xref: /linux/arch/sparc/kernel/sun4m_smp.c (revision 4f2c0a4acffbec01079c28f839422e64ddeff004)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  sun4m SMP support.
4   *
5   * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
6   */
7  
8  #include <linux/clockchips.h>
9  #include <linux/interrupt.h>
10  #include <linux/profile.h>
11  #include <linux/delay.h>
12  #include <linux/sched/mm.h>
13  #include <linux/cpu.h>
14  
15  #include <asm/cacheflush.h>
16  #include <asm/switch_to.h>
17  #include <asm/tlbflush.h>
18  #include <asm/timer.h>
19  #include <asm/oplib.h>
20  
21  #include "irq.h"
22  #include "kernel.h"
23  
24  #define IRQ_IPI_SINGLE		12
25  #define IRQ_IPI_MASK		13
26  #define IRQ_IPI_RESCHED		14
27  #define IRQ_CROSS_CALL		15
28  
29  static inline unsigned long
swap_ulong(volatile unsigned long * ptr,unsigned long val)30  swap_ulong(volatile unsigned long *ptr, unsigned long val)
31  {
32  	__asm__ __volatile__("swap [%1], %0\n\t" :
33  			     "=&r" (val), "=&r" (ptr) :
34  			     "0" (val), "1" (ptr));
35  	return val;
36  }
37  
sun4m_cpu_pre_starting(void * arg)38  void sun4m_cpu_pre_starting(void *arg)
39  {
40  }
41  
sun4m_cpu_pre_online(void * arg)42  void sun4m_cpu_pre_online(void *arg)
43  {
44  	int cpuid = hard_smp_processor_id();
45  
46  	/* Allow master to continue. The master will then give us the
47  	 * go-ahead by setting the smp_commenced_mask and will wait without
48  	 * timeouts until our setup is completed fully (signified by
49  	 * our bit being set in the cpu_online_mask).
50  	 */
51  	swap_ulong(&cpu_callin_map[cpuid], 1);
52  
53  	/* XXX: What's up with all the flushes? */
54  	local_ops->cache_all();
55  	local_ops->tlb_all();
56  
57  	/* Fix idle thread fields. */
58  	__asm__ __volatile__("ld [%0], %%g6\n\t"
59  			     : : "r" (&current_set[cpuid])
60  			     : "memory" /* paranoid */);
61  
62  	/* Attach to the address space of init_task. */
63  	mmgrab(&init_mm);
64  	current->active_mm = &init_mm;
65  
66  	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
67  		mb();
68  }
69  
70  /*
71   *	Cycle through the processors asking the PROM to start each one.
72   */
smp4m_boot_cpus(void)73  void __init smp4m_boot_cpus(void)
74  {
75  	sun4m_unmask_profile_irq();
76  	local_ops->cache_all();
77  }
78  
smp4m_boot_one_cpu(int i,struct task_struct * idle)79  int smp4m_boot_one_cpu(int i, struct task_struct *idle)
80  {
81  	unsigned long *entry = &sun4m_cpu_startup;
82  	int timeout;
83  	int cpu_node;
84  
85  	cpu_find_by_mid(i, &cpu_node);
86  	current_set[i] = task_thread_info(idle);
87  
88  	/* See trampoline.S for details... */
89  	entry += ((i - 1) * 3);
90  
91  	/*
92  	 * Initialize the contexts table
93  	 * Since the call to prom_startcpu() trashes the structure,
94  	 * we need to re-initialize it for each cpu
95  	 */
96  	smp_penguin_ctable.which_io = 0;
97  	smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
98  	smp_penguin_ctable.reg_size = 0;
99  
100  	/* whirrr, whirrr, whirrrrrrrrr... */
101  	printk(KERN_INFO "Starting CPU %d at %p\n", i, entry);
102  	local_ops->cache_all();
103  	prom_startcpu(cpu_node, &smp_penguin_ctable, 0, (char *)entry);
104  
105  	/* wheee... it's going... */
106  	for (timeout = 0; timeout < 10000; timeout++) {
107  		if (cpu_callin_map[i])
108  			break;
109  		udelay(200);
110  	}
111  
112  	if (!(cpu_callin_map[i])) {
113  		printk(KERN_ERR "Processor %d is stuck.\n", i);
114  		return -ENODEV;
115  	}
116  
117  	local_ops->cache_all();
118  	return 0;
119  }
120  
smp4m_smp_done(void)121  void __init smp4m_smp_done(void)
122  {
123  	int i, first;
124  	int *prev;
125  
126  	/* setup cpu list for irq rotation */
127  	first = 0;
128  	prev = &first;
129  	for_each_online_cpu(i) {
130  		*prev = i;
131  		prev = &cpu_data(i).next;
132  	}
133  	*prev = first;
134  	local_ops->cache_all();
135  
136  	/* Ok, they are spinning and ready to go. */
137  }
138  
sun4m_send_ipi(int cpu,int level)139  static void sun4m_send_ipi(int cpu, int level)
140  {
