1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31 #include <linux/string_choices.h>
32 #include <linux/mutex.h>
33
34 #include <asm/apic.h>
35 #include <asm/msr.h>
36 #include <asm/perf_event.h>
37 #include <asm/tlbflush.h>
38 #include <asm/desc.h>
39 #include <asm/debugreg.h>
40 #include <asm/kvm_para.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/spec-ctrl.h>
43 #include <asm/cpu_device_id.h>
44 #include <asm/traps.h>
45 #include <asm/reboot.h>
46 #include <asm/fpu/api.h>
47
48 #include <trace/events/ipi.h>
49
50 #include "trace.h"
51
52 #include "svm.h"
53 #include "svm_ops.h"
54
55 #include "kvm_onhyperv.h"
56 #include "svm_onhyperv.h"
57
58 MODULE_AUTHOR("Qumranet");
59 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions");
60 MODULE_LICENSE("GPL");
61
62 #ifdef MODULE
63 static const struct x86_cpu_id svm_cpu_id[] = {
64 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
65 {}
66 };
67 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
68 #endif
69
70 #define SEG_TYPE_LDT 2
71 #define SEG_TYPE_BUSY_TSS16 3
72
73 static bool erratum_383_found __read_mostly;
74
75 /*
76 * Set osvw_len to higher value when updated Revision Guides
77 * are published and we know what the new status bits are
78 */
79 static uint64_t osvw_len = 4, osvw_status;
80
81 static DEFINE_PER_CPU(u64, current_tsc_ratio);
82
83 /*
84 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
85 * pause_filter_count: On processors that support Pause filtering(indicated
86 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
87 * count value. On VMRUN this value is loaded into an internal counter.
88 * Each time a pause instruction is executed, this counter is decremented
89 * until it reaches zero at which time a #VMEXIT is generated if pause
90 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
91 * Intercept Filtering for more details.
92 * This also indicate if ple logic enabled.
93 *
94 * pause_filter_thresh: In addition, some processor families support advanced
95 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
96 * the amount of time a guest is allowed to execute in a pause loop.
97 * In this mode, a 16-bit pause filter threshold field is added in the
98 * VMCB. The threshold value is a cycle count that is used to reset the
99 * pause counter. As with simple pause filtering, VMRUN loads the pause
100 * count value from VMCB into an internal counter. Then, on each pause
101 * instruction the hardware checks the elapsed number of cycles since
102 * the most recent pause instruction against the pause filter threshold.
103 * If the elapsed cycle count is greater than the pause filter threshold,
104 * then the internal pause count is reloaded from the VMCB and execution
105 * continues. If the elapsed cycle count is less than the pause filter
106 * threshold, then the internal pause count is decremented. If the count
107 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
108 * triggered. If advanced pause filtering is supported and pause filter
109 * threshold field is set to zero, the filter will operate in the simpler,
110 * count only mode.
111 */
112
113 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
114 module_param(pause_filter_thresh, ushort, 0444);
115
116 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
117 module_param(pause_filter_count, ushort, 0444);
118
119 /* Default doubles per-vcpu window every exit. */
120 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
121 module_param(pause_filter_count_grow, ushort, 0444);
122
123 /* Default resets per-vcpu window every exit to pause_filter_count. */
124 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
125 module_param(pause_filter_count_shrink, ushort, 0444);
126
127 /* Default is to compute the maximum so we can never overflow. */
128 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
129 module_param(pause_filter_count_max, ushort, 0444);
130
131 /*
132 * Use nested page tables by default. Note, NPT may get forced off by
133 * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
134 */
135 bool npt_enabled = true;
136 module_param_named(npt, npt_enabled, bool, 0444);
137
138 /* allow nested virtualization in KVM/SVM */
139 static int nested = true;
140 module_param(nested, int, 0444);
141
142 /* enable/disable Next RIP Save */
143 int nrips = true;
144 module_param(nrips, int, 0444);
145
146 /* enable/disable Virtual VMLOAD VMSAVE */
147 static int vls = true;
148 module_param(vls, int, 0444);
149
150 /* enable/disable Virtual GIF */
151 int vgif = true;
152 module_param(vgif, int, 0444);
153
154 /* enable/disable LBR virtualization */
155 int lbrv = true;
156 module_param(lbrv, int, 0444);
157
158 static int tsc_scaling = true;
159 module_param(tsc_scaling, int, 0444);
160
161 /*
162 * enable / disable AVIC. Because the defaults differ for APICv
163 * support between VMX and SVM we cannot use module_param_named.
164 */
165 static bool avic;
166 module_param(avic, bool, 0444);
167 module_param(enable_ipiv, bool, 0444);
168
169 module_param(enable_device_posted_irqs, bool, 0444);
170
171 bool __read_mostly dump_invalid_vmcb;
172 module_param(dump_invalid_vmcb, bool, 0644);
173
174
175 bool intercept_smi = true;
176 module_param(intercept_smi, bool, 0444);
177
178 bool vnmi = true;
179 module_param(vnmi, bool, 0444);
180
181 static bool svm_gp_erratum_intercept = true;
182
183 static u8 rsm_ins_bytes[] = "\x0f\xaa";
184
185 static unsigned long iopm_base;
186
187 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
188
189 static DEFINE_MUTEX(vmcb_dump_mutex);
190
191 /*
192 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via
193 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
194 *
195 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
196 * defer the restoration of TSC_AUX until the CPU returns to userspace.
197 */
198 static int tsc_aux_uret_slot __read_mostly = -1;
199
get_npt_level(void)200 static int get_npt_level(void)
201 {
202 #ifdef CONFIG_X86_64
203 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
204 #else
205 return PT32E_ROOT_LEVEL;
206 #endif
207 }
208
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)209 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
210 {
211 struct vcpu_svm *svm = to_svm(vcpu);
212 u64 old_efer = vcpu->arch.efer;
213 vcpu->arch.efer = efer;
214
215 if (!npt_enabled) {
216 /* Shadow paging assumes NX to be available. */
217 efer |= EFER_NX;
218
219 if (!(efer & EFER_LMA))
220 efer &= ~EFER_LME;
221 }
222
223 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
224 if (!(efer & EFER_SVME)) {
225 svm_leave_nested(vcpu);
226 svm_set_gif(svm, true);
227 /* #GP intercept is still needed for vmware backdoor */
228 if (!enable_vmware_backdoor)
229 clr_exception_intercept(svm, GP_VECTOR);
230
231 /*
232 * Free the nested guest state, unless we are in SMM.
233 * In this case we will return to the nested guest
234 * as soon as we leave SMM.
235 */
236 if (!is_smm(vcpu))
237 svm_free_nested(svm);
238
239 } else {
240 int ret = svm_allocate_nested(svm);
241
242 if (ret) {
243 vcpu->arch.efer = old_efer;
244 return ret;
245 }
246
247 /*
248 * Never intercept #GP for SEV guests, KVM can't
249 * decrypt guest memory to workaround the erratum.
250 */
251 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
252 set_exception_intercept(svm, GP_VECTOR);
253 }
254 }
255
256 svm->vmcb->save.efer = efer | EFER_SVME;
257 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
258 return 0;
259 }
260
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)261 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
262 {
263 struct vcpu_svm *svm = to_svm(vcpu);
264 u32 ret = 0;
265
266 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
267 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
268 return ret;
269 }
270
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)271 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
272 {
273 struct vcpu_svm *svm = to_svm(vcpu);
274
275 if (mask == 0)
276 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
277 else
278 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
279
280 }
281
__svm_skip_emulated_instruction(struct kvm_vcpu * vcpu,bool commit_side_effects)282 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
283 bool commit_side_effects)
284 {
285 struct vcpu_svm *svm = to_svm(vcpu);
286 unsigned long old_rflags;
287
288 /*
289 * SEV-ES does not expose the next RIP. The RIP update is controlled by
290 * the type of exit and the #VC handler in the guest.
291 */
292 if (sev_es_guest(vcpu->kvm))
293 goto done;
294
295 if (nrips && svm->vmcb->control.next_rip != 0) {
296 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
297 svm->next_rip = svm->vmcb->control.next_rip;
298 }
299
300 if (!svm->next_rip) {
301 if (unlikely(!commit_side_effects))
302 old_rflags = svm->vmcb->save.rflags;
303
304 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
305 return 0;
306
307 if (unlikely(!commit_side_effects))
308 svm->vmcb->save.rflags = old_rflags;
309 } else {
310 kvm_rip_write(vcpu, svm->next_rip);
311 }
312
313 done:
314 if (likely(commit_side_effects))
315 svm_set_interrupt_shadow(vcpu, 0);
316
317 return 1;
318 }
319
svm_skip_emulated_instruction(struct kvm_vcpu * vcpu)320 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
321 {
322 return __svm_skip_emulated_instruction(vcpu, true);
323 }
324
svm_update_soft_interrupt_rip(struct kvm_vcpu * vcpu)325 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
326 {
327 unsigned long rip, old_rip = kvm_rip_read(vcpu);
328 struct vcpu_svm *svm = to_svm(vcpu);
329
330 /*
331 * Due to architectural shortcomings, the CPU doesn't always provide
332 * NextRIP, e.g. if KVM intercepted an exception that occurred while
333 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip
334 * the instruction even if NextRIP is supported to acquire the next
335 * RIP so that it can be shoved into the NextRIP field, otherwise
336 * hardware will fail to advance guest RIP during event injection.
337 * Drop the exception/interrupt if emulation fails and effectively
338 * retry the instruction, it's the least awful option. If NRIPS is
339 * in use, the skip must not commit any side effects such as clearing
340 * the interrupt shadow or RFLAGS.RF.
341 */
342 if (!__svm_skip_emulated_instruction(vcpu, !nrips))
343 return -EIO;
344
345 rip = kvm_rip_read(vcpu);
346
347 /*
348 * Save the injection information, even when using next_rip, as the
349 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
350 * doesn't complete due to a VM-Exit occurring while the CPU is
351 * vectoring the event. Decoding the instruction isn't guaranteed to
352 * work as there may be no backing instruction, e.g. if the event is
353 * being injected by L1 for L2, or if the guest is patching INT3 into
354 * a different instruction.
355 */
356 svm->soft_int_injected = true;
357 svm->soft_int_csbase = svm->vmcb->save.cs.base;
358 svm->soft_int_old_rip = old_rip;
359 svm->soft_int_next_rip = rip;
360
361 if (nrips)
362 kvm_rip_write(vcpu, old_rip);
363
364 if (static_cpu_has(X86_FEATURE_NRIPS))
365 svm->vmcb->control.next_rip = rip;
366
367 return 0;
368 }
369
svm_inject_exception(struct kvm_vcpu * vcpu)370 static void svm_inject_exception(struct kvm_vcpu *vcpu)
371 {
372 struct kvm_queued_exception *ex = &vcpu->arch.exception;
373 struct vcpu_svm *svm = to_svm(vcpu);
374
375 kvm_deliver_exception_payload(vcpu, ex);
376
377 if (kvm_exception_is_soft(ex->vector) &&
378 svm_update_soft_interrupt_rip(vcpu))
379 return;
380
381 svm->vmcb->control.event_inj = ex->vector
382 | SVM_EVTINJ_VALID
383 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
384 | SVM_EVTINJ_TYPE_EXEPT;
385 svm->vmcb->control.event_inj_err = ex->error_code;
386 }
387
svm_init_erratum_383(void)388 static void svm_init_erratum_383(void)
389 {
390 u64 val;
391
392 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
393 return;
394
395 /* Use _safe variants to not break nested virtualization */
396 if (native_read_msr_safe(MSR_AMD64_DC_CFG, &val))
397 return;
398
399 val |= (1ULL << 47);
400
401 native_write_msr_safe(MSR_AMD64_DC_CFG, val);
402
403 erratum_383_found = true;
404 }
405
svm_init_osvw(struct kvm_vcpu * vcpu)406 static void svm_init_osvw(struct kvm_vcpu *vcpu)
407 {
408 /*
409 * Guests should see errata 400 and 415 as fixed (assuming that
410 * HLT and IO instructions are intercepted).
411 */
412 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
413 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
414
415 /*
416 * By increasing VCPU's osvw.length to 3 we are telling the guest that
417 * all osvw.status bits inside that length, including bit 0 (which is
418 * reserved for erratum 298), are valid. However, if host processor's
419 * osvw_len is 0 then osvw_status[0] carries no information. We need to
420 * be conservative here and therefore we tell the guest that erratum 298
421 * is present (because we really don't know).
422 */
423 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
424 vcpu->arch.osvw.status |= 1;
425 }
426
__kvm_is_svm_supported(void)427 static bool __kvm_is_svm_supported(void)
428 {
429 int cpu = smp_processor_id();
430 struct cpuinfo_x86 *c = &cpu_data(cpu);
431
432 if (c->x86_vendor != X86_VENDOR_AMD &&
433 c->x86_vendor != X86_VENDOR_HYGON) {
434 pr_err("CPU %d isn't AMD or Hygon\n", cpu);
435 return false;
436 }
437
438 if (!cpu_has(c, X86_FEATURE_SVM)) {
439 pr_err("SVM not supported by CPU %d\n", cpu);
440 return false;
441 }
442
443 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
444 pr_info("KVM is unsupported when running as an SEV guest\n");
445 return false;
446 }
447
448 return true;
449 }
450
kvm_is_svm_supported(void)451 static bool kvm_is_svm_supported(void)
452 {
453 bool supported;
454
455 migrate_disable();
456 supported = __kvm_is_svm_supported();
457 migrate_enable();
458
459 return supported;
460 }
461
svm_check_processor_compat(void)462 static int svm_check_processor_compat(void)
463 {
464 if (!__kvm_is_svm_supported())
465 return -EIO;
466
467 return 0;
468 }
469
__svm_write_tsc_multiplier(u64 multiplier)470 static void __svm_write_tsc_multiplier(u64 multiplier)
471 {
472 if (multiplier == __this_cpu_read(current_tsc_ratio))
473 return;
474
475 wrmsrq(MSR_AMD64_TSC_RATIO, multiplier);
476 __this_cpu_write(current_tsc_ratio, multiplier);
477 }
478
sev_es_host_save_area(struct svm_cpu_data * sd)479 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd)
480 {
481 return &sd->save_area->host_sev_es_save;
482 }
483
kvm_cpu_svm_disable(void)484 static inline void kvm_cpu_svm_disable(void)
485 {
486 uint64_t efer;
487
488 wrmsrq(MSR_VM_HSAVE_PA, 0);
489 rdmsrq(MSR_EFER, efer);
490 if (efer & EFER_SVME) {
491 /*
492 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
493 * NMI aren't blocked.
494 */
495 stgi();
496 wrmsrq(MSR_EFER, efer & ~EFER_SVME);
497 }
498 }
499
svm_emergency_disable_virtualization_cpu(void)500 static void svm_emergency_disable_virtualization_cpu(void)
501 {
502 kvm_rebooting = true;
503
504 kvm_cpu_svm_disable();
505 }
506
svm_disable_virtualization_cpu(void)507 static void svm_disable_virtualization_cpu(void)
508 {
509 /* Make sure we clean up behind us */
510 if (tsc_scaling)
511 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
512
513 kvm_cpu_svm_disable();
514
515 amd_pmu_disable_virt();
516 }
517
svm_enable_virtualization_cpu(void)518 static int svm_enable_virtualization_cpu(void)
519 {
520
521 struct svm_cpu_data *sd;
522 uint64_t efer;
523 int me = raw_smp_processor_id();
524
525 rdmsrq(MSR_EFER, efer);
526 if (efer & EFER_SVME)
527 return -EBUSY;
528
529 sd = per_cpu_ptr(&svm_data, me);
530 sd->asid_generation = 1;
531 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
532 sd->next_asid = sd->max_asid + 1;
533 sd->min_asid = max_sev_asid + 1;
534
535 wrmsrq(MSR_EFER, efer | EFER_SVME);
536
537 wrmsrq(MSR_VM_HSAVE_PA, sd->save_area_pa);
538
539 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
540 /*
541 * Set the default value, even if we don't use TSC scaling
542 * to avoid having stale value in the msr
543 */
544 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
545 }
546
547
548 /*
549 * Get OSVW bits.
550 *
551 * Note that it is possible to have a system with mixed processor
552 * revisions and therefore different OSVW bits. If bits are not the same
553 * on different processors then choose the worst case (i.e. if erratum
554 * is present on one processor and not on another then assume that the
555 * erratum is present everywhere).
556 */
557 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
558 u64 len, status = 0;
559 int err;
560
561 err = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &len);
562 if (!err)
563 err = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, &status);
564
565 if (err)
566 osvw_status = osvw_len = 0;
567 else {
568 if (len < osvw_len)
569 osvw_len = len;
570 osvw_status |= status;
571 osvw_status &= (1ULL << osvw_len) - 1;
572 }
573 } else
574 osvw_status = osvw_len = 0;
575
576 svm_init_erratum_383();
577
578 amd_pmu_enable_virt();
579
580 /*
581 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type
582 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests.
583 * Since Linux does not change the value of TSC_AUX once set, prime the
584 * TSC_AUX field now to avoid a RDMSR on every vCPU run.
585 */
586 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
587 u32 __maybe_unused msr_hi;
588
589 rdmsr(MSR_TSC_AUX, sev_es_host_save_area(sd)->tsc_aux, msr_hi);
590 }
591
592 return 0;
593 }
594
svm_cpu_uninit(int cpu)595 static void svm_cpu_uninit(int cpu)
596 {
597 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
598
599 if (!sd->save_area)
600 return;
601
602 kfree(sd->sev_vmcbs);
603 __free_page(__sme_pa_to_page(sd->save_area_pa));
604 sd->save_area_pa = 0;
605 sd->save_area = NULL;
606 }
607
svm_cpu_init(int cpu)608 static int svm_cpu_init(int cpu)
609 {
610 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
611 struct page *save_area_page;
612 int ret = -ENOMEM;
613
614 memset(sd, 0, sizeof(struct svm_cpu_data));
615 save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL);
616 if (!save_area_page)
617 return ret;
618
619 ret = sev_cpu_init(sd);
620 if (ret)
621 goto free_save_area;
622
623 sd->save_area = page_address(save_area_page);
624 sd->save_area_pa = __sme_page_pa(save_area_page);
625 return 0;
626
627 free_save_area:
628 __free_page(save_area_page);
629 return ret;
630
631 }
632
set_dr_intercepts(struct vcpu_svm * svm)633 static void set_dr_intercepts(struct vcpu_svm *svm)
634 {
635 struct vmcb *vmcb = svm->vmcb01.ptr;
636
637 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
638 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
639 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
640 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
641 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
642 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
643 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
644 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
645 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
646 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
647 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
648 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
649 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
650 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
651 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
652 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
653
654 recalc_intercepts(svm);
655 }
656
clr_dr_intercepts(struct vcpu_svm * svm)657 static void clr_dr_intercepts(struct vcpu_svm *svm)
658 {
659 struct vmcb *vmcb = svm->vmcb01.ptr;
660
661 vmcb->control.intercepts[INTERCEPT_DR] = 0;
662
663 recalc_intercepts(svm);
664 }
665
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)666 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
667 {
668 /*
669 * For non-nested case:
670 * If the L01 MSR bitmap does not intercept the MSR, then we need to
671 * save it.
672 *
673 * For nested case:
674 * If the L02 MSR bitmap does not intercept the MSR, then we need to
675 * save it.
676 */
677 void *msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm :
678 to_svm(vcpu)->msrpm;
679
680 return svm_test_msr_bitmap_write(msrpm, msr);
681 }
682
svm_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool set)683 void svm_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set)
684 {
685 struct vcpu_svm *svm = to_svm(vcpu);
686 void *msrpm = svm->msrpm;
687
688 /* Don't disable interception for MSRs userspace wants to handle. */
689 if (type & MSR_TYPE_R) {
690 if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
691 svm_clear_msr_bitmap_read(msrpm, msr);
692 else
693 svm_set_msr_bitmap_read(msrpm, msr);
694 }
695
696 if (type & MSR_TYPE_W) {
697 if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
698 svm_clear_msr_bitmap_write(msrpm, msr);
699 else
700 svm_set_msr_bitmap_write(msrpm, msr);
701 }
702
703 svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
704 svm->nested.force_msr_bitmap_recalc = true;
705 }
706
svm_alloc_permissions_map(unsigned long size,gfp_t gfp_mask)707 void *svm_alloc_permissions_map(unsigned long size, gfp_t gfp_mask)
708 {
709 unsigned int order = get_order(size);
710 struct page *pages = alloc_pages(gfp_mask, order);
711 void *pm;
712
713 if (!pages)
714 return NULL;
715
716 /*
717 * Set all bits in the permissions map so that all MSR and I/O accesses
718 * are intercepted by default.
719 */
720 pm = page_address(pages);
721 memset(pm, 0xff, PAGE_SIZE * (1 << order));
722
723 return pm;
724 }
725
svm_recalc_lbr_msr_intercepts(struct kvm_vcpu * vcpu)726 static void svm_recalc_lbr_msr_intercepts(struct kvm_vcpu *vcpu)
727 {
728 bool intercept = !(to_svm(vcpu)->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK);
729
730 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHFROMIP, MSR_TYPE_RW, intercept);
731 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHTOIP, MSR_TYPE_RW, intercept);
732 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTFROMIP, MSR_TYPE_RW, intercept);
733 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTTOIP, MSR_TYPE_RW, intercept);
734
735 if (sev_es_guest(vcpu->kvm))
736 svm_set_intercept_for_msr(vcpu, MSR_IA32_DEBUGCTLMSR, MSR_TYPE_RW, intercept);
737 }
738
svm_set_x2apic_msr_interception(struct vcpu_svm * svm,bool intercept)739 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
740 {
741 static const u32 x2avic_passthrough_msrs[] = {
742 X2APIC_MSR(APIC_ID),
743 X2APIC_MSR(APIC_LVR),
744 X2APIC_MSR(APIC_TASKPRI),
745 X2APIC_MSR(APIC_ARBPRI),
746 X2APIC_MSR(APIC_PROCPRI),
747 X2APIC_MSR(APIC_EOI),
748 X2APIC_MSR(APIC_RRR),
749 X2APIC_MSR(APIC_LDR),
750 X2APIC_MSR(APIC_DFR),
751 X2APIC_MSR(APIC_SPIV),
752 X2APIC_MSR(APIC_ISR),
753 X2APIC_MSR(APIC_TMR),
754 X2APIC_MSR(APIC_IRR),
755 X2APIC_MSR(APIC_ESR),
756 X2APIC_MSR(APIC_ICR),
757 X2APIC_MSR(APIC_ICR2),
758
759 /*
760 * Note! Always intercept LVTT, as TSC-deadline timer mode
761 * isn't virtualized by hardware, and the CPU will generate a
762 * #GP instead of a #VMEXIT.
