1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/net/sunrpc/svc_xprt.c
4 *
5 * Author: Tom Tucker <tom@opengridcomputing.com>
6 */
7
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/errno.h>
11 #include <linux/freezer.h>
12 #include <linux/slab.h>
13 #include <net/sock.h>
14 #include <linux/sunrpc/addr.h>
15 #include <linux/sunrpc/stats.h>
16 #include <linux/sunrpc/svc_xprt.h>
17 #include <linux/sunrpc/svcsock.h>
18 #include <linux/sunrpc/xprt.h>
19 #include <linux/sunrpc/bc_xprt.h>
20 #include <linux/module.h>
21 #include <linux/netdevice.h>
22 #include <trace/events/sunrpc.h>
23
24 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
25
26 static unsigned int svc_rpc_per_connection_limit __read_mostly;
27 module_param(svc_rpc_per_connection_limit, uint, 0644);
28
29
30 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
31 static int svc_deferred_recv(struct svc_rqst *rqstp);
32 static struct cache_deferred_req *svc_defer(struct cache_req *req);
33 static void svc_age_temp_xprts(struct timer_list *t);
34 static void svc_delete_xprt(struct svc_xprt *xprt);
35
36 /* apparently the "standard" is that clients close
37 * idle connections after 5 minutes, servers after
38 * 6 minutes
39 * http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
40 */
41 static int svc_conn_age_period = 6*60;
42
43 /* List of registered transport classes */
44 static DEFINE_SPINLOCK(svc_xprt_class_lock);
45 static LIST_HEAD(svc_xprt_class_list);
46
47 /* SMP locking strategy:
48 *
49 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
50 * when both need to be taken (rare), svc_serv->sv_lock is first.
51 * The "service mutex" protects svc_serv->sv_nrthread.
52 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
53 * and the ->sk_info_authunix cache.
54 *
55 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
56 * enqueued multiply. During normal transport processing this bit
57 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
58 * Providers should not manipulate this bit directly.
59 *
60 * Some flags can be set to certain values at any time
61 * providing that certain rules are followed:
62 *
63 * XPT_CONN, XPT_DATA:
64 * - Can be set or cleared at any time.
65 * - After a set, svc_xprt_enqueue must be called to enqueue
66 * the transport for processing.
67 * - After a clear, the transport must be read/accepted.
68 * If this succeeds, it must be set again.
69 * XPT_CLOSE:
70 * - Can set at any time. It is never cleared.
71 * XPT_DEAD:
72 * - Can only be set while XPT_BUSY is held which ensures
73 * that no other thread will be using the transport or will
74 * try to set XPT_DEAD.
75 */
76
77 /**
78 * svc_reg_xprt_class - Register a server-side RPC transport class
79 * @xcl: New transport class to be registered
80 *
81 * Returns zero on success; otherwise a negative errno is returned.
82 */
svc_reg_xprt_class(struct svc_xprt_class * xcl)83 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
84 {
85 struct svc_xprt_class *cl;
86 int res = -EEXIST;
87
88 INIT_LIST_HEAD(&xcl->xcl_list);
89 spin_lock(&svc_xprt_class_lock);
90 /* Make sure there isn't already a class with the same name */
91 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
92 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
93 goto out;
94 }
95 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
96 res = 0;
97 out:
98 spin_unlock(&svc_xprt_class_lock);
99 return res;
100 }
101 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
102
103 /**
104 * svc_unreg_xprt_class - Unregister a server-side RPC transport class
105 * @xcl: Transport class to be unregistered
106 *
107 */
svc_unreg_xprt_class(struct svc_xprt_class * xcl)108 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
109 {
110 spin_lock(&svc_xprt_class_lock);
111 list_del_init(&xcl->xcl_list);
112 spin_unlock(&svc_xprt_class_lock);
113 }
114 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
115
116 /**
117 * svc_print_xprts - Format the transport list for printing
118 * @buf: target buffer for formatted address
119 * @maxlen: length of target buffer
120 *
121 * Fills in @buf with a string containing a list of transport names, each name
122 * terminated with '\n'. If the buffer is too small, some entries may be
123 * missing, but it is guaranteed that all lines in the output buffer are
124 * complete.
125 *
126 * Returns positive length of the filled-in string.
127 */
svc_print_xprts(char * buf,int maxlen)128 int svc_print_xprts(char *buf, int maxlen)
129 {
130 struct svc_xprt_class *xcl;
131 char tmpstr[80];
132 int len = 0;
133 buf[0] = '\0';
134
135 spin_lock(&svc_xprt_class_lock);
136 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
137 int slen;
138
139 slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
140 xcl->xcl_name, xcl->xcl_max_payload);
141 if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
142 break;
143 len += slen;
144 strcat(buf, tmpstr);
145 }
146 spin_unlock(&svc_xprt_class_lock);
147
148 return len;
149 }
150
151 /**
152 * svc_xprt_deferred_close - Close a transport
153 * @xprt: transport instance
154 *
155 * Used in contexts that need to defer the work of shutting down
156 * the transport to an nfsd thread.
157 */
svc_xprt_deferred_close(struct svc_xprt * xprt)158 void svc_xprt_deferred_close(struct svc_xprt *xprt)
159 {
160 trace_svc_xprt_close(xprt);
161 if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
162 svc_xprt_enqueue(xprt);
163 }
164 EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
165
svc_xprt_free(struct kref * kref)166 static void svc_xprt_free(struct kref *kref)
167 {
168 struct svc_xprt *xprt =
169 container_of(kref, struct svc_xprt, xpt_ref);
170 struct module *owner = xprt->xpt_class->xcl_owner;
171 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
172 svcauth_unix_info_release(xprt);
173 put_cred(xprt->xpt_cred);
174 put_net_track(xprt->xpt_net, &xprt->ns_tracker);
175 /* See comment on corresponding get in xs_setup_bc_tcp(): */
176 if (xprt->xpt_bc_xprt)
177 xprt_put(xprt->xpt_bc_xprt);
178 if (xprt->xpt_bc_xps)
179 xprt_switch_put(xprt->xpt_bc_xps);
180 trace_svc_xprt_free(xprt);
181 xprt->xpt_ops->xpo_free(xprt);
182 module_put(owner);
183 }
184
svc_xprt_put(struct svc_xprt * xprt)185 void svc_xprt_put(struct svc_xprt *xprt)
186 {
187 kref_put(&xprt->xpt_ref, svc_xprt_free);
188 }
189 EXPORT_SYMBOL_GPL(svc_xprt_put);
190
191 /*
192 * Called by transport drivers to initialize the transport independent
193 * portion of the transport instance.
