xref: /linux/net/wireless/scan.c (revision 8f7aa3d3c7323f4ca2768a9e74ebbe359c4f8f88)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2025 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include <kunit/visibility.h>
24 #include "core.h"
25 #include "nl80211.h"
26 #include "wext-compat.h"
27 #include "rdev-ops.h"
28 
29 /**
30  * DOC: BSS tree/list structure
31  *
32  * At the top level, the BSS list is kept in both a list in each
33  * registered device (@bss_list) as well as an RB-tree for faster
34  * lookup. In the RB-tree, entries can be looked up using their
35  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36  * for other BSSes.
37  *
38  * Due to the possibility of hidden SSIDs, there's a second level
39  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40  * The hidden_list connects all BSSes belonging to a single AP
41  * that has a hidden SSID, and connects beacon and probe response
42  * entries. For a probe response entry for a hidden SSID, the
43  * hidden_beacon_bss pointer points to the BSS struct holding the
44  * beacon's information.
45  *
46  * Reference counting is done for all these references except for
47  * the hidden_list, so that a beacon BSS struct that is otherwise
48  * not referenced has one reference for being on the bss_list and
49  * one for each probe response entry that points to it using the
50  * hidden_beacon_bss pointer. When a BSS struct that has such a
51  * pointer is get/put, the refcount update is also propagated to
52  * the referenced struct, this ensure that it cannot get removed
53  * while somebody is using the probe response version.
54  *
55  * Note that the hidden_beacon_bss pointer never changes, due to
56  * the reference counting. Therefore, no locking is needed for
57  * it.
58  *
59  * Also note that the hidden_beacon_bss pointer is only relevant
60  * if the driver uses something other than the IEs, e.g. private
61  * data stored in the BSS struct, since the beacon IEs are
62  * also linked into the probe response struct.
63  */
64 
65 /*
66  * Limit the number of BSS entries stored in mac80211. Each one is
67  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68  * If somebody wants to really attack this though, they'd likely
69  * use small beacons, and only one type of frame, limiting each of
70  * the entries to a much smaller size (in order to generate more
71  * entries in total, so overhead is bigger.)
72  */
73 static int bss_entries_limit = 1000;
74 module_param(bss_entries_limit, int, 0644);
75 MODULE_PARM_DESC(bss_entries_limit,
76                  "limit to number of scan BSS entries (per wiphy, default 1000)");
77 
78 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
79 
80 static void bss_free(struct cfg80211_internal_bss *bss)
81 {
82 	struct cfg80211_bss_ies *ies;
83 
84 	if (WARN_ON(atomic_read(&bss->hold)))
85 		return;
86 
87 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
88 	if (ies && !bss->pub.hidden_beacon_bss)
89 		kfree_rcu(ies, rcu_head);
90 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
91 	if (ies)
92 		kfree_rcu(ies, rcu_head);
93 
94 	/*
95 	 * This happens when the module is removed, it doesn't
96 	 * really matter any more save for completeness
97 	 */
98 	if (!list_empty(&bss->hidden_list))
99 		list_del(&bss->hidden_list);
100 
101 	kfree(bss);
102 }
103 
104 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
105 			       struct cfg80211_internal_bss *bss)
106 {
107 	lockdep_assert_held(&rdev->bss_lock);
108 
109 	bss->refcount++;
110 
111 	if (bss->pub.hidden_beacon_bss)
112 		bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
113 
114 	if (bss->pub.transmitted_bss)
115 		bss_from_pub(bss->pub.transmitted_bss)->refcount++;
116 }
117 
118 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
119 			       struct cfg80211_internal_bss *bss)
120 {
121 	lockdep_assert_held(&rdev->bss_lock);
122 
123 	if (bss->pub.hidden_beacon_bss) {
124 		struct cfg80211_internal_bss *hbss;
125 
126 		hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
127 		hbss->refcount--;
128 		if (hbss->refcount == 0)
129 			bss_free(hbss);
130 	}
131 
132 	if (bss->pub.transmitted_bss) {
133 		struct cfg80211_internal_bss *tbss;
134 
135 		tbss = bss_from_pub(bss->pub.transmitted_bss);
136 		tbss->refcount--;
137 		if (tbss->refcount == 0)
138 			bss_free(tbss);
139 	}
140 
141 	bss->refcount--;
142 	if (bss->refcount == 0)
143 		bss_free(bss);
144 }
145 
146 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147 				  struct cfg80211_internal_bss *bss)
148 {
149 	lockdep_assert_held(&rdev->bss_lock);
150 
151 	if (!list_empty(&bss->hidden_list)) {
152 		/*
153 		 * don't remove the beacon entry if it has
154 		 * probe responses associated with it
155 		 */
156 		if (!bss->pub.hidden_beacon_bss)
157 			return false;
158 		/*
159 		 * if it's a probe response entry break its
160 		 * link to the other entries in the group
161 		 */
162 		list_del_init(&bss->hidden_list);
163 	}
164 
165 	list_del_init(&bss->list);
166 	list_del_init(&bss->pub.nontrans_list);
167 	rb_erase(&bss->rbn, &rdev->bss_tree);
168 	rdev->bss_entries--;
169 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
171 		  rdev->bss_entries, list_empty(&rdev->bss_list));
172 	bss_ref_put(rdev, bss);
173 	return true;
174 }
175 
176 bool cfg80211_is_element_inherited(const struct element *elem,
177 				   const struct element *non_inherit_elem)
178 {
179 	u8 id_len, ext_id_len, i, loop_len, id;
180 	const u8 *list;
181 
182 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183 		return false;
184 
185 	if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
186 	    elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
187 		return false;
188 
189 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
190 		return true;
191 
192 	/*
193 	 * non inheritance element format is:
194 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
195 	 * Both lists are optional. Both lengths are mandatory.
196 	 * This means valid length is:
197 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
198 	 */
199 	id_len = non_inherit_elem->data[1];
200 	if (non_inherit_elem->datalen < 3 + id_len)
201 		return true;
202 
203 	ext_id_len = non_inherit_elem->data[2 + id_len];
204 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
205 		return true;
206 
207 	if (elem->id == WLAN_EID_EXTENSION) {
208 		if (!ext_id_len)
209 			return true;
210 		loop_len = ext_id_len;
211 		list = &non_inherit_elem->data[3 + id_len];
212 		id = elem->data[0];
213 	} else {
214 		if (!id_len)
215 			return true;
216 		loop_len = id_len;
217 		list = &non_inherit_elem->data[2];
218 		id = elem->id;
219 	}
220 
221 	for (i = 0; i < loop_len; i++) {
222 		if (list[i] == id)
223 			return false;
224 	}
225 
226 	return true;
227 }
228 EXPORT_SYMBOL(cfg80211_is_element_inherited);
229 
230 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
231 					    const u8 *ie, size_t ie_len,
232 					    u8 **pos, u8 *buf, size_t buf_len)
233 {
234 	if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
235 		    elem->data + elem->datalen > ie + ie_len))
236 		return 0;
237 
238 	if (elem->datalen + 2 > buf + buf_len - *pos)
239 		return 0;
240 
241 	memcpy(*pos, elem, elem->datalen + 2);
242 	*pos += elem->datalen + 2;
243 
244 	/* Finish if it is not fragmented  */
245 	if (elem->datalen != 255)
246 		return *pos - buf;
247 
248 	ie_len = ie + ie_len - elem->data - elem->datalen;
249 	ie = (const u8 *)elem->data + elem->datalen;
250 
251 	for_each_element(elem, ie, ie_len) {
252 		if (elem->id != WLAN_EID_FRAGMENT)
253 			break;
254 
255 		if (elem->datalen + 2 > buf + buf_len - *pos)
256 			return 0;
257 
258 		memcpy(*pos, elem, elem->datalen + 2);
259 		*pos += elem->datalen + 2;
260 
261 		if (elem->datalen != 255)
262 			break;
263 	}
264 
265 	return *pos - buf;
266 }
267 
268 VISIBLE_IF_CFG80211_KUNIT size_t
269 cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
270 		    const u8 *subie, size_t subie_len,
271 		    u8 *new_ie, size_t new_ie_len)
272 {
273 	const struct element *non_inherit_elem, *parent, *sub;
274 	u8 *pos = new_ie;
275 	const u8 *mbssid_index_ie;
276 	u8 id, ext_id, bssid_index = 255;
277 	unsigned int match_len;
278 
279 	non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
280 						  subie, subie_len);
281 
282 	mbssid_index_ie = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, subie,
283 					   subie_len);
284 	if (mbssid_index_ie && mbssid_index_ie[1] > 0 &&
285 	    mbssid_index_ie[2] > 0 && mbssid_index_ie[2] <= 46)
286 		bssid_index = mbssid_index_ie[2];
287 
288 	/* We copy the elements one by one from the parent to the generated
289 	 * elements.
290 	 * If they are not inherited (included in subie or in the non
291 	 * inheritance element), then we copy all occurrences the first time
292 	 * we see this element type.
293 	 */
294 	for_each_element(parent, ie, ielen) {
295 		if (parent->id == WLAN_EID_FRAGMENT)
296 			continue;
297 
298 		if (parent->id == WLAN_EID_EXTENSION) {
299 			if (parent->datalen < 1)
300 				continue;
301 
302 			id = WLAN_EID_EXTENSION;
303 			ext_id = parent->data[0];
304 			match_len = 1;
305 		} else {
306 			id = parent->id;
307 			match_len = 0;
308 		}
309 
310 		/* Find first occurrence in subie */
311 		sub = cfg80211_find_elem_match(id, subie, subie_len,
312 					       &ext_id, match_len, 0);
313 
314 		/* Copy from parent if not in subie and inherited */
315 		if (!sub &&
316 		    cfg80211_is_element_inherited(parent, non_inherit_elem)) {
317 			if (!cfg80211_copy_elem_with_frags(parent,
318 							   ie, ielen,
319 							   &pos, new_ie,
320 							   new_ie_len))
321 				return 0;
322 
323 			continue;
324 		}
325 
326 		/* For ML probe response, match the MLE in the frame body with
327 		 * MLD id being 'bssid_index'
328 		 */
329 		if (parent->id == WLAN_EID_EXTENSION && parent->datalen > 1 &&
330 		    parent->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK &&
331 		    bssid_index == ieee80211_mle_get_mld_id(parent->data + 1)) {
332 			if (!cfg80211_copy_elem_with_frags(parent,
333 							   ie, ielen,
334 							   &pos, new_ie,
335 							   new_ie_len))
336 				return 0;
337 
338 			/* Continue here to prevent processing the MLE in
339 			 * sub-element, which AP MLD should not carry
340 			 */
341 			continue;
342 		}
343 
344 		/* Already copied if an earlier element had the same type */
345 		if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
346 					     &ext_id, match_len, 0))
347 			continue;
348 
349 		/* Not inheriting, copy all similar elements from subie */
350 		while (sub) {
351 			if (!cfg80211_copy_elem_with_frags(sub,
352 							   subie, subie_len,
353 							   &pos, new_ie,
354 							   new_ie_len))
355 				return 0;
356 
357 			sub = cfg80211_find_elem_match(id,
358 						       sub->data + sub->datalen,
359 						       subie_len + subie -
360 						       (sub->data +
361 							sub->datalen),
362 						       &ext_id, match_len, 0);
363 		}
364 	}
365 
366 	/* The above misses elements that are included in subie but not in the
367 	 * parent, so do a pass over subie and append those.
368 	 * Skip the non-tx BSSID caps and non-inheritance element.