763 */
764 X2APIC_MSR(APIC_LVTTHMR),
765 X2APIC_MSR(APIC_LVTPC),
766 X2APIC_MSR(APIC_LVT0),
767 X2APIC_MSR(APIC_LVT1),
768 X2APIC_MSR(APIC_LVTERR),
769 X2APIC_MSR(APIC_TMICT),
770 X2APIC_MSR(APIC_TMCCT),
771 X2APIC_MSR(APIC_TDCR),
772 };
773 int i;
774
775 if (intercept == svm->x2avic_msrs_intercepted)
776 return;
777
778 if (!x2avic_enabled)
779 return;
780
781 for (i = 0; i < ARRAY_SIZE(x2avic_passthrough_msrs); i++)
782 svm_set_intercept_for_msr(&svm->vcpu, x2avic_passthrough_msrs[i],
783 MSR_TYPE_RW, intercept);
784
785 svm->x2avic_msrs_intercepted = intercept;
786 }
787
svm_vcpu_free_msrpm(void * msrpm)788 void svm_vcpu_free_msrpm(void *msrpm)
789 {
790 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
791 }
792
svm_recalc_msr_intercepts(struct kvm_vcpu * vcpu)793 static void svm_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
794 {
795 struct vcpu_svm *svm = to_svm(vcpu);
796
797 svm_disable_intercept_for_msr(vcpu, MSR_STAR, MSR_TYPE_RW);
798 svm_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
799
800 #ifdef CONFIG_X86_64
801 svm_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
802 svm_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
803 svm_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
804 svm_disable_intercept_for_msr(vcpu, MSR_LSTAR, MSR_TYPE_RW);
805 svm_disable_intercept_for_msr(vcpu, MSR_CSTAR, MSR_TYPE_RW);
806 svm_disable_intercept_for_msr(vcpu, MSR_SYSCALL_MASK, MSR_TYPE_RW);
807 #endif
808
809 if (lbrv)
810 svm_recalc_lbr_msr_intercepts(vcpu);
811
812 if (cpu_feature_enabled(X86_FEATURE_IBPB))
813 svm_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
814 !guest_has_pred_cmd_msr(vcpu));
815
816 if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D))
817 svm_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
818 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
819
820 /*
821 * Disable interception of SPEC_CTRL if KVM doesn't need to manually
822 * context switch the MSR (SPEC_CTRL is virtualized by the CPU), or if
823 * the guest has a non-zero SPEC_CTRL value, i.e. is likely actively
824 * using SPEC_CTRL.
825 */
826 if (cpu_feature_enabled(X86_FEATURE_V_SPEC_CTRL))
827 svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
828 !guest_has_spec_ctrl_msr(vcpu));
829 else
830 svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
831 !svm->spec_ctrl);
832
833 /*
834 * Intercept SYSENTER_EIP and SYSENTER_ESP when emulating an Intel CPU,
835 * as AMD hardware only store 32 bits, whereas Intel CPUs track 64 bits.
836 */
837 svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW,
838 guest_cpuid_is_intel_compatible(vcpu));
839 svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW,
840 guest_cpuid_is_intel_compatible(vcpu));
841
842 if (kvm_aperfmperf_in_guest(vcpu->kvm)) {
843 svm_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R);
844 svm_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R);
845 }
846
847 if (sev_es_guest(vcpu->kvm))
848 sev_es_recalc_msr_intercepts(vcpu);
849
850 /*
851 * x2APIC intercepts are modified on-demand and cannot be filtered by
852 * userspace.
853 */
854 }
855
svm_copy_lbrs(struct vmcb * to_vmcb,struct vmcb * from_vmcb)856 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
857 {
858 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl;
859 to_vmcb->save.br_from = from_vmcb->save.br_from;
860 to_vmcb->save.br_to = from_vmcb->save.br_to;
861 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from;
862 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to;
863
864 vmcb_mark_dirty(to_vmcb, VMCB_LBR);
865 }
866
svm_enable_lbrv(struct kvm_vcpu * vcpu)867 void svm_enable_lbrv(struct kvm_vcpu *vcpu)
868 {
869 struct vcpu_svm *svm = to_svm(vcpu);
870
871 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
872 svm_recalc_lbr_msr_intercepts(vcpu);
873
874 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */
875 if (is_guest_mode(vcpu))
876 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
877 }
878
svm_disable_lbrv(struct kvm_vcpu * vcpu)879 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
880 {
881 struct vcpu_svm *svm = to_svm(vcpu);
882
883 KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm);
884 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
885 svm_recalc_lbr_msr_intercepts(vcpu);
886
887 /*
888 * Move the LBR msrs back to the vmcb01 to avoid copying them
889 * on nested guest entries.
890 */
891 if (is_guest_mode(vcpu))
892 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
893 }
894
svm_get_lbr_vmcb(struct vcpu_svm * svm)895 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
896 {
897 /*
898 * If LBR virtualization is disabled, the LBR MSRs are always kept in
899 * vmcb01. If LBR virtualization is enabled and L1 is running VMs of
900 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
901 */
902 return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
903 svm->vmcb01.ptr;
904 }
905
svm_update_lbrv(struct kvm_vcpu * vcpu)906 void svm_update_lbrv(struct kvm_vcpu *vcpu)
907 {
908 struct vcpu_svm *svm = to_svm(vcpu);
909 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
910 bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
911 (is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
912 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
913
914 if (enable_lbrv == current_enable_lbrv)
915 return;
916
917 if (enable_lbrv)
918 svm_enable_lbrv(vcpu);
919 else
920 svm_disable_lbrv(vcpu);
921 }
922
disable_nmi_singlestep(struct vcpu_svm * svm)923 void disable_nmi_singlestep(struct vcpu_svm *svm)
924 {
925 svm->nmi_singlestep = false;
926
927 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
928 /* Clear our flags if they were not set by the guest */
929 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
930 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
931 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
932 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
933 }
934 }
935
grow_ple_window(struct kvm_vcpu * vcpu)936 static void grow_ple_window(struct kvm_vcpu *vcpu)
937 {
938 struct vcpu_svm *svm = to_svm(vcpu);
939 struct vmcb_control_area *control = &svm->vmcb->control;
940 int old = control->pause_filter_count;
941
942 if (kvm_pause_in_guest(vcpu->kvm))
943 return;
944
945 control->pause_filter_count = __grow_ple_window(old,
946 pause_filter_count,
947 pause_filter_count_grow,
948 pause_filter_count_max);
949
950 if (control->pause_filter_count != old) {
951 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
952 trace_kvm_ple_window_update(vcpu->vcpu_id,
953 control->pause_filter_count, old);
954 }
955 }
956
shrink_ple_window(struct kvm_vcpu * vcpu)957 static void shrink_ple_window(struct kvm_vcpu *vcpu)
958 {
959 struct vcpu_svm *svm = to_svm(vcpu);
960 struct vmcb_control_area *control = &svm->vmcb->control;
961 int old = control->pause_filter_count;
962
963 if (kvm_pause_in_guest(vcpu->kvm))
964 return;
965
966 control->pause_filter_count =
967 __shrink_ple_window(old,
968 pause_filter_count,
969 pause_filter_count_shrink,
970 pause_filter_count);
971 if (control->pause_filter_count != old) {
972 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
973 trace_kvm_ple_window_update(vcpu->vcpu_id,
974 control->pause_filter_count, old);
975 }
976 }
977
svm_hardware_unsetup(void)978 static void svm_hardware_unsetup(void)
979 {
980 int cpu;
981
982 sev_hardware_unsetup();
983
984 for_each_possible_cpu(cpu)
985 svm_cpu_uninit(cpu);
986
987 __free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE));
988 iopm_base = 0;
989 }
990
init_seg(struct vmcb_seg * seg)991 static void init_seg(struct vmcb_seg *seg)
992 {
993 seg->selector = 0;
994 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
995 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
996 seg->limit = 0xffff;
997 seg->base = 0;
998 }
999
init_sys_seg(struct vmcb_seg * seg,uint32_t type)1000 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1001 {
1002 seg->selector = 0;
1003 seg->attrib = SVM_SELECTOR_P_MASK | type;
1004 seg->limit = 0xffff;
1005 seg->base = 0;
1006 }
1007
svm_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1008 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1009 {
1010 struct vcpu_svm *svm = to_svm(vcpu);
1011
1012 return svm->nested.ctl.tsc_offset;
1013 }
1014
svm_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1015 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1016 {
1017 struct vcpu_svm *svm = to_svm(vcpu);
1018
1019 return svm->tsc_ratio_msr;
1020 }
1021
svm_write_tsc_offset(struct kvm_vcpu * vcpu)1022 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
1023 {
1024 struct vcpu_svm *svm = to_svm(vcpu);
1025
1026 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1027 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
1028 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1029 }
1030
svm_write_tsc_multiplier(struct kvm_vcpu * vcpu)1031 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1032 {
1033 preempt_disable();
1034 if (to_svm(vcpu)->guest_state_loaded)
1035 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1036 preempt_enable();
1037 }
1038
1039 /* Evaluate instruction intercepts that depend on guest CPUID features. */
svm_recalc_instruction_intercepts(struct kvm_vcpu * vcpu)1040 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu)
1041 {
1042 struct vcpu_svm *svm = to_svm(vcpu);
1043
1044 /*
1045 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1046 * roots, or if INVPCID is disabled in the guest to inject #UD.
1047 */
1048 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1049 if (!npt_enabled ||
1050 !guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID))
1051 svm_set_intercept(svm, INTERCEPT_INVPCID);
1052 else
1053 svm_clr_intercept(svm, INTERCEPT_INVPCID);
1054 }
1055
1056 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1057 if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP))
1058 svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1059 else
1060 svm_set_intercept(svm, INTERCEPT_RDTSCP);
1061 }
1062
1063 if (guest_cpuid_is_intel_compatible(vcpu)) {
1064 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1065 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1066 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1067 } else {
1068 /*
1069 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1070 * in VMCB and clear intercepts to avoid #VMEXIT.
1071 */
1072 if (vls) {
1073 svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1074 svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1075 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1076 }
1077 }
1078 }
1079
svm_recalc_intercepts_after_set_cpuid(struct kvm_vcpu * vcpu)1080 static void svm_recalc_intercepts_after_set_cpuid(struct kvm_vcpu *vcpu)
1081 {
1082 svm_recalc_instruction_intercepts(vcpu);
1083 svm_recalc_msr_intercepts(vcpu);
1084 }
1085
init_vmcb(struct kvm_vcpu * vcpu)1086 static void init_vmcb(struct kvm_vcpu *vcpu)
1087 {
1088 struct vcpu_svm *svm = to_svm(vcpu);
1089 struct vmcb *vmcb = svm->vmcb01.ptr;
1090 struct vmcb_control_area *control = &vmcb->control;
1091 struct vmcb_save_area *save = &vmcb->save;
1092
1093 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1094 svm_set_intercept(svm, INTERCEPT_CR3_READ);
1095 svm_set_intercept(svm, INTERCEPT_CR4_READ);
1096 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1097 svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1098 svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1099 if (!kvm_vcpu_apicv_active(vcpu))
1100 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1101
1102 set_dr_intercepts(svm);
1103
1104 set_exception_intercept(svm, PF_VECTOR);
1105 set_exception_intercept(svm, UD_VECTOR);
1106 set_exception_intercept(svm, MC_VECTOR);
1107 set_exception_intercept(svm, AC_VECTOR);
1108 set_exception_intercept(svm, DB_VECTOR);
1109 /*
1110 * Guest access to VMware backdoor ports could legitimately
1111 * trigger #GP because of TSS I/O permission bitmap.
1112 * We intercept those #GP and allow access to them anyway
1113 * as VMware does.
1114 */
1115 if (enable_vmware_backdoor)
1116 set_exception_intercept(svm, GP_VECTOR);
1117
1118 svm_set_intercept(svm, INTERCEPT_INTR);
1119 svm_set_intercept(svm, INTERCEPT_NMI);
1120
1121 if (intercept_smi)
1122 svm_set_intercept(svm, INTERCEPT_SMI);
1123
1124 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1125 svm_set_intercept(svm, INTERCEPT_RDPMC);
1126 svm_set_intercept(svm, INTERCEPT_CPUID);
1127 svm_set_intercept(svm, INTERCEPT_INVD);
1128 svm_set_intercept(svm, INTERCEPT_INVLPG);
1129 svm_set_intercept(svm, INTERCEPT_INVLPGA);
1130 svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1131 svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1132 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1133 svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1134 svm_set_intercept(svm, INTERCEPT_VMRUN);
1135 svm_set_intercept(svm, INTERCEPT_VMMCALL);
1136 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1137 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1138 svm_set_intercept(svm, INTERCEPT_STGI);
1139 svm_set_intercept(svm, INTERCEPT_CLGI);
1140 svm_set_intercept(svm, INTERCEPT_SKINIT);
1141 svm_set_intercept(svm, INTERCEPT_WBINVD);
1142 svm_set_intercept(svm, INTERCEPT_XSETBV);
1143 svm_set_intercept(svm, INTERCEPT_RDPRU);
1144 svm_set_intercept(svm, INTERCEPT_RSM);
1145
1146 if (!kvm_mwait_in_guest(vcpu->kvm)) {
1147 svm_set_intercept(svm, INTERCEPT_MONITOR);
1148 svm_set_intercept(svm, INTERCEPT_MWAIT);
1149 }
1150
1151 if (!kvm_hlt_in_guest(vcpu->kvm)) {
1152 if (cpu_feature_enabled(X86_FEATURE_IDLE_HLT))
1153 svm_set_intercept(svm, INTERCEPT_IDLE_HLT);
1154 else
1155 svm_set_intercept(svm, INTERCEPT_HLT);
1156 }
1157
1158 control->iopm_base_pa = iopm_base;
1159 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1160 control->int_ctl = V_INTR_MASKING_MASK;
1161
1162 init_seg(&save->es);
1163 init_seg(&save->ss);
1164 init_seg(&save->ds);
1165 init_seg(&save->fs);
1166 init_seg(&save->gs);
1167
1168 save->cs.selector = 0xf000;
1169 save->cs.base = 0xffff0000;
1170 /* Executable/Readable Code Segment */
1171 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1172 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1173 save->cs.limit = 0xffff;
1174
1175 save->gdtr.base = 0;
1176 save->gdtr.limit = 0xffff;
1177 save->idtr.base = 0;
1178 save->idtr.limit = 0xffff;
1179
1180 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1181 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1182
1183 if (npt_enabled) {
1184 /* Setup VMCB for Nested Paging */
1185 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1186 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1187 clr_exception_intercept(svm, PF_VECTOR);
1188 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1189 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1190 save->g_pat = vcpu->arch.pat;
1191 save->cr3 = 0;
1192 }
1193 svm->current_vmcb->asid_generation = 0;
1194 svm->asid = 0;
1195
1196 svm->nested.vmcb12_gpa = INVALID_GPA;
1197 svm->nested.last_vmcb12_gpa = INVALID_GPA;
1198
1199 if (!kvm_pause_in_guest(vcpu->kvm)) {
1200 control->pause_filter_count = pause_filter_count;
1201 if (pause_filter_thresh)
1202 control->pause_filter_thresh = pause_filter_thresh;
1203 svm_set_intercept(svm, INTERCEPT_PAUSE);
1204 } else {
1205 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1206 }
1207
1208 if (kvm_vcpu_apicv_active(vcpu))
1209 avic_init_vmcb(svm, vmcb);
1210
1211 if (vnmi)
1212 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1213
1214 if (vgif) {
1215 svm_clr_intercept(svm, INTERCEPT_STGI);
1216 svm_clr_intercept(svm, INTERCEPT_CLGI);
1217 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1218 }
1219
1220 if (vcpu->kvm->arch.bus_lock_detection_enabled)
1221 svm_set_intercept(svm, INTERCEPT_BUSLOCK);
1222
1223 if (sev_guest(vcpu->kvm))
1224 sev_init_vmcb(svm);
1225
1226 svm_hv_init_vmcb(vmcb);
1227
1228 svm_recalc_intercepts_after_set_cpuid(vcpu);
1229
1230 vmcb_mark_all_dirty(vmcb);
1231
1232 enable_gif(svm);
1233 }
1234
__svm_vcpu_reset(struct kvm_vcpu * vcpu)1235 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1236 {
1237 struct vcpu_svm *svm = to_svm(vcpu);
1238
1239 svm_init_osvw(vcpu);
1240
1241 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
1242 vcpu->arch.microcode_version = 0x01000065;
1243 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1244
1245 svm->nmi_masked = false;
1246 svm->awaiting_iret_completion = false;
1247
1248 if (sev_es_guest(vcpu->kvm))
1249 sev_es_vcpu_reset(svm);
1250 }
1251
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)1252 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1253 {
1254 struct vcpu_svm *svm = to_svm(vcpu);
1255
1256 svm->spec_ctrl = 0;
1257 svm->virt_spec_ctrl = 0;
1258
1259 if (init_event)
1260 sev_snp_init_protected_guest_state(vcpu);
1261
1262 init_vmcb(vcpu);
1263
1264 if (!init_event)
1265 __svm_vcpu_reset(vcpu);
1266 }
1267
svm_switch_vmcb(struct vcpu_svm * svm,struct kvm_vmcb_info * target_vmcb)1268 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1269 {
1270 svm->current_vmcb = target_vmcb;
1271 svm->vmcb = target_vmcb->ptr;
1272 }
1273
svm_vcpu_create(struct kvm_vcpu * vcpu)1274 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1275 {
1276 struct vcpu_svm *svm;
1277 struct page *vmcb01_page;
1278 struct page *vmsa_page = NULL;
1279 int err;
1280
1281 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1282 svm = to_svm(vcpu);
1283
1284 err = -ENOMEM;
1285 vmcb01_page = snp_safe_alloc_page();
1286 if (!vmcb01_page)
1287 goto out;
1288
1289 if (sev_es_guest(vcpu->kvm)) {
1290 /*
1291 * SEV-ES guests require a separate VMSA page used to contain
1292 * the encrypted register state of the guest.
1293 */
1294 vmsa_page = snp_safe_alloc_page();
1295 if (!vmsa_page)
1296 goto error_free_vmcb_page;
1297 }
1298
1299 err = avic_init_vcpu(svm);
1300 if (err)
1301 goto error_free_vmsa_page;
1302
1303 svm->msrpm = svm_vcpu_alloc_msrpm();
1304 if (!svm->msrpm) {
1305 err = -ENOMEM;
1306 goto error_free_vmsa_page;
1307 }
1308
1309 svm->x2avic_msrs_intercepted = true;
1310
1311 svm->vmcb01.ptr = page_address(vmcb01_page);
1312 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1313 svm_switch_vmcb(svm, &svm->vmcb01);
1314
1315 if (vmsa_page)
1316 svm->sev_es.vmsa = page_address(vmsa_page);
1317
1318 svm->guest_state_loaded = false;
1319
1320 return 0;
1321
1322 error_free_vmsa_page:
1323 if (vmsa_page)
1324 __free_page(vmsa_page);
1325 error_free_vmcb_page:
1326 __free_page(vmcb01_page);
1327 out:
1328 return err;
1329 }
1330
svm_vcpu_free(struct kvm_vcpu * vcpu)1331 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1332 {
1333 struct vcpu_svm *svm = to_svm(vcpu);
1334
1335 WARN_ON_ONCE(!list_empty(&svm->ir_list));
1336
1337 svm_leave_nested(vcpu);
1338 svm_free_nested(svm);
1339
1340 sev_free_vcpu(vcpu);
1341
1342 __free_page(__sme_pa_to_page(svm->vmcb01.pa));
1343 svm_vcpu_free_msrpm(svm->msrpm);
1344 }
1345
1346 #ifdef CONFIG_CPU_MITIGATIONS
1347 static DEFINE_SPINLOCK(srso_lock);
1348 static atomic_t srso_nr_vms;
1349
svm_srso_clear_bp_spec_reduce(void * ign)1350 static void svm_srso_clear_bp_spec_reduce(void *ign)
1351 {
1352 struct svm_cpu_data *sd = this_cpu_ptr(&svm_data);
1353
1354 if (!sd->bp_spec_reduce_set)
1355 return;
1356
1357 msr_clear_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1358 sd->bp_spec_reduce_set = false;
1359 }
1360
svm_srso_vm_destroy(void)1361 static void svm_srso_vm_destroy(void)
1362 {
1363 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1364 return;
1365
1366 if (atomic_dec_return(&srso_nr_vms))
1367 return;
1368
1369 guard(spinlock)(&srso_lock);
1370
1371 /*
1372 * Verify a new VM didn't come along, acquire the lock, and increment
1373 * the count before this task acquired the lock.
1374 */
1375 if (atomic_read(&srso_nr_vms))
1376 return;
1377
1378 on_each_cpu(svm_srso_clear_bp_spec_reduce, NULL, 1);
1379 }
1380
svm_srso_vm_init(void)1381 static void svm_srso_vm_init(void)
1382 {
1383 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1384 return;
1385
1386 /*
1387 * Acquire the lock on 0 => 1 transitions to ensure a potential 1 => 0
1388 * transition, i.e. destroying the last VM, is fully complete, e.g. so
1389 * that a delayed IPI doesn't clear BP_SPEC_REDUCE after a vCPU runs.
1390 */
1391 if (atomic_inc_not_zero(&srso_nr_vms))
1392 return;
1393
1394 guard(spinlock)(&srso_lock);
1395
1396 atomic_inc(&srso_nr_vms);
1397 }
1398 #else
svm_srso_vm_init(void)1399 static void svm_srso_vm_init(void) { }
svm_srso_vm_destroy(void)1400 static void svm_srso_vm_destroy(void) { }
1401 #endif
1402
svm_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1403 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1404 {
1405 struct vcpu_svm *svm = to_svm(vcpu);
1406 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1407
1408 if (sev_es_guest(vcpu->kvm))
1409 sev_es_unmap_ghcb(svm);
1410
1411 if (svm->guest_state_loaded)
1412 return;
1413
1414 /*
1415 * Save additional host state that will be restored on VMEXIT (sev-es)
1416 * or subsequent vmload of host save area.
