xref: /linux/kernel/sched/cpufreq_schedutil.c (revision f55b0671e3f90824ac06dc06b988075eb9c6830c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8 
9 #define IOWAIT_BOOST_MIN	(SCHED_CAPACITY_SCALE / 8)
10 
11 struct sugov_tunables {
12 	struct gov_attr_set	attr_set;
13 	unsigned int		rate_limit_us;
14 };
15 
16 struct sugov_policy {
17 	struct cpufreq_policy	*policy;
18 
19 	struct sugov_tunables	*tunables;
20 	struct list_head	tunables_hook;
21 
22 	raw_spinlock_t		update_lock;
23 	u64			last_freq_update_time;
24 	s64			freq_update_delay_ns;
25 	unsigned int		next_freq;
26 	unsigned int		cached_raw_freq;
27 
28 	/* The next fields are only needed if fast switch cannot be used: */
29 	struct			irq_work irq_work;
30 	struct			kthread_work work;
31 	struct			mutex work_lock;
32 	struct			kthread_worker worker;
33 	struct task_struct	*thread;
34 	bool			work_in_progress;
35 
36 	bool			limits_changed;
37 	bool			need_freq_update;
38 };
39 
40 struct sugov_cpu {
41 	struct update_util_data	update_util;
42 	struct sugov_policy	*sg_policy;
43 	unsigned int		cpu;
44 
45 	bool			iowait_boost_pending;
46 	unsigned int		iowait_boost;
47 	u64			last_update;
48 
49 	unsigned long		util;
50 	unsigned long		bw_min;
51 
52 	/* The field below is for single-CPU policies only: */
53 #ifdef CONFIG_NO_HZ_COMMON
54 	unsigned long		saved_idle_calls;
55 #endif
56 };
57 
58 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
59 
60 /************************ Governor internals ***********************/
61 
sugov_should_update_freq(struct sugov_policy * sg_policy,u64 time)62 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
63 {
64 	s64 delta_ns;
65 
66 	/*
67 	 * Since cpufreq_update_util() is called with rq->lock held for
68 	 * the @target_cpu, our per-CPU data is fully serialized.
69 	 *
70 	 * However, drivers cannot in general deal with cross-CPU
71 	 * requests, so while get_next_freq() will work, our
72 	 * sugov_update_commit() call may not for the fast switching platforms.
73 	 *
74 	 * Hence stop here for remote requests if they aren't supported
75 	 * by the hardware, as calculating the frequency is pointless if
76 	 * we cannot in fact act on it.
77 	 *
78 	 * This is needed on the slow switching platforms too to prevent CPUs
79 	 * going offline from leaving stale IRQ work items behind.
80 	 */
81 	if (!cpufreq_this_cpu_can_update(sg_policy->policy))
82 		return false;
83 
84 	if (unlikely(sg_policy->limits_changed)) {
85 		sg_policy->limits_changed = false;
86 		sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
87 		return true;
88 	}
89 
90 	delta_ns = time - sg_policy->last_freq_update_time;
91 
92 	return delta_ns >= sg_policy->freq_update_delay_ns;
93 }
94 
sugov_update_next_freq(struct sugov_policy * sg_policy,u64 time,unsigned int next_freq)95 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
96 				   unsigned int next_freq)
97 {
98 	if (sg_policy->need_freq_update)
99 		sg_policy->need_freq_update = false;
100 	else if (sg_policy->next_freq == next_freq)
101 		return false;
102 
103 	sg_policy->next_freq = next_freq;
104 	sg_policy->last_freq_update_time = time;
105 
106 	return true;
107 }
108 
sugov_deferred_update(struct sugov_policy * sg_policy)109 static void sugov_deferred_update(struct sugov_policy *sg_policy)
110 {
111 	if (!sg_policy->work_in_progress) {
112 		sg_policy->work_in_progress = true;
113 		irq_work_queue(&sg_policy->irq_work);
114 	}
115 }
116 
117 /**
118  * get_capacity_ref_freq - get the reference frequency that has been used to
119  * correlate frequency and compute capacity for a given cpufreq policy. We use
120  * the CPU managing it for the arch_scale_freq_ref() call in the function.
