xref: /linux/drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c (revision 7ec462100ef9142344ddbf86f2c3008b97acddbe)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
4  *
5  * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
6  *
7  * This file add support for MD5 and SHA1.
8  *
9  * You could find the datasheet in Documentation/arch/arm/sunxi.rst
10  */
11 #include "sun4i-ss.h"
12 #include <linux/unaligned.h>
13 #include <linux/scatterlist.h>
14 
15 /* This is a totally arbitrary value */
16 #define SS_TIMEOUT 100
17 
sun4i_hash_crainit(struct crypto_tfm * tfm)18 int sun4i_hash_crainit(struct crypto_tfm *tfm)
19 {
20 	struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
21 	struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
22 	struct sun4i_ss_alg_template *algt;
23 	int err;
24 
25 	memset(op, 0, sizeof(struct sun4i_tfm_ctx));
26 
27 	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
28 	op->ss = algt->ss;
29 
30 	err = pm_runtime_resume_and_get(op->ss->dev);
31 	if (err < 0)
32 		return err;
33 
34 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
35 				 sizeof(struct sun4i_req_ctx));
36 	return 0;
37 }
38 
sun4i_hash_craexit(struct crypto_tfm * tfm)39 void sun4i_hash_craexit(struct crypto_tfm *tfm)
40 {
41 	struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
42 
43 	pm_runtime_put(op->ss->dev);
44 }
45 
46 /* sun4i_hash_init: initialize request context */
sun4i_hash_init(struct ahash_request * areq)47 int sun4i_hash_init(struct ahash_request *areq)
48 {
49 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
50 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
51 	struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
52 	struct sun4i_ss_alg_template *algt;
53 
54 	memset(op, 0, sizeof(struct sun4i_req_ctx));
55 
56 	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
57 	op->mode = algt->mode;
58 
59 	return 0;
60 }
61 
sun4i_hash_export_md5(struct ahash_request * areq,void * out)62 int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
63 {
64 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
65 	struct md5_state *octx = out;
66 	int i;
67 
68 	octx->byte_count = op->byte_count + op->len;
69 
70 	memcpy(octx->block, op->buf, op->len);
71 
72 	if (op->byte_count) {
73 		for (i = 0; i < 4; i++)
74 			octx->hash[i] = op->hash[i];
75 	} else {
76 		octx->hash[0] = SHA1_H0;
77 		octx->hash[1] = SHA1_H1;
78 		octx->hash[2] = SHA1_H2;
79 		octx->hash[3] = SHA1_H3;
80 	}
81 
82 	return 0;
83 }
84 
sun4i_hash_import_md5(struct ahash_request * areq,const void * in)85 int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
86 {
87 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
88 	const struct md5_state *ictx = in;
89 	int i;
90 
91 	sun4i_hash_init(areq);
92 
93 	op->byte_count = ictx->byte_count & ~0x3F;
94 	op->len = ictx->byte_count & 0x3F;
95 
96 	memcpy(op->buf, ictx->block, op->len);
97 
98 	for (i = 0; i < 4; i++)
99 		op->hash[i] = ictx->hash[i];
100 
101 	return 0;
102 }
103 
sun4i_hash_export_sha1(struct ahash_request * areq,void * out)104 int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
105 {
106 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
107 	struct sha1_state *octx = out;
108 	int i;
109 
110 	octx->count = op->byte_count + op->len;
111 
112 	memcpy(octx->buffer, op->buf, op->len);
113 
114 	if (op->byte_count) {
115 		for (i = 0; i < 5; i++)
116 			octx->state[i] = op->hash[i];
117 	} else {
118 		octx->state[0] = SHA1_H0;
119 		octx->state[1] = SHA1_H1;
120 		octx->state[2] = SHA1_H2;
121 		octx->state[3] = SHA1_H3;
122 		octx->state[4] = SHA1_H4;
123 	}
124 
125 	return 0;
126 }
127 
sun4i_hash_import_sha1(struct ahash_request * areq,const void * in)128 int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
129 {
130 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
131 	const struct sha1_state *ictx = in;
132 	int i;
133 
134 	sun4i_hash_init(areq);
135 
136 	op->byte_count = ictx->count & ~0x3F;
137 	op->len = ictx->count & 0x3F;
138 
139 	memcpy(op->buf, ictx->buffer, op->len);
140 
141 	for (i = 0; i < 5; i++)
142 		op->hash[i] = ictx->state[i];
143 
144 	return 0;
145 }
146 
147 #define SS_HASH_UPDATE 1
148 #define SS_HASH_FINAL 2
149 
150 /*
151  * sun4i_hash_update: update hash engine
152  *
153  * Could be used for both SHA1 and MD5
154  * Write data by step of 32bits and put then in the SS.