1417 */
1418 vmsave(sd->save_area_pa);
1419 if (sev_es_guest(vcpu->kvm))
1420 sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd));
1421
1422 if (tsc_scaling)
1423 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1424
1425 /*
1426 * TSC_AUX is always virtualized for SEV-ES guests when the feature is
1427 * available. The user return MSR support is not required in this case
1428 * because TSC_AUX is restored on #VMEXIT from the host save area
1429 * (which has been initialized in svm_enable_virtualization_cpu()).
1430 */
1431 if (likely(tsc_aux_uret_slot >= 0) &&
1432 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1433 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1434
1435 if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE) &&
1436 !sd->bp_spec_reduce_set) {
1437 sd->bp_spec_reduce_set = true;
1438 msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1439 }
1440 svm->guest_state_loaded = true;
1441 }
1442
svm_prepare_host_switch(struct kvm_vcpu * vcpu)1443 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1444 {
1445 to_svm(vcpu)->guest_state_loaded = false;
1446 }
1447
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1448 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1449 {
1450 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1451 shrink_ple_window(vcpu);
1452
1453 if (kvm_vcpu_apicv_active(vcpu))
1454 avic_vcpu_load(vcpu, cpu);
1455 }
1456
svm_vcpu_put(struct kvm_vcpu * vcpu)1457 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1458 {
1459 if (kvm_vcpu_apicv_active(vcpu))
1460 avic_vcpu_put(vcpu);
1461
1462 svm_prepare_host_switch(vcpu);
1463
1464 ++vcpu->stat.host_state_reload;
1465 }
1466
svm_get_rflags(struct kvm_vcpu * vcpu)1467 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1468 {
1469 struct vcpu_svm *svm = to_svm(vcpu);
1470 unsigned long rflags = svm->vmcb->save.rflags;
1471
1472 if (svm->nmi_singlestep) {
1473 /* Hide our flags if they were not set by the guest */
1474 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1475 rflags &= ~X86_EFLAGS_TF;
1476 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1477 rflags &= ~X86_EFLAGS_RF;
1478 }
1479 return rflags;
1480 }
1481
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1482 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1483 {
1484 if (to_svm(vcpu)->nmi_singlestep)
1485 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1486
1487 /*
1488 * Any change of EFLAGS.VM is accompanied by a reload of SS
1489 * (caused by either a task switch or an inter-privilege IRET),
1490 * so we do not need to update the CPL here.
1491 */
1492 to_svm(vcpu)->vmcb->save.rflags = rflags;
1493 }
1494
svm_get_if_flag(struct kvm_vcpu * vcpu)1495 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1496 {
1497 struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1498
1499 return sev_es_guest(vcpu->kvm)
1500 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1501 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1502 }
1503
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1504 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1505 {
1506 kvm_register_mark_available(vcpu, reg);
1507
1508 switch (reg) {
1509 case VCPU_EXREG_PDPTR:
1510 /*
1511 * When !npt_enabled, mmu->pdptrs[] is already available since
1512 * it is always updated per SDM when moving to CRs.
1513 */
1514 if (npt_enabled)
1515 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1516 break;
1517 default:
1518 KVM_BUG_ON(1, vcpu->kvm);
1519 }
1520 }
1521
svm_set_vintr(struct vcpu_svm * svm)1522 static void svm_set_vintr(struct vcpu_svm *svm)
1523 {
1524 struct vmcb_control_area *control;
1525
1526 /*
1527 * The following fields are ignored when AVIC is enabled
1528 */
1529 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1530
1531 svm_set_intercept(svm, INTERCEPT_VINTR);
1532
1533 /*
1534 * Recalculating intercepts may have cleared the VINTR intercept. If
1535 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1536 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1537 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1538 * interrupts will never be unblocked while L2 is running.
1539 */
1540 if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1541 return;
1542
1543 /*
1544 * This is just a dummy VINTR to actually cause a vmexit to happen.
1545 * Actual injection of virtual interrupts happens through EVENTINJ.
1546 */
1547 control = &svm->vmcb->control;
1548 control->int_vector = 0x0;
1549 control->int_ctl &= ~V_INTR_PRIO_MASK;
1550 control->int_ctl |= V_IRQ_MASK |
1551 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1552 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1553 }
1554
svm_clear_vintr(struct vcpu_svm * svm)1555 static void svm_clear_vintr(struct vcpu_svm *svm)
1556 {
1557 svm_clr_intercept(svm, INTERCEPT_VINTR);
1558
1559 /* Drop int_ctl fields related to VINTR injection. */
1560 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1561 if (is_guest_mode(&svm->vcpu)) {
1562 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1563
1564 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1565 (svm->nested.ctl.int_ctl & V_TPR_MASK));
1566
1567 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1568 V_IRQ_INJECTION_BITS_MASK;
1569
1570 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1571 }
1572
1573 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1574 }
1575
svm_seg(struct kvm_vcpu * vcpu,int seg)1576 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1577 {
1578 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1579 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1580
1581 switch (seg) {
1582 case VCPU_SREG_CS: return &save->cs;
1583 case VCPU_SREG_DS: return &save->ds;
1584 case VCPU_SREG_ES: return &save->es;
1585 case VCPU_SREG_FS: return &save01->fs;
1586 case VCPU_SREG_GS: return &save01->gs;
1587 case VCPU_SREG_SS: return &save->ss;
1588 case VCPU_SREG_TR: return &save01->tr;
1589 case VCPU_SREG_LDTR: return &save01->ldtr;
1590 }
1591 BUG();
1592 return NULL;
1593 }
1594
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1595 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1596 {
1597 struct vmcb_seg *s = svm_seg(vcpu, seg);
1598
1599 return s->base;
1600 }
1601
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1602 static void svm_get_segment(struct kvm_vcpu *vcpu,
1603 struct kvm_segment *var, int seg)
1604 {
1605 struct vmcb_seg *s = svm_seg(vcpu, seg);
1606
1607 var->base = s->base;
1608 var->limit = s->limit;
1609 var->selector = s->selector;
1610 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1611 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1612 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1613 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1614 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1615 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1616 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1617
1618 /*
1619 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1620 * However, the SVM spec states that the G bit is not observed by the
1621 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1622 * So let's synthesize a legal G bit for all segments, this helps
1623 * running KVM nested. It also helps cross-vendor migration, because
1624 * Intel's vmentry has a check on the 'G' bit.
1625 */
1626 var->g = s->limit > 0xfffff;
1627
1628 /*
1629 * AMD's VMCB does not have an explicit unusable field, so emulate it
1630 * for cross vendor migration purposes by "not present"
1631 */
1632 var->unusable = !var->present;
1633
1634 switch (seg) {
1635 case VCPU_SREG_TR:
1636 /*
1637 * Work around a bug where the busy flag in the tr selector
1638 * isn't exposed
1639 */
1640 var->type |= 0x2;
1641 break;
1642 case VCPU_SREG_DS:
1643 case VCPU_SREG_ES:
1644 case VCPU_SREG_FS:
1645 case VCPU_SREG_GS:
1646 /*
1647 * The accessed bit must always be set in the segment
1648 * descriptor cache, although it can be cleared in the
1649 * descriptor, the cached bit always remains at 1. Since
1650 * Intel has a check on this, set it here to support
1651 * cross-vendor migration.
1652 */
1653 if (!var->unusable)
1654 var->type |= 0x1;
1655 break;
1656 case VCPU_SREG_SS:
1657 /*
1658 * On AMD CPUs sometimes the DB bit in the segment
1659 * descriptor is left as 1, although the whole segment has
1660 * been made unusable. Clear it here to pass an Intel VMX
1661 * entry check when cross vendor migrating.
1662 */
1663 if (var->unusable)
1664 var->db = 0;
1665 /* This is symmetric with svm_set_segment() */
1666 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1667 break;
1668 }
1669 }
1670
svm_get_cpl(struct kvm_vcpu * vcpu)1671 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1672 {
1673 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1674
1675 return save->cpl;
1676 }
1677
svm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)1678 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1679 {
1680 struct kvm_segment cs;
1681
1682 svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1683 *db = cs.db;
1684 *l = cs.l;
1685 }
1686
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1687 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1688 {
1689 struct vcpu_svm *svm = to_svm(vcpu);
1690
1691 dt->size = svm->vmcb->save.idtr.limit;
1692 dt->address = svm->vmcb->save.idtr.base;
1693 }
1694
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1695 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1696 {
1697 struct vcpu_svm *svm = to_svm(vcpu);
1698
1699 svm->vmcb->save.idtr.limit = dt->size;
1700 svm->vmcb->save.idtr.base = dt->address ;
1701 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1702 }
1703
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1704 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1705 {
1706 struct vcpu_svm *svm = to_svm(vcpu);
1707
1708 dt->size = svm->vmcb->save.gdtr.limit;
1709 dt->address = svm->vmcb->save.gdtr.base;
1710 }
1711
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1712 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1713 {
1714 struct vcpu_svm *svm = to_svm(vcpu);
1715
1716 svm->vmcb->save.gdtr.limit = dt->size;
1717 svm->vmcb->save.gdtr.base = dt->address ;
1718 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1719 }
1720
sev_post_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1721 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1722 {
1723 struct vcpu_svm *svm = to_svm(vcpu);
1724
1725 /*
1726 * For guests that don't set guest_state_protected, the cr3 update is
1727 * handled via kvm_mmu_load() while entering the guest. For guests
1728 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1729 * VMCB save area now, since the save area will become the initial
1730 * contents of the VMSA, and future VMCB save area updates won't be
1731 * seen.
1732 */
1733 if (sev_es_guest(vcpu->kvm)) {
1734 svm->vmcb->save.cr3 = cr3;
1735 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1736 }
1737 }
1738
svm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1739 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1740 {
1741 return true;
1742 }
1743
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1744 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1745 {
1746 struct vcpu_svm *svm = to_svm(vcpu);
1747 u64 hcr0 = cr0;
1748 bool old_paging = is_paging(vcpu);
1749
1750 #ifdef CONFIG_X86_64
1751 if (vcpu->arch.efer & EFER_LME) {
1752 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1753 vcpu->arch.efer |= EFER_LMA;
1754 if (!vcpu->arch.guest_state_protected)
1755 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1756 }
1757
1758 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1759 vcpu->arch.efer &= ~EFER_LMA;
1760 if (!vcpu->arch.guest_state_protected)
1761 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1762 }
1763 }
1764 #endif
1765 vcpu->arch.cr0 = cr0;
1766
1767 if (!npt_enabled) {
1768 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1769 if (old_paging != is_paging(vcpu))
1770 svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1771 }
1772
1773 /*
1774 * re-enable caching here because the QEMU bios
1775 * does not do it - this results in some delay at
1776 * reboot
1777 */
1778 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1779 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1780
1781 svm->vmcb->save.cr0 = hcr0;
1782 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1783
1784 /*
1785 * SEV-ES guests must always keep the CR intercepts cleared. CR
1786 * tracking is done using the CR write traps.
1787 */
1788 if (sev_es_guest(vcpu->kvm))
1789 return;
1790
1791 if (hcr0 == cr0) {
1792 /* Selective CR0 write remains on. */
1793 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1794 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1795 } else {
1796 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1797 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1798 }
1799 }
1800
svm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1801 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1802 {
1803 return true;
1804 }
1805
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1806 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1807 {
1808 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1809 unsigned long old_cr4 = vcpu->arch.cr4;
1810
1811 vcpu->arch.cr4 = cr4;
1812 if (!npt_enabled) {
1813 cr4 |= X86_CR4_PAE;
1814
1815 if (!is_paging(vcpu))
1816 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1817 }
1818 cr4 |= host_cr4_mce;
1819 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1820 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1821
1822 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1823 vcpu->arch.cpuid_dynamic_bits_dirty = true;
1824 }
1825
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1826 static void svm_set_segment(struct kvm_vcpu *vcpu,
1827 struct kvm_segment *var, int seg)
1828 {
1829 struct vcpu_svm *svm = to_svm(vcpu);
1830 struct vmcb_seg *s = svm_seg(vcpu, seg);
1831
1832 s->base = var->base;
1833 s->limit = var->limit;
1834 s->selector = var->selector;
1835 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1836 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1837 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1838 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1839 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1840 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1841 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1842 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1843
1844 /*
1845 * This is always accurate, except if SYSRET returned to a segment
1846 * with SS.DPL != 3. Intel does not have this quirk, and always
1847 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1848 * would entail passing the CPL to userspace and back.
1849 */
1850 if (seg == VCPU_SREG_SS)
1851 /* This is symmetric with svm_get_segment() */
1852 svm->vmcb->save.cpl = (var->dpl & 3);
1853
1854 vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1855 }
1856
svm_update_exception_bitmap(struct kvm_vcpu * vcpu)1857 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1858 {
1859 struct vcpu_svm *svm = to_svm(vcpu);
1860
1861 clr_exception_intercept(svm, BP_VECTOR);
1862
1863 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1864 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1865 set_exception_intercept(svm, BP_VECTOR);
1866 }
1867 }
1868
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)1869 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1870 {
1871 if (sd->next_asid > sd->max_asid) {
1872 ++sd->asid_generation;
1873 sd->next_asid = sd->min_asid;
1874 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1875 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1876 }
1877
1878 svm->current_vmcb->asid_generation = sd->asid_generation;
1879 svm->asid = sd->next_asid++;
1880 }
1881
svm_set_dr6(struct kvm_vcpu * vcpu,unsigned long value)1882 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1883 {
1884 struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1885
1886 if (vcpu->arch.guest_state_protected)
1887 return;
1888
1889 if (unlikely(value != vmcb->save.dr6)) {
1890 vmcb->save.dr6 = value;
1891 vmcb_mark_dirty(vmcb, VMCB_DR);
1892 }
1893 }
1894
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)1895 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1896 {
1897 struct vcpu_svm *svm = to_svm(vcpu);
1898
1899 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
1900 return;
1901
1902 get_debugreg(vcpu->arch.db[0], 0);
1903 get_debugreg(vcpu->arch.db[1], 1);
1904 get_debugreg(vcpu->arch.db[2], 2);
1905 get_debugreg(vcpu->arch.db[3], 3);
1906 /*
1907 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1908 * because db_interception might need it. We can do it before vmentry.
1909 */
1910 vcpu->arch.dr6 = svm->vmcb->save.dr6;
1911 vcpu->arch.dr7 = svm->vmcb->save.dr7;
1912 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1913 set_dr_intercepts(svm);
1914 }
1915
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)1916 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1917 {
1918 struct vcpu_svm *svm = to_svm(vcpu);
1919
1920 if (vcpu->arch.guest_state_protected)
1921 return;
1922
1923 svm->vmcb->save.dr7 = value;
1924 vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1925 }
1926
pf_interception(struct kvm_vcpu * vcpu)1927 static int pf_interception(struct kvm_vcpu *vcpu)
1928 {
1929 struct vcpu_svm *svm = to_svm(vcpu);
1930
1931 u64 fault_address = svm->vmcb->control.exit_info_2;
1932 u64 error_code = svm->vmcb->control.exit_info_1;
1933
1934 return kvm_handle_page_fault(vcpu, error_code, fault_address,
1935 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1936 svm->vmcb->control.insn_bytes : NULL,
1937 svm->vmcb->control.insn_len);
1938 }
1939
npf_interception(struct kvm_vcpu * vcpu)1940 static int npf_interception(struct kvm_vcpu *vcpu)
1941 {
1942 struct vcpu_svm *svm = to_svm(vcpu);
1943 int rc;
1944
1945 u64 fault_address = svm->vmcb->control.exit_info_2;
1946 u64 error_code = svm->vmcb->control.exit_info_1;
1947
1948 /*
1949 * WARN if hardware generates a fault with an error code that collides
1950 * with KVM-defined sythentic flags. Clear the flags and continue on,
1951 * i.e. don't terminate the VM, as KVM can't possibly be relying on a
1952 * flag that KVM doesn't know about.
1953 */
1954 if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK))
1955 error_code &= ~PFERR_SYNTHETIC_MASK;
1956
1957 if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK))
1958 error_code |= PFERR_PRIVATE_ACCESS;
1959
1960 trace_kvm_page_fault(vcpu, fault_address, error_code);
1961 rc = kvm_mmu_page_fault(vcpu, fault_address, error_code,
1962 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1963 svm->vmcb->control.insn_bytes : NULL,
1964 svm->vmcb->control.insn_len);
1965
1966 if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK)
1967 sev_handle_rmp_fault(vcpu, fault_address, error_code);
1968
1969 return rc;
1970 }
1971
db_interception(struct kvm_vcpu * vcpu)1972 static int db_interception(struct kvm_vcpu *vcpu)
1973 {
1974 struct kvm_run *kvm_run = vcpu->run;
1975 struct vcpu_svm *svm = to_svm(vcpu);
1976
1977 if (!(vcpu->guest_debug &
1978 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1979 !svm->nmi_singlestep) {
1980 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1981 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1982 return 1;
1983 }
1984
1985 if (svm->nmi_singlestep) {
1986 disable_nmi_singlestep(svm);
1987 /* Make sure we check for pending NMIs upon entry */
1988 kvm_make_request(KVM_REQ_EVENT, vcpu);
1989 }
1990
1991 if (vcpu->guest_debug &
1992 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1993 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1994 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1995 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1996 kvm_run->debug.arch.pc =
1997 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1998 kvm_run->debug.arch.exception = DB_VECTOR;
1999 return 0;
2000 }
2001
2002 return 1;
2003 }
2004
bp_interception(struct kvm_vcpu * vcpu)2005 static int bp_interception(struct kvm_vcpu *vcpu)
2006 {
2007 struct vcpu_svm *svm = to_svm(vcpu);
2008 struct kvm_run *kvm_run = vcpu->run;
2009
2010 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2011 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2012 kvm_run->debug.arch.exception = BP_VECTOR;
2013 return 0;
2014 }
2015
ud_interception(struct kvm_vcpu * vcpu)2016 static int ud_interception(struct kvm_vcpu *vcpu)
2017 {
2018 return handle_ud(vcpu);
2019 }
2020
ac_interception(struct kvm_vcpu * vcpu)2021 static int ac_interception(struct kvm_vcpu *vcpu)
2022 {
2023 kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2024 return 1;
2025 }
2026
is_erratum_383(void)2027 static bool is_erratum_383(void)
2028 {
2029 int i;
2030 u64 value;
2031
2032 if (!erratum_383_found)
2033 return false;
2034
2035 if (native_read_msr_safe(MSR_IA32_MC0_STATUS, &value))
2036 return false;
2037
2038 /* Bit 62 may or may not be set for this mce */
2039 value &= ~(1ULL << 62);
2040
2041 if (value != 0xb600000000010015ULL)
2042 return false;
2043
2044 /* Clear MCi_STATUS registers */
2045 for (i = 0; i < 6; ++i)
2046 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0);
2047
2048 if (!native_read_msr_safe(MSR_IA32_MCG_STATUS, &value)) {
2049 value &= ~(1ULL << 2);
2050 native_write_msr_safe(MSR_IA32_MCG_STATUS, value);
2051 }
2052
2053 /* Flush tlb to evict multi-match entries */
2054 __flush_tlb_all();
2055
2056 return true;
2057 }
2058
svm_handle_mce(struct kvm_vcpu * vcpu)2059 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2060 {
2061 if (is_erratum_383()) {
2062 /*
2063 * Erratum 383 triggered. Guest state is corrupt so kill the
2064 * guest.
2065 */
2066 pr_err("Guest triggered AMD Erratum 383\n");
2067
2068 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2069
2070 return;
2071 }
2072
2073 /*
2074 * On an #MC intercept the MCE handler is not called automatically in
2075 * the host. So do it by hand here.
2076 */
2077 kvm_machine_check();
2078 }
2079
mc_interception(struct kvm_vcpu * vcpu)2080 static int mc_interception(struct kvm_vcpu *vcpu)
2081 {
2082 return 1;
2083 }
2084
shutdown_interception(struct kvm_vcpu * vcpu)2085 static int shutdown_interception(struct kvm_vcpu *vcpu)
2086 {
2087 struct kvm_run *kvm_run = vcpu->run;
2088 struct vcpu_svm *svm = to_svm(vcpu);
2089
2090
2091 /*
2092 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put
2093 * the VMCB in a known good state. Unfortuately, KVM doesn't have
2094 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2095 * userspace. At a platform view, INIT is acceptable behavior as
2096 * there exist bare metal platforms that automatically INIT the CPU
2097 * in response to shutdown.
2098 *
2099 * The VM save area for SEV-ES guests has already been encrypted so it
2100 * cannot be reinitialized, i.e. synthesizing INIT is futile.