369 	 */
370 	for_each_element(sub, subie, subie_len) {
371 		if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
372 			continue;
373 
374 		if (sub->id == WLAN_EID_FRAGMENT)
375 			continue;
376 
377 		if (sub->id == WLAN_EID_EXTENSION) {
378 			if (sub->datalen < 1)
379 				continue;
380 
381 			id = WLAN_EID_EXTENSION;
382 			ext_id = sub->data[0];
383 			match_len = 1;
384 
385 			if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
386 				continue;
387 		} else {
388 			id = sub->id;
389 			match_len = 0;
390 		}
391 
392 		/* Processed if one was included in the parent */
393 		if (cfg80211_find_elem_match(id, ie, ielen,
394 					     &ext_id, match_len, 0))
395 			continue;
396 
397 		if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
398 						   &pos, new_ie, new_ie_len))
399 			return 0;
400 	}
401 
402 	return pos - new_ie;
403 }
404 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
405 
406 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
407 		   const u8 *ssid, size_t ssid_len)
408 {
409 	const struct cfg80211_bss_ies *ies;
410 	const struct element *ssid_elem;
411 
412 	if (bssid && !ether_addr_equal(a->bssid, bssid))
413 		return false;
414 
415 	if (!ssid)
416 		return true;
417 
418 	ies = rcu_access_pointer(a->ies);
419 	if (!ies)
420 		return false;
421 	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
422 	if (!ssid_elem)
423 		return false;
424 	if (ssid_elem->datalen != ssid_len)
425 		return false;
426 	return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
427 }
428 
429 static int
430 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
431 			   struct cfg80211_bss *nontrans_bss)
432 {
433 	const struct element *ssid_elem;
434 	struct cfg80211_bss *bss = NULL;
435 
436 	rcu_read_lock();
437 	ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
438 	if (!ssid_elem) {
439 		rcu_read_unlock();
440 		return -EINVAL;
441 	}
442 
443 	/* check if nontrans_bss is in the list */
444 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
445 		if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
446 			   ssid_elem->datalen)) {
447 			rcu_read_unlock();
448 			return 0;
449 		}
450 	}
451 
452 	rcu_read_unlock();
453 
454 	/*
455 	 * This is a bit weird - it's not on the list, but already on another
456 	 * one! The only way that could happen is if there's some BSSID/SSID
457 	 * shared by multiple APs in their multi-BSSID profiles, potentially
458 	 * with hidden SSID mixed in ... ignore it.
459 	 */
460 	if (!list_empty(&nontrans_bss->nontrans_list))
461 		return -EINVAL;
462 
463 	/* add to the list */
464 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
465 	return 0;
466 }
467 
468 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
469 				  unsigned long expire_time)
470 {
471 	struct cfg80211_internal_bss *bss, *tmp;
472 	bool expired = false;
473 
474 	lockdep_assert_held(&rdev->bss_lock);
475 
476 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
477 		if (atomic_read(&bss->hold))
478 			continue;
479 		if (!time_after(expire_time, bss->ts))
480 			continue;
481 
482 		if (__cfg80211_unlink_bss(rdev, bss))
483 			expired = true;
484 	}
485 
486 	if (expired)
487 		rdev->bss_generation++;
488 }
489 
490 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
491 {
492 	struct cfg80211_internal_bss *bss, *oldest = NULL;
493 	bool ret;
494 
495 	lockdep_assert_held(&rdev->bss_lock);
496 
497 	list_for_each_entry(bss, &rdev->bss_list, list) {
498 		if (atomic_read(&bss->hold))
499 			continue;
500 
501 		if (!list_empty(&bss->hidden_list) &&
502 		    !bss->pub.hidden_beacon_bss)
503 			continue;
504 
505 		if (oldest && time_before(oldest->ts, bss->ts))
506 			continue;
507 		oldest = bss;
508 	}
509 
510 	if (WARN_ON(!oldest))
511 		return false;
512 
513 	/*
514 	 * The callers make sure to increase rdev->bss_generation if anything
515 	 * gets removed (and a new entry added), so there's no need to also do
516 	 * it here.
517 	 */
518 
519 	ret = __cfg80211_unlink_bss(rdev, oldest);
520 	WARN_ON(!ret);
521 	return ret;
522 }
523 
524 static u8 cfg80211_parse_bss_param(u8 data,
525 				   struct cfg80211_colocated_ap *coloc_ap)
526 {
527 	coloc_ap->oct_recommended =
528 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
529 	coloc_ap->same_ssid =
530 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
531 	coloc_ap->multi_bss =
532 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
533 	coloc_ap->transmitted_bssid =
534 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
535 	coloc_ap->unsolicited_probe =
536 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
537 	coloc_ap->colocated_ess =
538 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
539 
540 	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
541 }
542 
543 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
544 				    const struct element **elem, u32 *s_ssid)
545 {
546 
547 	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
548 	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
549 		return -EINVAL;
550 
551 	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
552 	return 0;
553 }
554 
555 VISIBLE_IF_CFG80211_KUNIT void
556 cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
557 {
558 	struct cfg80211_colocated_ap *ap, *tmp_ap;
559 
560 	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
561 		list_del(&ap->list);
562 		kfree(ap);
563 	}
564 }
565 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
566 
567 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
568 				  const u8 *pos, u8 length,
569 				  const struct element *ssid_elem,
570 				  u32 s_ssid_tmp)
571 {
572 	u8 bss_params;
573 
574 	entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
575 
576 	/* The length is already verified by the caller to contain bss_params */
577 	if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
578 		struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
579 
580 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
581 		entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
582 		entry->short_ssid_valid = true;
583 
584 		bss_params = tbtt_info->bss_params;
585 
586 		/* Ignore disabled links */
587 		if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
588 			if (le16_get_bits(tbtt_info->mld_params.params,
589 					  IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
590 				return -EINVAL;
591 		}
592 
593 		if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
594 					  psd_20))
595 			entry->psd_20 = tbtt_info->psd_20;
596 	} else {
597 		struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
598 
599 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
600 
601 		bss_params = tbtt_info->bss_params;
602 
603 		if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
604 					  psd_20))
605 			entry->psd_20 = tbtt_info->psd_20;
606 	}
607 
608 	/* ignore entries with invalid BSSID */
609 	if (!is_valid_ether_addr(entry->bssid))
610 		return -EINVAL;
611 
612 	/* skip non colocated APs */
613 	if (!cfg80211_parse_bss_param(bss_params, entry))
614 		return -EINVAL;
615 
616 	/* no information about the short ssid. Consider the entry valid
617 	 * for now. It would later be dropped in case there are explicit
618 	 * SSIDs that need to be matched
619 	 */
620 	if (!entry->same_ssid && !entry->short_ssid_valid)
621 		return 0;
622 
623 	if (entry->same_ssid) {
624 		entry->short_ssid = s_ssid_tmp;
625 		entry->short_ssid_valid = true;
626 
627 		/*
628 		 * This is safe because we validate datalen in
629 		 * cfg80211_parse_colocated_ap(), before calling this
630 		 * function.
631 		 */
632 		memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
633 		entry->ssid_len = ssid_elem->datalen;
634 	}
635 
636 	return 0;
637 }
638 
639 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
640 		       enum cfg80211_rnr_iter_ret
641 		       (*iter)(void *data, u8 type,
642 			       const struct ieee80211_neighbor_ap_info *info,
643 			       const u8 *tbtt_info, u8 tbtt_info_len),
644 		       void *iter_data)
645 {
646 	const struct element *rnr;
647 	const u8 *pos, *end;
648 
649 	for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
650 			    elems, elems_len) {
651 		const struct ieee80211_neighbor_ap_info *info;
652 
653 		pos = rnr->data;
654 		end = rnr->data + rnr->datalen;
655 
656 		/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
657 		while (sizeof(*info) <= end - pos) {
658 			u8 length, i, count;
659 			u8 type;
660 
661 			info = (void *)pos;
662 			count = u8_get_bits(info->tbtt_info_hdr,
663 					    IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
664 				1;
665 			length = info->tbtt_info_len;
666 
667 			pos += sizeof(*info);
668 
669 			if (count * length > end - pos)
670 				return false;
671 
672 			type = u8_get_bits(info->tbtt_info_hdr,
673 					   IEEE80211_AP_INFO_TBTT_HDR_TYPE);
674 
675 			for (i = 0; i < count; i++) {
676 				switch (iter(iter_data, type, info,
677 					     pos, length)) {
678 				case RNR_ITER_CONTINUE:
679 					break;
680 				case RNR_ITER_BREAK:
681 					return true;
682 				case RNR_ITER_ERROR:
683 					return false;
684 				}
685 
686 				pos += length;
687 			}
688 		}
689 
690 		if (pos != end)
691 			return false;
692 	}
693 
694 	return true;
695 }
696 EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
697 
698 struct colocated_ap_data {
699 	const struct element *ssid_elem;
700 	struct list_head ap_list;
701 	u32 s_ssid_tmp;
702 	int n_coloc;
703 };
704 
705 static enum cfg80211_rnr_iter_ret
706 cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
707 				 const struct ieee80211_neighbor_ap_info *info,
708 				 const u8 *tbtt_info, u8 tbtt_info_len)
709 {
710 	struct colocated_ap_data *data = _data;
711 	struct cfg80211_colocated_ap *entry;
712 	enum nl80211_band band;
713 
714 	if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
715 		return RNR_ITER_CONTINUE;
716 
717 	if (!ieee80211_operating_class_to_band(info->op_class, &band))
718 		return RNR_ITER_CONTINUE;
719 
720 	/* TBTT info must include bss param + BSSID + (short SSID or
721 	 * same_ssid bit to be set). Ignore other options, and move to
722 	 * the next AP info
723 	 */
724 	if (band != NL80211_BAND_6GHZ ||
725 	    !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
726 					   bss_params) ||
727 	      tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
728 	      tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
729 					   bss_params)))
730 		return RNR_ITER_CONTINUE;
731 
732 	entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
733 	if (!entry)
734 		return RNR_ITER_ERROR;
735 
736 	entry->center_freq =
737 		ieee80211_channel_to_frequency(info->channel, band);
738 
739 	if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len,
740 				    data->ssid_elem, data->s_ssid_tmp)) {
741 		struct cfg80211_colocated_ap *tmp;
742 
743 		/* Don't add duplicate BSSIDs on the same channel. */
744 		list_for_each_entry(tmp, &data->ap_list, list) {
745 			if (ether_addr_equal(tmp->bssid, entry->bssid) &&
746 			    tmp->center_freq == entry->center_freq) {
747 				kfree(entry);
748 				return RNR_ITER_CONTINUE;
749 			}
750 		}
751 
752 		data->n_coloc++;
753 		list_add_tail(&entry->list, &data->ap_list);
754 	} else {
755 		kfree(entry);
756 	}
757 
758 	return RNR_ITER_CONTINUE;
759 }
760 
761 VISIBLE_IF_CFG80211_KUNIT int
762 cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
763 			    struct list_head *list)
764 {
765 	struct colocated_ap_data data = {};
766 	int ret;
767 
768 	INIT_LIST_HEAD(&data.ap_list);
769 
770 	ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp);
771 	if (ret)
772 		return 0;
773 
774 	if (!cfg80211_iter_rnr(ies->data, ies->len,
775 			       cfg80211_parse_colocated_ap_iter, &data)) {
776 		cfg80211_free_coloc_ap_list(&data.ap_list);
777 		return 0;
778 	}
779 
780 	list_splice_tail(&data.ap_list, list);
781 	return data.n_coloc;
782 }
783 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
784 
785 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
786 				       struct ieee80211_channel *chan,
787 				       bool add_to_6ghz)
788 {
789 	int i;
790 	u32 n_channels = request->n_channels;
791 	struct cfg80211_scan_6ghz_params *params =
792 		&request->scan_6ghz_params[request->n_6ghz_params];
793 
794 	for (i = 0; i < n_channels; i++) {
795 		if (request->channels[i] == chan) {
796 			if (add_to_6ghz)
797 				params->channel_idx = i;
798 			return;
799 		}
800 	}
801 
802 	request->n_channels++;
803 	request->channels[n_channels] = chan;
804 	if (add_to_6ghz)
805 		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
806 			n_channels;
807 }
808 
809 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
810 				     struct cfg80211_scan_request *request)
811 {
812 	int i;
813 	u32 s_ssid;
814 
815 	for (i = 0; i < request->n_ssids; i++) {
816 		/* wildcard ssid in the scan request */
817 		if (!request->ssids[i].ssid_len) {
818 			if (ap->multi_bss && !ap->transmitted_bssid)
819 				continue;
820 
821 			return true;
822 		}
823 
824 		if (ap->ssid_len &&
825 		    ap->ssid_len == request->ssids[i].ssid_len) {
826 			if (!memcmp(request->ssids[i].ssid, ap->ssid,
827 				    ap->ssid_len))
828 				return true;
829 		} else if (ap->short_ssid_valid) {
830 			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
831 					   request->ssids[i].ssid_len);
832 
833 			if (ap->short_ssid == s_ssid)
834 				return true;
835 		}
836 	}
837 
838 	return false;
839 }
840 
841 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev,
842 			      bool first_part)
843 {
844 	u8 i;
845 	struct cfg80211_colocated_ap *ap;
846 	int n_channels, count = 0, err;
847 	struct cfg80211_scan_request_int *request, *rdev_req = rdev->scan_req;
848 	LIST_HEAD(coloc_ap_list);
849 	bool need_scan_psc = true;
850 	const struct ieee80211_sband_iftype_data *iftd;
851 	size_t size, offs_ssids, offs_6ghz_params, offs_ies;
852 
853 	rdev_req->req.scan_6ghz = true;
854 	rdev_req->req.first_part = first_part;
855 
856 	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
857 		return -EOPNOTSUPP;
858 
859 	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
860 					       rdev_req->req.wdev->iftype);
861 	if (!iftd || !iftd->he_cap.has_he)
862 		return -EOPNOTSUPP;
863 
864 	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
865 
866 	if (rdev_req->req.flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
867 		struct cfg80211_internal_bss *intbss;
868 
869 		spin_lock_bh(&rdev->bss_lock);
870 		list_for_each_entry(intbss, &rdev->bss_list, list) {
871 			struct cfg80211_bss *res = &intbss->pub;
872 			const struct cfg80211_bss_ies *ies;
873 			const struct element *ssid_elem;
874 			struct cfg80211_colocated_ap *entry;
875 			u32 s_ssid_tmp;
876 			int ret;
877 
878 			ies = rcu_access_pointer(res->ies);
879 			count += cfg80211_parse_colocated_ap(ies,
880 							     &coloc_ap_list);
881 
882 			/* In case the scan request specified a specific BSSID
883 			 * and the BSS is found and operating on 6GHz band then
884 			 * add this AP to the collocated APs list.
