1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/net/sunrpc/svc.c
4 *
5 * High-level RPC service routines
6 *
7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
8 *
9 * Multiple threads pools and NUMAisation
10 * Copyright (c) 2006 Silicon Graphics, Inc.
11 * by Greg Banks <gnb@melbourne.sgi.com>
12 */
13
14 #include <linux/linkage.h>
15 #include <linux/sched/signal.h>
16 #include <linux/errno.h>
17 #include <linux/net.h>
18 #include <linux/in.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/kthread.h>
23 #include <linux/slab.h>
24
25 #include <linux/sunrpc/types.h>
26 #include <linux/sunrpc/xdr.h>
27 #include <linux/sunrpc/stats.h>
28 #include <linux/sunrpc/svcsock.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/sunrpc/bc_xprt.h>
31
32 #include <trace/events/sunrpc.h>
33
34 #include "fail.h"
35 #include "sunrpc.h"
36
37 #define RPCDBG_FACILITY RPCDBG_SVCDSP
38
39 static void svc_unregister(const struct svc_serv *serv, struct net *net);
40
41 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL
42
43 /*
44 * Mode for mapping cpus to pools.
45 */
46 enum {
47 SVC_POOL_AUTO = -1, /* choose one of the others */
48 SVC_POOL_GLOBAL, /* no mapping, just a single global pool
49 * (legacy & UP mode) */
50 SVC_POOL_PERCPU, /* one pool per cpu */
51 SVC_POOL_PERNODE /* one pool per numa node */
52 };
53
54 /*
55 * Structure for mapping cpus to pools and vice versa.
56 * Setup once during sunrpc initialisation.
57 */
58
59 struct svc_pool_map {
60 int count; /* How many svc_servs use us */
61 int mode; /* Note: int not enum to avoid
62 * warnings about "enumeration value
63 * not handled in switch" */
64 unsigned int npools;
65 unsigned int *pool_to; /* maps pool id to cpu or node */
66 unsigned int *to_pool; /* maps cpu or node to pool id */
67 };
68
69 static struct svc_pool_map svc_pool_map = {
70 .mode = SVC_POOL_DEFAULT
71 };
72
73 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
74
75 static int
__param_set_pool_mode(const char * val,struct svc_pool_map * m)76 __param_set_pool_mode(const char *val, struct svc_pool_map *m)
77 {
78 int err, mode;
79
80 mutex_lock(&svc_pool_map_mutex);
81
82 err = 0;
83 if (!strncmp(val, "auto", 4))
84 mode = SVC_POOL_AUTO;
85 else if (!strncmp(val, "global", 6))
86 mode = SVC_POOL_GLOBAL;
87 else if (!strncmp(val, "percpu", 6))
88 mode = SVC_POOL_PERCPU;
89 else if (!strncmp(val, "pernode", 7))
90 mode = SVC_POOL_PERNODE;
91 else
92 err = -EINVAL;
93
94 if (err)
95 goto out;
96
97 if (m->count == 0)
98 m->mode = mode;
99 else if (mode != m->mode)
100 err = -EBUSY;
101 out:
102 mutex_unlock(&svc_pool_map_mutex);
103 return err;
104 }
105
106 static int
param_set_pool_mode(const char * val,const struct kernel_param * kp)107 param_set_pool_mode(const char *val, const struct kernel_param *kp)
108 {
109 struct svc_pool_map *m = kp->arg;
110
111 return __param_set_pool_mode(val, m);
112 }
113
sunrpc_set_pool_mode(const char * val)114 int sunrpc_set_pool_mode(const char *val)
115 {
116 return __param_set_pool_mode(val, &svc_pool_map);
117 }
118 EXPORT_SYMBOL(sunrpc_set_pool_mode);
119
120 /**
121 * sunrpc_get_pool_mode - get the current pool_mode for the host
122 * @buf: where to write the current pool_mode
123 * @size: size of @buf
124 *
125 * Grab the current pool_mode from the svc_pool_map and write
126 * the resulting string to @buf. Returns the number of characters
127 * written to @buf (a'la snprintf()).
128 */
129 int
sunrpc_get_pool_mode(char * buf,size_t size)130 sunrpc_get_pool_mode(char *buf, size_t size)
131 {
132 struct svc_pool_map *m = &svc_pool_map;
133
134 switch (m->mode)
135 {
136 case SVC_POOL_AUTO:
137 return snprintf(buf, size, "auto");
138 case SVC_POOL_GLOBAL:
139 return snprintf(buf, size, "global");
140 case SVC_POOL_PERCPU:
141 return snprintf(buf, size, "percpu");
142 case SVC_POOL_PERNODE:
143 return snprintf(buf, size, "pernode");
144 default:
145 return snprintf(buf, size, "%d", m->mode);
146 }
147 }
148 EXPORT_SYMBOL(sunrpc_get_pool_mode);
149
150 static int
param_get_pool_mode(char * buf,const struct kernel_param * kp)151 param_get_pool_mode(char *buf, const struct kernel_param *kp)
152 {
153 char str[16];
154 int len;
155
156 len = sunrpc_get_pool_mode(str, ARRAY_SIZE(str));
157
158 /* Ensure we have room for newline and NUL */
159 len = min_t(int, len, ARRAY_SIZE(str) - 2);
160
161 /* tack on the newline */
162 str[len] = '\n';
163 str[len + 1] = '\0';
164
165 return sysfs_emit(buf, "%s", str);
166 }
167
168 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
169 &svc_pool_map, 0644);
170
171 /*
172 * Detect best pool mapping mode heuristically,
173 * according to the machine's topology.
174 */
175 static int
svc_pool_map_choose_mode(void)176 svc_pool_map_choose_mode(void)
177 {
178 unsigned int node;
179
180 if (nr_online_nodes > 1) {
181 /*
182 * Actually have multiple NUMA nodes,
183 * so split pools on NUMA node boundaries
184 */
185 return SVC_POOL_PERNODE;
186 }
187
188 node = first_online_node;
189 if (nr_cpus_node(node) > 2) {
190 /*
191 * Non-trivial SMP, or CONFIG_NUMA on
192 * non-NUMA hardware, e.g. with a generic
193 * x86_64 kernel on Xeons. In this case we
194 * want to divide the pools on cpu boundaries.
195 */
196 return SVC_POOL_PERCPU;
197 }
198
199 /* default: one global pool */
200 return SVC_POOL_GLOBAL;
201 }
202
203 /*
204 * Allocate the to_pool[] and pool_to[] arrays.
205 * Returns 0 on success or an errno.
206 */
207 static int
svc_pool_map_alloc_arrays(struct svc_pool_map * m,unsigned int maxpools)208 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
209 {
210 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
211 if (!m->to_pool)
212 goto fail;
213 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
214 if (!m->pool_to)
215 goto fail_free;
216
217 return 0;
218
219 fail_free:
220 kfree(m->to_pool);
221 m->to_pool = NULL;
222 fail:
223 return -ENOMEM;
224 }
225
226 /*
227 * Initialise the pool map for SVC_POOL_PERCPU mode.
228 * Returns number of pools or <0 on error.
229 */
230 static int
svc_pool_map_init_percpu(struct svc_pool_map * m)231 svc_pool_map_init_percpu(struct svc_pool_map *m)
232 {
233 unsigned int maxpools = nr_cpu_ids;
234 unsigned int pidx = 0;
235 unsigned int cpu;
236 int err;
237
238 err = svc_pool_map_alloc_arrays(m, maxpools);
239 if (err)
240 return err;
241
242 for_each_online_cpu(cpu) {
243 BUG_ON(pidx >= maxpools);
244 m->to_pool[cpu] = pidx;
245 m->pool_to[pidx] = cpu;
246 pidx++;
247 }
248 /* cpus brought online later all get mapped to pool0, sorry */
249
250 return pidx;
251 };
252
253
254 /*
255 * Initialise the pool map for SVC_POOL_PERNODE mode.
