception,
3324 [SVM_EXIT_HLT] = kvm_emulate_halt,
3325 [SVM_EXIT_INVLPG] = invlpg_interception,
3326 [SVM_EXIT_INVLPGA] = invlpga_interception,
3327 [SVM_EXIT_IOIO] = io_interception,
3328 [SVM_EXIT_MSR] = msr_interception,
3329 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3330 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3331 [SVM_EXIT_VMRUN] = vmrun_interception,
3332 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall,
3333 [SVM_EXIT_VMLOAD] = vmload_interception,
3334 [SVM_EXIT_VMSAVE] = vmsave_interception,
3335 [SVM_EXIT_STGI] = stgi_interception,
3336 [SVM_EXIT_CLGI] = clgi_interception,
3337 [SVM_EXIT_SKINIT] = skinit_interception,
3338 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op,
3339 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd,
3340 [SVM_EXIT_MONITOR] = kvm_emulate_monitor,
3341 [SVM_EXIT_MWAIT] = kvm_emulate_mwait,
3342 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv,
3343 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op,
3344 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap,
3345 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap,
3346 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap,
3347 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap,
3348 [SVM_EXIT_INVPCID] = invpcid_interception,
3349 [SVM_EXIT_NPF] = npf_interception,
3350 [SVM_EXIT_RSM] = rsm_interception,
3351 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
3352 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
3353 #ifdef CONFIG_KVM_AMD_SEV
3354 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit,
3355 #endif
3356 };
3357
dump_vmcb(struct kvm_vcpu * vcpu)3358 static void dump_vmcb(struct kvm_vcpu *vcpu)
3359 {
3360 struct vcpu_svm *svm = to_svm(vcpu);
3361 struct vmcb_control_area *control = &svm->vmcb->control;
3362 struct vmcb_save_area *save = &svm->vmcb->save;
3363 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3364
3365 if (!dump_invalid_vmcb) {
3366 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3367 return;
3368 }
3369
3370 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3371 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3372 pr_err("VMCB Control Area:\n");
3373 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3374 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3375 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3376 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3377 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3378 pr_err("%-20s%08x %08x\n", "intercepts:",
3379 control->intercepts[INTERCEPT_WORD3],
3380 control->intercepts[INTERCEPT_WORD4]);
3381 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3382 pr_err("%-20s%d\n", "pause filter threshold:",
3383 control->pause_filter_thresh);
3384 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3385 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3386 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3387 pr_err("%-20s%d\n", "asid:", control->asid);
3388 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3389 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3390 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3391 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3392 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3393 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3394 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3395 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3396 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3397 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3398 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3399 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3400 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3401 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3402 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3403 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3404 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3405 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3406 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3407 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3408 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3409 pr_err("VMCB State Save Area:\n");
3410 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3411 "es:",
3412 save->es.selector, save->es.attrib,
3413 save->es.limit, save->es.base);
3414 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3415 "cs:",
3416 save->cs.selector, save->cs.attrib,
3417 save->cs.limit, save->cs.base);
3418 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3419 "ss:",
3420 save->ss.selector, save->ss.attrib,
3421 save->ss.limit, save->ss.base);
3422 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3423 "ds:",
3424 save->ds.selector, save->ds.attrib,
3425 save->ds.limit, save->ds.base);
3426 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3427 "fs:",
3428 save01->fs.selector, save01->fs.attrib,
3429 save01->fs.limit, save01->fs.base);
3430 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3431 "gs:",
3432 save01->gs.selector, save01->gs.attrib,
3433 save01->gs.limit, save01->gs.base);
3434 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3435 "gdtr:",
3436 save->gdtr.selector, save->gdtr.attrib,
3437 save->gdtr.limit, save->gdtr.base);
3438 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3439 "ldtr:",
3440 save01->ldtr.selector, save01->ldtr.attrib,
3441 save01->ldtr.limit, save01->ldtr.base);
3442 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3443 "idtr:",
3444 save->idtr.selector, save->idtr.attrib,
3445 save->idtr.limit, save->idtr.base);
3446 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3447 "tr:",
3448 save01->tr.selector, save01->tr.attrib,
3449 save01->tr.limit, save01->tr.base);
3450 pr_err("vmpl: %d cpl: %d efer: %016llx\n",
3451 save->vmpl, save->cpl, save->efer);
3452 pr_err("%-15s %016llx %-13s %016llx\n",
3453 "cr0:", save->cr0, "cr2:", save->cr2);
3454 pr_err("%-15s %016llx %-13s %016llx\n",
3455 "cr3:", save->cr3, "cr4:", save->cr4);
3456 pr_err("%-15s %016llx %-13s %016llx\n",
3457 "dr6:", save->dr6, "dr7:", save->dr7);
3458 pr_err("%-15s %016llx %-13s %016llx\n",
3459 "rip:", save->rip, "rflags:", save->rflags);
3460 pr_err("%-15s %016llx %-13s %016llx\n",
3461 "rsp:", save->rsp, "rax:", save->rax);
3462 pr_err("%-15s %016llx %-13s %016llx\n",
3463 "star:", save01->star, "lstar:", save01->lstar);
3464 pr_err("%-15s %016llx %-13s %016llx\n",
3465 "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3466 pr_err("%-15s %016llx %-13s %016llx\n",
3467 "kernel_gs_base:", save01->kernel_gs_base,
3468 "sysenter_cs:", save01->sysenter_cs);
3469 pr_err("%-15s %016llx %-13s %016llx\n",
3470 "sysenter_esp:", save01->sysenter_esp,
3471 "sysenter_eip:", save01->sysenter_eip);
3472 pr_err("%-15s %016llx %-13s %016llx\n",
3473 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3474 pr_err("%-15s %016llx %-13s %016llx\n",
3475 "br_from:", save->br_from, "br_to:", save->br_to);
3476 pr_err("%-15s %016llx %-13s %016llx\n",
3477 "excp_from:", save->last_excp_from,
3478 "excp_to:", save->last_excp_to);
3479 }
3480
svm_check_exit_valid(u64 exit_code)3481 static bool svm_check_exit_valid(u64 exit_code)
3482 {
3483 return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3484 svm_exit_handlers[exit_code]);
3485 }
3486
svm_handle_invalid_exit(struct kvm_vcpu * vcpu,u64 exit_code)3487 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3488 {
3489 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3490 dump_vmcb(vcpu);
3491 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3492 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3493 vcpu->run->internal.ndata = 2;
3494 vcpu->run->internal.data[0] = exit_code;
3495 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3496 return 0;
3497 }
3498
svm_invoke_exit_handler(struct kvm_vcpu * vcpu,u64 exit_code)3499 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3500 {
3501 if (!svm_check_exit_valid(exit_code))
3502 return svm_handle_invalid_exit(vcpu, exit_code);
3503
3504 #ifdef CONFIG_MITIGATION_RETPOLINE
3505 if (exit_code == SVM_EXIT_MSR)
3506 return msr_interception(vcpu);
3507 else if (exit_code == SVM_EXIT_VINTR)
3508 return interrupt_window_interception(vcpu);
3509 else if (exit_code == SVM_EXIT_INTR)
3510 return intr_interception(vcpu);
3511 else if (exit_code == SVM_EXIT_HLT)
3512 return kvm_emulate_halt(vcpu);
3513 else if (exit_code == SVM_EXIT_NPF)
3514 return npf_interception(vcpu);
3515 #endif
3516 return svm_exit_handlers[exit_code](vcpu);
3517 }
3518
svm_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)3519 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3520 u64 *info1, u64 *info2,
3521 u32 *intr_info, u32 *error_code)
3522 {
3523 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3524
3525 *reason = control->exit_code;
3526 *info1 = control->exit_info_1;
3527 *info2 = control->exit_info_2;
3528 *intr_info = control->exit_int_info;
3529 if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3530 (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3531 *error_code = control->exit_int_info_err;
3532 else
3533 *error_code = 0;
3534 }
3535
svm_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)3536 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3537 {
3538 struct vcpu_svm *svm = to_svm(vcpu);
3539 struct kvm_run *kvm_run = vcpu->run;
3540 u32 exit_code = svm->vmcb->control.exit_code;
3541
3542 /* SEV-ES guests must use the CR write traps to track CR registers. */
3543 if (!sev_es_guest(vcpu->kvm)) {
3544 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3545 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3546 if (npt_enabled)
3547 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3548 }
3549
3550 if (is_guest_mode(vcpu)) {
3551 int vmexit;
3552
3553 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3554
3555 vmexit = nested_svm_exit_special(svm);
3556
3557 if (vmexit == NESTED_EXIT_CONTINUE)
3558 vmexit = nested_svm_exit_handled(svm);
3559
3560 if (vmexit == NESTED_EXIT_DONE)
3561 return 1;
3562 }
3563
3564 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3565 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3566 kvm_run->fail_entry.hardware_entry_failure_reason
3567 = svm->vmcb->control.exit_code;
3568 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3569 dump_vmcb(vcpu);
3570 return 0;
3571 }
3572
3573 if (exit_fastpath != EXIT_FASTPATH_NONE)
3574 return 1;
3575
3576 return svm_invoke_exit_handler(vcpu, exit_code);
3577 }
3578
pre_svm_run(struct kvm_vcpu * vcpu)3579 static void pre_svm_run(struct kvm_vcpu *vcpu)
3580 {
3581 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3582 struct vcpu_svm *svm = to_svm(vcpu);
3583
3584 /*
3585 * If the previous vmrun of the vmcb occurred on a different physical
3586 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's
3587 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3588 */
3589 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3590 svm->current_vmcb->asid_generation = 0;
3591 vmcb_mark_all_dirty(svm->vmcb);
3592 svm->current_vmcb->cpu = vcpu->cpu;
3593 }
3594
3595 if (sev_guest(vcpu->kvm))
3596 return pre_sev_run(svm, vcpu->cpu);
3597
3598 /* FIXME: handle wraparound of asid_generation */
3599 if (svm->current_vmcb->asid_generation != sd->asid_generation)
3600 new_asid(svm, sd);
3601 }
3602
svm_inject_nmi(struct kvm_vcpu * vcpu)3603 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3604 {
3605 struct vcpu_svm *svm = to_svm(vcpu);
3606
3607 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3608
3609 if (svm->nmi_l1_to_l2)
3610 return;
3611
3612 /*
3613 * No need to manually track NMI masking when vNMI is enabled, hardware
3614 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
3615 * case where software directly injects an NMI.
