1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (c) 2016-2018 Oracle. All rights reserved. 4 * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved. 5 * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the BSD-type 11 * license below: 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 17 * Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 20 * Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials provided 23 * with the distribution. 24 * 25 * Neither the name of the Network Appliance, Inc. nor the names of 26 * its contributors may be used to endorse or promote products 27 * derived from this software without specific prior written 28 * permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 41 * 42 * Author: Tom Tucker <tom@opengridcomputing.com> 43 */ 44 45 /* Operation 46 * 47 * The main entry point is svc_rdma_sendto. This is called by the 48 * RPC server when an RPC Reply is ready to be transmitted to a client. 49 * 50 * The passed-in svc_rqst contains a struct xdr_buf which holds an 51 * XDR-encoded RPC Reply message. sendto must construct the RPC-over-RDMA 52 * transport header, post all Write WRs needed for this Reply, then post 53 * a Send WR conveying the transport header and the RPC message itself to 54 * the client. 55 * 56 * svc_rdma_sendto must fully transmit the Reply before returning, as 57 * the svc_rqst will be recycled as soon as sendto returns. Remaining 58 * resources referred to by the svc_rqst are also recycled at that time. 59 * Therefore any resources that must remain longer must be detached 60 * from the svc_rqst and released later. 61 * 62 * Page Management 63 * 64 * The I/O that performs Reply transmission is asynchronous, and may 65 * complete well after sendto returns. Thus pages under I/O must be 66 * removed from the svc_rqst before sendto returns. 67 * 68 * The logic here depends on Send Queue and completion ordering. Since 69 * the Send WR is always posted last, it will always complete last. Thus 70 * when it completes, it is guaranteed that all previous Write WRs have 71 * also completed. 72 * 73 * Write WRs are constructed and posted. Each Write segment gets its own 74 * svc_rdma_rw_ctxt, allowing the Write completion handler to find and 75 * DMA-unmap the pages under I/O for that Write segment. The Write 76 * completion handler does not release any pages. 77 * 78 * When the Send WR is constructed, it also gets its own svc_rdma_send_ctxt. 79 * The ownership of all of the Reply's pages are transferred into that 80 * ctxt, the Send WR is posted, and sendto returns. 81 * 82 * The svc_rdma_send_ctxt is presented when the Send WR completes. The 83 * Send completion handler finally releases the Reply's pages. 84 * 85 * This mechanism also assumes that completions on the transport's Send 86 * Completion Queue do not run in parallel. Otherwise a Write completion 87 * and Send completion running at the same time could release pages that 88 * are still DMA-mapped. 89 * 90 * Error Handling 91 * 92 * - If the Send WR is posted successfully, it will either complete 93 * successfully, or get flushed. Either way, the Send completion 94 * handler releases the Reply's pages. 95 * - If the Send WR cannot be not posted, the forward path releases 96 * the Reply's pages. 97 * 98 * This handles the case, without the use of page reference counting, 99 * where two different Write segments send portions of the same page. 100 */ 101 102 #include <linux/spinlock.h> 103 #include <linux/unaligned.h> 104 105 #include <rdma/ib_verbs.h> 106 #include <rdma/rdma_cm.h> 107 108 #include <linux/sunrpc/debug.h> 109 #include <linux/sunrpc/svc_rdma.h> 110 111 #include "xprt_rdma.h" 112 #include <trace/events/rpcrdma.h> 113 114 static void svc_rdma_wc_send(struct ib_cq *cq, struct ib_wc *wc); 115 116 static struct svc_rdma_send_ctxt * 117 svc_rdma_send_ctxt_alloc(struct svcxprt_rdma *rdma) 118 { 119 int node = ibdev_to_node(rdma->sc_cm_id->device); 120 struct svc_rdma_send_ctxt *ctxt; 121 unsigned long pages; 122 dma_addr_t addr; 123 void *buffer; 124 int i; 125 126 ctxt = kzalloc_node(struct_size(ctxt, sc_sges, rdma->sc_max_send_sges), 127 GFP_KERNEL, node); 128 if (!ctxt) 129 goto fail0; 130 pages = svc_serv_maxpages(rdma->sc_xprt.xpt_server); 131 