885 			 * This is relevant for ML probe requests when the lower
886 			 * band APs have not been discovered.
887 			 */
888 			if (is_broadcast_ether_addr(rdev_req->req.bssid) ||
889 			    !ether_addr_equal(rdev_req->req.bssid, res->bssid) ||
890 			    res->channel->band != NL80211_BAND_6GHZ)
891 				continue;
892 
893 			ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
894 						       &s_ssid_tmp);
895 			if (ret)
896 				continue;
897 
898 			entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
899 			if (!entry)
900 				continue;
901 
902 			memcpy(entry->bssid, res->bssid, ETH_ALEN);
903 			entry->short_ssid = s_ssid_tmp;
904 			memcpy(entry->ssid, ssid_elem->data,
905 			       ssid_elem->datalen);
906 			entry->ssid_len = ssid_elem->datalen;
907 			entry->short_ssid_valid = true;
908 			entry->center_freq = res->channel->center_freq;
909 
910 			list_add_tail(&entry->list, &coloc_ap_list);
911 			count++;
912 		}
913 		spin_unlock_bh(&rdev->bss_lock);
914 	}
915 
916 	size = struct_size(request, req.channels, n_channels);
917 	offs_ssids = size;
918 	size += sizeof(*request->req.ssids) * rdev_req->req.n_ssids;
919 	offs_6ghz_params = size;
920 	size += sizeof(*request->req.scan_6ghz_params) * count;
921 	offs_ies = size;
922 	size += rdev_req->req.ie_len;
923 
924 	request = kzalloc(size, GFP_KERNEL);
925 	if (!request) {
926 		cfg80211_free_coloc_ap_list(&coloc_ap_list);
927 		return -ENOMEM;
928 	}
929 
930 	*request = *rdev_req;
931 	request->req.n_channels = 0;
932 	request->req.n_6ghz_params = 0;
933 	if (rdev_req->req.n_ssids) {
934 		/*
935 		 * Add the ssids from the parent scan request to the new
936 		 * scan request, so the driver would be able to use them
937 		 * in its probe requests to discover hidden APs on PSC
938 		 * channels.
939 		 */
940 		request->req.ssids = (void *)request + offs_ssids;
941 		memcpy(request->req.ssids, rdev_req->req.ssids,
942 		       sizeof(*request->req.ssids) * request->req.n_ssids);
943 	}
944 	request->req.scan_6ghz_params = (void *)request + offs_6ghz_params;
945 
946 	if (rdev_req->req.ie_len) {
947 		void *ie = (void *)request + offs_ies;
948 
949 		memcpy(ie, rdev_req->req.ie, rdev_req->req.ie_len);
950 		request->req.ie = ie;
951 	}
952 
953 	/*
954 	 * PSC channels should not be scanned in case of direct scan with 1 SSID
955 	 * and at least one of the reported co-located APs with same SSID
956 	 * indicating that all APs in the same ESS are co-located
957 	 */
958 	if (count &&
959 	    request->req.n_ssids == 1 &&
960 	    request->req.ssids[0].ssid_len) {
961 		list_for_each_entry(ap, &coloc_ap_list, list) {
962 			if (ap->colocated_ess &&
963 			    cfg80211_find_ssid_match(ap, &request->req)) {
964 				need_scan_psc = false;
965 				break;
966 			}
967 		}
968 	}
969 
970 	/*
971 	 * add to the scan request the channels that need to be scanned
972 	 * regardless of the collocated APs (PSC channels or all channels
973 	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
974 	 */
975 	for (i = 0; i < rdev_req->req.n_channels; i++) {
976 		if (rdev_req->req.channels[i]->band == NL80211_BAND_6GHZ &&
977 		    ((need_scan_psc &&
978 		      cfg80211_channel_is_psc(rdev_req->req.channels[i])) ||
979 		     !(rdev_req->req.flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
980 			cfg80211_scan_req_add_chan(&request->req,
981 						   rdev_req->req.channels[i],
982 						   false);
983 		}
984 	}
985 
986 	if (!(rdev_req->req.flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
987 		goto skip;
988 
989 	list_for_each_entry(ap, &coloc_ap_list, list) {
990 		bool found = false;
991 		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
992 			&request->req.scan_6ghz_params[request->req.n_6ghz_params];
993 		struct ieee80211_channel *chan =
994 			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
995 
996 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED ||
997 		    !cfg80211_wdev_channel_allowed(rdev_req->req.wdev, chan))
998 			continue;
999 
1000 		for (i = 0; i < rdev_req->req.n_channels; i++) {
1001 			if (rdev_req->req.channels[i] == chan)
1002 				found = true;
1003 		}
1004 
1005 		if (!found)
1006 			continue;
1007 
1008 		if (request->req.n_ssids > 0 &&
1009 		    !cfg80211_find_ssid_match(ap, &request->req))
1010 			continue;
1011 
1012 		if (!is_broadcast_ether_addr(request->req.bssid) &&
1013 		    !ether_addr_equal(request->req.bssid, ap->bssid))
1014 			continue;
1015 
1016 		if (!request->req.n_ssids && ap->multi_bss &&
1017 		    !ap->transmitted_bssid)
1018 			continue;
1019 
1020 		cfg80211_scan_req_add_chan(&request->req, chan, true);
1021 		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
1022 		scan_6ghz_params->short_ssid = ap->short_ssid;
1023 		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
1024 		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
1025 		scan_6ghz_params->psd_20 = ap->psd_20;
1026 
1027 		/*
1028 		 * If a PSC channel is added to the scan and 'need_scan_psc' is
1029 		 * set to false, then all the APs that the scan logic is
1030 		 * interested with on the channel are collocated and thus there
1031 		 * is no need to perform the initial PSC channel listen.
1032 		 */
1033 		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
1034 			scan_6ghz_params->psc_no_listen = true;
1035 
1036 		request->req.n_6ghz_params++;
1037 	}
1038 
1039 skip:
1040 	cfg80211_free_coloc_ap_list(&coloc_ap_list);
1041 
1042 	if (request->req.n_channels) {
1043 		struct cfg80211_scan_request_int *old = rdev->int_scan_req;
1044 
1045 		rdev->int_scan_req = request;
1046 
1047 		/*
1048 		 * If this scan follows a previous scan, save the scan start
1049 		 * info from the first part of the scan
1050 		 */
1051 		if (!first_part && !WARN_ON(!old))
1052 			rdev->int_scan_req->info = old->info;
1053 
1054 		err = rdev_scan(rdev, request);
1055 		if (err) {
1056 			rdev->int_scan_req = old;
1057 			kfree(request);
1058 		} else {
1059 			kfree(old);
1060 		}
1061 
1062 		return err;
1063 	}
1064 
1065 	kfree(request);
1066 	return -EINVAL;
1067 }
1068 
1069 int cfg80211_scan(struct cfg80211_registered_device *rdev)
1070 {
1071 	struct cfg80211_scan_request_int *request;
1072 	struct cfg80211_scan_request_int *rdev_req = rdev->scan_req;
1073 	u32 n_channels = 0, idx, i;
1074 
1075 	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) {
1076 		rdev_req->req.first_part = true;
1077 		return rdev_scan(rdev, rdev_req);
1078 	}
1079 
1080 	for (i = 0; i < rdev_req->req.n_channels; i++) {
1081 		if (rdev_req->req.channels[i]->band != NL80211_BAND_6GHZ)
1082 			n_channels++;
1083 	}
1084 
1085 	if (!n_channels)
1086 		return cfg80211_scan_6ghz(rdev, true);
1087 
1088 	request = kzalloc(struct_size(request, req.channels, n_channels),
1089 			  GFP_KERNEL);
1090 	if (!request)
1091 		return -ENOMEM;
1092 
1093 	*request = *rdev_req;
1094 	request->req.n_channels = n_channels;
1095 
1096 	for (i = idx = 0; i < rdev_req->req.n_channels; i++) {
1097 		if (rdev_req->req.channels[i]->band != NL80211_BAND_6GHZ)
1098 			request->req.channels[idx++] =
1099 				rdev_req->req.channels[i];
1100 	}
1101 
1102 	rdev_req->req.scan_6ghz = false;
1103 	rdev_req->req.first_part = true;
1104 	rdev->int_scan_req = request;
1105 	return rdev_scan(rdev, request);
1106 }
1107 
1108 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1109 			   bool send_message)
1110 {
1111 	struct cfg80211_scan_request_int *request, *rdev_req;
1112 	struct wireless_dev *wdev;
1113 	struct sk_buff *msg;
1114 #ifdef CONFIG_CFG80211_WEXT
1115 	union iwreq_data wrqu;
1116 #endif
1117 
1118 	lockdep_assert_held(&rdev->wiphy.mtx);
1119 
1120 	if (rdev->scan_msg) {
1121 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
1122 		rdev->scan_msg = NULL;
1123 		return;
1124 	}
1125 
1126 	rdev_req = rdev->scan_req;
1127 	if (!rdev_req)
1128 		return;
1129 
1130 	wdev = rdev_req->req.wdev;
1131 	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1132 
1133 	if (wdev_running(wdev) &&
1134 	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1135 	    !rdev_req->req.scan_6ghz && !request->info.aborted &&
1136 	    !cfg80211_scan_6ghz(rdev, false))
1137 		return;
1138 
1139 	/*
1140 	 * This must be before sending the other events!