3616 */
3617 if (!is_vnmi_enabled(svm)) {
3618 svm->nmi_masked = true;
3619 svm_set_iret_intercept(svm);
3620 }
3621 ++vcpu->stat.nmi_injections;
3622 }
3623
svm_is_vnmi_pending(struct kvm_vcpu * vcpu)3624 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3625 {
3626 struct vcpu_svm *svm = to_svm(vcpu);
3627
3628 if (!is_vnmi_enabled(svm))
3629 return false;
3630
3631 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3632 }
3633
svm_set_vnmi_pending(struct kvm_vcpu * vcpu)3634 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3635 {
3636 struct vcpu_svm *svm = to_svm(vcpu);
3637
3638 if (!is_vnmi_enabled(svm))
3639 return false;
3640
3641 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3642 return false;
3643
3644 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3645 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3646
3647 /*
3648 * Because the pending NMI is serviced by hardware, KVM can't know when
3649 * the NMI is "injected", but for all intents and purposes, passing the
3650 * NMI off to hardware counts as injection.
3651 */
3652 ++vcpu->stat.nmi_injections;
3653
3654 return true;
3655 }
3656
svm_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)3657 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3658 {
3659 struct vcpu_svm *svm = to_svm(vcpu);
3660 u32 type;
3661
3662 if (vcpu->arch.interrupt.soft) {
3663 if (svm_update_soft_interrupt_rip(vcpu))
3664 return;
3665
3666 type = SVM_EVTINJ_TYPE_SOFT;
3667 } else {
3668 type = SVM_EVTINJ_TYPE_INTR;
3669 }
3670
3671 trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3672 vcpu->arch.interrupt.soft, reinjected);
3673 ++vcpu->stat.irq_injections;
3674
3675 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3676 SVM_EVTINJ_VALID | type;
3677 }
3678
svm_complete_interrupt_delivery(struct kvm_vcpu * vcpu,int delivery_mode,int trig_mode,int vector)3679 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3680 int trig_mode, int vector)
3681 {
3682 /*
3683 * apic->apicv_active must be read after vcpu->mode.
3684 * Pairs with smp_store_release in vcpu_enter_guest.
3685 */
3686 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3687
3688 /* Note, this is called iff the local APIC is in-kernel. */
3689 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3690 /* Process the interrupt via kvm_check_and_inject_events(). */
3691 kvm_make_request(KVM_REQ_EVENT, vcpu);
3692 kvm_vcpu_kick(vcpu);
3693 return;
3694 }
3695
3696 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3697 if (in_guest_mode) {
3698 /*
3699 * Signal the doorbell to tell hardware to inject the IRQ. If
3700 * the vCPU exits the guest before the doorbell chimes, hardware
3701 * will automatically process AVIC interrupts at the next VMRUN.
3702 */
3703 avic_ring_doorbell(vcpu);
3704 } else {
3705 /*
3706 * Wake the vCPU if it was blocking. KVM will then detect the
3707 * pending IRQ when checking if the vCPU has a wake event.
3708 */
3709 kvm_vcpu_wake_up(vcpu);
3710 }
3711 }
3712
svm_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)3713 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
3714 int trig_mode, int vector)
3715 {
3716 kvm_lapic_set_irr(vector, apic);
3717
3718 /*
3719 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3720 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3721 * the read of guest_mode. This guarantees that either VMRUN will see
3722 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3723 * will signal the doorbell if the CPU has already entered the guest.
3724 */
3725 smp_mb__after_atomic();
3726 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3727 }
3728
svm_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3729 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3730 {
3731 struct vcpu_svm *svm = to_svm(vcpu);
3732
3733 /*
3734 * SEV-ES guests must always keep the CR intercepts cleared. CR
3735 * tracking is done using the CR write traps.
3736 */
3737 if (sev_es_guest(vcpu->kvm))
3738 return;
3739
3740 if (nested_svm_virtualize_tpr(vcpu))
3741 return;
3742
3743 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3744
3745 if (irr == -1)
3746 return;
3747
3748 if (tpr >= irr)
3749 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3750 }
3751
svm_get_nmi_mask(struct kvm_vcpu * vcpu)3752 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3753 {
3754 struct vcpu_svm *svm = to_svm(vcpu);
3755
3756 if (is_vnmi_enabled(svm))
3757 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3758 else
3759 return svm->nmi_masked;
3760 }
3761
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3762 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3763 {
3764 struct vcpu_svm *svm = to_svm(vcpu);
3765
3766 if (is_vnmi_enabled(svm)) {
3767 if (masked)
3768 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3769 else
3770 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3771
3772 } else {
3773 svm->nmi_masked = masked;
3774 if (masked)
3775 svm_set_iret_intercept(svm);
3776 else
3777 svm_clr_iret_intercept(svm);
3778 }
3779 }
3780
svm_nmi_blocked(struct kvm_vcpu * vcpu)3781 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3782 {
3783 struct vcpu_svm *svm = to_svm(vcpu);
3784 struct vmcb *vmcb = svm->vmcb;
3785
3786 if (!gif_set(svm))
3787 return true;
3788
3789 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3790 return false;
3791
3792 if (svm_get_nmi_mask(vcpu))
3793 return true;
3794
3795 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3796 }
3797
svm_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)3798 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3799 {
3800 struct vcpu_svm *svm = to_svm(vcpu);
3801 if (svm->nested.nested_run_pending)
3802 return -EBUSY;
3803
3804 if (svm_nmi_blocked(vcpu))
3805 return 0;
3806
3807 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
3808 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3809 return -EBUSY;
3810 return 1;
3811 }
3812
svm_interrupt_blocked(struct kvm_vcpu * vcpu)3813 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3814 {
3815 struct vcpu_svm *svm = to_svm(vcpu);
3816 struct vmcb *vmcb = svm->vmcb;
3817
3818 if (!gif_set(svm))
3819 return true;
3820
3821 if (is_guest_mode(vcpu)) {
3822 /* As long as interrupts are being delivered... */
3823 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3824 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3825 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3826 return true;
3827
3828 /* ... vmexits aren't blocked by the interrupt shadow */
3829 if (nested_exit_on_intr(svm))
3830 return false;
3831 } else {
3832 if (!svm_get_if_flag(vcpu))
3833 return true;
3834 }
3835
3836 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3837 }
3838
svm_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)3839 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3840 {
3841 struct vcpu_svm *svm = to_svm(vcpu);
3842
3843 if (svm->nested.nested_run_pending)
3844 return -EBUSY;
3845
3846 if (svm_interrupt_blocked(vcpu))
3847 return 0;
3848
3849 /*
3850 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3851 * e.g. if the IRQ arrived asynchronously after checking nested events.