ctxt->sc_pages = kcalloc_node(pages, sizeof(struct page *), 132 GFP_KERNEL, node); 133 if (!ctxt->sc_pages) 134 goto fail1; 135 ctxt->sc_maxpages = pages; 136 buffer = kmalloc_node(rdma->sc_max_req_size, GFP_KERNEL, node); 137 if (!buffer) 138 goto fail2; 139 addr = ib_dma_map_single(rdma->sc_pd->device, buffer, 140 rdma->sc_max_req_size, DMA_TO_DEVICE); 141 if (ib_dma_mapping_error(rdma->sc_pd->device, addr)) 142 goto fail3; 143 144 svc_rdma_send_cid_init(rdma, &ctxt->sc_cid); 145 146 ctxt->sc_rdma = rdma; 147 ctxt->sc_send_wr.next = NULL; 148 ctxt->sc_send_wr.wr_cqe = &ctxt->sc_cqe; 149 ctxt->sc_send_wr.sg_list = ctxt->sc_sges; 150 ctxt->sc_send_wr.send_flags = IB_SEND_SIGNALED; 151 ctxt->sc_cqe.done = svc_rdma_wc_send; 152 ctxt->sc_xprt_buf = buffer; 153 xdr_buf_init(&ctxt->sc_hdrbuf, ctxt->sc_xprt_buf, 154 rdma->sc_max_req_size); 155 ctxt->sc_sges[0].addr = addr; 156 157 for (i = 0; i < rdma->sc_max_send_sges; i++) 158 ctxt->sc_sges[i].lkey = rdma->sc_pd->local_dma_lkey; 159 return ctxt; 160 161 fail3: 162 kfree(buffer); 163 fail2: 164 kfree(ctxt->sc_pages); 165 fail1: 166 kfree(ctxt); 167 fail0: 168 return NULL; 169 } 170 171 /** 172 * svc_rdma_send_ctxts_destroy - Release all send_ctxt's for an xprt 173 * @rdma: svcxprt_rdma being torn down 174 * 175 */ 176 void svc_rdma_send_ctxts_destroy(struct svcxprt_rdma *rdma) 177 { 178 struct svc_rdma_send_ctxt *ctxt; 179 struct llist_node *node; 180 181 while ((node = llist_del_first(&rdma->sc_send_ctxts)) != NULL) { 182 ctxt = llist_entry(node, struct svc_rdma_send_ctxt, sc_node); 183 ib_dma_unmap_single(rdma->sc_pd->device, 184 ctxt->sc_sges[0].addr, 185 rdma->sc_max_req_size, 186 DMA_TO_DEVICE); 187 kfree(ctxt->sc_xprt_buf); 188 kfree(ctxt->sc_pages); 189 kfree(ctxt); 190 } 191 } 192 193 /** 194 * svc_rdma_send_ctxt_get - Get a free send_ctxt 195 * @rdma: controlling svcxprt_rdma 196 * 197 * Returns a ready-to-use send_ctxt, or NULL if none are 198 * available and a fresh one cannot be allocated. 199 */ 200 struct svc_rdma_send_ctxt *svc_rdma_send_ctxt_get(struct svcxprt_rdma *rdma) 201 { 202 struct svc_rdma_send_ctxt *ctxt; 203 struct llist_node *node; 204 205 spin_lock(&rdma->sc_send_lock); 206 node = llist_del_first(&rdma->sc_send_ctxts); 207 spin_unlock(&rdma->sc_send_lock); 208 if (!node) 209 goto out_empty; 210 211 ctxt = llist_entry(node, struct svc_rdma_send_ctxt, sc_node); 212 213 out: 214 rpcrdma_set_xdrlen(&ctxt->sc_hdrbuf, 0); 215 xdr_init_encode(&ctxt->sc_stream, &ctxt->sc_hdrbuf, 216 ctxt->sc_xprt_buf, NULL); 217 218 svc_rdma_cc_init(rdma, &ctxt->sc_reply_info.wi_cc); 219 ctxt->sc_send_wr.num_sge = 0; 220 ctxt->sc_cur_sge_no = 0; 221 ctxt->sc_page_count = 0; 222 ctxt->sc_wr_chain = &ctxt->sc_send_wr; 223 ctxt->sc_sqecount = 1; 224 225 return ctxt; 226 227 out_empty: 228 ctxt = svc_rdma_send_ctxt_alloc(rdma); 229 if (!ctxt) 230 return NULL; 231 goto out; 232 } 233 234 static void svc_rdma_send_ctxt_release(struct svcxprt_rdma *rdma, 235 struct svc_rdma_send_ctxt *ctxt) 236 { 237 struct ib_device *device = rdma->sc_cm_id->device; 238 unsigned int i; 239 240 svc_rdma_reply_chunk_release(rdma, ctxt); 241 242 if (ctxt->sc_page_count) 243 release_pages(ctxt->sc_pages, ctxt->sc_page_count); 244 245 /* The first SGE contains the transport header, which 246 * remains mapped until @ctxt is destroyed. 247 */ 248 for (i = 1; i < ctxt->sc_send_wr.num_sge; i++) { 249 trace_svcrdma_dma_unmap_page(&ctxt->sc_cid, 250 ctxt->sc_sges[i].addr, 251 ctxt->sc_sges[i].length); 252 ib_dma_unmap_page(device, 253 ctxt->sc_sges[i].addr, 254 ctxt->sc_sges[i].length, 255 DMA_TO_DEVICE); 256 } 257 258 llist_add(&ctxt->sc_node, &rdma->sc_send_ctxts); 259 } 260 261 static void svc_rdma_send_ctxt_put_async(struct work_struct *work) 262 { 263 struct svc_rdma_send_ctxt *ctxt; 264 265 ctxt = container_of(work, struct svc_rdma_send_ctxt, sc_work); 266 svc_rdma_send_ctxt_release(ctxt->sc_rdma, ctxt); 267 } 268 269 /** 270 * svc_rdma_send_ctxt_put - Return send_ctxt to free list 271 * @rdma: controlling svcxprt_rdma 272 * @ctxt: object to return to the free list 273 * 274 * Pages left in sc_pages are DMA unmapped and released. 