194 */
svc_xprt_init(struct net * net,struct svc_xprt_class * xcl,struct svc_xprt * xprt,struct svc_serv * serv)195 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
196 struct svc_xprt *xprt, struct svc_serv *serv)
197 {
198 memset(xprt, 0, sizeof(*xprt));
199 xprt->xpt_class = xcl;
200 xprt->xpt_ops = xcl->xcl_ops;
201 kref_init(&xprt->xpt_ref);
202 xprt->xpt_server = serv;
203 INIT_LIST_HEAD(&xprt->xpt_list);
204 INIT_LIST_HEAD(&xprt->xpt_deferred);
205 INIT_LIST_HEAD(&xprt->xpt_users);
206 mutex_init(&xprt->xpt_mutex);
207 spin_lock_init(&xprt->xpt_lock);
208 set_bit(XPT_BUSY, &xprt->xpt_flags);
209 xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC);
210 strcpy(xprt->xpt_remotebuf, "uninitialized");
211 }
212 EXPORT_SYMBOL_GPL(svc_xprt_init);
213
214 /**
215 * svc_xprt_received - start next receiver thread
216 * @xprt: controlling transport
217 *
218 * The caller must hold the XPT_BUSY bit and must
219 * not thereafter touch transport data.
220 *
221 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
222 * insufficient) data.
223 */
svc_xprt_received(struct svc_xprt * xprt)224 void svc_xprt_received(struct svc_xprt *xprt)
225 {
226 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
227 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
228 return;
229 }
230
231 /* As soon as we clear busy, the xprt could be closed and
232 * 'put', so we need a reference to call svc_xprt_enqueue with:
233 */
234 svc_xprt_get(xprt);
235 smp_mb__before_atomic();
236 clear_bit(XPT_BUSY, &xprt->xpt_flags);
237 svc_xprt_enqueue(xprt);
238 svc_xprt_put(xprt);
239 }
240 EXPORT_SYMBOL_GPL(svc_xprt_received);
241
svc_add_new_perm_xprt(struct svc_serv * serv,struct svc_xprt * new)242 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
243 {
244 clear_bit(XPT_TEMP, &new->xpt_flags);
245 spin_lock_bh(&serv->sv_lock);
246 list_add(&new->xpt_list, &serv->sv_permsocks);
247 spin_unlock_bh(&serv->sv_lock);
248 svc_xprt_received(new);
249 }
250
_svc_xprt_create(struct svc_serv * serv,const char * xprt_name,struct net * net,struct sockaddr * sap,size_t len,int flags,const struct cred * cred)251 static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
252 struct net *net, struct sockaddr *sap,
253 size_t len, int flags, const struct cred *cred)
254 {
255 struct svc_xprt_class *xcl;
256
257 spin_lock(&svc_xprt_class_lock);
258 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
259 struct svc_xprt *newxprt;
260 unsigned short newport;
261
262 if (strcmp(xprt_name, xcl->xcl_name))
263 continue;
264
265 if (!try_module_get(xcl->xcl_owner))
266 goto err;
267
268 spin_unlock(&svc_xprt_class_lock);
269 newxprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
270 if (IS_ERR(newxprt)) {
271 trace_svc_xprt_create_err(serv->sv_programs->pg_name,
272 xcl->xcl_name, sap, len,
273 newxprt);
274 module_put(xcl->xcl_owner);
275 return PTR_ERR(newxprt);
276 }
277 newxprt->xpt_cred = get_cred(cred);
278 svc_add_new_perm_xprt(serv, newxprt);
279 newport = svc_xprt_local_port(newxprt);
280 return newport;
281 }
282 err:
283 spin_unlock(&svc_xprt_class_lock);
284 /* This errno is exposed to user space. Provide a reasonable
285 * perror msg for a bad transport. */
286 return -EPROTONOSUPPORT;
287 }
288
289 /**
290 * svc_xprt_create_from_sa - Add a new listener to @serv from socket address
291 * @serv: target RPC service
292 * @xprt_name: transport class name
293 * @net: network namespace
294 * @sap: socket address pointer
295 * @flags: SVC_SOCK flags
296 * @cred: credential to bind to this transport
297 *
298 * Return local xprt port on success or %-EPROTONOSUPPORT on failure
299 */
svc_xprt_create_from_sa(struct svc_serv * serv,const char * xprt_name,struct net * net,struct sockaddr * sap,int flags,const struct cred * cred)300 int svc_xprt_create_from_sa(struct svc_serv *serv, const char *xprt_name,
301 struct net *net, struct sockaddr *sap,
302 int flags, const struct cred *cred)
303 {
304 size_t len;
305 int err;
306
307 switch (sap->sa_family) {
308 case AF_INET:
309 len = sizeof(struct sockaddr_in);
310 break;
311 #if IS_ENABLED(CONFIG_IPV6)
312 case AF_INET6:
313 len = sizeof(struct sockaddr_in6);
314 break;
315 #endif
316 default:
317 return -EAFNOSUPPORT;
318 }
319
320 err = _svc_xprt_create(serv, xprt_name, net, sap, len, flags, cred);
321 if (err == -EPROTONOSUPPORT) {
322 request_module("svc%s", xprt_name);
323 err = _svc_xprt_create(serv, xprt_name, net, sap, len, flags,
324 cred);
325 }
326
327 return err;
328 }
329 EXPORT_SYMBOL_GPL(svc_xprt_create_from_sa);
330
331 /**
332 * svc_xprt_create - Add a new listener to @serv
333 * @serv: target RPC service
334 * @xprt_name: transport class name
335 * @net: network namespace
336 * @family: network address family
337 * @port: listener port
338 * @flags: SVC_SOCK flags
339 * @cred: credential to bind to this transport
340 *
341 * Return local xprt port on success or %-EPROTONOSUPPORT on failure
342 */
svc_xprt_create(struct svc_serv * serv,const char * xprt_name,struct net * net,const int family,const unsigned short port,int flags,const struct cred * cred)343 int svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
344 struct net *net, const int family,
345 const unsigned short port, int flags,
346 const struct cred *cred)
347 {
348 struct sockaddr_in sin = {
349 .sin_family = AF_INET,
350 .sin_addr.s_addr = htonl(INADDR_ANY),
351 .sin_port = htons(port),
352 };
353 #if IS_ENABLED(CONFIG_IPV6)
354 struct sockaddr_in6 sin6 = {
355 .sin6_family = AF_INET6,
356 .sin6_addr = IN6ADDR_ANY_INIT,
357 .sin6_port = htons(port),
358 };
359 #endif
360 struct sockaddr *sap;
361
362 switch (family) {
363 case PF_INET:
364 sap = (struct sockaddr *)&sin;
365 break;
366 #if IS_ENABLED(CONFIG_IPV6)
367 case PF_INET6:
368 sap = (struct sockaddr *)&sin6;
369 break;
370 #endif
371 default:
372 return -EAFNOSUPPORT;
373 }
374
375 return svc_xprt_create_from_sa(serv, xprt_name, net, sap, flags, cred);
376 }
377 EXPORT_SYMBOL_GPL(svc_xprt_create);
378
379 /*
380 * Copy the local and remote xprt addresses to the rqstp structure
381 */
svc_xprt_copy_addrs(struct svc_rqst * rqstp,struct svc_xprt * xprt)382 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
383 {
384 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
385 rqstp->rq_addrlen = xprt->xpt_remotelen;
386
387 /*
388 * Destination address in request is needed for binding the
389 * source address in RPC replies/callbacks later.