121  * @policy: the cpufreq policy of the CPU in question.
122  *
123  * Return: the reference CPU frequency to compute a capacity.
124  */
125 static __always_inline
get_capacity_ref_freq(struct cpufreq_policy * policy)126 unsigned long get_capacity_ref_freq(struct cpufreq_policy *policy)
127 {
128 	unsigned int freq = arch_scale_freq_ref(policy->cpu);
129 
130 	if (freq)
131 		return freq;
132 
133 	if (arch_scale_freq_invariant())
134 		return policy->cpuinfo.max_freq;
135 
136 	/*
137 	 * Apply a 25% margin so that we select a higher frequency than
138 	 * the current one before the CPU is fully busy:
139 	 */
140 	return policy->cur + (policy->cur >> 2);
141 }
142 
143 /**
144  * get_next_freq - Compute a new frequency for a given cpufreq policy.
145  * @sg_policy: schedutil policy object to compute the new frequency for.
146  * @util: Current CPU utilization.
147  * @max: CPU capacity.
148  *
149  * If the utilization is frequency-invariant, choose the new frequency to be
150  * proportional to it, that is
151  *
152  * next_freq = C * max_freq * util / max
153  *
154  * Otherwise, approximate the would-be frequency-invariant utilization by
155  * util_raw * (curr_freq / max_freq) which leads to
156  *
157  * next_freq = C * curr_freq * util_raw / max
158  *
159  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
160  *
161  * The lowest driver-supported frequency which is equal or greater than the raw
162  * next_freq (as calculated above) is returned, subject to policy min/max and
163  * cpufreq driver limitations.
164  */
get_next_freq(struct sugov_policy * sg_policy,unsigned long util,unsigned long max)165 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
166 				  unsigned long util, unsigned long max)
167 {
168 	struct cpufreq_policy *policy = sg_policy->policy;
169 	unsigned int freq;
170 
171 	freq = get_capacity_ref_freq(policy);
172 	freq = map_util_freq(util, freq, max);
173 
174 	if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
175 		return sg_policy->next_freq;
176 
177 	sg_policy->cached_raw_freq = freq;
178 	return cpufreq_driver_resolve_freq(policy, freq);
179 }
180 
sugov_effective_cpu_perf(int cpu,unsigned long actual,unsigned long min,unsigned long max)181 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
182 				 unsigned long min,
183 				 unsigned long max)
184 {
185 	/* Add dvfs headroom to actual utilization */
186 	actual = map_util_perf(actual);
187 	/* Actually we don't need to target the max performance */
188 	if (actual < max)
189 		max = actual;
190 
191 	/*
192 	 * Ensure at least minimum performance while providing more compute
193 	 * capacity when possible.
194 	 */
195 	return max(min, max);
196 }
197 
sugov_get_util(struct sugov_cpu * sg_cpu,unsigned long boost)198 static void sugov_get_util(struct sugov_cpu *sg_cpu, unsigned long boost)
199 {
200 	unsigned long min, max, util = scx_cpuperf_target(sg_cpu->cpu);
201 
202 	if (!scx_switched_all())
203 		util += cpu_util_cfs_boost(sg_cpu->cpu);
204 	util = effective_cpu_util(sg_cpu->cpu, util, &min, &max);
205 	util = max(util, boost);
206 	sg_cpu->bw_min = min;
207 	sg_cpu->util = sugov_effective_cpu_perf(sg_cpu->cpu, util, min, max);
208 }
209 
210 /**
211  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
212  * @sg_cpu: the sugov data for the CPU to boost
213  * @time: the update time from the caller
214  * @set_iowait_boost: true if an IO boost has been requested
215  *
216  * The IO wait boost of a task is disabled after a tick since the last update
217  * of a CPU. If a new IO wait boost is requested after more then a tick, then
218  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
219  * efficiency by ignoring sporadic wakeups from IO.