275 */ 276 void svc_rdma_send_ctxt_put(struct svcxprt_rdma *rdma, 277 struct svc_rdma_send_ctxt *ctxt) 278 { 279 INIT_WORK(&ctxt->sc_work, svc_rdma_send_ctxt_put_async); 280 queue_work(svcrdma_wq, &ctxt->sc_work); 281 } 282 283 /** 284 * svc_rdma_wake_send_waiters - manage Send Queue accounting 285 * @rdma: controlling transport 286 * @avail: Number of additional SQEs that are now available 287 * 288 */ 289 void svc_rdma_wake_send_waiters(struct svcxprt_rdma *rdma, int avail) 290 { 291 atomic_add(avail, &rdma->sc_sq_avail); 292 smp_mb__after_atomic(); 293 if (unlikely(waitqueue_active(&rdma->sc_send_wait))) 294 wake_up(&rdma->sc_send_wait); 295 } 296 297 /** 298 * svc_rdma_wc_send - Invoked by RDMA provider for each polled Send WC 299 * @cq: Completion Queue context 300 * @wc: Work Completion object 301 * 302 * NB: The svc_xprt/svcxprt_rdma is pinned whenever it's possible that 303 * the Send completion handler could be running. 304 */ 305 static void svc_rdma_wc_send(struct ib_cq *cq, struct ib_wc *wc) 306 { 307 struct svcxprt_rdma *rdma = cq->cq_context; 308 struct ib_cqe *cqe = wc->wr_cqe; 309 struct svc_rdma_send_ctxt *ctxt = 310 container_of(cqe, struct svc_rdma_send_ctxt, sc_cqe); 311 312 svc_rdma_wake_send_waiters(rdma, ctxt->sc_sqecount); 313 314 if (unlikely(wc->status != IB_WC_SUCCESS)) 315 goto flushed; 316 317 trace_svcrdma_wc_send(&ctxt->sc_cid); 318 svc_rdma_send_ctxt_put(rdma, ctxt); 319 return; 320 321 flushed: 322 if (wc->status != IB_WC_WR_FLUSH_ERR) 323 trace_svcrdma_wc_send_err(wc, &ctxt->sc_cid); 324 else 325 trace_svcrdma_wc_send_flush(wc, &ctxt->sc_cid); 326 svc_rdma_send_ctxt_put(rdma, ctxt); 327 svc_xprt_deferred_close(&rdma->sc_xprt); 328 } 329 330 /** 331 * svc_rdma_post_send - Post a WR chain to the Send Queue 332 * @rdma: transport context 333 * @ctxt: WR chain to post 334 * 335 * Copy fields in @ctxt to stack variables in order to guarantee 336 * that these values remain available after the ib_post_send() call. 337 * In some error flow cases, svc_rdma_wc_send() releases @ctxt. 338 * 339 * Note there is potential for starvation when the Send Queue is 340 * full because there is no order to when waiting threads are 341 * awoken. The transport is typically provisioned with a deep 342 * enough Send Queue that SQ exhaustion should be a rare event. 343 * 344 * Return values: 345 * %0: @ctxt's WR chain was posted successfully 346 * %-ENOTCONN: The connection was lost 347 */ 348 int svc_rdma_post_send(struct svcxprt_rdma *rdma, 349 struct svc_rdma_send_ctxt *ctxt) 350 { 351 struct ib_send_wr *first_wr = ctxt->sc_wr_chain; 352 struct ib_send_wr *send_wr = &ctxt->sc_send_wr; 353 const struct ib_send_wr *bad_wr = first_wr; 354 struct rpc_rdma_cid cid = ctxt->sc_cid; 355 int ret, sqecount = ctxt->sc_sqecount; 356 357 might_sleep(); 358 359 /* Sync the transport header buffer */ 360 ib_dma_sync_single_for_device(rdma->sc_pd->device, 361 send_wr->sg_list[0].addr, 362 send_wr->sg_list[0].length, 363 DMA_TO_DEVICE); 364 365 /* If the SQ is full, wait until an SQ entry is available */ 366 while (!test_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags)) { 367 if (atomic_sub_return(sqecount, &rdma->sc_sq_avail) < 0) { 368 svc_rdma_wake_send_waiters(rdma, sqecount); 369 370 /* When the transport is torn down, assume 371 * ib_drain_sq() will trigger enough Send 372 * completions to wake us. The XPT_CLOSE test 373 * above should then cause the while loop to 374 * exit. 375 */ 376 percpu_counter_inc(&svcrdma_stat_sq_starve); 377 trace_svcrdma_sq_full(rdma, &cid); 378 wait_event(rdma->sc_send_wait, 379 atomic_read(&rdma->sc_sq_avail) > 0); 380 trace_svcrdma_sq_retry(rdma, &cid); 381 continue; 382 } 383 384 trace_svcrdma_post_send(ctxt); 385 ret = ib_post_send(rdma->sc_qp, first_wr, &bad_wr); 386 if (ret) { 387 trace_svcrdma_sq_post_err(rdma, &cid, ret); 388 svc_xprt_deferred_close(&rdma->sc_xprt); 389 390 /* If even one WR was posted, there will be a 391 * Send completion that bumps sc_sq_avail. 