1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2023 Intel Corporation */
3
4 #include <linux/export.h>
5 #include <net/libeth/rx.h>
6
7 #include "idpf.h"
8 #include "idpf_virtchnl.h"
9 #include "idpf_ptp.h"
10
11 /**
12 * struct idpf_vc_xn_manager - Manager for tracking transactions
13 * @ring: backing and lookup for transactions
14 * @free_xn_bm: bitmap for free transactions
15 * @xn_bm_lock: make bitmap access synchronous where necessary
16 * @salt: used to make cookie unique every message
17 */
18 struct idpf_vc_xn_manager {
19 struct idpf_vc_xn ring[IDPF_VC_XN_RING_LEN];
20 DECLARE_BITMAP(free_xn_bm, IDPF_VC_XN_RING_LEN);
21 spinlock_t xn_bm_lock;
22 u8 salt;
23 };
24
25 /**
26 * idpf_vid_to_vport - Translate vport id to vport pointer
27 * @adapter: private data struct
28 * @v_id: vport id to translate
29 *
30 * Returns vport matching v_id, NULL if not found.
31 */
32 static
idpf_vid_to_vport(struct idpf_adapter * adapter,u32 v_id)33 struct idpf_vport *idpf_vid_to_vport(struct idpf_adapter *adapter, u32 v_id)
34 {
35 u16 num_max_vports = idpf_get_max_vports(adapter);
36 int i;
37
38 for (i = 0; i < num_max_vports; i++)
39 if (adapter->vport_ids[i] == v_id)
40 return adapter->vports[i];
41
42 return NULL;
43 }
44
45 /**
46 * idpf_handle_event_link - Handle link event message
47 * @adapter: private data struct
48 * @v2e: virtchnl event message
49 */
idpf_handle_event_link(struct idpf_adapter * adapter,const struct virtchnl2_event * v2e)50 static void idpf_handle_event_link(struct idpf_adapter *adapter,
51 const struct virtchnl2_event *v2e)
52 {
53 struct idpf_netdev_priv *np;
54 struct idpf_vport *vport;
55
56 vport = idpf_vid_to_vport(adapter, le32_to_cpu(v2e->vport_id));
57 if (!vport) {
58 dev_err_ratelimited(&adapter->pdev->dev, "Failed to find vport_id %d for link event\n",
59 v2e->vport_id);
60 return;
61 }
62 np = netdev_priv(vport->netdev);
63
64 np->link_speed_mbps = le32_to_cpu(v2e->link_speed);
65
66 if (vport->link_up == v2e->link_status)
67 return;
68
69 vport->link_up = v2e->link_status;
70
71 if (!test_bit(IDPF_VPORT_UP, np->state))
72 return;
73
74 if (vport->link_up) {
75 netif_tx_start_all_queues(vport->netdev);
76 netif_carrier_on(vport->netdev);
77 } else {
78 netif_tx_stop_all_queues(vport->netdev);
79 netif_carrier_off(vport->netdev);
80 }
81 }
82
83 /**
84 * idpf_recv_event_msg - Receive virtchnl event message
85 * @adapter: Driver specific private structure
86 * @ctlq_msg: message to copy from
87 *
88 * Receive virtchnl event message
89 */
idpf_recv_event_msg(struct idpf_adapter * adapter,struct idpf_ctlq_msg * ctlq_msg)90 static void idpf_recv_event_msg(struct idpf_adapter *adapter,
91 struct idpf_ctlq_msg *ctlq_msg)
92 {
93 int payload_size = ctlq_msg->ctx.indirect.payload->size;
94 struct virtchnl2_event *v2e;
95 u32 event;
96
97 if (payload_size < sizeof(*v2e)) {
98 dev_err_ratelimited(&adapter->pdev->dev, "Failed to receive valid payload for event msg (op %d len %d)\n",
99 ctlq_msg->cookie.mbx.chnl_opcode,
100 payload_size);
101 return;
102 }
103
104 v2e = (struct virtchnl2_event *)ctlq_msg->ctx.indirect.payload->va;
105 event = le32_to_cpu(v2e->event);
106
107 switch (event) {
108 case VIRTCHNL2_EVENT_LINK_CHANGE:
109 idpf_handle_event_link(adapter, v2e);
110 return;
111 default:
112 dev_err(&adapter->pdev->dev,
113 "Unknown event %d from PF\n", event);
114 break;
115 }
116 }
117
118 /**
119 * idpf_mb_clean - Reclaim the send mailbox queue entries
120 * @adapter: Driver specific private structure
121 *
122 * Reclaim the send mailbox queue entries to be used to send further messages
123 *
124 * Returns 0 on success, negative on failure
125 */
idpf_mb_clean(struct idpf_adapter * adapter)126 static int idpf_mb_clean(struct idpf_adapter *adapter)
127 {
128 u16 i, num_q_msg = IDPF_DFLT_MBX_Q_LEN;
129 struct idpf_ctlq_msg **q_msg;
130 struct idpf_dma_mem *dma_mem;
131 int err;
132
133 q_msg = kcalloc(num_q_msg, sizeof(struct idpf_ctlq_msg *), GFP_ATOMIC);
134 if (!q_msg)
135 return -ENOMEM;
136
137 err = idpf_ctlq_clean_sq(adapter->hw.asq, &num_q_msg, q_msg);
138 if (err)
139 goto err_kfree;
140
141 for (i = 0; i < num_q_msg; i++) {
142 if (!q_msg[i])
143 continue;
144 dma_mem = q_msg[i]->ctx.indirect.payload;
145 if (dma_mem)
146 dma_free_coherent(&adapter->pdev->dev, dma_mem->size,
147 dma_mem->va, dma_mem->pa);
148 kfree(q_msg[i]);
149 kfree(dma_mem);
150 }
151
152 err_kfree:
153 kfree(q_msg);
154
155 return err;
156 }
157
158 #if IS_ENABLED(CONFIG_PTP_1588_CLOCK)
159 /**
160 * idpf_ptp_is_mb_msg - Check if the message is PTP-related
161 * @op: virtchnl opcode
162 *
163 * Return: true if msg is PTP-related, false otherwise.
164 */
idpf_ptp_is_mb_msg(u32 op)165 static bool idpf_ptp_is_mb_msg(u32 op)
166 {
167 switch (op) {
168 case VIRTCHNL2_OP_PTP_GET_DEV_CLK_TIME:
169 case VIRTCHNL2_OP_PTP_GET_CROSS_TIME:
170 case VIRTCHNL2_OP_PTP_SET_DEV_CLK_TIME:
171 case VIRTCHNL2_OP_PTP_ADJ_DEV_CLK_FINE:
172 case VIRTCHNL2_OP_PTP_ADJ_DEV_CLK_TIME:
173 case VIRTCHNL2_OP_PTP_GET_VPORT_TX_TSTAMP_CAPS:
174 case VIRTCHNL2_OP_PTP_GET_VPORT_TX_TSTAMP:
175 return true;
176 default:
177 return false;
178 }
179 }
180
181 /**
182 * idpf_prepare_ptp_mb_msg - Prepare PTP related message
183 *
184 * @adapter: Driver specific private structure
185 * @op: virtchnl opcode
186 * @ctlq_msg: Corresponding control queue message
187 */
idpf_prepare_ptp_mb_msg(struct idpf_adapter * adapter,u32 op,struct idpf_ctlq_msg * ctlq_msg)188 static void idpf_prepare_ptp_mb_msg(struct idpf_adapter *adapter, u32 op,
189 struct idpf_ctlq_msg *ctlq_msg)
190 {
191 /* If the message is PTP-related and the secondary mailbox is available,
192 * send the message through the secondary mailbox.
193 */
194 if (!idpf_ptp_is_mb_msg(op) || !adapter->ptp->secondary_mbx.valid)
195 return;
196
197 ctlq_msg->opcode = idpf_mbq_opc_send_msg_to_peer_drv;
198 ctlq_msg->func_id = adapter->ptp->secondary_mbx.peer_mbx_q_id;
199 ctlq_msg->host_id = adapter->ptp->secondary_mbx.peer_id;
200 }
201 #else /* !CONFIG_PTP_1588_CLOCK */
idpf_prepare_ptp_mb_msg(struct idpf_adapter * adapter,u32 op,struct idpf_ctlq_msg * ctlq_msg)202 static void idpf_prepare_ptp_mb_msg(struct idpf_adapter *adapter, u32 op,
203 struct idpf_ctlq_msg *ctlq_msg)
204 { }
205 #endif /* CONFIG_PTP_1588_CLOCK */
206
207 /**
208 * idpf_send_mb_msg - Send message over mailbox
209 * @adapter: Driver specific private structure
210 * @op: virtchnl opcode
211 * @msg_size: size of the payload
212 * @msg: pointer to buffer holding the payload
213 * @cookie: unique SW generated cookie per message
214 *
215 * Will prepare the control queue message and initiates the send api
216 *
217 * Returns 0 on success, negative on failure
218 */
idpf_send_mb_msg(struct idpf_adapter * adapter,u32 op,u16 msg_size,u8 * msg,u16 cookie)219 int idpf_send_mb_msg(struct idpf_adapter *adapter, u32 op,
220 u16 msg_size, u8 *msg, u16 cookie)
221 {
222 struct idpf_ctlq_msg *ctlq_msg;
223 struct idpf_dma_mem *dma_mem;
224 int err;
225
226 /* If we are here and a reset is detected nothing much can be
227 * done. This thread should silently abort and expected to
228 * be corrected with a new run either by user or driver
229 * flows after reset
230 */
231 if (idpf_is_reset_detected(adapter))
232 return 0;
233
234 err = idpf_mb_clean(adapter);
235 if (err)
236 return err;
237
238 ctlq_msg = kzalloc(sizeof(*ctlq_msg), GFP_ATOMIC);
239 if (!ctlq_msg)
240 return -ENOMEM;
241
242 dma_mem = kzalloc(sizeof(*dma_mem), GFP_ATOMIC);
243 if (!dma_mem) {
244 err = -ENOMEM;
245 goto dma_mem_error;
246 }
247
248 ctlq_msg->opcode = idpf_mbq_opc_send_msg_to_cp;
249 ctlq_msg->func_id = 0;
250
251 idpf_prepare_ptp_mb_msg(adapter, op, ctlq_msg);
252
253 ctlq_msg->data_len = msg_size;
254 ctlq_msg->cookie.mbx.chnl_opcode = op;
255 ctlq_msg->cookie.mbx.chnl_retval = 0;
256 dma_mem->size = IDPF_CTLQ_MAX_BUF_LEN;
257 dma_mem->va = dma_alloc_coherent(&adapter->pdev->dev, dma_mem->size,
258 &dma_mem->pa, GFP_ATOMIC);
259 if (!dma_mem->va) {
260 err = -ENOMEM;
261 goto dma_alloc_error;
262 }
263
264 /* It's possible we're just sending an opcode but no buffer */
265 if (msg && msg_size)
266 memcpy(dma_mem->va, msg, msg_size);
267 ctlq_msg->ctx.indirect.payload = dma_mem;
268 ctlq_msg->ctx.sw_cookie.data = cookie;
269
270 err = idpf_ctlq_send(&adapter->hw, adapter->hw.asq, 1, ctlq_msg);
271 if (err)
272 goto send_error;
273
274 return 0;
275
276 send_error:
277 dma_free_coherent(&adapter->pdev->dev, dma_mem->size, dma_mem->va,
278 dma_mem->pa);
279 dma_alloc_error:
280 kfree(dma_mem);
281 dma_mem_error:
282 kfree(ctlq_msg);
283
284 return err;
285 }
286
287 /* API for virtchnl "transaction" support ("xn" for short).
288 *
289 * We are reusing the completion lock to serialize the accesses to the
290 * transaction state for simplicity, but it could be its own separate synchro
291 * as well. For now, this API is only used from within a workqueue context;
292 * raw_spin_lock() is enough.
293 */
294 /**
295 * idpf_vc_xn_lock - Request exclusive access to vc transaction
296 * @xn: struct idpf_vc_xn* to access
297 */
298 #define idpf_vc_xn_lock(xn) \
299 raw_spin_lock(&(xn)->completed.wait.lock)
300
301 /**
302 * idpf_vc_xn_unlock - Release exclusive access to vc transaction
303 * @xn: struct idpf_vc_xn* to access
304 */
305 #define idpf_vc_xn_unlock(xn) \
306 raw_spin_unlock(&(xn)->completed.wait.lock)
307
308 /**
309 * idpf_vc_xn_release_bufs - Release reference to reply buffer(s) and
310 * reset the transaction state.
311 * @xn: struct idpf_vc_xn to update
312 */
idpf_vc_xn_release_bufs(struct idpf_vc_xn * xn)313 static void idpf_vc_xn_release_bufs(struct idpf_vc_xn *xn)
314 {
315 xn->reply.iov_base = NULL;
316 xn->reply.iov_len = 0;
317
318 if (xn->state != IDPF_VC_XN_SHUTDOWN)
319 xn->state = IDPF_VC_XN_IDLE;
320 }
321
322 /**
323 * idpf_vc_xn_init - Initialize virtchnl transaction object
324 * @vcxn_mngr: pointer to vc transaction manager struct
325 */
idpf_vc_xn_init(struct idpf_vc_xn_manager * vcxn_mngr)326 static void idpf_vc_xn_init(struct idpf_vc_xn_manager *vcxn_mngr)
327 {
328 int i;
329
330 spin_lock_init(&vcxn_mngr->xn_bm_lock);
331
332 for (i = 0; i < ARRAY_SIZE(vcxn_mngr->ring); i++) {
333 struct idpf_vc_xn *xn = &vcxn_mngr->ring[i];
334
335 xn->state = IDPF_VC_XN_IDLE;
336 xn->idx = i;
337 idpf_vc_xn_release_bufs(xn);
338 init_completion(&xn->completed);
339 }
340
341 bitmap_fill(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
342 }
343
344 /**
345 * idpf_vc_xn_shutdown - Uninitialize virtchnl transaction object
346 * @vcxn_mngr: pointer to vc transaction manager struct
347 *
348 * All waiting threads will be woken-up and their transaction aborted. Further
349 * operations on that object will fail.
350 */
idpf_vc_xn_shutdown(struct idpf_vc_xn_manager * vcxn_mngr)351 void idpf_vc_xn_shutdown(struct idpf_vc_xn_manager *vcxn_mngr)
352 {
353 int i;
354
355 spin_lock_bh(&vcxn_mngr->xn_bm_lock);
356 bitmap_zero(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
357 spin_unlock_bh(&vcxn_mngr->xn_bm_lock);
358
359 for (i = 0; i < ARRAY_SIZE(vcxn_mngr->ring); i++) {
360 struct idpf_vc_xn *xn = &vcxn_mngr->ring[i];
361
362 idpf_vc_xn_lock(xn);
363 xn->state = IDPF_VC_XN_SHUTDOWN;
364 idpf_vc_xn_release_bufs(xn);
365 idpf_vc_xn_unlock(xn);
366 complete_all(&xn->completed);
367 }
368 }
369
370 /**
371 * idpf_vc_xn_pop_free - Pop a free transaction from free list
372 * @vcxn_mngr: transaction manager to pop from
373 *
374 * Returns NULL if no free transactions
375 */
376 static
idpf_vc_xn_pop_free(struct idpf_vc_xn_manager * vcxn_mngr)377 struct idpf_vc_xn *idpf_vc_xn_pop_free(struct idpf_vc_xn_manager *vcxn_mngr)
378 {
379 struct idpf_vc_xn *xn = NULL;
380 unsigned long free_idx;
381
382 spin_lock_bh(&vcxn_mngr->xn_bm_lock);
383 free_idx = find_first_bit(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
384 if (free_idx == IDPF_VC_XN_RING_LEN)
385 goto do_unlock;
386
387 clear_bit(free_idx, vcxn_mngr->free_xn_bm);
388 xn = &vcxn_mngr->ring[free_idx];
389 xn->salt = vcxn_mngr->salt++;
390
391 do_unlock:
392 spin_unlock_bh(&vcxn_mngr->xn_bm_lock);
393
394 return xn;
395 }
396
397 /**
398 * idpf_vc_xn_push_free - Push a free transaction to free list
399 * @vcxn_mngr: transaction manager to push to
400 * @xn: transaction to push
401 */
idpf_vc_xn_push_free(struct idpf_vc_xn_manager * vcxn_mngr,struct idpf_vc_xn * xn)402 static void idpf_vc_xn_push_free(struct idpf_vc_xn_manager *vcxn_mngr,
403 struct idpf_vc_xn *xn)
404 {
405 idpf_vc_xn_release_bufs(xn);
406 set_bit(xn->idx, vcxn_mngr->free_xn_bm);
407 }
408
409 /**
410 * idpf_vc_xn_exec - Perform a send/recv virtchnl transaction
411 * @adapter: driver specific private structure with vcxn_mngr
412 * @params: parameters for this particular transaction including
413 * -vc_op: virtchannel operation to send
414 * -send_buf: kvec iov for send buf and len
415 * -recv_buf: kvec iov for recv buf and len (ignored if NULL)
416 * -timeout_ms: timeout waiting for a reply (milliseconds)
417 * -async: don't wait for message reply, will lose caller context
418 * -async_handler: callback to handle async replies
419 *
420 * @returns >= 0 for success, the size of the initial reply (may or may not be
421 * >= @recv_buf.iov_len, but we never overflow @@recv_buf_iov_base). < 0 for
422 * error.
423 */
idpf_vc_xn_exec(struct idpf_adapter * adapter,const struct idpf_vc_xn_params * params)424 ssize_t idpf_vc_xn_exec(struct idpf_adapter *adapter,
425 const struct idpf_vc_xn_params *params)
426 {
427 const struct kvec *send_buf = ¶ms->send_buf;
428 struct idpf_vc_xn *xn;
429 ssize_t retval;
430 u16 cookie;
431
432 xn = idpf_vc_xn_pop_free(adapter->vcxn_mngr);
433 /* no free transactions available */
434 if (!xn)
435 return -ENOSPC;
436
437 idpf_vc_xn_lock(xn);
438 if (xn->state == IDPF_VC_XN_SHUTDOWN) {
439 retval = -ENXIO;
440 goto only_unlock;
441 } else if (xn->state != IDPF_VC_XN_IDLE) {
442 /* We're just going to clobber this transaction even though
443 * it's not IDLE. If we don't reuse it we could theoretically
444 * eventually leak all the free transactions and not be able to
445 * send any messages. At least this way we make an attempt to
446 * remain functional even though something really bad is
447 * happening that's corrupting what was supposed to be free
448 * transactions.
449 */
450 WARN_ONCE(1, "There should only be idle transactions in free list (idx %d op %d)\n",
451 xn->idx, xn->vc_op);
452 }
453
454 xn->reply = params->recv_buf;
455 xn->reply_sz = 0;
456 xn->state = params->async ? IDPF_VC_XN_ASYNC : IDPF_VC_XN_WAITING;
457 xn->vc_op = params->vc_op;
458 xn->async_handler = params->async_handler;
459 idpf_vc_xn_unlock(xn);
460
461 if (!params->async)
462 reinit_completion(&xn->completed);
463 cookie = FIELD_PREP(IDPF_VC_XN_SALT_M, xn->salt) |
464 FIELD_PREP(IDPF_VC_XN_IDX_M, xn->idx);
465
466 retval = idpf_send_mb_msg(adapter, params->vc_op,
467 send_buf->iov_len, send_buf->iov_base,
468 cookie);
469 if (retval) {
470 idpf_vc_xn_lock(xn);
471 goto release_and_unlock;
472 }
473
474 if (params->async)
475 return 0;
476
477 wait_for_completion_timeout(&xn->completed,
478 msecs_to_jiffies(params->timeout_ms));
479
480 /* No need to check the return value; we check the final state of the
481 * transaction below. It's possible the transaction actually gets more
482 * timeout than specified if we get preempted here but after
483 * wait_for_completion_timeout returns. This should be non-issue
484 * however.
485 */
486 idpf_vc_xn_lock(xn);
487 switch (xn->state) {
488 case IDPF_VC_XN_SHUTDOWN:
489 retval = -ENXIO;
490 goto only_unlock;
491 case IDPF_VC_XN_WAITING:
492 dev_notice_ratelimited(&adapter->pdev->dev,
493 "Transaction timed-out (op:%d cookie:%04x vc_op:%d salt:%02x timeout:%dms)\n",
494 params->vc_op, cookie, xn->vc_op,
495 xn->salt, params->timeout_ms);
496 retval = -ETIME;
497 break;
498 case IDPF_VC_XN_COMPLETED_SUCCESS:
499 retval = xn->reply_sz;
500 break;
501 case IDPF_VC_XN_COMPLETED_FAILED:
502 dev_notice_ratelimited(&adapter->pdev->dev, "Transaction failed (op %d)\n",
503 params->vc_op);
504 retval = -EIO;
505 break;
506 default:
507 /* Invalid state. */
508 WARN_ON_ONCE(1);
509 retval = -EIO;
510 break;
511 }
512
513 release_and_unlock:
514 idpf_vc_xn_push_free(adapter->vcxn_mngr, xn);
515 /* If we receive a VC reply after here, it will be dropped. */
516 only_unlock:
517 idpf_vc_xn_unlock(xn);
518
519 return retval;
520 }
521
522 /**
523 * idpf_vc_xn_forward_async - Handle async reply receives
524 * @adapter: private data struct
525 * @xn: transaction to handle
526 * @ctlq_msg: corresponding ctlq_msg
527 *
528 * For async sends we're going to lose the caller's context so, if an
529 * async_handler was provided, it can deal with the reply, otherwise we'll just
530 * check and report if there is an error.