390 */
391 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
392 rqstp->rq_daddrlen = xprt->xpt_locallen;
393 }
394 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
395
396 /**
397 * svc_print_addr - Format rq_addr field for printing
398 * @rqstp: svc_rqst struct containing address to print
399 * @buf: target buffer for formatted address
400 * @len: length of target buffer
401 *
402 */
svc_print_addr(struct svc_rqst * rqstp,char * buf,size_t len)403 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
404 {
405 return __svc_print_addr(svc_addr(rqstp), buf, len);
406 }
407 EXPORT_SYMBOL_GPL(svc_print_addr);
408
svc_xprt_slots_in_range(struct svc_xprt * xprt)409 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
410 {
411 unsigned int limit = svc_rpc_per_connection_limit;
412 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
413
414 return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
415 }
416
svc_xprt_reserve_slot(struct svc_rqst * rqstp,struct svc_xprt * xprt)417 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
418 {
419 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
420 if (!svc_xprt_slots_in_range(xprt))
421 return false;
422 atomic_inc(&xprt->xpt_nr_rqsts);
423 set_bit(RQ_DATA, &rqstp->rq_flags);
424 }
425 return true;
426 }
427
svc_xprt_release_slot(struct svc_rqst * rqstp)428 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
429 {
430 struct svc_xprt *xprt = rqstp->rq_xprt;
431 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
432 atomic_dec(&xprt->xpt_nr_rqsts);
433 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
434 svc_xprt_enqueue(xprt);
435 }
436 }
437
svc_xprt_ready(struct svc_xprt * xprt)438 static bool svc_xprt_ready(struct svc_xprt *xprt)
439 {
440 unsigned long xpt_flags;
441
442 /*
443 * If another cpu has recently updated xpt_flags,
444 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
445 * know about it; otherwise it's possible that both that cpu and
446 * this one could call svc_xprt_enqueue() without either
447 * svc_xprt_enqueue() recognizing that the conditions below
448 * are satisfied, and we could stall indefinitely:
449 */
450 smp_rmb();
451 xpt_flags = READ_ONCE(xprt->xpt_flags);
452
453 trace_svc_xprt_enqueue(xprt, xpt_flags);
454 if (xpt_flags & BIT(XPT_BUSY))
455 return false;
456 if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE) | BIT(XPT_HANDSHAKE)))
457 return true;
458 if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
459 if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
460 svc_xprt_slots_in_range(xprt))
461 return true;
462 trace_svc_xprt_no_write_space(xprt);
463 return false;
464 }
465 return false;
466 }
467
468 /**
469 * svc_xprt_enqueue - Queue a transport on an idle nfsd thread
470 * @xprt: transport with data pending
471 *
472 */
svc_xprt_enqueue(struct svc_xprt * xprt)473 void svc_xprt_enqueue(struct svc_xprt *xprt)
474 {
475 struct svc_pool *pool;
476
477 if (!svc_xprt_ready(xprt))
478 return;
479
480 /* Mark transport as busy. It will remain in this state until
481 * the provider calls svc_xprt_received. We update XPT_BUSY
482 * atomically because it also guards against trying to enqueue
483 * the transport twice.
484 */
485 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
486 return;
487
488 pool = svc_pool_for_cpu(xprt->xpt_server);
489
490 percpu_counter_inc(&pool->sp_sockets_queued);
491 xprt->xpt_qtime = ktime_get();
492 lwq_enqueue(&xprt->xpt_ready, &pool->sp_xprts);
493
494 svc_pool_wake_idle_thread(pool);
495 }
496 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
497
498 /*
499 * Dequeue the first transport, if there is one.
500 */
svc_xprt_dequeue(struct svc_pool * pool)501 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
502 {
503 struct svc_xprt *xprt = NULL;
504
505 xprt = lwq_dequeue(&pool->sp_xprts, struct svc_xprt, xpt_ready);
506 if (xprt)
507 svc_xprt_get(xprt);
508 return xprt;
509 }
510
511 /**
512 * svc_reserve - change the space reserved for the reply to a request.
513 * @rqstp: The request in question
514 * @space: new max space to reserve
515 *
516 * Each request reserves some space on the output queue of the transport
517 * to make sure the reply fits. This function reduces that reserved
518 * space to be the amount of space used already, plus @space.
519 *
520 */
svc_reserve(struct svc_rqst * rqstp,int space)521 void svc_reserve(struct svc_rqst *rqstp, int space)
522 {
523 struct svc_xprt *xprt = rqstp->rq_xprt;
524
525 space += rqstp->rq_res.head[0].iov_len;
526
527 if (xprt && space < rqstp->rq_reserved) {
528 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
529 rqstp->rq_reserved = space;
530 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
531 svc_xprt_enqueue(xprt);
532 }
533 }
534 EXPORT_SYMBOL_GPL(svc_reserve);
535
free_deferred(struct svc_xprt * xprt,struct svc_deferred_req * dr)536 static void free_deferred(struct svc_xprt *xprt, struct svc_deferred_req *dr)
537 {
538 if (!dr)
539 return;
540
541 xprt->xpt_ops->xpo_release_ctxt(xprt, dr->xprt_ctxt);
542 kfree(dr);
543 }
544
svc_xprt_release(struct svc_rqst * rqstp)545 static void svc_xprt_release(struct svc_rqst *rqstp)
546 {
547 struct svc_xprt *xprt = rqstp->rq_xprt;
548
549 xprt->xpt_ops->xpo_release_ctxt(xprt, rqstp->rq_xprt_ctxt);
550 rqstp->rq_xprt_ctxt = NULL;
551
552 free_deferred(xprt, rqstp->rq_deferred);
553 rqstp->rq_deferred = NULL;
554
555 svc_rqst_release_pages(rqstp);
556 rqstp->rq_res.page_len = 0;
557 rqstp->rq_res.page_base = 0;
558
559 /* Reset response buffer and release
560 * the reservation.