2101 */
2102 if (!sev_es_guest(vcpu->kvm)) {
2103 clear_page(svm->vmcb);
2104 #ifdef CONFIG_KVM_SMM
2105 if (is_smm(vcpu))
2106 kvm_smm_changed(vcpu, false);
2107 #endif
2108 kvm_vcpu_reset(vcpu, true);
2109 }
2110
2111 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2112 return 0;
2113 }
2114
io_interception(struct kvm_vcpu * vcpu)2115 static int io_interception(struct kvm_vcpu *vcpu)
2116 {
2117 struct vcpu_svm *svm = to_svm(vcpu);
2118 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2119 int size, in, string;
2120 unsigned port;
2121
2122 ++vcpu->stat.io_exits;
2123 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2124 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2125 port = io_info >> 16;
2126 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2127
2128 if (string) {
2129 if (sev_es_guest(vcpu->kvm))
2130 return sev_es_string_io(svm, size, port, in);
2131 else
2132 return kvm_emulate_instruction(vcpu, 0);
2133 }
2134
2135 svm->next_rip = svm->vmcb->control.exit_info_2;
2136
2137 return kvm_fast_pio(vcpu, size, port, in);
2138 }
2139
nmi_interception(struct kvm_vcpu * vcpu)2140 static int nmi_interception(struct kvm_vcpu *vcpu)
2141 {
2142 return 1;
2143 }
2144
smi_interception(struct kvm_vcpu * vcpu)2145 static int smi_interception(struct kvm_vcpu *vcpu)
2146 {
2147 return 1;
2148 }
2149
intr_interception(struct kvm_vcpu * vcpu)2150 static int intr_interception(struct kvm_vcpu *vcpu)
2151 {
2152 ++vcpu->stat.irq_exits;
2153 return 1;
2154 }
2155
vmload_vmsave_interception(struct kvm_vcpu * vcpu,bool vmload)2156 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2157 {
2158 struct vcpu_svm *svm = to_svm(vcpu);
2159 struct vmcb *vmcb12;
2160 struct kvm_host_map map;
2161 int ret;
2162
2163 if (nested_svm_check_permissions(vcpu))
2164 return 1;
2165
2166 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2167 if (ret) {
2168 if (ret == -EINVAL)
2169 kvm_inject_gp(vcpu, 0);
2170 return 1;
2171 }
2172
2173 vmcb12 = map.hva;
2174
2175 ret = kvm_skip_emulated_instruction(vcpu);
2176
2177 if (vmload) {
2178 svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2179 svm->sysenter_eip_hi = 0;
2180 svm->sysenter_esp_hi = 0;
2181 } else {
2182 svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2183 }
2184
2185 kvm_vcpu_unmap(vcpu, &map);
2186
2187 return ret;
2188 }
2189
vmload_interception(struct kvm_vcpu * vcpu)2190 static int vmload_interception(struct kvm_vcpu *vcpu)
2191 {
2192 return vmload_vmsave_interception(vcpu, true);
2193 }
2194
vmsave_interception(struct kvm_vcpu * vcpu)2195 static int vmsave_interception(struct kvm_vcpu *vcpu)
2196 {
2197 return vmload_vmsave_interception(vcpu, false);
2198 }
2199
vmrun_interception(struct kvm_vcpu * vcpu)2200 static int vmrun_interception(struct kvm_vcpu *vcpu)
2201 {
2202 if (nested_svm_check_permissions(vcpu))
2203 return 1;
2204
2205 return nested_svm_vmrun(vcpu);
2206 }
2207
2208 enum {
2209 NONE_SVM_INSTR,
2210 SVM_INSTR_VMRUN,
2211 SVM_INSTR_VMLOAD,
2212 SVM_INSTR_VMSAVE,
2213 };
2214
2215 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
svm_instr_opcode(struct kvm_vcpu * vcpu)2216 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2217 {
2218 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2219
2220 if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2221 return NONE_SVM_INSTR;
2222
2223 switch (ctxt->modrm) {
2224 case 0xd8: /* VMRUN */
2225 return SVM_INSTR_VMRUN;
2226 case 0xda: /* VMLOAD */
2227 return SVM_INSTR_VMLOAD;
2228 case 0xdb: /* VMSAVE */
2229 return SVM_INSTR_VMSAVE;
2230 default:
2231 break;
2232 }
2233
2234 return NONE_SVM_INSTR;
2235 }
2236
emulate_svm_instr(struct kvm_vcpu * vcpu,int opcode)2237 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2238 {
2239 const int guest_mode_exit_codes[] = {
2240 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2241 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2242 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2243 };
2244 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2245 [SVM_INSTR_VMRUN] = vmrun_interception,
2246 [SVM_INSTR_VMLOAD] = vmload_interception,
2247 [SVM_INSTR_VMSAVE] = vmsave_interception,
2248 };
2249 struct vcpu_svm *svm = to_svm(vcpu);
2250 int ret;
2251
2252 if (is_guest_mode(vcpu)) {
2253 /* Returns '1' or -errno on failure, '0' on success. */
2254 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2255 if (ret)
2256 return ret;
2257 return 1;
2258 }
2259 return svm_instr_handlers[opcode](vcpu);
2260 }
2261
2262 /*
2263 * #GP handling code. Note that #GP can be triggered under the following two
2264 * cases:
2265 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2266 * some AMD CPUs when EAX of these instructions are in the reserved memory
2267 * regions (e.g. SMM memory on host).
2268 * 2) VMware backdoor
2269 */
gp_interception(struct kvm_vcpu * vcpu)2270 static int gp_interception(struct kvm_vcpu *vcpu)
2271 {
2272 struct vcpu_svm *svm = to_svm(vcpu);
2273 u32 error_code = svm->vmcb->control.exit_info_1;
2274 int opcode;
2275
2276 /* Both #GP cases have zero error_code */
2277 if (error_code)
2278 goto reinject;
2279
2280 /* Decode the instruction for usage later */
2281 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2282 goto reinject;
2283
2284 opcode = svm_instr_opcode(vcpu);
2285
2286 if (opcode == NONE_SVM_INSTR) {
2287 if (!enable_vmware_backdoor)
2288 goto reinject;
2289
2290 /*
2291 * VMware backdoor emulation on #GP interception only handles
2292 * IN{S}, OUT{S}, and RDPMC.
2293 */
2294 if (!is_guest_mode(vcpu))
2295 return kvm_emulate_instruction(vcpu,
2296 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2297 } else {
2298 /* All SVM instructions expect page aligned RAX */
2299 if (svm->vmcb->save.rax & ~PAGE_MASK)
2300 goto reinject;
2301
2302 return emulate_svm_instr(vcpu, opcode);
2303 }
2304
2305 reinject:
2306 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2307 return 1;
2308 }
2309
svm_set_gif(struct vcpu_svm * svm,bool value)2310 void svm_set_gif(struct vcpu_svm *svm, bool value)
2311 {
2312 if (value) {
2313 /*
2314 * If VGIF is enabled, the STGI intercept is only added to
2315 * detect the opening of the SMI/NMI window; remove it now.
2316 * Likewise, clear the VINTR intercept, we will set it
2317 * again while processing KVM_REQ_EVENT if needed.
2318 */
2319 if (vgif)
2320 svm_clr_intercept(svm, INTERCEPT_STGI);
2321 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2322 svm_clear_vintr(svm);
2323
2324 enable_gif(svm);
2325 if (svm->vcpu.arch.smi_pending ||
2326 svm->vcpu.arch.nmi_pending ||
2327 kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2328 kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2329 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2330 } else {
2331 disable_gif(svm);
2332
2333 /*
2334 * After a CLGI no interrupts should come. But if vGIF is
2335 * in use, we still rely on the VINTR intercept (rather than
2336 * STGI) to detect an open interrupt window.
2337 */
2338 if (!vgif)
2339 svm_clear_vintr(svm);
2340 }
2341 }
2342
stgi_interception(struct kvm_vcpu * vcpu)2343 static int stgi_interception(struct kvm_vcpu *vcpu)
2344 {
2345 int ret;
2346
2347 if (nested_svm_check_permissions(vcpu))
2348 return 1;
2349
2350 ret = kvm_skip_emulated_instruction(vcpu);
2351 svm_set_gif(to_svm(vcpu), true);
2352 return ret;
2353 }
2354
clgi_interception(struct kvm_vcpu * vcpu)2355 static int clgi_interception(struct kvm_vcpu *vcpu)
2356 {
2357 int ret;
2358
2359 if (nested_svm_check_permissions(vcpu))
2360 return 1;
2361
2362 ret = kvm_skip_emulated_instruction(vcpu);
2363 svm_set_gif(to_svm(vcpu), false);
2364 return ret;
2365 }
2366
invlpga_interception(struct kvm_vcpu * vcpu)2367 static int invlpga_interception(struct kvm_vcpu *vcpu)
2368 {
2369 gva_t gva = kvm_rax_read(vcpu);
2370 u32 asid = kvm_rcx_read(vcpu);
2371
2372 /* FIXME: Handle an address size prefix. */
2373 if (!is_long_mode(vcpu))
2374 gva = (u32)gva;
2375
2376 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2377
2378 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2379 kvm_mmu_invlpg(vcpu, gva);
2380
2381 return kvm_skip_emulated_instruction(vcpu);
2382 }
2383
skinit_interception(struct kvm_vcpu * vcpu)2384 static int skinit_interception(struct kvm_vcpu *vcpu)
2385 {
2386 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2387
2388 kvm_queue_exception(vcpu, UD_VECTOR);
2389 return 1;
2390 }
2391
task_switch_interception(struct kvm_vcpu * vcpu)2392 static int task_switch_interception(struct kvm_vcpu *vcpu)
2393 {
2394 struct vcpu_svm *svm = to_svm(vcpu);
2395 u16 tss_selector;
2396 int reason;
2397 int int_type = svm->vmcb->control.exit_int_info &
2398 SVM_EXITINTINFO_TYPE_MASK;
2399 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2400 uint32_t type =
2401 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2402 uint32_t idt_v =
2403 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2404 bool has_error_code = false;
2405 u32 error_code = 0;
2406
2407 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2408
2409 if (svm->vmcb->control.exit_info_2 &
2410 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2411 reason = TASK_SWITCH_IRET;
2412 else if (svm->vmcb->control.exit_info_2 &
2413 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2414 reason = TASK_SWITCH_JMP;
2415 else if (idt_v)
2416 reason = TASK_SWITCH_GATE;
2417 else
2418 reason = TASK_SWITCH_CALL;
2419
2420 if (reason == TASK_SWITCH_GATE) {
2421 switch (type) {
2422 case SVM_EXITINTINFO_TYPE_NMI:
2423 vcpu->arch.nmi_injected = false;
2424 break;
2425 case SVM_EXITINTINFO_TYPE_EXEPT:
2426 if (svm->vmcb->control.exit_info_2 &
2427 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2428 has_error_code = true;
2429 error_code =
2430 (u32)svm->vmcb->control.exit_info_2;
2431 }
2432 kvm_clear_exception_queue(vcpu);
2433 break;
2434 case SVM_EXITINTINFO_TYPE_INTR:
2435 case SVM_EXITINTINFO_TYPE_SOFT:
2436 kvm_clear_interrupt_queue(vcpu);
2437 break;
2438 default:
2439 break;
2440 }
2441 }
2442
2443 if (reason != TASK_SWITCH_GATE ||
2444 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2445 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2446 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2447 if (!svm_skip_emulated_instruction(vcpu))
2448 return 0;
2449 }
2450
2451 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2452 int_vec = -1;
2453
2454 return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2455 has_error_code, error_code);
2456 }
2457
svm_clr_iret_intercept(struct vcpu_svm * svm)2458 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2459 {
2460 if (!sev_es_guest(svm->vcpu.kvm))
2461 svm_clr_intercept(svm, INTERCEPT_IRET);
2462 }
2463
svm_set_iret_intercept(struct vcpu_svm * svm)2464 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2465 {
2466 if (!sev_es_guest(svm->vcpu.kvm))
2467 svm_set_intercept(svm, INTERCEPT_IRET);
2468 }
2469
iret_interception(struct kvm_vcpu * vcpu)2470 static int iret_interception(struct kvm_vcpu *vcpu)
2471 {
2472 struct vcpu_svm *svm = to_svm(vcpu);
2473
2474 WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2475
2476 ++vcpu->stat.nmi_window_exits;
2477 svm->awaiting_iret_completion = true;
2478
2479 svm_clr_iret_intercept(svm);
2480 svm->nmi_iret_rip = kvm_rip_read(vcpu);
2481
2482 kvm_make_request(KVM_REQ_EVENT, vcpu);
2483 return 1;
2484 }
2485
invlpg_interception(struct kvm_vcpu * vcpu)2486 static int invlpg_interception(struct kvm_vcpu *vcpu)
2487 {
2488 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2489 return kvm_emulate_instruction(vcpu, 0);
2490
2491 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2492 return kvm_skip_emulated_instruction(vcpu);
2493 }
2494
emulate_on_interception(struct kvm_vcpu * vcpu)2495 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2496 {
2497 return kvm_emulate_instruction(vcpu, 0);
2498 }
2499
rsm_interception(struct kvm_vcpu * vcpu)2500 static int rsm_interception(struct kvm_vcpu *vcpu)
2501 {
2502 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2503 }
2504
check_selective_cr0_intercepted(struct kvm_vcpu * vcpu,unsigned long val)2505 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2506 unsigned long val)
2507 {
2508 struct vcpu_svm *svm = to_svm(vcpu);
2509 unsigned long cr0 = vcpu->arch.cr0;
2510 bool ret = false;
2511
2512 if (!is_guest_mode(vcpu) ||
2513 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2514 return false;
2515
2516 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2517 val &= ~SVM_CR0_SELECTIVE_MASK;
2518
2519 if (cr0 ^ val) {
2520 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2521 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2522 }
2523
2524 return ret;
2525 }
2526
2527 #define CR_VALID (1ULL << 63)
2528
cr_interception(struct kvm_vcpu * vcpu)2529 static int cr_interception(struct kvm_vcpu *vcpu)
2530 {
2531 struct vcpu_svm *svm = to_svm(vcpu);
2532 int reg, cr;
2533 unsigned long val;
2534 int err;
2535
2536 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2537 return emulate_on_interception(vcpu);
2538
2539 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2540 return emulate_on_interception(vcpu);
2541
2542 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2543 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2544 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2545 else
2546 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2547
2548 err = 0;
2549 if (cr >= 16) { /* mov to cr */
2550 cr -= 16;
2551 val = kvm_register_read(vcpu, reg);
2552 trace_kvm_cr_write(cr, val);
2553 switch (cr) {
2554 case 0:
2555 if (!check_selective_cr0_intercepted(vcpu, val))
2556 err = kvm_set_cr0(vcpu, val);
2557 else
2558 return 1;
2559
2560 break;
2561 case 3:
2562 err = kvm_set_cr3(vcpu, val);
2563 break;
2564 case 4:
2565 err = kvm_set_cr4(vcpu, val);
2566 break;
2567 case 8:
2568 err = kvm_set_cr8(vcpu, val);
2569 break;
2570 default:
2571 WARN(1, "unhandled write to CR%d", cr);
2572 kvm_queue_exception(vcpu, UD_VECTOR);
2573 return 1;
2574 }
2575 } else { /* mov from cr */
2576 switch (cr) {
2577 case 0:
2578 val = kvm_read_cr0(vcpu);
2579 break;
2580 case 2:
2581 val = vcpu->arch.cr2;
2582 break;
2583 case 3:
2584 val = kvm_read_cr3(vcpu);
2585 break;
2586 case 4:
2587 val = kvm_read_cr4(vcpu);
2588 break;
2589 case 8:
2590 val = kvm_get_cr8(vcpu);
2591 break;
2592 default:
2593 WARN(1, "unhandled read from CR%d", cr);
2594 kvm_queue_exception(vcpu, UD_VECTOR);
2595 return 1;
2596 }
2597 kvm_register_write(vcpu, reg, val);
2598 trace_kvm_cr_read(cr, val);
2599 }
2600 return kvm_complete_insn_gp(vcpu, err);
2601 }
2602
cr_trap(struct kvm_vcpu * vcpu)2603 static int cr_trap(struct kvm_vcpu *vcpu)
2604 {
2605 struct vcpu_svm *svm = to_svm(vcpu);
2606 unsigned long old_value, new_value;
2607 unsigned int cr;
2608 int ret = 0;
2609
2610 new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2611
2612 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2613 switch (cr) {
2614 case 0:
2615 old_value = kvm_read_cr0(vcpu);
2616 svm_set_cr0(vcpu, new_value);
2617
2618 kvm_post_set_cr0(vcpu, old_value, new_value);
2619 break;
2620 case 4:
2621 old_value = kvm_read_cr4(vcpu);
2622 svm_set_cr4(vcpu, new_value);
2623
2624 kvm_post_set_cr4(vcpu, old_value, new_value);
2625 break;
2626 case 8:
2627 ret = kvm_set_cr8(vcpu, new_value);
2628 break;
2629 default:
2630 WARN(1, "unhandled CR%d write trap", cr);
2631 kvm_queue_exception(vcpu, UD_VECTOR);
2632 return 1;
2633 }
2634
2635 return kvm_complete_insn_gp(vcpu, ret);
2636 }
2637
dr_interception(struct kvm_vcpu * vcpu)2638 static int dr_interception(struct kvm_vcpu *vcpu)
2639 {
2640 struct vcpu_svm *svm = to_svm(vcpu);
2641 int reg, dr;
2642 int err = 0;
2643
2644 /*
2645 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2646 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2647 */
2648 if (sev_es_guest(vcpu->kvm))
2649 return 1;
2650
2651 if (vcpu->guest_debug == 0) {
2652 /*
2653 * No more DR vmexits; force a reload of the debug registers
2654 * and reenter on this instruction. The next vmexit will
2655 * retrieve the full state of the debug registers.
2656 */
2657 clr_dr_intercepts(svm);
2658 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2659 return 1;
2660 }
2661
2662 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2663 return emulate_on_interception(vcpu);
2664
2665 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2666 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2667 if (dr >= 16) { /* mov to DRn */
2668 dr -= 16;
2669 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
2670 } else {
2671 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
2672 }
2673
2674 return kvm_complete_insn_gp(vcpu, err);
2675 }
2676
cr8_write_interception(struct kvm_vcpu * vcpu)2677 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2678 {
2679 int r;
2680
2681 u8 cr8_prev = kvm_get_cr8(vcpu);
2682 /* instruction emulation calls kvm_set_cr8() */
2683 r = cr_interception(vcpu);
2684 if (lapic_in_kernel(vcpu))
2685 return r;
2686 if (cr8_prev <= kvm_get_cr8(vcpu))
2687 return r;
2688 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2689 return 0;
2690 }
2691
efer_trap(struct kvm_vcpu * vcpu)2692 static int efer_trap(struct kvm_vcpu *vcpu)
2693 {
2694 struct msr_data msr_info;
2695 int ret;
2696
2697 /*
2698 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2699 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2700 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2701 * the guest doesn't have X86_FEATURE_SVM.
2702 */
2703 msr_info.host_initiated = false;
2704 msr_info.index = MSR_EFER;
2705 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2706 ret = kvm_set_msr_common(vcpu, &msr_info);
2707
2708 return kvm_complete_insn_gp(vcpu, ret);
2709 }
2710
svm_get_feature_msr(u32 msr,u64 * data)2711 static int svm_get_feature_msr(u32 msr, u64 *data)
2712 {
2713 *data = 0;
2714
2715 switch (msr) {
2716 case MSR_AMD64_DE_CFG:
2717 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2718 *data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2719 break;
2720 default:
2721 return KVM_MSR_RET_UNSUPPORTED;
2722 }
2723
2724 return 0;
2725 }
2726
sev_es_prevent_msr_access(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2727 static bool sev_es_prevent_msr_access(struct kvm_vcpu *vcpu,
2728 struct msr_data *msr_info)
2729 {
2730 return sev_es_guest(vcpu->kvm) &&
2731 vcpu->arch.guest_state_protected &&
2732 !msr_write_intercepted(vcpu, msr_info->index);
2733 }
2734
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2735 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2736 {
2737 struct vcpu_svm *svm = to_svm(vcpu);
2738
2739 if (sev_es_prevent_msr_access(vcpu, msr_info)) {
2740 msr_info->data = 0;
2741 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2742 }
2743
2744 switch (msr_info->index) {
2745 case MSR_AMD64_TSC_RATIO:
2746 if (!msr_info->host_initiated &&
2747 !guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR))
2748 return 1;
2749 msr_info->data = svm->tsc_ratio_msr;
2750 break;
2751 case MSR_STAR:
2752 msr_info->data = svm->vmcb01.ptr->save.star;
2753 break;
2754 #ifdef CONFIG_X86_64
2755 case MSR_LSTAR:
2756 msr_info->data = svm->vmcb01.ptr->save.lstar;
2757 break;
2758 case MSR_CSTAR:
2759 msr_info->data = svm->vmcb01.ptr->save.cstar;
2760 break;
2761 case MSR_GS_BASE:
2762 msr_info->data = svm->vmcb01.ptr->save.gs.base;
2763 break;
2764 case MSR_FS_BASE:
2765 msr_info->data = svm->vmcb01.ptr->save.fs.base;
2766 break;
2767 case MSR_KERNEL_GS_BASE:
2768 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2769 break;
2770 case MSR_SYSCALL_MASK:
2771 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2772 break;
2773 #endif
2774 case MSR_IA32_SYSENTER_CS:
2775 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2776 break;
2777 case MSR_IA32_SYSENTER_EIP:
2778 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2779 if (guest_cpuid_is_intel_compatible(vcpu))
2780 msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2781 break;
2782 case MSR_IA32_SYSENTER_ESP:
2783 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2784 if (guest_cpuid_is_intel_compatible(vcpu))
2785 msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2786 break;
2787 case MSR_TSC_AUX:
2788 msr_info->data = svm->tsc_aux;
2789 break;
2790 case MSR_IA32_DEBUGCTLMSR:
2791 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
2792 break;
2793 case MSR_IA32_LASTBRANCHFROMIP:
2794 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
2795 break;
2796 case MSR_IA32_LASTBRANCHTOIP:
2797 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
2798 break;
2799 case MSR_IA32_LASTINTFROMIP:
2800 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
2801 break;
2802 case MSR_IA32_LASTINTTOIP:
2803 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
2804 break;
2805 case MSR_VM_HSAVE_PA:
2806 msr_info->data = svm->nested.hsave_msr;
2807 break;
2808 case MSR_VM_CR:
2809 msr_info->data = svm->nested.vm_cr_msr;
2810 break;
2811 case MSR_IA32_SPEC_CTRL:
2812 if (!msr_info->host_initiated &&
2813 !guest_has_spec_ctrl_msr(vcpu))
2814 return 1;
2815
2816 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2817 msr_info->data = svm->vmcb->save.spec_ctrl;
2818 else
2819 msr_info->data = svm->spec_ctrl;
2820 break;
2821 case MSR_AMD64_VIRT_SPEC_CTRL:
2822 if (!msr_info->host_initiated &&
2823 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2824 return 1;
2825
2826 msr_info->data = svm->virt_spec_ctrl;
2827 break;
2828 case MSR_F15H_IC_CFG: {
2829
2830 int family, model;
2831
2832 family = guest_cpuid_family(vcpu);
2833 model = guest_cpuid_model(vcpu);
2834
2835 if (family < 0 || model < 0)
2836 return kvm_get_msr_common(vcpu, msr_info);
2837
2838 msr_info->data = 0;
2839
2840 if (family == 0x15 &&
2841 (model >= 0x2 && model < 0x20))
2842 msr_info->data = 0x1E;
2843 }
2844 break;
2845 case MSR_AMD64_DE_CFG:
2846 msr_info->data = svm->msr_decfg;
2847 break;
2848 default:
2849 return kvm_get_msr_common(vcpu, msr_info);
2850 }
2851 return 0;
2852 }
2853
svm_complete_emulated_msr(struct kvm_vcpu * vcpu,int err)2854 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2855 {
2856 struct vcpu_svm *svm = to_svm(vcpu);
2857 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2858 return kvm_complete_insn_gp(vcpu, err);
2859
2860 svm_vmgexit_inject_exception(svm, X86_TRAP_GP);
2861 return 1;
2862 }
2863
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)2864 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2865 {
2866 struct vcpu_svm *svm = to_svm(vcpu);
2867 int svm_dis, chg_mask;
2868
2869 if (data & ~SVM_VM_CR_VALID_MASK)
2870 return 1;
2871
2872 chg_mask = SVM_VM_CR_VALID_MASK;
2873
2874 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2875 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2876
2877 svm->nested.vm_cr_msr &= ~chg_mask;
2878 svm->nested.vm_cr_msr |= (data & chg_mask);
2879
2880 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2881
2882 /* check for svm_disable while efer.svme is set */
2883 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2884 return 1;
2885
2886 return 0;
2887 }
2888
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2889 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2890 {
2891 struct vcpu_svm *svm = to_svm(vcpu);
2892 int ret = 0;
2893
2894 u32 ecx = msr->index;
2895 u64 data = msr->data;
2896
2897 if (sev_es_prevent_msr_access(vcpu, msr))
2898 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2899
2900 switch (ecx) {
2901 case MSR_AMD64_TSC_RATIO:
2902
2903 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) {
2904
2905 if (!msr->host_initiated)
2906 return 1;
2907 /*
2908 * In case TSC scaling is not enabled, always
2909 * leave this MSR at the default value.