531 */
532 static int
idpf_vc_xn_forward_async(struct idpf_adapter * adapter,struct idpf_vc_xn * xn,const struct idpf_ctlq_msg * ctlq_msg)533 idpf_vc_xn_forward_async(struct idpf_adapter *adapter, struct idpf_vc_xn *xn,
534 const struct idpf_ctlq_msg *ctlq_msg)
535 {
536 int err = 0;
537
538 if (ctlq_msg->cookie.mbx.chnl_opcode != xn->vc_op) {
539 dev_err_ratelimited(&adapter->pdev->dev, "Async message opcode does not match transaction opcode (msg: %d) (xn: %d)\n",
540 ctlq_msg->cookie.mbx.chnl_opcode, xn->vc_op);
541 xn->reply_sz = 0;
542 err = -EINVAL;
543 goto release_bufs;
544 }
545
546 if (xn->async_handler) {
547 err = xn->async_handler(adapter, xn, ctlq_msg);
548 goto release_bufs;
549 }
550
551 if (ctlq_msg->cookie.mbx.chnl_retval) {
552 xn->reply_sz = 0;
553 dev_err_ratelimited(&adapter->pdev->dev, "Async message failure (op %d)\n",
554 ctlq_msg->cookie.mbx.chnl_opcode);
555 err = -EINVAL;
556 }
557
558 release_bufs:
559 idpf_vc_xn_push_free(adapter->vcxn_mngr, xn);
560
561 return err;
562 }
563
564 /**
565 * idpf_vc_xn_forward_reply - copy a reply back to receiving thread
566 * @adapter: driver specific private structure with vcxn_mngr
567 * @ctlq_msg: controlq message to send back to receiving thread
568 */
569 static int
idpf_vc_xn_forward_reply(struct idpf_adapter * adapter,const struct idpf_ctlq_msg * ctlq_msg)570 idpf_vc_xn_forward_reply(struct idpf_adapter *adapter,
571 const struct idpf_ctlq_msg *ctlq_msg)
572 {
573 const void *payload = NULL;
574 size_t payload_size = 0;
575 struct idpf_vc_xn *xn;
576 u16 msg_info;
577 int err = 0;
578 u16 xn_idx;
579 u16 salt;
580
581 msg_info = ctlq_msg->ctx.sw_cookie.data;
582 xn_idx = FIELD_GET(IDPF_VC_XN_IDX_M, msg_info);
583 if (xn_idx >= ARRAY_SIZE(adapter->vcxn_mngr->ring)) {
584 dev_err_ratelimited(&adapter->pdev->dev, "Out of bounds cookie received: %02x\n",
585 xn_idx);
586 return -EINVAL;
587 }
588 xn = &adapter->vcxn_mngr->ring[xn_idx];
589 idpf_vc_xn_lock(xn);
590 salt = FIELD_GET(IDPF_VC_XN_SALT_M, msg_info);
591 if (xn->salt != salt) {
592 dev_err_ratelimited(&adapter->pdev->dev, "Transaction salt does not match (exp:%d@%02x(%d) != got:%d@%02x)\n",
593 xn->vc_op, xn->salt, xn->state,
594 ctlq_msg->cookie.mbx.chnl_opcode, salt);
595 idpf_vc_xn_unlock(xn);
596 return -EINVAL;
597 }
598
599 switch (xn->state) {
600 case IDPF_VC_XN_WAITING:
601 /* success */
602 break;
603 case IDPF_VC_XN_IDLE:
604 dev_err_ratelimited(&adapter->pdev->dev, "Unexpected or belated VC reply (op %d)\n",
605 ctlq_msg->cookie.mbx.chnl_opcode);
606 err = -EINVAL;
607 goto out_unlock;
608 case IDPF_VC_XN_SHUTDOWN:
609 /* ENXIO is a bit special here as the recv msg loop uses that
610 * know if it should stop trying to clean the ring if we lost
611 * the virtchnl. We need to stop playing with registers and
612 * yield.
613 */
614 err = -ENXIO;
615 goto out_unlock;
616 case IDPF_VC_XN_ASYNC:
617 err = idpf_vc_xn_forward_async(adapter, xn, ctlq_msg);
618 idpf_vc_xn_unlock(xn);
619 return err;
620 default:
621 dev_err_ratelimited(&adapter->pdev->dev, "Overwriting VC reply (op %d)\n",
622 ctlq_msg->cookie.mbx.chnl_opcode);
623 err = -EBUSY;
624 goto out_unlock;
625 }
626
627 if (ctlq_msg->cookie.mbx.chnl_opcode != xn->vc_op) {
628 dev_err_ratelimited(&adapter->pdev->dev, "Message opcode does not match transaction opcode (msg: %d) (xn: %d)\n",
629 ctlq_msg->cookie.mbx.chnl_opcode, xn->vc_op);
630 xn->reply_sz = 0;
631 xn->state = IDPF_VC_XN_COMPLETED_FAILED;
632 err = -EINVAL;
633 goto out_unlock;
634 }
635
636 if (ctlq_msg->cookie.mbx.chnl_retval) {
637 xn->reply_sz = 0;
638 xn->state = IDPF_VC_XN_COMPLETED_FAILED;
639 err = -EINVAL;
640 goto out_unlock;
641 }
642
643 if (ctlq_msg->data_len) {
644 payload = ctlq_msg->ctx.indirect.payload->va;
645 payload_size = ctlq_msg->data_len;
646 }
647
648 xn->reply_sz = payload_size;
649 xn->state = IDPF_VC_XN_COMPLETED_SUCCESS;
650
651 if (xn->reply.iov_base && xn->reply.iov_len && payload_size)
652 memcpy(xn->reply.iov_base, payload,
653 min_t(size_t, xn->reply.iov_len, payload_size));
654
655 out_unlock:
656 idpf_vc_xn_unlock(xn);
657 /* we _cannot_ hold lock while calling complete */
658 complete(&xn->completed);
659
660 return err;
661 }
662
663 /**
664 * idpf_recv_mb_msg - Receive message over mailbox
665 * @adapter: Driver specific private structure
666 *
667 * Will receive control queue message and posts the receive buffer. Returns 0
668 * on success and negative on failure.
669 */
idpf_recv_mb_msg(struct idpf_adapter * adapter)670 int idpf_recv_mb_msg(struct idpf_adapter *adapter)
671 {
672 struct idpf_ctlq_msg ctlq_msg;
673 struct idpf_dma_mem *dma_mem;
674 int post_err, err;
675 u16 num_recv;
676
677 while (1) {
678 /* This will get <= num_recv messages and output how many
679 * actually received on num_recv.
680 */
681 num_recv = 1;
682 err = idpf_ctlq_recv(adapter->hw.arq, &num_recv, &ctlq_msg);
683 if (err || !num_recv)
684 break;
685
686 if (ctlq_msg.data_len) {
687 dma_mem = ctlq_msg.ctx.indirect.payload;
688 } else {
689 dma_mem = NULL;
690 num_recv = 0;
691 }
692
693 if (ctlq_msg.cookie.mbx.chnl_opcode == VIRTCHNL2_OP_EVENT)
694 idpf_recv_event_msg(adapter, &ctlq_msg);
695 else
696 err = idpf_vc_xn_forward_reply(adapter, &ctlq_msg);
697
698 post_err = idpf_ctlq_post_rx_buffs(&adapter->hw,
699 adapter->hw.arq,
700 &num_recv, &dma_mem);
701
702 /* If post failed clear the only buffer we supplied */
703 if (post_err) {
704 if (dma_mem)
705 dma_free_coherent(&adapter->pdev->dev,
706 dma_mem->size, dma_mem->va,
707 dma_mem->pa);
708 break;
709 }
710
711 /* virtchnl trying to shutdown, stop cleaning */
712 if (err == -ENXIO)
713 break;
714 }
715
716 return err;
717 }
718
719 struct idpf_chunked_msg_params {
720 u32 (*prepare_msg)(const struct idpf_vport *vport,
721 void *buf, const void *pos,
722 u32 num);
723
724 const void *chunks;
725 u32 num_chunks;
726
727 u32 chunk_sz;
728 u32 config_sz;
729
730 u32 vc_op;
731 };
732
idpf_alloc_queue_set(struct idpf_vport * vport,u32 num)733 struct idpf_queue_set *idpf_alloc_queue_set(struct idpf_vport *vport, u32 num)
734 {
735 struct idpf_queue_set *qp;
736
737 qp = kzalloc(struct_size(qp, qs, num), GFP_KERNEL);
738 if (!qp)
739 return NULL;
740
741 qp->vport = vport;
742 qp->num = num;
743
744 return qp;
745 }
746
747 /**
748 * idpf_send_chunked_msg - send VC message consisting of chunks
749 * @vport: virtual port data structure
750 * @params: message params
751 *
752 * Helper function for preparing a message describing queues to be enabled
753 * or disabled.
754 *
755 * Return: the total size of the prepared message.
756 */
idpf_send_chunked_msg(struct idpf_vport * vport,const struct idpf_chunked_msg_params * params)757 static int idpf_send_chunked_msg(struct idpf_vport *vport,
758 const struct idpf_chunked_msg_params *params)
759 {
760 struct idpf_vc_xn_params xn_params = {
761 .vc_op = params->vc_op,
762 .timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC,
763 };
764 const void *pos = params->chunks;
765 u32 num_chunks, num_msgs, buf_sz;
766 void *buf __free(kfree) = NULL;
767 u32 totqs = params->num_chunks;
768
769 num_chunks = min(IDPF_NUM_CHUNKS_PER_MSG(params->config_sz,
770 params->chunk_sz), totqs);
771 num_msgs = DIV_ROUND_UP(totqs, num_chunks);
772
773 buf_sz = params->config_sz + num_chunks * params->chunk_sz;
774 buf = kzalloc(buf_sz, GFP_KERNEL);
775 if (!buf)
776 return -ENOMEM;
777
778 xn_params.send_buf.iov_base = buf;
779
780 for (u32 i = 0; i < num_msgs; i++) {
781 ssize_t reply_sz;
782
783 memset(buf, 0, buf_sz);
784 xn_params.send_buf.iov_len = buf_sz;
785
786 if (params->prepare_msg(vport, buf, pos, num_chunks) != buf_sz)
787 return -EINVAL;
788
789 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
790 if (reply_sz < 0)
791 return reply_sz;
792
793 pos += num_chunks * params->chunk_sz;
794 totqs -= num_chunks;
795
796 num_chunks = min(num_chunks, totqs);
797 buf_sz = params->config_sz + num_chunks * params->chunk_sz;
798 }
799
800 return 0;
801 }
802
803 /**
804 * idpf_wait_for_marker_event_set - wait for software marker response for
805 * selected Tx queues
806 * @qs: set of the Tx queues
807 *
808 * Return: 0 success, -errno on failure.
809 */
idpf_wait_for_marker_event_set(const struct idpf_queue_set * qs)810 static int idpf_wait_for_marker_event_set(const struct idpf_queue_set *qs)
811 {
812 struct idpf_tx_queue *txq;
813 bool markers_rcvd = true;
814
815 for (u32 i = 0; i < qs->num; i++) {
816 switch (qs->qs[i].type) {
817 case VIRTCHNL2_QUEUE_TYPE_TX:
818 txq = qs->qs[i].txq;
819
820 idpf_queue_set(SW_MARKER, txq);
821 idpf_wait_for_sw_marker_completion(txq);
822 markers_rcvd &= !idpf_queue_has(SW_MARKER, txq);
823 break;
824 default:
825 break;
826 }
827 }
828
829 if (!markers_rcvd) {
830 netdev_warn(qs->vport->netdev,
831 "Failed to receive marker packets\n");
832 return -ETIMEDOUT;
833 }
834
835 return 0;
836 }
837
838 /**
839 * idpf_wait_for_marker_event - wait for software marker response
840 * @vport: virtual port data structure
841 *
842 * Return: 0 success, negative on failure.
843 **/
idpf_wait_for_marker_event(struct idpf_vport * vport)844 static int idpf_wait_for_marker_event(struct idpf_vport *vport)
845 {
846 struct idpf_queue_set *qs __free(kfree) = NULL;
847
848 qs = idpf_alloc_queue_set(vport, vport->num_txq);
849 if (!qs)
850 return -ENOMEM;
851
852 for (u32 i = 0; i < qs->num; i++) {
853 qs->qs[i].type = VIRTCHNL2_QUEUE_TYPE_TX;
854 qs->qs[i].txq = vport->txqs[i];
855 }
856
857 return idpf_wait_for_marker_event_set(qs);
858 }
859
860 /**
861 * idpf_send_ver_msg - send virtchnl version message
862 * @adapter: Driver specific private structure
863 *
864 * Send virtchnl version message. Returns 0 on success, negative on failure.
865 */
idpf_send_ver_msg(struct idpf_adapter * adapter)866 static int idpf_send_ver_msg(struct idpf_adapter *adapter)
867 {
868 struct idpf_vc_xn_params xn_params = {};
869 struct virtchnl2_version_info vvi;
870 ssize_t reply_sz;
871 u32 major, minor;
872 int err = 0;
873
874 if (adapter->virt_ver_maj) {
875 vvi.major = cpu_to_le32(adapter->virt_ver_maj);
876 vvi.minor = cpu_to_le32(adapter->virt_ver_min);
877 } else {
878 vvi.major = cpu_to_le32(IDPF_VIRTCHNL_VERSION_MAJOR);
879 vvi.minor = cpu_to_le32(IDPF_VIRTCHNL_VERSION_MINOR);
880 }
881
882 xn_params.vc_op = VIRTCHNL2_OP_VERSION;
883 xn_params.send_buf.iov_base = &vvi;
884 xn_params.send_buf.iov_len = sizeof(vvi);
885 xn_params.recv_buf = xn_params.send_buf;
886 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
887
888 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
889 if (reply_sz < 0)
890 return reply_sz;
891 if (reply_sz < sizeof(vvi))
892 return -EIO;
893
894 major = le32_to_cpu(vvi.major);
895 minor = le32_to_cpu(vvi.minor);
896
897 if (major > IDPF_VIRTCHNL_VERSION_MAJOR) {
898 dev_warn(&adapter->pdev->dev, "Virtchnl major version greater than supported\n");
899 return -EINVAL;
900 }
901
902 if (major == IDPF_VIRTCHNL_VERSION_MAJOR &&
903 minor > IDPF_VIRTCHNL_VERSION_MINOR)
904 dev_warn(&adapter->pdev->dev, "Virtchnl minor version didn't match\n");
905
906 /* If we have a mismatch, resend version to update receiver on what
907 * version we will use.
908 */
909 if (!adapter->virt_ver_maj &&
910 major != IDPF_VIRTCHNL_VERSION_MAJOR &&
911 minor != IDPF_VIRTCHNL_VERSION_MINOR)
912 err = -EAGAIN;
913
914 adapter->virt_ver_maj = major;
915 adapter->virt_ver_min = minor;
916
917 return err;
918 }
919
920 /**
921 * idpf_send_get_caps_msg - Send virtchnl get capabilities message
922 * @adapter: Driver specific private structure
923 *
924 * Send virtchl get capabilities message. Returns 0 on success, negative on
925 * failure.
926 */
idpf_send_get_caps_msg(struct idpf_adapter * adapter)927 static int idpf_send_get_caps_msg(struct idpf_adapter *adapter)
928 {
929 struct virtchnl2_get_capabilities caps = {};
930 struct idpf_vc_xn_params xn_params = {};
931 ssize_t reply_sz;
932
933 caps.csum_caps =
934 cpu_to_le32(VIRTCHNL2_CAP_TX_CSUM_L3_IPV4 |
935 VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_TCP |
936 VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_UDP |
937 VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_SCTP |
938 VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_TCP |
939 VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_UDP |
940 VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_SCTP |
941 VIRTCHNL2_CAP_RX_CSUM_L3_IPV4 |
942 VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_TCP |
943 VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_UDP |
944 VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_SCTP |
945 VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_TCP |
946 VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_UDP |
947 VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_SCTP |
948 VIRTCHNL2_CAP_TX_CSUM_L3_SINGLE_TUNNEL |
949 VIRTCHNL2_CAP_RX_CSUM_L3_SINGLE_TUNNEL |
950 VIRTCHNL2_CAP_TX_CSUM_L4_SINGLE_TUNNEL |
951 VIRTCHNL2_CAP_RX_CSUM_L4_SINGLE_TUNNEL |
952 VIRTCHNL2_CAP_RX_CSUM_GENERIC);
953
954 caps.seg_caps =
955 cpu_to_le32(VIRTCHNL2_CAP_SEG_IPV4_TCP |
956 VIRTCHNL2_CAP_SEG_IPV4_UDP |
957 VIRTCHNL2_CAP_SEG_IPV4_SCTP |
958 VIRTCHNL2_CAP_SEG_IPV6_TCP |
959 VIRTCHNL2_CAP_SEG_IPV6_UDP |
960 VIRTCHNL2_CAP_SEG_IPV6_SCTP |
961 VIRTCHNL2_CAP_SEG_TX_SINGLE_TUNNEL);
962
963 caps.rss_caps =
964 cpu_to_le64(VIRTCHNL2_FLOW_IPV4_TCP |
965 VIRTCHNL2_FLOW_IPV4_UDP |
966 VIRTCHNL2_FLOW_IPV4_SCTP |
967 VIRTCHNL2_FLOW_IPV4_OTHER |
968 VIRTCHNL2_FLOW_IPV6_TCP |
969 VIRTCHNL2_FLOW_IPV6_UDP |
970 VIRTCHNL2_FLOW_IPV6_SCTP |
971 VIRTCHNL2_FLOW_IPV6_OTHER);
972
973 caps.hsplit_caps =
974 cpu_to_le32(VIRTCHNL2_CAP_RX_HSPLIT_AT_L4V4 |
975 VIRTCHNL2_CAP_RX_HSPLIT_AT_L4V6);
976
977 caps.rsc_caps =
978 cpu_to_le32(VIRTCHNL2_CAP_RSC_IPV4_TCP |
979 VIRTCHNL2_CAP_RSC_IPV6_TCP);
980
981 caps.other_caps =
982 cpu_to_le64(VIRTCHNL2_CAP_SRIOV |
983 VIRTCHNL2_CAP_RDMA |
984 VIRTCHNL2_CAP_LAN_MEMORY_REGIONS |
985 VIRTCHNL2_CAP_MACFILTER |
986 VIRTCHNL2_CAP_SPLITQ_QSCHED |
987 VIRTCHNL2_CAP_PROMISC |
988 VIRTCHNL2_CAP_LOOPBACK |
989 VIRTCHNL2_CAP_PTP);
990
991 xn_params.vc_op = VIRTCHNL2_OP_GET_CAPS;
992 xn_params.send_buf.iov_base = ∩︀
993 xn_params.send_buf.iov_len = sizeof(caps);
994 xn_params.recv_buf.iov_base = &adapter->caps;
995 xn_params.recv_buf.iov_len = sizeof(adapter->caps);
996 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
997
998 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
999 if (reply_sz < 0)
1000 return reply_sz;
1001 if (reply_sz < sizeof(adapter->caps))
1002 return -EIO;
1003
1004 return 0;
1005 }
1006
1007 /**
1008 * idpf_send_get_lan_memory_regions - Send virtchnl get LAN memory regions msg
1009 * @adapter: Driver specific private struct
1010 *
1011 * Return: 0 on success or error code on failure.
1012 */
idpf_send_get_lan_memory_regions(struct idpf_adapter * adapter)1013 static int idpf_send_get_lan_memory_regions(struct idpf_adapter *adapter)
1014 {
1015 struct virtchnl2_get_lan_memory_regions *rcvd_regions __free(kfree);
1016 struct idpf_vc_xn_params xn_params = {
1017 .vc_op = VIRTCHNL2_OP_GET_LAN_MEMORY_REGIONS,
1018 .recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN,
1019 .send_buf.iov_len =
1020 sizeof(struct virtchnl2_get_lan_memory_regions) +
1021 sizeof(struct virtchnl2_mem_region),
1022 .timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC,
1023 };
1024 int num_regions, size;
1025 struct idpf_hw *hw;
1026 ssize_t reply_sz;
1027 int err = 0;
1028
1029 rcvd_regions = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
1030 if (!rcvd_regions)
1031 return -ENOMEM;
1032
1033 xn_params.recv_buf.iov_base = rcvd_regions;
1034 rcvd_regions->num_memory_regions = cpu_to_le16(1);
1035 xn_params.send_buf.iov_base = rcvd_regions;
1036 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
1037 if (reply_sz < 0)
1038 return reply_sz;
1039
1040 num_regions = le16_to_cpu(rcvd_regions->num_memory_regions);
1041 size = struct_size(rcvd_regions, mem_reg, num_regions);
1042 if (reply_sz < size)
1043 return -EIO;
1044
1045 if (size > IDPF_CTLQ_MAX_BUF_LEN)
1046 return -EINVAL;
1047
1048 hw = &adapter->hw;
1049 hw->lan_regs = kcalloc(num_regions, sizeof(*hw->lan_regs), GFP_KERNEL);
1050 if (!hw->lan_regs)
1051 return -ENOMEM;
1052
1053 for (int i = 0; i < num_regions; i++) {
1054 hw->lan_regs[i].addr_len =
1055 le64_to_cpu(rcvd_regions->mem_reg[i].size);
1056 hw->lan_regs[i].addr_start =
1057 le64_to_cpu(rcvd_regions->mem_reg[i].start_offset);
1058 }
1059 hw->num_lan_regs = num_regions;
1060
1061 return err;
1062 }
1063
1064 /**
1065 * idpf_calc_remaining_mmio_regs - calculate MMIO regions outside mbx and rstat
1066 * @adapter: Driver specific private structure
1067 *
1068 * Called when idpf_send_get_lan_memory_regions is not supported. This will
1069 * calculate the offsets and sizes for the regions before, in between, and
1070 * after the mailbox and rstat MMIO mappings.
1071 *
1072 * Return: 0 on success or error code on failure.
1073 */
idpf_calc_remaining_mmio_regs(struct idpf_adapter * adapter)1074 static int idpf_calc_remaining_mmio_regs(struct idpf_adapter *adapter)
1075 {
1076 struct resource *rstat_reg = &adapter->dev_ops.static_reg_info[1];
1077 struct resource *mbx_reg = &adapter->dev_ops.static_reg_info[0];
1078 struct idpf_hw *hw = &adapter->hw;
1079
1080 hw->num_lan_regs = IDPF_MMIO_MAP_FALLBACK_MAX_REMAINING;
1081 hw->lan_regs = kcalloc(hw->num_lan_regs, sizeof(*hw->lan_regs),
1082 GFP_KERNEL);
1083 if (!hw->lan_regs)
1084 return -ENOMEM;
1085
1086 /* Region preceding mailbox */
1087 hw->lan_regs[0].addr_start = 0;
1088 hw->lan_regs[0].addr_len = mbx_reg->start;
1089 /* Region between mailbox and rstat */
1090 hw->lan_regs[1].addr_start = mbx_reg->end + 1;
1091 hw->lan_regs[1].addr_len = rstat_reg->start -
1092 hw->lan_regs[1].addr_start;
1093 /* Region after rstat */
1094 hw->lan_regs[2].addr_start = rstat_reg->end + 1;
1095 hw->lan_regs[2].addr_len = pci_resource_len(adapter->pdev, 0) -
1096 hw->lan_regs[2].addr_start;
1097
1098 return 0;
1099 }
1100
1101 /**
1102 * idpf_map_lan_mmio_regs - map remaining LAN BAR regions
1103 * @adapter: Driver specific private structure
1104 *
1105 * Return: 0 on success or error code on failure.
1106 */
idpf_map_lan_mmio_regs(struct idpf_adapter * adapter)1107 static int idpf_map_lan_mmio_regs(struct idpf_adapter *adapter)
1108 {
1109 struct pci_dev *pdev = adapter->pdev;
1110 struct idpf_hw *hw = &adapter->hw;
1111 resource_size_t res_start;
1112
1113 res_start = pci_resource_start(pdev, 0);
1114
1115 for (int i = 0; i < hw->num_lan_regs; i++) {
1116 resource_size_t start;
1117 long len;
1118
1119 len = hw->lan_regs[i].addr_len;
1120 if (!len)
1121 continue;
1122 start = hw->lan_regs[i].addr_start + res_start;
1123
1124 hw->lan_regs[i].vaddr = devm_ioremap(&pdev->dev, start, len);
1125 if (!hw->lan_regs[i].vaddr) {
1126 pci_err(pdev, "failed to allocate BAR0 region\n");
1127 return -ENOMEM;
1128 }
1129 }
1130
1131 return 0;
1132 }
1133
1134 /**
1135 * idpf_add_del_fsteer_filters - Send virtchnl add/del Flow Steering message
1136 * @adapter: adapter info struct
1137 * @rule: Flow steering rule to add/delete
1138 * @opcode: VIRTCHNL2_OP_ADD_FLOW_RULE to add filter, or
1139 * VIRTCHNL2_OP_DEL_FLOW_RULE to delete. All other values are invalid.