220  */
sugov_iowait_reset(struct sugov_cpu * sg_cpu,u64 time,bool set_iowait_boost)221 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
222 			       bool set_iowait_boost)
223 {
224 	s64 delta_ns = time - sg_cpu->last_update;
225 
226 	/* Reset boost only if a tick has elapsed since last request */
227 	if (delta_ns <= TICK_NSEC)
228 		return false;
229 
230 	sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
231 	sg_cpu->iowait_boost_pending = set_iowait_boost;
232 
233 	return true;
234 }
235 
236 /**
237  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
238  * @sg_cpu: the sugov data for the CPU to boost
239  * @time: the update time from the caller
240  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
241  *
242  * Each time a task wakes up after an IO operation, the CPU utilization can be
243  * boosted to a certain utilization which doubles at each "frequent and
244  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
245  * of the maximum OPP.
246  *
247  * To keep doubling, an IO boost has to be requested at least once per tick,
248  * otherwise we restart from the utilization of the minimum OPP.
249  */
sugov_iowait_boost(struct sugov_cpu * sg_cpu,u64 time,unsigned int flags)250 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
251 			       unsigned int flags)
252 {
253 	bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
254 
255 	/* Reset boost if the CPU appears to have been idle enough */
256 	if (sg_cpu->iowait_boost &&
257 	    sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
258 		return;
259 
260 	/* Boost only tasks waking up after IO */
261 	if (!set_iowait_boost)
262 		return;
263 
264 	/* Ensure boost doubles only one time at each request */
265 	if (sg_cpu->iowait_boost_pending)
266 		return;
267 	sg_cpu->iowait_boost_pending = true;
268 
269 	/* Double the boost at each request */
270 	if (sg_cpu->iowait_boost) {
271 		sg_cpu->iowait_boost =
272 			min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
273 		return;
274 	}
275 
276 	/* First wakeup after IO: start with minimum boost */
277 	sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
278 }
279 
280 /**
281  * sugov_iowait_apply() - Apply the IO boost to a CPU.
282  * @sg_cpu: the sugov data for the cpu to boost
283  * @time: the update time from the caller
284  * @max_cap: the max CPU capacity
285  *
286  * A CPU running a task which woken up after an IO operation can have its
287  * utilization boosted to speed up the completion of those IO operations.
288  * The IO boost value is increased each time a task wakes up from IO, in
289  * sugov_iowait_apply(), and it's instead decreased by this function,
290  * each time an increase has not been requested (!iowait_boost_pending).
291  *
292  * A CPU which also appears to have been idle for at least one tick has also
293  * its IO boost utilization reset.
294  *
295  * This mechanism is designed to boost high frequently IO waiting tasks, while
296  * being more conservative on tasks which does sporadic IO operations.
297  */
sugov_iowait_apply(struct sugov_cpu * sg_cpu,u64 time,unsigned long max_cap)298 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
299 			       unsigned long max_cap)
300 {
301 	/* No boost currently required */
302 	if (!sg_cpu->iowait_boost)
303 		return 0;
304 
305 	/* Reset boost if the CPU appears to have been idle enough */
306 	if (sugov_iowait_reset(sg_cpu, time, false))
307 		return 0;
308 
309 	if (!sg_cpu->iowait_boost_pending) {
310 		/*
311 		 * No boost pending; reduce the boost value.
312 		 */
313 		sg_cpu->iowait_boost >>= 1;
314 		if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
315 			sg_cpu->iowait_boost = 0;
316 			return 0;
317 		}
318 	}
319 
320 	sg_cpu->iowait_boost_pending = false;
321 
322 	/*
323 	 * sg_cpu->util is already in capacity scale; convert iowait_boost
324 	 * into the same scale so we can compare.