155  *
156  * Since we cannot leave partial data and hash state in the engine,
157  * we need to get the hash state at the end of this function.
158  * We can get the hash state every 64 bytes
159  *
160  * So the first work is to get the number of bytes to write to SS modulo 64
161  * The extra bytes will go to a temporary buffer op->buf storing op->len bytes
162  *
163  * So at the begin of update()
164  * if op->len + areq->nbytes < 64
165  * => all data will be written to wait buffer (op->buf) and end=0
166  * if not, write all data from op->buf to the device and position end to
167  * complete to 64bytes
168  *
169  * example 1:
170  * update1 60o => op->len=60
171  * update2 60o => need one more word to have 64 bytes
172  * end=4
173  * so write all data from op->buf and one word of SGs
174  * write remaining data in op->buf
175  * final state op->len=56
176  */
sun4i_hash(struct ahash_request * areq)177 static int sun4i_hash(struct ahash_request *areq)
178 {
179 	/*
180 	 * i is the total bytes read from SGs, to be compared to areq->nbytes
181 	 * i is important because we cannot rely on SG length since the sum of
182 	 * SG->length could be greater than areq->nbytes
183 	 *
184 	 * end is the position when we need to stop writing to the device,
185 	 * to be compared to i
186 	 *
187 	 * in_i: advancement in the current SG
188 	 */
189 	unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo;
190 	unsigned int in_i = 0;
191 	u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, v, ivmode = 0;
192 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
193 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
194 	struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
195 	struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm);
196 	struct sun4i_ss_ctx *ss = tfmctx->ss;
197 	struct sun4i_ss_alg_template *algt;
198 	struct scatterlist *in_sg = areq->src;
199 	struct sg_mapping_iter mi;
200 	int in_r, err = 0;
201 	size_t copied = 0;
202 	u32 wb = 0;
203 
204 	dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
205 		__func__, crypto_tfm_alg_name(areq->base.tfm),
206 		op->byte_count, areq->nbytes, op->mode,
207 		op->len, op->hash[0]);
208 
209 	if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL))
210 		return 0;
211 
212 	/* protect against overflow */
213 	if (unlikely(areq->nbytes > UINT_MAX - op->len)) {
214 		dev_err(ss->dev, "Cannot process too large request\n");
215 		return -EINVAL;
216 	}
217 
218 	if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) {
219 		/* linearize data to op->buf */
220 		copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
221 					    op->buf + op->len, areq->nbytes, 0);
222 		op->len += copied;
223 		return 0;
224 	}
225 
226 	spin_lock_bh(&ss->slock);
227 
228 	/*
229 	 * if some data have been processed before,
230 	 * we need to restore the partial hash state
231 	 */
232 	if (op->byte_count) {
233 		ivmode = SS_IV_ARBITRARY;
234 		for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
235 			writel(op->hash[i], ss->base + SS_IV0 + i * 4);
236 	}
237 	/* Enable the device */
238 	writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
239 
240 	if (!(op->flags & SS_HASH_UPDATE))
241 		goto hash_final;
242 
243 	/* start of handling data */
244 	if (!(op->flags & SS_HASH_FINAL)) {
245 		end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
246 
247 		if (end > areq->nbytes || areq->nbytes - end > 63) {
248 			dev_err(ss->dev, "ERROR: Bound error %u %u\n",
249 				end, areq->nbytes);
250 			err = -EINVAL;
251 			goto release_ss;
252 		}
253 	} else {
254 		/* Since we have the flag final, we can go up to modulo 4 */
255 		if (areq->nbytes < 4)
256 			end = 0;
257 		else
258 			end = ((areq->nbytes + op->len) / 4) * 4 - op->len;
259 	}
260 
261 	/* TODO if SGlen % 4 and !op->len then DMA */
262 	i = 1;
263 	while (in_sg && i == 1) {
264 		if (in_sg->length % 4)
265 			i = 0;
266 		in_sg = sg_next(in_sg);
267 	}
268 	if (i == 1 && !op->len && areq->nbytes)
269 		dev_dbg(ss->dev, "We can DMA\n");
270 
271 	i = 0;
272 	sg_miter_start(&mi, areq->src, sg_nents(areq->src),