256 * Returns number of pools or <0 on error.
257 */
258 static int
svc_pool_map_init_pernode(struct svc_pool_map * m)259 svc_pool_map_init_pernode(struct svc_pool_map *m)
260 {
261 unsigned int maxpools = nr_node_ids;
262 unsigned int pidx = 0;
263 unsigned int node;
264 int err;
265
266 err = svc_pool_map_alloc_arrays(m, maxpools);
267 if (err)
268 return err;
269
270 for_each_node_with_cpus(node) {
271 /* some architectures (e.g. SN2) have cpuless nodes */
272 BUG_ON(pidx > maxpools);
273 m->to_pool[node] = pidx;
274 m->pool_to[pidx] = node;
275 pidx++;
276 }
277 /* nodes brought online later all get mapped to pool0, sorry */
278
279 return pidx;
280 }
281
282
283 /*
284 * Add a reference to the global map of cpus to pools (and
285 * vice versa) if pools are in use.
286 * Initialise the map if we're the first user.
287 * Returns the number of pools. If this is '1', no reference
288 * was taken.
289 */
290 static unsigned int
svc_pool_map_get(void)291 svc_pool_map_get(void)
292 {
293 struct svc_pool_map *m = &svc_pool_map;
294 int npools = -1;
295
296 mutex_lock(&svc_pool_map_mutex);
297 if (m->count++) {
298 mutex_unlock(&svc_pool_map_mutex);
299 return m->npools;
300 }
301
302 if (m->mode == SVC_POOL_AUTO)
303 m->mode = svc_pool_map_choose_mode();
304
305 switch (m->mode) {
306 case SVC_POOL_PERCPU:
307 npools = svc_pool_map_init_percpu(m);
308 break;
309 case SVC_POOL_PERNODE:
310 npools = svc_pool_map_init_pernode(m);
311 break;
312 }
313
314 if (npools <= 0) {
315 /* default, or memory allocation failure */
316 npools = 1;
317 m->mode = SVC_POOL_GLOBAL;
318 }
319 m->npools = npools;
320 mutex_unlock(&svc_pool_map_mutex);
321 return npools;
322 }
323
324 /*
325 * Drop a reference to the global map of cpus to pools.
326 * When the last reference is dropped, the map data is
327 * freed; this allows the sysadmin to change the pool.
328 */
329 static void
svc_pool_map_put(void)330 svc_pool_map_put(void)
331 {
332 struct svc_pool_map *m = &svc_pool_map;
333
334 mutex_lock(&svc_pool_map_mutex);
335 if (!--m->count) {
336 kfree(m->to_pool);
337 m->to_pool = NULL;
338 kfree(m->pool_to);
339 m->pool_to = NULL;
340 m->npools = 0;
341 }
342 mutex_unlock(&svc_pool_map_mutex);
343 }
344
svc_pool_map_get_node(unsigned int pidx)345 static int svc_pool_map_get_node(unsigned int pidx)
346 {
347 const struct svc_pool_map *m = &svc_pool_map;
348
349 if (m->count) {
350 if (m->mode == SVC_POOL_PERCPU)
351 return cpu_to_node(m->pool_to[pidx]);
352 if (m->mode == SVC_POOL_PERNODE)
353 return m->pool_to[pidx];
354 }
355 return NUMA_NO_NODE;
356 }
357 /*
358 * Set the given thread's cpus_allowed mask so that it
359 * will only run on cpus in the given pool.
360 */
361 static inline void
svc_pool_map_set_cpumask(struct task_struct * task,unsigned int pidx)362 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
363 {
364 struct svc_pool_map *m = &svc_pool_map;
365 unsigned int node = m->pool_to[pidx];
366
367 /*
368 * The caller checks for sv_nrpools > 1, which
369 * implies that we've been initialized.
370 */
371 WARN_ON_ONCE(m->count == 0);
372 if (m->count == 0)
373 return;
374
375 switch (m->mode) {
376 case SVC_POOL_PERCPU:
377 {
378 set_cpus_allowed_ptr(task, cpumask_of(node));
379 break;
380 }
381 case SVC_POOL_PERNODE:
382 {
383 set_cpus_allowed_ptr(task, cpumask_of_node(node));
384 break;
385 }
386 }
387 }
388
389 /**
390 * svc_pool_for_cpu - Select pool to run a thread on this cpu
391 * @serv: An RPC service
392 *
393 * Use the active CPU and the svc_pool_map's mode setting to
394 * select the svc thread pool to use. Once initialized, the
395 * svc_pool_map does not change.
396 *
397 * Return value:
398 * A pointer to an svc_pool
399 */
svc_pool_for_cpu(struct svc_serv * serv)400 struct svc_pool *svc_pool_for_cpu(struct svc_serv *serv)
401 {
402 struct svc_pool_map *m = &svc_pool_map;
403 int cpu = raw_smp_processor_id();
404 unsigned int pidx = 0;
405
406 if (serv->sv_nrpools <= 1)
407 return serv->sv_pools;
408
409 switch (m->mode) {
410 case SVC_POOL_PERCPU:
411 pidx = m->to_pool[cpu];
412 break;
413 case SVC_POOL_PERNODE:
414 pidx = m->to_pool[cpu_to_node(cpu)];
415 break;
416 }
417
418 return &serv->sv_pools[pidx % serv->sv_nrpools];
419 }
420
svc_rpcb_setup(struct svc_serv * serv,struct net * net)421 static int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
422 {
423 int err;
424
425 err = rpcb_create_local(net);
426 if (err)
427 return err;
428
429 /* Remove any stale portmap registrations */
430 svc_unregister(serv, net);
431 return 0;
432 }
433
svc_rpcb_cleanup(struct svc_serv * serv,struct net * net)434 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
435 {
436 svc_unregister(serv, net);
437 rpcb_put_local(net);
438 }
439 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
440
svc_uses_rpcbind(struct svc_serv * serv)441 static int svc_uses_rpcbind(struct svc_serv *serv)
442 {
443 unsigned int p, i;
444
445 for (p = 0; p < serv->sv_nprogs; p++) {
446 struct svc_program *progp = &serv->sv_programs[p];
447
448 for (i = 0; i < progp->pg_nvers; i++) {
449 if (progp->pg_vers[i] == NULL)
450 continue;
451 if (!progp->pg_vers[i]->vs_hidden)
452 return 1;
453 }
454 }
455
456 return 0;
457 }
458
svc_bind(struct svc_serv * serv,struct net * net)459 int svc_bind(struct svc_serv *serv, struct net *net)
460 {
461 if (!svc_uses_rpcbind(serv))
462 return 0;
463 return svc_rpcb_setup(serv, net);
464 }
465 EXPORT_SYMBOL_GPL(svc_bind);
466
467 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
468 static void
__svc_init_bc(struct svc_serv * serv)469 __svc_init_bc(struct svc_serv *serv)
470 {
471 lwq_init(&serv->sv_cb_list);
472 }
473 #else
474 static void
__svc_init_bc(struct svc_serv * serv)475 __svc_init_bc(struct svc_serv *serv)
476 {
477 }
478 #endif
479
480 /*
481 * Create an RPC service
482 */
483 static struct svc_serv *
__svc_create(struct svc_program * prog,int nprogs,struct svc_stat * stats,unsigned int bufsize,int npools,int (* threadfn)(void * data))484 __svc_create(struct svc_program *prog, int nprogs, struct svc_stat *stats,
485 unsigned int bufsize, int npools, int (*threadfn)(void *data))
486 {
487 struct svc_serv *serv;
488 unsigned int vers;
489 unsigned int xdrsize;
490 unsigned int i;
491
492 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
493 return NULL;
494 serv->sv_name = prog->pg_name;
495 serv->sv_programs = prog;
496 serv->sv_nprogs = nprogs;
497 serv->sv_stats = stats;
498 if (bufsize > RPCSVC_MAXPAYLOAD)
499 bufsize = RPCSVC_MAXPAYLOAD;
500 serv->sv_max_payload = bufsize? bufsize : 4096;
501 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
502 serv->sv_threadfn = threadfn;
503 xdrsize = 0;
504 for (i = 0; i < nprogs; i++) {
505 struct svc_program *progp = &prog[i];
506
507 progp->pg_lovers = progp->pg_nvers-1;
508 for (vers = 0; vers < progp->pg_nvers ; vers++)
509 if (progp->pg_vers[vers]) {
510 progp->pg_hivers = vers;