392 */ 393 if (bad_wr == first_wr) { 394 svc_rdma_wake_send_waiters(rdma, sqecount); 395 break; 396 } 397 } 398 return 0; 399 } 400 return -ENOTCONN; 401 } 402 403 /** 404 * svc_rdma_encode_read_list - Encode RPC Reply's Read chunk list 405 * @sctxt: Send context for the RPC Reply 406 * 407 * Return values: 408 * On success, returns length in bytes of the Reply XDR buffer 409 * that was consumed by the Reply Read list 410 * %-EMSGSIZE on XDR buffer overflow 411 */ 412 static ssize_t svc_rdma_encode_read_list(struct svc_rdma_send_ctxt *sctxt) 413 { 414 /* RPC-over-RDMA version 1 replies never have a Read list. */ 415 return xdr_stream_encode_item_absent(&sctxt->sc_stream); 416 } 417 418 /** 419 * svc_rdma_encode_write_segment - Encode one Write segment 420 * @sctxt: Send context for the RPC Reply 421 * @chunk: Write chunk to push 422 * @remaining: remaining bytes of the payload left in the Write chunk 423 * @segno: which segment in the chunk 424 * 425 * Return values: 426 * On success, returns length in bytes of the Reply XDR buffer 427 * that was consumed by the Write segment, and updates @remaining 428 * %-EMSGSIZE on XDR buffer overflow 429 */ 430 static ssize_t svc_rdma_encode_write_segment(struct svc_rdma_send_ctxt *sctxt, 431 const struct svc_rdma_chunk *chunk, 432 u32 *remaining, unsigned int segno) 433 { 434 const struct svc_rdma_segment *segment = &chunk->ch_segments[segno]; 435 const size_t len = rpcrdma_segment_maxsz * sizeof(__be32); 436 u32 length; 437 __be32 *p; 438 439 p = xdr_reserve_space(&sctxt->sc_stream, len); 440 if (!p) 441 return -EMSGSIZE; 442 443 length = min_t(u32, *remaining, segment->rs_length); 444 *remaining -= length; 445 xdr_encode_rdma_segment(p, segment->rs_handle, length, 446 segment->rs_offset); 447 trace_svcrdma_encode_wseg(sctxt, segno, segment->rs_handle, length, 448 segment->rs_offset); 449 return len; 450 } 451 452 /** 453 * svc_rdma_encode_write_chunk - Encode one Write chunk 454 * @sctxt: Send context for the RPC Reply 455 * @chunk: Write chunk to push 456 * 457 * Copy a Write chunk from the Call transport header to the 458 * Reply transport header. Update each segment's length field 459 * to reflect the number of bytes written in that segment. 460 * 461 * Return values: 462 * On success, returns length in bytes of the Reply XDR buffer 463 * that was consumed by the Write chunk 464 * %-EMSGSIZE on XDR buffer overflow 465 */ 466 static ssize_t svc_rdma_encode_write_chunk(struct svc_rdma_send_ctxt *sctxt, 467 const struct svc_rdma_chunk *chunk) 468 { 469 u32 remaining = chunk->ch_payload_length; 470 unsigned int segno; 471 ssize_t len, ret; 472 473 len = 0; 474 ret = xdr_stream_encode_item_present(&sctxt->sc_stream); 475 if (ret < 0) 476 return ret; 477 len += ret; 478 479 ret = xdr_stream_encode_u32(&sctxt->sc_stream, chunk->ch_segcount); 480 if (ret < 0) 481 return ret; 482 len += ret; 483 484 for (segno = 0; segno < chunk->ch_segcount; segno++) { 485 ret = svc_rdma_encode_write_segment(sctxt, chunk, &remaining, segno); 486 if (ret < 0) 487 return ret; 488 len += ret; 489 } 490 491 return len; 492 } 493 494 /** 495 * svc_rdma_encode_write_list - Encode RPC Reply's Write chunk list 496 * @rctxt: Reply context with information about the RPC Call 497 * @sctxt: Send context for the RPC Reply 498 * 499 * Return values: 500 * On success, returns length in bytes of the Reply XDR buffer 501 * that was consumed by the Reply's Write list 502 * %-EMSGSIZE on XDR buffer overflow 503 */ 504 static ssize_t svc_rdma_encode_write_list(struct svc_rdma_recv_ctxt *rctxt, 505 struct svc_rdma_send_ctxt *sctxt) 506 { 507 struct svc_rdma_chunk *chunk; 508 ssize_t len, ret; 509 510 len = 0; 511 pcl_for_each_chunk(chunk, &rctxt->rc_write_pcl) { 512 ret = svc_rdma_encode_write_chunk(sctxt, chunk); 513 if (ret < 0) 514 return ret; 515 len += ret; 516 } 517 518 /* Terminate the Write list */ 519 ret = xdr_stream_encode_item_absent(&sctxt->sc_stream); 520 if (ret < 0) 521 return ret; 522 523 return len + ret; 524 } 525 526 /** 527 * svc_rdma_encode_reply_chunk - Encode RPC Reply's Reply chunk 528 * @rctxt: Reply context with information about the RPC Call 529 * @sctxt: Send context for the RPC Reply 530 * @length: size in bytes of the payload in the Reply chunk 531 * 532 * Return values: 533 * On success, returns length in bytes of the Reply XDR buffer 534 * that was consumed by the Reply's Reply chunk 535 * %-EMSGSIZE on XDR buffer overflow 536 * %-E2BIG if the RPC message is larger than the Reply chunk 537 */ 538 static ssize_t 539 svc_rdma_encode_reply_chunk(struct svc_rdma_recv_ctxt *rctxt, 540 struct svc_rdma_send_ctxt *sctxt, 541 unsigned int length) 