3852 */
3853 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3854 return -EBUSY;
3855
3856 return 1;
3857 }
3858
svm_enable_irq_window(struct kvm_vcpu * vcpu)3859 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3860 {
3861 struct vcpu_svm *svm = to_svm(vcpu);
3862
3863 /*
3864 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3865 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3866 * get that intercept, this function will be called again though and
3867 * we'll get the vintr intercept. However, if the vGIF feature is
3868 * enabled, the STGI interception will not occur. Enable the irq
3869 * window under the assumption that the hardware will set the GIF.
3870 */
3871 if (vgif || gif_set(svm)) {
3872 /*
3873 * IRQ window is not needed when AVIC is enabled,
3874 * unless we have pending ExtINT since it cannot be injected
3875 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3876 * and fallback to injecting IRQ via V_IRQ.
3877 *
3878 * If running nested, AVIC is already locally inhibited
3879 * on this vCPU, therefore there is no need to request
3880 * the VM wide AVIC inhibition.
3881 */
3882 if (!is_guest_mode(vcpu))
3883 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3884
3885 svm_set_vintr(svm);
3886 }
3887 }
3888
svm_enable_nmi_window(struct kvm_vcpu * vcpu)3889 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3890 {
3891 struct vcpu_svm *svm = to_svm(vcpu);
3892
3893 /*
3894 * If NMIs are outright masked, i.e. the vCPU is already handling an
3895 * NMI, and KVM has not yet intercepted an IRET, then there is nothing
3896 * more to do at this time as KVM has already enabled IRET intercepts.
3897 * If KVM has already intercepted IRET, then single-step over the IRET,
3898 * as NMIs aren't architecturally unmasked until the IRET completes.
3899 *
3900 * If vNMI is enabled, KVM should never request an NMI window if NMIs
3901 * are masked, as KVM allows at most one to-be-injected NMI and one
3902 * pending NMI. If two NMIs arrive simultaneously, KVM will inject one
3903 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are
3904 * unmasked. KVM _will_ request an NMI window in some situations, e.g.
3905 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately
3906 * inject the NMI. In those situations, KVM needs to single-step over
3907 * the STI shadow or intercept STGI.
3908 */
3909 if (svm_get_nmi_mask(vcpu)) {
3910 WARN_ON_ONCE(is_vnmi_enabled(svm));
3911
3912 if (!svm->awaiting_iret_completion)
3913 return; /* IRET will cause a vm exit */
3914 }
3915
3916 /*
3917 * SEV-ES guests are responsible for signaling when a vCPU is ready to
3918 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3919 * KVM can't intercept and single-step IRET to detect when NMIs are
3920 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE.
3921 *
3922 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3923 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3924 * supported NAEs in the GHCB protocol.
3925 */
3926 if (sev_es_guest(vcpu->kvm))
3927 return;
3928
3929 if (!gif_set(svm)) {
3930 if (vgif)
3931 svm_set_intercept(svm, INTERCEPT_STGI);
3932 return; /* STGI will cause a vm exit */
3933 }
3934
3935 /*
3936 * Something prevents NMI from been injected. Single step over possible
3937 * problem (IRET or exception injection or interrupt shadow)
3938 */
3939 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3940 svm->nmi_singlestep = true;
3941 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3942 }
3943
svm_flush_tlb_asid(struct kvm_vcpu * vcpu)3944 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3945 {
3946 struct vcpu_svm *svm = to_svm(vcpu);
3947
3948 /*
3949 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3950 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3951 * entries, and thus is a superset of Hyper-V's fine grained flushing.
3952 */
3953 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3954
3955 /*
3956 * Flush only the current ASID even if the TLB flush was invoked via
3957 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all
3958 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3959 * unconditionally does a TLB flush on both nested VM-Enter and nested
3960 * VM-Exit (via kvm_mmu_reset_context()).
3961 */
3962 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3963 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3964 else
3965 svm->current_vmcb->asid_generation--;
3966 }
3967
svm_flush_tlb_current(struct kvm_vcpu * vcpu)3968 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3969 {
3970 hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3971
3972 /*
3973 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3974 * flush the NPT mappings via hypercall as flushing the ASID only
3975 * affects virtual to physical mappings, it does not invalidate guest
3976 * physical to host physical mappings.
3977 */
3978 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3979 hyperv_flush_guest_mapping(root_tdp);
3980
3981 svm_flush_tlb_asid(vcpu);
3982 }
3983
svm_flush_tlb_all(struct kvm_vcpu * vcpu)3984 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3985 {
3986 /*
3987 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3988 * flushes should be routed to hv_flush_remote_tlbs() without requesting
3989 * a "regular" remote flush. Reaching this point means either there's
3990 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
3991 * which might be fatal to the guest. Yell, but try to recover.
3992 */
3993 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3994 hv_flush_remote_tlbs(vcpu->kvm);
3995
3996 svm_flush_tlb_asid(vcpu);
3997 }
3998
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)3999 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
4000 {
4001 struct vcpu_svm *svm = to_svm(vcpu);
4002
4003 invlpga(gva, svm->vmcb->control.asid);
4004 }
4005
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)4006 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4007 {
4008 struct vcpu_svm *svm = to_svm(vcpu);
4009
4010 if (nested_svm_virtualize_tpr(vcpu))
4011 return;
4012
4013 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
4014 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4015 kvm_set_cr8(vcpu, cr8);
4016 }
4017 }
4018
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)4019 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4020 {
4021 struct vcpu_svm *svm = to_svm(vcpu);
4022 u64 cr8;
4023
4024 if (nested_svm_virtualize_tpr(vcpu) ||
4025 kvm_vcpu_apicv_active(vcpu))
4026 return;
4027
4028 cr8 = kvm_get_cr8(vcpu);
4029 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4030 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4031 }
4032
svm_complete_soft_interrupt(struct kvm_vcpu * vcpu,u8 vector,int type)4033 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
4034 int type)
4035 {
4036 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
4037 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
4038 struct vcpu_svm *svm = to_svm(vcpu);
4039
4040 /*
4041 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
4042 * associated with the original soft exception/interrupt. next_rip is
4043 * cleared on all exits that can occur while vectoring an event, so KVM
4044 * needs to manually set next_rip for re-injection. Unlike the !nrips
4045 * case below, this needs to be done if and only if KVM is re-injecting
4046 * the same event, i.e. if the event is a soft exception/interrupt,
4047 * otherwise next_rip is unused on VMRUN.
4048 */
4049 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
4050 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
4051 svm->vmcb->control.next_rip = svm->soft_int_next_rip;
4052 /*
4053 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
4054 * injecting the soft exception/interrupt. That advancement needs to
4055 * be unwound if vectoring didn't complete. Note, the new event may
4056 * not be the injected event, e.g. if KVM injected an INTn, the INTn
4057 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
4058 * be the reported vectored event, but RIP still needs to be unwound.
4059 */
4060 else if (!nrips && (is_soft || is_exception) &&
4061 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4062 kvm_rip_write(vcpu, svm->soft_int_old_rip);
4063 }
4064
svm_complete_interrupts(struct kvm_vcpu * vcpu)4065 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4066 {
4067 struct vcpu_svm *svm = to_svm(vcpu);
4068 u8 vector;
4069 int type;
4070 u32 exitintinfo = svm->vmcb->control.exit_int_info;
4071 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4072 bool soft_int_injected = svm->soft_int_injected;
4073
4074 svm->nmi_l1_to_l2 = false;
4075 svm->soft_int_injected = false;
4076
4077 /*
4078 * If we've made progress since setting awaiting_iret_completion, we've
4079 * executed an IRET and can allow NMI injection.
4080 */
4081 if (svm->awaiting_iret_completion &&
4082 kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4083 svm->awaiting_iret_completion = false;
4084 svm->nmi_masked = false;
4085 kvm_make_request(KVM_REQ_EVENT, vcpu);
4086 }
4087
4088 vcpu->arch.nmi_injected = false;
4089 kvm_clear_exception_queue(vcpu);
4090 kvm_clear_interrupt_queue(vcpu);
4091
4092 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4093 return;
4094
4095 kvm_make_request(KVM_REQ_EVENT, vcpu);
4096
4097 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4098 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4099
4100 if (soft_int_injected)
4101 svm_complete_soft_interrupt(vcpu, vector, type);
4102
4103 switch (type) {
4104 case SVM_EXITINTINFO_TYPE_NMI:
4105 vcpu->arch.nmi_injected = true;
4106 svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4107 break;
4108 case SVM_EXITINTINFO_TYPE_EXEPT:
4109 /*
4110 * Never re-inject a #VC exception.