2910 *
2911 * Due to bug in qemu 6.2.0, it would try to set
2912 * this msr to 0 if tsc scaling is not enabled.
2913 * Ignore this value as well.
2914 */
2915 if (data != 0 && data != svm->tsc_ratio_msr)
2916 return 1;
2917 break;
2918 }
2919
2920 if (data & SVM_TSC_RATIO_RSVD)
2921 return 1;
2922
2923 svm->tsc_ratio_msr = data;
2924
2925 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) &&
2926 is_guest_mode(vcpu))
2927 nested_svm_update_tsc_ratio_msr(vcpu);
2928
2929 break;
2930 case MSR_IA32_CR_PAT:
2931 ret = kvm_set_msr_common(vcpu, msr);
2932 if (ret)
2933 break;
2934
2935 svm->vmcb01.ptr->save.g_pat = data;
2936 if (is_guest_mode(vcpu))
2937 nested_vmcb02_compute_g_pat(svm);
2938 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2939 break;
2940 case MSR_IA32_SPEC_CTRL:
2941 if (!msr->host_initiated &&
2942 !guest_has_spec_ctrl_msr(vcpu))
2943 return 1;
2944
2945 if (kvm_spec_ctrl_test_value(data))
2946 return 1;
2947
2948 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2949 svm->vmcb->save.spec_ctrl = data;
2950 else
2951 svm->spec_ctrl = data;
2952 if (!data)
2953 break;
2954
2955 /*
2956 * For non-nested:
2957 * When it's written (to non-zero) for the first time, pass
2958 * it through.
2959 *
2960 * For nested:
2961 * The handling of the MSR bitmap for L2 guests is done in
2962 * nested_svm_merge_msrpm().
2963 * We update the L1 MSR bit as well since it will end up
2964 * touching the MSR anyway now.
2965 */
2966 svm_disable_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
2967 break;
2968 case MSR_AMD64_VIRT_SPEC_CTRL:
2969 if (!msr->host_initiated &&
2970 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2971 return 1;
2972
2973 if (data & ~SPEC_CTRL_SSBD)
2974 return 1;
2975
2976 svm->virt_spec_ctrl = data;
2977 break;
2978 case MSR_STAR:
2979 svm->vmcb01.ptr->save.star = data;
2980 break;
2981 #ifdef CONFIG_X86_64
2982 case MSR_LSTAR:
2983 svm->vmcb01.ptr->save.lstar = data;
2984 break;
2985 case MSR_CSTAR:
2986 svm->vmcb01.ptr->save.cstar = data;
2987 break;
2988 case MSR_GS_BASE:
2989 svm->vmcb01.ptr->save.gs.base = data;
2990 break;
2991 case MSR_FS_BASE:
2992 svm->vmcb01.ptr->save.fs.base = data;
2993 break;
2994 case MSR_KERNEL_GS_BASE:
2995 svm->vmcb01.ptr->save.kernel_gs_base = data;
2996 break;
2997 case MSR_SYSCALL_MASK:
2998 svm->vmcb01.ptr->save.sfmask = data;
2999 break;
3000 #endif
3001 case MSR_IA32_SYSENTER_CS:
3002 svm->vmcb01.ptr->save.sysenter_cs = data;
3003 break;
3004 case MSR_IA32_SYSENTER_EIP:
3005 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
3006 /*
3007 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3008 * when we spoof an Intel vendor ID (for cross vendor migration).
3009 * In this case we use this intercept to track the high
3010 * 32 bit part of these msrs to support Intel's
3011 * implementation of SYSENTER/SYSEXIT.
3012 */
3013 svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
3014 break;
3015 case MSR_IA32_SYSENTER_ESP:
3016 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3017 svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
3018 break;
3019 case MSR_TSC_AUX:
3020 /*
3021 * TSC_AUX is always virtualized for SEV-ES guests when the
3022 * feature is available. The user return MSR support is not
3023 * required in this case because TSC_AUX is restored on #VMEXIT
3024 * from the host save area (which has been initialized in
3025 * svm_enable_virtualization_cpu()).
3026 */
3027 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
3028 break;
3029
3030 /*
3031 * TSC_AUX is usually changed only during boot and never read
3032 * directly. Intercept TSC_AUX and switch it via user return.
3033 */
3034 preempt_disable();
3035 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3036 preempt_enable();
3037 if (ret)
3038 break;
3039
3040 svm->tsc_aux = data;
3041 break;
3042 case MSR_IA32_DEBUGCTLMSR:
3043 if (!lbrv) {
3044 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3045 break;
3046 }
3047
3048 /*
3049 * Suppress BTF as KVM doesn't virtualize BTF, but there's no
3050 * way to communicate lack of support to the guest.
3051 */
3052 if (data & DEBUGCTLMSR_BTF) {
3053 kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
3054 data &= ~DEBUGCTLMSR_BTF;
3055 }
3056
3057 if (data & DEBUGCTL_RESERVED_BITS)
3058 return 1;
3059
3060 svm_get_lbr_vmcb(svm)->save.dbgctl = data;
3061 svm_update_lbrv(vcpu);
3062 break;
3063 case MSR_VM_HSAVE_PA:
3064 /*
3065 * Old kernels did not validate the value written to
3066 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid
3067 * value to allow live migrating buggy or malicious guests
3068 * originating from those kernels.
3069 */
3070 if (!msr->host_initiated && !page_address_valid(vcpu, data))
3071 return 1;
3072
3073 svm->nested.hsave_msr = data & PAGE_MASK;
3074 break;
3075 case MSR_VM_CR:
3076 return svm_set_vm_cr(vcpu, data);
3077 case MSR_VM_IGNNE:
3078 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3079 break;
3080 case MSR_AMD64_DE_CFG: {
3081 u64 supported_de_cfg;
3082
3083 if (svm_get_feature_msr(ecx, &supported_de_cfg))
3084 return 1;
3085
3086 if (data & ~supported_de_cfg)
3087 return 1;
3088
3089 svm->msr_decfg = data;
3090 break;
3091 }
3092 default:
3093 return kvm_set_msr_common(vcpu, msr);
3094 }
3095 return ret;
3096 }
3097
msr_interception(struct kvm_vcpu * vcpu)3098 static int msr_interception(struct kvm_vcpu *vcpu)
3099 {
3100 if (to_svm(vcpu)->vmcb->control.exit_info_1)
3101 return kvm_emulate_wrmsr(vcpu);
3102 else
3103 return kvm_emulate_rdmsr(vcpu);
3104 }
3105
interrupt_window_interception(struct kvm_vcpu * vcpu)3106 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3107 {
3108 kvm_make_request(KVM_REQ_EVENT, vcpu);
3109 svm_clear_vintr(to_svm(vcpu));
3110
3111 /*
3112 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3113 * In this case AVIC was temporarily disabled for
3114 * requesting the IRQ window and we have to re-enable it.
3115 *
3116 * If running nested, still remove the VM wide AVIC inhibit to
3117 * support case in which the interrupt window was requested when the
3118 * vCPU was not running nested.
3119
3120 * All vCPUs which run still run nested, will remain to have their
3121 * AVIC still inhibited due to per-cpu AVIC inhibition.
3122 */
3123 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3124
3125 ++vcpu->stat.irq_window_exits;
3126 return 1;
3127 }
3128
pause_interception(struct kvm_vcpu * vcpu)3129 static int pause_interception(struct kvm_vcpu *vcpu)
3130 {
3131 bool in_kernel;
3132 /*
3133 * CPL is not made available for an SEV-ES guest, therefore
3134 * vcpu->arch.preempted_in_kernel can never be true. Just
3135 * set in_kernel to false as well.
3136 */
3137 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3138
3139 grow_ple_window(vcpu);
3140
3141 kvm_vcpu_on_spin(vcpu, in_kernel);
3142 return kvm_skip_emulated_instruction(vcpu);
3143 }
3144
invpcid_interception(struct kvm_vcpu * vcpu)3145 static int invpcid_interception(struct kvm_vcpu *vcpu)
3146 {
3147 struct vcpu_svm *svm = to_svm(vcpu);
3148 unsigned long type;
3149 gva_t gva;
3150
3151 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
3152 kvm_queue_exception(vcpu, UD_VECTOR);
3153 return 1;
3154 }
3155
3156 /*
3157 * For an INVPCID intercept:
3158 * EXITINFO1 provides the linear address of the memory operand.
3159 * EXITINFO2 provides the contents of the register operand.
3160 */
3161 type = svm->vmcb->control.exit_info_2;
3162 gva = svm->vmcb->control.exit_info_1;
3163
3164 /*
3165 * FIXME: Perform segment checks for 32-bit mode, and inject #SS if the
3166 * stack segment is used. The intercept takes priority over all
3167 * #GP checks except CPL>0, but somehow still generates a linear
3168 * address? The APM is sorely lacking.
3169 */
3170 if (is_noncanonical_address(gva, vcpu, 0)) {
3171 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3172 return 1;
3173 }
3174
3175 return kvm_handle_invpcid(vcpu, type, gva);
3176 }
3177
complete_userspace_buslock(struct kvm_vcpu * vcpu)3178 static inline int complete_userspace_buslock(struct kvm_vcpu *vcpu)
3179 {
3180 struct vcpu_svm *svm = to_svm(vcpu);
3181
3182 /*
3183 * If userspace has NOT changed RIP, then KVM's ABI is to let the guest
3184 * execute the bus-locking instruction. Set the bus lock counter to '1'
3185 * to effectively step past the bus lock.
3186 */
3187 if (kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))
3188 svm->vmcb->control.bus_lock_counter = 1;
3189
3190 return 1;
3191 }
3192
bus_lock_exit(struct kvm_vcpu * vcpu)3193 static int bus_lock_exit(struct kvm_vcpu *vcpu)
3194 {
3195 struct vcpu_svm *svm = to_svm(vcpu);
3196
3197 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
3198 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
3199
3200 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
3201 vcpu->arch.complete_userspace_io = complete_userspace_buslock;
3202
3203 if (is_guest_mode(vcpu))
3204 svm->nested.ctl.bus_lock_rip = vcpu->arch.cui_linear_rip;
3205
3206 return 0;
3207 }
3208
3209 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3210 [SVM_EXIT_READ_CR0] = cr_interception,
3211 [SVM_EXIT_READ_CR3] = cr_interception,
3212 [SVM_EXIT_READ_CR4] = cr_interception,
3213 [SVM_EXIT_READ_CR8] = cr_interception,
3214 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3215 [SVM_EXIT_WRITE_CR0] = cr_interception,
3216 [SVM_EXIT_WRITE_CR3] = cr_interception,
3217 [SVM_EXIT_WRITE_CR4] = cr_interception,
3218 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3219 [SVM_EXIT_READ_DR0] = dr_interception,
3220 [SVM_EXIT_READ_DR1] = dr_interception,
3221 [SVM_EXIT_READ_DR2] = dr_interception,
3222 [SVM_EXIT_READ_DR3] = dr_interception,
3223 [SVM_EXIT_READ_DR4] = dr_interception,
3224 [SVM_EXIT_READ_DR5] = dr_interception,
3225 [SVM_EXIT_READ_DR6] = dr_interception,
3226 [SVM_EXIT_READ_DR7] = dr_interception,
3227 [SVM_EXIT_WRITE_DR0] = dr_interception,
3228 [SVM_EXIT_WRITE_DR1] = dr_interception,
3229 [SVM_EXIT_WRITE_DR2] = dr_interception,
3230 [SVM_EXIT_WRITE_DR3] = dr_interception,
3231 [SVM_EXIT_WRITE_DR4] = dr_interception,
3232 [SVM_EXIT_WRITE_DR5] = dr_interception,
3233 [SVM_EXIT_WRITE_DR6] = dr_interception,
3234 [SVM_EXIT_WRITE_DR7] = dr_interception,
3235 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3236 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3237 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3238 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3239 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3240 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
3241 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
3242 [SVM_EXIT_INTR] = intr_interception,
3243 [SVM_EXIT_NMI] = nmi_interception,
3244 [SVM_EXIT_SMI] = smi_interception,
3245 [SVM_EXIT_VINTR] = interrupt_window_interception,
3246 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc,
3247 [SVM_EXIT_CPUID] = kvm_emulate_cpuid,
3248 [SVM_EXIT_IRET] = iret_interception,
3249 [SVM_EXIT_INVD] = kvm_emulate_invd,
3250 [SVM_EXIT_PAUSE] = pause_interception,
3251 [SVM_EXIT_HLT] = kvm_emulate_halt,
3252 [SVM_EXIT_INVLPG] = invlpg_interception,
3253 [SVM_EXIT_INVLPGA] = invlpga_interception,
3254 [SVM_EXIT_IOIO] = io_interception,
3255 [SVM_EXIT_MSR] = msr_interception,
3256 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3257 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3258 [SVM_EXIT_VMRUN] = vmrun_interception,
3259 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall,
3260 [SVM_EXIT_VMLOAD] = vmload_interception,
3261 [SVM_EXIT_VMSAVE] = vmsave_interception,
3262 [SVM_EXIT_STGI] = stgi_interception,
3263 [SVM_EXIT_CLGI] = clgi_interception,
3264 [SVM_EXIT_SKINIT] = skinit_interception,
3265 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op,
3266 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd,
3267 [SVM_EXIT_MONITOR] = kvm_emulate_monitor,
3268 [SVM_EXIT_MWAIT] = kvm_emulate_mwait,
3269 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv,
3270 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op,
3271 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap,
3272 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap,
3273 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap,
3274 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap,
3275 [SVM_EXIT_INVPCID] = invpcid_interception,
3276 [SVM_EXIT_IDLE_HLT] = kvm_emulate_halt,
3277 [SVM_EXIT_NPF] = npf_interception,
3278 [SVM_EXIT_BUS_LOCK] = bus_lock_exit,
3279 [SVM_EXIT_RSM] = rsm_interception,
3280 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
3281 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
3282 #ifdef CONFIG_KVM_AMD_SEV
3283 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit,
3284 #endif
3285 };
3286
dump_vmcb(struct kvm_vcpu * vcpu)3287 static void dump_vmcb(struct kvm_vcpu *vcpu)
3288 {
3289 struct vcpu_svm *svm = to_svm(vcpu);
3290 struct vmcb_control_area *control = &svm->vmcb->control;
3291 struct vmcb_save_area *save = &svm->vmcb->save;
3292 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3293 char *vm_type;
3294
3295 if (!dump_invalid_vmcb) {
3296 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3297 return;
3298 }
3299
3300 guard(mutex)(&vmcb_dump_mutex);
3301
3302 vm_type = sev_snp_guest(vcpu->kvm) ? "SEV-SNP" :
3303 sev_es_guest(vcpu->kvm) ? "SEV-ES" :
3304 sev_guest(vcpu->kvm) ? "SEV" : "SVM";
3305
3306 pr_err("%s vCPU%u VMCB %p, last attempted VMRUN on CPU %d\n",
3307 vm_type, vcpu->vcpu_id, svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3308 pr_err("VMCB Control Area:\n");
3309 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3310 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3311 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3312 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3313 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3314 pr_err("%-20s%08x %08x\n", "intercepts:",
3315 control->intercepts[INTERCEPT_WORD3],
3316 control->intercepts[INTERCEPT_WORD4]);
3317 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3318 pr_err("%-20s%d\n", "pause filter threshold:",
3319 control->pause_filter_thresh);
3320 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3321 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3322 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3323 pr_err("%-20s%d\n", "asid:", control->asid);
3324 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3325 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3326 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3327 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3328 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3329 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3330 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3331 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3332 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3333 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3334 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3335 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3336 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3337 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3338 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3339 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3340 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3341 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3342 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3343 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3344 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3345 pr_err("%-20s%016llx\n", "allowed_sev_features:", control->allowed_sev_features);
3346 pr_err("%-20s%016llx\n", "guest_sev_features:", control->guest_sev_features);
3347
3348 if (sev_es_guest(vcpu->kvm)) {
3349 save = sev_decrypt_vmsa(vcpu);
3350 if (!save)
3351 goto no_vmsa;
3352
3353 save01 = save;
3354 }
3355
3356 pr_err("VMCB State Save Area:\n");
3357 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3358 "es:",
3359 save->es.selector, save->es.attrib,
3360 save->es.limit, save->es.base);
3361 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3362 "cs:",
3363 save->cs.selector, save->cs.attrib,
3364 save->cs.limit, save->cs.base);
3365 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3366 "ss:",
3367 save->ss.selector, save->ss.attrib,
3368 save->ss.limit, save->ss.base);
3369 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3370 "ds:",
3371 save->ds.selector, save->ds.attrib,
3372 save->ds.limit, save->ds.base);
3373 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3374 "fs:",
3375 save01->fs.selector, save01->fs.attrib,
3376 save01->fs.limit, save01->fs.base);
3377 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3378 "gs:",
3379 save01->gs.selector, save01->gs.attrib,
3380 save01->gs.limit, save01->gs.base);
3381 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3382 "gdtr:",
3383 save->gdtr.selector, save->gdtr.attrib,
3384 save->gdtr.limit, save->gdtr.base);
3385 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3386 "ldtr:",
3387 save01->ldtr.selector, save01->ldtr.attrib,
3388 save01->ldtr.limit, save01->ldtr.base);
3389 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3390 "idtr:",
3391 save->idtr.selector, save->idtr.attrib,
3392 save->idtr.limit, save->idtr.base);
3393 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3394 "tr:",
3395 save01->tr.selector, save01->tr.attrib,
3396 save01->tr.limit, save01->tr.base);
3397 pr_err("vmpl: %d cpl: %d efer: %016llx\n",
3398 save->vmpl, save->cpl, save->efer);
3399 pr_err("%-15s %016llx %-13s %016llx\n",
3400 "cr0:", save->cr0, "cr2:", save->cr2);
3401 pr_err("%-15s %016llx %-13s %016llx\n",
3402 "cr3:", save->cr3, "cr4:", save->cr4);
3403 pr_err("%-15s %016llx %-13s %016llx\n",
3404 "dr6:", save->dr6, "dr7:", save->dr7);
3405 pr_err("%-15s %016llx %-13s %016llx\n",
3406 "rip:", save->rip, "rflags:", save->rflags);
3407 pr_err("%-15s %016llx %-13s %016llx\n",
3408 "rsp:", save->rsp, "rax:", save->rax);
3409 pr_err("%-15s %016llx %-13s %016llx\n",
3410 "star:", save01->star, "lstar:", save01->lstar);
3411 pr_err("%-15s %016llx %-13s %016llx\n",
3412 "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3413 pr_err("%-15s %016llx %-13s %016llx\n",
3414 "kernel_gs_base:", save01->kernel_gs_base,
3415 "sysenter_cs:", save01->sysenter_cs);
3416 pr_err("%-15s %016llx %-13s %016llx\n",
3417 "sysenter_esp:", save01->sysenter_esp,
3418 "sysenter_eip:", save01->sysenter_eip);
3419 pr_err("%-15s %016llx %-13s %016llx\n",
3420 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3421 pr_err("%-15s %016llx %-13s %016llx\n",
3422 "br_from:", save->br_from, "br_to:", save->br_to);
3423 pr_err("%-15s %016llx %-13s %016llx\n",
3424 "excp_from:", save->last_excp_from,
3425 "excp_to:", save->last_excp_to);
3426
3427 if (sev_es_guest(vcpu->kvm)) {
3428 struct sev_es_save_area *vmsa = (struct sev_es_save_area *)save;
3429
3430 pr_err("%-15s %016llx\n",
3431 "sev_features", vmsa->sev_features);
3432
3433 pr_err("%-15s %016llx %-13s %016llx\n",
3434 "rax:", vmsa->rax, "rbx:", vmsa->rbx);
3435 pr_err("%-15s %016llx %-13s %016llx\n",
3436 "rcx:", vmsa->rcx, "rdx:", vmsa->rdx);
3437 pr_err("%-15s %016llx %-13s %016llx\n",
3438 "rsi:", vmsa->rsi, "rdi:", vmsa->rdi);
3439 pr_err("%-15s %016llx %-13s %016llx\n",
3440 "rbp:", vmsa->rbp, "rsp:", vmsa->rsp);
3441 pr_err("%-15s %016llx %-13s %016llx\n",
3442 "r8:", vmsa->r8, "r9:", vmsa->r9);
3443 pr_err("%-15s %016llx %-13s %016llx\n",
3444 "r10:", vmsa->r10, "r11:", vmsa->r11);
3445 pr_err("%-15s %016llx %-13s %016llx\n",
3446 "r12:", vmsa->r12, "r13:", vmsa->r13);
3447 pr_err("%-15s %016llx %-13s %016llx\n",
3448 "r14:", vmsa->r14, "r15:", vmsa->r15);
3449 pr_err("%-15s %016llx %-13s %016llx\n",
3450 "xcr0:", vmsa->xcr0, "xss:", vmsa->xss);
3451 } else {
3452 pr_err("%-15s %016llx %-13s %016lx\n",
3453 "rax:", save->rax, "rbx:",
3454 vcpu->arch.regs[VCPU_REGS_RBX]);
3455 pr_err("%-15s %016lx %-13s %016lx\n",
3456 "rcx:", vcpu->arch.regs[VCPU_REGS_RCX],
3457 "rdx:", vcpu->arch.regs[VCPU_REGS_RDX]);
3458 pr_err("%-15s %016lx %-13s %016lx\n",
3459 "rsi:", vcpu->arch.regs[VCPU_REGS_RSI],
3460 "rdi:", vcpu->arch.regs[VCPU_REGS_RDI]);
3461 pr_err("%-15s %016lx %-13s %016llx\n",
3462 "rbp:", vcpu->arch.regs[VCPU_REGS_RBP],
3463 "rsp:", save->rsp);
3464 #ifdef CONFIG_X86_64
3465 pr_err("%-15s %016lx %-13s %016lx\n",
3466 "r8:", vcpu->arch.regs[VCPU_REGS_R8],
3467 "r9:", vcpu->arch.regs[VCPU_REGS_R9]);
3468 pr_err("%-15s %016lx %-13s %016lx\n",
3469 "r10:", vcpu->arch.regs[VCPU_REGS_R10],
3470 "r11:", vcpu->arch.regs[VCPU_REGS_R11]);
3471 pr_err("%-15s %016lx %-13s %016lx\n",
3472 "r12:", vcpu->arch.regs[VCPU_REGS_R12],
3473 "r13:", vcpu->arch.regs[VCPU_REGS_R13]);
3474 pr_err("%-15s %016lx %-13s %016lx\n",
3475 "r14:", vcpu->arch.regs[VCPU_REGS_R14],
3476 "r15:", vcpu->arch.regs[VCPU_REGS_R15]);
3477 #endif
3478 }
3479
3480 no_vmsa:
3481 if (sev_es_guest(vcpu->kvm))
3482 sev_free_decrypted_vmsa(vcpu, save);
3483 }
3484
svm_check_exit_valid(u64 exit_code)3485 static bool svm_check_exit_valid(u64 exit_code)
3486 {
3487 return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3488 svm_exit_handlers[exit_code]);
3489 }
3490
svm_handle_invalid_exit(struct kvm_vcpu * vcpu,u64 exit_code)3491 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3492 {
3493 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3494 dump_vmcb(vcpu);
3495 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3496 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3497 vcpu->run->internal.ndata = 2;
3498 vcpu->run->internal.data[0] = exit_code;