511 if (progp->pg_lovers > vers)
512 progp->pg_lovers = vers;
513 if (progp->pg_vers[vers]->vs_xdrsize > xdrsize)
514 xdrsize = progp->pg_vers[vers]->vs_xdrsize;
515 }
516 }
517 serv->sv_xdrsize = xdrsize;
518 INIT_LIST_HEAD(&serv->sv_tempsocks);
519 INIT_LIST_HEAD(&serv->sv_permsocks);
520 timer_setup(&serv->sv_temptimer, NULL, 0);
521 spin_lock_init(&serv->sv_lock);
522
523 __svc_init_bc(serv);
524
525 serv->sv_nrpools = npools;
526 serv->sv_pools =
527 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
528 GFP_KERNEL);
529 if (!serv->sv_pools) {
530 kfree(serv);
531 return NULL;
532 }
533
534 for (i = 0; i < serv->sv_nrpools; i++) {
535 struct svc_pool *pool = &serv->sv_pools[i];
536
537 dprintk("svc: initialising pool %u for %s\n",
538 i, serv->sv_name);
539
540 pool->sp_id = i;
541 lwq_init(&pool->sp_xprts);
542 INIT_LIST_HEAD(&pool->sp_all_threads);
543 init_llist_head(&pool->sp_idle_threads);
544
545 percpu_counter_init(&pool->sp_messages_arrived, 0, GFP_KERNEL);
546 percpu_counter_init(&pool->sp_sockets_queued, 0, GFP_KERNEL);
547 percpu_counter_init(&pool->sp_threads_woken, 0, GFP_KERNEL);
548 }
549
550 return serv;
551 }
552
553 /**
554 * svc_create - Create an RPC service
555 * @prog: the RPC program the new service will handle
556 * @bufsize: maximum message size for @prog
557 * @threadfn: a function to service RPC requests for @prog
558 *
559 * Returns an instantiated struct svc_serv object or NULL.
560 */
svc_create(struct svc_program * prog,unsigned int bufsize,int (* threadfn)(void * data))561 struct svc_serv *svc_create(struct svc_program *prog, unsigned int bufsize,
562 int (*threadfn)(void *data))
563 {
564 return __svc_create(prog, 1, NULL, bufsize, 1, threadfn);
565 }
566 EXPORT_SYMBOL_GPL(svc_create);
567
568 /**
569 * svc_create_pooled - Create an RPC service with pooled threads
570 * @prog: Array of RPC programs the new service will handle
571 * @nprogs: Number of programs in the array
572 * @stats: the stats struct if desired
573 * @bufsize: maximum message size for @prog
574 * @threadfn: a function to service RPC requests for @prog
575 *
576 * Returns an instantiated struct svc_serv object or NULL.
577 */
svc_create_pooled(struct svc_program * prog,unsigned int nprogs,struct svc_stat * stats,unsigned int bufsize,int (* threadfn)(void * data))578 struct svc_serv *svc_create_pooled(struct svc_program *prog,
579 unsigned int nprogs,
580 struct svc_stat *stats,
581 unsigned int bufsize,
582 int (*threadfn)(void *data))
583 {
584 struct svc_serv *serv;
585 unsigned int npools = svc_pool_map_get();
586
587 serv = __svc_create(prog, nprogs, stats, bufsize, npools, threadfn);
588 if (!serv)
589 goto out_err;
590 serv->sv_is_pooled = true;
591 return serv;
592 out_err:
593 svc_pool_map_put();
594 return NULL;
595 }
596 EXPORT_SYMBOL_GPL(svc_create_pooled);
597
598 /*
599 * Destroy an RPC service. Should be called with appropriate locking to
600 * protect sv_permsocks and sv_tempsocks.
601 */
602 void
svc_destroy(struct svc_serv ** servp)603 svc_destroy(struct svc_serv **servp)
604 {
605 struct svc_serv *serv = *servp;
606 unsigned int i;
607
608 *servp = NULL;
609
610 dprintk("svc: svc_destroy(%s)\n", serv->sv_programs->pg_name);
611 timer_shutdown_sync(&serv->sv_temptimer);
612
613 /*
614 * Remaining transports at this point are not expected.
615 */
616 WARN_ONCE(!list_empty(&serv->sv_permsocks),
617 "SVC: permsocks remain for %s\n", serv->sv_programs->pg_name);
618 WARN_ONCE(!list_empty(&serv->sv_tempsocks),
619 "SVC: tempsocks remain for %s\n", serv->sv_programs->pg_name);
620
621 cache_clean_deferred(serv);
622
623 if (serv->sv_is_pooled)
624 svc_pool_map_put();
625
626 for (i = 0; i < serv->sv_nrpools; i++) {
627 struct svc_pool *pool = &serv->sv_pools[i];
628
629 percpu_counter_destroy(&pool->sp_messages_arrived);
630 percpu_counter_destroy(&pool->sp_sockets_queued);
631 percpu_counter_destroy(&pool->sp_threads_woken);
632 }
633 kfree(serv->sv_pools);
634 kfree(serv);
635 }
636 EXPORT_SYMBOL_GPL(svc_destroy);
637
638 static bool
svc_init_buffer(struct svc_rqst * rqstp,const struct svc_serv * serv,int node)639 svc_init_buffer(struct svc_rqst *rqstp, const struct svc_serv *serv, int node)
640 {
641 rqstp->rq_maxpages = svc_serv_maxpages(serv);
642
643 /* rq_pages' last entry is NULL for historical reasons. */
644 rqstp->rq_pages = kcalloc_node(rqstp->rq_maxpages + 1,
645 sizeof(struct page *),
646 GFP_KERNEL, node);
647 if (!rqstp->rq_pages)
648 return false;
649
650 return true;
651 }
652
653 /*
654 * Release an RPC server buffer
655 */
656 static void
svc_release_buffer(struct svc_rqst * rqstp)657 svc_release_buffer(struct svc_rqst *rqstp)
658 {
659 unsigned long i;
660
661 for (i = 0; i < rqstp->rq_maxpages; i++)
662 if (rqstp->rq_pages[i])
663 put_page(rqstp->rq_pages[i]);
664 kfree(rqstp->rq_pages);
665 }
666
667 static void
svc_rqst_free(struct svc_rqst * rqstp)668 svc_rqst_free(struct svc_rqst *rqstp)
669 {
670 folio_batch_release(&rqstp->rq_fbatch);
671 kfree(rqstp->rq_bvec);
672 svc_release_buffer(rqstp);
673 if (rqstp->rq_scratch_page)
674 put_page(rqstp->rq_scratch_page);
675 kfree(rqstp->rq_resp);
676 kfree(rqstp->rq_argp);
677 kfree(rqstp->rq_auth_data);
678 kfree_rcu(rqstp, rq_rcu_head);
679 }
680
681 static struct svc_rqst *
svc_prepare_thread(struct svc_serv * serv,struct svc_pool * pool,int node)682 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
683 {
684 struct svc_rqst *rqstp;
685
686 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
687 if (!rqstp)
688 return rqstp;
689
690 folio_batch_init(&rqstp->rq_fbatch);
691
692 rqstp->rq_server = serv;
693 rqstp->rq_pool = pool;
694
695 rqstp->rq_scratch_page = alloc_pages_node(node, GFP_KERNEL, 0);
696 if (!rqstp->rq_scratch_page)
697 goto out_enomem;
698
699 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
700 if (!rqstp->rq_argp)
701 goto out_enomem;
702
703 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
704 if (!rqstp->rq_resp)
705 goto out_enomem;
706
707 if (!svc_init_buffer(rqstp, serv, node))
708 goto out_enomem;
709
710 rqstp->rq_bvec = kcalloc_node(rqstp->rq_maxpages,
711 sizeof(struct bio_vec),
712 GFP_KERNEL, node);
713 if (!rqstp->rq_bvec)
714 goto out_enomem;
715
716 rqstp->rq_err = -EAGAIN; /* No error yet */
717
718 serv->sv_nrthreads += 1;
719 pool->sp_nrthreads += 1;
720
721 /* Protected by whatever lock the service uses when calling
722 * svc_set_num_threads()
723 */
724 list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads);
725
726 return rqstp;
727
728 out_enomem:
729 svc_rqst_free(rqstp);
730 return NULL;
731 }
732
733 /**
734 * svc_pool_wake_idle_thread - Awaken an idle thread in @pool
735 * @pool: service thread pool
736 *
737 * Can be called from soft IRQ or process context. Finding an idle
738 * service thread and marking it BUSY is atomic with respect to
739 * other calls to svc_pool_wake_idle_thread().