1140 *
1141 * Send ADD/DELETE flow steering virtchnl message and receive the result.
1142 *
1143 * Return: 0 on success, negative on failure.
1144 */
idpf_add_del_fsteer_filters(struct idpf_adapter * adapter,struct virtchnl2_flow_rule_add_del * rule,enum virtchnl2_op opcode)1145 int idpf_add_del_fsteer_filters(struct idpf_adapter *adapter,
1146 struct virtchnl2_flow_rule_add_del *rule,
1147 enum virtchnl2_op opcode)
1148 {
1149 int rule_count = le32_to_cpu(rule->count);
1150 struct idpf_vc_xn_params xn_params = {};
1151 ssize_t reply_sz;
1152
1153 if (opcode != VIRTCHNL2_OP_ADD_FLOW_RULE &&
1154 opcode != VIRTCHNL2_OP_DEL_FLOW_RULE)
1155 return -EINVAL;
1156
1157 xn_params.vc_op = opcode;
1158 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1159 xn_params.async = false;
1160 xn_params.send_buf.iov_base = rule;
1161 xn_params.send_buf.iov_len = struct_size(rule, rule_info, rule_count);
1162 xn_params.recv_buf.iov_base = rule;
1163 xn_params.recv_buf.iov_len = struct_size(rule, rule_info, rule_count);
1164
1165 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
1166 return reply_sz < 0 ? reply_sz : 0;
1167 }
1168
1169 /**
1170 * idpf_vport_alloc_max_qs - Allocate max queues for a vport
1171 * @adapter: Driver specific private structure
1172 * @max_q: vport max queue structure
1173 */
idpf_vport_alloc_max_qs(struct idpf_adapter * adapter,struct idpf_vport_max_q * max_q)1174 int idpf_vport_alloc_max_qs(struct idpf_adapter *adapter,
1175 struct idpf_vport_max_q *max_q)
1176 {
1177 struct idpf_avail_queue_info *avail_queues = &adapter->avail_queues;
1178 struct virtchnl2_get_capabilities *caps = &adapter->caps;
1179 u16 default_vports = idpf_get_default_vports(adapter);
1180 u32 max_rx_q, max_tx_q, max_buf_q, max_compl_q;
1181
1182 mutex_lock(&adapter->queue_lock);
1183
1184 /* Caps are device-wide. Give each vport an equal piece */
1185 max_rx_q = le16_to_cpu(caps->max_rx_q) / default_vports;
1186 max_tx_q = le16_to_cpu(caps->max_tx_q) / default_vports;
1187 max_buf_q = le16_to_cpu(caps->max_rx_bufq) / default_vports;
1188 max_compl_q = le16_to_cpu(caps->max_tx_complq) / default_vports;
1189
1190 if (adapter->num_alloc_vports >= default_vports) {
1191 max_rx_q = IDPF_MIN_Q;
1192 max_tx_q = IDPF_MIN_Q;
1193 }
1194
1195 /*
1196 * Harmonize the numbers. The current implementation always creates
1197 * `IDPF_MAX_BUFQS_PER_RXQ_GRP` buffer queues for each Rx queue and
1198 * one completion queue for each Tx queue for best performance.
1199 * If less buffer or completion queues is available, cap the number
1200 * of the corresponding Rx/Tx queues.
1201 */
1202 max_rx_q = min(max_rx_q, max_buf_q / IDPF_MAX_BUFQS_PER_RXQ_GRP);
1203 max_tx_q = min(max_tx_q, max_compl_q);
1204
1205 max_q->max_rxq = max_rx_q;
1206 max_q->max_txq = max_tx_q;
1207 max_q->max_bufq = max_rx_q * IDPF_MAX_BUFQS_PER_RXQ_GRP;
1208 max_q->max_complq = max_tx_q;
1209
1210 if (avail_queues->avail_rxq < max_q->max_rxq ||
1211 avail_queues->avail_txq < max_q->max_txq ||
1212 avail_queues->avail_bufq < max_q->max_bufq ||
1213 avail_queues->avail_complq < max_q->max_complq) {
1214 mutex_unlock(&adapter->queue_lock);
1215
1216 return -EINVAL;
1217 }
1218
1219 avail_queues->avail_rxq -= max_q->max_rxq;
1220 avail_queues->avail_txq -= max_q->max_txq;
1221 avail_queues->avail_bufq -= max_q->max_bufq;
1222 avail_queues->avail_complq -= max_q->max_complq;
1223
1224 mutex_unlock(&adapter->queue_lock);
1225
1226 return 0;
1227 }
1228
1229 /**
1230 * idpf_vport_dealloc_max_qs - Deallocate max queues of a vport
1231 * @adapter: Driver specific private structure
1232 * @max_q: vport max queue structure
1233 */
idpf_vport_dealloc_max_qs(struct idpf_adapter * adapter,struct idpf_vport_max_q * max_q)1234 void idpf_vport_dealloc_max_qs(struct idpf_adapter *adapter,
1235 struct idpf_vport_max_q *max_q)
1236 {
1237 struct idpf_avail_queue_info *avail_queues;
1238
1239 mutex_lock(&adapter->queue_lock);
1240 avail_queues = &adapter->avail_queues;
1241
1242 avail_queues->avail_rxq += max_q->max_rxq;
1243 avail_queues->avail_txq += max_q->max_txq;
1244 avail_queues->avail_bufq += max_q->max_bufq;
1245 avail_queues->avail_complq += max_q->max_complq;
1246
1247 mutex_unlock(&adapter->queue_lock);
1248 }
1249
1250 /**
1251 * idpf_init_avail_queues - Initialize available queues on the device
1252 * @adapter: Driver specific private structure
1253 */
idpf_init_avail_queues(struct idpf_adapter * adapter)1254 static void idpf_init_avail_queues(struct idpf_adapter *adapter)
1255 {
1256 struct idpf_avail_queue_info *avail_queues = &adapter->avail_queues;
1257 struct virtchnl2_get_capabilities *caps = &adapter->caps;
1258
1259 avail_queues->avail_rxq = le16_to_cpu(caps->max_rx_q);
1260 avail_queues->avail_txq = le16_to_cpu(caps->max_tx_q);
1261 avail_queues->avail_bufq = le16_to_cpu(caps->max_rx_bufq);
1262 avail_queues->avail_complq = le16_to_cpu(caps->max_tx_complq);
1263 }
1264
1265 /**
1266 * idpf_get_reg_intr_vecs - Get vector queue register offset
1267 * @vport: virtual port structure
1268 * @reg_vals: Register offsets to store in
1269 *
1270 * Returns number of registers that got populated
1271 */
idpf_get_reg_intr_vecs(struct idpf_vport * vport,struct idpf_vec_regs * reg_vals)1272 int idpf_get_reg_intr_vecs(struct idpf_vport *vport,
1273 struct idpf_vec_regs *reg_vals)
1274 {
1275 struct virtchnl2_vector_chunks *chunks;
1276 struct idpf_vec_regs reg_val;
1277 u16 num_vchunks, num_vec;
1278 int num_regs = 0, i, j;
1279
1280 chunks = &vport->adapter->req_vec_chunks->vchunks;
1281 num_vchunks = le16_to_cpu(chunks->num_vchunks);
1282
1283 for (j = 0; j < num_vchunks; j++) {
1284 struct virtchnl2_vector_chunk *chunk;
1285 u32 dynctl_reg_spacing;
1286 u32 itrn_reg_spacing;
1287
1288 chunk = &chunks->vchunks[j];
1289 num_vec = le16_to_cpu(chunk->num_vectors);
1290 reg_val.dyn_ctl_reg = le32_to_cpu(chunk->dynctl_reg_start);
1291 reg_val.itrn_reg = le32_to_cpu(chunk->itrn_reg_start);
1292 reg_val.itrn_index_spacing = le32_to_cpu(chunk->itrn_index_spacing);
1293
1294 dynctl_reg_spacing = le32_to_cpu(chunk->dynctl_reg_spacing);
1295 itrn_reg_spacing = le32_to_cpu(chunk->itrn_reg_spacing);
1296
1297 for (i = 0; i < num_vec; i++) {
1298 reg_vals[num_regs].dyn_ctl_reg = reg_val.dyn_ctl_reg;
1299 reg_vals[num_regs].itrn_reg = reg_val.itrn_reg;
1300 reg_vals[num_regs].itrn_index_spacing =
1301 reg_val.itrn_index_spacing;
1302
1303 reg_val.dyn_ctl_reg += dynctl_reg_spacing;
1304 reg_val.itrn_reg += itrn_reg_spacing;
1305 num_regs++;
1306 }
1307 }
1308
1309 return num_regs;
1310 }
1311
1312 /**
1313 * idpf_vport_get_q_reg - Get the queue registers for the vport
1314 * @reg_vals: register values needing to be set
1315 * @num_regs: amount we expect to fill
1316 * @q_type: queue model
1317 * @chunks: queue regs received over mailbox
1318 *
1319 * This function parses the queue register offsets from the queue register
1320 * chunk information, with a specific queue type and stores it into the array
1321 * passed as an argument. It returns the actual number of queue registers that
1322 * are filled.
1323 */
idpf_vport_get_q_reg(u32 * reg_vals,int num_regs,u32 q_type,struct virtchnl2_queue_reg_chunks * chunks)1324 static int idpf_vport_get_q_reg(u32 *reg_vals, int num_regs, u32 q_type,
1325 struct virtchnl2_queue_reg_chunks *chunks)
1326 {
1327 u16 num_chunks = le16_to_cpu(chunks->num_chunks);
1328 int reg_filled = 0, i;
1329 u32 reg_val;
1330
1331 while (num_chunks--) {
1332 struct virtchnl2_queue_reg_chunk *chunk;
1333 u16 num_q;
1334
1335 chunk = &chunks->chunks[num_chunks];
1336 if (le32_to_cpu(chunk->type) != q_type)
1337 continue;
1338
1339 num_q = le32_to_cpu(chunk->num_queues);
1340 reg_val = le64_to_cpu(chunk->qtail_reg_start);
1341 for (i = 0; i < num_q && reg_filled < num_regs ; i++) {
1342 reg_vals[reg_filled++] = reg_val;
1343 reg_val += le32_to_cpu(chunk->qtail_reg_spacing);
1344 }
1345 }
1346
1347 return reg_filled;
1348 }
1349
1350 /**
1351 * __idpf_queue_reg_init - initialize queue registers
1352 * @vport: virtual port structure
1353 * @reg_vals: registers we are initializing
1354 * @num_regs: how many registers there are in total
1355 * @q_type: queue model
1356 *
1357 * Return number of queues that are initialized
1358 */
__idpf_queue_reg_init(struct idpf_vport * vport,u32 * reg_vals,int num_regs,u32 q_type)1359 static int __idpf_queue_reg_init(struct idpf_vport *vport, u32 *reg_vals,
1360 int num_regs, u32 q_type)
1361 {
1362 struct idpf_adapter *adapter = vport->adapter;
1363 int i, j, k = 0;
1364
1365 switch (q_type) {
1366 case VIRTCHNL2_QUEUE_TYPE_TX:
1367 for (i = 0; i < vport->num_txq_grp; i++) {
1368 struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1369
1370 for (j = 0; j < tx_qgrp->num_txq && k < num_regs; j++, k++)
1371 tx_qgrp->txqs[j]->tail =
1372 idpf_get_reg_addr(adapter, reg_vals[k]);
1373 }
1374 break;
1375 case VIRTCHNL2_QUEUE_TYPE_RX:
1376 for (i = 0; i < vport->num_rxq_grp; i++) {
1377 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1378 u16 num_rxq = rx_qgrp->singleq.num_rxq;
1379
1380 for (j = 0; j < num_rxq && k < num_regs; j++, k++) {
1381 struct idpf_rx_queue *q;
1382
1383 q = rx_qgrp->singleq.rxqs[j];
1384 q->tail = idpf_get_reg_addr(adapter,
1385 reg_vals[k]);
1386 }
1387 }
1388 break;
1389 case VIRTCHNL2_QUEUE_TYPE_RX_BUFFER:
1390 for (i = 0; i < vport->num_rxq_grp; i++) {
1391 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1392 u8 num_bufqs = vport->num_bufqs_per_qgrp;
1393
1394 for (j = 0; j < num_bufqs && k < num_regs; j++, k++) {
1395 struct idpf_buf_queue *q;
1396
1397 q = &rx_qgrp->splitq.bufq_sets[j].bufq;
1398 q->tail = idpf_get_reg_addr(adapter,
1399 reg_vals[k]);
1400 }
1401 }
1402 break;
1403 default:
1404 break;
1405 }
1406
1407 return k;
1408 }
1409
1410 /**
1411 * idpf_queue_reg_init - initialize queue registers
1412 * @vport: virtual port structure
1413 *
1414 * Return 0 on success, negative on failure
1415 */
idpf_queue_reg_init(struct idpf_vport * vport)1416 int idpf_queue_reg_init(struct idpf_vport *vport)
1417 {
1418 struct virtchnl2_create_vport *vport_params;
1419 struct virtchnl2_queue_reg_chunks *chunks;
1420 struct idpf_vport_config *vport_config;
1421 u16 vport_idx = vport->idx;
1422 int num_regs, ret = 0;
1423 u32 *reg_vals;
1424
1425 /* We may never deal with more than 256 same type of queues */
1426 reg_vals = kzalloc(sizeof(void *) * IDPF_LARGE_MAX_Q, GFP_KERNEL);
1427 if (!reg_vals)
1428 return -ENOMEM;
1429
1430 vport_config = vport->adapter->vport_config[vport_idx];
1431 if (vport_config->req_qs_chunks) {
1432 struct virtchnl2_add_queues *vc_aq =
1433 (struct virtchnl2_add_queues *)vport_config->req_qs_chunks;
1434 chunks = &vc_aq->chunks;
1435 } else {
1436 vport_params = vport->adapter->vport_params_recvd[vport_idx];
1437 chunks = &vport_params->chunks;
1438 }
1439
1440 /* Initialize Tx queue tail register address */
1441 num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
1442 VIRTCHNL2_QUEUE_TYPE_TX,
1443 chunks);
1444 if (num_regs < vport->num_txq) {
1445 ret = -EINVAL;
1446 goto free_reg_vals;
1447 }
1448
1449 num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
1450 VIRTCHNL2_QUEUE_TYPE_TX);
1451 if (num_regs < vport->num_txq) {
1452 ret = -EINVAL;
1453 goto free_reg_vals;
1454 }
1455
1456 /* Initialize Rx/buffer queue tail register address based on Rx queue
1457 * model
1458 */
1459 if (idpf_is_queue_model_split(vport->rxq_model)) {
1460 num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
1461 VIRTCHNL2_QUEUE_TYPE_RX_BUFFER,
1462 chunks);
1463 if (num_regs < vport->num_bufq) {
1464 ret = -EINVAL;
1465 goto free_reg_vals;
1466 }
1467
1468 num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
1469 VIRTCHNL2_QUEUE_TYPE_RX_BUFFER);
1470 if (num_regs < vport->num_bufq) {
1471 ret = -EINVAL;
1472 goto free_reg_vals;
1473 }
1474 } else {
1475 num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
1476 VIRTCHNL2_QUEUE_TYPE_RX,
1477 chunks);
1478 if (num_regs < vport->num_rxq) {
1479 ret = -EINVAL;
1480 goto free_reg_vals;
1481 }
1482
1483 num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
1484 VIRTCHNL2_QUEUE_TYPE_RX);
1485 if (num_regs < vport->num_rxq) {
1486 ret = -EINVAL;
1487 goto free_reg_vals;
1488 }
1489 }
1490
1491 free_reg_vals:
1492 kfree(reg_vals);
1493
1494 return ret;
1495 }
1496
1497 /**
1498 * idpf_send_create_vport_msg - Send virtchnl create vport message
1499 * @adapter: Driver specific private structure
1500 * @max_q: vport max queue info
1501 *
1502 * send virtchnl creae vport message
1503 *
1504 * Returns 0 on success, negative on failure
1505 */
idpf_send_create_vport_msg(struct idpf_adapter * adapter,struct idpf_vport_max_q * max_q)1506 int idpf_send_create_vport_msg(struct idpf_adapter *adapter,
1507 struct idpf_vport_max_q *max_q)
1508 {
1509 struct virtchnl2_create_vport *vport_msg;
1510 struct idpf_vc_xn_params xn_params = {};
1511 u16 idx = adapter->next_vport;
1512 int err, buf_size;
1513 ssize_t reply_sz;
1514
1515 buf_size = sizeof(struct virtchnl2_create_vport);
1516 if (!adapter->vport_params_reqd[idx]) {
1517 adapter->vport_params_reqd[idx] = kzalloc(buf_size,
1518 GFP_KERNEL);
1519 if (!adapter->vport_params_reqd[idx])
1520 return -ENOMEM;
1521 }
1522
1523 vport_msg = adapter->vport_params_reqd[idx];
1524 vport_msg->vport_type = cpu_to_le16(VIRTCHNL2_VPORT_TYPE_DEFAULT);
1525 vport_msg->vport_index = cpu_to_le16(idx);
1526
1527 if (adapter->req_tx_splitq || !IS_ENABLED(CONFIG_IDPF_SINGLEQ))
1528 vport_msg->txq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SPLIT);
1529 else
1530 vport_msg->txq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SINGLE);
1531
1532 if (adapter->req_rx_splitq || !IS_ENABLED(CONFIG_IDPF_SINGLEQ))
1533 vport_msg->rxq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SPLIT);
1534 else
1535 vport_msg->rxq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SINGLE);
1536
1537 err = idpf_vport_calc_total_qs(adapter, idx, vport_msg, max_q);
1538 if (err) {
1539 dev_err(&adapter->pdev->dev, "Enough queues are not available");
1540
1541 return err;
1542 }
1543
1544 if (!adapter->vport_params_recvd[idx]) {
1545 adapter->vport_params_recvd[idx] = kzalloc(IDPF_CTLQ_MAX_BUF_LEN,
1546 GFP_KERNEL);
1547 if (!adapter->vport_params_recvd[idx]) {
1548 err = -ENOMEM;
1549 goto free_vport_params;
1550 }
1551 }
1552
1553 xn_params.vc_op = VIRTCHNL2_OP_CREATE_VPORT;
1554 xn_params.send_buf.iov_base = vport_msg;
1555 xn_params.send_buf.iov_len = buf_size;
1556 xn_params.recv_buf.iov_base = adapter->vport_params_recvd[idx];
1557 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
1558 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1559 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
1560 if (reply_sz < 0) {
1561 err = reply_sz;
1562 goto free_vport_params;
1563 }
1564
1565 return 0;
1566
1567 free_vport_params:
1568 kfree(adapter->vport_params_recvd[idx]);
1569 adapter->vport_params_recvd[idx] = NULL;
1570 kfree(adapter->vport_params_reqd[idx]);
1571 adapter->vport_params_reqd[idx] = NULL;
1572
1573 return err;
1574 }
1575
1576 /**
1577 * idpf_check_supported_desc_ids - Verify we have required descriptor support
1578 * @vport: virtual port structure
1579 *
1580 * Return 0 on success, error on failure
1581 */
idpf_check_supported_desc_ids(struct idpf_vport * vport)1582 int idpf_check_supported_desc_ids(struct idpf_vport *vport)
1583 {
1584 struct idpf_adapter *adapter = vport->adapter;
1585 struct virtchnl2_create_vport *vport_msg;
1586 u64 rx_desc_ids, tx_desc_ids;
1587
1588 vport_msg = adapter->vport_params_recvd[vport->idx];
1589
1590 if (!IS_ENABLED(CONFIG_IDPF_SINGLEQ) &&
1591 (vport_msg->rxq_model == VIRTCHNL2_QUEUE_MODEL_SINGLE ||
1592 vport_msg->txq_model == VIRTCHNL2_QUEUE_MODEL_SINGLE)) {
1593 pci_err(adapter->pdev, "singleq mode requested, but not compiled-in\n");
1594 return -EOPNOTSUPP;
1595 }
1596
1597 rx_desc_ids = le64_to_cpu(vport_msg->rx_desc_ids);
1598 tx_desc_ids = le64_to_cpu(vport_msg->tx_desc_ids);
1599
1600 if (idpf_is_queue_model_split(vport->rxq_model)) {
1601 if (!(rx_desc_ids & VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M)) {
1602 dev_info(&adapter->pdev->dev, "Minimum RX descriptor support not provided, using the default\n");
1603 vport_msg->rx_desc_ids = cpu_to_le64(VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M);
1604 }
1605 } else {
1606 if (!(rx_desc_ids & VIRTCHNL2_RXDID_2_FLEX_SQ_NIC_M))
1607 vport->base_rxd = true;
1608 }
1609
1610 if (!idpf_is_queue_model_split(vport->txq_model))
1611 return 0;
1612
1613 if ((tx_desc_ids & MIN_SUPPORT_TXDID) != MIN_SUPPORT_TXDID) {
1614 dev_info(&adapter->pdev->dev, "Minimum TX descriptor support not provided, using the default\n");
1615 vport_msg->tx_desc_ids = cpu_to_le64(MIN_SUPPORT_TXDID);
1616 }
1617
1618 return 0;
1619 }
1620
1621 /**
1622 * idpf_send_destroy_vport_msg - Send virtchnl destroy vport message
1623 * @vport: virtual port data structure
1624 *
1625 * Send virtchnl destroy vport message. Returns 0 on success, negative on
1626 * failure.
1627 */
idpf_send_destroy_vport_msg(struct idpf_vport * vport)1628 int idpf_send_destroy_vport_msg(struct idpf_vport *vport)
1629 {
1630 struct idpf_vc_xn_params xn_params = {};
1631 struct virtchnl2_vport v_id;
1632 ssize_t reply_sz;
1633
1634 v_id.vport_id = cpu_to_le32(vport->vport_id);
1635
1636 xn_params.vc_op = VIRTCHNL2_OP_DESTROY_VPORT;
1637 xn_params.send_buf.iov_base = &v_id;
1638 xn_params.send_buf.iov_len = sizeof(v_id);
1639 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1640 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1641
1642 return reply_sz < 0 ? reply_sz : 0;
1643 }
1644
1645 /**
1646 * idpf_send_enable_vport_msg - Send virtchnl enable vport message
1647 * @vport: virtual port data structure
1648 *
1649 * Send enable vport virtchnl message. Returns 0 on success, negative on
1650 * failure.
1651 */
idpf_send_enable_vport_msg(struct idpf_vport * vport)1652 int idpf_send_enable_vport_msg(struct idpf_vport *vport)
1653 {
1654 struct idpf_vc_xn_params xn_params = {};
1655 struct virtchnl2_vport v_id;
1656 ssize_t reply_sz;
1657
1658 v_id.vport_id = cpu_to_le32(vport->vport_id);
1659
1660 xn_params.vc_op = VIRTCHNL2_OP_ENABLE_VPORT;
1661 xn_params.send_buf.iov_base = &v_id;
1662 xn_params.send_buf.iov_len = sizeof(v_id);
1663 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1664 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1665
1666 return reply_sz < 0 ? reply_sz : 0;
1667 }
1668
1669 /**
1670 * idpf_send_disable_vport_msg - Send virtchnl disable vport message
1671 * @vport: virtual port data structure
1672 *
1673 * Send disable vport virtchnl message. Returns 0 on success, negative on
1674 * failure.