561 * But first, check that enough space was reserved
562 * for the reply, otherwise we have a bug!
563 */
564 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
565 printk(KERN_ERR "RPC request reserved %d but used %d\n",
566 rqstp->rq_reserved,
567 rqstp->rq_res.len);
568
569 rqstp->rq_res.head[0].iov_len = 0;
570 svc_reserve(rqstp, 0);
571 svc_xprt_release_slot(rqstp);
572 rqstp->rq_xprt = NULL;
573 svc_xprt_put(xprt);
574 }
575
576 /**
577 * svc_wake_up - Wake up a service thread for non-transport work
578 * @serv: RPC service
579 *
580 * Some svc_serv's will have occasional work to do, even when a xprt is not
581 * waiting to be serviced. This function is there to "kick" a task in one of
582 * those services so that it can wake up and do that work. Note that we only
583 * bother with pool 0 as we don't need to wake up more than one thread for
584 * this purpose.
585 */
svc_wake_up(struct svc_serv * serv)586 void svc_wake_up(struct svc_serv *serv)
587 {
588 struct svc_pool *pool = &serv->sv_pools[0];
589
590 set_bit(SP_TASK_PENDING, &pool->sp_flags);
591 svc_pool_wake_idle_thread(pool);
592 }
593 EXPORT_SYMBOL_GPL(svc_wake_up);
594
svc_port_is_privileged(struct sockaddr * sin)595 int svc_port_is_privileged(struct sockaddr *sin)
596 {
597 switch (sin->sa_family) {
598 case AF_INET:
599 return ntohs(((struct sockaddr_in *)sin)->sin_port)
600 < PROT_SOCK;
601 case AF_INET6:
602 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
603 < PROT_SOCK;
604 default:
605 return 0;
606 }
607 }
608
609 /*
610 * Make sure that we don't have too many connections that have not yet
611 * demonstrated that they have access to the NFS server. If we have,
612 * something must be dropped. It's not clear what will happen if we allow
613 * "too many" connections, but when dealing with network-facing software,
614 * we have to code defensively. Here we do that by imposing hard limits.
615 *
616 * There's no point in trying to do random drop here for DoS
617 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
618 * attacker can easily beat that.
619 *
620 * The only somewhat efficient mechanism would be if drop old
621 * connections from the same IP first. But right now we don't even
622 * record the client IP in svc_sock.
623 */
svc_check_conn_limits(struct svc_serv * serv)624 static void svc_check_conn_limits(struct svc_serv *serv)
625 {
626 if (serv->sv_tmpcnt > XPT_MAX_TMP_CONN) {
627 struct svc_xprt *xprt = NULL, *xprti;
628 spin_lock_bh(&serv->sv_lock);
629 if (!list_empty(&serv->sv_tempsocks)) {
630 /*
631 * Always select the oldest connection. It's not fair,
632 * but nor is life.
633 */
634 list_for_each_entry_reverse(xprti, &serv->sv_tempsocks,
635 xpt_list) {
636 if (!test_bit(XPT_PEER_VALID, &xprti->xpt_flags)) {
637 xprt = xprti;
638 set_bit(XPT_CLOSE, &xprt->xpt_flags);
639 svc_xprt_get(xprt);
640 break;
641 }
642 }
643 }
644 spin_unlock_bh(&serv->sv_lock);
645
646 if (xprt) {
647 svc_xprt_enqueue(xprt);
648 svc_xprt_put(xprt);
649 }
650 }
651 }
652
svc_alloc_arg(struct svc_rqst * rqstp)653 static bool svc_alloc_arg(struct svc_rqst *rqstp)
654 {
655 struct xdr_buf *arg = &rqstp->rq_arg;
656 unsigned long pages, filled, ret;
657
658 pages = rqstp->rq_maxpages;
659 for (filled = 0; filled < pages; filled = ret) {
660 ret = alloc_pages_bulk(GFP_KERNEL, pages, rqstp->rq_pages);
661 if (ret > filled)
662 /* Made progress, don't sleep yet */
663 continue;
664
665 set_current_state(TASK_IDLE);
666 if (svc_thread_should_stop(rqstp)) {
667 set_current_state(TASK_RUNNING);
668 return false;
669 }
670 trace_svc_alloc_arg_err(pages, ret);
671 memalloc_retry_wait(GFP_KERNEL);
672 }
673 rqstp->rq_page_end = &rqstp->rq_pages[pages];
674 rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
675
676 /* Make arg->head point to first page and arg->pages point to rest */
677 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
678 arg->head[0].iov_len = PAGE_SIZE;
679 arg->pages = rqstp->rq_pages + 1;
680 arg->page_base = 0;
681 /* save at least one page for response */
682 arg->page_len = (pages-2)*PAGE_SIZE;
683 arg->len = (pages-1)*PAGE_SIZE;
684 arg->tail[0].iov_len = 0;
685
686 rqstp->rq_xid = xdr_zero;
687 return true;
688 }
689
690 static bool
svc_thread_should_sleep(struct svc_rqst * rqstp)691 svc_thread_should_sleep(struct svc_rqst *rqstp)
692 {
693 struct svc_pool *pool = rqstp->rq_pool;
694
695 /* did someone call svc_wake_up? */
696 if (test_bit(SP_TASK_PENDING, &pool->sp_flags))
697 return false;
698
699 /* was a socket queued? */
700 if (!lwq_empty(&pool->sp_xprts))
701 return false;
702
703 /* are we shutting down? */
704 if (svc_thread_should_stop(rqstp))
705 return false;
706
707 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
708 if (svc_is_backchannel(rqstp)) {
709 if (!lwq_empty(&rqstp->rq_server->sv_cb_list))
710 return false;
711 }
712 #endif
713
714 return true;
715 }
716
svc_thread_wait_for_work(struct svc_rqst * rqstp)717 static void svc_thread_wait_for_work(struct svc_rqst *rqstp)
718 {
719 struct svc_pool *pool = rqstp->rq_pool;
720
721 if (svc_thread_should_sleep(rqstp)) {
722 set_current_state(TASK_IDLE | TASK_FREEZABLE);
723 llist_add(&rqstp->rq_idle, &pool->sp_idle_threads);
724 if (likely(svc_thread_should_sleep(rqstp)))
725 schedule();
726
727 while (!llist_del_first_this(&pool->sp_idle_threads,
728 &rqstp->rq_idle)) {
729 /* Work just became available. This thread can only
730 * handle it after removing rqstp from the idle
731 * list. If that attempt failed, some other thread
732 * must have queued itself after finding no
733 * work to do, so that thread has taken responsibly
734 * for this new work. This thread can safely sleep
735 * until woken again.