740 *
741 */
svc_pool_wake_idle_thread(struct svc_pool * pool)742 void svc_pool_wake_idle_thread(struct svc_pool *pool)
743 {
744 struct svc_rqst *rqstp;
745 struct llist_node *ln;
746
747 rcu_read_lock();
748 ln = READ_ONCE(pool->sp_idle_threads.first);
749 if (ln) {
750 rqstp = llist_entry(ln, struct svc_rqst, rq_idle);
751 WRITE_ONCE(rqstp->rq_qtime, ktime_get());
752 if (!task_is_running(rqstp->rq_task)) {
753 wake_up_process(rqstp->rq_task);
754 trace_svc_wake_up(rqstp->rq_task->pid);
755 percpu_counter_inc(&pool->sp_threads_woken);
756 }
757 rcu_read_unlock();
758 return;
759 }
760 rcu_read_unlock();
761
762 }
763 EXPORT_SYMBOL_GPL(svc_pool_wake_idle_thread);
764
765 static struct svc_pool *
svc_pool_next(struct svc_serv * serv,struct svc_pool * pool,unsigned int * state)766 svc_pool_next(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
767 {
768 return pool ? pool : &serv->sv_pools[(*state)++ % serv->sv_nrpools];
769 }
770
771 static struct svc_pool *
svc_pool_victim(struct svc_serv * serv,struct svc_pool * target_pool,unsigned int * state)772 svc_pool_victim(struct svc_serv *serv, struct svc_pool *target_pool,
773 unsigned int *state)
774 {
775 struct svc_pool *pool;
776 unsigned int i;
777
778 pool = target_pool;
779
780 if (!pool) {
781 for (i = 0; i < serv->sv_nrpools; i++) {
782 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
783 if (pool->sp_nrthreads)
784 break;
785 }
786 }
787
788 if (pool && pool->sp_nrthreads) {
789 set_bit(SP_VICTIM_REMAINS, &pool->sp_flags);
790 set_bit(SP_NEED_VICTIM, &pool->sp_flags);
791 return pool;
792 }
793 return NULL;
794 }
795
796 static int
svc_start_kthreads(struct svc_serv * serv,struct svc_pool * pool,int nrservs)797 svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
798 {
799 struct svc_rqst *rqstp;
800 struct task_struct *task;
801 struct svc_pool *chosen_pool;
802 unsigned int state = serv->sv_nrthreads-1;
803 int node;
804 int err;
805
806 do {
807 nrservs--;
808 chosen_pool = svc_pool_next(serv, pool, &state);
809 node = svc_pool_map_get_node(chosen_pool->sp_id);
810
811 rqstp = svc_prepare_thread(serv, chosen_pool, node);
812 if (!rqstp)
813 return -ENOMEM;
814 task = kthread_create_on_node(serv->sv_threadfn, rqstp,
815 node, "%s", serv->sv_name);
816 if (IS_ERR(task)) {
817 svc_exit_thread(rqstp);
818 return PTR_ERR(task);
819 }
820
821 rqstp->rq_task = task;
822 if (serv->sv_nrpools > 1)
823 svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
824
825 svc_sock_update_bufs(serv);
826 wake_up_process(task);
827
828 wait_var_event(&rqstp->rq_err, rqstp->rq_err != -EAGAIN);
829 err = rqstp->rq_err;
830 if (err) {
831 svc_exit_thread(rqstp);
832 return err;
833 }
834 } while (nrservs > 0);
835
836 return 0;
837 }
838
839 static int
svc_stop_kthreads(struct svc_serv * serv,struct svc_pool * pool,int nrservs)840 svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
841 {
842 unsigned int state = serv->sv_nrthreads-1;
843 struct svc_pool *victim;
844
845 do {
846 victim = svc_pool_victim(serv, pool, &state);
847 if (!victim)
848 break;
849 svc_pool_wake_idle_thread(victim);
850 wait_on_bit(&victim->sp_flags, SP_VICTIM_REMAINS,
851 TASK_IDLE);
852 nrservs++;
853 } while (nrservs < 0);
854 return 0;
855 }
856
857 /**
858 * svc_set_num_threads - adjust number of threads per RPC service
859 * @serv: RPC service to adjust
860 * @pool: Specific pool from which to choose threads, or NULL
861 * @nrservs: New number of threads for @serv (0 or less means kill all threads)
862 *
863 * Create or destroy threads to make the number of threads for @serv the
864 * given number. If @pool is non-NULL, change only threads in that pool;
865 * otherwise, round-robin between all pools for @serv. @serv's
866 * sv_nrthreads is adjusted for each thread created or destroyed.
867 *
868 * Caller must ensure mutual exclusion between this and server startup or
869 * shutdown.
870 *
871 * Returns zero on success or a negative errno if an error occurred while
872 * starting a thread.
873 */
874 int
svc_set_num_threads(struct svc_serv * serv,struct svc_pool * pool,int nrservs)875 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
876 {
877 if (!pool)
878 nrservs -= serv->sv_nrthreads;
879 else
880 nrservs -= pool->sp_nrthreads;
881
882 if (nrservs > 0)
883 return svc_start_kthreads(serv, pool, nrservs);
884 if (nrservs < 0)
885 return svc_stop_kthreads(serv, pool, nrservs);
886 return 0;
887 }
888 EXPORT_SYMBOL_GPL(svc_set_num_threads);
889
890 /**
891 * svc_rqst_replace_page - Replace one page in rq_pages[]
892 * @rqstp: svc_rqst with pages to replace
893 * @page: replacement page
894 *
895 * When replacing a page in rq_pages, batch the release of the
896 * replaced pages to avoid hammering the page allocator.
897 *
898 * Return values:
899 * %true: page replaced
900 * %false: array bounds checking failed
901 */
svc_rqst_replace_page(struct svc_rqst * rqstp,struct page * page)902 bool svc_rqst_replace_page(struct svc_rqst *rqstp, struct page *page)
903 {
904 struct page **begin = rqstp->rq_pages;
905 struct page **end = &rqstp->rq_pages[rqstp->rq_maxpages];
906
907 if (unlikely(rqstp->rq_next_page < begin || rqstp->rq_next_page > end)) {
908 trace_svc_replace_page_err(rqstp);
909 return false;
910 }
911
912 if (*rqstp->rq_next_page) {
913 if (!folio_batch_add(&rqstp->rq_fbatch,
914 page_folio(*rqstp->rq_next_page)))
915 __folio_batch_release(&rqstp->rq_fbatch);
916 }
917
918 get_page(page);
919 *(rqstp->rq_next_page++) = page;
920 return true;
921 }
922 EXPORT_SYMBOL_GPL(svc_rqst_replace_page);
923
924 /**
925 * svc_rqst_release_pages - Release Reply buffer pages
926 * @rqstp: RPC transaction context
927 *
928 * Release response pages that might still be in flight after
929 * svc_send, and any spliced filesystem-owned pages.