1141 	 * Otherwise, wpa_supplicant gets completely confused with
1142 	 * wext events.
1143 	 */
1144 	if (wdev->netdev)
1145 		cfg80211_sme_scan_done(wdev->netdev);
1146 
1147 	if (!request->info.aborted &&
1148 	    request->req.flags & NL80211_SCAN_FLAG_FLUSH) {
1149 		/* flush entries from previous scans */
1150 		spin_lock_bh(&rdev->bss_lock);
1151 		__cfg80211_bss_expire(rdev, request->req.scan_start);
1152 		spin_unlock_bh(&rdev->bss_lock);
1153 	}
1154 
1155 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1156 
1157 #ifdef CONFIG_CFG80211_WEXT
1158 	if (wdev->netdev && !request->info.aborted) {
1159 		memset(&wrqu, 0, sizeof(wrqu));
1160 
1161 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1162 	}
1163 #endif
1164 
1165 	dev_put(wdev->netdev);
1166 
1167 	kfree(rdev->int_scan_req);
1168 	rdev->int_scan_req = NULL;
1169 
1170 	kfree(rdev->scan_req);
1171 	rdev->scan_req = NULL;
1172 
1173 	if (!send_message)
1174 		rdev->scan_msg = msg;
1175 	else
1176 		nl80211_send_scan_msg(rdev, msg);
1177 }
1178 
1179 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1180 {
1181 	___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1182 }
1183 
1184 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1185 			struct cfg80211_scan_info *info)
1186 {
1187 	struct cfg80211_scan_request_int *intreq =
1188 		container_of(request, struct cfg80211_scan_request_int, req);
1189 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(request->wiphy);
1190 	struct cfg80211_scan_info old_info = intreq->info;
1191 
1192 	trace_cfg80211_scan_done(intreq, info);
1193 	WARN_ON(intreq != rdev->scan_req &&
1194 		intreq != rdev->int_scan_req);
1195 
1196 	intreq->info = *info;
1197 
1198 	/*
1199 	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1200 	 * be of the first part. In such a case old_info.scan_start_tsf should
1201 	 * be non zero.
1202 	 */
1203 	if (request->scan_6ghz && old_info.scan_start_tsf) {
1204 		intreq->info.scan_start_tsf = old_info.scan_start_tsf;
1205 		memcpy(intreq->info.tsf_bssid, old_info.tsf_bssid,
1206 		       sizeof(intreq->info.tsf_bssid));
1207 	}
1208 
1209 	intreq->notified = true;
1210 	wiphy_work_queue(request->wiphy, &rdev->scan_done_wk);
1211 }
1212 EXPORT_SYMBOL(cfg80211_scan_done);
1213 
1214 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1215 				 struct cfg80211_sched_scan_request *req)
1216 {
1217 	lockdep_assert_held(&rdev->wiphy.mtx);
1218 
1219 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1220 }
1221 
1222 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1223 					struct cfg80211_sched_scan_request *req)
1224 {
1225 	lockdep_assert_held(&rdev->wiphy.mtx);
1226 
1227 	list_del_rcu(&req->list);
1228 	kfree_rcu(req, rcu_head);
1229 }
1230 
1231 static struct cfg80211_sched_scan_request *
1232 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1233 {
1234 	struct cfg80211_sched_scan_request *pos;
1235 
1236 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1237 				lockdep_is_held(&rdev->wiphy.mtx)) {
1238 		if (pos->reqid == reqid)
1239 			return pos;
1240 	}
1241 	return NULL;
1242 }
1243 
1244 /*
1245  * Determines if a scheduled scan request can be handled. When a legacy
1246  * scheduled scan is running no other scheduled scan is allowed regardless
1247  * whether the request is for legacy or multi-support scan. When a multi-support
1248  * scheduled scan is running a request for legacy scan is not allowed. In this
1249  * case a request for multi-support scan can be handled if resources are
1250  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1251  */
1252 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1253 				     bool want_multi)
1254 {
1255 	struct cfg80211_sched_scan_request *pos;
1256 	int i = 0;
1257 
1258 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1259 		/* request id zero means legacy in progress */
1260 		if (!i && !pos->reqid)
1261 			return -EINPROGRESS;
1262 		i++;
1263 	}
1264 
1265 	if (i) {
1266 		/* no legacy allowed when multi request(s) are active */
1267 		if (!want_multi)
1268 			return -EINPROGRESS;
1269 
1270 		/* resource limit reached */
1271 		if (i == rdev->wiphy.max_sched_scan_reqs)
1272 			return -ENOSPC;
1273 	}
1274 	return 0;
1275 }
1276 
1277 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1278 {
1279 	struct cfg80211_registered_device *rdev;
1280 	struct cfg80211_sched_scan_request *req, *tmp;
1281 
1282 	rdev = container_of(work, struct cfg80211_registered_device,
1283 			   sched_scan_res_wk);
1284 
1285 	guard(wiphy)(&rdev->wiphy);
1286 
1287 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1288 		if (req->report_results) {
1289 			req->report_results = false;
1290 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1291 				/* flush entries from previous scans */
1292 				spin_lock_bh(&rdev->bss_lock);
1293 				__cfg80211_bss_expire(rdev, req->scan_start);
1294 				spin_unlock_bh(&rdev->bss_lock);
1295 				req->scan_start = jiffies;
1296 			}
1297 			nl80211_send_sched_scan(req,
1298 						NL80211_CMD_SCHED_SCAN_RESULTS);
1299 		}
1300 	}
1301 }
1302 
1303 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1304 {
1305 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1306 	struct cfg80211_sched_scan_request *request;
1307 
1308 	trace_cfg80211_sched_scan_results(wiphy, reqid);
1309 	/* ignore if we're not scanning */
1310 
1311 	rcu_read_lock();
1312 	request = cfg80211_find_sched_scan_req(rdev, reqid);
1313 	if (request) {
1314 		request->report_results = true;
1315 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1316 	}
1317 	rcu_read_unlock();
1318 }
1319 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1320 
1321 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1322 {
1323 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1324 
1325 	lockdep_assert_held(&wiphy->mtx);
1326 
1327 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1328 
1329 	__cfg80211_stop_sched_scan(rdev, reqid, true);
1330 }
1331 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1332 
1333 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1334 {
1335 	guard(wiphy)(wiphy);
1336 
1337 	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1338 }
1339 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1340 
1341 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1342 				 struct cfg80211_sched_scan_request *req,
1343 				 bool driver_initiated)
1344 {
1345 	lockdep_assert_held(&rdev->wiphy.mtx);
1346 
1347 	if (!driver_initiated) {
1348 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1349 		if (err)
1350 			return err;
1351 	}
1352 
1353 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1354 
1355 	cfg80211_del_sched_scan_req(rdev, req);
1356 
1357 	return 0;
1358 }
1359 
1360 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1361 			       u64 reqid, bool driver_initiated)
1362 {
1363 	struct cfg80211_sched_scan_request *sched_scan_req;
1364 
1365 	lockdep_assert_held(&rdev->wiphy.mtx);
1366 
1367 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1368 	if (!sched_scan_req)
1369 		return -ENOENT;
1370 
1371 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1372 					    driver_initiated);
1373 }
1374 
1375 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1376                       unsigned long age_secs)
1377 {
1378 	struct cfg80211_internal_bss *bss;
1379 	unsigned long age_jiffies = secs_to_jiffies(age_secs);
1380 
1381 	spin_lock_bh(&rdev->bss_lock);
1382 	list_for_each_entry(bss, &rdev->bss_list, list)
1383 		bss->ts -= age_jiffies;
1384 	spin_unlock_bh(&rdev->bss_lock);
1385 }
1386 
1387 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1388 {
1389 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1390 }
1391 
1392 void cfg80211_bss_flush(struct wiphy *wiphy)
1393 {
1394 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1395 
1396 	spin_lock_bh(&rdev->bss_lock);
1397 	__cfg80211_bss_expire(rdev, jiffies);
1398 	spin_unlock_bh(&rdev->bss_lock);
1399 }
1400 EXPORT_SYMBOL(cfg80211_bss_flush);
1401 
1402 const struct element *
1403 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1404 			 const u8 *match, unsigned int match_len,
1405 			 unsigned int match_offset)
1406 {
1407 	const struct element *elem;
1408 
1409 	for_each_element_id(elem, eid, ies, len) {
1410 		if (elem->datalen >= match_offset + match_len &&
1411 		    !memcmp(elem->data + match_offset, match, match_len))
1412 			return elem;
1413 	}
1414 
1415 	return NULL;
1416 }
1417 EXPORT_SYMBOL(cfg80211_find_elem_match);
1418 
1419 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1420 						const u8 *ies,
1421 						unsigned int len)
1422 {
1423 	const struct element *elem;
1424 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1425 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1426 
1427 	if (WARN_ON(oui_type > 0xff))
1428 		return NULL;
1429 
1430 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1431 					match, match_len, 0);
1432 
1433 	if (!elem || elem->datalen < 4)
1434 		return NULL;
1435 
1436 	return elem;
1437 }
1438 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1439 
1440 /**
1441  * enum bss_compare_mode - BSS compare mode
1442  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1443  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1444  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1445  */
1446 enum bss_compare_mode {
1447 	BSS_CMP_REGULAR,
1448 	BSS_CMP_HIDE_ZLEN,
1449 	BSS_CMP_HIDE_NUL,
1450 };
1451 
1452 static int cmp_bss(struct cfg80211_bss *a,
1453 		   struct cfg80211_bss *b,
1454 		   enum bss_compare_mode mode)
1455 {
1456 	const struct cfg80211_bss_ies *a_ies, *b_ies;
1457 	const u8 *ie1 = NULL;
1458 	const u8 *ie2 = NULL;
1459 	int i, r;
1460 
1461 	if (a->channel != b->channel)
1462 		return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1463 		       (a->channel->center_freq * 1000 + a->channel->freq_offset);
1464 
1465 	a_ies = rcu_access_pointer(a->ies);
1466 	if (!a_ies)
1467 		return -1;
1468 	b_ies = rcu_access_pointer(b->ies);
1469 	if (!b_ies)
1470 		return 1;
1471 
1472 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1473 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1474 				       a_ies->data, a_ies->len);
1475 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1476 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1477 				       b_ies->data, b_ies->len);
1478 	if (ie1 && ie2) {
1479 		int mesh_id_cmp;
1480 
1481 		if (ie1[1] == ie2[1])
1482 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1483 		else
1484 			mesh_id_cmp = ie2[1] - ie1[1];
1485 
1486 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1487 				       a_ies->data, a_ies->len);
1488 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1489 				       b_ies->data, b_ies->len);
1490 		if (ie1 && ie2) {
1491 			if (mesh_id_cmp)
1492 				return mesh_id_cmp;
1493 			if (ie1[1] != ie2[1])
1494 				return ie2[1] - ie1[1];
1495 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1496 		}
1497 	}
1498 
1499 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1500 	if (r)
1501 		return r;
1502 
1503 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1504 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1505 
1506 	if (!ie1 && !ie2)
1507 		return 0;
1508 
1509 	/*
1510 	 * Note that with "hide_ssid", the function returns a match if
1511 	 * the already-present BSS ("b") is a hidden SSID beacon for
1512 	 * the new BSS ("a").
1513 	 */
1514 
1515 	/* sort missing IE before (left of) present IE */
1516 	if (!ie1)
1517 		return -1;
1518 	if (!ie2)
1519 		return 1;
1520 
1521 	switch (mode) {
1522 	case BSS_CMP_HIDE_ZLEN:
1523 		/*
1524 		 * In ZLEN mode we assume the BSS entry we're
1525 		 * looking for has a zero-length SSID. So if
1526 		 * the one we're looking at right now has that,
1527 		 * return 0. Otherwise, return the difference
1528 		 * in length, but since we're looking for the
1529 		 * 0-length it's really equivalent to returning
1530 		 * the length of the one we're looking at.