736 */
737 schedule();
738 set_current_state(TASK_IDLE | TASK_FREEZABLE);
739 }
740 __set_current_state(TASK_RUNNING);
741 } else {
742 cond_resched();
743 }
744 try_to_freeze();
745 }
746
svc_add_new_temp_xprt(struct svc_serv * serv,struct svc_xprt * newxpt)747 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
748 {
749 spin_lock_bh(&serv->sv_lock);
750 set_bit(XPT_TEMP, &newxpt->xpt_flags);
751 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
752 serv->sv_tmpcnt++;
753 if (serv->sv_temptimer.function == NULL) {
754 /* setup timer to age temp transports */
755 serv->sv_temptimer.function = svc_age_temp_xprts;
756 mod_timer(&serv->sv_temptimer,
757 jiffies + svc_conn_age_period * HZ);
758 }
759 spin_unlock_bh(&serv->sv_lock);
760 svc_xprt_received(newxpt);
761 }
762
svc_handle_xprt(struct svc_rqst * rqstp,struct svc_xprt * xprt)763 static void svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
764 {
765 struct svc_serv *serv = rqstp->rq_server;
766 int len = 0;
767
768 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
769 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
770 xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
771 svc_delete_xprt(xprt);
772 /* Leave XPT_BUSY set on the dead xprt: */
773 goto out;
774 }
775 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
776 struct svc_xprt *newxpt;
777 /*
778 * We know this module_get will succeed because the
779 * listener holds a reference too
780 */
781 __module_get(xprt->xpt_class->xcl_owner);
782 svc_check_conn_limits(xprt->xpt_server);
783 newxpt = xprt->xpt_ops->xpo_accept(xprt);
784 if (newxpt) {
785 newxpt->xpt_cred = get_cred(xprt->xpt_cred);
786 svc_add_new_temp_xprt(serv, newxpt);
787 trace_svc_xprt_accept(newxpt, serv->sv_name);
788 } else {
789 module_put(xprt->xpt_class->xcl_owner);
790 }
791 svc_xprt_received(xprt);
792 } else if (test_bit(XPT_HANDSHAKE, &xprt->xpt_flags)) {
793 xprt->xpt_ops->xpo_handshake(xprt);
794 svc_xprt_received(xprt);
795 } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
796 /* XPT_DATA|XPT_DEFERRED case: */
797 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
798 if (rqstp->rq_deferred)
799 len = svc_deferred_recv(rqstp);
800 else
801 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
802 rqstp->rq_reserved = serv->sv_max_mesg;
803 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
804 if (len <= 0)
805 goto out;
806
807 trace_svc_xdr_recvfrom(&rqstp->rq_arg);
808
809 clear_bit(XPT_OLD, &xprt->xpt_flags);
810
811 rqstp->rq_chandle.defer = svc_defer;
812
813 if (serv->sv_stats)
814 serv->sv_stats->netcnt++;
815 percpu_counter_inc(&rqstp->rq_pool->sp_messages_arrived);
816 rqstp->rq_stime = ktime_get();
817 svc_process(rqstp);
818 } else
819 svc_xprt_received(xprt);
820
821 out:
822 rqstp->rq_res.len = 0;
823 svc_xprt_release(rqstp);
824 }
825
svc_thread_wake_next(struct svc_rqst * rqstp)826 static void svc_thread_wake_next(struct svc_rqst *rqstp)
827 {
828 if (!svc_thread_should_sleep(rqstp))
829 /* More work pending after I dequeued some,
830 * wake another worker
831 */
832 svc_pool_wake_idle_thread(rqstp->rq_pool);
833 }
834
835 /**
836 * svc_recv - Receive and process the next request on any transport
837 * @rqstp: an idle RPC service thread
838 *
839 * This code is carefully organised not to touch any cachelines in
840 * the shared svc_serv structure, only cachelines in the local
841 * svc_pool.
842 */
svc_recv(struct svc_rqst * rqstp)843 void svc_recv(struct svc_rqst *rqstp)
844 {
845 struct svc_pool *pool = rqstp->rq_pool;
846
847 if (!svc_alloc_arg(rqstp))
848 return;
849
850 svc_thread_wait_for_work(rqstp);
851
852 clear_bit(SP_TASK_PENDING, &pool->sp_flags);
853
854 if (svc_thread_should_stop(rqstp)) {
855 svc_thread_wake_next(rqstp);
856 return;
857 }
858
859 rqstp->rq_xprt = svc_xprt_dequeue(pool);
860 if (rqstp->rq_xprt) {
861 struct svc_xprt *xprt = rqstp->rq_xprt;
862
863 svc_thread_wake_next(rqstp);
864 /* Normally we will wait up to 5 seconds for any required
865 * cache information to be provided. When there are no
866 * idle threads, we reduce the wait time.
867 */
868 if (pool->sp_idle_threads.first)
869 rqstp->rq_chandle.thread_wait = 5 * HZ;
870 else
871 rqstp->rq_chandle.thread_wait = 1 * HZ;
872
873 trace_svc_xprt_dequeue(rqstp);
874 svc_handle_xprt(rqstp, xprt);
875 }
876
877 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
878 if (svc_is_backchannel(rqstp)) {
879 struct svc_serv *serv = rqstp->rq_server;
880 struct rpc_rqst *req;
881
882 req = lwq_dequeue(&serv->sv_cb_list,
883 struct rpc_rqst, rq_bc_list);
884 if (req) {
885 svc_thread_wake_next(rqstp);
886 svc_process_bc(req, rqstp);
887 }
888 }
889 #endif
890 }
891 EXPORT_SYMBOL_GPL(svc_recv);
892
893 /**
894 * svc_send - Return reply to client
895 * @rqstp: RPC transaction context
896 *
897 */
svc_send(struct svc_rqst * rqstp)898 void svc_send(struct svc_rqst *rqstp)
899 {
900 struct svc_xprt *xprt;
901 struct xdr_buf *xb;
902 int status;
903
904 xprt = rqstp->rq_xprt;
905
906 /* calculate over-all length */
907 xb = &rqstp->rq_res;
908 xb->len = xb->head[0].iov_len +
909 xb->page_len +
910 xb->tail[0].iov_len;
911 trace_svc_xdr_sendto(rqstp->rq_xid, xb);
912 trace_svc_stats_latency(rqstp);
913
914 status = xprt->xpt_ops->xpo_sendto(rqstp);
915
916 trace_svc_send(rqstp, status);
917 }
918
919 /*
920 * Timer function to close old temporary transports, using
921 * a mark-and-sweep algorithm.