930 */
svc_rqst_release_pages(struct svc_rqst * rqstp)931 void svc_rqst_release_pages(struct svc_rqst *rqstp)
932 {
933 int i, count = rqstp->rq_next_page - rqstp->rq_respages;
934
935 if (count) {
936 release_pages(rqstp->rq_respages, count);
937 for (i = 0; i < count; i++)
938 rqstp->rq_respages[i] = NULL;
939 }
940 }
941
942 /**
943 * svc_exit_thread - finalise the termination of a sunrpc server thread
944 * @rqstp: the svc_rqst which represents the thread.
945 *
946 * When a thread started with svc_new_thread() exits it must call
947 * svc_exit_thread() as its last act. This must be done with the
948 * service mutex held. Normally this is held by a DIFFERENT thread, the
949 * one that is calling svc_set_num_threads() and which will wait for
950 * SP_VICTIM_REMAINS to be cleared before dropping the mutex. If the
951 * thread exits for any reason other than svc_thread_should_stop()
952 * returning %true (which indicated that svc_set_num_threads() is
953 * waiting for it to exit), then it must take the service mutex itself,
954 * which can only safely be done using mutex_try_lock().
955 */
956 void
svc_exit_thread(struct svc_rqst * rqstp)957 svc_exit_thread(struct svc_rqst *rqstp)
958 {
959 struct svc_serv *serv = rqstp->rq_server;
960 struct svc_pool *pool = rqstp->rq_pool;
961
962 list_del_rcu(&rqstp->rq_all);
963
964 pool->sp_nrthreads -= 1;
965 serv->sv_nrthreads -= 1;
966 svc_sock_update_bufs(serv);
967
968 svc_rqst_free(rqstp);
969
970 clear_and_wake_up_bit(SP_VICTIM_REMAINS, &pool->sp_flags);
971 }
972 EXPORT_SYMBOL_GPL(svc_exit_thread);
973
974 /*
975 * Register an "inet" protocol family netid with the local
976 * rpcbind daemon via an rpcbind v4 SET request.
977 *
978 * No netconfig infrastructure is available in the kernel, so
979 * we map IP_ protocol numbers to netids by hand.
980 *
981 * Returns zero on success; a negative errno value is returned
982 * if any error occurs.
983 */
__svc_rpcb_register4(struct net * net,const u32 program,const u32 version,const unsigned short protocol,const unsigned short port)984 static int __svc_rpcb_register4(struct net *net, const u32 program,
985 const u32 version,
986 const unsigned short protocol,
987 const unsigned short port)
988 {
989 const struct sockaddr_in sin = {
990 .sin_family = AF_INET,
991 .sin_addr.s_addr = htonl(INADDR_ANY),
992 .sin_port = htons(port),
993 };
994 const char *netid;
995 int error;
996
997 switch (protocol) {
998 case IPPROTO_UDP:
999 netid = RPCBIND_NETID_UDP;
1000 break;
1001 case IPPROTO_TCP:
1002 netid = RPCBIND_NETID_TCP;
1003 break;
1004 default:
1005 return -ENOPROTOOPT;
1006 }
1007
1008 error = rpcb_v4_register(net, program, version,
1009 (const struct sockaddr *)&sin, netid);
1010
1011 /*
1012 * User space didn't support rpcbind v4, so retry this
1013 * registration request with the legacy rpcbind v2 protocol.
1014 */
1015 if (error == -EPROTONOSUPPORT)
1016 error = rpcb_register(net, program, version, protocol, port);
1017
1018 return error;
1019 }
1020
1021 #if IS_ENABLED(CONFIG_IPV6)
1022 /*
1023 * Register an "inet6" protocol family netid with the local
1024 * rpcbind daemon via an rpcbind v4 SET request.
1025 *
1026 * No netconfig infrastructure is available in the kernel, so
1027 * we map IP_ protocol numbers to netids by hand.
1028 *
1029 * Returns zero on success; a negative errno value is returned
1030 * if any error occurs.
1031 */
__svc_rpcb_register6(struct net * net,const u32 program,const u32 version,const unsigned short protocol,const unsigned short port)1032 static int __svc_rpcb_register6(struct net *net, const u32 program,
1033 const u32 version,
1034 const unsigned short protocol,
1035 const unsigned short port)
1036 {
1037 const struct sockaddr_in6 sin6 = {
1038 .sin6_family = AF_INET6,
1039 .sin6_addr = IN6ADDR_ANY_INIT,
1040 .sin6_port = htons(port),
1041 };
1042 const char *netid;
1043 int error;
1044
1045 switch (protocol) {
1046 case IPPROTO_UDP:
1047 netid = RPCBIND_NETID_UDP6;
1048 break;
1049 case IPPROTO_TCP:
1050 netid = RPCBIND_NETID_TCP6;
1051 break;
1052 default:
1053 return -ENOPROTOOPT;
1054 }
1055
1056 error = rpcb_v4_register(net, program, version,
1057 (const struct sockaddr *)&sin6, netid);
1058
1059 /*
1060 * User space didn't support rpcbind version 4, so we won't
1061 * use a PF_INET6 listener.
1062 */
1063 if (error == -EPROTONOSUPPORT)
1064 error = -EAFNOSUPPORT;
1065
1066 return error;
1067 }
1068 #endif /* IS_ENABLED(CONFIG_IPV6) */
1069
1070 /*
1071 * Register a kernel RPC service via rpcbind version 4.
1072 *
1073 * Returns zero on success; a negative errno value is returned
1074 * if any error occurs.
1075 */
__svc_register(struct net * net,const char * progname,const u32 program,const u32 version,const int family,const unsigned short protocol,const unsigned short port)1076 static int __svc_register(struct net *net, const char *progname,
1077 const u32 program, const u32 version,
1078 const int family,
1079 const unsigned short protocol,
1080 const unsigned short port)
1081 {
1082 int error = -EAFNOSUPPORT;
1083
1084 switch (family) {
1085 case PF_INET:
1086 error = __svc_rpcb_register4(net, program, version,
1087 protocol, port);
1088 break;
1089 #if IS_ENABLED(CONFIG_IPV6)
1090 case PF_INET6:
1091 error = __svc_rpcb_register6(net, program, version,
1092 protocol, port);
1093 #endif
1094 }
1095
1096 trace_svc_register(progname, version, family, protocol, port, error);
1097 return error;
1098 }
1099
1100 static
svc_rpcbind_set_version(struct net * net,const struct svc_program * progp,u32 version,int family,unsigned short proto,unsigned short port)1101 int svc_rpcbind_set_version(struct net *net,
1102 const struct svc_program *progp,
1103 u32 version, int family,
1104 unsigned short proto,
1105 unsigned short port)
1106 {
1107 return __svc_register(net, progp->pg_name, progp->pg_prog,
1108 version, family, proto, port);
1109
1110 }
1111
svc_generic_rpcbind_set(struct net * net,const struct svc_program * progp,u32 version,int family,unsigned short proto,unsigned short port)1112 int svc_generic_rpcbind_set(struct net *net,
1113 const struct svc_program *progp,
1114 u32 version, int family,
1115 unsigned short proto,
1116 unsigned short port)
1117 {
1118 const struct svc_version *vers = progp->pg_vers[version];
1119 int error;
1120
1121 if (vers == NULL)
1122 return 0;
1123
1124 if (vers->vs_hidden) {
1125 trace_svc_noregister(progp->pg_name, version, proto,
1126 port, family, 0);
1127 return 0;
1128 }
1129
1130 /*
1131 * Don't register a UDP port if we need congestion
1132 * control.