1531 		 *
1532 		 * No content comparison is needed as we assume
1533 		 * the content length is zero.
1534 		 */
1535 		return ie2[1];
1536 	case BSS_CMP_REGULAR:
1537 	default:
1538 		/* sort by length first, then by contents */
1539 		if (ie1[1] != ie2[1])
1540 			return ie2[1] - ie1[1];
1541 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1542 	case BSS_CMP_HIDE_NUL:
1543 		if (ie1[1] != ie2[1])
1544 			return ie2[1] - ie1[1];
1545 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1546 		for (i = 0; i < ie2[1]; i++)
1547 			if (ie2[i + 2])
1548 				return -1;
1549 		return 0;
1550 	}
1551 }
1552 
1553 static bool cfg80211_bss_type_match(u16 capability,
1554 				    enum nl80211_band band,
1555 				    enum ieee80211_bss_type bss_type)
1556 {
1557 	bool ret = true;
1558 	u16 mask, val;
1559 
1560 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1561 		return ret;
1562 
1563 	if (band == NL80211_BAND_60GHZ) {
1564 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1565 		switch (bss_type) {
1566 		case IEEE80211_BSS_TYPE_ESS:
1567 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1568 			break;
1569 		case IEEE80211_BSS_TYPE_PBSS:
1570 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1571 			break;
1572 		case IEEE80211_BSS_TYPE_IBSS:
1573 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1574 			break;
1575 		default:
1576 			return false;
1577 		}
1578 	} else {
1579 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1580 		switch (bss_type) {
1581 		case IEEE80211_BSS_TYPE_ESS:
1582 			val = WLAN_CAPABILITY_ESS;
1583 			break;
1584 		case IEEE80211_BSS_TYPE_IBSS:
1585 			val = WLAN_CAPABILITY_IBSS;
1586 			break;
1587 		case IEEE80211_BSS_TYPE_MBSS:
1588 			val = 0;
1589 			break;
1590 		default:
1591 			return false;
1592 		}
1593 	}
1594 
1595 	ret = ((capability & mask) == val);
1596 	return ret;
1597 }
1598 
1599 /* Returned bss is reference counted and must be cleaned up appropriately. */
1600 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1601 					struct ieee80211_channel *channel,
1602 					const u8 *bssid,
1603 					const u8 *ssid, size_t ssid_len,
1604 					enum ieee80211_bss_type bss_type,
1605 					enum ieee80211_privacy privacy,
1606 					u32 use_for)
1607 {
1608 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1609 	struct cfg80211_internal_bss *bss, *res = NULL;
1610 	unsigned long now = jiffies;
1611 	int bss_privacy;
1612 
1613 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1614 			       privacy);
1615 
1616 	spin_lock_bh(&rdev->bss_lock);
1617 
1618 	list_for_each_entry(bss, &rdev->bss_list, list) {
1619 		if (!cfg80211_bss_type_match(bss->pub.capability,
1620 					     bss->pub.channel->band, bss_type))
1621 			continue;
1622 
1623 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1624 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1625 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1626 			continue;
1627 		if (channel && bss->pub.channel != channel)
1628 			continue;
1629 		if (!is_valid_ether_addr(bss->pub.bssid))
1630 			continue;
1631 		if ((bss->pub.use_for & use_for) != use_for)
1632 			continue;
1633 		/* Don't get expired BSS structs */
1634 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1635 		    !atomic_read(&bss->hold))
1636 			continue;
1637 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1638 			res = bss;
1639 			bss_ref_get(rdev, res);
1640 			break;
1641 		}
1642 	}
1643 
1644 	spin_unlock_bh(&rdev->bss_lock);
1645 	if (!res)
1646 		return NULL;
1647 	trace_cfg80211_return_bss(&res->pub);
1648 	return &res->pub;
1649 }
1650 EXPORT_SYMBOL(__cfg80211_get_bss);
1651 
1652 static bool rb_insert_bss(struct cfg80211_registered_device *rdev,
1653 			  struct cfg80211_internal_bss *bss)
1654 {
1655 	struct rb_node **p = &rdev->bss_tree.rb_node;
1656 	struct rb_node *parent = NULL;
1657 	struct cfg80211_internal_bss *tbss;
1658 	int cmp;
1659 
1660 	while (*p) {
1661 		parent = *p;
1662 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1663 
1664 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1665 
1666 		if (WARN_ON(!cmp)) {
1667 			/* will sort of leak this BSS */
1668 			return false;
1669 		}
1670 
1671 		if (cmp < 0)
1672 			p = &(*p)->rb_left;
1673 		else
1674 			p = &(*p)->rb_right;
1675 	}
1676 
1677 	rb_link_node(&bss->rbn, parent, p);
1678 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1679 	return true;
1680 }
1681 
1682 static struct cfg80211_internal_bss *
1683 rb_find_bss(struct cfg80211_registered_device *rdev,
1684 	    struct cfg80211_internal_bss *res,
1685 	    enum bss_compare_mode mode)
1686 {
1687 	struct rb_node *n = rdev->bss_tree.rb_node;
1688 	struct cfg80211_internal_bss *bss;
1689 	int r;
1690 
1691 	while (n) {
1692 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1693 		r = cmp_bss(&res->pub, &bss->pub, mode);
1694 
1695 		if (r == 0)
1696 			return bss;
1697 		else if (r < 0)
1698 			n = n->rb_left;
1699 		else
1700 			n = n->rb_right;
1701 	}
1702 
1703 	return NULL;
1704 }
1705 
1706 static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev,
1707 				struct cfg80211_internal_bss *bss)
1708 {
1709 	lockdep_assert_held(&rdev->bss_lock);
1710 
1711 	if (!rb_insert_bss(rdev, bss))
1712 		return;
1713 	list_add_tail(&bss->list, &rdev->bss_list);
1714 	rdev->bss_entries++;
1715 }
1716 
1717 static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev,
1718                                 struct cfg80211_internal_bss *bss)
1719 {
1720 	lockdep_assert_held(&rdev->bss_lock);
1721 
1722 	rb_erase(&bss->rbn, &rdev->bss_tree);
1723 	if (!rb_insert_bss(rdev, bss)) {
1724 		list_del(&bss->list);
1725 		if (!list_empty(&bss->hidden_list))
1726 			list_del_init(&bss->hidden_list);
1727 		if (!list_empty(&bss->pub.nontrans_list))
1728 			list_del_init(&bss->pub.nontrans_list);
1729 		rdev->bss_entries--;
1730 	}
1731 	rdev->bss_generation++;
1732 }
1733 
1734 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1735 				   struct cfg80211_internal_bss *new)
1736 {
1737 	const struct cfg80211_bss_ies *ies;
1738 	struct cfg80211_internal_bss *bss;
1739 	const u8 *ie;
1740 	int i, ssidlen;
1741 	u8 fold = 0;
1742 	u32 n_entries = 0;
1743 
1744 	ies = rcu_access_pointer(new->pub.beacon_ies);
1745 	if (WARN_ON(!ies))
1746 		return false;
1747 
1748 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1749 	if (!ie) {
1750 		/* nothing to do */
1751 		return true;
1752 	}
1753 
1754 	ssidlen = ie[1];
1755 	for (i = 0; i < ssidlen; i++)
1756 		fold |= ie[2 + i];
1757 
1758 	if (fold) {
1759 		/* not a hidden SSID */
1760 		return true;
1761 	}
1762 
1763 	/* This is the bad part ... */
1764 
1765 	list_for_each_entry(bss, &rdev->bss_list, list) {
1766 		/*
1767 		 * we're iterating all the entries anyway, so take the
1768 		 * opportunity to validate the list length accounting
1769 		 */
1770 		n_entries++;
1771 
1772 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1773 			continue;
1774 		if (bss->pub.channel != new->pub.channel)
1775 			continue;
1776 		if (rcu_access_pointer(bss->pub.beacon_ies))
1777 			continue;
1778 		ies = rcu_access_pointer(bss->pub.ies);
1779 		if (!ies)
1780 			continue;
1781 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1782 		if (!ie)
1783 			continue;
1784 		if (ssidlen && ie[1] != ssidlen)
1785 			continue;
1786 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1787 			continue;
1788 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1789 			list_del(&bss->hidden_list);
1790 		/* combine them */
1791 		list_add(&bss->hidden_list, &new->hidden_list);
1792 		bss->pub.hidden_beacon_bss = &new->pub;
1793 		new->refcount += bss->refcount;
1794 		rcu_assign_pointer(bss->pub.beacon_ies,
1795 				   new->pub.beacon_ies);
1796 	}
1797 
1798 	WARN_ONCE(n_entries != rdev->bss_entries,
1799 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1800 		  rdev->bss_entries, n_entries);
1801 
1802 	return true;
1803 }
1804 
1805 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1806 					 const struct cfg80211_bss_ies *new_ies,
1807 					 const struct cfg80211_bss_ies *old_ies)
1808 {
1809 	struct cfg80211_internal_bss *bss;
1810 
1811 	/* Assign beacon IEs to all sub entries */
1812 	list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1813 		const struct cfg80211_bss_ies *ies;
1814 
1815 		ies = rcu_access_pointer(bss->pub.beacon_ies);
1816 		WARN_ON(ies != old_ies);
1817 
1818 		rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1819 
1820 		bss->ts = known->ts;
1821 		bss->pub.ts_boottime = known->pub.ts_boottime;
1822 	}
1823 }
1824 
1825 static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1826 				      struct cfg80211_internal_bss *known,
1827 				      const struct cfg80211_bss_ies *old)
1828 {
1829 	const struct ieee80211_ext_chansw_ie *ecsa;
1830 	const struct element *elem_new, *elem_old;
1831 	const struct cfg80211_bss_ies *new, *bcn;
1832 
1833 	if (known->pub.proberesp_ecsa_stuck)
1834 		return;
1835 
1836 	new = rcu_dereference_protected(known->pub.proberesp_ies,
1837 					lockdep_is_held(&rdev->bss_lock));
1838 	if (WARN_ON(!new))
1839 		return;
1840 
1841 	if (new->tsf - old->tsf < USEC_PER_SEC)
1842 		return;
1843 
1844 	elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1845 				      old->data, old->len);
1846 	if (!elem_old)
1847 		return;
1848 
1849 	elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1850 				      new->data, new->len);
1851 	if (!elem_new)
1852 		return;
1853 
1854 	bcn = rcu_dereference_protected(known->pub.beacon_ies,
1855 					lockdep_is_held(&rdev->bss_lock));
1856 	if (bcn &&
1857 	    cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1858 			       bcn->data, bcn->len))
1859 		return;
1860 
1861 	if (elem_new->datalen != elem_old->datalen)
1862 		return;
1863 	if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1864 		return;
1865 	if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1866 		return;
1867 
1868 	ecsa = (void *)elem_new->data;
1869 
1870 	if (!ecsa->mode)
1871 		return;
1872 
1873 	if (ecsa->new_ch_num !=
1874 	    ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1875 		return;
1876 
1877 	known->pub.proberesp_ecsa_stuck = 1;
1878 }
1879 
1880 static bool
1881 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1882 			  struct cfg80211_internal_bss *known,
1883 			  struct cfg80211_internal_bss *new,
1884 			  bool signal_valid)
1885 {
1886 	lockdep_assert_held(&rdev->bss_lock);
1887 
1888 	/* Update time stamps */
1889 	known->ts = new->ts;
1890 	known->pub.ts_boottime = new->pub.ts_boottime;
1891 
1892 	/* Update IEs */
1893 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1894 		const struct cfg80211_bss_ies *old;
1895 
1896 		old = rcu_access_pointer(known->pub.proberesp_ies);
1897 
1898 		rcu_assign_pointer(known->pub.proberesp_ies,
1899 				   new->pub.proberesp_ies);
1900 		/* Override possible earlier Beacon frame IEs */
1901 		rcu_assign_pointer(known->pub.ies,
1902 				   new->pub.proberesp_ies);
1903 		if (old) {
1904 			cfg80211_check_stuck_ecsa(rdev, known, old);
1905 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1906 		}
1907 	}
1908 
1909 	if (rcu_access_pointer(new->pub.beacon_ies)) {
1910 		const struct cfg80211_bss_ies *old;
1911 
1912 		if (known->pub.hidden_beacon_bss &&
1913 		    !list_empty(&known->hidden_list)) {
1914 			const struct cfg80211_bss_ies *f;
1915 
1916 			/* The known BSS struct is one of the probe
1917 			 * response members of a group, but we're
1918 			 * receiving a beacon (beacon_ies in the new
1919 			 * bss is used). This can only mean that the
1920 			 * AP changed its beacon from not having an
1921 			 * SSID to showing it, which is confusing so
1922 			 * drop this information.