542 { 543 struct svc_rdma_chunk *chunk; 544 545 if (pcl_is_empty(&rctxt->rc_reply_pcl)) 546 return xdr_stream_encode_item_absent(&sctxt->sc_stream); 547 548 chunk = pcl_first_chunk(&rctxt->rc_reply_pcl); 549 if (length > chunk->ch_length) 550 return -E2BIG; 551 552 chunk->ch_payload_length = length; 553 return svc_rdma_encode_write_chunk(sctxt, chunk); 554 } 555 556 struct svc_rdma_map_data { 557 struct svcxprt_rdma *md_rdma; 558 struct svc_rdma_send_ctxt *md_ctxt; 559 }; 560 561 /** 562 * svc_rdma_page_dma_map - DMA map one page 563 * @data: pointer to arguments 564 * @page: struct page to DMA map 565 * @offset: offset into the page 566 * @len: number of bytes to map 567 * 568 * Returns: 569 * %0 if DMA mapping was successful 570 * %-EIO if the page cannot be DMA mapped 571 */ 572 static int svc_rdma_page_dma_map(void *data, struct page *page, 573 unsigned long offset, unsigned int len) 574 { 575 struct svc_rdma_map_data *args = data; 576 struct svcxprt_rdma *rdma = args->md_rdma; 577 struct svc_rdma_send_ctxt *ctxt = args->md_ctxt; 578 struct ib_device *dev = rdma->sc_cm_id->device; 579 dma_addr_t dma_addr; 580 581 ++ctxt->sc_cur_sge_no; 582 583 dma_addr = ib_dma_map_page(dev, page, offset, len, DMA_TO_DEVICE); 584 if (ib_dma_mapping_error(dev, dma_addr)) 585 goto out_maperr; 586 587 trace_svcrdma_dma_map_page(&ctxt->sc_cid, dma_addr, len); 588 ctxt->sc_sges[ctxt->sc_cur_sge_no].addr = dma_addr; 589 ctxt->sc_sges[ctxt->sc_cur_sge_no].length = len; 590 ctxt->sc_send_wr.num_sge++; 591 return 0; 592 593 out_maperr: 594 trace_svcrdma_dma_map_err(&ctxt->sc_cid, dma_addr, len); 595 return -EIO; 596 } 597 598 /** 599 * svc_rdma_iov_dma_map - DMA map an iovec 600 * @data: pointer to arguments 601 * @iov: kvec to DMA map 602 * 603 * ib_dma_map_page() is used here because svc_rdma_dma_unmap() 604 * handles DMA-unmap and it uses ib_dma_unmap_page() exclusively. 605 * 606 * Returns: 607 * %0 if DMA mapping was successful 608 * %-EIO if the iovec cannot be DMA mapped 609 */ 610 static int svc_rdma_iov_dma_map(void *data, const struct kvec *iov) 611 { 612 if (!iov->iov_len) 613 return 0; 614 return svc_rdma_page_dma_map(data, virt_to_page(iov->iov_base), 615 offset_in_page(iov->iov_base), 616 iov->iov_len); 617 } 618 619 /** 620 * svc_rdma_xb_dma_map - DMA map all segments of an xdr_buf 621 * @xdr: xdr_buf containing portion of an RPC message to transmit 622 * @data: pointer to arguments 623 * 624 * Returns: 625 * %0 if DMA mapping was successful 626 * %-EIO if DMA mapping failed 627 * 628 * On failure, any DMA mappings that have been already done must be 629 * unmapped by the caller. 630 */ 631 static int svc_rdma_xb_dma_map(const struct xdr_buf *xdr, void *data) 632 { 633 unsigned int len, remaining; 634 unsigned long pageoff; 635 struct page **ppages; 636 int ret; 637 638 ret = svc_rdma_iov_dma_map(data, &xdr->head[0]); 639 if (ret < 0) 640 return ret; 641 642 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT); 643 pageoff = offset_in_page(xdr->page_base); 644 remaining = xdr->page_len; 645 while (remaining) { 646 len = min_t(u32, PAGE_SIZE - pageoff, remaining); 647 648 ret = svc_rdma_page_dma_map(data, *ppages++, pageoff, len); 649 if (ret < 0) 650 return ret; 651 652 remaining -= len; 653 pageoff = 0; 654 } 655 656 ret = svc_rdma_iov_dma_map(data, &xdr->tail[0]); 657 if (ret < 0) 658 return ret; 659 660 return xdr->len; 661 } 662 663 struct svc_rdma_pullup_data { 664 u8 *pd_dest; 665 unsigned int pd_length; 666 unsigned int pd_num_sges; 667 }; 668 669 /** 670 * svc_rdma_xb_count_sges - Count how many SGEs will be needed 671 * @xdr: xdr_buf containing portion of an RPC message to transmit 672 * @data: pointer to arguments 673 * 674 * Returns: 675 * Number of SGEs needed to Send the contents of @xdr inline 676 */ 677 static int svc_rdma_xb_count_sges(const struct xdr_buf *xdr, 678 void *data) 679 { 680 struct svc_rdma_pullup_data *args = data; 681 unsigned int remaining; 682 unsigned long offset; 683 684 if (xdr->head[0].iov_len) 685 ++args->pd_num_sges; 686 687 offset = offset_in_page(xdr->page_base); 688 remaining = xdr->page_len; 689 while (remaining) { 690 ++args->pd_num_sges; 691 remaining -= min_t(u32, PAGE_SIZE - offset, remaining); 692 offset = 0; 693 } 694 695 if (xdr->tail[0].iov_len) 696 ++args->pd_num_sges; 697 698 args->pd_length += xdr->len; 699 return 0; 700 } 701 702 /** 703 * svc_rdma_pull_up_needed - Determine whether to use pull-up 704 * @rdma: controlling transport 705 * @sctxt: send_ctxt for the Send WR 706 * @write_pcl: Write chunk list provided by client 707 * @xdr: xdr_buf containing RPC message to transmit 708 * 709 * Returns: 710 * %true if pull-up must be used 711 * %false otherwise 712 */ 713 static bool svc_rdma_pull_up_needed(const struct svcxprt_rdma *rdma, 714 const struct svc_rdma_send_ctxt *sctxt, 715 const struct svc_rdma_pcl *write_pcl, 716 const struct xdr_buf *xdr) 717 { 718 /* Resources needed for the transport header */ 719 struct svc_rdma_pullup_data args = { 720 .pd_length = sctxt->sc_hdrbuf.len, 721 .pd_num_sges = 1, 722 }; 723 int ret; 724 725 ret = pcl_process_nonpayloads(write_pcl, xdr, 726 svc_rdma_xb_count_sges, &args); 727 if (ret < 0) 728 return false; 729 730 if (args.pd_length < RPCRDMA_PULLUP_THRESH) 731 return true; 732 return args.pd_num_sges >= rdma->sc_max_send_sges; 733 } 734 735 /** 736 * svc_rdma_xb_linearize - Copy region of xdr_buf to flat buffer 737 * @xdr: xdr_buf containing portion of an RPC message to copy 738 * @data: pointer to arguments 739 * 740 * Returns: 741 * Always zero. 742 */ 743 static int svc_rdma_xb_linearize(const struct xdr_buf *xdr, 744 void *data) 745 { 746 struct svc_rdma_pullup_data *args = data; 747 unsigned int len, remaining; 748 unsigned long pageoff; 749 struct page **ppages; 750 751 if (xdr->head[0].iov_len) { 752 memcpy(args->pd_dest, xdr->head[0].iov_base, xdr->head[0].iov_len); 753 args->pd_dest += xdr->head[0].iov_len; 754 } 755 756 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT); 757 pageoff = offset_in_page(xdr->page_base); 758 remaining = xdr->page_len; 759 while (remaining) { 760 len = min_t(u32, PAGE_SIZE - pageoff, remaining); 761 memcpy(args->pd_dest, page_address(*ppages) + pageoff, len); 762 remaining -= len; 763 args->pd_dest += len; 764 pageoff = 0; 765 ppages++; 766 } 767 768 if (xdr->tail[0].iov_len) { 769 memcpy(args->pd_dest, xdr->tail[0].iov_base, xdr->tail[0].iov_len); 770 args->pd_dest += xdr->tail[0].iov_len; 771 } 772 773 args->pd_length += xdr->len; 774 return 0; 775 } 776 777 /** 778 * svc_rdma_pull_up_reply_msg - Copy Reply into a single buffer 779 * @rdma: controlling transport 780 * @sctxt: send_ctxt for the Send WR; xprt hdr is already prepared 781 * @write_pcl: Write chunk list provided by client 782 * @xdr: prepared xdr_buf containing RPC message 783 * 784 * The device is not capable of sending the reply directly. 785 * Assemble the elements of @xdr into the transport header buffer. 786 * 787 * Assumptions: 788 * pull_up_needed has determined that @xdr will fit in the buffer. 789 * 790 * Returns: 791 * %0 if pull-up was successful 792 * %-EMSGSIZE if a buffer manipulation problem occurred 793 */ 794 static int svc_rdma_pull_up_reply_msg(const struct svcxprt_rdma *rdma, 795 struct svc_rdma_send_ctxt *sctxt, 796 const struct svc_rdma_pcl *write_pcl, 797 const struct xdr_buf *xdr) 798 { 799 struct svc_rdma_pullup_data args = { 800 .pd_dest = sctxt->sc_xprt_buf + sctxt->sc_hdrbuf.len, 801 }; 802 int ret; 803 804 ret = pcl_process_nonpayloads(write_pcl, xdr, 805 svc_rdma_xb_linearize, &args); 806 if (ret < 0) 807 return ret; 808 809 sctxt->sc_sges[0].length = sctxt->sc_hdrbuf.len + args.pd_length; 810 trace_svcrdma_send_pullup(sctxt, args.pd_length); 811 return 0; 812 } 813 814 /* svc_rdma_map_reply_msg - DMA map the buffer holding RPC message 815 * @rdma: controlling transport 816 * @sctxt: send_ctxt for the Send WR 817 * @write_pcl: Write chunk list provided by client 818 * @reply_pcl: Reply chunk provided by client 819 * @xdr: prepared xdr_buf containing RPC message 820 * 821 * Returns: 822 * %0 if DMA mapping was successful. 823 * %-EMSGSIZE if a buffer manipulation problem occurred 824 * %-EIO if DMA mapping failed 825 * 826 * The Send WR's num_sge field is set in all cases. 