1675 */
idpf_send_disable_vport_msg(struct idpf_vport * vport)1676 int idpf_send_disable_vport_msg(struct idpf_vport *vport)
1677 {
1678 struct idpf_vc_xn_params xn_params = {};
1679 struct virtchnl2_vport v_id;
1680 ssize_t reply_sz;
1681
1682 v_id.vport_id = cpu_to_le32(vport->vport_id);
1683
1684 xn_params.vc_op = VIRTCHNL2_OP_DISABLE_VPORT;
1685 xn_params.send_buf.iov_base = &v_id;
1686 xn_params.send_buf.iov_len = sizeof(v_id);
1687 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1688 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1689
1690 return reply_sz < 0 ? reply_sz : 0;
1691 }
1692
1693 /**
1694 * idpf_fill_txq_config_chunk - fill chunk describing the Tx queue
1695 * @vport: virtual port data structure
1696 * @q: Tx queue to be inserted into VC chunk
1697 * @qi: pointer to the buffer containing the VC chunk
1698 */
idpf_fill_txq_config_chunk(const struct idpf_vport * vport,const struct idpf_tx_queue * q,struct virtchnl2_txq_info * qi)1699 static void idpf_fill_txq_config_chunk(const struct idpf_vport *vport,
1700 const struct idpf_tx_queue *q,
1701 struct virtchnl2_txq_info *qi)
1702 {
1703 u32 val;
1704
1705 qi->queue_id = cpu_to_le32(q->q_id);
1706 qi->model = cpu_to_le16(vport->txq_model);
1707 qi->type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX);
1708 qi->ring_len = cpu_to_le16(q->desc_count);
1709 qi->dma_ring_addr = cpu_to_le64(q->dma);
1710 qi->relative_queue_id = cpu_to_le16(q->rel_q_id);
1711
1712 if (!idpf_is_queue_model_split(vport->txq_model)) {
1713 qi->sched_mode = cpu_to_le16(VIRTCHNL2_TXQ_SCHED_MODE_QUEUE);
1714 return;
1715 }
1716
1717 if (idpf_queue_has(XDP, q))
1718 val = q->complq->q_id;
1719 else
1720 val = q->txq_grp->complq->q_id;
1721
1722 qi->tx_compl_queue_id = cpu_to_le16(val);
1723
1724 if (idpf_queue_has(FLOW_SCH_EN, q))
1725 val = VIRTCHNL2_TXQ_SCHED_MODE_FLOW;
1726 else
1727 val = VIRTCHNL2_TXQ_SCHED_MODE_QUEUE;
1728
1729 qi->sched_mode = cpu_to_le16(val);
1730 }
1731
1732 /**
1733 * idpf_fill_complq_config_chunk - fill chunk describing the completion queue
1734 * @vport: virtual port data structure
1735 * @q: completion queue to be inserted into VC chunk
1736 * @qi: pointer to the buffer containing the VC chunk
1737 */
idpf_fill_complq_config_chunk(const struct idpf_vport * vport,const struct idpf_compl_queue * q,struct virtchnl2_txq_info * qi)1738 static void idpf_fill_complq_config_chunk(const struct idpf_vport *vport,
1739 const struct idpf_compl_queue *q,
1740 struct virtchnl2_txq_info *qi)
1741 {
1742 u32 val;
1743
1744 qi->queue_id = cpu_to_le32(q->q_id);
1745 qi->model = cpu_to_le16(vport->txq_model);
1746 qi->type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION);
1747 qi->ring_len = cpu_to_le16(q->desc_count);
1748 qi->dma_ring_addr = cpu_to_le64(q->dma);
1749
1750 if (idpf_queue_has(FLOW_SCH_EN, q))
1751 val = VIRTCHNL2_TXQ_SCHED_MODE_FLOW;
1752 else
1753 val = VIRTCHNL2_TXQ_SCHED_MODE_QUEUE;
1754
1755 qi->sched_mode = cpu_to_le16(val);
1756 }
1757
1758 /**
1759 * idpf_prepare_cfg_txqs_msg - prepare message to configure selected Tx queues
1760 * @vport: virtual port data structure
1761 * @buf: buffer containing the message
1762 * @pos: pointer to the first chunk describing the tx queue
1763 * @num_chunks: number of chunks in the message
1764 *
1765 * Helper function for preparing the message describing configuration of
1766 * Tx queues.
1767 *
1768 * Return: the total size of the prepared message.
1769 */
idpf_prepare_cfg_txqs_msg(const struct idpf_vport * vport,void * buf,const void * pos,u32 num_chunks)1770 static u32 idpf_prepare_cfg_txqs_msg(const struct idpf_vport *vport,
1771 void *buf, const void *pos,
1772 u32 num_chunks)
1773 {
1774 struct virtchnl2_config_tx_queues *ctq = buf;
1775
1776 ctq->vport_id = cpu_to_le32(vport->vport_id);
1777 ctq->num_qinfo = cpu_to_le16(num_chunks);
1778 memcpy(ctq->qinfo, pos, num_chunks * sizeof(*ctq->qinfo));
1779
1780 return struct_size(ctq, qinfo, num_chunks);
1781 }
1782
1783 /**
1784 * idpf_send_config_tx_queue_set_msg - send virtchnl config Tx queues
1785 * message for selected queues
1786 * @qs: set of the Tx queues to configure
1787 *
1788 * Send config queues virtchnl message for queues contained in the @qs array.
1789 * The @qs array can contain Tx queues (or completion queues) only.
1790 *
1791 * Return: 0 on success, -errno on failure.
1792 */
idpf_send_config_tx_queue_set_msg(const struct idpf_queue_set * qs)1793 static int idpf_send_config_tx_queue_set_msg(const struct idpf_queue_set *qs)
1794 {
1795 struct virtchnl2_txq_info *qi __free(kfree) = NULL;
1796 struct idpf_chunked_msg_params params = {
1797 .vc_op = VIRTCHNL2_OP_CONFIG_TX_QUEUES,
1798 .prepare_msg = idpf_prepare_cfg_txqs_msg,
1799 .config_sz = sizeof(struct virtchnl2_config_tx_queues),
1800 .chunk_sz = sizeof(*qi),
1801 };
1802
1803 qi = kcalloc(qs->num, sizeof(*qi), GFP_KERNEL);
1804 if (!qi)
1805 return -ENOMEM;
1806
1807 params.chunks = qi;
1808
1809 for (u32 i = 0; i < qs->num; i++) {
1810 if (qs->qs[i].type == VIRTCHNL2_QUEUE_TYPE_TX)
1811 idpf_fill_txq_config_chunk(qs->vport, qs->qs[i].txq,
1812 &qi[params.num_chunks++]);
1813 else if (qs->qs[i].type == VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION)
1814 idpf_fill_complq_config_chunk(qs->vport,
1815 qs->qs[i].complq,
1816 &qi[params.num_chunks++]);
1817 }
1818
1819 return idpf_send_chunked_msg(qs->vport, ¶ms);
1820 }
1821
1822 /**
1823 * idpf_send_config_tx_queues_msg - send virtchnl config Tx queues message
1824 * @vport: virtual port data structure
1825 *
1826 * Return: 0 on success, -errno on failure.
1827 */
idpf_send_config_tx_queues_msg(struct idpf_vport * vport)1828 static int idpf_send_config_tx_queues_msg(struct idpf_vport *vport)
1829 {
1830 struct idpf_queue_set *qs __free(kfree) = NULL;
1831 u32 totqs = vport->num_txq + vport->num_complq;
1832 u32 k = 0;
1833
1834 qs = idpf_alloc_queue_set(vport, totqs);
1835 if (!qs)
1836 return -ENOMEM;
1837
1838 /* Populate the queue info buffer with all queue context info */
1839 for (u32 i = 0; i < vport->num_txq_grp; i++) {
1840 const struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1841
1842 for (u32 j = 0; j < tx_qgrp->num_txq; j++) {
1843 qs->qs[k].type = VIRTCHNL2_QUEUE_TYPE_TX;
1844 qs->qs[k++].txq = tx_qgrp->txqs[j];
1845 }
1846
1847 if (idpf_is_queue_model_split(vport->txq_model)) {
1848 qs->qs[k].type = VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION;
1849 qs->qs[k++].complq = tx_qgrp->complq;
1850 }
1851 }
1852
1853 /* Make sure accounting agrees */
1854 if (k != totqs)
1855 return -EINVAL;
1856
1857 return idpf_send_config_tx_queue_set_msg(qs);
1858 }
1859
1860 /**
1861 * idpf_fill_rxq_config_chunk - fill chunk describing the Rx queue
1862 * @vport: virtual port data structure
1863 * @q: Rx queue to be inserted into VC chunk
1864 * @qi: pointer to the buffer containing the VC chunk
1865 */
idpf_fill_rxq_config_chunk(const struct idpf_vport * vport,struct idpf_rx_queue * q,struct virtchnl2_rxq_info * qi)1866 static void idpf_fill_rxq_config_chunk(const struct idpf_vport *vport,
1867 struct idpf_rx_queue *q,
1868 struct virtchnl2_rxq_info *qi)
1869 {
1870 const struct idpf_bufq_set *sets;
1871
1872 qi->queue_id = cpu_to_le32(q->q_id);
1873 qi->model = cpu_to_le16(vport->rxq_model);
1874 qi->type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
1875 qi->ring_len = cpu_to_le16(q->desc_count);
1876 qi->dma_ring_addr = cpu_to_le64(q->dma);
1877 qi->max_pkt_size = cpu_to_le32(q->rx_max_pkt_size);
1878 qi->rx_buffer_low_watermark = cpu_to_le16(q->rx_buffer_low_watermark);
1879 qi->qflags = cpu_to_le16(VIRTCHNL2_RX_DESC_SIZE_32BYTE);
1880 if (idpf_is_feature_ena(vport, NETIF_F_GRO_HW))
1881 qi->qflags |= cpu_to_le16(VIRTCHNL2_RXQ_RSC);
1882
1883 if (!idpf_is_queue_model_split(vport->rxq_model)) {
1884 qi->data_buffer_size = cpu_to_le32(q->rx_buf_size);
1885 qi->desc_ids = cpu_to_le64(q->rxdids);
1886
1887 return;
1888 }
1889
1890 sets = q->bufq_sets;
1891
1892 /*
1893 * In splitq mode, RxQ buffer size should be set to that of the first
1894 * buffer queue associated with this RxQ.
1895 */
1896 q->rx_buf_size = sets[0].bufq.rx_buf_size;
1897 qi->data_buffer_size = cpu_to_le32(q->rx_buf_size);
1898
1899 qi->rx_bufq1_id = cpu_to_le16(sets[0].bufq.q_id);
1900 if (vport->num_bufqs_per_qgrp > IDPF_SINGLE_BUFQ_PER_RXQ_GRP) {
1901 qi->bufq2_ena = IDPF_BUFQ2_ENA;
1902 qi->rx_bufq2_id = cpu_to_le16(sets[1].bufq.q_id);
1903 }
1904
1905 q->rx_hbuf_size = sets[0].bufq.rx_hbuf_size;
1906
1907 if (idpf_queue_has(HSPLIT_EN, q)) {
1908 qi->qflags |= cpu_to_le16(VIRTCHNL2_RXQ_HDR_SPLIT);
1909 qi->hdr_buffer_size = cpu_to_le16(q->rx_hbuf_size);
1910 }
1911
1912 qi->desc_ids = cpu_to_le64(VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M);
1913 }
1914
1915 /**
1916 * idpf_fill_bufq_config_chunk - fill chunk describing the buffer queue
1917 * @vport: virtual port data structure
1918 * @q: buffer queue to be inserted into VC chunk
1919 * @qi: pointer to the buffer containing the VC chunk
1920 */
idpf_fill_bufq_config_chunk(const struct idpf_vport * vport,const struct idpf_buf_queue * q,struct virtchnl2_rxq_info * qi)1921 static void idpf_fill_bufq_config_chunk(const struct idpf_vport *vport,
1922 const struct idpf_buf_queue *q,
1923 struct virtchnl2_rxq_info *qi)
1924 {
1925 qi->queue_id = cpu_to_le32(q->q_id);
1926 qi->model = cpu_to_le16(vport->rxq_model);
1927 qi->type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX_BUFFER);
1928 qi->ring_len = cpu_to_le16(q->desc_count);
1929 qi->dma_ring_addr = cpu_to_le64(q->dma);
1930 qi->data_buffer_size = cpu_to_le32(q->rx_buf_size);
1931 qi->rx_buffer_low_watermark = cpu_to_le16(q->rx_buffer_low_watermark);
1932 qi->desc_ids = cpu_to_le64(VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M);
1933 qi->buffer_notif_stride = IDPF_RX_BUF_STRIDE;
1934 if (idpf_is_feature_ena(vport, NETIF_F_GRO_HW))
1935 qi->qflags = cpu_to_le16(VIRTCHNL2_RXQ_RSC);
1936
1937 if (idpf_queue_has(HSPLIT_EN, q)) {
1938 qi->qflags |= cpu_to_le16(VIRTCHNL2_RXQ_HDR_SPLIT);
1939 qi->hdr_buffer_size = cpu_to_le16(q->rx_hbuf_size);
1940 }
1941 }
1942
1943 /**
1944 * idpf_prepare_cfg_rxqs_msg - prepare message to configure selected Rx queues
1945 * @vport: virtual port data structure
1946 * @buf: buffer containing the message
1947 * @pos: pointer to the first chunk describing the rx queue
1948 * @num_chunks: number of chunks in the message
1949 *
1950 * Helper function for preparing the message describing configuration of
1951 * Rx queues.
1952 *
1953 * Return: the total size of the prepared message.
1954 */
idpf_prepare_cfg_rxqs_msg(const struct idpf_vport * vport,void * buf,const void * pos,u32 num_chunks)1955 static u32 idpf_prepare_cfg_rxqs_msg(const struct idpf_vport *vport,
1956 void *buf, const void *pos,
1957 u32 num_chunks)
1958 {
1959 struct virtchnl2_config_rx_queues *crq = buf;
1960
1961 crq->vport_id = cpu_to_le32(vport->vport_id);
1962 crq->num_qinfo = cpu_to_le16(num_chunks);
1963 memcpy(crq->qinfo, pos, num_chunks * sizeof(*crq->qinfo));
1964
1965 return struct_size(crq, qinfo, num_chunks);
1966 }
1967
1968 /**
1969 * idpf_send_config_rx_queue_set_msg - send virtchnl config Rx queues message
1970 * for selected queues.
1971 * @qs: set of the Rx queues to configure
1972 *
1973 * Send config queues virtchnl message for queues contained in the @qs array.
1974 * The @qs array can contain Rx queues (or buffer queues) only.
1975 *
1976 * Return: 0 on success, -errno on failure.
1977 */
idpf_send_config_rx_queue_set_msg(const struct idpf_queue_set * qs)1978 static int idpf_send_config_rx_queue_set_msg(const struct idpf_queue_set *qs)
1979 {
1980 struct virtchnl2_rxq_info *qi __free(kfree) = NULL;
1981 struct idpf_chunked_msg_params params = {
1982 .vc_op = VIRTCHNL2_OP_CONFIG_RX_QUEUES,
1983 .prepare_msg = idpf_prepare_cfg_rxqs_msg,
1984 .config_sz = sizeof(struct virtchnl2_config_rx_queues),
1985 .chunk_sz = sizeof(*qi),
1986 };
1987
1988 qi = kcalloc(qs->num, sizeof(*qi), GFP_KERNEL);
1989 if (!qi)
1990 return -ENOMEM;
1991
1992 params.chunks = qi;
1993
1994 for (u32 i = 0; i < qs->num; i++) {
1995 if (qs->qs[i].type == VIRTCHNL2_QUEUE_TYPE_RX)
1996 idpf_fill_rxq_config_chunk(qs->vport, qs->qs[i].rxq,
1997 &qi[params.num_chunks++]);
1998 else if (qs->qs[i].type == VIRTCHNL2_QUEUE_TYPE_RX_BUFFER)
1999 idpf_fill_bufq_config_chunk(qs->vport, qs->qs[i].bufq,
2000 &qi[params.num_chunks++]);
2001 }
2002
2003 return idpf_send_chunked_msg(qs->vport, ¶ms);
2004 }
2005
2006 /**
2007 * idpf_send_config_rx_queues_msg - send virtchnl config Rx queues message
2008 * @vport: virtual port data structure
2009 *
2010 * Return: 0 on success, -errno on failure.
2011 */
idpf_send_config_rx_queues_msg(struct idpf_vport * vport)2012 static int idpf_send_config_rx_queues_msg(struct idpf_vport *vport)
2013 {
2014 bool splitq = idpf_is_queue_model_split(vport->rxq_model);
2015 struct idpf_queue_set *qs __free(kfree) = NULL;
2016 u32 totqs = vport->num_rxq + vport->num_bufq;
2017 u32 k = 0;
2018
2019 qs = idpf_alloc_queue_set(vport, totqs);
2020 if (!qs)
2021 return -ENOMEM;
2022
2023 /* Populate the queue info buffer with all queue context info */
2024 for (u32 i = 0; i < vport->num_rxq_grp; i++) {
2025 const struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
2026 u32 num_rxq;
2027
2028 if (!splitq) {
2029 num_rxq = rx_qgrp->singleq.num_rxq;
2030 goto rxq;
2031 }
2032
2033 for (u32 j = 0; j < vport->num_bufqs_per_qgrp; j++) {
2034 qs->qs[k].type = VIRTCHNL2_QUEUE_TYPE_RX_BUFFER;
2035 qs->qs[k++].bufq = &rx_qgrp->splitq.bufq_sets[j].bufq;
2036 }
2037
2038 num_rxq = rx_qgrp->splitq.num_rxq_sets;
2039
2040 rxq:
2041 for (u32 j = 0; j < num_rxq; j++) {
2042 qs->qs[k].type = VIRTCHNL2_QUEUE_TYPE_RX;
2043
2044 if (splitq)
2045 qs->qs[k++].rxq =
2046 &rx_qgrp->splitq.rxq_sets[j]->rxq;
2047 else
2048 qs->qs[k++].rxq = rx_qgrp->singleq.rxqs[j];
2049 }
2050 }
2051
2052 /* Make sure accounting agrees */
2053 if (k != totqs)
2054 return -EINVAL;
2055
2056 return idpf_send_config_rx_queue_set_msg(qs);
2057 }
2058
2059 /**
2060 * idpf_prepare_ena_dis_qs_msg - prepare message to enable/disable selected
2061 * queues
2062 * @vport: virtual port data structure
2063 * @buf: buffer containing the message
2064 * @pos: pointer to the first chunk describing the queue
2065 * @num_chunks: number of chunks in the message
2066 *
2067 * Helper function for preparing the message describing queues to be enabled
2068 * or disabled.
2069 *
2070 * Return: the total size of the prepared message.
2071 */
idpf_prepare_ena_dis_qs_msg(const struct idpf_vport * vport,void * buf,const void * pos,u32 num_chunks)2072 static u32 idpf_prepare_ena_dis_qs_msg(const struct idpf_vport *vport,
2073 void *buf, const void *pos,
2074 u32 num_chunks)
2075 {
2076 struct virtchnl2_del_ena_dis_queues *eq = buf;
2077
2078 eq->vport_id = cpu_to_le32(vport->vport_id);
2079 eq->chunks.num_chunks = cpu_to_le16(num_chunks);
2080 memcpy(eq->chunks.chunks, pos,
2081 num_chunks * sizeof(*eq->chunks.chunks));
2082
2083 return struct_size(eq, chunks.chunks, num_chunks);
2084 }
2085
2086 /**
2087 * idpf_send_ena_dis_queue_set_msg - send virtchnl enable or disable queues
2088 * message for selected queues
2089 * @qs: set of the queues to enable or disable
2090 * @en: whether to enable or disable queues
2091 *
2092 * Send enable or disable queues virtchnl message for queues contained
2093 * in the @qs array.
2094 * The @qs array can contain pointers to both Rx and Tx queues.
2095 *
2096 * Return: 0 on success, -errno on failure.
2097 */
idpf_send_ena_dis_queue_set_msg(const struct idpf_queue_set * qs,bool en)2098 static int idpf_send_ena_dis_queue_set_msg(const struct idpf_queue_set *qs,
2099 bool en)
2100 {
2101 struct virtchnl2_queue_chunk *qc __free(kfree) = NULL;
2102 struct idpf_chunked_msg_params params = {
2103 .vc_op = en ? VIRTCHNL2_OP_ENABLE_QUEUES :
2104 VIRTCHNL2_OP_DISABLE_QUEUES,
2105 .prepare_msg = idpf_prepare_ena_dis_qs_msg,
2106 .config_sz = sizeof(struct virtchnl2_del_ena_dis_queues),
2107 .chunk_sz = sizeof(*qc),
2108 .num_chunks = qs->num,
2109 };
2110
2111 qc = kcalloc(qs->num, sizeof(*qc), GFP_KERNEL);
2112 if (!qc)
2113 return -ENOMEM;
2114
2115 params.chunks = qc;
2116
2117 for (u32 i = 0; i < qs->num; i++) {
2118 const struct idpf_queue_ptr *q = &qs->qs[i];
2119 u32 qid;
2120
2121 qc[i].type = cpu_to_le32(q->type);
2122 qc[i].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
2123
2124 switch (q->type) {
2125 case VIRTCHNL2_QUEUE_TYPE_RX:
2126 qid = q->rxq->q_id;
2127 break;
2128 case VIRTCHNL2_QUEUE_TYPE_TX:
2129 qid = q->txq->q_id;
2130 break;
2131 case VIRTCHNL2_QUEUE_TYPE_RX_BUFFER:
2132 qid = q->bufq->q_id;
2133 break;
2134 case VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION:
2135 qid = q->complq->q_id;
2136 break;
2137 default:
2138 return -EINVAL;
2139 }
2140
2141 qc[i].start_queue_id = cpu_to_le32(qid);
2142 }
2143
2144 return idpf_send_chunked_msg(qs->vport, ¶ms);
2145 }
2146
2147 /**
2148 * idpf_send_ena_dis_queues_msg - send virtchnl enable or disable queues
2149 * message
2150 * @vport: virtual port data structure
2151 * @en: whether to enable or disable queues
2152 *
2153 * Return: 0 on success, -errno on failure.