325 	 */
326 	return (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
327 }
328 
329 #ifdef CONFIG_NO_HZ_COMMON
sugov_hold_freq(struct sugov_cpu * sg_cpu)330 static bool sugov_hold_freq(struct sugov_cpu *sg_cpu)
331 {
332 	unsigned long idle_calls;
333 	bool ret;
334 
335 	/*
336 	 * The heuristics in this function is for the fair class. For SCX, the
337 	 * performance target comes directly from the BPF scheduler. Let's just
338 	 * follow it.
339 	 */
340 	if (scx_switched_all())
341 		return false;
342 
343 	/* if capped by uclamp_max, always update to be in compliance */
344 	if (uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)))
345 		return false;
346 
347 	/*
348 	 * Maintain the frequency if the CPU has not been idle recently, as
349 	 * reduction is likely to be premature.
350 	 */
351 	idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
352 	ret = idle_calls == sg_cpu->saved_idle_calls;
353 
354 	sg_cpu->saved_idle_calls = idle_calls;
355 	return ret;
356 }
357 #else
sugov_hold_freq(struct sugov_cpu * sg_cpu)358 static inline bool sugov_hold_freq(struct sugov_cpu *sg_cpu) { return false; }
359 #endif /* CONFIG_NO_HZ_COMMON */
360 
361 /*
362  * Make sugov_should_update_freq() ignore the rate limit when DL
363  * has increased the utilization.
364  */
ignore_dl_rate_limit(struct sugov_cpu * sg_cpu)365 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
366 {
367 	if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_min)
368 		sg_cpu->sg_policy->limits_changed = true;
369 }
370 
sugov_update_single_common(struct sugov_cpu * sg_cpu,u64 time,unsigned long max_cap,unsigned int flags)371 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
372 					      u64 time, unsigned long max_cap,
373 					      unsigned int flags)
374 {
375 	unsigned long boost;
376 
377 	sugov_iowait_boost(sg_cpu, time, flags);
378 	sg_cpu->last_update = time;
379 
380 	ignore_dl_rate_limit(sg_cpu);
381 
382 	if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
383 		return false;
384 
385 	boost = sugov_iowait_apply(sg_cpu, time, max_cap);
386 	sugov_get_util(sg_cpu, boost);
387 
388 	return true;
389 }
390 
sugov_update_single_freq(struct update_util_data * hook,u64 time,unsigned int flags)391 static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
392 				     unsigned int flags)
393 {
394 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
395 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
396 	unsigned int cached_freq = sg_policy->cached_raw_freq;
397 	unsigned long max_cap;
398 	unsigned int next_f;
399 
400 	max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
401 
402 	if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
403 		return;
404 
405 	next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);
406 
407 	if (sugov_hold_freq(sg_cpu) && next_f < sg_policy->next_freq &&
408 	    !sg_policy->need_freq_update) {
409 		next_f = sg_policy->next_freq;
410 
411 		/* Restore cached freq as next_freq has changed */
412 		sg_policy->cached_raw_freq = cached_freq;
413 	}
414 
415 	if (!sugov_update_next_freq(sg_policy, time, next_f))
416 		return;
417 
418 	/*
419 	 * This code runs under rq->lock for the target CPU, so it won't run
420 	 * concurrently on two different CPUs for the same target and it is not
421 	 * necessary to acquire the lock in the fast switch case.
422 	 */
423 	if (sg_policy->policy->fast_switch_enabled) {
424 		cpufreq_driver_fast_switch(sg_policy->policy, next_f);
425 	} else {
426 		raw_spin_lock(&sg_policy->update_lock);
427 		sugov_deferred_update(sg_policy);
428 		raw_spin_unlock(&sg_policy->update_lock);
429 	}
430 }
431 
sugov_update_single_perf(struct update_util_data * hook,u64 time,unsigned int flags)432 static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
433 				     unsigned int flags)
434 {
435 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
436 	unsigned long prev_util = sg_cpu->util;
437 	unsigned long max_cap;
438 
439 	/*
440 	 * Fall back to the "frequency" path if frequency invariance is not
441 	 * supported, because the direct mapping between the utilization and
442 	 * the performance levels depends on the frequency invariance.