922 */
svc_age_temp_xprts(struct timer_list * t)923 static void svc_age_temp_xprts(struct timer_list *t)
924 {
925 struct svc_serv *serv = timer_container_of(serv, t, sv_temptimer);
926 struct svc_xprt *xprt;
927 struct list_head *le, *next;
928
929 dprintk("svc_age_temp_xprts\n");
930
931 if (!spin_trylock_bh(&serv->sv_lock)) {
932 /* busy, try again 1 sec later */
933 dprintk("svc_age_temp_xprts: busy\n");
934 mod_timer(&serv->sv_temptimer, jiffies + HZ);
935 return;
936 }
937
938 list_for_each_safe(le, next, &serv->sv_tempsocks) {
939 xprt = list_entry(le, struct svc_xprt, xpt_list);
940
941 /* First time through, just mark it OLD. Second time
942 * through, close it. */
943 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
944 continue;
945 if (kref_read(&xprt->xpt_ref) > 1 ||
946 test_bit(XPT_BUSY, &xprt->xpt_flags))
947 continue;
948 list_del_init(le);
949 set_bit(XPT_CLOSE, &xprt->xpt_flags);
950 dprintk("queuing xprt %p for closing\n", xprt);
951
952 /* a thread will dequeue and close it soon */
953 svc_xprt_enqueue(xprt);
954 }
955 spin_unlock_bh(&serv->sv_lock);
956
957 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
958 }
959
960 /* Close temporary transports whose xpt_local matches server_addr immediately
961 * instead of waiting for them to be picked up by the timer.
962 *
963 * This is meant to be called from a notifier_block that runs when an ip
964 * address is deleted.
965 */
svc_age_temp_xprts_now(struct svc_serv * serv,struct sockaddr * server_addr)966 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
967 {
968 struct svc_xprt *xprt;
969 struct list_head *le, *next;
970 LIST_HEAD(to_be_closed);
971
972 spin_lock_bh(&serv->sv_lock);
973 list_for_each_safe(le, next, &serv->sv_tempsocks) {
974 xprt = list_entry(le, struct svc_xprt, xpt_list);
975 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
976 &xprt->xpt_local)) {
977 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
978 list_move(le, &to_be_closed);
979 }
980 }
981 spin_unlock_bh(&serv->sv_lock);
982
983 while (!list_empty(&to_be_closed)) {
984 le = to_be_closed.next;
985 list_del_init(le);
986 xprt = list_entry(le, struct svc_xprt, xpt_list);
987 set_bit(XPT_CLOSE, &xprt->xpt_flags);
988 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
989 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
990 xprt);
991 svc_xprt_enqueue(xprt);
992 }
993 }
994 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
995
call_xpt_users(struct svc_xprt * xprt)996 static void call_xpt_users(struct svc_xprt *xprt)
997 {
998 struct svc_xpt_user *u;
999
1000 spin_lock(&xprt->xpt_lock);
1001 while (!list_empty(&xprt->xpt_users)) {
1002 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1003 list_del_init(&u->list);
1004 u->callback(u);
1005 }
1006 spin_unlock(&xprt->xpt_lock);
1007 }
1008
1009 /*
1010 * Remove a dead transport
1011 */
svc_delete_xprt(struct svc_xprt * xprt)1012 static void svc_delete_xprt(struct svc_xprt *xprt)
1013 {
1014 struct svc_serv *serv = xprt->xpt_server;
1015 struct svc_deferred_req *dr;
1016
1017 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1018 return;
1019
1020 trace_svc_xprt_detach(xprt);
1021 xprt->xpt_ops->xpo_detach(xprt);
1022 if (xprt->xpt_bc_xprt)
1023 xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1024
1025 spin_lock_bh(&serv->sv_lock);
1026 list_del_init(&xprt->xpt_list);
1027 if (test_bit(XPT_TEMP, &xprt->xpt_flags) &&
1028 !test_bit(XPT_PEER_VALID, &xprt->xpt_flags))
1029 serv->sv_tmpcnt--;
1030 spin_unlock_bh(&serv->sv_lock);
1031
1032 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1033 free_deferred(xprt, dr);
1034
1035 call_xpt_users(xprt);
1036 svc_xprt_put(xprt);
1037 }
1038
1039 /**
1040 * svc_xprt_close - Close a client connection
1041 * @xprt: transport to disconnect
1042 *
1043 */
svc_xprt_close(struct svc_xprt * xprt)1044 void svc_xprt_close(struct svc_xprt *xprt)
1045 {
1046 trace_svc_xprt_close(xprt);
1047 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1048 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1049 /* someone else will have to effect the close */
1050 return;
1051 /*
1052 * We expect svc_close_xprt() to work even when no threads are
1053 * running (e.g., while configuring the server before starting
1054 * any threads), so if the transport isn't busy, we delete
1055 * it ourself:
1056 */
1057 svc_delete_xprt(xprt);
1058 }
1059 EXPORT_SYMBOL_GPL(svc_xprt_close);
1060
svc_close_list(struct svc_serv * serv,struct list_head * xprt_list,struct net * net)1061 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1062 {
1063 struct svc_xprt *xprt;
1064 int ret = 0;
1065
1066 spin_lock_bh(&serv->sv_lock);
1067 list_for_each_entry(xprt, xprt_list, xpt_list) {
1068 if (xprt->xpt_net != net)
1069 continue;
1070 ret++;
1071 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1072 svc_xprt_enqueue(xprt);
1073 }
1074 spin_unlock_bh(&serv->sv_lock);
1075 return ret;
1076 }
1077
svc_clean_up_xprts(struct svc_serv * serv,struct net * net)1078 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1079 {
1080 struct svc_xprt *xprt;
1081 int i;
1082
1083 for (i = 0; i < serv->sv_nrpools; i++) {
1084 struct svc_pool *pool = &serv->sv_pools[i];
1085 struct llist_node *q, **t1, *t2;
1086
1087 q = lwq_dequeue_all(&pool->sp_xprts);
1088 lwq_for_each_safe(xprt, t1, t2, &q, xpt_ready) {
1089 if (xprt->xpt_net == net) {
1090 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1091 svc_delete_xprt(xprt);
1092 xprt = NULL;
1093 }
1094 }
1095
1096 if (q)
1097 lwq_enqueue_batch(q, &pool->sp_xprts);
1098 }
1099 }
1100
1101 /**
1102 * svc_xprt_destroy_all - Destroy transports associated with @serv
1103 * @serv: RPC service to be shut down
1104 * @net: target network namespace
1105 * @unregister: true if it is OK to unregister the destroyed xprts
1106 *
1107 * Server threads may still be running (especially in the case where the
1108 * service is still running in other network namespaces).