4111 */
4112 if (vector == X86_TRAP_VC)
4113 break;
4114
4115 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4116 u32 err = svm->vmcb->control.exit_int_info_err;
4117 kvm_requeue_exception_e(vcpu, vector, err);
4118
4119 } else
4120 kvm_requeue_exception(vcpu, vector);
4121 break;
4122 case SVM_EXITINTINFO_TYPE_INTR:
4123 kvm_queue_interrupt(vcpu, vector, false);
4124 break;
4125 case SVM_EXITINTINFO_TYPE_SOFT:
4126 kvm_queue_interrupt(vcpu, vector, true);
4127 break;
4128 default:
4129 break;
4130 }
4131
4132 }
4133
svm_cancel_injection(struct kvm_vcpu * vcpu)4134 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4135 {
4136 struct vcpu_svm *svm = to_svm(vcpu);
4137 struct vmcb_control_area *control = &svm->vmcb->control;
4138
4139 control->exit_int_info = control->event_inj;
4140 control->exit_int_info_err = control->event_inj_err;
4141 control->event_inj = 0;
4142 svm_complete_interrupts(vcpu);
4143 }
4144
svm_vcpu_pre_run(struct kvm_vcpu * vcpu)4145 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4146 {
4147 if (to_kvm_sev_info(vcpu->kvm)->need_init)
4148 return -EINVAL;
4149
4150 return 1;
4151 }
4152
svm_exit_handlers_fastpath(struct kvm_vcpu * vcpu)4153 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4154 {
4155 struct vcpu_svm *svm = to_svm(vcpu);
4156
4157 if (is_guest_mode(vcpu))
4158 return EXIT_FASTPATH_NONE;
4159
4160 switch (svm->vmcb->control.exit_code) {
4161 case SVM_EXIT_MSR:
4162 if (!svm->vmcb->control.exit_info_1)
4163 break;
4164 return handle_fastpath_set_msr_irqoff(vcpu);
4165 case SVM_EXIT_HLT:
4166 return handle_fastpath_hlt(vcpu);
4167 default:
4168 break;
4169 }
4170
4171 return EXIT_FASTPATH_NONE;
4172 }
4173
svm_vcpu_enter_exit(struct kvm_vcpu * vcpu,bool spec_ctrl_intercepted)4174 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4175 {
4176 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
4177 struct vcpu_svm *svm = to_svm(vcpu);
4178
4179 guest_state_enter_irqoff();
4180
4181 amd_clear_divider();
4182
4183 if (sev_es_guest(vcpu->kvm))
4184 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted,
4185 sev_es_host_save_area(sd));
4186 else
4187 __svm_vcpu_run(svm, spec_ctrl_intercepted);
4188
4189 guest_state_exit_irqoff();
4190 }
4191
svm_vcpu_run(struct kvm_vcpu * vcpu,bool force_immediate_exit)4192 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu,
4193 bool force_immediate_exit)
4194 {
4195 struct vcpu_svm *svm = to_svm(vcpu);
4196 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4197
4198 trace_kvm_entry(vcpu, force_immediate_exit);
4199
4200 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4201 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4202 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4203
4204 /*
4205 * Disable singlestep if we're injecting an interrupt/exception.
4206 * We don't want our modified rflags to be pushed on the stack where
4207 * we might not be able to easily reset them if we disabled NMI
4208 * singlestep later.
4209 */
4210 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4211 /*
4212 * Event injection happens before external interrupts cause a
4213 * vmexit and interrupts are disabled here, so smp_send_reschedule
4214 * is enough to force an immediate vmexit.
4215 */
4216 disable_nmi_singlestep(svm);
4217 force_immediate_exit = true;
4218 }
4219
4220 if (force_immediate_exit)
4221 smp_send_reschedule(vcpu->cpu);
4222
4223 pre_svm_run(vcpu);
4224
4225 sync_lapic_to_cr8(vcpu);
4226
4227 if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4228 svm->vmcb->control.asid = svm->asid;
4229 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4230 }
4231 svm->vmcb->save.cr2 = vcpu->arch.cr2;
4232
4233 svm_hv_update_vp_id(svm->vmcb, vcpu);
4234
4235 /*
4236 * Run with all-zero DR6 unless needed, so that we can get the exact cause
4237 * of a #DB.
4238 */
4239 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
4240 svm_set_dr6(svm, vcpu->arch.dr6);
4241 else
4242 svm_set_dr6(svm, DR6_ACTIVE_LOW);
4243
4244 clgi();
4245 kvm_load_guest_xsave_state(vcpu);
4246
4247 kvm_wait_lapic_expire(vcpu);
4248
4249 /*
4250 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4251 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4252 * is no need to worry about the conditional branch over the wrmsr
4253 * being speculatively taken.
4254 */
4255 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4256 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4257
4258 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4259
4260 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4261 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4262
4263 if (!sev_es_guest(vcpu->kvm)) {
4264 vcpu->arch.cr2 = svm->vmcb->save.cr2;
4265 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4266 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4267 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4268 }
4269 vcpu->arch.regs_dirty = 0;
4270
4271 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4272 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4273
4274 kvm_load_host_xsave_state(vcpu);
4275 stgi();
4276
4277 /* Any pending NMI will happen here */
4278
4279 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4280 kvm_after_interrupt(vcpu);
4281
4282 sync_cr8_to_lapic(vcpu);
4283
4284 svm->next_rip = 0;
4285 if (is_guest_mode(vcpu)) {
4286 nested_sync_control_from_vmcb02(svm);
4287
4288 /* Track VMRUNs that have made past consistency checking */
4289 if (svm->nested.nested_run_pending &&
4290 svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4291 ++vcpu->stat.nested_run;
4292
4293 svm->nested.nested_run_pending = 0;
4294 }
4295
4296 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4297 vmcb_mark_all_clean(svm->vmcb);
4298
4299 /* if exit due to PF check for async PF */
4300 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4301 vcpu->arch.apf.host_apf_flags =
4302 kvm_read_and_reset_apf_flags();
4303
4304 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4305
4306 /*
4307 * We need to handle MC intercepts here before the vcpu has a chance to
4308 * change the physical cpu
4309 */
4310 if (unlikely(svm->vmcb->control.exit_code ==
4311 SVM_EXIT_EXCP_BASE + MC_VECTOR))
4312 svm_handle_mce(vcpu);
4313
4314 trace_kvm_exit(vcpu, KVM_ISA_SVM);
4315
4316 svm_complete_interrupts(vcpu);
4317
4318 return svm_exit_handlers_fastpath(vcpu);
4319 }
4320
svm_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)4321 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4322 int root_level)
4323 {
4324 struct vcpu_svm *svm = to_svm(vcpu);
4325 unsigned long cr3;
4326
4327 if (npt_enabled) {
4328 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4329 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4330
4331 hv_track_root_tdp(vcpu, root_hpa);
4332
4333 cr3 = vcpu->arch.cr3;
4334 } else if (root_level >= PT64_ROOT_4LEVEL) {
4335 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4336 } else {
4337 /* PCID in the guest should be impossible with a 32-bit MMU. */
4338 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4339 cr3 = root_hpa;
4340 }
4341
4342 svm->vmcb->save.cr3 = cr3;
4343 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4344 }
4345
4346 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4347 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4348 {
4349 /*
4350 * Patch in the VMMCALL instruction:
4351 */
4352 hypercall[0] = 0x0f;
4353 hypercall[1] = 0x01;
4354 hypercall[2] = 0xd9;
4355 }
4356
4357 /*
4358 * The kvm parameter can be NULL (module initialization, or invocation before
4359 * VM creation). Be sure to check the kvm parameter before using it.
4360 */
svm_has_emulated_msr(struct kvm * kvm,u32 index)4361 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4362 {
4363 switch (index) {
4364 case MSR_IA32_MCG_EXT_CTL:
4365 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4366 return false;
4367 case MSR_IA32_SMBASE:
4368 if (!IS_ENABLED(CONFIG_KVM_SMM))
4369 return false;
4370 /* SEV-ES guests do not support SMM, so report false */
4371 if (kvm && sev_es_guest(kvm))
4372 return false;
4373 break;
4374 default:
4375 break;
4376 }
4377
4378 return true;
4379 }
4380
svm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)4381 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4382 {
4383 struct vcpu_svm *svm = to_svm(vcpu);
4384
4385 /*
4386 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4387 * can only disable all variants of by disallowing CR4.OSXSAVE from
4388 * being set. As a result, if the host has XSAVE and XSAVES, and the
4389 * guest has XSAVE enabled, the guest can execute XSAVES without
4390 * faulting. Treat XSAVES as enabled in this case regardless of
4391 * whether it's advertised to the guest so that KVM context switches
4392 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give
4393 * the guest read/write access to the host's XSS.