3499 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3500 return 0;
3501 }
3502
svm_invoke_exit_handler(struct kvm_vcpu * vcpu,u64 exit_code)3503 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3504 {
3505 if (!svm_check_exit_valid(exit_code))
3506 return svm_handle_invalid_exit(vcpu, exit_code);
3507
3508 #ifdef CONFIG_MITIGATION_RETPOLINE
3509 if (exit_code == SVM_EXIT_MSR)
3510 return msr_interception(vcpu);
3511 else if (exit_code == SVM_EXIT_VINTR)
3512 return interrupt_window_interception(vcpu);
3513 else if (exit_code == SVM_EXIT_INTR)
3514 return intr_interception(vcpu);
3515 else if (exit_code == SVM_EXIT_HLT || exit_code == SVM_EXIT_IDLE_HLT)
3516 return kvm_emulate_halt(vcpu);
3517 else if (exit_code == SVM_EXIT_NPF)
3518 return npf_interception(vcpu);
3519 #ifdef CONFIG_KVM_AMD_SEV
3520 else if (exit_code == SVM_EXIT_VMGEXIT)
3521 return sev_handle_vmgexit(vcpu);
3522 #endif
3523 #endif
3524 return svm_exit_handlers[exit_code](vcpu);
3525 }
3526
svm_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)3527 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3528 u64 *info1, u64 *info2,
3529 u32 *intr_info, u32 *error_code)
3530 {
3531 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3532
3533 *reason = control->exit_code;
3534 *info1 = control->exit_info_1;
3535 *info2 = control->exit_info_2;
3536 *intr_info = control->exit_int_info;
3537 if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3538 (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3539 *error_code = control->exit_int_info_err;
3540 else
3541 *error_code = 0;
3542 }
3543
svm_get_entry_info(struct kvm_vcpu * vcpu,u32 * intr_info,u32 * error_code)3544 static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info,
3545 u32 *error_code)
3546 {
3547 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3548
3549 *intr_info = control->event_inj;
3550
3551 if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3552 (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3553 *error_code = control->event_inj_err;
3554 else
3555 *error_code = 0;
3556
3557 }
3558
svm_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)3559 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3560 {
3561 struct vcpu_svm *svm = to_svm(vcpu);
3562 struct kvm_run *kvm_run = vcpu->run;
3563 u32 exit_code = svm->vmcb->control.exit_code;
3564
3565 /* SEV-ES guests must use the CR write traps to track CR registers. */
3566 if (!sev_es_guest(vcpu->kvm)) {
3567 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3568 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3569 if (npt_enabled)
3570 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3571 }
3572
3573 if (is_guest_mode(vcpu)) {
3574 int vmexit;
3575
3576 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3577
3578 vmexit = nested_svm_exit_special(svm);
3579
3580 if (vmexit == NESTED_EXIT_CONTINUE)
3581 vmexit = nested_svm_exit_handled(svm);
3582
3583 if (vmexit == NESTED_EXIT_DONE)
3584 return 1;
3585 }
3586
3587 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3588 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3589 kvm_run->fail_entry.hardware_entry_failure_reason
3590 = svm->vmcb->control.exit_code;
3591 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3592 dump_vmcb(vcpu);
3593 return 0;
3594 }
3595
3596 if (exit_fastpath != EXIT_FASTPATH_NONE)
3597 return 1;
3598
3599 return svm_invoke_exit_handler(vcpu, exit_code);
3600 }
3601
pre_svm_run(struct kvm_vcpu * vcpu)3602 static int pre_svm_run(struct kvm_vcpu *vcpu)
3603 {
3604 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3605 struct vcpu_svm *svm = to_svm(vcpu);
3606
3607 /*
3608 * If the previous vmrun of the vmcb occurred on a different physical
3609 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's
3610 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3611 */
3612 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3613 svm->current_vmcb->asid_generation = 0;
3614 vmcb_mark_all_dirty(svm->vmcb);
3615 svm->current_vmcb->cpu = vcpu->cpu;
3616 }
3617
3618 if (sev_guest(vcpu->kvm))
3619 return pre_sev_run(svm, vcpu->cpu);
3620
3621 /* FIXME: handle wraparound of asid_generation */
3622 if (svm->current_vmcb->asid_generation != sd->asid_generation)
3623 new_asid(svm, sd);
3624
3625 return 0;
3626 }
3627
svm_inject_nmi(struct kvm_vcpu * vcpu)3628 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3629 {
3630 struct vcpu_svm *svm = to_svm(vcpu);
3631
3632 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3633
3634 if (svm->nmi_l1_to_l2)
3635 return;
3636
3637 /*
3638 * No need to manually track NMI masking when vNMI is enabled, hardware
3639 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
3640 * case where software directly injects an NMI.
3641 */
3642 if (!is_vnmi_enabled(svm)) {
3643 svm->nmi_masked = true;
3644 svm_set_iret_intercept(svm);
3645 }
3646 ++vcpu->stat.nmi_injections;
3647 }
3648
svm_is_vnmi_pending(struct kvm_vcpu * vcpu)3649 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3650 {
3651 struct vcpu_svm *svm = to_svm(vcpu);
3652
3653 if (!is_vnmi_enabled(svm))
3654 return false;
3655
3656 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3657 }
3658
svm_set_vnmi_pending(struct kvm_vcpu * vcpu)3659 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3660 {
3661 struct vcpu_svm *svm = to_svm(vcpu);
3662
3663 if (!is_vnmi_enabled(svm))
3664 return false;
3665
3666 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3667 return false;
3668
3669 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3670 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3671
3672 /*
3673 * Because the pending NMI is serviced by hardware, KVM can't know when
3674 * the NMI is "injected", but for all intents and purposes, passing the
3675 * NMI off to hardware counts as injection.
3676 */
3677 ++vcpu->stat.nmi_injections;
3678
3679 return true;
3680 }
3681
svm_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)3682 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3683 {
3684 struct vcpu_svm *svm = to_svm(vcpu);
3685 u32 type;
3686
3687 if (vcpu->arch.interrupt.soft) {
3688 if (svm_update_soft_interrupt_rip(vcpu))
3689 return;
3690
3691 type = SVM_EVTINJ_TYPE_SOFT;
3692 } else {
3693 type = SVM_EVTINJ_TYPE_INTR;
3694 }
3695
3696 trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3697 vcpu->arch.interrupt.soft, reinjected);
3698 ++vcpu->stat.irq_injections;
3699
3700 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3701 SVM_EVTINJ_VALID | type;
3702 }
3703
svm_complete_interrupt_delivery(struct kvm_vcpu * vcpu,int delivery_mode,int trig_mode,int vector)3704 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3705 int trig_mode, int vector)
3706 {
3707 /*
3708 * apic->apicv_active must be read after vcpu->mode.
3709 * Pairs with smp_store_release in vcpu_enter_guest.
3710 */
3711 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3712
3713 /* Note, this is called iff the local APIC is in-kernel. */
3714 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3715 /* Process the interrupt via kvm_check_and_inject_events(). */
3716 kvm_make_request(KVM_REQ_EVENT, vcpu);
3717 kvm_vcpu_kick(vcpu);
3718 return;
3719 }
3720
3721 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3722 if (in_guest_mode) {
3723 /*
3724 * Signal the doorbell to tell hardware to inject the IRQ. If
3725 * the vCPU exits the guest before the doorbell chimes, hardware
3726 * will automatically process AVIC interrupts at the next VMRUN.
3727 */
3728 avic_ring_doorbell(vcpu);
3729 } else {
3730 /*
3731 * Wake the vCPU if it was blocking. KVM will then detect the
3732 * pending IRQ when checking if the vCPU has a wake event.
3733 */
3734 kvm_vcpu_wake_up(vcpu);
3735 }
3736 }
3737
svm_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)3738 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
3739 int trig_mode, int vector)
3740 {
3741 kvm_lapic_set_irr(vector, apic);
3742
3743 /*
3744 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3745 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3746 * the read of guest_mode. This guarantees that either VMRUN will see
3747 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3748 * will signal the doorbell if the CPU has already entered the guest.
3749 */
3750 smp_mb__after_atomic();
3751 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3752 }
3753
svm_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3754 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3755 {
3756 struct vcpu_svm *svm = to_svm(vcpu);
3757
3758 /*
3759 * SEV-ES guests must always keep the CR intercepts cleared. CR
3760 * tracking is done using the CR write traps.
3761 */
3762 if (sev_es_guest(vcpu->kvm))
3763 return;
3764
3765 if (nested_svm_virtualize_tpr(vcpu))
3766 return;
3767
3768 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3769
3770 if (irr == -1)
3771 return;
3772
3773 if (tpr >= irr)
3774 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3775 }
3776
svm_get_nmi_mask(struct kvm_vcpu * vcpu)3777 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3778 {
3779 struct vcpu_svm *svm = to_svm(vcpu);
3780
3781 if (is_vnmi_enabled(svm))
3782 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3783 else
3784 return svm->nmi_masked;
3785 }
3786
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3787 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3788 {
3789 struct vcpu_svm *svm = to_svm(vcpu);
3790
3791 if (is_vnmi_enabled(svm)) {
3792 if (masked)
3793 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3794 else
3795 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3796
3797 } else {
3798 svm->nmi_masked = masked;
3799 if (masked)
3800 svm_set_iret_intercept(svm);
3801 else
3802 svm_clr_iret_intercept(svm);
3803 }
3804 }
3805
svm_nmi_blocked(struct kvm_vcpu * vcpu)3806 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3807 {
3808 struct vcpu_svm *svm = to_svm(vcpu);
3809 struct vmcb *vmcb = svm->vmcb;
3810
3811 if (!gif_set(svm))
3812 return true;
3813
3814 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3815 return false;
3816
3817 if (svm_get_nmi_mask(vcpu))
3818 return true;
3819
3820 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3821 }
3822
svm_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)3823 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3824 {
3825 struct vcpu_svm *svm = to_svm(vcpu);
3826 if (svm->nested.nested_run_pending)
3827 return -EBUSY;
3828
3829 if (svm_nmi_blocked(vcpu))
3830 return 0;
3831
3832 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
3833 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3834 return -EBUSY;
3835 return 1;
3836 }
3837
svm_interrupt_blocked(struct kvm_vcpu * vcpu)3838 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3839 {
3840 struct vcpu_svm *svm = to_svm(vcpu);
3841 struct vmcb *vmcb = svm->vmcb;
3842
3843 if (!gif_set(svm))
3844 return true;
3845
3846 if (is_guest_mode(vcpu)) {
3847 /* As long as interrupts are being delivered... */
3848 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3849 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3850 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3851 return true;
3852
3853 /* ... vmexits aren't blocked by the interrupt shadow */
3854 if (nested_exit_on_intr(svm))
3855 return false;
3856 } else {
3857 if (!svm_get_if_flag(vcpu))
3858 return true;
3859 }
3860
3861 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3862 }
3863
svm_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)3864 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3865 {
3866 struct vcpu_svm *svm = to_svm(vcpu);
3867
3868 if (svm->nested.nested_run_pending)
3869 return -EBUSY;
3870
3871 if (svm_interrupt_blocked(vcpu))
3872 return 0;
3873
3874 /*
3875 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3876 * e.g. if the IRQ arrived asynchronously after checking nested events.
3877 */
3878 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3879 return -EBUSY;
3880
3881 return 1;
3882 }
3883
svm_enable_irq_window(struct kvm_vcpu * vcpu)3884 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3885 {
3886 struct vcpu_svm *svm = to_svm(vcpu);
3887
3888 /*
3889 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3890 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3891 * get that intercept, this function will be called again though and
3892 * we'll get the vintr intercept. However, if the vGIF feature is
3893 * enabled, the STGI interception will not occur. Enable the irq
3894 * window under the assumption that the hardware will set the GIF.
3895 */
3896 if (vgif || gif_set(svm)) {
3897 /*
3898 * IRQ window is not needed when AVIC is enabled,
3899 * unless we have pending ExtINT since it cannot be injected
3900 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3901 * and fallback to injecting IRQ via V_IRQ.
3902 *
3903 * If running nested, AVIC is already locally inhibited
3904 * on this vCPU, therefore there is no need to request
3905 * the VM wide AVIC inhibition.
3906 */
3907 if (!is_guest_mode(vcpu))
3908 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3909
3910 svm_set_vintr(svm);
3911 }
3912 }
3913
svm_enable_nmi_window(struct kvm_vcpu * vcpu)3914 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3915 {
3916 struct vcpu_svm *svm = to_svm(vcpu);
3917
3918 /*
3919 * If NMIs are outright masked, i.e. the vCPU is already handling an
3920 * NMI, and KVM has not yet intercepted an IRET, then there is nothing
3921 * more to do at this time as KVM has already enabled IRET intercepts.
3922 * If KVM has already intercepted IRET, then single-step over the IRET,
3923 * as NMIs aren't architecturally unmasked until the IRET completes.
3924 *
3925 * If vNMI is enabled, KVM should never request an NMI window if NMIs
3926 * are masked, as KVM allows at most one to-be-injected NMI and one
3927 * pending NMI. If two NMIs arrive simultaneously, KVM will inject one
3928 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are
3929 * unmasked. KVM _will_ request an NMI window in some situations, e.g.
3930 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately
3931 * inject the NMI. In those situations, KVM needs to single-step over
3932 * the STI shadow or intercept STGI.
3933 */
3934 if (svm_get_nmi_mask(vcpu)) {
3935 WARN_ON_ONCE(is_vnmi_enabled(svm));
3936
3937 if (!svm->awaiting_iret_completion)
3938 return; /* IRET will cause a vm exit */
3939 }
3940
3941 /*
3942 * SEV-ES guests are responsible for signaling when a vCPU is ready to
3943 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3944 * KVM can't intercept and single-step IRET to detect when NMIs are
3945 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE.
3946 *
3947 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3948 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3949 * supported NAEs in the GHCB protocol.
3950 */
3951 if (sev_es_guest(vcpu->kvm))
3952 return;
3953
3954 if (!gif_set(svm)) {
3955 if (vgif)
3956 svm_set_intercept(svm, INTERCEPT_STGI);
3957 return; /* STGI will cause a vm exit */
3958 }
3959
3960 /*
3961 * Something prevents NMI from been injected. Single step over possible
3962 * problem (IRET or exception injection or interrupt shadow)
3963 */
3964 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3965 svm->nmi_singlestep = true;
3966 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3967 }
3968
svm_flush_tlb_asid(struct kvm_vcpu * vcpu)3969 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3970 {
3971 struct vcpu_svm *svm = to_svm(vcpu);
3972
3973 /*
3974 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3975 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3976 * entries, and thus is a superset of Hyper-V's fine grained flushing.
3977 */
3978 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3979
3980 /*
3981 * Flush only the current ASID even if the TLB flush was invoked via
3982 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all
3983 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3984 * unconditionally does a TLB flush on both nested VM-Enter and nested
3985 * VM-Exit (via kvm_mmu_reset_context()).
3986 */
3987 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3988 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3989 else
3990 svm->current_vmcb->asid_generation--;
3991 }
3992
svm_flush_tlb_current(struct kvm_vcpu * vcpu)3993 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3994 {
3995 hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3996
3997 /*
3998 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3999 * flush the NPT mappings via hypercall as flushing the ASID only
4000 * affects virtual to physical mappings, it does not invalidate guest
4001 * physical to host physical mappings.
4002 */
4003 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
4004 hyperv_flush_guest_mapping(root_tdp);
4005
4006 svm_flush_tlb_asid(vcpu);
4007 }
4008
svm_flush_tlb_all(struct kvm_vcpu * vcpu)4009 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
4010 {
4011 /*
4012 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
4013 * flushes should be routed to hv_flush_remote_tlbs() without requesting
4014 * a "regular" remote flush. Reaching this point means either there's
4015 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
4016 * which might be fatal to the guest. Yell, but try to recover.
4017 */
4018 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
4019 hv_flush_remote_tlbs(vcpu->kvm);
4020
4021 svm_flush_tlb_asid(vcpu);
4022 }
4023
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)4024 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
4025 {
4026 struct vcpu_svm *svm = to_svm(vcpu);
4027
4028 invlpga(gva, svm->vmcb->control.asid);
4029 }
4030
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)4031 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4032 {
4033 struct vcpu_svm *svm = to_svm(vcpu);
4034
4035 if (nested_svm_virtualize_tpr(vcpu))
4036 return;
4037
4038 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
4039 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4040 kvm_set_cr8(vcpu, cr8);
4041 }
4042 }
4043
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)4044 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4045 {
4046 struct vcpu_svm *svm = to_svm(vcpu);
4047 u64 cr8;
4048
4049 if (nested_svm_virtualize_tpr(vcpu))
4050 return;
4051
4052 cr8 = kvm_get_cr8(vcpu);
4053 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4054 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4055 }
4056
svm_complete_soft_interrupt(struct kvm_vcpu * vcpu,u8 vector,int type)4057 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
4058 int type)
4059 {
4060 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
4061 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
4062 struct vcpu_svm *svm = to_svm(vcpu);
4063
4064 /*
4065 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
4066 * associated with the original soft exception/interrupt. next_rip is
4067 * cleared on all exits that can occur while vectoring an event, so KVM
4068 * needs to manually set next_rip for re-injection. Unlike the !nrips
4069 * case below, this needs to be done if and only if KVM is re-injecting
4070 * the same event, i.e. if the event is a soft exception/interrupt,
4071 * otherwise next_rip is unused on VMRUN.
4072 */
4073 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
4074 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
4075 svm->vmcb->control.next_rip = svm->soft_int_next_rip;
4076 /*
4077 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
4078 * injecting the soft exception/interrupt. That advancement needs to
4079 * be unwound if vectoring didn't complete. Note, the new event may
4080 * not be the injected event, e.g. if KVM injected an INTn, the INTn
4081 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
4082 * be the reported vectored event, but RIP still needs to be unwound.
4083 */
4084 else if (!nrips && (is_soft || is_exception) &&
4085 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4086 kvm_rip_write(vcpu, svm->soft_int_old_rip);
4087 }
4088
svm_complete_interrupts(struct kvm_vcpu * vcpu)4089 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4090 {
4091 struct vcpu_svm *svm = to_svm(vcpu);
4092 u8 vector;
4093 int type;
4094 u32 exitintinfo = svm->vmcb->control.exit_int_info;
4095 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4096 bool soft_int_injected = svm->soft_int_injected;
4097
4098 svm->nmi_l1_to_l2 = false;
4099 svm->soft_int_injected = false;
4100
4101 /*
4102 * If we've made progress since setting awaiting_iret_completion, we've
4103 * executed an IRET and can allow NMI injection.
4104 */
4105 if (svm->awaiting_iret_completion &&
4106 kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4107 svm->awaiting_iret_completion = false;
4108 svm->nmi_masked = false;
4109 kvm_make_request(KVM_REQ_EVENT, vcpu);
4110 }
4111
4112 vcpu->arch.nmi_injected = false;
4113 kvm_clear_exception_queue(vcpu);
4114 kvm_clear_interrupt_queue(vcpu);
4115
4116 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4117 return;
4118
4119 kvm_make_request(KVM_REQ_EVENT, vcpu);
4120
4121 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4122 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4123
4124 if (soft_int_injected)
4125 svm_complete_soft_interrupt(vcpu, vector, type);
4126
4127 switch (type) {
4128 case SVM_EXITINTINFO_TYPE_NMI:
4129 vcpu->arch.nmi_injected = true;
4130 svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4131 break;
4132 case SVM_EXITINTINFO_TYPE_EXEPT: {
4133 u32 error_code = 0;
4134
4135 /*
4136 * Never re-inject a #VC exception.