443 	 */
444 	if (!arch_scale_freq_invariant()) {
445 		sugov_update_single_freq(hook, time, flags);
446 		return;
447 	}
448 
449 	max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
450 
451 	if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
452 		return;
453 
454 	if (sugov_hold_freq(sg_cpu) && sg_cpu->util < prev_util)
455 		sg_cpu->util = prev_util;
456 
457 	cpufreq_driver_adjust_perf(sg_cpu->cpu, sg_cpu->bw_min,
458 				   sg_cpu->util, max_cap);
459 
460 	sg_cpu->sg_policy->last_freq_update_time = time;
461 }
462 
sugov_next_freq_shared(struct sugov_cpu * sg_cpu,u64 time)463 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
464 {
465 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
466 	struct cpufreq_policy *policy = sg_policy->policy;
467 	unsigned long util = 0, max_cap;
468 	unsigned int j;
469 
470 	max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
471 
472 	for_each_cpu(j, policy->cpus) {
473 		struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
474 		unsigned long boost;
475 
476 		boost = sugov_iowait_apply(j_sg_cpu, time, max_cap);
477 		sugov_get_util(j_sg_cpu, boost);
478 
479 		util = max(j_sg_cpu->util, util);
480 	}
481 
482 	return get_next_freq(sg_policy, util, max_cap);
483 }
484 
485 static void
sugov_update_shared(struct update_util_data * hook,u64 time,unsigned int flags)486 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
487 {
488 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
489 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
490 	unsigned int next_f;
491 
492 	raw_spin_lock(&sg_policy->update_lock);
493 
494 	sugov_iowait_boost(sg_cpu, time, flags);
495 	sg_cpu->last_update = time;
496 
497 	ignore_dl_rate_limit(sg_cpu);
498 
499 	if (sugov_should_update_freq(sg_policy, time)) {
500 		next_f = sugov_next_freq_shared(sg_cpu, time);
501 
502 		if (!sugov_update_next_freq(sg_policy, time, next_f))
503 			goto unlock;
504 
505 		if (sg_policy->policy->fast_switch_enabled)
506 			cpufreq_driver_fast_switch(sg_policy->policy, next_f);
507 		else
508 			sugov_deferred_update(sg_policy);
509 	}
510 unlock:
511 	raw_spin_unlock(&sg_policy->update_lock);
512 }
513 
sugov_work(struct kthread_work * work)514 static void sugov_work(struct kthread_work *work)
515 {
516 	struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
517 	unsigned int freq;
518 	unsigned long flags;
519 
520 	/*
521 	 * Hold sg_policy->update_lock shortly to handle the case where:
522 	 * in case sg_policy->next_freq is read here, and then updated by
523 	 * sugov_deferred_update() just before work_in_progress is set to false
524 	 * here, we may miss queueing the new update.
525 	 *
526 	 * Note: If a work was queued after the update_lock is released,
527 	 * sugov_work() will just be called again by kthread_work code; and the
528 	 * request will be proceed before the sugov thread sleeps.