4394 */
4395 if (boot_cpu_has(X86_FEATURE_XSAVE) &&
4396 boot_cpu_has(X86_FEATURE_XSAVES) &&
4397 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
4398 kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES);
4399
4400 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS);
4401 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR);
4402 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV);
4403
4404 /*
4405 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that
4406 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4407 * SVM on Intel is bonkers and extremely unlikely to work).
4408 */
4409 if (!guest_cpuid_is_intel_compatible(vcpu))
4410 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4411
4412 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER);
4413 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD);
4414 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF);
4415 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI);
4416
4417 svm_recalc_instruction_intercepts(vcpu, svm);
4418
4419 if (boot_cpu_has(X86_FEATURE_IBPB))
4420 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
4421 !!guest_has_pred_cmd_msr(vcpu));
4422
4423 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
4424 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
4425 !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
4426
4427 if (sev_guest(vcpu->kvm))
4428 sev_vcpu_after_set_cpuid(svm);
4429
4430 init_vmcb_after_set_cpuid(vcpu);
4431 }
4432
svm_has_wbinvd_exit(void)4433 static bool svm_has_wbinvd_exit(void)
4434 {
4435 return true;
4436 }
4437
4438 #define PRE_EX(exit) { .exit_code = (exit), \
4439 .stage = X86_ICPT_PRE_EXCEPT, }
4440 #define POST_EX(exit) { .exit_code = (exit), \
4441 .stage = X86_ICPT_POST_EXCEPT, }
4442 #define POST_MEM(exit) { .exit_code = (exit), \
4443 .stage = X86_ICPT_POST_MEMACCESS, }
4444
4445 static const struct __x86_intercept {
4446 u32 exit_code;
4447 enum x86_intercept_stage stage;
4448 } x86_intercept_map[] = {
4449 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4450 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4451 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4452 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4453 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4454 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4455 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4456 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4457 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4458 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4459 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4460 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4461 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4462 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4463 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4464 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4465 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4466 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4467 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4468 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4469 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4470 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4471 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4472 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4473 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4474 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4475 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4476 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4477 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4478 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4479 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4480 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4481 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4482 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4483 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4484 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4485 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4486 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4487 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4488 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4489 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4490 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4491 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4492 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4493 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4494 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4495 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
4496 };
4497
4498 #undef PRE_EX
4499 #undef POST_EX
4500 #undef POST_MEM
4501
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)4502 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4503 struct x86_instruction_info *info,
4504 enum x86_intercept_stage stage,
4505 struct x86_exception *exception)
4506 {
4507 struct vcpu_svm *svm = to_svm(vcpu);
4508 int vmexit, ret = X86EMUL_CONTINUE;
4509 struct __x86_intercept icpt_info;
4510 struct vmcb *vmcb = svm->vmcb;
4511
4512 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4513 goto out;
4514
4515 icpt_info = x86_intercept_map[info->intercept];
4516
4517 if (stage != icpt_info.stage)
4518 goto out;
4519
4520 switch (icpt_info.exit_code) {
4521 case SVM_EXIT_READ_CR0:
4522 if (info->intercept == x86_intercept_cr_read)
4523 icpt_info.exit_code += info->modrm_reg;
4524 break;
4525 case SVM_EXIT_WRITE_CR0: {
4526 unsigned long cr0, val;
4527
4528 if (info->intercept == x86_intercept_cr_write)
4529 icpt_info.exit_code += info->modrm_reg;
4530
4531 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4532 info->intercept == x86_intercept_clts)
4533 break;
4534
4535 if (!(vmcb12_is_intercept(&svm->nested.ctl,
4536 INTERCEPT_SELECTIVE_CR0)))
4537 break;
4538
4539 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4540 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4541
4542 if (info->intercept == x86_intercept_lmsw) {
4543 cr0 &= 0xfUL;
4544 val &= 0xfUL;
4545 /* lmsw can't clear PE - catch this here */
4546 if (cr0 & X86_CR0_PE)
4547 val |= X86_CR0_PE;
4548 }
4549
4550 if (cr0 ^ val)
4551 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4552
4553 break;
4554 }
4555 case SVM_EXIT_READ_DR0:
4556 case SVM_EXIT_WRITE_DR0:
4557 icpt_info.exit_code += info->modrm_reg;
4558 break;
4559 case SVM_EXIT_MSR:
4560 if (info->intercept == x86_intercept_wrmsr)
4561 vmcb->control.exit_info_1 = 1;
4562 else
4563 vmcb->control.exit_info_1 = 0;
4564 break;
4565 case SVM_EXIT_PAUSE:
4566 /*
4567 * We get this for NOP only, but pause
4568 * is rep not, check this here
4569 */
4570 if (info->rep_prefix != REPE_PREFIX)
4571 goto out;
4572 break;
4573 case SVM_EXIT_IOIO: {
4574 u64 exit_info;
4575 u32 bytes;
4576
4577 if (info->intercept == x86_intercept_in ||
4578 info->intercept == x86_intercept_ins) {
4579 exit_info = ((info->src_val & 0xffff) << 16) |
4580 SVM_IOIO_TYPE_MASK;
4581 bytes = info->dst_bytes;
4582 } else {
4583 exit_info = (info->dst_val & 0xffff) << 16;
4584 bytes = info->src_bytes;
4585 }
4586
4587 if (info->intercept == x86_intercept_outs ||
4588 info->intercept == x86_intercept_ins)
4589 exit_info |= SVM_IOIO_STR_MASK;
4590
4591 if (info->rep_prefix)
4592 exit_info |= SVM_IOIO_REP_MASK;
4593
4594 bytes = min(bytes, 4u);
4595
4596 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4597
4598 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4599
4600 vmcb->control.exit_info_1 = exit_info;
4601 vmcb->control.exit_info_2 = info->next_rip;
4602
4603 break;
4604 }
4605 default:
4606 break;
4607 }
4608
4609 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4610 if (static_cpu_has(X86_FEATURE_NRIPS))
4611 vmcb->control.next_rip = info->next_rip;
4612 vmcb->control.exit_code = icpt_info.exit_code;
4613 vmexit = nested_svm_exit_handled(svm);
4614
4615 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4616 : X86EMUL_CONTINUE;
4617
4618 out:
4619 return ret;
4620 }
4621
svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)4622 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4623 {
4624 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4625 vcpu->arch.at_instruction_boundary = true;
4626 }
4627
svm_setup_mce(struct kvm_vcpu * vcpu)4628 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4629 {
4630 /* [63:9] are reserved. */
4631 vcpu->arch.mcg_cap &= 0x1ff;
4632 }
4633
4634 #ifdef CONFIG_KVM_SMM
svm_smi_blocked(struct kvm_vcpu * vcpu)4635 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4636 {
4637 struct vcpu_svm *svm = to_svm(vcpu);
4638
4639 /* Per APM Vol.2 15.22.2 "Response to SMI" */
4640 if (!gif_set(svm))
4641 return true;
4642
4643 return is_smm(vcpu);
4644 }
4645
svm_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4646 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4647 {
4648 struct vcpu_svm *svm = to_svm(vcpu);
4649 if (svm->nested.nested_run_pending)
4650 return -EBUSY;
4651
4652 if (svm_smi_blocked(vcpu))
4653 return 0;
4654
4655 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
4656 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4657 return -EBUSY;
4658
4659 return 1;
4660 }
4661
svm_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)4662 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4663 {
4664 struct vcpu_svm *svm = to_svm(vcpu);
4665 struct kvm_host_map map_save;
4666 int ret;
4667
4668 if (!is_guest_mode(vcpu))
4669 return 0;
4670
4671 /*
4672 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is
4673 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4674 */
4675
4676 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4677 return 1;
4678
4679 smram->smram64.svm_guest_flag = 1;
4680 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4681
4682 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4683 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4684 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4685
4686 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4687 if (ret)
4688 return ret;
4689
4690 /*
4691 * KVM uses VMCB01 to store L1 host state while L2 runs but
4692 * VMCB01 is going to be used during SMM and thus the state will
4693 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4694 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4695 * format of the area is identical to guest save area offsetted
4696 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4697 * within 'struct vmcb'). Note: HSAVE area may also be used by
4698 * L1 hypervisor to save additional host context (e.g. KVM does
4699 * that, see svm_prepare_switch_to_guest()) which must be
4700 * preserved.