141  	sbus_writel(SUN4M_SOFT_INT(level), &sun4m_irq_percpu[cpu]->set);
142  }
143  
sun4m_ipi_resched(int cpu)144  static void sun4m_ipi_resched(int cpu)
145  {
146  	sun4m_send_ipi(cpu, IRQ_IPI_RESCHED);
147  }
148  
sun4m_ipi_single(int cpu)149  static void sun4m_ipi_single(int cpu)
150  {
151  	sun4m_send_ipi(cpu, IRQ_IPI_SINGLE);
152  }
153  
sun4m_ipi_mask_one(int cpu)154  static void sun4m_ipi_mask_one(int cpu)
155  {
156  	sun4m_send_ipi(cpu, IRQ_IPI_MASK);
157  }
158  
159  static struct smp_funcall {
160  	void *func;
161  	unsigned long arg1;
162  	unsigned long arg2;
163  	unsigned long arg3;
164  	unsigned long arg4;
165  	unsigned long arg5;
166  	unsigned long processors_in[SUN4M_NCPUS];  /* Set when ipi entered. */
167  	unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */
168  } ccall_info;
169  
170  static DEFINE_SPINLOCK(cross_call_lock);
171  
172  /* Cross calls must be serialized, at least currently. */
sun4m_cross_call(void * func,cpumask_t mask,unsigned long arg1,unsigned long arg2,unsigned long arg3,unsigned long arg4)173  static void sun4m_cross_call(void *func, cpumask_t mask, unsigned long arg1,
174  			     unsigned long arg2, unsigned long arg3,
175  			     unsigned long arg4)
176  {
177  		register int ncpus = SUN4M_NCPUS;
178  		unsigned long flags;
179  
180  		spin_lock_irqsave(&cross_call_lock, flags);
181  
182  		/* Init function glue. */
183  		ccall_info.func = func;
184  		ccall_info.arg1 = arg1;
185  		ccall_info.arg2 = arg2;
186  		ccall_info.arg3 = arg3;
187  		ccall_info.arg4 = arg4;
188  		ccall_info.arg5 = 0;
189  
190  		/* Init receive/complete mapping, plus fire the IPI's off. */
191  		{
192  			register int i;
193  
194  			cpumask_clear_cpu(smp_processor_id(), &mask);
195  			cpumask_and(&mask, cpu_online_mask, &mask);
196  			for (i = 0; i < ncpus; i++) {
197  				if (cpumask_test_cpu(i, &mask)) {
198  					ccall_info.processors_in[i] = 0;
199  					ccall_info.processors_out[i] = 0;
200  					sun4m_send_ipi(i, IRQ_CROSS_CALL);
201  				} else {
202  					ccall_info.processors_in[i] = 1;
203  					ccall_info.processors_out[i] = 1;
204  				}
205  			}
206  		}
207  
208  		{
209  			register int i;
210  
211  			i = 0;
212  			do {
213  				if (!cpumask_test_cpu(i, &mask))
214  					continue;
215  				while (!ccall_info.processors_in[i])
216  					barrier();
217  			} while (++i < ncpus);
218  
219  			i = 0;
220  			do {
221  				if (!cpumask_test_cpu(i, &mask))
222  					continue;
223  				while (!ccall_info.processors_out[i])
224  					barrier();
225  			} while (++i < ncpus);
226  		}
227  		spin_unlock_irqrestore(&cross_call_lock, flags);
228  }
229  
230  /* Running cross calls. */
smp4m_cross_call_irq(void)231  void smp4m_cross_call_irq(void)
232  {
233  	void (*func)(unsigned long, unsigned long, unsigned long, unsigned long,
234  		     unsigned long) = ccall_info.func;
235  	int i = smp_processor_id();
236  
237  	ccall_info.processors_in[i] = 1;
238  	func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3, ccall_info.arg4,
239  	     ccall_info.arg5);
240  	ccall_info.processors_out[i] = 1;
241  }
242  
smp4m_percpu_timer_interrupt(struct pt_regs * regs)243  void smp4m_percpu_timer_interrupt(struct pt_regs *regs)
244  {
245  	struct pt_regs *old_regs;
246  	struct clock_event_device *ce;
247  	int cpu = smp_processor_id();
248  
249  	old_regs = set_irq_regs(regs);
250  
251  	ce = &per_cpu(sparc32_clockevent, cpu);
252  
253  	if (clockevent_state_periodic(ce))
254  		sun4m_clear_profile_irq(cpu);
255  	else
256  		sparc_config.load_profile_irq(cpu, 0); /* Is this needless? */
257  
258  	irq_enter();
259  	ce->event_handler(ce);
260  	irq_exit();
261  
262  	set_irq_regs(old_regs);
263  }
264  
265  static const struct sparc32_ipi_ops sun4m_ipi_ops = {
266  	.cross_call = sun4m_cross_call,
267  	.resched    = sun4m_ipi_resched,
268  	.single     = sun4m_ipi_single,
269  	.mask_one   = sun4m_ipi_mask_one,
270  };
271  
sun4m_init_smp(void)272  void __init sun4m_init_smp(void)
273  {
274  	sparc32_ipi_ops = &sun4m_ipi_ops;
275  }
276