529 	 */
530 	raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
531 	freq = sg_policy->next_freq;
532 	sg_policy->work_in_progress = false;
533 	raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
534 
535 	mutex_lock(&sg_policy->work_lock);
536 	__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
537 	mutex_unlock(&sg_policy->work_lock);
538 }
539 
sugov_irq_work(struct irq_work * irq_work)540 static void sugov_irq_work(struct irq_work *irq_work)
541 {
542 	struct sugov_policy *sg_policy;
543 
544 	sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
545 
546 	kthread_queue_work(&sg_policy->worker, &sg_policy->work);
547 }
548 
549 /************************** sysfs interface ************************/
550 
551 static struct sugov_tunables *global_tunables;
552 static DEFINE_MUTEX(global_tunables_lock);
553 
to_sugov_tunables(struct gov_attr_set * attr_set)554 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
555 {
556 	return container_of(attr_set, struct sugov_tunables, attr_set);
557 }
558 
rate_limit_us_show(struct gov_attr_set * attr_set,char * buf)559 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
560 {
561 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
562 
563 	return sprintf(buf, "%u\n", tunables->rate_limit_us);
564 }
565 
566 static ssize_t
rate_limit_us_store(struct gov_attr_set * attr_set,const char * buf,size_t count)567 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
568 {
569 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
570 	struct sugov_policy *sg_policy;
571 	unsigned int rate_limit_us;
572 
573 	if (kstrtouint(buf, 10, &rate_limit_us))
574 		return -EINVAL;
575 
576 	tunables->rate_limit_us = rate_limit_us;
577 
578 	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
579 		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
580 
581 	return count;
582 }
583 
584 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
585 
586 static struct attribute *sugov_attrs[] = {
587 	&rate_limit_us.attr,
588 	NULL
589 };
590 ATTRIBUTE_GROUPS(sugov);
591 
sugov_tunables_free(struct kobject * kobj)592 static void sugov_tunables_free(struct kobject *kobj)
593 {
594 	struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
595 
596 	kfree(to_sugov_tunables(attr_set));
597 }
598 
599 static const struct kobj_type sugov_tunables_ktype = {
600 	.default_groups = sugov_groups,
601 	.sysfs_ops = &governor_sysfs_ops,
602 	.release = &sugov_tunables_free,
603 };
604 
605 /********************** cpufreq governor interface *********************/
606 
607 struct cpufreq_governor schedutil_gov;
608 
sugov_policy_alloc(struct cpufreq_policy * policy)609 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
610 {
611 	struct sugov_policy *sg_policy;
612 
613 	sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
614 	if (!sg_policy)
615 		return NULL;
616 
617 	sg_policy->policy = policy;
618 	raw_spin_lock_init(&sg_policy->update_lock);
619 	return sg_policy;
620 }
621 
sugov_policy_free(struct sugov_policy * sg_policy)622 static void sugov_policy_free(struct sugov_policy *sg_policy)
623 {
624 	kfree(sg_policy);
625 }
626 
sugov_kthread_create(struct sugov_policy * sg_policy)627 static int sugov_kthread_create(struct sugov_policy *sg_policy)
628 {
629 	struct task_struct *thread;
630 	struct sched_attr attr = {
631 		.size		= sizeof(struct sched_attr),
632 		.sched_policy	= SCHED_DEADLINE,
633 		.sched_flags	= SCHED_FLAG_SUGOV,
634 		.sched_nice	= 0,
635 		.sched_priority	= 0,
636 		/*
637 		 * Fake (unused) bandwidth; workaround to "fix"
638 		 * priority inheritance.