4701 */
4702 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4703 return 1;
4704
4705 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4706
4707 svm_copy_vmrun_state(map_save.hva + 0x400,
4708 &svm->vmcb01.ptr->save);
4709
4710 kvm_vcpu_unmap(vcpu, &map_save);
4711 return 0;
4712 }
4713
svm_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)4714 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4715 {
4716 struct vcpu_svm *svm = to_svm(vcpu);
4717 struct kvm_host_map map, map_save;
4718 struct vmcb *vmcb12;
4719 int ret;
4720
4721 const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4722
4723 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4724 return 0;
4725
4726 /* Non-zero if SMI arrived while vCPU was in guest mode. */
4727 if (!smram64->svm_guest_flag)
4728 return 0;
4729
4730 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4731 return 1;
4732
4733 if (!(smram64->efer & EFER_SVME))
4734 return 1;
4735
4736 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4737 return 1;
4738
4739 ret = 1;
4740 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4741 goto unmap_map;
4742
4743 if (svm_allocate_nested(svm))
4744 goto unmap_save;
4745
4746 /*
4747 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4748 * used during SMM (see svm_enter_smm())
4749 */
4750
4751 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4752
4753 /*
4754 * Enter the nested guest now
4755 */
4756
4757 vmcb_mark_all_dirty(svm->vmcb01.ptr);
4758
4759 vmcb12 = map.hva;
4760 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4761 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4762 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4763
4764 if (ret)
4765 goto unmap_save;
4766
4767 svm->nested.nested_run_pending = 1;
4768
4769 unmap_save:
4770 kvm_vcpu_unmap(vcpu, &map_save);
4771 unmap_map:
4772 kvm_vcpu_unmap(vcpu, &map);
4773 return ret;
4774 }
4775
svm_enable_smi_window(struct kvm_vcpu * vcpu)4776 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4777 {
4778 struct vcpu_svm *svm = to_svm(vcpu);
4779
4780 if (!gif_set(svm)) {
4781 if (vgif)
4782 svm_set_intercept(svm, INTERCEPT_STGI);
4783 /* STGI will cause a vm exit */
4784 } else {
4785 /* We must be in SMM; RSM will cause a vmexit anyway. */
4786 }
4787 }
4788 #endif
4789
svm_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)4790 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4791 void *insn, int insn_len)
4792 {
4793 bool smep, smap, is_user;
4794 u64 error_code;
4795
4796 /* Emulation is always possible when KVM has access to all guest state. */
4797 if (!sev_guest(vcpu->kvm))
4798 return X86EMUL_CONTINUE;
4799
4800 /* #UD and #GP should never be intercepted for SEV guests. */
4801 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4802 EMULTYPE_TRAP_UD_FORCED |
4803 EMULTYPE_VMWARE_GP));
4804
4805 /*
4806 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4807 * to guest register state.
4808 */
4809 if (sev_es_guest(vcpu->kvm))
4810 return X86EMUL_RETRY_INSTR;
4811
4812 /*
4813 * Emulation is possible if the instruction is already decoded, e.g.
4814 * when completing I/O after returning from userspace.
4815 */
4816 if (emul_type & EMULTYPE_NO_DECODE)
4817 return X86EMUL_CONTINUE;
4818
4819 /*
4820 * Emulation is possible for SEV guests if and only if a prefilled
4821 * buffer containing the bytes of the intercepted instruction is
4822 * available. SEV guest memory is encrypted with a guest specific key
4823 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
4824 * decode garbage.
4825 *
4826 * If KVM is NOT trying to simply skip an instruction, inject #UD if
4827 * KVM reached this point without an instruction buffer. In practice,
4828 * this path should never be hit by a well-behaved guest, e.g. KVM
4829 * doesn't intercept #UD or #GP for SEV guests, but this path is still
4830 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4831 * access, and needs to be handled by KVM to avoid putting the guest
4832 * into an infinite loop. Injecting #UD is somewhat arbitrary, but
4833 * its the least awful option given lack of insight into the guest.
4834 *
4835 * If KVM is trying to skip an instruction, simply resume the guest.
4836 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4837 * will attempt to re-inject the INT3/INTO and skip the instruction.
4838 * In that scenario, retrying the INT3/INTO and hoping the guest will
4839 * make forward progress is the only option that has a chance of
4840 * success (and in practice it will work the vast majority of the time).
4841 */
4842 if (unlikely(!insn)) {
4843 if (emul_type & EMULTYPE_SKIP)
4844 return X86EMUL_UNHANDLEABLE;
4845
4846 kvm_queue_exception(vcpu, UD_VECTOR);
4847 return X86EMUL_PROPAGATE_FAULT;
4848 }
4849
4850 /*
4851 * Emulate for SEV guests if the insn buffer is not empty. The buffer
4852 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4853 * the faulting instruction because the code fetch itself faulted, e.g.
4854 * the guest attempted to fetch from emulated MMIO or a guest page
4855 * table used to translate CS:RIP resides in emulated MMIO.
4856 */
4857 if (likely(insn_len))
4858 return X86EMUL_CONTINUE;
4859
4860 /*
4861 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4862 *
4863 * Errata:
4864 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4865 * possible that CPU microcode implementing DecodeAssist will fail to
4866 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4867 * be '0'. This happens because microcode reads CS:RIP using a _data_
4868 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode
4869 * gives up and does not fill the instruction bytes buffer.
4870 *
4871 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4872 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4873 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4874 * GuestIntrBytes field of the VMCB.
4875 *
4876 * This does _not_ mean that the erratum has been encountered, as the
4877 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4878 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4879 * encountered a reserved/not-present #PF.
4880 *
4881 * To hit the erratum, the following conditions must be true:
4882 * 1. CR4.SMAP=1 (obviously).
4883 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot
4884 * have been hit as the guest would have encountered a SMEP
4885 * violation #PF, not a #NPF.
4886 * 3. The #NPF is not due to a code fetch, in which case failure to
4887 * retrieve the instruction bytes is legitimate (see abvoe).
4888 *
4889 * In addition, don't apply the erratum workaround if the #NPF occurred
4890 * while translating guest page tables (see below).
4891 */
4892 error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4893 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4894 goto resume_guest;
4895
4896 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4897 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4898 is_user = svm_get_cpl(vcpu) == 3;
4899 if (smap && (!smep || is_user)) {
4900 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4901
4902 /*
4903 * If the fault occurred in userspace, arbitrarily inject #GP
4904 * to avoid killing the guest and to hopefully avoid confusing
4905 * the guest kernel too much, e.g. injecting #PF would not be
4906 * coherent with respect to the guest's page tables. Request
4907 * triple fault if the fault occurred in the kernel as there's
4908 * no fault that KVM can inject without confusing the guest.
4909 * In practice, the triple fault is moot as no sane SEV kernel
4910 * will execute from user memory while also running with SMAP=1.
4911 */
4912 if (is_user)
4913 kvm_inject_gp(vcpu, 0);
4914 else
4915 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4916 return X86EMUL_PROPAGATE_FAULT;
4917 }
4918
4919 resume_guest:
4920 /*
4921 * If the erratum was not hit, simply resume the guest and let it fault
4922 * again. While awful, e.g. the vCPU may get stuck in an infinite loop
4923 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to
4924 * userspace will kill the guest, and letting the emulator read garbage
4925 * will yield random behavior and potentially corrupt the guest.
4926 *
4927 * Simply resuming the guest is technically not a violation of the SEV
4928 * architecture. AMD's APM states that all code fetches and page table
4929 * accesses for SEV guest are encrypted, regardless of the C-Bit. The
4930 * APM also states that encrypted accesses to MMIO are "ignored", but
4931 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4932 * the guest spin is technically "ignoring" the access.