273 		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
274 	sg_miter_next(&mi);
275 	in_i = 0;
276 
277 	do {
278 		/*
279 		 * we need to linearize in two case:
280 		 * - the buffer is already used
281 		 * - the SG does not have enough byte remaining ( < 4)
282 		 */
283 		if (op->len || (mi.length - in_i) < 4) {
284 			/*
285 			 * if we have entered here we have two reason to stop
286 			 * - the buffer is full
287 			 * - reach the end
288 			 */
289 			while (op->len < 64 && i < end) {
290 				/* how many bytes we can read from current SG */
291 				in_r = min(end - i, 64 - op->len);
292 				in_r = min_t(size_t, mi.length - in_i, in_r);
293 				memcpy(op->buf + op->len, mi.addr + in_i, in_r);
294 				op->len += in_r;
295 				i += in_r;
296 				in_i += in_r;
297 				if (in_i == mi.length) {
298 					sg_miter_next(&mi);
299 					in_i = 0;
300 				}
301 			}
302 			if (op->len > 3 && !(op->len % 4)) {
303 				/* write buf to the device */
304 				writesl(ss->base + SS_RXFIFO, op->buf,
305 					op->len / 4);
306 				op->byte_count += op->len;
307 				op->len = 0;
308 			}
309 		}
310 		if (mi.length - in_i > 3 && i < end) {
311 			/* how many bytes we can read from current SG */
312 			in_r = min_t(size_t, mi.length - in_i, areq->nbytes - i);
313 			in_r = min_t(size_t, ((mi.length - in_i) / 4) * 4, in_r);
314 			/* how many bytes we can write in the device*/
315 			todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
316 			writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
317 			op->byte_count += todo * 4;
318 			i += todo * 4;
319 			in_i += todo * 4;
320 			rx_cnt -= todo;
321 			if (!rx_cnt) {
322 				spaces = readl(ss->base + SS_FCSR);
323 				rx_cnt = SS_RXFIFO_SPACES(spaces);
324 			}
325 			if (in_i == mi.length) {
326 				sg_miter_next(&mi);
327 				in_i = 0;
328 			}
329 		}
330 	} while (i < end);
331 
332 	/*
333 	 * Now we have written to the device all that we can,
334 	 * store the remaining bytes in op->buf
335 	 */
336 	if ((areq->nbytes - i) < 64) {
337 		while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
338 			/* how many bytes we can read from current SG */
339 			in_r = min(areq->nbytes - i, 64 - op->len);
340 			in_r = min_t(size_t, mi.length - in_i, in_r);
341 			memcpy(op->buf + op->len, mi.addr + in_i, in_r);
342 			op->len += in_r;
343 			i += in_r;
344 			in_i += in_r;
345 			if (in_i == mi.length) {
346 				sg_miter_next(&mi);
347 				in_i = 0;
348 			}
349 		}
350 	}
351 
352 	sg_miter_stop(&mi);
353 
354 	/*
355 	 * End of data process
356 	 * Now if we have the flag final go to finalize part
357 	 * If not, store the partial hash
358 	 */
359 	if (op->flags & SS_HASH_FINAL)
360 		goto hash_final;
361 
362 	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
363 	i = 0;
364 	do {
365 		v = readl(ss->base + SS_CTL);
366 		i++;
367 	} while (i < SS_TIMEOUT && (v & SS_DATA_END));
368 	if (unlikely(i >= SS_TIMEOUT)) {
369 		dev_err_ratelimited(ss->dev,
370 				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
371 				    i, SS_TIMEOUT, v, areq->nbytes);
372 		err = -EIO;
373 		goto release_ss;
374 	}
375 
376 	/*
377 	 * The datasheet isn't very clear about when to retrieve the digest. The
378 	 * bit SS_DATA_END is cleared when the engine has processed the data and
379 	 * when the digest is computed *but* it doesn't mean the digest is
380 	 * available in the digest registers. Hence the delay to be sure we can
381 	 * read it.
382 	 */
383 	ndelay(1);
384 
385 	for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
386 		op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
387 
388 	goto release_ss;
389 
390 /*
391  * hash_final: finalize hashing operation
392  *
393  * If we have some remaining bytes, we write them.
394  * Then ask the SS for finalizing the hashing operation
395  *
396  * I do not check RX FIFO size in this function since the size is 32
397  * after each enabling and this function neither write more than 32 words.
398  * If we come from the update part, we cannot have more than
399  * 3 remaining bytes to write and SS is fast enough to not care about it.