639 		 */
640 		.sched_runtime	= NSEC_PER_MSEC,
641 		.sched_deadline = 10 * NSEC_PER_MSEC,
642 		.sched_period	= 10 * NSEC_PER_MSEC,
643 	};
644 	struct cpufreq_policy *policy = sg_policy->policy;
645 	int ret;
646 
647 	/* kthread only required for slow path */
648 	if (policy->fast_switch_enabled)
649 		return 0;
650 
651 	kthread_init_work(&sg_policy->work, sugov_work);
652 	kthread_init_worker(&sg_policy->worker);
653 	thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
654 				"sugov:%d",
655 				cpumask_first(policy->related_cpus));
656 	if (IS_ERR(thread)) {
657 		pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
658 		return PTR_ERR(thread);
659 	}
660 
661 	ret = sched_setattr_nocheck(thread, &attr);
662 	if (ret) {
663 		kthread_stop(thread);
664 		pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
665 		return ret;
666 	}
667 
668 	sg_policy->thread = thread;
669 	if (policy->dvfs_possible_from_any_cpu)
670 		set_cpus_allowed_ptr(thread, policy->related_cpus);
671 	else
672 		kthread_bind_mask(thread, policy->related_cpus);
673 
674 	init_irq_work(&sg_policy->irq_work, sugov_irq_work);
675 	mutex_init(&sg_policy->work_lock);
676 
677 	wake_up_process(thread);
678 
679 	return 0;
680 }
681 
sugov_kthread_stop(struct sugov_policy * sg_policy)682 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
683 {
684 	/* kthread only required for slow path */
685 	if (sg_policy->policy->fast_switch_enabled)
686 		return;
687 
688 	kthread_flush_worker(&sg_policy->worker);
689 	kthread_stop(sg_policy->thread);
690 	mutex_destroy(&sg_policy->work_lock);
691 }
692 
sugov_tunables_alloc(struct sugov_policy * sg_policy)693 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
694 {
695 	struct sugov_tunables *tunables;
696 
697 	tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
698 	if (tunables) {
699 		gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
700 		if (!have_governor_per_policy())
701 			global_tunables = tunables;
702 	}
703 	return tunables;
704 }
705 
sugov_clear_global_tunables(void)706 static void sugov_clear_global_tunables(void)
707 {
708 	if (!have_governor_per_policy())
709 		global_tunables = NULL;
710 }
711 
sugov_init(struct cpufreq_policy * policy)712 static int sugov_init(struct cpufreq_policy *policy)
713 {
714 	struct sugov_policy *sg_policy;
715 	struct sugov_tunables *tunables;
716 	int ret = 0;
717 
718 	/* State should be equivalent to EXIT */
719 	if (policy->governor_data)
720 		return -EBUSY;
721 
722 	cpufreq_enable_fast_switch(policy);
723 
724 	sg_policy = sugov_policy_alloc(policy);
725 	if (!sg_policy) {
726 		ret = -ENOMEM;
727 		goto disable_fast_switch;
728 	}
729 
730 	ret = sugov_kthread_create(sg_policy);
731 	if (ret)
732 		goto free_sg_policy;
733 
734 	mutex_lock(&global_tunables_lock);
735 
736 	if (global_tunables) {
737 		if (WARN_ON(have_governor_per_policy())) {
738 			ret = -EINVAL;
739 			goto stop_kthread;
740 		}
741 		policy->governor_data = sg_policy;
742 		sg_policy->tunables = global_tunables;
743 
744 		gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
745 		goto out;
746 	}
747 
748 	tunables = sugov_tunables_alloc(sg_policy);
749 	if (!tunables) {
750 		ret = -ENOMEM;
751 		goto stop_kthread;
752 	}
753 
754 	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
755 
756 	policy->governor_data = sg_policy;
757 	sg_policy->tunables = tunables;
758 
759 	ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
760 				   get_governor_parent_kobj(policy), "%s",
761 				   schedutil_gov.name);
762 	if (ret)
763 		goto fail;
764 
765 out:
766 	/*
767 	 * Schedutil is the preferred governor for EAS, so rebuild sched domains
768 	 * on governor changes to make sure the scheduler knows about them.