4137 */
4138 if (vector == X86_TRAP_VC)
4139 break;
4140
4141 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR)
4142 error_code = svm->vmcb->control.exit_int_info_err;
4143
4144 kvm_requeue_exception(vcpu, vector,
4145 exitintinfo & SVM_EXITINTINFO_VALID_ERR,
4146 error_code);
4147 break;
4148 }
4149 case SVM_EXITINTINFO_TYPE_INTR:
4150 kvm_queue_interrupt(vcpu, vector, false);
4151 break;
4152 case SVM_EXITINTINFO_TYPE_SOFT:
4153 kvm_queue_interrupt(vcpu, vector, true);
4154 break;
4155 default:
4156 break;
4157 }
4158
4159 }
4160
svm_cancel_injection(struct kvm_vcpu * vcpu)4161 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4162 {
4163 struct vcpu_svm *svm = to_svm(vcpu);
4164 struct vmcb_control_area *control = &svm->vmcb->control;
4165
4166 control->exit_int_info = control->event_inj;
4167 control->exit_int_info_err = control->event_inj_err;
4168 control->event_inj = 0;
4169 svm_complete_interrupts(vcpu);
4170 }
4171
svm_vcpu_pre_run(struct kvm_vcpu * vcpu)4172 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4173 {
4174 if (to_kvm_sev_info(vcpu->kvm)->need_init)
4175 return -EINVAL;
4176
4177 return 1;
4178 }
4179
svm_exit_handlers_fastpath(struct kvm_vcpu * vcpu)4180 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4181 {
4182 struct vcpu_svm *svm = to_svm(vcpu);
4183
4184 if (is_guest_mode(vcpu))
4185 return EXIT_FASTPATH_NONE;
4186
4187 switch (svm->vmcb->control.exit_code) {
4188 case SVM_EXIT_MSR:
4189 if (!svm->vmcb->control.exit_info_1)
4190 break;
4191 return handle_fastpath_set_msr_irqoff(vcpu);
4192 case SVM_EXIT_HLT:
4193 return handle_fastpath_hlt(vcpu);
4194 default:
4195 break;
4196 }
4197
4198 return EXIT_FASTPATH_NONE;
4199 }
4200
svm_vcpu_enter_exit(struct kvm_vcpu * vcpu,bool spec_ctrl_intercepted)4201 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4202 {
4203 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
4204 struct vcpu_svm *svm = to_svm(vcpu);
4205
4206 guest_state_enter_irqoff();
4207
4208 /*
4209 * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of
4210 * VMRUN controls whether or not physical IRQs are masked (KVM always
4211 * runs with V_INTR_MASKING_MASK). Toggle RFLAGS.IF here to avoid the
4212 * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow
4213 * into guest state if delivery of an event during VMRUN triggers a
4214 * #VMEXIT, and the guest_state transitions already tell lockdep that
4215 * IRQs are being enabled/disabled. Note! GIF=0 for the entirety of
4216 * this path, so IRQs aren't actually unmasked while running host code.
4217 */
4218 raw_local_irq_enable();
4219
4220 amd_clear_divider();
4221
4222 if (sev_es_guest(vcpu->kvm))
4223 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted,
4224 sev_es_host_save_area(sd));
4225 else
4226 __svm_vcpu_run(svm, spec_ctrl_intercepted);
4227
4228 raw_local_irq_disable();
4229
4230 guest_state_exit_irqoff();
4231 }
4232
svm_vcpu_run(struct kvm_vcpu * vcpu,u64 run_flags)4233 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
4234 {
4235 bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT;
4236 struct vcpu_svm *svm = to_svm(vcpu);
4237 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4238
4239 trace_kvm_entry(vcpu, force_immediate_exit);
4240
4241 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4242 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4243 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4244
4245 /*
4246 * Disable singlestep if we're injecting an interrupt/exception.
4247 * We don't want our modified rflags to be pushed on the stack where
4248 * we might not be able to easily reset them if we disabled NMI
4249 * singlestep later.
4250 */
4251 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4252 /*
4253 * Event injection happens before external interrupts cause a
4254 * vmexit and interrupts are disabled here, so smp_send_reschedule
4255 * is enough to force an immediate vmexit.
4256 */
4257 disable_nmi_singlestep(svm);
4258 force_immediate_exit = true;
4259 }
4260
4261 if (force_immediate_exit)
4262 smp_send_reschedule(vcpu->cpu);
4263
4264 if (pre_svm_run(vcpu)) {
4265 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4266 vcpu->run->fail_entry.hardware_entry_failure_reason = SVM_EXIT_ERR;
4267 vcpu->run->fail_entry.cpu = vcpu->cpu;
4268 return EXIT_FASTPATH_EXIT_USERSPACE;
4269 }
4270
4271 sync_lapic_to_cr8(vcpu);
4272
4273 if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4274 svm->vmcb->control.asid = svm->asid;
4275 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4276 }
4277 svm->vmcb->save.cr2 = vcpu->arch.cr2;
4278
4279 svm_hv_update_vp_id(svm->vmcb, vcpu);
4280
4281 /*
4282 * Run with all-zero DR6 unless the guest can write DR6 freely, so that
4283 * KVM can get the exact cause of a #DB. Note, loading guest DR6 from
4284 * KVM's snapshot is only necessary when DR accesses won't exit.
4285 */
4286 if (unlikely(run_flags & KVM_RUN_LOAD_GUEST_DR6))
4287 svm_set_dr6(vcpu, vcpu->arch.dr6);
4288 else if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)))
4289 svm_set_dr6(vcpu, DR6_ACTIVE_LOW);
4290
4291 clgi();
4292 kvm_load_guest_xsave_state(vcpu);
4293
4294 /*
4295 * Hardware only context switches DEBUGCTL if LBR virtualization is
4296 * enabled. Manually load DEBUGCTL if necessary (and restore it after
4297 * VM-Exit), as running with the host's DEBUGCTL can negatively affect
4298 * guest state and can even be fatal, e.g. due to Bus Lock Detect.
4299 */
4300 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4301 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4302 update_debugctlmsr(svm->vmcb->save.dbgctl);
4303
4304 kvm_wait_lapic_expire(vcpu);
4305
4306 /*
4307 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4308 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4309 * is no need to worry about the conditional branch over the wrmsr
4310 * being speculatively taken.
4311 */
4312 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4313 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4314
4315 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4316
4317 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4318 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4319
4320 if (!sev_es_guest(vcpu->kvm)) {
4321 vcpu->arch.cr2 = svm->vmcb->save.cr2;
4322 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4323 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4324 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4325 }
4326 vcpu->arch.regs_dirty = 0;
4327
4328 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4329 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4330
4331 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4332 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4333 update_debugctlmsr(vcpu->arch.host_debugctl);
4334
4335 kvm_load_host_xsave_state(vcpu);
4336 stgi();
4337
4338 /* Any pending NMI will happen here */
4339
4340 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4341 kvm_after_interrupt(vcpu);
4342
4343 sync_cr8_to_lapic(vcpu);
4344
4345 svm->next_rip = 0;
4346 if (is_guest_mode(vcpu)) {
4347 nested_sync_control_from_vmcb02(svm);
4348
4349 /* Track VMRUNs that have made past consistency checking */
4350 if (svm->nested.nested_run_pending &&
4351 svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4352 ++vcpu->stat.nested_run;
4353
4354 svm->nested.nested_run_pending = 0;
4355 }
4356
4357 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4358 vmcb_mark_all_clean(svm->vmcb);
4359
4360 /* if exit due to PF check for async PF */
4361 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4362 vcpu->arch.apf.host_apf_flags =
4363 kvm_read_and_reset_apf_flags();
4364
4365 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4366
4367 /*
4368 * We need to handle MC intercepts here before the vcpu has a chance to
4369 * change the physical cpu
4370 */
4371 if (unlikely(svm->vmcb->control.exit_code ==
4372 SVM_EXIT_EXCP_BASE + MC_VECTOR))
4373 svm_handle_mce(vcpu);
4374
4375 trace_kvm_exit(vcpu, KVM_ISA_SVM);
4376
4377 svm_complete_interrupts(vcpu);
4378
4379 return svm_exit_handlers_fastpath(vcpu);
4380 }
4381
svm_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)4382 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4383 int root_level)
4384 {
4385 struct vcpu_svm *svm = to_svm(vcpu);
4386 unsigned long cr3;
4387
4388 if (npt_enabled) {
4389 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4390 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4391
4392 hv_track_root_tdp(vcpu, root_hpa);
4393
4394 cr3 = vcpu->arch.cr3;
4395 } else if (root_level >= PT64_ROOT_4LEVEL) {
4396 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4397 } else {
4398 /* PCID in the guest should be impossible with a 32-bit MMU. */
4399 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4400 cr3 = root_hpa;
4401 }
4402
4403 svm->vmcb->save.cr3 = cr3;
4404 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4405 }
4406
4407 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4408 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4409 {
4410 /*
4411 * Patch in the VMMCALL instruction:
4412 */
4413 hypercall[0] = 0x0f;
4414 hypercall[1] = 0x01;
4415 hypercall[2] = 0xd9;
4416 }
4417
4418 /*
4419 * The kvm parameter can be NULL (module initialization, or invocation before
4420 * VM creation). Be sure to check the kvm parameter before using it.
4421 */
svm_has_emulated_msr(struct kvm * kvm,u32 index)4422 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4423 {
4424 switch (index) {
4425 case MSR_IA32_MCG_EXT_CTL:
4426 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4427 return false;
4428 case MSR_IA32_SMBASE:
4429 if (!IS_ENABLED(CONFIG_KVM_SMM))
4430 return false;
4431 /* SEV-ES guests do not support SMM, so report false */
4432 if (kvm && sev_es_guest(kvm))
4433 return false;
4434 break;
4435 default:
4436 break;
4437 }
4438
4439 return true;
4440 }
4441
svm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)4442 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4443 {
4444 struct vcpu_svm *svm = to_svm(vcpu);
4445
4446 /*
4447 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4448 * can only disable all variants of by disallowing CR4.OSXSAVE from
4449 * being set. As a result, if the host has XSAVE and XSAVES, and the
4450 * guest has XSAVE enabled, the guest can execute XSAVES without
4451 * faulting. Treat XSAVES as enabled in this case regardless of
4452 * whether it's advertised to the guest so that KVM context switches
4453 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give
4454 * the guest read/write access to the host's XSS.
4455 */
4456 guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES,
4457 boot_cpu_has(X86_FEATURE_XSAVES) &&
4458 guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE));
4459
4460 /*
4461 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that
4462 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4463 * SVM on Intel is bonkers and extremely unlikely to work).
4464 */
4465 if (guest_cpuid_is_intel_compatible(vcpu))
4466 guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4467
4468 if (sev_guest(vcpu->kvm))
4469 sev_vcpu_after_set_cpuid(svm);
4470
4471 svm_recalc_intercepts_after_set_cpuid(vcpu);
4472 }
4473
svm_has_wbinvd_exit(void)4474 static bool svm_has_wbinvd_exit(void)
4475 {
4476 return true;
4477 }
4478
4479 #define PRE_EX(exit) { .exit_code = (exit), \
4480 .stage = X86_ICPT_PRE_EXCEPT, }
4481 #define POST_EX(exit) { .exit_code = (exit), \
4482 .stage = X86_ICPT_POST_EXCEPT, }
4483 #define POST_MEM(exit) { .exit_code = (exit), \
4484 .stage = X86_ICPT_POST_MEMACCESS, }
4485
4486 static const struct __x86_intercept {
4487 u32 exit_code;
4488 enum x86_intercept_stage stage;
4489 } x86_intercept_map[] = {
4490 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4491 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4492 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4493 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4494 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4495 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4496 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4497 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4498 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4499 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4500 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4501 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4502 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4503 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4504 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4505 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4506 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4507 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4508 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4509 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4510 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4511 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4512 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4513 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4514 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4515 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4516 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4517 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4518 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4519 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4520 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4521 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4522 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4523 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4524 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4525 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4526 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4527 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4528 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4529 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4530 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4531 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4532 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4533 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4534 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4535 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4536 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
4537 };
4538
4539 #undef PRE_EX
4540 #undef POST_EX
4541 #undef POST_MEM
4542
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)4543 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4544 struct x86_instruction_info *info,
4545 enum x86_intercept_stage stage,
4546 struct x86_exception *exception)
4547 {
4548 struct vcpu_svm *svm = to_svm(vcpu);
4549 int vmexit, ret = X86EMUL_CONTINUE;
4550 struct __x86_intercept icpt_info;
4551 struct vmcb *vmcb = svm->vmcb;
4552
4553 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4554 goto out;
4555
4556 icpt_info = x86_intercept_map[info->intercept];
4557
4558 if (stage != icpt_info.stage)
4559 goto out;
4560
4561 switch (icpt_info.exit_code) {
4562 case SVM_EXIT_READ_CR0:
4563 if (info->intercept == x86_intercept_cr_read)
4564 icpt_info.exit_code += info->modrm_reg;
4565 break;
4566 case SVM_EXIT_WRITE_CR0: {
4567 unsigned long cr0, val;
4568
4569 if (info->intercept == x86_intercept_cr_write)
4570 icpt_info.exit_code += info->modrm_reg;
4571
4572 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4573 info->intercept == x86_intercept_clts)
4574 break;
4575
4576 if (!(vmcb12_is_intercept(&svm->nested.ctl,
4577 INTERCEPT_SELECTIVE_CR0)))
4578 break;
4579
4580 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4581 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4582
4583 if (info->intercept == x86_intercept_lmsw) {
4584 cr0 &= 0xfUL;
4585 val &= 0xfUL;
4586 /* lmsw can't clear PE - catch this here */
4587 if (cr0 & X86_CR0_PE)
4588 val |= X86_CR0_PE;
4589 }
4590
4591 if (cr0 ^ val)
4592 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4593
4594 break;
4595 }
4596 case SVM_EXIT_READ_DR0:
4597 case SVM_EXIT_WRITE_DR0:
4598 icpt_info.exit_code += info->modrm_reg;
4599 break;
4600 case SVM_EXIT_MSR:
4601 if (info->intercept == x86_intercept_wrmsr)
4602 vmcb->control.exit_info_1 = 1;
4603 else
4604 vmcb->control.exit_info_1 = 0;
4605 break;
4606 case SVM_EXIT_PAUSE:
4607 /*
4608 * We get this for NOP only, but pause
4609 * is rep not, check this here
4610 */
4611 if (info->rep_prefix != REPE_PREFIX)
4612 goto out;
4613 break;
4614 case SVM_EXIT_IOIO: {
4615 u64 exit_info;
4616 u32 bytes;
4617
4618 if (info->intercept == x86_intercept_in ||
4619 info->intercept == x86_intercept_ins) {
4620 exit_info = ((info->src_val & 0xffff) << 16) |
4621 SVM_IOIO_TYPE_MASK;
4622 bytes = info->dst_bytes;
4623 } else {
4624 exit_info = (info->dst_val & 0xffff) << 16;
4625 bytes = info->src_bytes;
4626 }
4627
4628 if (info->intercept == x86_intercept_outs ||
4629 info->intercept == x86_intercept_ins)
4630 exit_info |= SVM_IOIO_STR_MASK;
4631
4632 if (info->rep_prefix)
4633 exit_info |= SVM_IOIO_REP_MASK;
4634
4635 bytes = min(bytes, 4u);
4636
4637 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4638
4639 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4640
4641 vmcb->control.exit_info_1 = exit_info;
4642 vmcb->control.exit_info_2 = info->next_rip;
4643
4644 break;
4645 }
4646 default:
4647 break;
4648 }
4649
4650 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4651 if (static_cpu_has(X86_FEATURE_NRIPS))
4652 vmcb->control.next_rip = info->next_rip;
4653 vmcb->control.exit_code = icpt_info.exit_code;
4654 vmexit = nested_svm_exit_handled(svm);
4655
4656 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4657 : X86EMUL_CONTINUE;
4658
4659 out:
4660 return ret;
4661 }
4662
svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)4663 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4664 {
4665 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4666 vcpu->arch.at_instruction_boundary = true;
4667 }
4668
svm_setup_mce(struct kvm_vcpu * vcpu)4669 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4670 {
4671 /* [63:9] are reserved. */
4672 vcpu->arch.mcg_cap &= 0x1ff;
4673 }
4674
4675 #ifdef CONFIG_KVM_SMM
svm_smi_blocked(struct kvm_vcpu * vcpu)4676 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4677 {
4678 struct vcpu_svm *svm = to_svm(vcpu);
4679
4680 /* Per APM Vol.2 15.22.2 "Response to SMI" */
4681 if (!gif_set(svm))
4682 return true;
4683
4684 return is_smm(vcpu);
4685 }
4686
svm_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4687 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4688 {
4689 struct vcpu_svm *svm = to_svm(vcpu);
4690 if (svm->nested.nested_run_pending)
4691 return -EBUSY;
4692
4693 if (svm_smi_blocked(vcpu))
4694 return 0;
4695
4696 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
4697 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4698 return -EBUSY;
4699
4700 return 1;
4701 }
4702
svm_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)4703 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4704 {
4705 struct vcpu_svm *svm = to_svm(vcpu);
4706 struct kvm_host_map map_save;
4707 int ret;
4708
4709 if (!is_guest_mode(vcpu))
4710 return 0;
4711
4712 /*
4713 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is
4714 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4715 */
4716
4717 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4718 return 1;
4719
4720 smram->smram64.svm_guest_flag = 1;
4721 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4722
4723 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4724 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4725 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4726
4727 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4728 if (ret)
4729 return ret;
4730
4731 /*
4732 * KVM uses VMCB01 to store L1 host state while L2 runs but
4733 * VMCB01 is going to be used during SMM and thus the state will
4734 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4735 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4736 * format of the area is identical to guest save area offsetted
4737 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4738 * within 'struct vmcb'). Note: HSAVE area may also be used by
4739 * L1 hypervisor to save additional host context (e.g. KVM does
4740 * that, see svm_prepare_switch_to_guest()) which must be
4741 * preserved.
4742 */
4743 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4744 return 1;
4745
4746 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4747
4748 svm_copy_vmrun_state(map_save.hva + 0x400,
4749 &svm->vmcb01.ptr->save);
4750
4751 kvm_vcpu_unmap(vcpu, &map_save);
4752 return 0;
4753 }
4754
svm_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)4755 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4756 {
4757 struct vcpu_svm *svm = to_svm(vcpu);
4758 struct kvm_host_map map, map_save;
4759 struct vmcb *vmcb12;
4760 int ret;
4761
4762 const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4763
4764 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4765 return 0;
4766
4767 /* Non-zero if SMI arrived while vCPU was in guest mode. */
4768 if (!smram64->svm_guest_flag)
4769 return 0;
4770
4771 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
4772 return 1;
4773
4774 if (!(smram64->efer & EFER_SVME))
4775 return 1;
4776
4777 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4778 return 1;
4779
4780 ret = 1;
4781 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4782 goto unmap_map;
4783
4784 if (svm_allocate_nested(svm))
4785 goto unmap_save;
4786
4787 /*
4788 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4789 * used during SMM (see svm_enter_smm())
4790 */
4791
4792 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4793
4794 /*
4795 * Enter the nested guest now
4796 */
4797
4798 vmcb_mark_all_dirty(svm->vmcb01.ptr);
4799
4800 vmcb12 = map.hva;
4801 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4802 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4803 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4804
4805 if (ret)
4806 goto unmap_save;
4807
4808 svm->nested.nested_run_pending = 1;
4809
4810 unmap_save:
4811 kvm_vcpu_unmap(vcpu, &map_save);
4812 unmap_map:
4813 kvm_vcpu_unmap(vcpu, &map);
4814 return ret;
4815 }
4816
svm_enable_smi_window(struct kvm_vcpu * vcpu)4817 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4818 {
4819 struct vcpu_svm *svm = to_svm(vcpu);
4820
4821 if (!gif_set(svm)) {
4822 if (vgif)
4823 svm_set_intercept(svm, INTERCEPT_STGI);
4824 /* STGI will cause a vm exit */
4825 } else {
4826 /* We must be in SMM; RSM will cause a vmexit anyway. */
4827 }
4828 }
4829 #endif
4830
svm_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)4831 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4832 void *insn, int insn_len)
4833 {
4834 struct vcpu_svm *svm = to_svm(vcpu);
4835 bool smep, smap, is_user;
4836 u64 error_code;
4837
4838 /* Check that emulation is possible during event vectoring */
4839 if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) &&
4840 !kvm_can_emulate_event_vectoring(emul_type))
4841 return X86EMUL_UNHANDLEABLE_VECTORING;
4842
4843 /* Emulation is always possible when KVM has access to all guest state. */
4844 if (!sev_guest(vcpu->kvm))
4845 return X86EMUL_CONTINUE;
4846
4847 /* #UD and #GP should never be intercepted for SEV guests. */
4848 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4849 EMULTYPE_TRAP_UD_FORCED |
4850 EMULTYPE_VMWARE_GP));
4851
4852 /*
4853 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4854 * to guest register state.
4855 */
4856 if (sev_es_guest(vcpu->kvm))
4857 return X86EMUL_RETRY_INSTR;
4858
4859 /*
4860 * Emulation is possible if the instruction is already decoded, e.g.
4861 * when completing I/O after returning from userspace.
4862 */
4863 if (emul_type & EMULTYPE_NO_DECODE)
4864 return X86EMUL_CONTINUE;
4865
4866 /*
4867 * Emulation is possible for SEV guests if and only if a prefilled
4868 * buffer containing the bytes of the intercepted instruction is
4869 * available. SEV guest memory is encrypted with a guest specific key
4870 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
4871 * decode garbage.