1133 */
1134 if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP)
1135 return 0;
1136
1137 error = svc_rpcbind_set_version(net, progp, version,
1138 family, proto, port);
1139
1140 return (vers->vs_rpcb_optnl) ? 0 : error;
1141 }
1142 EXPORT_SYMBOL_GPL(svc_generic_rpcbind_set);
1143
1144 /**
1145 * svc_register - register an RPC service with the local portmapper
1146 * @serv: svc_serv struct for the service to register
1147 * @net: net namespace for the service to register
1148 * @family: protocol family of service's listener socket
1149 * @proto: transport protocol number to advertise
1150 * @port: port to advertise
1151 *
1152 * Service is registered for any address in the passed-in protocol family
1153 */
svc_register(const struct svc_serv * serv,struct net * net,const int family,const unsigned short proto,const unsigned short port)1154 int svc_register(const struct svc_serv *serv, struct net *net,
1155 const int family, const unsigned short proto,
1156 const unsigned short port)
1157 {
1158 unsigned int p, i;
1159 int error = 0;
1160
1161 WARN_ON_ONCE(proto == 0 && port == 0);
1162 if (proto == 0 && port == 0)
1163 return -EINVAL;
1164
1165 for (p = 0; p < serv->sv_nprogs; p++) {
1166 struct svc_program *progp = &serv->sv_programs[p];
1167
1168 for (i = 0; i < progp->pg_nvers; i++) {
1169
1170 error = progp->pg_rpcbind_set(net, progp, i,
1171 family, proto, port);
1172 if (error < 0) {
1173 printk(KERN_WARNING "svc: failed to register "
1174 "%sv%u RPC service (errno %d).\n",
1175 progp->pg_name, i, -error);
1176 break;
1177 }
1178 }
1179 }
1180
1181 return error;
1182 }
1183
1184 /*
1185 * If user space is running rpcbind, it should take the v4 UNSET
1186 * and clear everything for this [program, version]. If user space
1187 * is running portmap, it will reject the v4 UNSET, but won't have
1188 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient
1189 * in this case to clear all existing entries for [program, version].
1190 */
__svc_unregister(struct net * net,const u32 program,const u32 version,const char * progname)1191 static void __svc_unregister(struct net *net, const u32 program, const u32 version,
1192 const char *progname)
1193 {
1194 int error;
1195
1196 error = rpcb_v4_register(net, program, version, NULL, "");
1197
1198 /*
1199 * User space didn't support rpcbind v4, so retry this
1200 * request with the legacy rpcbind v2 protocol.
1201 */
1202 if (error == -EPROTONOSUPPORT)
1203 error = rpcb_register(net, program, version, 0, 0);
1204
1205 trace_svc_unregister(progname, version, error);
1206 }
1207
1208 /*
1209 * All netids, bind addresses and ports registered for [program, version]
1210 * are removed from the local rpcbind database (if the service is not
1211 * hidden) to make way for a new instance of the service.
1212 *
1213 * The result of unregistration is reported via dprintk for those who want
1214 * verification of the result, but is otherwise not important.
1215 */
svc_unregister(const struct svc_serv * serv,struct net * net)1216 static void svc_unregister(const struct svc_serv *serv, struct net *net)
1217 {
1218 struct sighand_struct *sighand;
1219 unsigned long flags;
1220 unsigned int p, i;
1221
1222 clear_thread_flag(TIF_SIGPENDING);
1223
1224 for (p = 0; p < serv->sv_nprogs; p++) {
1225 struct svc_program *progp = &serv->sv_programs[p];
1226
1227 for (i = 0; i < progp->pg_nvers; i++) {
1228 if (progp->pg_vers[i] == NULL)
1229 continue;
1230 if (progp->pg_vers[i]->vs_hidden)
1231 continue;
1232 __svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1233 }
1234 }
1235
1236 rcu_read_lock();
1237 sighand = rcu_dereference(current->sighand);
1238 spin_lock_irqsave(&sighand->siglock, flags);
1239 recalc_sigpending();
1240 spin_unlock_irqrestore(&sighand->siglock, flags);
1241 rcu_read_unlock();
1242 }
1243
1244 /*
1245 * dprintk the given error with the address of the client that caused it.
1246 */
1247 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
1248 static __printf(2, 3)
svc_printk(struct svc_rqst * rqstp,const char * fmt,...)1249 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1250 {
1251 struct va_format vaf;
1252 va_list args;
1253 char buf[RPC_MAX_ADDRBUFLEN];
1254
1255 va_start(args, fmt);
1256
1257 vaf.fmt = fmt;
1258 vaf.va = &args;
1259
1260 dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1261
1262 va_end(args);
1263 }
1264 #else
svc_printk(struct svc_rqst * rqstp,const char * fmt,...)1265 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {}
1266 #endif
1267
1268 __be32
svc_generic_init_request(struct svc_rqst * rqstp,const struct svc_program * progp,struct svc_process_info * ret)1269 svc_generic_init_request(struct svc_rqst *rqstp,
1270 const struct svc_program *progp,
1271 struct svc_process_info *ret)
1272 {
1273 const struct svc_version *versp = NULL; /* compiler food */
1274 const struct svc_procedure *procp = NULL;
1275
1276 if (rqstp->rq_vers >= progp->pg_nvers )
1277 goto err_bad_vers;
1278 versp = progp->pg_vers[rqstp->rq_vers];
1279 if (!versp)
1280 goto err_bad_vers;
1281
1282 /*
1283 * Some protocol versions (namely NFSv4) require some form of
1284 * congestion control. (See RFC 7530 section 3.1 paragraph 2)
1285 * In other words, UDP is not allowed. We mark those when setting
1286 * up the svc_xprt, and verify that here.
1287 *
1288 * The spec is not very clear about what error should be returned
1289 * when someone tries to access a server that is listening on UDP
1290 * for lower versions. RPC_PROG_MISMATCH seems to be the closest
1291 * fit.
1292 */
1293 if (versp->vs_need_cong_ctrl && rqstp->rq_xprt &&
1294 !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags))
1295 goto err_bad_vers;
1296
1297 if (rqstp->rq_proc >= versp->vs_nproc)
1298 goto err_bad_proc;
1299 rqstp->rq_procinfo = procp = &versp->vs_proc[rqstp->rq_proc];
1300
1301 /* Initialize storage for argp and resp */
1302 memset(rqstp->rq_argp, 0, procp->pc_argzero);
1303 memset(rqstp->rq_resp, 0, procp->pc_ressize);
1304
1305 /* Bump per-procedure stats counter */
1306 this_cpu_inc(versp->vs_count[rqstp->rq_proc]);
1307
1308 ret->dispatch = versp->vs_dispatch;
1309 return rpc_success;
1310 err_bad_vers:
1311 ret->mismatch.lovers = progp->pg_lovers;
1312 ret->mismatch.hivers = progp->pg_hivers;
1313 return rpc_prog_mismatch;
1314 err_bad_proc:
1315 return rpc_proc_unavail;
1316 }
1317 EXPORT_SYMBOL_GPL(svc_generic_init_request);
1318
1319 /*
1320 * Common routine for processing the RPC request.