2154 */
idpf_send_ena_dis_queues_msg(struct idpf_vport * vport,bool en)2155 static int idpf_send_ena_dis_queues_msg(struct idpf_vport *vport, bool en)
2156 {
2157 struct idpf_queue_set *qs __free(kfree) = NULL;
2158 u32 num_txq, num_q, k = 0;
2159 bool split;
2160
2161 num_txq = vport->num_txq + vport->num_complq;
2162 num_q = num_txq + vport->num_rxq + vport->num_bufq;
2163
2164 qs = idpf_alloc_queue_set(vport, num_q);
2165 if (!qs)
2166 return -ENOMEM;
2167
2168 split = idpf_is_queue_model_split(vport->txq_model);
2169
2170 for (u32 i = 0; i < vport->num_txq_grp; i++) {
2171 const struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
2172
2173 for (u32 j = 0; j < tx_qgrp->num_txq; j++) {
2174 qs->qs[k].type = VIRTCHNL2_QUEUE_TYPE_TX;
2175 qs->qs[k++].txq = tx_qgrp->txqs[j];
2176 }
2177
2178 if (!split)
2179 continue;
2180
2181 qs->qs[k].type = VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION;
2182 qs->qs[k++].complq = tx_qgrp->complq;
2183 }
2184
2185 if (k != num_txq)
2186 return -EINVAL;
2187
2188 split = idpf_is_queue_model_split(vport->rxq_model);
2189
2190 for (u32 i = 0; i < vport->num_rxq_grp; i++) {
2191 const struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
2192 u32 num_rxq;
2193
2194 if (split)
2195 num_rxq = rx_qgrp->splitq.num_rxq_sets;
2196 else
2197 num_rxq = rx_qgrp->singleq.num_rxq;
2198
2199 for (u32 j = 0; j < num_rxq; j++) {
2200 qs->qs[k].type = VIRTCHNL2_QUEUE_TYPE_RX;
2201
2202 if (split)
2203 qs->qs[k++].rxq =
2204 &rx_qgrp->splitq.rxq_sets[j]->rxq;
2205 else
2206 qs->qs[k++].rxq = rx_qgrp->singleq.rxqs[j];
2207 }
2208
2209 if (!split)
2210 continue;
2211
2212 for (u32 j = 0; j < vport->num_bufqs_per_qgrp; j++) {
2213 qs->qs[k].type = VIRTCHNL2_QUEUE_TYPE_RX_BUFFER;
2214 qs->qs[k++].bufq = &rx_qgrp->splitq.bufq_sets[j].bufq;
2215 }
2216 }
2217
2218 if (k != num_q)
2219 return -EINVAL;
2220
2221 return idpf_send_ena_dis_queue_set_msg(qs, en);
2222 }
2223
2224 /**
2225 * idpf_prep_map_unmap_queue_set_vector_msg - prepare message to map or unmap
2226 * queue set to the interrupt vector
2227 * @vport: virtual port data structure
2228 * @buf: buffer containing the message
2229 * @pos: pointer to the first chunk describing the vector mapping
2230 * @num_chunks: number of chunks in the message
2231 *
2232 * Helper function for preparing the message describing mapping queues to
2233 * q_vectors.
2234 *
2235 * Return: the total size of the prepared message.
2236 */
2237 static u32
idpf_prep_map_unmap_queue_set_vector_msg(const struct idpf_vport * vport,void * buf,const void * pos,u32 num_chunks)2238 idpf_prep_map_unmap_queue_set_vector_msg(const struct idpf_vport *vport,
2239 void *buf, const void *pos,
2240 u32 num_chunks)
2241 {
2242 struct virtchnl2_queue_vector_maps *vqvm = buf;
2243
2244 vqvm->vport_id = cpu_to_le32(vport->vport_id);
2245 vqvm->num_qv_maps = cpu_to_le16(num_chunks);
2246 memcpy(vqvm->qv_maps, pos, num_chunks * sizeof(*vqvm->qv_maps));
2247
2248 return struct_size(vqvm, qv_maps, num_chunks);
2249 }
2250
2251 /**
2252 * idpf_send_map_unmap_queue_set_vector_msg - send virtchnl map or unmap
2253 * queue set vector message
2254 * @qs: set of the queues to map or unmap
2255 * @map: true for map and false for unmap
2256 *
2257 * Return: 0 on success, -errno on failure.
2258 */
2259 static int
idpf_send_map_unmap_queue_set_vector_msg(const struct idpf_queue_set * qs,bool map)2260 idpf_send_map_unmap_queue_set_vector_msg(const struct idpf_queue_set *qs,
2261 bool map)
2262 {
2263 struct virtchnl2_queue_vector *vqv __free(kfree) = NULL;
2264 struct idpf_chunked_msg_params params = {
2265 .vc_op = map ? VIRTCHNL2_OP_MAP_QUEUE_VECTOR :
2266 VIRTCHNL2_OP_UNMAP_QUEUE_VECTOR,
2267 .prepare_msg = idpf_prep_map_unmap_queue_set_vector_msg,
2268 .config_sz = sizeof(struct virtchnl2_queue_vector_maps),
2269 .chunk_sz = sizeof(*vqv),
2270 .num_chunks = qs->num,
2271 };
2272 bool split;
2273
2274 vqv = kcalloc(qs->num, sizeof(*vqv), GFP_KERNEL);
2275 if (!vqv)
2276 return -ENOMEM;
2277
2278 params.chunks = vqv;
2279
2280 split = idpf_is_queue_model_split(qs->vport->txq_model);
2281
2282 for (u32 i = 0; i < qs->num; i++) {
2283 const struct idpf_queue_ptr *q = &qs->qs[i];
2284 const struct idpf_q_vector *vec;
2285 u32 qid, v_idx, itr_idx;
2286
2287 vqv[i].queue_type = cpu_to_le32(q->type);
2288
2289 switch (q->type) {
2290 case VIRTCHNL2_QUEUE_TYPE_RX:
2291 qid = q->rxq->q_id;
2292
2293 if (idpf_queue_has(NOIRQ, q->rxq))
2294 vec = NULL;
2295 else
2296 vec = q->rxq->q_vector;
2297
2298 if (vec) {
2299 v_idx = vec->v_idx;
2300 itr_idx = vec->rx_itr_idx;
2301 } else {
2302 v_idx = qs->vport->noirq_v_idx;
2303 itr_idx = VIRTCHNL2_ITR_IDX_0;
2304 }
2305 break;
2306 case VIRTCHNL2_QUEUE_TYPE_TX:
2307 qid = q->txq->q_id;
2308
2309 if (idpf_queue_has(NOIRQ, q->txq))
2310 vec = NULL;
2311 else if (idpf_queue_has(XDP, q->txq))
2312 vec = q->txq->complq->q_vector;
2313 else if (split)
2314 vec = q->txq->txq_grp->complq->q_vector;
2315 else
2316 vec = q->txq->q_vector;
2317
2318 if (vec) {
2319 v_idx = vec->v_idx;
2320 itr_idx = vec->tx_itr_idx;
2321 } else {
2322 v_idx = qs->vport->noirq_v_idx;
2323 itr_idx = VIRTCHNL2_ITR_IDX_1;
2324 }
2325 break;
2326 default:
2327 return -EINVAL;
2328 }
2329
2330 vqv[i].queue_id = cpu_to_le32(qid);
2331 vqv[i].vector_id = cpu_to_le16(v_idx);
2332 vqv[i].itr_idx = cpu_to_le32(itr_idx);
2333 }
2334
2335 return idpf_send_chunked_msg(qs->vport, ¶ms);
2336 }
2337
2338 /**
2339 * idpf_send_map_unmap_queue_vector_msg - send virtchnl map or unmap queue
2340 * vector message
2341 * @vport: virtual port data structure
2342 * @map: true for map and false for unmap
2343 *
2344 * Return: 0 on success, -errno on failure.
2345 */
idpf_send_map_unmap_queue_vector_msg(struct idpf_vport * vport,bool map)2346 int idpf_send_map_unmap_queue_vector_msg(struct idpf_vport *vport, bool map)
2347 {
2348 struct idpf_queue_set *qs __free(kfree) = NULL;
2349 u32 num_q = vport->num_txq + vport->num_rxq;
2350 u32 k = 0;
2351
2352 qs = idpf_alloc_queue_set(vport, num_q);
2353 if (!qs)
2354 return -ENOMEM;
2355
2356 for (u32 i = 0; i < vport->num_txq_grp; i++) {
2357 const struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
2358
2359 for (u32 j = 0; j < tx_qgrp->num_txq; j++) {
2360 qs->qs[k].type = VIRTCHNL2_QUEUE_TYPE_TX;
2361 qs->qs[k++].txq = tx_qgrp->txqs[j];
2362 }
2363 }
2364
2365 if (k != vport->num_txq)
2366 return -EINVAL;
2367
2368 for (u32 i = 0; i < vport->num_rxq_grp; i++) {
2369 const struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
2370 u32 num_rxq;
2371
2372 if (idpf_is_queue_model_split(vport->rxq_model))
2373 num_rxq = rx_qgrp->splitq.num_rxq_sets;
2374 else
2375 num_rxq = rx_qgrp->singleq.num_rxq;
2376
2377 for (u32 j = 0; j < num_rxq; j++) {
2378 qs->qs[k].type = VIRTCHNL2_QUEUE_TYPE_RX;
2379
2380 if (idpf_is_queue_model_split(vport->rxq_model))
2381 qs->qs[k++].rxq =
2382 &rx_qgrp->splitq.rxq_sets[j]->rxq;
2383 else
2384 qs->qs[k++].rxq = rx_qgrp->singleq.rxqs[j];
2385 }
2386 }
2387
2388 if (k != num_q)
2389 return -EINVAL;
2390
2391 return idpf_send_map_unmap_queue_set_vector_msg(qs, map);
2392 }
2393
2394 /**
2395 * idpf_send_enable_queue_set_msg - send enable queues virtchnl message for
2396 * selected queues
2397 * @qs: set of the queues
2398 *
2399 * Send enable queues virtchnl message for queues contained in the @qs array.
2400 *
2401 * Return: 0 on success, -errno on failure.
2402 */
idpf_send_enable_queue_set_msg(const struct idpf_queue_set * qs)2403 int idpf_send_enable_queue_set_msg(const struct idpf_queue_set *qs)
2404 {
2405 return idpf_send_ena_dis_queue_set_msg(qs, true);
2406 }
2407
2408 /**
2409 * idpf_send_disable_queue_set_msg - send disable queues virtchnl message for
2410 * selected queues
2411 * @qs: set of the queues
2412 *
2413 * Return: 0 on success, -errno on failure.
2414 */
idpf_send_disable_queue_set_msg(const struct idpf_queue_set * qs)2415 int idpf_send_disable_queue_set_msg(const struct idpf_queue_set *qs)
2416 {
2417 int err;
2418
2419 err = idpf_send_ena_dis_queue_set_msg(qs, false);
2420 if (err)
2421 return err;
2422
2423 return idpf_wait_for_marker_event_set(qs);
2424 }
2425
2426 /**
2427 * idpf_send_config_queue_set_msg - send virtchnl config queues message for
2428 * selected queues
2429 * @qs: set of the queues
2430 *
2431 * Send config queues virtchnl message for queues contained in the @qs array.
2432 * The @qs array can contain both Rx or Tx queues.
2433 *
2434 * Return: 0 on success, -errno on failure.
2435 */
idpf_send_config_queue_set_msg(const struct idpf_queue_set * qs)2436 int idpf_send_config_queue_set_msg(const struct idpf_queue_set *qs)
2437 {
2438 int err;
2439
2440 err = idpf_send_config_tx_queue_set_msg(qs);
2441 if (err)
2442 return err;
2443
2444 return idpf_send_config_rx_queue_set_msg(qs);
2445 }
2446
2447 /**
2448 * idpf_send_enable_queues_msg - send enable queues virtchnl message
2449 * @vport: Virtual port private data structure
2450 *
2451 * Will send enable queues virtchnl message. Returns 0 on success, negative on
2452 * failure.
2453 */
idpf_send_enable_queues_msg(struct idpf_vport * vport)2454 int idpf_send_enable_queues_msg(struct idpf_vport *vport)
2455 {
2456 return idpf_send_ena_dis_queues_msg(vport, true);
2457 }
2458
2459 /**
2460 * idpf_send_disable_queues_msg - send disable queues virtchnl message
2461 * @vport: Virtual port private data structure
2462 *
2463 * Will send disable queues virtchnl message. Returns 0 on success, negative
2464 * on failure.
2465 */
idpf_send_disable_queues_msg(struct idpf_vport * vport)2466 int idpf_send_disable_queues_msg(struct idpf_vport *vport)
2467 {
2468 int err;
2469
2470 err = idpf_send_ena_dis_queues_msg(vport, false);
2471 if (err)
2472 return err;
2473
2474 return idpf_wait_for_marker_event(vport);
2475 }
2476
2477 /**
2478 * idpf_convert_reg_to_queue_chunks - Copy queue chunk information to the right
2479 * structure
2480 * @dchunks: Destination chunks to store data to
2481 * @schunks: Source chunks to copy data from
2482 * @num_chunks: number of chunks to copy
2483 */
idpf_convert_reg_to_queue_chunks(struct virtchnl2_queue_chunk * dchunks,struct virtchnl2_queue_reg_chunk * schunks,u16 num_chunks)2484 static void idpf_convert_reg_to_queue_chunks(struct virtchnl2_queue_chunk *dchunks,
2485 struct virtchnl2_queue_reg_chunk *schunks,
2486 u16 num_chunks)
2487 {
2488 u16 i;
2489
2490 for (i = 0; i < num_chunks; i++) {
2491 dchunks[i].type = schunks[i].type;
2492 dchunks[i].start_queue_id = schunks[i].start_queue_id;
2493 dchunks[i].num_queues = schunks[i].num_queues;
2494 }
2495 }
2496
2497 /**
2498 * idpf_send_delete_queues_msg - send delete queues virtchnl message
2499 * @vport: Virtual port private data structure
2500 *
2501 * Will send delete queues virtchnl message. Return 0 on success, negative on
2502 * failure.
2503 */
idpf_send_delete_queues_msg(struct idpf_vport * vport)2504 int idpf_send_delete_queues_msg(struct idpf_vport *vport)
2505 {
2506 struct virtchnl2_del_ena_dis_queues *eq __free(kfree) = NULL;
2507 struct virtchnl2_create_vport *vport_params;
2508 struct virtchnl2_queue_reg_chunks *chunks;
2509 struct idpf_vc_xn_params xn_params = {};
2510 struct idpf_vport_config *vport_config;
2511 u16 vport_idx = vport->idx;
2512 ssize_t reply_sz;
2513 u16 num_chunks;
2514 int buf_size;
2515
2516 vport_config = vport->adapter->vport_config[vport_idx];
2517 if (vport_config->req_qs_chunks) {
2518 chunks = &vport_config->req_qs_chunks->chunks;
2519 } else {
2520 vport_params = vport->adapter->vport_params_recvd[vport_idx];
2521 chunks = &vport_params->chunks;
2522 }
2523
2524 num_chunks = le16_to_cpu(chunks->num_chunks);
2525 buf_size = struct_size(eq, chunks.chunks, num_chunks);
2526
2527 eq = kzalloc(buf_size, GFP_KERNEL);
2528 if (!eq)
2529 return -ENOMEM;
2530
2531 eq->vport_id = cpu_to_le32(vport->vport_id);
2532 eq->chunks.num_chunks = cpu_to_le16(num_chunks);
2533
2534 idpf_convert_reg_to_queue_chunks(eq->chunks.chunks, chunks->chunks,
2535 num_chunks);
2536
2537 xn_params.vc_op = VIRTCHNL2_OP_DEL_QUEUES;
2538 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2539 xn_params.send_buf.iov_base = eq;
2540 xn_params.send_buf.iov_len = buf_size;
2541 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2542
2543 return reply_sz < 0 ? reply_sz : 0;
2544 }
2545
2546 /**
2547 * idpf_send_config_queues_msg - Send config queues virtchnl message
2548 * @vport: Virtual port private data structure
2549 *
2550 * Will send config queues virtchnl message. Returns 0 on success, negative on
2551 * failure.
2552 */
idpf_send_config_queues_msg(struct idpf_vport * vport)2553 int idpf_send_config_queues_msg(struct idpf_vport *vport)
2554 {
2555 int err;
2556
2557 err = idpf_send_config_tx_queues_msg(vport);
2558 if (err)
2559 return err;
2560
2561 return idpf_send_config_rx_queues_msg(vport);
2562 }
2563
2564 /**
2565 * idpf_send_add_queues_msg - Send virtchnl add queues message
2566 * @vport: Virtual port private data structure
2567 * @num_tx_q: number of transmit queues
2568 * @num_complq: number of transmit completion queues
2569 * @num_rx_q: number of receive queues
2570 * @num_rx_bufq: number of receive buffer queues
2571 *
2572 * Returns 0 on success, negative on failure. vport _MUST_ be const here as
2573 * we should not change any fields within vport itself in this function.
2574 */
idpf_send_add_queues_msg(const struct idpf_vport * vport,u16 num_tx_q,u16 num_complq,u16 num_rx_q,u16 num_rx_bufq)2575 int idpf_send_add_queues_msg(const struct idpf_vport *vport, u16 num_tx_q,
2576 u16 num_complq, u16 num_rx_q, u16 num_rx_bufq)
2577 {
2578 struct virtchnl2_add_queues *vc_msg __free(kfree) = NULL;
2579 struct idpf_vc_xn_params xn_params = {};
2580 struct idpf_vport_config *vport_config;
2581 struct virtchnl2_add_queues aq = {};
2582 u16 vport_idx = vport->idx;
2583 ssize_t reply_sz;
2584 int size;
2585
2586 vc_msg = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2587 if (!vc_msg)
2588 return -ENOMEM;
2589
2590 vport_config = vport->adapter->vport_config[vport_idx];
2591 kfree(vport_config->req_qs_chunks);
2592 vport_config->req_qs_chunks = NULL;
2593
2594 aq.vport_id = cpu_to_le32(vport->vport_id);
2595 aq.num_tx_q = cpu_to_le16(num_tx_q);
2596 aq.num_tx_complq = cpu_to_le16(num_complq);
2597 aq.num_rx_q = cpu_to_le16(num_rx_q);
2598 aq.num_rx_bufq = cpu_to_le16(num_rx_bufq);
2599
2600 xn_params.vc_op = VIRTCHNL2_OP_ADD_QUEUES;
2601 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2602 xn_params.send_buf.iov_base = &aq;
2603 xn_params.send_buf.iov_len = sizeof(aq);
2604 xn_params.recv_buf.iov_base = vc_msg;
2605 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2606 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2607 if (reply_sz < 0)
2608 return reply_sz;
2609
2610 /* compare vc_msg num queues with vport num queues */
2611 if (le16_to_cpu(vc_msg->num_tx_q) != num_tx_q ||
2612 le16_to_cpu(vc_msg->num_rx_q) != num_rx_q ||
2613 le16_to_cpu(vc_msg->num_tx_complq) != num_complq ||
2614 le16_to_cpu(vc_msg->num_rx_bufq) != num_rx_bufq)
2615 return -EINVAL;
2616
2617 size = struct_size(vc_msg, chunks.chunks,
2618 le16_to_cpu(vc_msg->chunks.num_chunks));
2619 if (reply_sz < size)
2620 return -EIO;
2621
2622 vport_config->req_qs_chunks = kmemdup(vc_msg, size, GFP_KERNEL);
2623 if (!vport_config->req_qs_chunks)
2624 return -ENOMEM;
2625
2626 return 0;
2627 }
2628
2629 /**
2630 * idpf_send_alloc_vectors_msg - Send virtchnl alloc vectors message
2631 * @adapter: Driver specific private structure
2632 * @num_vectors: number of vectors to be allocated
2633 *
2634 * Returns 0 on success, negative on failure.
2635 */
idpf_send_alloc_vectors_msg(struct idpf_adapter * adapter,u16 num_vectors)2636 int idpf_send_alloc_vectors_msg(struct idpf_adapter *adapter, u16 num_vectors)
2637 {
2638 struct virtchnl2_alloc_vectors *rcvd_vec __free(kfree) = NULL;
2639 struct idpf_vc_xn_params xn_params = {};
2640 struct virtchnl2_alloc_vectors ac = {};
2641 ssize_t reply_sz;
2642 u16 num_vchunks;
2643 int size;
2644
2645 ac.num_vectors = cpu_to_le16(num_vectors);
2646
2647 rcvd_vec = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2648 if (!rcvd_vec)
2649 return -ENOMEM;
2650
2651 xn_params.vc_op = VIRTCHNL2_OP_ALLOC_VECTORS;
2652 xn_params.send_buf.iov_base = ∾
2653 xn_params.send_buf.iov_len = sizeof(ac);
2654 xn_params.recv_buf.iov_base = rcvd_vec;
2655 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2656 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2657 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2658 if (reply_sz < 0)
2659 return reply_sz;
2660
2661 num_vchunks = le16_to_cpu(rcvd_vec->vchunks.num_vchunks);
2662 size = struct_size(rcvd_vec, vchunks.vchunks, num_vchunks);
2663 if (reply_sz < size)
2664 return -EIO;
2665
2666 if (size > IDPF_CTLQ_MAX_BUF_LEN)
2667 return -EINVAL;
2668
2669 kfree(adapter->req_vec_chunks);
2670 adapter->req_vec_chunks = kmemdup(rcvd_vec, size, GFP_KERNEL);
2671 if (!adapter->req_vec_chunks)
2672 return -ENOMEM;
2673
2674 if (le16_to_cpu(adapter->req_vec_chunks->num_vectors) < num_vectors) {
2675 kfree(adapter->req_vec_chunks);
2676 adapter->req_vec_chunks = NULL;
2677 return -EINVAL;
2678 }
2679
2680 return 0;
2681 }
2682
2683 /**
2684 * idpf_send_dealloc_vectors_msg - Send virtchnl de allocate vectors message
2685 * @adapter: Driver specific private structure
2686 *
2687 * Returns 0 on success, negative on failure.
2688 */
idpf_send_dealloc_vectors_msg(struct idpf_adapter * adapter)2689 int idpf_send_dealloc_vectors_msg(struct idpf_adapter *adapter)
2690 {
2691 struct virtchnl2_alloc_vectors *ac = adapter->req_vec_chunks;
2692 struct virtchnl2_vector_chunks *vcs = &ac->vchunks;
2693 struct idpf_vc_xn_params xn_params = {};
2694 ssize_t reply_sz;
2695 int buf_size;
2696
2697 buf_size = struct_size(vcs, vchunks, le16_to_cpu(vcs->num_vchunks));
2698
2699 xn_params.vc_op = VIRTCHNL2_OP_DEALLOC_VECTORS;
2700 xn_params.send_buf.iov_base = vcs;
2701 xn_params.send_buf.iov_len = buf_size;
2702 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2703 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2704 if (reply_sz < 0)
2705 return reply_sz;
2706
2707 kfree(adapter->req_vec_chunks);
2708 adapter->req_vec_chunks = NULL;
2709
2710 return 0;
2711 }
2712
2713 /**
2714 * idpf_get_max_vfs - Get max number of vfs supported
2715 * @adapter: Driver specific private structure
2716 *
2717 * Returns max number of VFs
2718 */
idpf_get_max_vfs(struct idpf_adapter * adapter)2719 static int idpf_get_max_vfs(struct idpf_adapter *adapter)
2720 {
2721 return le16_to_cpu(adapter->caps.max_sriov_vfs);
2722 }
2723
2724 /**
2725 * idpf_send_set_sriov_vfs_msg - Send virtchnl set sriov vfs message
2726 * @adapter: Driver specific private structure
2727 * @num_vfs: number of virtual functions to be created
2728 *
2729 * Returns 0 on success, negative on failure.
2730 */
idpf_send_set_sriov_vfs_msg(struct idpf_adapter * adapter,u16 num_vfs)2731 int idpf_send_set_sriov_vfs_msg(struct idpf_adapter *adapter, u16 num_vfs)
2732 {
2733 struct virtchnl2_sriov_vfs_info svi = {};
2734 struct idpf_vc_xn_params xn_params = {};
2735 ssize_t reply_sz;
2736
2737 svi.num_vfs = cpu_to_le16(num_vfs);
2738 xn_params.vc_op = VIRTCHNL2_OP_SET_SRIOV_VFS;
2739 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2740 xn_params.send_buf.iov_base = &svi;
2741 xn_params.send_buf.iov_len = sizeof(svi);
2742 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2743
2744 return reply_sz < 0 ? reply_sz : 0;
2745 }
2746
2747 /**
2748 * idpf_send_get_stats_msg - Send virtchnl get statistics message
2749 * @vport: vport to get stats for
2750 *
2751 * Returns 0 on success, negative on failure.