827 */ 828 int svc_rdma_map_reply_msg(struct svcxprt_rdma *rdma, 829 struct svc_rdma_send_ctxt *sctxt, 830 const struct svc_rdma_pcl *write_pcl, 831 const struct svc_rdma_pcl *reply_pcl, 832 const struct xdr_buf *xdr) 833 { 834 struct svc_rdma_map_data args = { 835 .md_rdma = rdma, 836 .md_ctxt = sctxt, 837 }; 838 839 /* Set up the (persistently-mapped) transport header SGE. */ 840 sctxt->sc_send_wr.num_sge = 1; 841 sctxt->sc_sges[0].length = sctxt->sc_hdrbuf.len; 842 843 /* If there is a Reply chunk, nothing follows the transport 844 * header, so there is nothing to map. 845 */ 846 if (!pcl_is_empty(reply_pcl)) 847 return 0; 848 849 /* For pull-up, svc_rdma_send() will sync the transport header. 850 * No additional DMA mapping is necessary. 851 */ 852 if (svc_rdma_pull_up_needed(rdma, sctxt, write_pcl, xdr)) 853 return svc_rdma_pull_up_reply_msg(rdma, sctxt, write_pcl, xdr); 854 855 return pcl_process_nonpayloads(write_pcl, xdr, 856 svc_rdma_xb_dma_map, &args); 857 } 858 859 /* The svc_rqst and all resources it owns are released as soon as 860 * svc_rdma_sendto returns. Transfer pages under I/O to the ctxt 861 * so they are released by the Send completion handler. 862 */ 863 static void svc_rdma_save_io_pages(struct svc_rqst *rqstp, 864 struct svc_rdma_send_ctxt *ctxt) 865 { 866 int i, pages = rqstp->rq_next_page - rqstp->rq_respages; 867 868 ctxt->sc_page_count += pages; 869 for (i = 0; i < pages; i++) { 870 ctxt->sc_pages[i] = rqstp->rq_respages[i]; 871 rqstp->rq_respages[i] = NULL; 872 } 873 874 /* Prevent svc_xprt_release from releasing pages in rq_pages */ 875 rqstp->rq_next_page = rqstp->rq_respages; 876 } 877 878 /* Prepare the portion of the RPC Reply that will be transmitted 879 * via RDMA Send. The RPC-over-RDMA transport header is prepared 880 * in sc_sges[0], and the RPC xdr_buf is prepared in following sges. 881 * 882 * Depending on whether a Write list or Reply chunk is present, 883 * the server may Send all, a portion of, or none of the xdr_buf. 884 * In the latter case, only the transport header (sc_sges[0]) is 885 * transmitted. 886 * 887 * Assumptions: 888 * - The Reply's transport header will never be larger than a page. 889 */ 890 static int svc_rdma_send_reply_msg(struct svcxprt_rdma *rdma, 891 struct svc_rdma_send_ctxt *sctxt, 892 const struct svc_rdma_recv_ctxt *rctxt, 893 struct svc_rqst *rqstp) 894 { 895 struct ib_send_wr *send_wr = &sctxt->sc_send_wr; 896 int ret; 897 898 ret = svc_rdma_map_reply_msg(rdma, sctxt, &rctxt->rc_write_pcl, 899 &rctxt->rc_reply_pcl, &rqstp->rq_res); 900 if (ret < 0) 901 return ret; 902 903 /* Transfer pages involved in RDMA Writes to the sctxt's 904 * page array. Completion handling releases these pages. 905 */ 906 svc_rdma_save_io_pages(rqstp, sctxt); 907 908 if (rctxt->rc_inv_rkey) { 909 send_wr->opcode = IB_WR_SEND_WITH_INV; 910 send_wr->ex.invalidate_rkey = rctxt->rc_inv_rkey; 911 } else { 912 send_wr->opcode = IB_WR_SEND; 913 } 914 915 return svc_rdma_post_send(rdma, sctxt); 916 } 917 918 /** 919 * svc_rdma_send_error_msg - Send an RPC/RDMA v1 error response 920 * @rdma: controlling transport context 921 * @sctxt: Send context for the response 922 * @rctxt: Receive context for incoming bad message 923 * @status: negative errno indicating error that occurred 924 * 925 * Given the client-provided Read, Write, and Reply chunks, the 926 * server was not able to parse the Call or form a complete Reply. 927 * Return an RDMA_ERROR message so the client can retire the RPC 928 * transaction. 929 * 930 * The caller does not have to release @sctxt. It is released by 931 * Send completion, or by this function on error. 932 */ 933 void svc_rdma_send_error_msg(struct svcxprt_rdma *rdma, 934 struct svc_rdma_send_ctxt *sctxt, 935 struct svc_rdma_recv_ctxt *rctxt, 936 int status) 937 { 938 __be32 *rdma_argp = rctxt->rc_recv_buf; 939 __be32 *p; 940 941 rpcrdma_set_xdrlen(&sctxt->sc_hdrbuf, 0); 942 xdr_init_encode(&sctxt->sc_stream, &sctxt->sc_hdrbuf, 943 sctxt->sc_xprt_buf, NULL); 944 945 p = xdr_reserve_space(&sctxt->sc_stream, 946 rpcrdma_fixed_maxsz * sizeof(*p)); 947 if (!p) 948 goto put_ctxt; 949 950 *p++ = *rdma_argp; 951 *p++ = *(rdma_argp + 1); 952 *p++ = rdma->sc_fc_credits; 953 *p = rdma_error; 954 955 switch (status) { 956 case -EPROTONOSUPPORT: 957 p = xdr_reserve_space(&sctxt->sc_stream, 3 * sizeof(*p)); 958 if (!p) 959 goto put_ctxt; 960 961 *p++ = err_vers; 962 *p++ = rpcrdma_version; 963 *p = rpcrdma_version; 964 trace_svcrdma_err_vers(*rdma_argp); 965 break; 966 