4933 */
4934 return X86EMUL_RETRY_INSTR;
4935 }
4936
svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)4937 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4938 {
4939 struct vcpu_svm *svm = to_svm(vcpu);
4940
4941 return !gif_set(svm);
4942 }
4943
svm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)4944 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4945 {
4946 if (!sev_es_guest(vcpu->kvm))
4947 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4948
4949 sev_vcpu_deliver_sipi_vector(vcpu, vector);
4950 }
4951
svm_vm_destroy(struct kvm * kvm)4952 static void svm_vm_destroy(struct kvm *kvm)
4953 {
4954 avic_vm_destroy(kvm);
4955 sev_vm_destroy(kvm);
4956 }
4957
svm_vm_init(struct kvm * kvm)4958 static int svm_vm_init(struct kvm *kvm)
4959 {
4960 int type = kvm->arch.vm_type;
4961
4962 if (type != KVM_X86_DEFAULT_VM &&
4963 type != KVM_X86_SW_PROTECTED_VM) {
4964 kvm->arch.has_protected_state =
4965 (type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM);
4966 to_kvm_sev_info(kvm)->need_init = true;
4967
4968 kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM);
4969 kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem;
4970 }
4971
4972 if (!pause_filter_count || !pause_filter_thresh)
4973 kvm->arch.pause_in_guest = true;
4974
4975 if (enable_apicv) {
4976 int ret = avic_vm_init(kvm);
4977 if (ret)
4978 return ret;
4979 }
4980
4981 return 0;
4982 }
4983
svm_alloc_apic_backing_page(struct kvm_vcpu * vcpu)4984 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu)
4985 {
4986 struct page *page = snp_safe_alloc_page();
4987
4988 if (!page)
4989 return NULL;
4990
4991 return page_address(page);
4992 }
4993
4994 static struct kvm_x86_ops svm_x86_ops __initdata = {
4995 .name = KBUILD_MODNAME,
4996
4997 .check_processor_compatibility = svm_check_processor_compat,
4998
4999 .hardware_unsetup = svm_hardware_unsetup,
5000 .enable_virtualization_cpu = svm_enable_virtualization_cpu,
5001 .disable_virtualization_cpu = svm_disable_virtualization_cpu,
5002 .emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu,
5003 .has_emulated_msr = svm_has_emulated_msr,
5004
5005 .vcpu_create = svm_vcpu_create,
5006 .vcpu_free = svm_vcpu_free,
5007 .vcpu_reset = svm_vcpu_reset,
5008
5009 .vm_size = sizeof(struct kvm_svm),
5010 .vm_init = svm_vm_init,
5011 .vm_destroy = svm_vm_destroy,
5012
5013 .prepare_switch_to_guest = svm_prepare_switch_to_guest,
5014 .vcpu_load = svm_vcpu_load,
5015 .vcpu_put = svm_vcpu_put,
5016 .vcpu_blocking = avic_vcpu_blocking,
5017 .vcpu_unblocking = avic_vcpu_unblocking,
5018
5019 .update_exception_bitmap = svm_update_exception_bitmap,
5020 .get_feature_msr = svm_get_feature_msr,
5021 .get_msr = svm_get_msr,
5022 .set_msr = svm_set_msr,
5023 .get_segment_base = svm_get_segment_base,
5024 .get_segment = svm_get_segment,
5025 .set_segment = svm_set_segment,
5026 .get_cpl = svm_get_cpl,
5027 .get_cpl_no_cache = svm_get_cpl,
5028 .get_cs_db_l_bits = svm_get_cs_db_l_bits,
5029 .is_valid_cr0 = svm_is_valid_cr0,
5030 .set_cr0 = svm_set_cr0,
5031 .post_set_cr3 = sev_post_set_cr3,
5032 .is_valid_cr4 = svm_is_valid_cr4,
5033 .set_cr4 = svm_set_cr4,
5034 .set_efer = svm_set_efer,
5035 .get_idt = svm_get_idt,
5036 .set_idt = svm_set_idt,
5037 .get_gdt = svm_get_gdt,
5038 .set_gdt = svm_set_gdt,
5039 .set_dr7 = svm_set_dr7,
5040 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5041 .cache_reg = svm_cache_reg,
5042 .get_rflags = svm_get_rflags,
5043 .set_rflags = svm_set_rflags,
5044 .get_if_flag = svm_get_if_flag,
5045
5046 .flush_tlb_all = svm_flush_tlb_all,
5047 .flush_tlb_current = svm_flush_tlb_current,
5048 .flush_tlb_gva = svm_flush_tlb_gva,
5049 .flush_tlb_guest = svm_flush_tlb_asid,
5050
5051 .vcpu_pre_run = svm_vcpu_pre_run,
5052 .vcpu_run = svm_vcpu_run,
5053 .handle_exit = svm_handle_exit,
5054 .skip_emulated_instruction = svm_skip_emulated_instruction,
5055 .update_emulated_instruction = NULL,
5056 .set_interrupt_shadow = svm_set_interrupt_shadow,
5057 .get_interrupt_shadow = svm_get_interrupt_shadow,
5058 .patch_hypercall = svm_patch_hypercall,
5059 .inject_irq = svm_inject_irq,
5060 .inject_nmi = svm_inject_nmi,
5061 .is_vnmi_pending = svm_is_vnmi_pending,
5062 .set_vnmi_pending = svm_set_vnmi_pending,
5063 .inject_exception = svm_inject_exception,
5064 .cancel_injection = svm_cancel_injection,
5065 .interrupt_allowed = svm_interrupt_allowed,
5066 .nmi_allowed = svm_nmi_allowed,
5067 .get_nmi_mask = svm_get_nmi_mask,
5068 .set_nmi_mask = svm_set_nmi_mask,
5069 .enable_nmi_window = svm_enable_nmi_window,
5070 .enable_irq_window = svm_enable_irq_window,
5071 .update_cr8_intercept = svm_update_cr8_intercept,
5072
5073 .x2apic_icr_is_split = true,
5074 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
5075 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
5076 .apicv_post_state_restore = avic_apicv_post_state_restore,
5077 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
5078
5079 .get_exit_info = svm_get_exit_info,
5080
5081 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
5082
5083 .has_wbinvd_exit = svm_has_wbinvd_exit,
5084
5085 .get_l2_tsc_offset = svm_get_l2_tsc_offset,
5086 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
5087 .write_tsc_offset = svm_write_tsc_offset,
5088 .write_tsc_multiplier = svm_write_tsc_multiplier,
5089
5090 .load_mmu_pgd = svm_load_mmu_pgd,
5091
5092 .check_intercept = svm_check_intercept,
5093 .handle_exit_irqoff = svm_handle_exit_irqoff,
5094
5095 .nested_ops = &svm_nested_ops,
5096
5097 .deliver_interrupt = svm_deliver_interrupt,
5098 .pi_update_irte = avic_pi_update_irte,
5099 .setup_mce = svm_setup_mce,
5100
5101 #ifdef CONFIG_KVM_SMM
5102 .smi_allowed = svm_smi_allowed,
5103 .enter_smm = svm_enter_smm,
5104 .leave_smm = svm_leave_smm,
5105 .enable_smi_window = svm_enable_smi_window,
5106 #endif
5107
5108 #ifdef CONFIG_KVM_AMD_SEV
5109 .dev_get_attr = sev_dev_get_attr,
5110 .mem_enc_ioctl = sev_mem_enc_ioctl,
5111 .mem_enc_register_region = sev_mem_enc_register_region,
5112 .mem_enc_unregister_region = sev_mem_enc_unregister_region,
5113 .guest_memory_reclaimed = sev_guest_memory_reclaimed,
5114
5115 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5116 .vm_move_enc_context_from = sev_vm_move_enc_context_from,
5117 #endif
5118 .check_emulate_instruction = svm_check_emulate_instruction,
5119
5120 .apic_init_signal_blocked = svm_apic_init_signal_blocked,
5121
5122 .msr_filter_changed = svm_msr_filter_changed,
5123 .complete_emulated_msr = svm_complete_emulated_msr,
5124
5125 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5126 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5127 .alloc_apic_backing_page = svm_alloc_apic_backing_page,
5128
5129 .gmem_prepare = sev_gmem_prepare,
5130 .gmem_invalidate = sev_gmem_invalidate,
5131 .private_max_mapping_level = sev_private_max_mapping_level,
5132 };
5133
5134 /*
5135 * The default MMIO mask is a single bit (excluding the present bit),
5136 * which could conflict with the memory encryption bit. Check for
5137 * memory encryption support and override the default MMIO mask if
5138 * memory encryption is enabled.
5139 */
svm_adjust_mmio_mask(void)5140 static __init void svm_adjust_mmio_mask(void)
5141 {
5142 unsigned int enc_bit, mask_bit;
5143 u64 msr, mask;
5144
5145 /* If there is no memory encryption support, use existing mask */
5146 if (cpuid_eax(0x80000000) < 0x8000001f)
5147 return;
5148
5149 /* If memory encryption is not enabled, use existing mask */
5150 rdmsrl(MSR_AMD64_SYSCFG, msr);
5151 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5152 return;
5153
5154 enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5155 mask_bit = boot_cpu_data.x86_phys_bits;
5156
5157 /* Increment the mask bit if it is the same as the encryption bit */
5158 if (enc_bit == mask_bit)
5159 mask_bit++;
5160
5161 /*
5162 * If the mask bit location is below 52, then some bits above the
5163 * physical addressing limit will always be reserved, so use the
5164 * rsvd_bits() function to generate the mask. This mask, along with
5165 * the present bit, will be used to generate a page fault with
5166 * PFER.RSV = 1.