2752 */
idpf_send_get_stats_msg(struct idpf_vport * vport)2753 int idpf_send_get_stats_msg(struct idpf_vport *vport)
2754 {
2755 struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
2756 struct rtnl_link_stats64 *netstats = &np->netstats;
2757 struct virtchnl2_vport_stats stats_msg = {};
2758 struct idpf_vc_xn_params xn_params = {};
2759 ssize_t reply_sz;
2760
2761
2762 /* Don't send get_stats message if the link is down */
2763 if (!test_bit(IDPF_VPORT_UP, np->state))
2764 return 0;
2765
2766 stats_msg.vport_id = cpu_to_le32(vport->vport_id);
2767
2768 xn_params.vc_op = VIRTCHNL2_OP_GET_STATS;
2769 xn_params.send_buf.iov_base = &stats_msg;
2770 xn_params.send_buf.iov_len = sizeof(stats_msg);
2771 xn_params.recv_buf = xn_params.send_buf;
2772 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2773
2774 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2775 if (reply_sz < 0)
2776 return reply_sz;
2777 if (reply_sz < sizeof(stats_msg))
2778 return -EIO;
2779
2780 spin_lock_bh(&np->stats_lock);
2781
2782 netstats->rx_packets = le64_to_cpu(stats_msg.rx_unicast) +
2783 le64_to_cpu(stats_msg.rx_multicast) +
2784 le64_to_cpu(stats_msg.rx_broadcast);
2785 netstats->tx_packets = le64_to_cpu(stats_msg.tx_unicast) +
2786 le64_to_cpu(stats_msg.tx_multicast) +
2787 le64_to_cpu(stats_msg.tx_broadcast);
2788 netstats->rx_bytes = le64_to_cpu(stats_msg.rx_bytes);
2789 netstats->tx_bytes = le64_to_cpu(stats_msg.tx_bytes);
2790 netstats->rx_errors = le64_to_cpu(stats_msg.rx_errors);
2791 netstats->tx_errors = le64_to_cpu(stats_msg.tx_errors);
2792 netstats->rx_dropped = le64_to_cpu(stats_msg.rx_discards);
2793 netstats->tx_dropped = le64_to_cpu(stats_msg.tx_discards);
2794
2795 vport->port_stats.vport_stats = stats_msg;
2796
2797 spin_unlock_bh(&np->stats_lock);
2798
2799 return 0;
2800 }
2801
2802 /**
2803 * idpf_send_get_set_rss_lut_msg - Send virtchnl get or set rss lut message
2804 * @vport: virtual port data structure
2805 * @get: flag to set or get rss look up table
2806 *
2807 * Returns 0 on success, negative on failure.
2808 */
idpf_send_get_set_rss_lut_msg(struct idpf_vport * vport,bool get)2809 int idpf_send_get_set_rss_lut_msg(struct idpf_vport *vport, bool get)
2810 {
2811 struct virtchnl2_rss_lut *recv_rl __free(kfree) = NULL;
2812 struct virtchnl2_rss_lut *rl __free(kfree) = NULL;
2813 struct idpf_vc_xn_params xn_params = {};
2814 struct idpf_rss_data *rss_data;
2815 int buf_size, lut_buf_size;
2816 ssize_t reply_sz;
2817 int i;
2818
2819 rss_data =
2820 &vport->adapter->vport_config[vport->idx]->user_config.rss_data;
2821 buf_size = struct_size(rl, lut, rss_data->rss_lut_size);
2822 rl = kzalloc(buf_size, GFP_KERNEL);
2823 if (!rl)
2824 return -ENOMEM;
2825
2826 rl->vport_id = cpu_to_le32(vport->vport_id);
2827
2828 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2829 xn_params.send_buf.iov_base = rl;
2830 xn_params.send_buf.iov_len = buf_size;
2831
2832 if (get) {
2833 recv_rl = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2834 if (!recv_rl)
2835 return -ENOMEM;
2836 xn_params.vc_op = VIRTCHNL2_OP_GET_RSS_LUT;
2837 xn_params.recv_buf.iov_base = recv_rl;
2838 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2839 } else {
2840 rl->lut_entries = cpu_to_le16(rss_data->rss_lut_size);
2841 for (i = 0; i < rss_data->rss_lut_size; i++)
2842 rl->lut[i] = cpu_to_le32(rss_data->rss_lut[i]);
2843
2844 xn_params.vc_op = VIRTCHNL2_OP_SET_RSS_LUT;
2845 }
2846 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2847 if (reply_sz < 0)
2848 return reply_sz;
2849 if (!get)
2850 return 0;
2851 if (reply_sz < sizeof(struct virtchnl2_rss_lut))
2852 return -EIO;
2853
2854 lut_buf_size = le16_to_cpu(recv_rl->lut_entries) * sizeof(u32);
2855 if (reply_sz < lut_buf_size)
2856 return -EIO;
2857
2858 /* size didn't change, we can reuse existing lut buf */
2859 if (rss_data->rss_lut_size == le16_to_cpu(recv_rl->lut_entries))
2860 goto do_memcpy;
2861
2862 rss_data->rss_lut_size = le16_to_cpu(recv_rl->lut_entries);
2863 kfree(rss_data->rss_lut);
2864
2865 rss_data->rss_lut = kzalloc(lut_buf_size, GFP_KERNEL);
2866 if (!rss_data->rss_lut) {
2867 rss_data->rss_lut_size = 0;
2868 return -ENOMEM;
2869 }
2870
2871 do_memcpy:
2872 memcpy(rss_data->rss_lut, recv_rl->lut, rss_data->rss_lut_size);
2873
2874 return 0;
2875 }
2876
2877 /**
2878 * idpf_send_get_set_rss_key_msg - Send virtchnl get or set rss key message
2879 * @vport: virtual port data structure
2880 * @get: flag to set or get rss look up table
2881 *
2882 * Returns 0 on success, negative on failure
2883 */
idpf_send_get_set_rss_key_msg(struct idpf_vport * vport,bool get)2884 int idpf_send_get_set_rss_key_msg(struct idpf_vport *vport, bool get)
2885 {
2886 struct virtchnl2_rss_key *recv_rk __free(kfree) = NULL;
2887 struct virtchnl2_rss_key *rk __free(kfree) = NULL;
2888 struct idpf_vc_xn_params xn_params = {};
2889 struct idpf_rss_data *rss_data;
2890 ssize_t reply_sz;
2891 int i, buf_size;
2892 u16 key_size;
2893
2894 rss_data =
2895 &vport->adapter->vport_config[vport->idx]->user_config.rss_data;
2896 buf_size = struct_size(rk, key_flex, rss_data->rss_key_size);
2897 rk = kzalloc(buf_size, GFP_KERNEL);
2898 if (!rk)
2899 return -ENOMEM;
2900
2901 rk->vport_id = cpu_to_le32(vport->vport_id);
2902 xn_params.send_buf.iov_base = rk;
2903 xn_params.send_buf.iov_len = buf_size;
2904 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2905 if (get) {
2906 recv_rk = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2907 if (!recv_rk)
2908 return -ENOMEM;
2909
2910 xn_params.vc_op = VIRTCHNL2_OP_GET_RSS_KEY;
2911 xn_params.recv_buf.iov_base = recv_rk;
2912 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2913 } else {
2914 rk->key_len = cpu_to_le16(rss_data->rss_key_size);
2915 for (i = 0; i < rss_data->rss_key_size; i++)
2916 rk->key_flex[i] = rss_data->rss_key[i];
2917
2918 xn_params.vc_op = VIRTCHNL2_OP_SET_RSS_KEY;
2919 }
2920
2921 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2922 if (reply_sz < 0)
2923 return reply_sz;
2924 if (!get)
2925 return 0;
2926 if (reply_sz < sizeof(struct virtchnl2_rss_key))
2927 return -EIO;
2928
2929 key_size = min_t(u16, NETDEV_RSS_KEY_LEN,
2930 le16_to_cpu(recv_rk->key_len));
2931 if (reply_sz < key_size)
2932 return -EIO;
2933
2934 /* key len didn't change, reuse existing buf */
2935 if (rss_data->rss_key_size == key_size)
2936 goto do_memcpy;
2937
2938 rss_data->rss_key_size = key_size;
2939 kfree(rss_data->rss_key);
2940 rss_data->rss_key = kzalloc(key_size, GFP_KERNEL);
2941 if (!rss_data->rss_key) {
2942 rss_data->rss_key_size = 0;
2943 return -ENOMEM;
2944 }
2945
2946 do_memcpy:
2947 memcpy(rss_data->rss_key, recv_rk->key_flex, rss_data->rss_key_size);
2948
2949 return 0;
2950 }
2951
2952 /**
2953 * idpf_fill_ptype_lookup - Fill L3 specific fields in ptype lookup table
2954 * @ptype: ptype lookup table
2955 * @pstate: state machine for ptype lookup table
2956 * @ipv4: ipv4 or ipv6
2957 * @frag: fragmentation allowed
2958 *
2959 */
idpf_fill_ptype_lookup(struct libeth_rx_pt * ptype,struct idpf_ptype_state * pstate,bool ipv4,bool frag)2960 static void idpf_fill_ptype_lookup(struct libeth_rx_pt *ptype,
2961 struct idpf_ptype_state *pstate,
2962 bool ipv4, bool frag)
2963 {
2964 if (!pstate->outer_ip || !pstate->outer_frag) {
2965 pstate->outer_ip = true;
2966
2967 if (ipv4)
2968 ptype->outer_ip = LIBETH_RX_PT_OUTER_IPV4;
2969 else
2970 ptype->outer_ip = LIBETH_RX_PT_OUTER_IPV6;
2971
2972 if (frag) {
2973 ptype->outer_frag = LIBETH_RX_PT_FRAG;
2974 pstate->outer_frag = true;
2975 }
2976 } else {
2977 ptype->tunnel_type = LIBETH_RX_PT_TUNNEL_IP_IP;
2978 pstate->tunnel_state = IDPF_PTYPE_TUNNEL_IP;
2979
2980 if (ipv4)
2981 ptype->tunnel_end_prot = LIBETH_RX_PT_TUNNEL_END_IPV4;
2982 else
2983 ptype->tunnel_end_prot = LIBETH_RX_PT_TUNNEL_END_IPV6;
2984
2985 if (frag)
2986 ptype->tunnel_end_frag = LIBETH_RX_PT_FRAG;
2987 }
2988 }
2989
idpf_finalize_ptype_lookup(struct libeth_rx_pt * ptype)2990 static void idpf_finalize_ptype_lookup(struct libeth_rx_pt *ptype)
2991 {
2992 if (ptype->payload_layer == LIBETH_RX_PT_PAYLOAD_L2 &&
2993 ptype->inner_prot)
2994 ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_L4;
2995 else if (ptype->payload_layer == LIBETH_RX_PT_PAYLOAD_L2 &&
2996 ptype->outer_ip)
2997 ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_L3;
2998 else if (ptype->outer_ip == LIBETH_RX_PT_OUTER_L2)
2999 ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_L2;
3000 else
3001 ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_NONE;
3002
3003 libeth_rx_pt_gen_hash_type(ptype);
3004 }
3005
3006 /**
3007 * idpf_send_get_rx_ptype_msg - Send virtchnl for ptype info
3008 * @vport: virtual port data structure
3009 *
3010 * Returns 0 on success, negative on failure.
3011 */
idpf_send_get_rx_ptype_msg(struct idpf_vport * vport)3012 int idpf_send_get_rx_ptype_msg(struct idpf_vport *vport)
3013 {
3014 struct virtchnl2_get_ptype_info *get_ptype_info __free(kfree) = NULL;
3015 struct virtchnl2_get_ptype_info *ptype_info __free(kfree) = NULL;
3016 struct libeth_rx_pt *ptype_lkup __free(kfree) = NULL;
3017 int max_ptype, ptypes_recvd = 0, ptype_offset;
3018 struct idpf_adapter *adapter = vport->adapter;
3019 struct idpf_vc_xn_params xn_params = {};
3020 u16 next_ptype_id = 0;
3021 ssize_t reply_sz;
3022 int i, j, k;
3023
3024 if (vport->rx_ptype_lkup)
3025 return 0;
3026
3027 if (idpf_is_queue_model_split(vport->rxq_model))
3028 max_ptype = IDPF_RX_MAX_PTYPE;
3029 else
3030 max_ptype = IDPF_RX_MAX_BASE_PTYPE;
3031
3032 ptype_lkup = kcalloc(max_ptype, sizeof(*ptype_lkup), GFP_KERNEL);
3033 if (!ptype_lkup)
3034 return -ENOMEM;
3035
3036 get_ptype_info = kzalloc(sizeof(*get_ptype_info), GFP_KERNEL);
3037 if (!get_ptype_info)
3038 return -ENOMEM;
3039
3040 ptype_info = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
3041 if (!ptype_info)
3042 return -ENOMEM;
3043
3044 xn_params.vc_op = VIRTCHNL2_OP_GET_PTYPE_INFO;
3045 xn_params.send_buf.iov_base = get_ptype_info;
3046 xn_params.send_buf.iov_len = sizeof(*get_ptype_info);
3047 xn_params.recv_buf.iov_base = ptype_info;
3048 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
3049 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
3050
3051 while (next_ptype_id < max_ptype) {
3052 get_ptype_info->start_ptype_id = cpu_to_le16(next_ptype_id);
3053
3054 if ((next_ptype_id + IDPF_RX_MAX_PTYPES_PER_BUF) > max_ptype)
3055 get_ptype_info->num_ptypes =
3056 cpu_to_le16(max_ptype - next_ptype_id);
3057 else
3058 get_ptype_info->num_ptypes =
3059 cpu_to_le16(IDPF_RX_MAX_PTYPES_PER_BUF);
3060
3061 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
3062 if (reply_sz < 0)
3063 return reply_sz;
3064
3065 ptypes_recvd += le16_to_cpu(ptype_info->num_ptypes);
3066 if (ptypes_recvd > max_ptype)
3067 return -EINVAL;
3068
3069 next_ptype_id = le16_to_cpu(get_ptype_info->start_ptype_id) +
3070 le16_to_cpu(get_ptype_info->num_ptypes);
3071
3072 ptype_offset = IDPF_RX_PTYPE_HDR_SZ;
3073
3074 for (i = 0; i < le16_to_cpu(ptype_info->num_ptypes); i++) {
3075 struct idpf_ptype_state pstate = { };
3076 struct virtchnl2_ptype *ptype;
3077 u16 id;
3078
3079 ptype = (struct virtchnl2_ptype *)
3080 ((u8 *)ptype_info + ptype_offset);
3081
3082 ptype_offset += IDPF_GET_PTYPE_SIZE(ptype);
3083 if (ptype_offset > IDPF_CTLQ_MAX_BUF_LEN)
3084 return -EINVAL;
3085
3086 /* 0xFFFF indicates end of ptypes */
3087 if (le16_to_cpu(ptype->ptype_id_10) ==
3088 IDPF_INVALID_PTYPE_ID)
3089 goto out;
3090
3091 if (idpf_is_queue_model_split(vport->rxq_model))
3092 k = le16_to_cpu(ptype->ptype_id_10);
3093 else
3094 k = ptype->ptype_id_8;
3095
3096 for (j = 0; j < ptype->proto_id_count; j++) {
3097 id = le16_to_cpu(ptype->proto_id[j]);
3098 switch (id) {
3099 case VIRTCHNL2_PROTO_HDR_GRE:
3100 if (pstate.tunnel_state ==
3101 IDPF_PTYPE_TUNNEL_IP) {
3102 ptype_lkup[k].tunnel_type =
3103 LIBETH_RX_PT_TUNNEL_IP_GRENAT;
3104 pstate.tunnel_state |=
3105 IDPF_PTYPE_TUNNEL_IP_GRENAT;
3106 }
3107 break;
3108 case VIRTCHNL2_PROTO_HDR_MAC:
3109 ptype_lkup[k].outer_ip =
3110 LIBETH_RX_PT_OUTER_L2;
3111 if (pstate.tunnel_state ==
3112 IDPF_TUN_IP_GRE) {
3113 ptype_lkup[k].tunnel_type =
3114 LIBETH_RX_PT_TUNNEL_IP_GRENAT_MAC;
3115 pstate.tunnel_state |=
3116 IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC;
3117 }
3118 break;
3119 case VIRTCHNL2_PROTO_HDR_IPV4:
3120 idpf_fill_ptype_lookup(&ptype_lkup[k],
3121 &pstate, true,
3122 false);
3123 break;
3124 case VIRTCHNL2_PROTO_HDR_IPV6:
3125 idpf_fill_ptype_lookup(&ptype_lkup[k],
3126 &pstate, false,
3127 false);
3128 break;
3129 case VIRTCHNL2_PROTO_HDR_IPV4_FRAG:
3130 idpf_fill_ptype_lookup(&ptype_lkup[k],
3131 &pstate, true,
3132 true);
3133 break;
3134 case VIRTCHNL2_PROTO_HDR_IPV6_FRAG:
3135 idpf_fill_ptype_lookup(&ptype_lkup[k],
3136 &pstate, false,
3137 true);
3138 break;
3139 case VIRTCHNL2_PROTO_HDR_UDP:
3140 ptype_lkup[k].inner_prot =
3141 LIBETH_RX_PT_INNER_UDP;
3142 break;
3143 case VIRTCHNL2_PROTO_HDR_TCP:
3144 ptype_lkup[k].inner_prot =
3145 LIBETH_RX_PT_INNER_TCP;
3146 break;
3147 case VIRTCHNL2_PROTO_HDR_SCTP:
3148 ptype_lkup[k].inner_prot =
3149 LIBETH_RX_PT_INNER_SCTP;
3150 break;
3151 case VIRTCHNL2_PROTO_HDR_ICMP:
3152 ptype_lkup[k].inner_prot =
3153 LIBETH_RX_PT_INNER_ICMP;
3154 break;
3155 case VIRTCHNL2_PROTO_HDR_PAY:
3156 ptype_lkup[k].payload_layer =
3157 LIBETH_RX_PT_PAYLOAD_L2;
3158 break;
3159 case VIRTCHNL2_PROTO_HDR_ICMPV6:
3160 case VIRTCHNL2_PROTO_HDR_IPV6_EH:
3161 case VIRTCHNL2_PROTO_HDR_PRE_MAC:
3162 case VIRTCHNL2_PROTO_HDR_POST_MAC:
3163 case VIRTCHNL2_PROTO_HDR_ETHERTYPE:
3164 case VIRTCHNL2_PROTO_HDR_SVLAN:
3165 case VIRTCHNL2_PROTO_HDR_CVLAN:
3166 case VIRTCHNL2_PROTO_HDR_MPLS:
3167 case VIRTCHNL2_PROTO_HDR_MMPLS:
3168 case VIRTCHNL2_PROTO_HDR_PTP:
3169 case VIRTCHNL2_PROTO_HDR_CTRL:
3170 case VIRTCHNL2_PROTO_HDR_LLDP:
3171 case VIRTCHNL2_PROTO_HDR_ARP:
3172 case VIRTCHNL2_PROTO_HDR_ECP:
3173 case VIRTCHNL2_PROTO_HDR_EAPOL:
3174 case VIRTCHNL2_PROTO_HDR_PPPOD:
3175 case VIRTCHNL2_PROTO_HDR_PPPOE:
3176 case VIRTCHNL2_PROTO_HDR_IGMP:
3177 case VIRTCHNL2_PROTO_HDR_AH:
3178 case VIRTCHNL2_PROTO_HDR_ESP:
3179 case VIRTCHNL2_PROTO_HDR_IKE:
3180 case VIRTCHNL2_PROTO_HDR_NATT_KEEP:
3181 case VIRTCHNL2_PROTO_HDR_L2TPV2:
3182 case VIRTCHNL2_PROTO_HDR_L2TPV2_CONTROL:
3183 case VIRTCHNL2_PROTO_HDR_L2TPV3:
3184 case VIRTCHNL2_PROTO_HDR_GTP:
3185 case VIRTCHNL2_PROTO_HDR_GTP_EH:
3186 case VIRTCHNL2_PROTO_HDR_GTPCV2:
3187 case VIRTCHNL2_PROTO_HDR_GTPC_TEID:
3188 case VIRTCHNL2_PROTO_HDR_GTPU:
3189 case VIRTCHNL2_PROTO_HDR_GTPU_UL:
3190 case VIRTCHNL2_PROTO_HDR_GTPU_DL:
3191 case VIRTCHNL2_PROTO_HDR_ECPRI:
3192 case VIRTCHNL2_PROTO_HDR_VRRP:
3193 case VIRTCHNL2_PROTO_HDR_OSPF:
3194 case VIRTCHNL2_PROTO_HDR_TUN:
3195 case VIRTCHNL2_PROTO_HDR_NVGRE:
3196 case VIRTCHNL2_PROTO_HDR_VXLAN:
3197 case VIRTCHNL2_PROTO_HDR_VXLAN_GPE:
3198 case VIRTCHNL2_PROTO_HDR_GENEVE:
3199 case VIRTCHNL2_PROTO_HDR_NSH:
3200 case VIRTCHNL2_PROTO_HDR_QUIC:
3201 case VIRTCHNL2_PROTO_HDR_PFCP:
3202 case VIRTCHNL2_PROTO_HDR_PFCP_NODE:
3203 case VIRTCHNL2_PROTO_HDR_PFCP_SESSION:
3204 case VIRTCHNL2_PROTO_HDR_RTP:
3205 case VIRTCHNL2_PROTO_HDR_NO_PROTO:
3206 break;
3207 default:
3208 break;
3209 }
3210 }
3211
3212 idpf_finalize_ptype_lookup(&ptype_lkup[k]);
3213 }
3214 }
3215
3216 out:
3217 vport->rx_ptype_lkup = no_free_ptr(ptype_lkup);
3218
3219 return 0;
3220 }
3221
3222 /**
3223 * idpf_send_ena_dis_loopback_msg - Send virtchnl enable/disable loopback
3224 * message
3225 * @vport: virtual port data structure
3226 *
3227 * Returns 0 on success, negative on failure.
3228 */
idpf_send_ena_dis_loopback_msg(struct idpf_vport * vport)3229 int idpf_send_ena_dis_loopback_msg(struct idpf_vport *vport)
3230 {
3231 struct idpf_vc_xn_params xn_params = {};
3232 struct virtchnl2_loopback loopback;
3233 ssize_t reply_sz;
3234
3235 loopback.vport_id = cpu_to_le32(vport->vport_id);
3236 loopback.enable = idpf_is_feature_ena(vport, NETIF_F_LOOPBACK);
3237
3238 xn_params.vc_op = VIRTCHNL2_OP_LOOPBACK;
3239 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
3240 xn_params.send_buf.iov_base = &loopback;
3241 xn_params.send_buf.iov_len = sizeof(loopback);
3242 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
3243
3244 return reply_sz < 0 ? reply_sz : 0;
3245 }
3246
3247 /**
3248 * idpf_find_ctlq - Given a type and id, find ctlq info
3249 * @hw: hardware struct
3250 * @type: type of ctrlq to find
3251 * @id: ctlq id to find
3252 *
3253 * Returns pointer to found ctlq info struct, NULL otherwise.