default: 967 p = xdr_reserve_space(&sctxt->sc_stream, sizeof(*p)); 968 if (!p) 969 goto put_ctxt; 970 971 *p = err_chunk; 972 trace_svcrdma_err_chunk(*rdma_argp); 973 } 974 975 /* Remote Invalidation is skipped for simplicity. */ 976 sctxt->sc_send_wr.num_sge = 1; 977 sctxt->sc_send_wr.opcode = IB_WR_SEND; 978 sctxt->sc_sges[0].length = sctxt->sc_hdrbuf.len; 979 if (svc_rdma_post_send(rdma, sctxt)) 980 goto put_ctxt; 981 return; 982 983 put_ctxt: 984 svc_rdma_send_ctxt_put(rdma, sctxt); 985 } 986 987 /** 988 * svc_rdma_sendto - Transmit an RPC reply 989 * @rqstp: processed RPC request, reply XDR already in ::rq_res 990 * 991 * Any resources still associated with @rqstp are released upon return. 992 * If no reply message was possible, the connection is closed. 993 * 994 * Returns: 995 * %0 if an RPC reply has been successfully posted, 996 * %-ENOMEM if a resource shortage occurred (connection is lost), 997 * %-ENOTCONN if posting failed (connection is lost). 998 */ 999 int svc_rdma_sendto(struct svc_rqst *rqstp) 1000 { 1001 struct svc_xprt *xprt = rqstp->rq_xprt; 1002 struct svcxprt_rdma *rdma = 1003 container_of(xprt, struct svcxprt_rdma, sc_xprt); 1004 struct svc_rdma_recv_ctxt *rctxt = rqstp->rq_xprt_ctxt; 1005 __be32 *rdma_argp = rctxt->rc_recv_buf; 1006 struct svc_rdma_send_ctxt *sctxt; 1007 unsigned int rc_size; 1008 __be32 *p; 1009 int ret; 1010 1011 ret = -ENOTCONN; 1012 if (svc_xprt_is_dead(xprt)) 1013 goto drop_connection; 1014 1015 ret = -ENOMEM; 1016 sctxt = svc_rdma_send_ctxt_get(rdma); 1017 if (!sctxt) 1018 goto drop_connection; 1019 1020 ret = -EMSGSIZE; 1021 p = xdr_reserve_space(&sctxt->sc_stream, 1022 rpcrdma_fixed_maxsz * sizeof(*p)); 1023 if (!p) 1024 goto put_ctxt; 1025 1026 ret = svc_rdma_send_write_list(rdma, rctxt, &rqstp->rq_res); 1027 if (ret < 0) 1028 goto put_ctxt; 1029 1030 rc_size = 0; 1031 if (!pcl_is_empty(&rctxt->rc_reply_pcl)) { 1032 ret = svc_rdma_prepare_reply_chunk(rdma, &rctxt->rc_write_pcl, 1033 &rctxt->rc_reply_pcl, sctxt, 1034 &rqstp->rq_res); 1035 if (ret < 0) 1036 goto reply_chunk; 1037 rc_size = ret; 1038 } 1039 1040 *p++ = *rdma_argp; 1041 *p++ = *(rdma_argp + 1); 1042 *p++ = rdma->sc_fc_credits; 1043 *p = pcl_is_empty(&rctxt->rc_reply_pcl) ? rdma_msg : rdma_nomsg; 1044 1045 ret = svc_rdma_encode_read_list(sctxt); 1046 if (ret < 0) 1047 goto put_ctxt; 1048 ret = svc_rdma_encode_write_list(rctxt, sctxt); 1049 if (ret < 0) 1050 goto put_ctxt; 1051 ret = svc_rdma_encode_reply_chunk(rctxt, sctxt, rc_size); 1052 if (ret < 0) 1053 goto put_ctxt; 1054 1055 ret = svc_rdma_send_reply_msg(rdma, sctxt, rctxt, rqstp); 1056 if (ret < 0) 1057 goto put_ctxt; 1058 return 0; 1059 1060 reply_chunk: 1061 if (ret != -E2BIG && ret != -EINVAL) 1062 goto put_ctxt; 1063 1064 /* Send completion releases payload pages that were part 1065 * of previously posted RDMA Writes. 1066 */ 1067 svc_rdma_save_io_pages(rqstp, sctxt); 1068 svc_rdma_send_error_msg(rdma, sctxt, rctxt, ret); 1069 return 0; 1070 1071 put_ctxt: 1072 svc_rdma_send_ctxt_put(rdma, sctxt); 1073 drop_connection: 1074 trace_svcrdma_send_err(rqstp, ret); 1075 svc_xprt_deferred_close(&rdma->sc_xprt); 1076 return -ENOTCONN; 1077 } 1078 1079 /** 1080 * svc_rdma_result_payload - special processing for a result payload 1081 * @rqstp: RPC transaction context 1082 * @offset: payload's byte offset in @rqstp->rq_res 1083 * @length: size of payload, in bytes 1084 * 1085 * Assign the passed-in result payload to the current Write chunk, 1086 * and advance to cur_result_payload to the next Write chunk, if 1087 * there is one. 1088 * 1089 * Return values: 1090 * %0 if successful or nothing needed to be done 1091 * %-E2BIG if the payload was larger than the Write chunk 1092 */ 1093 int svc_rdma_result_payload(struct svc_rqst *rqstp, unsigned int offset, 1094 unsigned int length) 1095 { 1096 struct svc_rdma_recv_ctxt *rctxt = rqstp->rq_xprt_ctxt; 1097 struct svc_rdma_chunk *chunk; 1098 1099 chunk = rctxt->rc_cur_result_payload; 1100 if (!length || !chunk) 1101 return 0; 1102 rctxt->rc_cur_result_payload = 1103 pcl_next_chunk(&rctxt->rc_write_pcl, chunk); 1104 1105 if (length > chunk->ch_length) 1106 return -E2BIG; 1107 chunk->ch_position = offset; 1108 chunk->ch_payload_length = length; 1109 return 0; 1110 } 1111