1923 			 */
1924 
1925 			f = rcu_access_pointer(new->pub.beacon_ies);
1926 			if (!new->pub.hidden_beacon_bss)
1927 				kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1928 			return false;
1929 		}
1930 
1931 		old = rcu_access_pointer(known->pub.beacon_ies);
1932 
1933 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1934 
1935 		/* Override IEs if they were from a beacon before */
1936 		if (old == rcu_access_pointer(known->pub.ies))
1937 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1938 
1939 		cfg80211_update_hidden_bsses(known,
1940 					     rcu_access_pointer(new->pub.beacon_ies),
1941 					     old);
1942 
1943 		if (old)
1944 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1945 	}
1946 
1947 	known->pub.beacon_interval = new->pub.beacon_interval;
1948 
1949 	/* don't update the signal if beacon was heard on
1950 	 * adjacent channel.
1951 	 */
1952 	if (signal_valid)
1953 		known->pub.signal = new->pub.signal;
1954 	known->pub.capability = new->pub.capability;
1955 	known->parent_tsf = new->parent_tsf;
1956 	known->pub.chains = new->pub.chains;
1957 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1958 	       IEEE80211_MAX_CHAINS);
1959 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1960 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1961 	known->pub.bssid_index = new->pub.bssid_index;
1962 	known->pub.use_for &= new->pub.use_for;
1963 	known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1964 	known->bss_source = new->bss_source;
1965 
1966 	return true;
1967 }
1968 
1969 /* Returned bss is reference counted and must be cleaned up appropriately. */
1970 static struct cfg80211_internal_bss *
1971 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1972 		      struct cfg80211_internal_bss *tmp,
1973 		      bool signal_valid, unsigned long ts)
1974 {
1975 	struct cfg80211_internal_bss *found = NULL;
1976 	struct cfg80211_bss_ies *ies;
1977 
1978 	if (WARN_ON(!tmp->pub.channel))
1979 		goto free_ies;
1980 
1981 	tmp->ts = ts;
1982 
1983 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1984 		goto free_ies;
1985 
1986 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1987 
1988 	if (found) {
1989 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1990 			return NULL;
1991 	} else {
1992 		struct cfg80211_internal_bss *new;
1993 		struct cfg80211_internal_bss *hidden;
1994 
1995 		/*
1996 		 * create a copy -- the "res" variable that is passed in
1997 		 * is allocated on the stack since it's not needed in the
1998 		 * more common case of an update
1999 		 */
2000 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
2001 			      GFP_ATOMIC);
2002 		if (!new)
2003 			goto free_ies;
2004 		memcpy(new, tmp, sizeof(*new));
2005 		new->refcount = 1;
2006 		INIT_LIST_HEAD(&new->hidden_list);
2007 		INIT_LIST_HEAD(&new->pub.nontrans_list);
2008 		/* we'll set this later if it was non-NULL */
2009 		new->pub.transmitted_bss = NULL;
2010 
2011 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
2012 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
2013 			if (!hidden)
2014 				hidden = rb_find_bss(rdev, tmp,
2015 						     BSS_CMP_HIDE_NUL);
2016 			if (hidden) {
2017 				new->pub.hidden_beacon_bss = &hidden->pub;
2018 				list_add(&new->hidden_list,
2019 					 &hidden->hidden_list);
2020 				hidden->refcount++;
2021 
2022 				ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
2023 				rcu_assign_pointer(new->pub.beacon_ies,
2024 						   hidden->pub.beacon_ies);
2025 				if (ies)
2026 					kfree_rcu(ies, rcu_head);
2027 			}
2028 		} else {
2029 			/*
2030 			 * Ok so we found a beacon, and don't have an entry. If
2031 			 * it's a beacon with hidden SSID, we might be in for an
2032 			 * expensive search for any probe responses that should
2033 			 * be grouped with this beacon for updates ...
2034 			 */
2035 			if (!cfg80211_combine_bsses(rdev, new)) {
2036 				bss_ref_put(rdev, new);
2037 				return NULL;
2038 			}
2039 		}
2040 
2041 		if (rdev->bss_entries >= bss_entries_limit &&
2042 		    !cfg80211_bss_expire_oldest(rdev)) {
2043 			bss_ref_put(rdev, new);
2044 			return NULL;
2045 		}
2046 
2047 		/* This must be before the call to bss_ref_get */
2048 		if (tmp->pub.transmitted_bss) {
2049 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
2050 			bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
2051 		}
2052 
2053 		cfg80211_insert_bss(rdev, new);
2054 		found = new;
2055 	}
2056 
2057 	rdev->bss_generation++;
2058 	bss_ref_get(rdev, found);
2059 
2060 	return found;
2061 
2062 free_ies:
2063 	ies = (void *)rcu_access_pointer(tmp->pub.beacon_ies);
2064 	if (ies)
2065 		kfree_rcu(ies, rcu_head);
2066 	ies = (void *)rcu_access_pointer(tmp->pub.proberesp_ies);
2067 	if (ies)
2068 		kfree_rcu(ies, rcu_head);
2069 
2070 	return NULL;
2071 }
2072 
2073 struct cfg80211_internal_bss *
2074 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
2075 		    struct cfg80211_internal_bss *tmp,
2076 		    bool signal_valid, unsigned long ts)
2077 {
2078 	struct cfg80211_internal_bss *res;
2079 
2080 	spin_lock_bh(&rdev->bss_lock);
2081 	res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
2082 	spin_unlock_bh(&rdev->bss_lock);
2083 
2084 	return res;
2085 }
2086 
2087 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
2088 				    enum nl80211_band band)
2089 {
2090 	const struct element *tmp;
2091 
2092 	if (band == NL80211_BAND_6GHZ) {
2093 		struct ieee80211_he_operation *he_oper;
2094 
2095 		tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2096 					     ielen);
2097 		if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2098 		    tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2099 			const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2100 
2101 			he_oper = (void *)&tmp->data[1];
2102 
2103 			he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2104 			if (!he_6ghz_oper)
2105 				return -1;
2106 
2107 			return he_6ghz_oper->primary;
2108 		}
2109 	} else if (band == NL80211_BAND_S1GHZ) {
2110 		tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2111 		if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2112 			struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2113 
2114 			return s1gop->oper_ch;
2115 		}
2116 	} else {
2117 		tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2118 		if (tmp && tmp->datalen == 1)
2119 			return tmp->data[0];
2120 
2121 		tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2122 		if (tmp &&
2123 		    tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2124 			struct ieee80211_ht_operation *htop = (void *)tmp->data;
2125 
2126 			return htop->primary_chan;
2127 		}
2128 	}
2129 
2130 	return -1;
2131 }
2132 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2133 
2134 /*
2135  * Update RX channel information based on the available frame payload
2136  * information. This is mainly for the 2.4 GHz band where frames can be received
2137  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2138  * element to indicate the current (transmitting) channel, but this might also
2139  * be needed on other bands if RX frequency does not match with the actual
2140  * operating channel of a BSS, or if the AP reports a different primary channel.
2141  */
2142 static struct ieee80211_channel *
2143 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2144 			 struct ieee80211_channel *channel)
2145 {
2146 	u32 freq;
2147 	int channel_number;
2148 	struct ieee80211_channel *alt_channel;
2149 
2150 	channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2151 							 channel->band);
2152 
2153 	if (channel_number < 0) {
2154 		/* No channel information in frame payload */
2155 		return channel;
2156 	}
2157 
2158 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2159 
2160 	/*
2161 	 * Frame info (beacon/prob res) is the same as received channel,
2162 	 * no need for further processing.
2163 	 */
2164 	if (freq == ieee80211_channel_to_khz(channel))
2165 		return channel;
2166 
2167 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2168 	if (!alt_channel) {
2169 		if (channel->band == NL80211_BAND_2GHZ ||
2170 		    channel->band == NL80211_BAND_6GHZ) {
2171 			/*
2172 			 * Better not allow unexpected channels when that could
2173 			 * be going beyond the 1-11 range (e.g., discovering
2174 			 * BSS on channel 12 when radio is configured for
2175 			 * channel 11) or beyond the 6 GHz channel range.
2176 			 */
2177 			return NULL;
2178 		}
2179 
2180 		/* No match for the payload channel number - ignore it */
2181 		return channel;
2182 	}
2183 
2184 	/*
2185 	 * Use the channel determined through the payload channel number
2186 	 * instead of the RX channel reported by the driver.