3254 */
idpf_find_ctlq(struct idpf_hw * hw,enum idpf_ctlq_type type,int id)3255 static struct idpf_ctlq_info *idpf_find_ctlq(struct idpf_hw *hw,
3256 enum idpf_ctlq_type type, int id)
3257 {
3258 struct idpf_ctlq_info *cq, *tmp;
3259
3260 list_for_each_entry_safe(cq, tmp, &hw->cq_list_head, cq_list)
3261 if (cq->q_id == id && cq->cq_type == type)
3262 return cq;
3263
3264 return NULL;
3265 }
3266
3267 /**
3268 * idpf_init_dflt_mbx - Setup default mailbox parameters and make request
3269 * @adapter: adapter info struct
3270 *
3271 * Returns 0 on success, negative otherwise
3272 */
idpf_init_dflt_mbx(struct idpf_adapter * adapter)3273 int idpf_init_dflt_mbx(struct idpf_adapter *adapter)
3274 {
3275 struct idpf_ctlq_create_info ctlq_info[] = {
3276 {
3277 .type = IDPF_CTLQ_TYPE_MAILBOX_TX,
3278 .id = IDPF_DFLT_MBX_ID,
3279 .len = IDPF_DFLT_MBX_Q_LEN,
3280 .buf_size = IDPF_CTLQ_MAX_BUF_LEN
3281 },
3282 {
3283 .type = IDPF_CTLQ_TYPE_MAILBOX_RX,
3284 .id = IDPF_DFLT_MBX_ID,
3285 .len = IDPF_DFLT_MBX_Q_LEN,
3286 .buf_size = IDPF_CTLQ_MAX_BUF_LEN
3287 }
3288 };
3289 struct idpf_hw *hw = &adapter->hw;
3290 int err;
3291
3292 adapter->dev_ops.reg_ops.ctlq_reg_init(adapter, ctlq_info);
3293
3294 err = idpf_ctlq_init(hw, IDPF_NUM_DFLT_MBX_Q, ctlq_info);
3295 if (err)
3296 return err;
3297
3298 hw->asq = idpf_find_ctlq(hw, IDPF_CTLQ_TYPE_MAILBOX_TX,
3299 IDPF_DFLT_MBX_ID);
3300 hw->arq = idpf_find_ctlq(hw, IDPF_CTLQ_TYPE_MAILBOX_RX,
3301 IDPF_DFLT_MBX_ID);
3302
3303 if (!hw->asq || !hw->arq) {
3304 idpf_ctlq_deinit(hw);
3305
3306 return -ENOENT;
3307 }
3308
3309 adapter->state = __IDPF_VER_CHECK;
3310
3311 return 0;
3312 }
3313
3314 /**
3315 * idpf_deinit_dflt_mbx - Free up ctlqs setup
3316 * @adapter: Driver specific private data structure
3317 */
idpf_deinit_dflt_mbx(struct idpf_adapter * adapter)3318 void idpf_deinit_dflt_mbx(struct idpf_adapter *adapter)
3319 {
3320 if (adapter->hw.arq && adapter->hw.asq) {
3321 idpf_mb_clean(adapter);
3322 idpf_ctlq_deinit(&adapter->hw);
3323 }
3324 adapter->hw.arq = NULL;
3325 adapter->hw.asq = NULL;
3326 }
3327
3328 /**
3329 * idpf_vport_params_buf_rel - Release memory for MailBox resources
3330 * @adapter: Driver specific private data structure
3331 *
3332 * Will release memory to hold the vport parameters received on MailBox
3333 */
idpf_vport_params_buf_rel(struct idpf_adapter * adapter)3334 static void idpf_vport_params_buf_rel(struct idpf_adapter *adapter)
3335 {
3336 kfree(adapter->vport_params_recvd);
3337 adapter->vport_params_recvd = NULL;
3338 kfree(adapter->vport_params_reqd);
3339 adapter->vport_params_reqd = NULL;
3340 kfree(adapter->vport_ids);
3341 adapter->vport_ids = NULL;
3342 }
3343
3344 /**
3345 * idpf_vport_params_buf_alloc - Allocate memory for MailBox resources
3346 * @adapter: Driver specific private data structure
3347 *
3348 * Will alloc memory to hold the vport parameters received on MailBox
3349 */
idpf_vport_params_buf_alloc(struct idpf_adapter * adapter)3350 static int idpf_vport_params_buf_alloc(struct idpf_adapter *adapter)
3351 {
3352 u16 num_max_vports = idpf_get_max_vports(adapter);
3353
3354 adapter->vport_params_reqd = kcalloc(num_max_vports,
3355 sizeof(*adapter->vport_params_reqd),
3356 GFP_KERNEL);
3357 if (!adapter->vport_params_reqd)
3358 return -ENOMEM;
3359
3360 adapter->vport_params_recvd = kcalloc(num_max_vports,
3361 sizeof(*adapter->vport_params_recvd),
3362 GFP_KERNEL);
3363 if (!adapter->vport_params_recvd)
3364 goto err_mem;
3365
3366 adapter->vport_ids = kcalloc(num_max_vports, sizeof(u32), GFP_KERNEL);
3367 if (!adapter->vport_ids)
3368 goto err_mem;
3369
3370 if (adapter->vport_config)
3371 return 0;
3372
3373 adapter->vport_config = kcalloc(num_max_vports,
3374 sizeof(*adapter->vport_config),
3375 GFP_KERNEL);
3376 if (!adapter->vport_config)
3377 goto err_mem;
3378
3379 return 0;
3380
3381 err_mem:
3382 idpf_vport_params_buf_rel(adapter);
3383
3384 return -ENOMEM;
3385 }
3386
3387 /**
3388 * idpf_vc_core_init - Initialize state machine and get driver specific
3389 * resources
3390 * @adapter: Driver specific private structure
3391 *
3392 * This function will initialize the state machine and request all necessary
3393 * resources required by the device driver. Once the state machine is
3394 * initialized, allocate memory to store vport specific information and also
3395 * requests required interrupts.
3396 *
3397 * Returns 0 on success, -EAGAIN function will get called again,
3398 * otherwise negative on failure.
3399 */
idpf_vc_core_init(struct idpf_adapter * adapter)3400 int idpf_vc_core_init(struct idpf_adapter *adapter)
3401 {
3402 int task_delay = 30;
3403 u16 num_max_vports;
3404 int err = 0;
3405
3406 if (!adapter->vcxn_mngr) {
3407 adapter->vcxn_mngr = kzalloc(sizeof(*adapter->vcxn_mngr), GFP_KERNEL);
3408 if (!adapter->vcxn_mngr) {
3409 err = -ENOMEM;
3410 goto init_failed;
3411 }
3412 }
3413 idpf_vc_xn_init(adapter->vcxn_mngr);
3414
3415 while (adapter->state != __IDPF_INIT_SW) {
3416 switch (adapter->state) {
3417 case __IDPF_VER_CHECK:
3418 err = idpf_send_ver_msg(adapter);
3419 switch (err) {
3420 case 0:
3421 /* success, move state machine forward */
3422 adapter->state = __IDPF_GET_CAPS;
3423 fallthrough;
3424 case -EAGAIN:
3425 goto restart;
3426 default:
3427 /* Something bad happened, try again but only a
3428 * few times.
3429 */
3430 goto init_failed;
3431 }
3432 case __IDPF_GET_CAPS:
3433 err = idpf_send_get_caps_msg(adapter);
3434 if (err)
3435 goto init_failed;
3436 adapter->state = __IDPF_INIT_SW;
3437 break;
3438 default:
3439 dev_err(&adapter->pdev->dev, "Device is in bad state: %d\n",
3440 adapter->state);
3441 err = -EINVAL;
3442 goto init_failed;
3443 }
3444 break;
3445 restart:
3446 /* Give enough time before proceeding further with
3447 * state machine
3448 */
3449 msleep(task_delay);
3450 }
3451
3452 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_LAN_MEMORY_REGIONS)) {
3453 err = idpf_send_get_lan_memory_regions(adapter);
3454 if (err) {
3455 dev_err(&adapter->pdev->dev, "Failed to get LAN memory regions: %d\n",
3456 err);
3457 return -EINVAL;
3458 }
3459 } else {
3460 /* Fallback to mapping the remaining regions of the entire BAR */
3461 err = idpf_calc_remaining_mmio_regs(adapter);
3462 if (err) {
3463 dev_err(&adapter->pdev->dev, "Failed to allocate BAR0 region(s): %d\n",
3464 err);
3465 return -ENOMEM;
3466 }
3467 }
3468
3469 err = idpf_map_lan_mmio_regs(adapter);
3470 if (err) {
3471 dev_err(&adapter->pdev->dev, "Failed to map BAR0 region(s): %d\n",
3472 err);
3473 return -ENOMEM;
3474 }
3475
3476 pci_sriov_set_totalvfs(adapter->pdev, idpf_get_max_vfs(adapter));
3477 num_max_vports = idpf_get_max_vports(adapter);
3478 adapter->max_vports = num_max_vports;
3479 adapter->vports = kcalloc(num_max_vports, sizeof(*adapter->vports),
3480 GFP_KERNEL);
3481 if (!adapter->vports)
3482 return -ENOMEM;
3483
3484 if (!adapter->netdevs) {
3485 adapter->netdevs = kcalloc(num_max_vports,
3486 sizeof(struct net_device *),
3487 GFP_KERNEL);
3488 if (!adapter->netdevs) {
3489 err = -ENOMEM;
3490 goto err_netdev_alloc;
3491 }
3492 }
3493
3494 err = idpf_vport_params_buf_alloc(adapter);
3495 if (err) {
3496 dev_err(&adapter->pdev->dev, "Failed to alloc vport params buffer: %d\n",
3497 err);
3498 goto err_netdev_alloc;
3499 }
3500
3501 /* Start the mailbox task before requesting vectors. This will ensure
3502 * vector information response from mailbox is handled
3503 */
3504 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
3505
3506 queue_delayed_work(adapter->serv_wq, &adapter->serv_task,
3507 msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
3508
3509 err = idpf_intr_req(adapter);
3510 if (err) {
3511 dev_err(&adapter->pdev->dev, "failed to enable interrupt vectors: %d\n",
3512 err);
3513 goto err_intr_req;
3514 }
3515
3516 err = idpf_ptp_init(adapter);
3517 if (err)
3518 pci_err(adapter->pdev, "PTP init failed, err=%pe\n",
3519 ERR_PTR(err));
3520
3521 idpf_init_avail_queues(adapter);
3522
3523 /* Skew the delay for init tasks for each function based on fn number
3524 * to prevent every function from making the same call simultaneously.
3525 */
3526 queue_delayed_work(adapter->init_wq, &adapter->init_task,
3527 msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
3528
3529 set_bit(IDPF_VC_CORE_INIT, adapter->flags);
3530
3531 return 0;
3532
3533 err_intr_req:
3534 cancel_delayed_work_sync(&adapter->serv_task);
3535 cancel_delayed_work_sync(&adapter->mbx_task);
3536 idpf_vport_params_buf_rel(adapter);
3537 err_netdev_alloc:
3538 kfree(adapter->vports);
3539 adapter->vports = NULL;
3540 return err;
3541
3542 init_failed:
3543 /* Don't retry if we're trying to go down, just bail. */
3544 if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags))
3545 return err;
3546
3547 if (++adapter->mb_wait_count > IDPF_MB_MAX_ERR) {
3548 dev_err(&adapter->pdev->dev, "Failed to establish mailbox communications with hardware\n");
3549
3550 return -EFAULT;
3551 }
3552 /* If it reached here, it is possible that mailbox queue initialization
3553 * register writes might not have taken effect. Retry to initialize
3554 * the mailbox again
3555 */
3556 adapter->state = __IDPF_VER_CHECK;
3557 if (adapter->vcxn_mngr)
3558 idpf_vc_xn_shutdown(adapter->vcxn_mngr);
3559 set_bit(IDPF_HR_DRV_LOAD, adapter->flags);
3560 queue_delayed_work(adapter->vc_event_wq, &adapter->vc_event_task,
3561 msecs_to_jiffies(task_delay));
3562
3563 return -EAGAIN;
3564 }
3565
3566 /**
3567 * idpf_vc_core_deinit - Device deinit routine
3568 * @adapter: Driver specific private structure
3569 *
3570 */
idpf_vc_core_deinit(struct idpf_adapter * adapter)3571 void idpf_vc_core_deinit(struct idpf_adapter *adapter)
3572 {
3573 bool remove_in_prog;
3574
3575 if (!test_bit(IDPF_VC_CORE_INIT, adapter->flags))
3576 return;
3577
3578 /* Avoid transaction timeouts when called during reset */
3579 remove_in_prog = test_bit(IDPF_REMOVE_IN_PROG, adapter->flags);
3580 if (!remove_in_prog)
3581 idpf_vc_xn_shutdown(adapter->vcxn_mngr);
3582
3583 idpf_ptp_release(adapter);
3584 idpf_deinit_task(adapter);
3585 idpf_idc_deinit_core_aux_device(adapter->cdev_info);
3586 idpf_intr_rel(adapter);
3587
3588 if (remove_in_prog)
3589 idpf_vc_xn_shutdown(adapter->vcxn_mngr);
3590
3591 cancel_delayed_work_sync(&adapter->serv_task);
3592 cancel_delayed_work_sync(&adapter->mbx_task);
3593
3594 idpf_vport_params_buf_rel(adapter);
3595
3596 kfree(adapter->vports);
3597 adapter->vports = NULL;
3598
3599 clear_bit(IDPF_VC_CORE_INIT, adapter->flags);
3600 }
3601
3602 /**
3603 * idpf_vport_alloc_vec_indexes - Get relative vector indexes
3604 * @vport: virtual port data struct
3605 *
3606 * This function requests the vector information required for the vport and
3607 * stores the vector indexes received from the 'global vector distribution'
3608 * in the vport's queue vectors array.
3609 *
3610 * Return 0 on success, error on failure
3611 */
idpf_vport_alloc_vec_indexes(struct idpf_vport * vport)3612 int idpf_vport_alloc_vec_indexes(struct idpf_vport *vport)
3613 {
3614 struct idpf_vector_info vec_info;
3615 int num_alloc_vecs;
3616 u32 req;
3617
3618 vec_info.num_curr_vecs = vport->num_q_vectors;
3619 if (vec_info.num_curr_vecs)
3620 vec_info.num_curr_vecs += IDPF_RESERVED_VECS;
3621
3622 /* XDPSQs are all bound to the NOIRQ vector from IDPF_RESERVED_VECS */
3623 req = max(vport->num_txq - vport->num_xdp_txq, vport->num_rxq) +
3624 IDPF_RESERVED_VECS;
3625 vec_info.num_req_vecs = req;
3626
3627 vec_info.default_vport = vport->default_vport;
3628 vec_info.index = vport->idx;
3629
3630 num_alloc_vecs = idpf_req_rel_vector_indexes(vport->adapter,
3631 vport->q_vector_idxs,
3632 &vec_info);
3633 if (num_alloc_vecs <= 0) {
3634 dev_err(&vport->adapter->pdev->dev, "Vector distribution failed: %d\n",
3635 num_alloc_vecs);
3636 return -EINVAL;
3637 }
3638
3639 vport->num_q_vectors = num_alloc_vecs - IDPF_RESERVED_VECS;
3640
3641 return 0;
3642 }
3643
3644 /**
3645 * idpf_vport_init - Initialize virtual port
3646 * @vport: virtual port to be initialized
3647 * @max_q: vport max queue info
3648 *
3649 * Will initialize vport with the info received through MB earlier
3650 */
idpf_vport_init(struct idpf_vport * vport,struct idpf_vport_max_q * max_q)3651 void idpf_vport_init(struct idpf_vport *vport, struct idpf_vport_max_q *max_q)
3652 {
3653 struct idpf_adapter *adapter = vport->adapter;
3654 struct virtchnl2_create_vport *vport_msg;
3655 struct idpf_vport_config *vport_config;
3656 u16 tx_itr[] = {2, 8, 64, 128, 256};
3657 u16 rx_itr[] = {2, 8, 32, 96, 128};
3658 struct idpf_rss_data *rss_data;
3659 u16 idx = vport->idx;
3660 int err;
3661
3662 vport_config = adapter->vport_config[idx];
3663 rss_data = &vport_config->user_config.rss_data;
3664 vport_msg = adapter->vport_params_recvd[idx];
3665
3666 vport_config->max_q.max_txq = max_q->max_txq;
3667 vport_config->max_q.max_rxq = max_q->max_rxq;
3668 vport_config->max_q.max_complq = max_q->max_complq;
3669 vport_config->max_q.max_bufq = max_q->max_bufq;
3670
3671 vport->txq_model = le16_to_cpu(vport_msg->txq_model);
3672 vport->rxq_model = le16_to_cpu(vport_msg->rxq_model);
3673 vport->vport_type = le16_to_cpu(vport_msg->vport_type);
3674 vport->vport_id = le32_to_cpu(vport_msg->vport_id);
3675
3676 rss_data->rss_key_size = min_t(u16, NETDEV_RSS_KEY_LEN,
3677 le16_to_cpu(vport_msg->rss_key_size));
3678 rss_data->rss_lut_size = le16_to_cpu(vport_msg->rss_lut_size);
3679
3680 ether_addr_copy(vport->default_mac_addr, vport_msg->default_mac_addr);
3681 vport->max_mtu = le16_to_cpu(vport_msg->max_mtu) - LIBETH_RX_LL_LEN;
3682
3683 /* Initialize Tx and Rx profiles for Dynamic Interrupt Moderation */
3684 memcpy(vport->rx_itr_profile, rx_itr, IDPF_DIM_PROFILE_SLOTS);
3685 memcpy(vport->tx_itr_profile, tx_itr, IDPF_DIM_PROFILE_SLOTS);
3686
3687 idpf_vport_set_hsplit(vport, ETHTOOL_TCP_DATA_SPLIT_ENABLED);
3688
3689 idpf_vport_init_num_qs(vport, vport_msg);
3690 idpf_vport_calc_num_q_desc(vport);
3691 idpf_vport_calc_num_q_groups(vport);
3692 idpf_vport_alloc_vec_indexes(vport);
3693
3694 vport->crc_enable = adapter->crc_enable;
3695
3696 if (!(vport_msg->vport_flags &
3697 cpu_to_le16(VIRTCHNL2_VPORT_UPLINK_PORT)))
3698 return;
3699
3700 err = idpf_ptp_get_vport_tstamps_caps(vport);
3701 if (err) {
3702 pci_dbg(vport->adapter->pdev, "Tx timestamping not supported\n");
3703 return;
3704 }
3705
3706 INIT_WORK(&vport->tstamp_task, idpf_tstamp_task);
3707 }
3708
3709 /**
3710 * idpf_get_vec_ids - Initialize vector id from Mailbox parameters
3711 * @adapter: adapter structure to get the mailbox vector id
3712 * @vecids: Array of vector ids
3713 * @num_vecids: number of vector ids
3714 * @chunks: vector ids received over mailbox
3715 *
3716 * Will initialize the mailbox vector id which is received from the
3717 * get capabilities and data queue vector ids with ids received as
3718 * mailbox parameters.
3719 * Returns number of ids filled
3720 */
idpf_get_vec_ids(struct idpf_adapter * adapter,u16 * vecids,int num_vecids,struct virtchnl2_vector_chunks * chunks)3721 int idpf_get_vec_ids(struct idpf_adapter *adapter,
3722 u16 *vecids, int num_vecids,
3723 struct virtchnl2_vector_chunks *chunks)
3724 {
3725 u16 num_chunks = le16_to_cpu(chunks->num_vchunks);
3726 int num_vecid_filled = 0;
3727 int i, j;
3728
3729 vecids[num_vecid_filled] = adapter->mb_vector.v_idx;
3730 num_vecid_filled++;
3731
3732 for (j = 0; j < num_chunks; j++) {
3733 struct virtchnl2_vector_chunk *chunk;
3734 u16 start_vecid, num_vec;
3735
3736 chunk = &chunks->vchunks[j];
3737 num_vec = le16_to_cpu(chunk->num_vectors);
3738 start_vecid = le16_to_cpu(chunk->start_vector_id);
3739
3740 for (i = 0; i < num_vec; i++) {
3741 if ((num_vecid_filled + i) < num_vecids) {
3742 vecids[num_vecid_filled + i] = start_vecid;
3743 start_vecid++;
3744 } else {
3745 break;
3746 }
3747 }
3748 num_vecid_filled = num_vecid_filled + i;
3749 }
3750
3751 return num_vecid_filled;
3752 }
3753
3754 /**
3755 * idpf_vport_get_queue_ids - Initialize queue id from Mailbox parameters
3756 * @qids: Array of queue ids
3757 * @num_qids: number of queue ids
3758 * @q_type: queue model
3759 * @chunks: queue ids received over mailbox
3760 *
3761 * Will initialize all queue ids with ids received as mailbox parameters
3762 * Returns number of ids filled
3763 */
idpf_vport_get_queue_ids(u32 * qids,int num_qids,u16 q_type,struct virtchnl2_queue_reg_chunks * chunks)3764 static int idpf_vport_get_queue_ids(u32 *qids, int num_qids, u16 q_type,
3765 struct virtchnl2_queue_reg_chunks *chunks)
3766 {
3767 u16 num_chunks = le16_to_cpu(chunks->num_chunks);
3768 u32 num_q_id_filled = 0, i;
3769 u32 start_q_id, num_q;
3770
3771 while (num_chunks--) {
3772 struct virtchnl2_queue_reg_chunk *chunk;
3773
3774 chunk = &chunks->chunks[num_chunks];
3775 if (le32_to_cpu(chunk->type) != q_type)
3776 continue;
3777
3778 num_q = le32_to_cpu(chunk->num_queues);
3779 start_q_id = le32_to_cpu(chunk->start_queue_id);
3780
3781 for (i = 0; i < num_q; i++) {
3782 if ((num_q_id_filled + i) < num_qids) {
3783 qids[num_q_id_filled + i] = start_q_id;
3784 start_q_id++;
3785 } else {
3786 break;
3787 }
3788 }
3789 num_q_id_filled = num_q_id_filled + i;
3790 }
3791
3792 return num_q_id_filled;
3793 }
3794
3795 /**
3796 * __idpf_vport_queue_ids_init - Initialize queue ids from Mailbox parameters
3797 * @vport: virtual port for which the queues ids are initialized
3798 * @qids: queue ids
3799 * @num_qids: number of queue ids
3800 * @q_type: type of queue
3801 *
3802 * Will initialize all queue ids with ids received as mailbox
3803 * parameters. Returns number of queue ids initialized.