5167 *
5168 * If the mask bit location is 52 (or above), then clear the mask.
5169 */
5170 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5171
5172 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5173 }
5174
svm_set_cpu_caps(void)5175 static __init void svm_set_cpu_caps(void)
5176 {
5177 kvm_set_cpu_caps();
5178
5179 kvm_caps.supported_perf_cap = 0;
5180 kvm_caps.supported_xss = 0;
5181
5182 /* CPUID 0x80000001 and 0x8000000A (SVM features) */
5183 if (nested) {
5184 kvm_cpu_cap_set(X86_FEATURE_SVM);
5185 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5186
5187 /*
5188 * KVM currently flushes TLBs on *every* nested SVM transition,
5189 * and so for all intents and purposes KVM supports flushing by
5190 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
5191 */
5192 kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);
5193
5194 if (nrips)
5195 kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5196
5197 if (npt_enabled)
5198 kvm_cpu_cap_set(X86_FEATURE_NPT);
5199
5200 if (tsc_scaling)
5201 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5202
5203 if (vls)
5204 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5205 if (lbrv)
5206 kvm_cpu_cap_set(X86_FEATURE_LBRV);
5207
5208 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5209 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5210
5211 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5212 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5213
5214 if (vgif)
5215 kvm_cpu_cap_set(X86_FEATURE_VGIF);
5216
5217 if (vnmi)
5218 kvm_cpu_cap_set(X86_FEATURE_VNMI);
5219
5220 /* Nested VM can receive #VMEXIT instead of triggering #GP */
5221 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5222 }
5223
5224 /* CPUID 0x80000008 */
5225 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5226 boot_cpu_has(X86_FEATURE_AMD_SSBD))
5227 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5228
5229 if (enable_pmu) {
5230 /*
5231 * Enumerate support for PERFCTR_CORE if and only if KVM has
5232 * access to enough counters to virtualize "core" support,
5233 * otherwise limit vPMU support to the legacy number of counters.
5234 */
5235 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5236 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5237 kvm_pmu_cap.num_counters_gp);
5238 else
5239 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5240
5241 if (kvm_pmu_cap.version != 2 ||
5242 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5243 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5244 }
5245
5246 /* CPUID 0x8000001F (SME/SEV features) */
5247 sev_set_cpu_caps();
5248
5249 /* Don't advertise Bus Lock Detect to guest if SVM support is absent */
5250 kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT);
5251 }
5252
svm_hardware_setup(void)5253 static __init int svm_hardware_setup(void)
5254 {
5255 int cpu;
5256 struct page *iopm_pages;
5257 void *iopm_va;
5258 int r;
5259 unsigned int order = get_order(IOPM_SIZE);
5260
5261 /*
5262 * NX is required for shadow paging and for NPT if the NX huge pages
5263 * mitigation is enabled.
5264 */
5265 if (!boot_cpu_has(X86_FEATURE_NX)) {
5266 pr_err_ratelimited("NX (Execute Disable) not supported\n");
5267 return -EOPNOTSUPP;
5268 }
5269 kvm_enable_efer_bits(EFER_NX);
5270
5271 iopm_pages = alloc_pages(GFP_KERNEL, order);
5272
5273 if (!iopm_pages)
5274 return -ENOMEM;
5275
5276 iopm_va = page_address(iopm_pages);
5277 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
5278 iopm_base = __sme_page_pa(iopm_pages);
5279
5280 init_msrpm_offsets();
5281
5282 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5283 XFEATURE_MASK_BNDCSR);
5284
5285 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5286 kvm_enable_efer_bits(EFER_FFXSR);
5287
5288 if (tsc_scaling) {
5289 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5290 tsc_scaling = false;
5291 } else {
5292 pr_info("TSC scaling supported\n");
5293 kvm_caps.has_tsc_control = true;
5294 }
5295 }
5296 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5297 kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5298
5299 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5300
5301 if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5302 kvm_enable_efer_bits(EFER_AUTOIBRS);
5303
5304 /* Check for pause filtering support */
5305 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5306 pause_filter_count = 0;
5307 pause_filter_thresh = 0;
5308 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5309 pause_filter_thresh = 0;
5310 }
5311
5312 if (nested) {
5313 pr_info("Nested Virtualization enabled\n");
5314 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5315 }
5316
5317 /*
5318 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5319 * NPT isn't supported if the host is using 2-level paging since host
5320 * CR4 is unchanged on VMRUN.
5321 */
5322 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5323 npt_enabled = false;
5324
5325 if (!boot_cpu_has(X86_FEATURE_NPT))
5326 npt_enabled = false;
5327
5328 /* Force VM NPT level equal to the host's paging level */
5329 kvm_configure_mmu(npt_enabled, get_npt_level(),
5330 get_npt_level(), PG_LEVEL_1G);
5331 pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5332
5333 /* Setup shadow_me_value and shadow_me_mask */
5334 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5335
5336 svm_adjust_mmio_mask();
5337
5338 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5339
5340 if (lbrv) {
5341 if (!boot_cpu_has(X86_FEATURE_LBRV))
5342 lbrv = false;
5343 else
5344 pr_info("LBR virtualization supported\n");
5345 }
5346 /*
5347 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5348 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5349 */
5350 sev_hardware_setup();
5351
5352 svm_hv_hardware_setup();
5353
5354 for_each_possible_cpu(cpu) {
5355 r = svm_cpu_init(cpu);
5356 if (r)
5357 goto err;
5358 }
5359
5360 enable_apicv = avic = avic && avic_hardware_setup();
5361
5362 if (!enable_apicv) {
5363 svm_x86_ops.vcpu_blocking = NULL;
5364 svm_x86_ops.vcpu_unblocking = NULL;
5365 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5366 } else if (!x2avic_enabled) {
5367 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5368 }
5369
5370 if (vls) {
5371 if (!npt_enabled ||
5372 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5373 !IS_ENABLED(CONFIG_X86_64)) {
5374 vls = false;
5375 } else {
5376 pr_info("Virtual VMLOAD VMSAVE supported\n");
5377 }
5378 }
5379
5380 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5381 svm_gp_erratum_intercept = false;
5382
5383 if (vgif) {
5384 if (!boot_cpu_has(X86_FEATURE_VGIF))
5385 vgif = false;
5386 else
5387 pr_info("Virtual GIF supported\n");
5388 }
5389
5390 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5391 if (vnmi)
5392 pr_info("Virtual NMI enabled\n");
5393
5394 if (!vnmi) {
5395 svm_x86_ops.is_vnmi_pending = NULL;
5396 svm_x86_ops.set_vnmi_pending = NULL;
5397 }
5398
5399 if (!enable_pmu)
5400 pr_info("PMU virtualization is disabled\n");
5401
5402 svm_set_cpu_caps();
5403
5404 /*
5405 * It seems that on AMD processors PTE's accessed bit is
5406 * being set by the CPU hardware before the NPF vmexit.
5407 * This is not expected behaviour and our tests fail because
5408 * of it.
5409 * A workaround here is to disable support for
5410 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5411 * In this case userspace can know if there is support using
5412 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5413 * it
5414 * If future AMD CPU models change the behaviour described above,
5415 * this variable can be changed accordingly
5416 */
5417 allow_smaller_maxphyaddr = !npt_enabled;
5418
5419 return 0;
5420
5421 err:
5422 svm_hardware_unsetup();
5423 return r;
5424 }
5425
5426
5427 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5428 .hardware_setup = svm_hardware_setup,
5429
5430 .runtime_ops = &svm_x86_ops,
5431 .pmu_ops = &amd_pmu_ops,
5432 };
5433
__svm_exit(void)5434 static void __svm_exit(void)
5435 {
5436 kvm_x86_vendor_exit();
5437 }
5438
svm_init(void)5439 static int __init svm_init(void)
5440 {
5441 int r;
5442
5443 __unused_size_checks();
5444
5445 if (!kvm_is_svm_supported())
5446 return -EOPNOTSUPP;
5447
5448 r = kvm_x86_vendor_init(&svm_init_ops);
5449 if (r)
5450 return r;
5451
5452 /*
5453 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5454 * exposed to userspace!
5455 */
5456 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5457 THIS_MODULE);
5458 if (r)
5459 goto err_kvm_init;
5460
5461 return 0;
5462
5463 err_kvm_init:
5464 __svm_exit();
5465 return r;
5466 }
5467
svm_exit(void)5468 static void __exit svm_exit(void)
5469 {
5470 kvm_exit();
5471 __svm_exit();
5472 }
5473
5474 module_init(svm_init)
5475 module_exit(svm_exit)
5476