1109 *
1110 * So we shut down sockets the same way we would on a running server, by
1111 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1112 * the close. In the case there are no such other threads,
1113 * threads running, svc_clean_up_xprts() does a simple version of a
1114 * server's main event loop, and in the case where there are other
1115 * threads, we may need to wait a little while and then check again to
1116 * see if they're done.
1117 */
svc_xprt_destroy_all(struct svc_serv * serv,struct net * net,bool unregister)1118 void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net,
1119 bool unregister)
1120 {
1121 int delay = 0;
1122
1123 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1124 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1125
1126 svc_clean_up_xprts(serv, net);
1127 msleep(delay++);
1128 }
1129
1130 if (unregister)
1131 svc_rpcb_cleanup(serv, net);
1132 }
1133 EXPORT_SYMBOL_GPL(svc_xprt_destroy_all);
1134
1135 /*
1136 * Handle defer and revisit of requests
1137 */
1138
svc_revisit(struct cache_deferred_req * dreq,int too_many)1139 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1140 {
1141 struct svc_deferred_req *dr =
1142 container_of(dreq, struct svc_deferred_req, handle);
1143 struct svc_xprt *xprt = dr->xprt;
1144
1145 spin_lock(&xprt->xpt_lock);
1146 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1147 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1148 spin_unlock(&xprt->xpt_lock);
1149 trace_svc_defer_drop(dr);
1150 free_deferred(xprt, dr);
1151 svc_xprt_put(xprt);
1152 return;
1153 }
1154 dr->xprt = NULL;
1155 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1156 spin_unlock(&xprt->xpt_lock);
1157 trace_svc_defer_queue(dr);
1158 svc_xprt_enqueue(xprt);
1159 svc_xprt_put(xprt);
1160 }
1161
1162 /*
1163 * Save the request off for later processing. The request buffer looks
1164 * like this:
1165 *
1166 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1167 *
1168 * This code can only handle requests that consist of an xprt-header
1169 * and rpc-header.
1170 */
svc_defer(struct cache_req * req)1171 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1172 {
1173 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1174 struct svc_deferred_req *dr;
1175
1176 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1177 return NULL; /* if more than a page, give up FIXME */
1178 if (rqstp->rq_deferred) {
1179 dr = rqstp->rq_deferred;
1180 rqstp->rq_deferred = NULL;
1181 } else {
1182 size_t skip;
1183 size_t size;
1184 /* FIXME maybe discard if size too large */
1185 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1186 dr = kmalloc(size, GFP_KERNEL);
1187 if (dr == NULL)
1188 return NULL;
1189
1190 dr->handle.owner = rqstp->rq_server;
1191 dr->prot = rqstp->rq_prot;
1192 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1193 dr->addrlen = rqstp->rq_addrlen;
1194 dr->daddr = rqstp->rq_daddr;
1195 dr->argslen = rqstp->rq_arg.len >> 2;
1196
1197 /* back up head to the start of the buffer and copy */
1198 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1199 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1200 dr->argslen << 2);
1201 }
1202 dr->xprt_ctxt = rqstp->rq_xprt_ctxt;
1203 rqstp->rq_xprt_ctxt = NULL;
1204 trace_svc_defer(rqstp);
1205 svc_xprt_get(rqstp->rq_xprt);
1206 dr->xprt = rqstp->rq_xprt;
1207 set_bit(RQ_DROPME, &rqstp->rq_flags);
1208
1209 dr->handle.revisit = svc_revisit;
1210 return &dr->handle;
1211 }
1212
1213 /*
1214 * recv data from a deferred request into an active one
1215 */
svc_deferred_recv(struct svc_rqst * rqstp)1216 static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1217 {
1218 struct svc_deferred_req *dr = rqstp->rq_deferred;
1219
1220 trace_svc_defer_recv(dr);
1221
1222 /* setup iov_base past transport header */
1223 rqstp->rq_arg.head[0].iov_base = dr->args;
1224 /* The iov_len does not include the transport header bytes */
1225 rqstp->rq_arg.head[0].iov_len = dr->argslen << 2;
1226 rqstp->rq_arg.page_len = 0;
1227 /* The rq_arg.len includes the transport header bytes */
1228 rqstp->rq_arg.len = dr->argslen << 2;
1229 rqstp->rq_prot = dr->prot;
1230 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1231 rqstp->rq_addrlen = dr->addrlen;
1232 /* Save off transport header len in case we get deferred again */
1233 rqstp->rq_daddr = dr->daddr;
1234 rqstp->rq_respages = rqstp->rq_pages;
1235 rqstp->rq_xprt_ctxt = dr->xprt_ctxt;
1236
1237 dr->xprt_ctxt = NULL;
1238 svc_xprt_received(rqstp->rq_xprt);
1239 return dr->argslen << 2;
1240 }
1241
1242
svc_deferred_dequeue(struct svc_xprt * xprt)1243 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1244 {
1245 struct svc_deferred_req *dr = NULL;
1246
1247 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1248 return NULL;
1249 spin_lock(&xprt->xpt_lock);
1250 if (!list_empty(&xprt->xpt_deferred)) {
1251 dr = list_entry(xprt->xpt_deferred.next,
1252 struct svc_deferred_req,
1253 handle.recent);
1254 list_del_init(&dr->handle.recent);
1255 } else
1256 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1257 spin_unlock(&xprt->xpt_lock);
1258 return dr;
1259 }
1260
1261 /**
1262 * svc_find_listener - find an RPC transport instance
1263 * @serv: pointer to svc_serv to search
1264 * @xcl_name: C string containing transport's class name
1265 * @net: owner net pointer
1266 * @sa: sockaddr containing address
1267 *
1268 * Return the transport instance pointer for the endpoint accepting
1269 * connections/peer traffic from the specified transport class,
1270 * and matching sockaddr.
1271 */
svc_find_listener(struct svc_serv * serv,const char * xcl_name,struct net * net,const struct sockaddr * sa)1272 struct svc_xprt *svc_find_listener(struct svc_serv *serv, const char *xcl_name,
1273 struct net *net, const struct sockaddr *sa)
1274 {
1275 struct svc_xprt *xprt;
1276 struct svc_xprt *found = NULL;
1277
1278 spin_lock_bh(&serv->sv_lock);
1279 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1280 if (xprt->xpt_net != net)
1281 continue;
1282 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1283 continue;
1284 if (!rpc_cmp_addr_port(sa, (struct sockaddr *)&xprt->xpt_local))
1285 continue;
1286 found = xprt;
1287 svc_xprt_get(xprt);
1288 break;
1289 }
1290 spin_unlock_bh(&serv->sv_lock);
1291 return found;
1292 }
1293 EXPORT_SYMBOL_GPL(svc_find_listener);
1294
1295 /**
1296 * svc_find_xprt - find an RPC transport instance
1297 * @serv: pointer to svc_serv to search
1298 * @xcl_name: C string containing transport's class name
1299 * @net: owner net pointer
1300 * @af: Address family of transport's local address
1301 * @port: transport's IP port number
1302 *
1303 * Return the transport instance pointer for the endpoint accepting
1304 * connections/peer traffic from the specified transport class,
1305 * address family and port.