769 	 */
770 	em_rebuild_sched_domains();
771 	mutex_unlock(&global_tunables_lock);
772 	return 0;
773 
774 fail:
775 	kobject_put(&tunables->attr_set.kobj);
776 	policy->governor_data = NULL;
777 	sugov_clear_global_tunables();
778 
779 stop_kthread:
780 	sugov_kthread_stop(sg_policy);
781 	mutex_unlock(&global_tunables_lock);
782 
783 free_sg_policy:
784 	sugov_policy_free(sg_policy);
785 
786 disable_fast_switch:
787 	cpufreq_disable_fast_switch(policy);
788 
789 	pr_err("initialization failed (error %d)\n", ret);
790 	return ret;
791 }
792 
sugov_exit(struct cpufreq_policy * policy)793 static void sugov_exit(struct cpufreq_policy *policy)
794 {
795 	struct sugov_policy *sg_policy = policy->governor_data;
796 	struct sugov_tunables *tunables = sg_policy->tunables;
797 	unsigned int count;
798 
799 	mutex_lock(&global_tunables_lock);
800 
801 	count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
802 	policy->governor_data = NULL;
803 	if (!count)
804 		sugov_clear_global_tunables();
805 
806 	mutex_unlock(&global_tunables_lock);
807 
808 	sugov_kthread_stop(sg_policy);
809 	sugov_policy_free(sg_policy);
810 	cpufreq_disable_fast_switch(policy);
811 
812 	em_rebuild_sched_domains();
813 }
814 
sugov_start(struct cpufreq_policy * policy)815 static int sugov_start(struct cpufreq_policy *policy)
816 {
817 	struct sugov_policy *sg_policy = policy->governor_data;
818 	void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
819 	unsigned int cpu;
820 
821 	sg_policy->freq_update_delay_ns	= sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
822 	sg_policy->last_freq_update_time	= 0;
823 	sg_policy->next_freq			= 0;
824 	sg_policy->work_in_progress		= false;
825 	sg_policy->limits_changed		= false;
826 	sg_policy->cached_raw_freq		= 0;
827 
828 	sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
829 
830 	if (policy_is_shared(policy))
831 		uu = sugov_update_shared;
832 	else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
833 		uu = sugov_update_single_perf;
834 	else
835 		uu = sugov_update_single_freq;
836 
837 	for_each_cpu(cpu, policy->cpus) {
838 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
839 
840 		memset(sg_cpu, 0, sizeof(*sg_cpu));
841 		sg_cpu->cpu = cpu;
842 		sg_cpu->sg_policy = sg_policy;
843 		cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
844 	}
845 	return 0;
846 }
847 
sugov_stop(struct cpufreq_policy * policy)848 static void sugov_stop(struct cpufreq_policy *policy)
849 {
850 	struct sugov_policy *sg_policy = policy->governor_data;
851 	unsigned int cpu;
852 
853 	for_each_cpu(cpu, policy->cpus)
854 		cpufreq_remove_update_util_hook(cpu);
855 
856 	synchronize_rcu();
857 
858 	if (!policy->fast_switch_enabled) {
859 		irq_work_sync(&sg_policy->irq_work);
860 		kthread_cancel_work_sync(&sg_policy->work);
861 	}
862 }
863 
sugov_limits(struct cpufreq_policy * policy)864 static void sugov_limits(struct cpufreq_policy *policy)
865 {
866 	struct sugov_policy *sg_policy = policy->governor_data;
867 
868 	if (!policy->fast_switch_enabled) {
869 		mutex_lock(&sg_policy->work_lock);
870 		cpufreq_policy_apply_limits(policy);
871 		mutex_unlock(&sg_policy->work_lock);
872 	}
873 
874 	sg_policy->limits_changed = true;
875 }
876 
877 struct cpufreq_governor schedutil_gov = {
878 	.name			= "schedutil",
879 	.owner			= THIS_MODULE,
880 	.flags			= CPUFREQ_GOV_DYNAMIC_SWITCHING,
881 	.init			= sugov_init,
882 	.exit			= sugov_exit,
883 	.start			= sugov_start,
884 	.stop			= sugov_stop,
885 	.limits			= sugov_limits,
886 };
887 
888 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
cpufreq_default_governor(void)889 struct cpufreq_governor *cpufreq_default_governor(void)
890 {
891 	return &schedutil_gov;
892 }
893 #endif
894 
895 cpufreq_governor_init(schedutil_gov);
896