3804 */
__idpf_vport_queue_ids_init(struct idpf_vport * vport,const u32 * qids,int num_qids,u32 q_type)3805 static int __idpf_vport_queue_ids_init(struct idpf_vport *vport,
3806 const u32 *qids,
3807 int num_qids,
3808 u32 q_type)
3809 {
3810 int i, j, k = 0;
3811
3812 switch (q_type) {
3813 case VIRTCHNL2_QUEUE_TYPE_TX:
3814 for (i = 0; i < vport->num_txq_grp; i++) {
3815 struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
3816
3817 for (j = 0; j < tx_qgrp->num_txq && k < num_qids; j++, k++)
3818 tx_qgrp->txqs[j]->q_id = qids[k];
3819 }
3820 break;
3821 case VIRTCHNL2_QUEUE_TYPE_RX:
3822 for (i = 0; i < vport->num_rxq_grp; i++) {
3823 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
3824 u16 num_rxq;
3825
3826 if (idpf_is_queue_model_split(vport->rxq_model))
3827 num_rxq = rx_qgrp->splitq.num_rxq_sets;
3828 else
3829 num_rxq = rx_qgrp->singleq.num_rxq;
3830
3831 for (j = 0; j < num_rxq && k < num_qids; j++, k++) {
3832 struct idpf_rx_queue *q;
3833
3834 if (idpf_is_queue_model_split(vport->rxq_model))
3835 q = &rx_qgrp->splitq.rxq_sets[j]->rxq;
3836 else
3837 q = rx_qgrp->singleq.rxqs[j];
3838 q->q_id = qids[k];
3839 }
3840 }
3841 break;
3842 case VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION:
3843 for (i = 0; i < vport->num_txq_grp && k < num_qids; i++, k++) {
3844 struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
3845
3846 tx_qgrp->complq->q_id = qids[k];
3847 }
3848 break;
3849 case VIRTCHNL2_QUEUE_TYPE_RX_BUFFER:
3850 for (i = 0; i < vport->num_rxq_grp; i++) {
3851 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
3852 u8 num_bufqs = vport->num_bufqs_per_qgrp;
3853
3854 for (j = 0; j < num_bufqs && k < num_qids; j++, k++) {
3855 struct idpf_buf_queue *q;
3856
3857 q = &rx_qgrp->splitq.bufq_sets[j].bufq;
3858 q->q_id = qids[k];
3859 }
3860 }
3861 break;
3862 default:
3863 break;
3864 }
3865
3866 return k;
3867 }
3868
3869 /**
3870 * idpf_vport_queue_ids_init - Initialize queue ids from Mailbox parameters
3871 * @vport: virtual port for which the queues ids are initialized
3872 *
3873 * Will initialize all queue ids with ids received as mailbox parameters.
3874 * Returns 0 on success, negative if all the queues are not initialized.
3875 */
idpf_vport_queue_ids_init(struct idpf_vport * vport)3876 int idpf_vport_queue_ids_init(struct idpf_vport *vport)
3877 {
3878 struct virtchnl2_create_vport *vport_params;
3879 struct virtchnl2_queue_reg_chunks *chunks;
3880 struct idpf_vport_config *vport_config;
3881 u16 vport_idx = vport->idx;
3882 int num_ids, err = 0;
3883 u16 q_type;
3884 u32 *qids;
3885
3886 vport_config = vport->adapter->vport_config[vport_idx];
3887 if (vport_config->req_qs_chunks) {
3888 struct virtchnl2_add_queues *vc_aq =
3889 (struct virtchnl2_add_queues *)vport_config->req_qs_chunks;
3890 chunks = &vc_aq->chunks;
3891 } else {
3892 vport_params = vport->adapter->vport_params_recvd[vport_idx];
3893 chunks = &vport_params->chunks;
3894 }
3895
3896 qids = kcalloc(IDPF_MAX_QIDS, sizeof(u32), GFP_KERNEL);
3897 if (!qids)
3898 return -ENOMEM;
3899
3900 num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS,
3901 VIRTCHNL2_QUEUE_TYPE_TX,
3902 chunks);
3903 if (num_ids < vport->num_txq) {
3904 err = -EINVAL;
3905 goto mem_rel;
3906 }
3907 num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids,
3908 VIRTCHNL2_QUEUE_TYPE_TX);
3909 if (num_ids < vport->num_txq) {
3910 err = -EINVAL;
3911 goto mem_rel;
3912 }
3913
3914 num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS,
3915 VIRTCHNL2_QUEUE_TYPE_RX,
3916 chunks);
3917 if (num_ids < vport->num_rxq) {
3918 err = -EINVAL;
3919 goto mem_rel;
3920 }
3921 num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids,
3922 VIRTCHNL2_QUEUE_TYPE_RX);
3923 if (num_ids < vport->num_rxq) {
3924 err = -EINVAL;
3925 goto mem_rel;
3926 }
3927
3928 if (!idpf_is_queue_model_split(vport->txq_model))
3929 goto check_rxq;
3930
3931 q_type = VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION;
3932 num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS, q_type, chunks);
3933 if (num_ids < vport->num_complq) {
3934 err = -EINVAL;
3935 goto mem_rel;
3936 }
3937 num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids, q_type);
3938 if (num_ids < vport->num_complq) {
3939 err = -EINVAL;
3940 goto mem_rel;
3941 }
3942
3943 check_rxq:
3944 if (!idpf_is_queue_model_split(vport->rxq_model))
3945 goto mem_rel;
3946
3947 q_type = VIRTCHNL2_QUEUE_TYPE_RX_BUFFER;
3948 num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS, q_type, chunks);
3949 if (num_ids < vport->num_bufq) {
3950 err = -EINVAL;
3951 goto mem_rel;
3952 }
3953 num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids, q_type);
3954 if (num_ids < vport->num_bufq)
3955 err = -EINVAL;
3956
3957 mem_rel:
3958 kfree(qids);
3959
3960 return err;
3961 }
3962
3963 /**
3964 * idpf_vport_adjust_qs - Adjust to new requested queues
3965 * @vport: virtual port data struct
3966 *
3967 * Renegotiate queues. Returns 0 on success, negative on failure.
3968 */
idpf_vport_adjust_qs(struct idpf_vport * vport)3969 int idpf_vport_adjust_qs(struct idpf_vport *vport)
3970 {
3971 struct virtchnl2_create_vport vport_msg;
3972 int err;
3973
3974 vport_msg.txq_model = cpu_to_le16(vport->txq_model);
3975 vport_msg.rxq_model = cpu_to_le16(vport->rxq_model);
3976 err = idpf_vport_calc_total_qs(vport->adapter, vport->idx, &vport_msg,
3977 NULL);
3978 if (err)
3979 return err;
3980
3981 idpf_vport_init_num_qs(vport, &vport_msg);
3982 idpf_vport_calc_num_q_groups(vport);
3983
3984 return 0;
3985 }
3986
3987 /**
3988 * idpf_is_capability_ena - Default implementation of capability checking
3989 * @adapter: Private data struct
3990 * @all: all or one flag
3991 * @field: caps field to check for flags
3992 * @flag: flag to check
3993 *
3994 * Return true if all capabilities are supported, false otherwise
3995 */
idpf_is_capability_ena(struct idpf_adapter * adapter,bool all,enum idpf_cap_field field,u64 flag)3996 bool idpf_is_capability_ena(struct idpf_adapter *adapter, bool all,
3997 enum idpf_cap_field field, u64 flag)
3998 {
3999 u8 *caps = (u8 *)&adapter->caps;
4000 u32 *cap_field;
4001
4002 if (!caps)
4003 return false;
4004
4005 if (field == IDPF_BASE_CAPS)
4006 return false;
4007
4008 cap_field = (u32 *)(caps + field);
4009
4010 if (all)
4011 return (*cap_field & flag) == flag;
4012 else
4013 return !!(*cap_field & flag);
4014 }
4015
4016 /**
4017 * idpf_vport_is_cap_ena - Check if vport capability is enabled
4018 * @vport: Private data struct
4019 * @flag: flag(s) to check
4020 *
4021 * Return: true if the capability is supported, false otherwise
4022 */
idpf_vport_is_cap_ena(struct idpf_vport * vport,u16 flag)4023 bool idpf_vport_is_cap_ena(struct idpf_vport *vport, u16 flag)
4024 {
4025 struct virtchnl2_create_vport *vport_msg;
4026
4027 vport_msg = vport->adapter->vport_params_recvd[vport->idx];
4028
4029 return !!(le16_to_cpu(vport_msg->vport_flags) & flag);
4030 }
4031
4032 /**
4033 * idpf_sideband_flow_type_ena - Check if steering is enabled for flow type
4034 * @vport: Private data struct
4035 * @flow_type: flow type to check (from ethtool.h)
4036 *
4037 * Return: true if sideband filters are allowed for @flow_type, false otherwise
4038 */
idpf_sideband_flow_type_ena(struct idpf_vport * vport,u32 flow_type)4039 bool idpf_sideband_flow_type_ena(struct idpf_vport *vport, u32 flow_type)
4040 {
4041 struct virtchnl2_create_vport *vport_msg;
4042 __le64 caps;
4043
4044 vport_msg = vport->adapter->vport_params_recvd[vport->idx];
4045 caps = vport_msg->sideband_flow_caps;
4046
4047 switch (flow_type) {
4048 case TCP_V4_FLOW:
4049 return !!(caps & cpu_to_le64(VIRTCHNL2_FLOW_IPV4_TCP));
4050 case UDP_V4_FLOW:
4051 return !!(caps & cpu_to_le64(VIRTCHNL2_FLOW_IPV4_UDP));
4052 default:
4053 return false;
4054 }
4055 }
4056
4057 /**
4058 * idpf_sideband_action_ena - Check if steering is enabled for action
4059 * @vport: Private data struct
4060 * @fsp: flow spec
4061 *
4062 * Return: true if sideband filters are allowed for @fsp, false otherwise
4063 */
idpf_sideband_action_ena(struct idpf_vport * vport,struct ethtool_rx_flow_spec * fsp)4064 bool idpf_sideband_action_ena(struct idpf_vport *vport,
4065 struct ethtool_rx_flow_spec *fsp)
4066 {
4067 struct virtchnl2_create_vport *vport_msg;
4068 unsigned int supp_actions;
4069
4070 vport_msg = vport->adapter->vport_params_recvd[vport->idx];
4071 supp_actions = le32_to_cpu(vport_msg->sideband_flow_actions);
4072
4073 /* Actions Drop/Wake are not supported */
4074 if (fsp->ring_cookie == RX_CLS_FLOW_DISC ||
4075 fsp->ring_cookie == RX_CLS_FLOW_WAKE)
4076 return false;
4077
4078 return !!(supp_actions & VIRTCHNL2_ACTION_QUEUE);
4079 }
4080
idpf_fsteer_max_rules(struct idpf_vport * vport)4081 unsigned int idpf_fsteer_max_rules(struct idpf_vport *vport)
4082 {
4083 struct virtchnl2_create_vport *vport_msg;
4084
4085 vport_msg = vport->adapter->vport_params_recvd[vport->idx];
4086 return le32_to_cpu(vport_msg->flow_steer_max_rules);
4087 }
4088
4089 /**
4090 * idpf_get_vport_id: Get vport id
4091 * @vport: virtual port structure
4092 *
4093 * Return vport id from the adapter persistent data
4094 */
idpf_get_vport_id(struct idpf_vport * vport)4095 u32 idpf_get_vport_id(struct idpf_vport *vport)
4096 {
4097 struct virtchnl2_create_vport *vport_msg;
4098
4099 vport_msg = vport->adapter->vport_params_recvd[vport->idx];
4100
4101 return le32_to_cpu(vport_msg->vport_id);
4102 }
4103
idpf_set_mac_type(struct idpf_vport * vport,struct virtchnl2_mac_addr * mac_addr)4104 static void idpf_set_mac_type(struct idpf_vport *vport,
4105 struct virtchnl2_mac_addr *mac_addr)
4106 {
4107 bool is_primary;
4108
4109 is_primary = ether_addr_equal(vport->default_mac_addr, mac_addr->addr);
4110 mac_addr->type = is_primary ? VIRTCHNL2_MAC_ADDR_PRIMARY :
4111 VIRTCHNL2_MAC_ADDR_EXTRA;
4112 }
4113
4114 /**
4115 * idpf_mac_filter_async_handler - Async callback for mac filters
4116 * @adapter: private data struct
4117 * @xn: transaction for message
4118 * @ctlq_msg: received message
4119 *
4120 * In some scenarios driver can't sleep and wait for a reply (e.g.: stack is
4121 * holding rtnl_lock) when adding a new mac filter. It puts us in a difficult
4122 * situation to deal with errors returned on the reply. The best we can
4123 * ultimately do is remove it from our list of mac filters and report the
4124 * error.
4125 */
idpf_mac_filter_async_handler(struct idpf_adapter * adapter,struct idpf_vc_xn * xn,const struct idpf_ctlq_msg * ctlq_msg)4126 static int idpf_mac_filter_async_handler(struct idpf_adapter *adapter,
4127 struct idpf_vc_xn *xn,
4128 const struct idpf_ctlq_msg *ctlq_msg)
4129 {
4130 struct virtchnl2_mac_addr_list *ma_list;
4131 struct idpf_vport_config *vport_config;
4132 struct virtchnl2_mac_addr *mac_addr;
4133 struct idpf_mac_filter *f, *tmp;
4134 struct list_head *ma_list_head;
4135 struct idpf_vport *vport;
4136 u16 num_entries;
4137 int i;
4138
4139 /* if success we're done, we're only here if something bad happened */
4140 if (!ctlq_msg->cookie.mbx.chnl_retval)
4141 return 0;
4142
4143 /* make sure at least struct is there */
4144 if (xn->reply_sz < sizeof(*ma_list))
4145 goto invalid_payload;
4146
4147 ma_list = ctlq_msg->ctx.indirect.payload->va;
4148 mac_addr = ma_list->mac_addr_list;
4149 num_entries = le16_to_cpu(ma_list->num_mac_addr);
4150 /* we should have received a buffer at least this big */
4151 if (xn->reply_sz < struct_size(ma_list, mac_addr_list, num_entries))
4152 goto invalid_payload;
4153
4154 vport = idpf_vid_to_vport(adapter, le32_to_cpu(ma_list->vport_id));
4155 if (!vport)
4156 goto invalid_payload;
4157
4158 vport_config = adapter->vport_config[le32_to_cpu(ma_list->vport_id)];
4159 ma_list_head = &vport_config->user_config.mac_filter_list;
4160
4161 /* We can't do much to reconcile bad filters at this point, however we
4162 * should at least remove them from our list one way or the other so we
4163 * have some idea what good filters we have.
4164 */
4165 spin_lock_bh(&vport_config->mac_filter_list_lock);
4166 list_for_each_entry_safe(f, tmp, ma_list_head, list)
4167 for (i = 0; i < num_entries; i++)
4168 if (ether_addr_equal(mac_addr[i].addr, f->macaddr))
4169 list_del(&f->list);
4170 spin_unlock_bh(&vport_config->mac_filter_list_lock);
4171 dev_err_ratelimited(&adapter->pdev->dev, "Received error sending MAC filter request (op %d)\n",
4172 xn->vc_op);
4173
4174 return 0;
4175
4176 invalid_payload:
4177 dev_err_ratelimited(&adapter->pdev->dev, "Received invalid MAC filter payload (op %d) (len %zd)\n",
4178 xn->vc_op, xn->reply_sz);
4179
4180 return -EINVAL;
4181 }
4182
4183 /**
4184 * idpf_add_del_mac_filters - Add/del mac filters
4185 * @vport: Virtual port data structure
4186 * @np: Netdev private structure
4187 * @add: Add or delete flag
4188 * @async: Don't wait for return message
4189 *
4190 * Returns 0 on success, error on failure.
4191 **/
idpf_add_del_mac_filters(struct idpf_vport * vport,struct idpf_netdev_priv * np,bool add,bool async)4192 int idpf_add_del_mac_filters(struct idpf_vport *vport,
4193 struct idpf_netdev_priv *np,
4194 bool add, bool async)
4195 {
4196 struct virtchnl2_mac_addr_list *ma_list __free(kfree) = NULL;
4197 struct virtchnl2_mac_addr *mac_addr __free(kfree) = NULL;
4198 struct idpf_adapter *adapter = np->adapter;
4199 struct idpf_vc_xn_params xn_params = {};
4200 struct idpf_vport_config *vport_config;
4201 u32 num_msgs, total_filters = 0;
4202 struct idpf_mac_filter *f;
4203 ssize_t reply_sz;
4204 int i = 0, k;
4205
4206 xn_params.vc_op = add ? VIRTCHNL2_OP_ADD_MAC_ADDR :
4207 VIRTCHNL2_OP_DEL_MAC_ADDR;
4208 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
4209 xn_params.async = async;
4210 xn_params.async_handler = idpf_mac_filter_async_handler;
4211
4212 vport_config = adapter->vport_config[np->vport_idx];
4213 spin_lock_bh(&vport_config->mac_filter_list_lock);
4214
4215 /* Find the number of newly added filters */
4216 list_for_each_entry(f, &vport_config->user_config.mac_filter_list,
4217 list) {
4218 if (add && f->add)
4219 total_filters++;
4220 else if (!add && f->remove)
4221 total_filters++;
4222 }
4223
4224 if (!total_filters) {
4225 spin_unlock_bh(&vport_config->mac_filter_list_lock);
4226
4227 return 0;
4228 }
4229
4230 /* Fill all the new filters into virtchannel message */
4231 mac_addr = kcalloc(total_filters, sizeof(struct virtchnl2_mac_addr),
4232 GFP_ATOMIC);
4233 if (!mac_addr) {
4234 spin_unlock_bh(&vport_config->mac_filter_list_lock);
4235
4236 return -ENOMEM;
4237 }
4238
4239 list_for_each_entry(f, &vport_config->user_config.mac_filter_list,
4240 list) {
4241 if (add && f->add) {
4242 ether_addr_copy(mac_addr[i].addr, f->macaddr);
4243 idpf_set_mac_type(vport, &mac_addr[i]);
4244 i++;
4245 f->add = false;
4246 if (i == total_filters)
4247 break;
4248 }
4249 if (!add && f->remove) {
4250 ether_addr_copy(mac_addr[i].addr, f->macaddr);
4251 idpf_set_mac_type(vport, &mac_addr[i]);
4252 i++;
4253 f->remove = false;
4254 if (i == total_filters)
4255 break;
4256 }
4257 }
4258
4259 spin_unlock_bh(&vport_config->mac_filter_list_lock);
4260
4261 /* Chunk up the filters into multiple messages to avoid
4262 * sending a control queue message buffer that is too large
4263 */
4264 num_msgs = DIV_ROUND_UP(total_filters, IDPF_NUM_FILTERS_PER_MSG);
4265
4266 for (i = 0, k = 0; i < num_msgs; i++) {
4267 u32 entries_size, buf_size, num_entries;
4268
4269 num_entries = min_t(u32, total_filters,
4270 IDPF_NUM_FILTERS_PER_MSG);
4271 entries_size = sizeof(struct virtchnl2_mac_addr) * num_entries;
4272 buf_size = struct_size(ma_list, mac_addr_list, num_entries);
4273
4274 if (!ma_list || num_entries != IDPF_NUM_FILTERS_PER_MSG) {
4275 kfree(ma_list);
4276 ma_list = kzalloc(buf_size, GFP_ATOMIC);
4277 if (!ma_list)
4278 return -ENOMEM;
4279 } else {
4280 memset(ma_list, 0, buf_size);
4281 }
4282
4283 ma_list->vport_id = cpu_to_le32(np->vport_id);
4284 ma_list->num_mac_addr = cpu_to_le16(num_entries);
4285 memcpy(ma_list->mac_addr_list, &mac_addr[k], entries_size);
4286
4287 xn_params.send_buf.iov_base = ma_list;
4288 xn_params.send_buf.iov_len = buf_size;
4289 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
4290 if (reply_sz < 0)
4291 return reply_sz;
4292
4293 k += num_entries;
4294 total_filters -= num_entries;
4295 }
4296
4297 return 0;
4298 }
4299
4300 /**
4301 * idpf_set_promiscuous - set promiscuous and send message to mailbox
4302 * @adapter: Driver specific private structure
4303 * @config_data: Vport specific config data
4304 * @vport_id: Vport identifier
4305 *
4306 * Request to enable promiscuous mode for the vport. Message is sent
4307 * asynchronously and won't wait for response. Returns 0 on success, negative
4308 * on failure;
4309 */
idpf_set_promiscuous(struct idpf_adapter * adapter,struct idpf_vport_user_config_data * config_data,u32 vport_id)4310 int idpf_set_promiscuous(struct idpf_adapter *adapter,
4311 struct idpf_vport_user_config_data *config_data,
4312 u32 vport_id)
4313 {
4314 struct idpf_vc_xn_params xn_params = {};
4315 struct virtchnl2_promisc_info vpi;
4316 ssize_t reply_sz;
4317 u16 flags = 0;
4318
4319 if (test_bit(__IDPF_PROMISC_UC, config_data->user_flags))
4320 flags |= VIRTCHNL2_UNICAST_PROMISC;
4321 if (test_bit(__IDPF_PROMISC_MC, config_data->user_flags))
4322 flags |= VIRTCHNL2_MULTICAST_PROMISC;
4323
4324 vpi.vport_id = cpu_to_le32(vport_id);
4325 vpi.flags = cpu_to_le16(flags);
4326
4327 xn_params.vc_op = VIRTCHNL2_OP_CONFIG_PROMISCUOUS_MODE;
4328 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
4329 xn_params.send_buf.iov_base = &vpi;
4330 xn_params.send_buf.iov_len = sizeof(vpi);
4331 /* setting promiscuous is only ever done asynchronously */
4332 xn_params.async = true;
4333 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
4334
4335 return reply_sz < 0 ? reply_sz : 0;
4336 }
4337
4338 /**
4339 * idpf_idc_rdma_vc_send_sync - virtchnl send callback for IDC registered drivers
4340 * @cdev_info: IDC core device info pointer
4341 * @send_msg: message to send
4342 * @msg_size: size of message to send
4343 * @recv_msg: message to populate on reception of response
4344 * @recv_len: length of message copied into recv_msg or 0 on error
4345 *
4346 * Return: 0 on success or error code on failure.
4347 */
idpf_idc_rdma_vc_send_sync(struct iidc_rdma_core_dev_info * cdev_info,u8 * send_msg,u16 msg_size,u8 * recv_msg,u16 * recv_len)4348 int idpf_idc_rdma_vc_send_sync(struct iidc_rdma_core_dev_info *cdev_info,
4349 u8 *send_msg, u16 msg_size,
4350 u8 *recv_msg, u16 *recv_len)
4351 {
4352 struct idpf_adapter *adapter = pci_get_drvdata(cdev_info->pdev);
4353 struct idpf_vc_xn_params xn_params = { };
4354 ssize_t reply_sz;
4355 u16 recv_size;
4356
4357 if (!recv_msg || !recv_len || msg_size > IDPF_CTLQ_MAX_BUF_LEN)
4358 return -EINVAL;
4359
4360 recv_size = min_t(u16, *recv_len, IDPF_CTLQ_MAX_BUF_LEN);
4361 *recv_len = 0;
4362 xn_params.vc_op = VIRTCHNL2_OP_RDMA;
4363 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
4364 xn_params.send_buf.iov_base = send_msg;
4365 xn_params.send_buf.iov_len = msg_size;
4366 xn_params.recv_buf.iov_base = recv_msg;
4367 xn_params.recv_buf.iov_len = recv_size;
4368 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
4369 if (reply_sz < 0)
4370 return reply_sz;
4371 *recv_len = reply_sz;
4372
4373 return 0;
4374 }
4375 EXPORT_SYMBOL_GPL(idpf_idc_rdma_vc_send_sync);
4376