1306 *
1307 * Specifying 0 for the address family or port is effectively a
1308 * wild-card, and will result in matching the first transport in the
1309 * service's list that has a matching class name.
1310 */
svc_find_xprt(struct svc_serv * serv,const char * xcl_name,struct net * net,const sa_family_t af,const unsigned short port)1311 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1312 struct net *net, const sa_family_t af,
1313 const unsigned short port)
1314 {
1315 struct svc_xprt *xprt;
1316 struct svc_xprt *found = NULL;
1317
1318 /* Sanity check the args */
1319 if (serv == NULL || xcl_name == NULL)
1320 return found;
1321
1322 spin_lock_bh(&serv->sv_lock);
1323 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1324 if (xprt->xpt_net != net)
1325 continue;
1326 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1327 continue;
1328 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1329 continue;
1330 if (port != 0 && port != svc_xprt_local_port(xprt))
1331 continue;
1332 found = xprt;
1333 svc_xprt_get(xprt);
1334 break;
1335 }
1336 spin_unlock_bh(&serv->sv_lock);
1337 return found;
1338 }
1339 EXPORT_SYMBOL_GPL(svc_find_xprt);
1340
svc_one_xprt_name(const struct svc_xprt * xprt,char * pos,int remaining)1341 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1342 char *pos, int remaining)
1343 {
1344 int len;
1345
1346 len = snprintf(pos, remaining, "%s %u\n",
1347 xprt->xpt_class->xcl_name,
1348 svc_xprt_local_port(xprt));
1349 if (len >= remaining)
1350 return -ENAMETOOLONG;
1351 return len;
1352 }
1353
1354 /**
1355 * svc_xprt_names - format a buffer with a list of transport names
1356 * @serv: pointer to an RPC service
1357 * @buf: pointer to a buffer to be filled in
1358 * @buflen: length of buffer to be filled in
1359 *
1360 * Fills in @buf with a string containing a list of transport names,
1361 * each name terminated with '\n'.
1362 *
1363 * Returns positive length of the filled-in string on success; otherwise
1364 * a negative errno value is returned if an error occurs.
1365 */
svc_xprt_names(struct svc_serv * serv,char * buf,const int buflen)1366 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1367 {
1368 struct svc_xprt *xprt;
1369 int len, totlen;
1370 char *pos;
1371
1372 /* Sanity check args */
1373 if (!serv)
1374 return 0;
1375
1376 spin_lock_bh(&serv->sv_lock);
1377
1378 pos = buf;
1379 totlen = 0;
1380 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1381 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1382 if (len < 0) {
1383 *buf = '\0';
1384 totlen = len;
1385 }
1386 if (len <= 0)
1387 break;
1388
1389 pos += len;
1390 totlen += len;
1391 }
1392
1393 spin_unlock_bh(&serv->sv_lock);
1394 return totlen;
1395 }
1396 EXPORT_SYMBOL_GPL(svc_xprt_names);
1397
1398 /*----------------------------------------------------------------------------*/
1399
svc_pool_stats_start(struct seq_file * m,loff_t * pos)1400 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1401 {
1402 unsigned int pidx = (unsigned int)*pos;
1403 struct svc_info *si = m->private;
1404
1405 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1406
1407 mutex_lock(si->mutex);
1408
1409 if (!pidx)
1410 return SEQ_START_TOKEN;
1411 if (!si->serv)
1412 return NULL;
1413 return pidx > si->serv->sv_nrpools ? NULL
1414 : &si->serv->sv_pools[pidx - 1];
1415 }
1416
svc_pool_stats_next(struct seq_file * m,void * p,loff_t * pos)1417 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1418 {
1419 struct svc_pool *pool = p;
1420 struct svc_info *si = m->private;
1421 struct svc_serv *serv = si->serv;
1422
1423 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1424
1425 if (!serv) {
1426 pool = NULL;
1427 } else if (p == SEQ_START_TOKEN) {
1428 pool = &serv->sv_pools[0];
1429 } else {
1430 unsigned int pidx = (pool - &serv->sv_pools[0]);
1431 if (pidx < serv->sv_nrpools-1)
1432 pool = &serv->sv_pools[pidx+1];
1433 else
1434 pool = NULL;
1435 }
1436 ++*pos;
1437 return pool;
1438 }
1439
svc_pool_stats_stop(struct seq_file * m,void * p)1440 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1441 {
1442 struct svc_info *si = m->private;
1443
1444 mutex_unlock(si->mutex);
1445 }
1446
svc_pool_stats_show(struct seq_file * m,void * p)1447 static int svc_pool_stats_show(struct seq_file *m, void *p)
1448 {
1449 struct svc_pool *pool = p;
1450
1451 if (p == SEQ_START_TOKEN) {
1452 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1453 return 0;
1454 }
1455
1456 seq_printf(m, "%u %llu %llu %llu 0\n",
1457 pool->sp_id,
1458 percpu_counter_sum_positive(&pool->sp_messages_arrived),
1459 percpu_counter_sum_positive(&pool->sp_sockets_queued),
1460 percpu_counter_sum_positive(&pool->sp_threads_woken));
1461
1462 return 0;
1463 }
1464
1465 static const struct seq_operations svc_pool_stats_seq_ops = {
1466 .start = svc_pool_stats_start,
1467 .next = svc_pool_stats_next,
1468 .stop = svc_pool_stats_stop,
1469 .show = svc_pool_stats_show,
1470 };
1471
svc_pool_stats_open(struct svc_info * info,struct file * file)1472 int svc_pool_stats_open(struct svc_info *info, struct file *file)
1473 {
1474 struct seq_file *seq;
1475 int err;
1476
1477 err = seq_open(file, &svc_pool_stats_seq_ops);
1478 if (err)
1479 return err;
1480 seq = file->private_data;
1481 seq->private = info;
1482
1483 return 0;
1484 }
1485 EXPORT_SYMBOL(svc_pool_stats_open);
1486
1487 /*----------------------------------------------------------------------------*/
1488