2187 	 */
2188 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2189 		return NULL;
2190 	return alt_channel;
2191 }
2192 
2193 struct cfg80211_inform_single_bss_data {
2194 	struct cfg80211_inform_bss *drv_data;
2195 	enum cfg80211_bss_frame_type ftype;
2196 	struct ieee80211_channel *channel;
2197 	u8 bssid[ETH_ALEN];
2198 	u64 tsf;
2199 	u16 capability;
2200 	u16 beacon_interval;
2201 	const u8 *ie;
2202 	size_t ielen;
2203 
2204 	enum bss_source_type bss_source;
2205 	/* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2206 	struct cfg80211_bss *source_bss;
2207 	u8 max_bssid_indicator;
2208 	u8 bssid_index;
2209 
2210 	u8 use_for;
2211 	u64 cannot_use_reasons;
2212 };
2213 
2214 enum ieee80211_ap_reg_power
2215 cfg80211_get_6ghz_power_type(const u8 *elems, size_t elems_len,
2216 			     u32 client_flags)
2217 {
2218 	const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2219 	struct ieee80211_he_operation *he_oper;
2220 	const struct element *tmp;
2221 
2222 	tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION,
2223 				     elems, elems_len);
2224 	if (!tmp || tmp->datalen < sizeof(*he_oper) + 1 ||
2225 	    tmp->datalen < ieee80211_he_oper_size(tmp->data + 1))
2226 		return IEEE80211_REG_UNSET_AP;
2227 
2228 	he_oper = (void *)&tmp->data[1];
2229 	he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2230 
2231 	if (!he_6ghz_oper)
2232 		return IEEE80211_REG_UNSET_AP;
2233 
2234 	return cfg80211_6ghz_power_type(he_6ghz_oper->control, client_flags);
2235 }
2236 
2237 static bool cfg80211_6ghz_power_type_valid(const u8 *elems, size_t elems_len,
2238 					   const u32 flags)
2239 {
2240 	switch (cfg80211_get_6ghz_power_type(elems, elems_len, flags)) {
2241 	case IEEE80211_REG_LPI_AP:
2242 		return true;
2243 	case IEEE80211_REG_SP_AP:
2244 		return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
2245 	case IEEE80211_REG_VLP_AP:
2246 		return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
2247 	default:
2248 		return false;
2249 	}
2250 }
2251 
2252 /* Returned bss is reference counted and must be cleaned up appropriately. */
2253 static struct cfg80211_bss *
2254 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2255 				struct cfg80211_inform_single_bss_data *data,
2256 				gfp_t gfp)
2257 {
2258 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2259 	struct cfg80211_inform_bss *drv_data = data->drv_data;
2260 	struct cfg80211_bss_ies *ies;
2261 	struct ieee80211_channel *channel;
2262 	struct cfg80211_internal_bss tmp = {}, *res;
2263 	int bss_type;
2264 	bool signal_valid;
2265 	unsigned long ts;
2266 
2267 	if (WARN_ON(!wiphy))
2268 		return NULL;
2269 
2270 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2271 		    (drv_data->signal < 0 || drv_data->signal > 100)))
2272 		return NULL;
2273 
2274 	if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2275 		return NULL;
2276 
2277 	channel = data->channel;
2278 	if (!channel)
2279 		channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2280 						   drv_data->chan);
2281 	if (!channel)
2282 		return NULL;
2283 
2284 	if (channel->band == NL80211_BAND_6GHZ &&
2285 	    !cfg80211_6ghz_power_type_valid(data->ie, data->ielen,
2286 					    channel->flags)) {
2287 		data->use_for = 0;
2288 		data->cannot_use_reasons =
2289 			NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
2290 	}
2291 
2292 	memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2293 	tmp.pub.channel = channel;
2294 	if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2295 		tmp.pub.signal = drv_data->signal;
2296 	else
2297 		tmp.pub.signal = 0;
2298 	tmp.pub.beacon_interval = data->beacon_interval;
2299 	tmp.pub.capability = data->capability;
2300 	tmp.pub.ts_boottime = drv_data->boottime_ns;
2301 	tmp.parent_tsf = drv_data->parent_tsf;
2302 	ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2303 	tmp.pub.chains = drv_data->chains;
2304 	memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
2305 	       IEEE80211_MAX_CHAINS);
2306 	tmp.pub.use_for = data->use_for;
2307 	tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2308 	tmp.bss_source = data->bss_source;
2309 
2310 	switch (data->bss_source) {
2311 	case BSS_SOURCE_MBSSID:
2312 		tmp.pub.transmitted_bss = data->source_bss;
2313 		fallthrough;
2314 	case BSS_SOURCE_STA_PROFILE:
2315 		ts = bss_from_pub(data->source_bss)->ts;
2316 		tmp.pub.bssid_index = data->bssid_index;
2317 		tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2318 		break;
2319 	case BSS_SOURCE_DIRECT:
2320 		ts = jiffies;
2321 
2322 		if (channel->band == NL80211_BAND_60GHZ) {
2323 			bss_type = data->capability &
2324 				   WLAN_CAPABILITY_DMG_TYPE_MASK;
2325 			if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2326 			    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2327 				regulatory_hint_found_beacon(wiphy, channel,
2328 							     gfp);
2329 		} else {
2330 			if (data->capability & WLAN_CAPABILITY_ESS)
2331 				regulatory_hint_found_beacon(wiphy, channel,
2332 							     gfp);
2333 		}
2334 		break;
2335 	}
2336 
2337 	/*
2338 	 * If we do not know here whether the IEs are from a Beacon or Probe
2339 	 * Response frame, we need to pick one of the options and only use it
2340 	 * with the driver that does not provide the full Beacon/Probe Response
2341 	 * frame. Use Beacon frame pointer to avoid indicating that this should
2342 	 * override the IEs pointer should we have received an earlier
2343 	 * indication of Probe Response data.
2344 	 */
2345 	ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2346 	if (!ies)
2347 		return NULL;
2348 	ies->len = data->ielen;
2349 	ies->tsf = data->tsf;
2350 	ies->from_beacon = false;
2351 	memcpy(ies->data, data->ie, data->ielen);
2352 
2353 	switch (data->ftype) {
2354 	case CFG80211_BSS_FTYPE_BEACON:
2355 	case CFG80211_BSS_FTYPE_S1G_BEACON:
2356 		ies->from_beacon = true;
2357 		fallthrough;
2358 	case CFG80211_BSS_FTYPE_UNKNOWN:
2359 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2360 		break;
2361 	case CFG80211_BSS_FTYPE_PRESP:
2362 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2363 		break;
2364 	}
2365 	rcu_assign_pointer(tmp.pub.ies, ies);
2366 
2367 	signal_valid = drv_data->chan == channel;
2368 	spin_lock_bh(&rdev->bss_lock);
2369 	res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2370 	if (!res)
2371 		goto drop;
2372 
2373 	rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2374 
2375 	if (data->bss_source == BSS_SOURCE_MBSSID) {
2376 		/* this is a nontransmitting bss, we need to add it to
2377 		 * transmitting bss' list if it is not there
2378 		 */
2379 		if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2380 			if (__cfg80211_unlink_bss(rdev, res)) {
2381 				rdev->bss_generation++;
2382 				res = NULL;
2383 			}
2384 		}
2385 
2386 		if (!res)
2387 			goto drop;
2388 	}
2389 	spin_unlock_bh(&rdev->bss_lock);
2390 
2391 	trace_cfg80211_return_bss(&res->pub);
2392 	/* __cfg80211_bss_update gives us a referenced result */
2393 	return &res->pub;
2394 
2395 drop:
2396 	spin_unlock_bh(&rdev->bss_lock);
2397 	return NULL;
2398 }
2399 
2400 static const struct element
2401 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2402 				   const struct element *mbssid_elem,
2403 				   const struct element *sub_elem)
2404 {
2405 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2406 	const struct element *next_mbssid;
2407 	const struct element *next_sub;
2408 
2409 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2410 					 mbssid_end,
2411 					 ielen - (mbssid_end - ie));
2412 
2413 	/*
2414 	 * If it is not the last subelement in current MBSSID IE or there isn't
2415 	 * a next MBSSID IE - profile is complete.
2416 	*/
2417 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2418 	    !next_mbssid)
2419 		return NULL;
2420 
2421 	/* For any length error, just return NULL */
2422 
2423 	if (next_mbssid->datalen < 4)
2424 		return NULL;
2425 
2426 	next_sub = (void *)&next_mbssid->data[1];
2427 
2428 	if (next_mbssid->data + next_mbssid->datalen <
2429 	    next_sub->data + next_sub->datalen)
2430 		return NULL;
2431 
2432 	if (next_sub->id != 0 || next_sub->datalen < 2)
2433 		return NULL;
2434 
2435 	/*
2436 	 * Check if the first element in the next sub element is a start
2437 	 * of a new profile
2438 	 */
2439 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2440 	       NULL : next_mbssid;
2441 }
2442 
2443 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2444 			      const struct element *mbssid_elem,
2445 			      const struct element *sub_elem,
2446 			      u8 *merged_ie, size_t max_copy_len)
2447 {
2448 	size_t copied_len = sub_elem->datalen;
2449 	const struct element *next_mbssid;
2450 
2451 	if (sub_elem->datalen > max_copy_len)
2452 		return 0;
2453 
2454 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2455 
2456 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2457 								mbssid_elem,
2458 								sub_elem))) {
2459 		const struct element *next_sub = (void *)&next_mbssid->data[1];
2460 
2461 		if (copied_len + next_sub->datalen > max_copy_len)
2462 			break;
2463 		memcpy(merged_ie + copied_len, next_sub->data,
2464 		       next_sub->datalen);
2465 		copied_len += next_sub->datalen;
2466 	}
2467 
2468 	return copied_len;
2469 }
2470 EXPORT_SYMBOL(cfg80211_merge_profile);
2471 
2472 static void
2473 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2474 			   struct cfg80211_inform_single_bss_data *tx_data,
2475 			   struct cfg80211_bss *source_bss,
2476 			   gfp_t gfp)
2477 {
2478 	struct cfg80211_inform_single_bss_data data = {
2479 		.drv_data = tx_data->drv_data,
2480 		.ftype = tx_data->ftype,
2481 		.tsf = tx_data->tsf,
2482 		.beacon_interval = tx_data->beacon_interval,
2483 		.source_bss = source_bss,
2484 		.bss_source = BSS_SOURCE_MBSSID,
2485 		.use_for = tx_data->use_for,
2486 		.cannot_use_reasons = tx_data->cannot_use_reasons,
2487 	};
2488 	const u8 *mbssid_index_ie;
2489 	const struct element *elem, *sub;
2490 	u8 *new_ie, *profile;
2491 	u64 seen_indices = 0;
2492 	struct cfg80211_bss *bss;
2493 
2494 	if (!source_bss)
2495 		return;
2496 	if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2497 				tx_data->ie, tx_data->ielen))
2498 		return;
2499 	if (!wiphy->support_mbssid)
2500 		return;
2501 	if (wiphy->support_only_he_mbssid &&
2502 	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2503 				    tx_data->ie, tx_data->ielen))
2504 		return;
2505 
2506 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2507 	if (!new_ie)
2508 		return;
2509 
2510 	profile = kmalloc(tx_data->ielen, gfp);
2511 	if (!profile)
2512 		goto out;
2513 
2514 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2515 			    tx_data->ie, tx_data->ielen) {
2516 		if (elem->datalen < 4)
2517 			continue;
2518 		if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2519 			continue;
2520 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2521 			u8 profile_len;
2522 
2523 			if (sub->id != 0 || sub->datalen < 4) {
2524 				/* not a valid BSS profile */
2525 				continue;
2526 			}
2527 
2528 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2529 			    sub->data[1] != 2) {
2530 				/* The first element within the Nontransmitted
2531 				 * BSSID Profile is not the Nontransmitted
2532 				 * BSSID Capability element.