400  */
401 
402 hash_final:
403 	if (IS_ENABLED(CONFIG_CRYPTO_DEV_SUN4I_SS_DEBUG)) {
404 		algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
405 		algt->stat_req++;
406 	}
407 
408 	/* write the remaining words of the wait buffer */
409 	if (op->len) {
410 		nwait = op->len / 4;
411 		if (nwait) {
412 			writesl(ss->base + SS_RXFIFO, op->buf, nwait);
413 			op->byte_count += 4 * nwait;
414 		}
415 
416 		nbw = op->len - 4 * nwait;
417 		if (nbw) {
418 			wb = le32_to_cpup((__le32 *)(op->buf + nwait * 4));
419 			wb &= GENMASK((nbw * 8) - 1, 0);
420 
421 			op->byte_count += nbw;
422 		}
423 	}
424 
425 	/* write the remaining bytes of the nbw buffer */
426 	wb |= ((1 << 7) << (nbw * 8));
427 	((__le32 *)bf)[j++] = cpu_to_le32(wb);
428 
429 	/*
430 	 * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
431 	 * I take the operations from other MD5/SHA1 implementations
432 	 */
433 
434 	/* last block size */
435 	fill = 64 - (op->byte_count % 64);
436 	min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32));
437 
438 	/* if we can't fill all data, jump to the next 64 block */
439 	if (fill < min_fill)
440 		fill += 64;
441 
442 	j += (fill - min_fill) / sizeof(u32);
443 
444 	/* write the length of data */
445 	if (op->mode == SS_OP_SHA1) {
446 		__be64 *bits = (__be64 *)&bf[j];
447 		*bits = cpu_to_be64(op->byte_count << 3);
448 		j += 2;
449 	} else {
450 		__le64 *bits = (__le64 *)&bf[j];
451 		*bits = cpu_to_le64(op->byte_count << 3);
452 		j += 2;
453 	}
454 	writesl(ss->base + SS_RXFIFO, bf, j);
455 
456 	/* Tell the SS to stop the hashing */
457 	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
458 
459 	/*
460 	 * Wait for SS to finish the hash.
461 	 * The timeout could happen only in case of bad overclocking
462 	 * or driver bug.
463 	 */
464 	i = 0;
465 	do {
466 		v = readl(ss->base + SS_CTL);
467 		i++;
468 	} while (i < SS_TIMEOUT && (v & SS_DATA_END));
469 	if (unlikely(i >= SS_TIMEOUT)) {
470 		dev_err_ratelimited(ss->dev,
471 				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
472 				    i, SS_TIMEOUT, v, areq->nbytes);
473 		err = -EIO;
474 		goto release_ss;
475 	}
476 
477 	/*
478 	 * The datasheet isn't very clear about when to retrieve the digest. The
479 	 * bit SS_DATA_END is cleared when the engine has processed the data and
480 	 * when the digest is computed *but* it doesn't mean the digest is
481 	 * available in the digest registers. Hence the delay to be sure we can
482 	 * read it.
483 	 */
484 	ndelay(1);
485 
486 	/* Get the hash from the device */
487 	if (op->mode == SS_OP_SHA1) {
488 		for (i = 0; i < 5; i++) {
489 			v = readl(ss->base + SS_MD0 + i * 4);
490 			if (ss->variant->sha1_in_be)
491 				put_unaligned_le32(v, areq->result + i * 4);
492 			else
493 				put_unaligned_be32(v, areq->result + i * 4);
494 		}
495 	} else {
496 		for (i = 0; i < 4; i++) {
497 			v = readl(ss->base + SS_MD0 + i * 4);
498 			put_unaligned_le32(v, areq->result + i * 4);
499 		}
500 	}
501 
502 release_ss:
503 	writel(0, ss->base + SS_CTL);
504 	spin_unlock_bh(&ss->slock);
505 	return err;
506 }
507 
sun4i_hash_final(struct ahash_request * areq)508 int sun4i_hash_final(struct ahash_request *areq)
509 {
510 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
511 
512 	op->flags = SS_HASH_FINAL;
513 	return sun4i_hash(areq);
514 }
515 
sun4i_hash_update(struct ahash_request * areq)516 int sun4i_hash_update(struct ahash_request *areq)
517 {
518 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
519 
520 	op->flags = SS_HASH_UPDATE;
521 	return sun4i_hash(areq);
522 }
523 
524 /* sun4i_hash_finup: finalize hashing operation after an update */
sun4i_hash_finup(struct ahash_request * areq)525 int sun4i_hash_finup(struct ahash_request *areq)
526 {
527 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
528 
529 	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
530 	return sun4i_hash(areq);
531 }
532 
533 /* combo of init/update/final functions */
sun4i_hash_digest(struct ahash_request * areq)534 int sun4i_hash_digest(struct ahash_request *areq)
535 {
536 	int err;
537 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
538 
539 	err = sun4i_hash_init(areq);
540 	if (err)
541 		return err;
542 
543 	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
544 	return sun4i_hash(areq);
545 }
546