1321 */
1322 static int
svc_process_common(struct svc_rqst * rqstp)1323 svc_process_common(struct svc_rqst *rqstp)
1324 {
1325 struct xdr_stream *xdr = &rqstp->rq_res_stream;
1326 struct svc_program *progp = NULL;
1327 const struct svc_procedure *procp = NULL;
1328 struct svc_serv *serv = rqstp->rq_server;
1329 struct svc_process_info process;
1330 enum svc_auth_status auth_res;
1331 unsigned int aoffset;
1332 int pr, rc;
1333 __be32 *p;
1334
1335 /* Will be turned off only when NFSv4 Sessions are used */
1336 set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags);
1337 clear_bit(RQ_DROPME, &rqstp->rq_flags);
1338
1339 /* Construct the first words of the reply: */
1340 svcxdr_init_encode(rqstp);
1341 xdr_stream_encode_be32(xdr, rqstp->rq_xid);
1342 xdr_stream_encode_be32(xdr, rpc_reply);
1343
1344 p = xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 4);
1345 if (unlikely(!p))
1346 goto err_short_len;
1347 if (*p++ != cpu_to_be32(RPC_VERSION))
1348 goto err_bad_rpc;
1349
1350 xdr_stream_encode_be32(xdr, rpc_msg_accepted);
1351
1352 rqstp->rq_prog = be32_to_cpup(p++);
1353 rqstp->rq_vers = be32_to_cpup(p++);
1354 rqstp->rq_proc = be32_to_cpup(p);
1355
1356 for (pr = 0; pr < serv->sv_nprogs; pr++)
1357 if (rqstp->rq_prog == serv->sv_programs[pr].pg_prog)
1358 progp = &serv->sv_programs[pr];
1359
1360 /*
1361 * Decode auth data, and add verifier to reply buffer.
1362 * We do this before anything else in order to get a decent
1363 * auth verifier.
1364 */
1365 auth_res = svc_authenticate(rqstp);
1366 /* Also give the program a chance to reject this call: */
1367 if (auth_res == SVC_OK && progp)
1368 auth_res = progp->pg_authenticate(rqstp);
1369 trace_svc_authenticate(rqstp, auth_res);
1370 switch (auth_res) {
1371 case SVC_OK:
1372 break;
1373 case SVC_GARBAGE:
1374 rqstp->rq_auth_stat = rpc_autherr_badcred;
1375 goto err_bad_auth;
1376 case SVC_SYSERR:
1377 goto err_system_err;
1378 case SVC_DENIED:
1379 goto err_bad_auth;
1380 case SVC_CLOSE:
1381 goto close;
1382 case SVC_DROP:
1383 goto dropit;
1384 case SVC_COMPLETE:
1385 goto sendit;
1386 default:
1387 pr_warn_once("Unexpected svc_auth_status (%d)\n", auth_res);
1388 goto err_system_err;
1389 }
1390
1391 if (progp == NULL)
1392 goto err_bad_prog;
1393
1394 switch (progp->pg_init_request(rqstp, progp, &process)) {
1395 case rpc_success:
1396 break;
1397 case rpc_prog_unavail:
1398 goto err_bad_prog;
1399 case rpc_prog_mismatch:
1400 goto err_bad_vers;
1401 case rpc_proc_unavail:
1402 goto err_bad_proc;
1403 }
1404
1405 procp = rqstp->rq_procinfo;
1406 /* Should this check go into the dispatcher? */
1407 if (!procp || !procp->pc_func)
1408 goto err_bad_proc;
1409
1410 /* Syntactic check complete */
1411 if (serv->sv_stats)
1412 serv->sv_stats->rpccnt++;
1413 trace_svc_process(rqstp, progp->pg_name);
1414
1415 aoffset = xdr_stream_pos(xdr);
1416
1417 /* un-reserve some of the out-queue now that we have a
1418 * better idea of reply size
1419 */
1420 if (procp->pc_xdrressize)
1421 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1422
1423 /* Call the function that processes the request. */
1424 rc = process.dispatch(rqstp);
1425 if (procp->pc_release)
1426 procp->pc_release(rqstp);
1427 xdr_finish_decode(xdr);
1428
1429 if (!rc)
1430 goto dropit;
1431 if (rqstp->rq_auth_stat != rpc_auth_ok)
1432 goto err_bad_auth;
1433
1434 if (*rqstp->rq_accept_statp != rpc_success)
1435 xdr_truncate_encode(xdr, aoffset);
1436
1437 if (procp->pc_encode == NULL)
1438 goto dropit;
1439
1440 sendit:
1441 if (svc_authorise(rqstp))
1442 goto close_xprt;
1443 return 1; /* Caller can now send it */
1444
1445 dropit:
1446 svc_authorise(rqstp); /* doesn't hurt to call this twice */
1447 dprintk("svc: svc_process dropit\n");
1448 return 0;
1449
1450 close:
1451 svc_authorise(rqstp);
1452 close_xprt:
1453 if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1454 svc_xprt_close(rqstp->rq_xprt);
1455 dprintk("svc: svc_process close\n");
1456 return 0;
1457
1458 err_short_len:
1459 svc_printk(rqstp, "short len %u, dropping request\n",
1460 rqstp->rq_arg.len);
1461 goto close_xprt;
1462
1463 err_bad_rpc:
1464 if (serv->sv_stats)
1465 serv->sv_stats->rpcbadfmt++;
1466 xdr_stream_encode_u32(xdr, RPC_MSG_DENIED);
1467 xdr_stream_encode_u32(xdr, RPC_MISMATCH);
1468 /* Only RPCv2 supported */
1469 xdr_stream_encode_u32(xdr, RPC_VERSION);
1470 xdr_stream_encode_u32(xdr, RPC_VERSION);
1471 return 1; /* don't wrap */
1472
1473 err_bad_auth:
1474 dprintk("svc: authentication failed (%d)\n",
1475 be32_to_cpu(rqstp->rq_auth_stat));
1476 if (serv->sv_stats)
1477 serv->sv_stats->rpcbadauth++;
1478 /* Restore write pointer to location of reply status: */
1479 xdr_truncate_encode(xdr, XDR_UNIT * 2);
1480 xdr_stream_encode_u32(xdr, RPC_MSG_DENIED);
1481 xdr_stream_encode_u32(xdr, RPC_AUTH_ERROR);
1482 xdr_stream_encode_be32(xdr, rqstp->rq_auth_stat);
1483 goto sendit;
1484
1485 err_bad_prog:
1486 dprintk("svc: unknown program %d\n", rqstp->rq_prog);
1487 if (serv->sv_stats)
1488 serv->sv_stats->rpcbadfmt++;
1489 *rqstp->rq_accept_statp = rpc_prog_unavail;
1490 goto sendit;
1491
1492 err_bad_vers:
1493 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1494 rqstp->rq_vers, rqstp->rq_prog, progp->pg_name);
1495
1496 if (serv->sv_stats)
1497 serv->sv_stats->rpcbadfmt++;
1498 *rqstp->rq_accept_statp = rpc_prog_mismatch;
1499
1500 /*
1501 * svc_authenticate() has already added the verifier and
1502 * advanced the stream just past rq_accept_statp.
1503 */
1504 xdr_stream_encode_u32(xdr, process.mismatch.lovers);
1505 xdr_stream_encode_u32(xdr, process.mismatch.hivers);
1506 goto sendit;
1507
1508 err_bad_proc:
1509 svc_printk(rqstp, "unknown procedure (%d)\n", rqstp->rq_proc);
1510
1511 if (serv->sv_stats)
1512 serv->sv_stats->rpcbadfmt++;
1513 *rqstp->rq_accept_statp = rpc_proc_unavail;
1514 goto sendit;
1515
1516 err_system_err:
1517 if (serv->sv_stats)
1518 serv->sv_stats->rpcbadfmt++;
1519 *rqstp->rq_accept_statp = rpc_system_err;
1520 goto sendit;
1521 }
1522
1523 /*
1524 * Drop request
1525 */
svc_drop(struct svc_rqst * rqstp)1526 static void svc_drop(struct svc_rqst *rqstp)
1527 {
1528 trace_svc_drop(rqstp);
1529 }
1530
1531 /**
1532 * svc_process - Execute one RPC transaction
1533 * @rqstp: RPC transaction context
1534 *
1535 */
svc_process(struct svc_rqst * rqstp)1536 void svc_process(struct svc_rqst *rqstp)
1537 {
1538 struct kvec *resv = &rqstp->rq_res.head[0];
1539 __be32 *p;
1540
1541 #if IS_ENABLED(CONFIG_FAIL_SUNRPC)
1542 if (!fail_sunrpc.ignore_server_disconnect &&
1543 should_fail(&fail_sunrpc.attr, 1))
1544 svc_xprt_deferred_close(rqstp->rq_xprt);
1545 #endif
1546
1547 /*
1548 * Setup response xdr_buf.