4872 *
4873 * If KVM is NOT trying to simply skip an instruction, inject #UD if
4874 * KVM reached this point without an instruction buffer. In practice,
4875 * this path should never be hit by a well-behaved guest, e.g. KVM
4876 * doesn't intercept #UD or #GP for SEV guests, but this path is still
4877 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4878 * access, and needs to be handled by KVM to avoid putting the guest
4879 * into an infinite loop. Injecting #UD is somewhat arbitrary, but
4880 * its the least awful option given lack of insight into the guest.
4881 *
4882 * If KVM is trying to skip an instruction, simply resume the guest.
4883 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4884 * will attempt to re-inject the INT3/INTO and skip the instruction.
4885 * In that scenario, retrying the INT3/INTO and hoping the guest will
4886 * make forward progress is the only option that has a chance of
4887 * success (and in practice it will work the vast majority of the time).
4888 */
4889 if (unlikely(!insn)) {
4890 if (emul_type & EMULTYPE_SKIP)
4891 return X86EMUL_UNHANDLEABLE;
4892
4893 kvm_queue_exception(vcpu, UD_VECTOR);
4894 return X86EMUL_PROPAGATE_FAULT;
4895 }
4896
4897 /*
4898 * Emulate for SEV guests if the insn buffer is not empty. The buffer
4899 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4900 * the faulting instruction because the code fetch itself faulted, e.g.
4901 * the guest attempted to fetch from emulated MMIO or a guest page
4902 * table used to translate CS:RIP resides in emulated MMIO.
4903 */
4904 if (likely(insn_len))
4905 return X86EMUL_CONTINUE;
4906
4907 /*
4908 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4909 *
4910 * Errata:
4911 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4912 * possible that CPU microcode implementing DecodeAssist will fail to
4913 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4914 * be '0'. This happens because microcode reads CS:RIP using a _data_
4915 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode
4916 * gives up and does not fill the instruction bytes buffer.
4917 *
4918 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4919 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4920 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4921 * GuestIntrBytes field of the VMCB.
4922 *
4923 * This does _not_ mean that the erratum has been encountered, as the
4924 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4925 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4926 * encountered a reserved/not-present #PF.
4927 *
4928 * To hit the erratum, the following conditions must be true:
4929 * 1. CR4.SMAP=1 (obviously).
4930 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot
4931 * have been hit as the guest would have encountered a SMEP
4932 * violation #PF, not a #NPF.
4933 * 3. The #NPF is not due to a code fetch, in which case failure to
4934 * retrieve the instruction bytes is legitimate (see abvoe).
4935 *
4936 * In addition, don't apply the erratum workaround if the #NPF occurred
4937 * while translating guest page tables (see below).
4938 */
4939 error_code = svm->vmcb->control.exit_info_1;
4940 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4941 goto resume_guest;
4942
4943 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4944 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4945 is_user = svm_get_cpl(vcpu) == 3;
4946 if (smap && (!smep || is_user)) {
4947 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4948
4949 /*
4950 * If the fault occurred in userspace, arbitrarily inject #GP
4951 * to avoid killing the guest and to hopefully avoid confusing
4952 * the guest kernel too much, e.g. injecting #PF would not be
4953 * coherent with respect to the guest's page tables. Request
4954 * triple fault if the fault occurred in the kernel as there's
4955 * no fault that KVM can inject without confusing the guest.
4956 * In practice, the triple fault is moot as no sane SEV kernel
4957 * will execute from user memory while also running with SMAP=1.
4958 */
4959 if (is_user)
4960 kvm_inject_gp(vcpu, 0);
4961 else
4962 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4963 return X86EMUL_PROPAGATE_FAULT;
4964 }
4965
4966 resume_guest:
4967 /*
4968 * If the erratum was not hit, simply resume the guest and let it fault
4969 * again. While awful, e.g. the vCPU may get stuck in an infinite loop
4970 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to
4971 * userspace will kill the guest, and letting the emulator read garbage
4972 * will yield random behavior and potentially corrupt the guest.
4973 *
4974 * Simply resuming the guest is technically not a violation of the SEV
4975 * architecture. AMD's APM states that all code fetches and page table
4976 * accesses for SEV guest are encrypted, regardless of the C-Bit. The
4977 * APM also states that encrypted accesses to MMIO are "ignored", but
4978 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4979 * the guest spin is technically "ignoring" the access.
4980 */
4981 return X86EMUL_RETRY_INSTR;
4982 }
4983
svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)4984 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4985 {
4986 struct vcpu_svm *svm = to_svm(vcpu);
4987
4988 return !gif_set(svm);
4989 }
4990
svm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)4991 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4992 {
4993 if (!sev_es_guest(vcpu->kvm))
4994 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4995
4996 sev_vcpu_deliver_sipi_vector(vcpu, vector);
4997 }
4998
svm_vm_destroy(struct kvm * kvm)4999 static void svm_vm_destroy(struct kvm *kvm)
5000 {
5001 avic_vm_destroy(kvm);
5002 sev_vm_destroy(kvm);
5003
5004 svm_srso_vm_destroy();
5005 }
5006
svm_vm_init(struct kvm * kvm)5007 static int svm_vm_init(struct kvm *kvm)
5008 {
5009 int type = kvm->arch.vm_type;
5010
5011 if (type != KVM_X86_DEFAULT_VM &&
5012 type != KVM_X86_SW_PROTECTED_VM) {
5013 kvm->arch.has_protected_state =
5014 (type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM);
5015 to_kvm_sev_info(kvm)->need_init = true;
5016
5017 kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM);
5018 kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem;
5019 }
5020
5021 if (!pause_filter_count || !pause_filter_thresh)
5022 kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE);
5023
5024 if (enable_apicv) {
5025 int ret = avic_vm_init(kvm);
5026 if (ret)
5027 return ret;
5028 }
5029
5030 svm_srso_vm_init();
5031 return 0;
5032 }
5033
svm_alloc_apic_backing_page(struct kvm_vcpu * vcpu)5034 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu)
5035 {
5036 struct page *page = snp_safe_alloc_page();
5037
5038 if (!page)
5039 return NULL;
5040
5041 return page_address(page);
5042 }
5043
5044 static struct kvm_x86_ops svm_x86_ops __initdata = {
5045 .name = KBUILD_MODNAME,
5046
5047 .check_processor_compatibility = svm_check_processor_compat,
5048
5049 .hardware_unsetup = svm_hardware_unsetup,
5050 .enable_virtualization_cpu = svm_enable_virtualization_cpu,
5051 .disable_virtualization_cpu = svm_disable_virtualization_cpu,
5052 .emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu,
5053 .has_emulated_msr = svm_has_emulated_msr,
5054
5055 .vcpu_create = svm_vcpu_create,
5056 .vcpu_free = svm_vcpu_free,
5057 .vcpu_reset = svm_vcpu_reset,
5058
5059 .vm_size = sizeof(struct kvm_svm),
5060 .vm_init = svm_vm_init,
5061 .vm_destroy = svm_vm_destroy,
5062
5063 .prepare_switch_to_guest = svm_prepare_switch_to_guest,
5064 .vcpu_load = svm_vcpu_load,
5065 .vcpu_put = svm_vcpu_put,
5066 .vcpu_blocking = avic_vcpu_blocking,
5067 .vcpu_unblocking = avic_vcpu_unblocking,
5068
5069 .update_exception_bitmap = svm_update_exception_bitmap,
5070 .get_feature_msr = svm_get_feature_msr,
5071 .get_msr = svm_get_msr,
5072 .set_msr = svm_set_msr,
5073 .get_segment_base = svm_get_segment_base,
5074 .get_segment = svm_get_segment,
5075 .set_segment = svm_set_segment,
5076 .get_cpl = svm_get_cpl,
5077 .get_cpl_no_cache = svm_get_cpl,
5078 .get_cs_db_l_bits = svm_get_cs_db_l_bits,
5079 .is_valid_cr0 = svm_is_valid_cr0,
5080 .set_cr0 = svm_set_cr0,
5081 .post_set_cr3 = sev_post_set_cr3,
5082 .is_valid_cr4 = svm_is_valid_cr4,
5083 .set_cr4 = svm_set_cr4,
5084 .set_efer = svm_set_efer,
5085 .get_idt = svm_get_idt,
5086 .set_idt = svm_set_idt,
5087 .get_gdt = svm_get_gdt,
5088 .set_gdt = svm_set_gdt,
5089 .set_dr7 = svm_set_dr7,
5090 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5091 .cache_reg = svm_cache_reg,
5092 .get_rflags = svm_get_rflags,
5093 .set_rflags = svm_set_rflags,
5094 .get_if_flag = svm_get_if_flag,
5095
5096 .flush_tlb_all = svm_flush_tlb_all,
5097 .flush_tlb_current = svm_flush_tlb_current,
5098 .flush_tlb_gva = svm_flush_tlb_gva,
5099 .flush_tlb_guest = svm_flush_tlb_asid,
5100
5101 .vcpu_pre_run = svm_vcpu_pre_run,
5102 .vcpu_run = svm_vcpu_run,
5103 .handle_exit = svm_handle_exit,
5104 .skip_emulated_instruction = svm_skip_emulated_instruction,
5105 .update_emulated_instruction = NULL,
5106 .set_interrupt_shadow = svm_set_interrupt_shadow,
5107 .get_interrupt_shadow = svm_get_interrupt_shadow,
5108 .patch_hypercall = svm_patch_hypercall,
5109 .inject_irq = svm_inject_irq,
5110 .inject_nmi = svm_inject_nmi,
5111 .is_vnmi_pending = svm_is_vnmi_pending,
5112 .set_vnmi_pending = svm_set_vnmi_pending,
5113 .inject_exception = svm_inject_exception,
5114 .cancel_injection = svm_cancel_injection,
5115 .interrupt_allowed = svm_interrupt_allowed,
5116 .nmi_allowed = svm_nmi_allowed,
5117 .get_nmi_mask = svm_get_nmi_mask,
5118 .set_nmi_mask = svm_set_nmi_mask,
5119 .enable_nmi_window = svm_enable_nmi_window,
5120 .enable_irq_window = svm_enable_irq_window,
5121 .update_cr8_intercept = svm_update_cr8_intercept,
5122
5123 .x2apic_icr_is_split = true,
5124 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
5125 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
5126 .apicv_post_state_restore = avic_apicv_post_state_restore,
5127 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
5128
5129 .get_exit_info = svm_get_exit_info,
5130 .get_entry_info = svm_get_entry_info,
5131
5132 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
5133
5134 .has_wbinvd_exit = svm_has_wbinvd_exit,
5135
5136 .get_l2_tsc_offset = svm_get_l2_tsc_offset,
5137 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
5138 .write_tsc_offset = svm_write_tsc_offset,
5139 .write_tsc_multiplier = svm_write_tsc_multiplier,
5140
5141 .load_mmu_pgd = svm_load_mmu_pgd,
5142
5143 .check_intercept = svm_check_intercept,
5144 .handle_exit_irqoff = svm_handle_exit_irqoff,
5145
5146 .nested_ops = &svm_nested_ops,
5147
5148 .deliver_interrupt = svm_deliver_interrupt,
5149 .pi_update_irte = avic_pi_update_irte,
5150 .setup_mce = svm_setup_mce,
5151
5152 #ifdef CONFIG_KVM_SMM
5153 .smi_allowed = svm_smi_allowed,
5154 .enter_smm = svm_enter_smm,
5155 .leave_smm = svm_leave_smm,
5156 .enable_smi_window = svm_enable_smi_window,
5157 #endif
5158
5159 #ifdef CONFIG_KVM_AMD_SEV
5160 .dev_get_attr = sev_dev_get_attr,
5161 .mem_enc_ioctl = sev_mem_enc_ioctl,
5162 .mem_enc_register_region = sev_mem_enc_register_region,
5163 .mem_enc_unregister_region = sev_mem_enc_unregister_region,
5164 .guest_memory_reclaimed = sev_guest_memory_reclaimed,
5165
5166 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5167 .vm_move_enc_context_from = sev_vm_move_enc_context_from,
5168 #endif
5169 .check_emulate_instruction = svm_check_emulate_instruction,
5170
5171 .apic_init_signal_blocked = svm_apic_init_signal_blocked,
5172
5173 .recalc_msr_intercepts = svm_recalc_msr_intercepts,
5174 .complete_emulated_msr = svm_complete_emulated_msr,
5175
5176 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5177 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5178 .alloc_apic_backing_page = svm_alloc_apic_backing_page,
5179
5180 .gmem_prepare = sev_gmem_prepare,
5181 .gmem_invalidate = sev_gmem_invalidate,
5182 .private_max_mapping_level = sev_private_max_mapping_level,
5183 };
5184
5185 /*
5186 * The default MMIO mask is a single bit (excluding the present bit),
5187 * which could conflict with the memory encryption bit. Check for
5188 * memory encryption support and override the default MMIO mask if
5189 * memory encryption is enabled.
5190 */
svm_adjust_mmio_mask(void)5191 static __init void svm_adjust_mmio_mask(void)
5192 {
5193 unsigned int enc_bit, mask_bit;
5194 u64 msr, mask;
5195
5196 /* If there is no memory encryption support, use existing mask */
5197 if (cpuid_eax(0x80000000) < 0x8000001f)
5198 return;
5199
5200 /* If memory encryption is not enabled, use existing mask */
5201 rdmsrq(MSR_AMD64_SYSCFG, msr);
5202 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5203 return;
5204
5205 enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5206 mask_bit = boot_cpu_data.x86_phys_bits;
5207
5208 /* Increment the mask bit if it is the same as the encryption bit */
5209 if (enc_bit == mask_bit)
5210 mask_bit++;
5211
5212 /*
5213 * If the mask bit location is below 52, then some bits above the
5214 * physical addressing limit will always be reserved, so use the
5215 * rsvd_bits() function to generate the mask. This mask, along with
5216 * the present bit, will be used to generate a page fault with
5217 * PFER.RSV = 1.
5218 *
5219 * If the mask bit location is 52 (or above), then clear the mask.
5220 */
5221 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5222
5223 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5224 }
5225
svm_set_cpu_caps(void)5226 static __init void svm_set_cpu_caps(void)
5227 {
5228 kvm_set_cpu_caps();
5229
5230 kvm_caps.supported_perf_cap = 0;
5231 kvm_caps.supported_xss = 0;
5232
5233 /* CPUID 0x80000001 and 0x8000000A (SVM features) */
5234 if (nested) {
5235 kvm_cpu_cap_set(X86_FEATURE_SVM);
5236 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5237
5238 /*
5239 * KVM currently flushes TLBs on *every* nested SVM transition,
5240 * and so for all intents and purposes KVM supports flushing by
5241 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
5242 */
5243 kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);
5244
5245 if (nrips)
5246 kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5247
5248 if (npt_enabled)
5249 kvm_cpu_cap_set(X86_FEATURE_NPT);
5250
5251 if (tsc_scaling)
5252 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5253
5254 if (vls)
5255 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5256 if (lbrv)
5257 kvm_cpu_cap_set(X86_FEATURE_LBRV);
5258
5259 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5260 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5261
5262 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5263 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5264
5265 if (vgif)
5266 kvm_cpu_cap_set(X86_FEATURE_VGIF);
5267
5268 if (vnmi)
5269 kvm_cpu_cap_set(X86_FEATURE_VNMI);
5270
5271 /* Nested VM can receive #VMEXIT instead of triggering #GP */
5272 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5273 }
5274
5275 if (cpu_feature_enabled(X86_FEATURE_BUS_LOCK_THRESHOLD))
5276 kvm_caps.has_bus_lock_exit = true;
5277
5278 /* CPUID 0x80000008 */
5279 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5280 boot_cpu_has(X86_FEATURE_AMD_SSBD))
5281 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5282
5283 if (enable_pmu) {
5284 /*
5285 * Enumerate support for PERFCTR_CORE if and only if KVM has
5286 * access to enough counters to virtualize "core" support,
5287 * otherwise limit vPMU support to the legacy number of counters.
5288 */
5289 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5290 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5291 kvm_pmu_cap.num_counters_gp);
5292 else
5293 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5294
5295 if (kvm_pmu_cap.version != 2 ||
5296 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5297 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5298 }
5299
5300 /* CPUID 0x8000001F (SME/SEV features) */
5301 sev_set_cpu_caps();
5302
5303 /* Don't advertise Bus Lock Detect to guest if SVM support is absent */
5304 kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT);
5305 }
5306
svm_hardware_setup(void)5307 static __init int svm_hardware_setup(void)
5308 {
5309 void *iopm_va;
5310 int cpu, r;
5311
5312 /*
5313 * NX is required for shadow paging and for NPT if the NX huge pages
5314 * mitigation is enabled.
5315 */
5316 if (!boot_cpu_has(X86_FEATURE_NX)) {
5317 pr_err_ratelimited("NX (Execute Disable) not supported\n");
5318 return -EOPNOTSUPP;
5319 }
5320 kvm_enable_efer_bits(EFER_NX);
5321
5322 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5323 XFEATURE_MASK_BNDCSR);
5324
5325 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5326 kvm_enable_efer_bits(EFER_FFXSR);
5327
5328 if (tsc_scaling) {
5329 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5330 tsc_scaling = false;
5331 } else {
5332 pr_info("TSC scaling supported\n");
5333 kvm_caps.has_tsc_control = true;
5334 }
5335 }
5336 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5337 kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5338
5339 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5340
5341 if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5342 kvm_enable_efer_bits(EFER_AUTOIBRS);
5343
5344 /* Check for pause filtering support */
5345 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5346 pause_filter_count = 0;
5347 pause_filter_thresh = 0;
5348 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5349 pause_filter_thresh = 0;
5350 }
5351
5352 if (nested) {
5353 pr_info("Nested Virtualization enabled\n");
5354 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5355
5356 r = nested_svm_init_msrpm_merge_offsets();
5357 if (r)
5358 return r;
5359 }
5360
5361 /*
5362 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5363 * NPT isn't supported if the host is using 2-level paging since host
5364 * CR4 is unchanged on VMRUN.
5365 */
5366 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5367 npt_enabled = false;
5368
5369 if (!boot_cpu_has(X86_FEATURE_NPT))
5370 npt_enabled = false;
5371
5372 /* Force VM NPT level equal to the host's paging level */
5373 kvm_configure_mmu(npt_enabled, get_npt_level(),
5374 get_npt_level(), PG_LEVEL_1G);
5375 pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled));
5376
5377 /* Setup shadow_me_value and shadow_me_mask */
5378 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5379
5380 svm_adjust_mmio_mask();
5381
5382 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5383
5384 if (lbrv) {
5385 if (!boot_cpu_has(X86_FEATURE_LBRV))
5386 lbrv = false;
5387 else
5388 pr_info("LBR virtualization supported\n");
5389 }
5390
5391 iopm_va = svm_alloc_permissions_map(IOPM_SIZE, GFP_KERNEL);
5392 if (!iopm_va)
5393 return -ENOMEM;
5394
5395 iopm_base = __sme_set(__pa(iopm_va));
5396
5397 /*
5398 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5399 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5400 */
5401 sev_hardware_setup();
5402
5403 svm_hv_hardware_setup();
5404
5405 for_each_possible_cpu(cpu) {
5406 r = svm_cpu_init(cpu);
5407 if (r)
5408 goto err;
5409 }
5410
5411 enable_apicv = avic = avic && avic_hardware_setup();
5412
5413 if (!enable_apicv) {
5414 enable_ipiv = false;
5415 svm_x86_ops.vcpu_blocking = NULL;
5416 svm_x86_ops.vcpu_unblocking = NULL;
5417 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5418 } else if (!x2avic_enabled) {
5419 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5420 }
5421
5422 if (vls) {
5423 if (!npt_enabled ||
5424 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5425 !IS_ENABLED(CONFIG_X86_64)) {
5426 vls = false;
5427 } else {
5428 pr_info("Virtual VMLOAD VMSAVE supported\n");
5429 }
5430 }
5431
5432 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5433 svm_gp_erratum_intercept = false;
5434
5435 if (vgif) {
5436 if (!boot_cpu_has(X86_FEATURE_VGIF))
5437 vgif = false;
5438 else
5439 pr_info("Virtual GIF supported\n");
5440 }
5441
5442 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5443 if (vnmi)
5444 pr_info("Virtual NMI enabled\n");
5445
5446 if (!vnmi) {
5447 svm_x86_ops.is_vnmi_pending = NULL;
5448 svm_x86_ops.set_vnmi_pending = NULL;
5449 }
5450
5451 if (!enable_pmu)
5452 pr_info("PMU virtualization is disabled\n");
5453
5454 svm_set_cpu_caps();
5455
5456 /*
5457 * It seems that on AMD processors PTE's accessed bit is
5458 * being set by the CPU hardware before the NPF vmexit.
5459 * This is not expected behaviour and our tests fail because
5460 * of it.
5461 * A workaround here is to disable support for
5462 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5463 * In this case userspace can know if there is support using
5464 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5465 * it
5466 * If future AMD CPU models change the behaviour described above,
5467 * this variable can be changed accordingly
5468 */
5469 allow_smaller_maxphyaddr = !npt_enabled;
5470
5471 kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_CD_NW_CLEARED;
5472 return 0;
5473
5474 err:
5475 svm_hardware_unsetup();
5476 return r;
5477 }
5478
5479
5480 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5481 .hardware_setup = svm_hardware_setup,
5482
5483 .runtime_ops = &svm_x86_ops,
5484 .pmu_ops = &amd_pmu_ops,
5485 };
5486
__svm_exit(void)5487 static void __svm_exit(void)
5488 {
5489 kvm_x86_vendor_exit();
5490 }
5491
svm_init(void)5492 static int __init svm_init(void)
5493 {
5494 int r;
5495
5496 KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_svm);
5497
5498 __unused_size_checks();
5499
5500 if (!kvm_is_svm_supported())
5501 return -EOPNOTSUPP;
5502
5503 r = kvm_x86_vendor_init(&svm_init_ops);
5504 if (r)
5505 return r;
5506
5507 /*
5508 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5509 * exposed to userspace!
5510 */
5511 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5512 THIS_MODULE);
5513 if (r)
5514 goto err_kvm_init;
5515
5516 return 0;
5517
5518 err_kvm_init:
5519 __svm_exit();
5520 return r;
5521 }
5522
svm_exit(void)5523 static void __exit svm_exit(void)
5524 {
5525 kvm_exit();
5526 __svm_exit();
5527 }
5528
5529 module_init(svm_init)
5530 module_exit(svm_exit)
5531