1549 * Initially it has just one page
1550 */
1551 rqstp->rq_next_page = &rqstp->rq_respages[1];
1552 resv->iov_base = page_address(rqstp->rq_respages[0]);
1553 resv->iov_len = 0;
1554 rqstp->rq_res.pages = rqstp->rq_next_page;
1555 rqstp->rq_res.len = 0;
1556 rqstp->rq_res.page_base = 0;
1557 rqstp->rq_res.page_len = 0;
1558 rqstp->rq_res.buflen = PAGE_SIZE;
1559 rqstp->rq_res.tail[0].iov_base = NULL;
1560 rqstp->rq_res.tail[0].iov_len = 0;
1561
1562 svcxdr_init_decode(rqstp);
1563 p = xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 2);
1564 if (unlikely(!p))
1565 goto out_drop;
1566 rqstp->rq_xid = *p++;
1567 if (unlikely(*p != rpc_call))
1568 goto out_baddir;
1569
1570 if (!svc_process_common(rqstp))
1571 goto out_drop;
1572 svc_send(rqstp);
1573 return;
1574
1575 out_baddir:
1576 svc_printk(rqstp, "bad direction 0x%08x, dropping request\n",
1577 be32_to_cpu(*p));
1578 if (rqstp->rq_server->sv_stats)
1579 rqstp->rq_server->sv_stats->rpcbadfmt++;
1580 out_drop:
1581 svc_drop(rqstp);
1582 }
1583
1584 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1585 /**
1586 * svc_process_bc - process a reverse-direction RPC request
1587 * @req: RPC request to be used for client-side processing
1588 * @rqstp: server-side execution context
1589 *
1590 */
svc_process_bc(struct rpc_rqst * req,struct svc_rqst * rqstp)1591 void svc_process_bc(struct rpc_rqst *req, struct svc_rqst *rqstp)
1592 {
1593 struct rpc_timeout timeout = {
1594 .to_increment = 0,
1595 };
1596 struct rpc_task *task;
1597 int proc_error;
1598
1599 /* Build the svc_rqst used by the common processing routine */
1600 rqstp->rq_xid = req->rq_xid;
1601 rqstp->rq_prot = req->rq_xprt->prot;
1602 rqstp->rq_bc_net = req->rq_xprt->xprt_net;
1603
1604 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1605 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1606 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1607 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1608
1609 /* Adjust the argument buffer length */
1610 rqstp->rq_arg.len = req->rq_private_buf.len;
1611 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1612 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1613 rqstp->rq_arg.page_len = 0;
1614 } else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len +
1615 rqstp->rq_arg.page_len)
1616 rqstp->rq_arg.page_len = rqstp->rq_arg.len -
1617 rqstp->rq_arg.head[0].iov_len;
1618 else
1619 rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len +
1620 rqstp->rq_arg.page_len;
1621
1622 /* Reset the response buffer */
1623 rqstp->rq_res.head[0].iov_len = 0;
1624
1625 /*
1626 * Skip the XID and calldir fields because they've already
1627 * been processed by the caller.
1628 */
1629 svcxdr_init_decode(rqstp);
1630 if (!xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 2))
1631 return;
1632
1633 /* Parse and execute the bc call */
1634 proc_error = svc_process_common(rqstp);
1635
1636 atomic_dec(&req->rq_xprt->bc_slot_count);
1637 if (!proc_error) {
1638 /* Processing error: drop the request */
1639 xprt_free_bc_request(req);
1640 return;
1641 }
1642 /* Finally, send the reply synchronously */
1643 if (rqstp->bc_to_initval > 0) {
1644 timeout.to_initval = rqstp->bc_to_initval;
1645 timeout.to_retries = rqstp->bc_to_retries;
1646 } else {
1647 timeout.to_initval = req->rq_xprt->timeout->to_initval;
1648 timeout.to_retries = req->rq_xprt->timeout->to_retries;
1649 }
1650 timeout.to_maxval = timeout.to_initval;
1651 memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf));
1652 task = rpc_run_bc_task(req, &timeout);
1653
1654 if (IS_ERR(task))
1655 return;
1656
1657 WARN_ON_ONCE(atomic_read(&task->tk_count) != 1);
1658 rpc_put_task(task);
1659 }
1660 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1661
1662 /**
1663 * svc_max_payload - Return transport-specific limit on the RPC payload
1664 * @rqstp: RPC transaction context
1665 *
1666 * Returns the maximum number of payload bytes the current transport
1667 * allows.
1668 */
svc_max_payload(const struct svc_rqst * rqstp)1669 u32 svc_max_payload(const struct svc_rqst *rqstp)
1670 {
1671 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1672
1673 if (rqstp->rq_server->sv_max_payload < max)
1674 max = rqstp->rq_server->sv_max_payload;
1675 return max;
1676 }
1677 EXPORT_SYMBOL_GPL(svc_max_payload);
1678
1679 /**
1680 * svc_proc_name - Return RPC procedure name in string form
1681 * @rqstp: svc_rqst to operate on
1682 *
1683 * Return value:
1684 * Pointer to a NUL-terminated string
1685 */
svc_proc_name(const struct svc_rqst * rqstp)1686 const char *svc_proc_name(const struct svc_rqst *rqstp)
1687 {
1688 if (rqstp && rqstp->rq_procinfo)
1689 return rqstp->rq_procinfo->pc_name;
1690 return "unknown";
1691 }
1692
1693
1694 /**
1695 * svc_encode_result_payload - mark a range of bytes as a result payload
1696 * @rqstp: svc_rqst to operate on
1697 * @offset: payload's byte offset in rqstp->rq_res
1698 * @length: size of payload, in bytes
1699 *
1700 * Returns zero on success, or a negative errno if a permanent
1701 * error occurred.
1702 */
svc_encode_result_payload(struct svc_rqst * rqstp,unsigned int offset,unsigned int length)1703 int svc_encode_result_payload(struct svc_rqst *rqstp, unsigned int offset,
1704 unsigned int length)
1705 {
1706 return rqstp->rq_xprt->xpt_ops->xpo_result_payload(rqstp, offset,
1707 length);
1708 }
1709 EXPORT_SYMBOL_GPL(svc_encode_result_payload);
1710
1711 /**
1712 * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call
1713 * @rqstp: svc_rqst to operate on
1714 * @first: buffer containing first section of pathname
1715 * @p: buffer containing remaining section of pathname
1716 * @total: total length of the pathname argument
1717 *
1718 * The VFS symlink API demands a NUL-terminated pathname in mapped memory.
1719 * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free
1720 * the returned string.
1721 */
svc_fill_symlink_pathname(struct svc_rqst * rqstp,struct kvec * first,void * p,size_t total)1722 char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first,
1723 void *p, size_t total)
1724 {
1725 size_t len, remaining;
1726 char *result, *dst;
1727
1728 result = kmalloc(total + 1, GFP_KERNEL);
1729 if (!result)
1730 return ERR_PTR(-ESERVERFAULT);
1731
1732 dst = result;
1733 remaining = total;
1734
1735 len = min_t(size_t, total, first->iov_len);
1736 if (len) {
1737 memcpy(dst, first->iov_base, len);
1738 dst += len;
1739 remaining -= len;
1740 }
1741
1742 if (remaining) {
1743 len = min_t(size_t, remaining, PAGE_SIZE);
1744 memcpy(dst, p, len);
1745 dst += len;
1746 }
1747
1748 *dst = '\0';
1749
1750 /* Sanity check: Linux doesn't allow the pathname argument to
1751 * contain a NUL byte.
1752 */
1753 if (strlen(result) != total) {
1754 kfree(result);
1755 return ERR_PTR(-EINVAL);
1756 }
1757 return result;
1758 }
1759 EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname);
1760