2533 				 */
2534 				continue;
2535 			}
2536 
2537 			memset(profile, 0, tx_data->ielen);
2538 			profile_len = cfg80211_merge_profile(tx_data->ie,
2539 							     tx_data->ielen,
2540 							     elem,
2541 							     sub,
2542 							     profile,
2543 							     tx_data->ielen);
2544 
2545 			/* found a Nontransmitted BSSID Profile */
2546 			mbssid_index_ie = cfg80211_find_ie
2547 				(WLAN_EID_MULTI_BSSID_IDX,
2548 				 profile, profile_len);
2549 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2550 			    mbssid_index_ie[2] == 0 ||
2551 			    mbssid_index_ie[2] > 46 ||
2552 			    mbssid_index_ie[2] >= (1 << elem->data[0])) {
2553 				/* No valid Multiple BSSID-Index element */
2554 				continue;
2555 			}
2556 
2557 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2558 				/* We don't support legacy split of a profile */
2559 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2560 						    mbssid_index_ie[2]);
2561 
2562 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2563 
2564 			data.bssid_index = mbssid_index_ie[2];
2565 			data.max_bssid_indicator = elem->data[0];
2566 
2567 			cfg80211_gen_new_bssid(tx_data->bssid,
2568 					       data.max_bssid_indicator,
2569 					       data.bssid_index,
2570 					       data.bssid);
2571 
2572 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2573 			data.ie = new_ie;
2574 			data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2575 							 tx_data->ielen,
2576 							 profile,
2577 							 profile_len,
2578 							 new_ie,
2579 							 IEEE80211_MAX_DATA_LEN);
2580 			if (!data.ielen)
2581 				continue;
2582 
2583 			data.capability = get_unaligned_le16(profile + 2);
2584 			bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2585 			if (!bss)
2586 				break;
2587 			cfg80211_put_bss(wiphy, bss);
2588 		}
2589 	}
2590 
2591 out:
2592 	kfree(new_ie);
2593 	kfree(profile);
2594 }
2595 
2596 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2597 				    size_t ieslen, u8 *data, size_t data_len,
2598 				    u8 frag_id)
2599 {
2600 	const struct element *next;
2601 	ssize_t copied;
2602 	u8 elem_datalen;
2603 
2604 	if (!elem)
2605 		return -EINVAL;
2606 
2607 	/* elem might be invalid after the memmove */
2608 	next = (void *)(elem->data + elem->datalen);
2609 	elem_datalen = elem->datalen;
2610 
2611 	if (elem->id == WLAN_EID_EXTENSION) {
2612 		copied = elem->datalen - 1;
2613 
2614 		if (data) {
2615 			if (copied > data_len)
2616 				return -ENOSPC;
2617 
2618 			memmove(data, elem->data + 1, copied);
2619 		}
2620 	} else {
2621 		copied = elem->datalen;
2622 
2623 		if (data) {
2624 			if (copied > data_len)
2625 				return -ENOSPC;
2626 
2627 			memmove(data, elem->data, copied);
2628 		}
2629 	}
2630 
2631 	/* Fragmented elements must have 255 bytes */
2632 	if (elem_datalen < 255)
2633 		return copied;
2634 
2635 	for (elem = next;
2636 	     elem->data < ies + ieslen &&
2637 		elem->data + elem->datalen <= ies + ieslen;
2638 	     elem = next) {
2639 		/* elem might be invalid after the memmove */
2640 		next = (void *)(elem->data + elem->datalen);
2641 
2642 		if (elem->id != frag_id)
2643 			break;
2644 
2645 		elem_datalen = elem->datalen;
2646 
2647 		if (data) {
2648 			if (copied + elem_datalen > data_len)
2649 				return -ENOSPC;
2650 
2651 			memmove(data + copied, elem->data, elem_datalen);
2652 		}
2653 
2654 		copied += elem_datalen;
2655 
2656 		/* Only the last fragment may be short */
2657 		if (elem_datalen != 255)
2658 			break;
2659 	}
2660 
2661 	return copied;
2662 }
2663 EXPORT_SYMBOL(cfg80211_defragment_element);
2664 
2665 struct cfg80211_mle {
2666 	struct ieee80211_multi_link_elem *mle;
2667 	struct ieee80211_mle_per_sta_profile
2668 		*sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2669 	ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2670 
2671 	u8 data[];
2672 };
2673 
2674 static struct cfg80211_mle *
2675 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2676 		    gfp_t gfp)
2677 {
2678 	const struct element *elem;
2679 	struct cfg80211_mle *res;
2680 	size_t buf_len;
2681 	ssize_t mle_len;
2682 	u8 common_size, idx;
2683 
2684 	if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2685 		return NULL;
2686 
2687 	/* Required length for first defragmentation */
2688 	buf_len = mle->datalen - 1;
2689 	for_each_element(elem, mle->data + mle->datalen,
2690 			 ie + ielen - mle->data - mle->datalen) {
2691 		if (elem->id != WLAN_EID_FRAGMENT)
2692 			break;
2693 
2694 		buf_len += elem->datalen;
2695 	}
2696 
2697 	res = kzalloc(struct_size(res, data, buf_len), gfp);
2698 	if (!res)
2699 		return NULL;
2700 
2701 	mle_len = cfg80211_defragment_element(mle, ie, ielen,
2702 					      res->data, buf_len,
2703 					      WLAN_EID_FRAGMENT);
2704 	if (mle_len < 0)
2705 		goto error;
2706 
2707 	res->mle = (void *)res->data;
2708 
2709 	/* Find the sub-element area in the buffer */
2710 	common_size = ieee80211_mle_common_size((u8 *)res->mle);
2711 	ie = res->data + common_size;
2712 	ielen = mle_len - common_size;
2713 
2714 	idx = 0;
2715 	for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2716 			    ie, ielen) {
2717 		res->sta_prof[idx] = (void *)elem->data;
2718 		res->sta_prof_len[idx] = elem->datalen;
2719 
2720 		idx++;
2721 		if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2722 			break;
2723 	}
2724 	if (!for_each_element_completed(elem, ie, ielen))
2725 		goto error;
2726 
2727 	/* Defragment sta_info in-place */
2728 	for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2729 	     idx++) {
2730 		if (res->sta_prof_len[idx] < 255)
2731 			continue;
2732 
2733 		elem = (void *)res->sta_prof[idx] - 2;
2734 
2735 		if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2736 		    res->sta_prof[idx + 1])
2737 			buf_len = (u8 *)res->sta_prof[idx + 1] -
2738 				  (u8 *)res->sta_prof[idx];
2739 		else
2740 			buf_len = ielen + ie - (u8 *)elem;
2741 
2742 		res->sta_prof_len[idx] =
2743 			cfg80211_defragment_element(elem,
2744 						    (u8 *)elem, buf_len,
2745 						    (u8 *)res->sta_prof[idx],
2746 						    buf_len,
2747 						    IEEE80211_MLE_SUBELEM_FRAGMENT);
2748 		if (res->sta_prof_len[idx] < 0)
2749 			goto error;
2750 	}
2751 
2752 	return res;
2753 
2754 error:
2755 	kfree(res);
2756 	return NULL;
2757 }
2758 
2759 struct tbtt_info_iter_data {
2760 	const struct ieee80211_neighbor_ap_info *ap_info;
2761 	u8 param_ch_count;
2762 	u32 use_for;
2763 	u8 mld_id, link_id;
2764 	bool non_tx;
2765 };
2766 
2767 static enum cfg80211_rnr_iter_ret
2768 cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
2769 			  const struct ieee80211_neighbor_ap_info *info,
2770 			  const u8 *tbtt_info, u8 tbtt_info_len)
2771 {
2772 	const struct ieee80211_rnr_mld_params *mld_params;
2773 	struct tbtt_info_iter_data *data = _data;
2774 	u8 link_id;
2775 	bool non_tx = false;
2776 
2777 	if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2778 	    tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
2779 					 mld_params)) {
2780 		const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 =
2781 			(void *)tbtt_info;
2782 
2783 		non_tx = (tbtt_info_ge_11->bss_params &
2784 			  (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID |
2785 			   IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) ==
2786 			 IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2787 		mld_params = &tbtt_info_ge_11->mld_params;
2788 	} else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2789 		 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
2790 		mld_params = (void *)tbtt_info;
2791 	else
2792 		return RNR_ITER_CONTINUE;
2793 
2794 	link_id = le16_get_bits(mld_params->params,
2795 				IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2796 
2797 	if (data->mld_id != mld_params->mld_id)
2798 		return RNR_ITER_CONTINUE;
2799 
2800 	if (data->link_id != link_id)
2801 		return RNR_ITER_CONTINUE;
2802 
2803 	data->ap_info = info;
2804 	data->param_ch_count =
2805 		le16_get_bits(mld_params->params,
2806 			      IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2807 	data->non_tx = non_tx;
2808 
2809 	if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
2810 		data->use_for = NL80211_BSS_USE_FOR_ALL;
2811 	else
2812 		data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2813 	return RNR_ITER_BREAK;
2814 }
2815 
2816 static u8
2817 cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2818 			     const struct ieee80211_neighbor_ap_info **ap_info,
2819 			     u8 *param_ch_count, bool *non_tx)
2820 {
2821 	struct tbtt_info_iter_data data = {
2822 		.mld_id = mld_id,
2823 		.link_id = link_id,
2824 	};
2825 
2826 	cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
2827 
2828 	*ap_info = data.ap_info;
2829 	*param_ch_count = data.param_ch_count;
2830 	*non_tx = data.non_tx;
2831 
2832 	return data.use_for;
2833 }
2834 
2835 static struct element *
2836 cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2837 			  bool same_mld, u8 link_id, u8 bss_change_count,
2838 			  gfp_t gfp)
2839 {
2840 	const struct cfg80211_bss_ies *ies;
2841 	struct ieee80211_neighbor_ap_info ap_info;
2842 	struct ieee80211_tbtt_info_ge_11 tbtt_info;
2843 	u32 short_ssid;
2844 	const struct element *elem;
2845 	struct element *res;
2846 
2847 	/*
2848 	 * We only generate the RNR to permit ML lookups. For that we do not
2849 	 * need an entry for the corresponding transmitting BSS, lets just skip
2850 	 * it even though it would be easy to add.
2851 	 */
2852 	if (!same_mld)
2853 		return NULL;
2854 
2855 	/* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2856 	rcu_read_lock();
2857 	ies = rcu_dereference(source_bss->ies);
2858 
2859 	ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2860 	ap_info.tbtt_info_hdr =
2861 			u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2862 				       IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2863 			u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2864 
2865 	ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
2866 
2867 	/* operating class */
2868 	elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2869 				  ies->data, ies->len);
2870 	if (elem && elem->datalen >= 1) {
2871 		ap_info.op_class = elem->data[0];
2872 	} else {
2873 		struct cfg80211_chan_def chandef;
2874 
2875 		/* The AP is not providing us with anything to work with. So
2876 		 * make up a somewhat reasonable operating class, but don't
2877 		 * bother with it too much as no one will ever use the
2878 		 * information.
2879 		 */
2880 		cfg80211_chandef_create(&chandef, source_bss->channel,
2881 					NL80211_CHAN_NO_HT);
2882 
2883 		if (!ieee80211_chandef_to_operating_class(&chandef,
2884 							  &ap_info.op_class))
2885 			goto out_unlock;
2886 	}
2887 
2888 	/* Just set TBTT offset and PSD 20 to invalid/unknown */
2889 	tbtt_info.tbtt_offset = 255;
2890 	tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2891 
2892 	memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2893 	if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
2894 		goto out_unlock;
2895 
2896 	rcu_read_unlock();
2897 
2898 	tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2899 
2900 	tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2901 
2902 	if (is_mbssid) {
2903 		tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2904 		tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2905 	}
2906 
2907 	tbtt_info.mld_params.mld_id = 0;
2908 	tbtt_info.mld_params.params =
2909 		le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2910 		le16_encode_bits(bss_change_count,
2911 				 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2912 
2913 	res = kzalloc(struct_size(res, data,
2914 				  sizeof(ap_info) + ap_info.tbtt_info_len),
2915 		      gfp);
2916 	if (!res)
2917 		return NULL;
2918 
2919 	/* Copy the data */
2920 	res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2921 	res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2922 	memcpy(res->data, &ap_info, sizeof(ap_info));
2923 	memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2924 
2925 	return res;
2926 
2927 out_unlock:
2928 	rcu_read_unlock();
2929 	return NULL;
2930 }
2931 
2932 static void
2933 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2934 				struct cfg80211_inform_single_bss_data *tx_data,
2935 				struct cfg80211_bss *source_bss,
2936 				const struct element *elem,
2937 				gfp_t gfp)
2938 {
2939 	struct cfg80211_inform_single_bss_data data = {
2940 		.drv_data = tx_data->drv_data,
2941 		.ftype = tx_data->ftype,
2942 		.source_bss = source_bss,
2943 		.bss_source = BSS_SOURCE_STA_PROFILE,
2944 	};
2945 	struct element *reporter_rnr = NULL;
2946 	struct ieee80211_multi_link_elem *ml_elem;
2947 	struct cfg80211_mle *mle;
2948 	const struct element *ssid_elem;
2949 	const u8 *ssid = NULL;
2950 	size_t ssid_len = 0;
2951 	u16 control;
2952 	u8 ml_common_len;
2953 	u8 *new_ie = NULL;
2954 	struct cfg80211_bss *bss;
2955 	u8 mld_id, reporter_link_id, bss_change_count;
2956 	u16 seen_links = 0;
2957 	u8 i;
2958 
2959 	if (!ieee80211_mle_type_ok(elem->data + 1,
2960 				   IEEE80211_ML_CONTROL_TYPE_BASIC,
2961 				   elem->datalen - 1))
2962 		return;
2963 
2964 	ml_elem = (void *)(elem->data + 1);
2965 	control = le16_to_cpu(ml_elem->control);
2966 	ml_common_len = ml_elem->variable[0];
2967 
2968 	/* Must be present when transmitted by an AP (in a probe response) */
2969 	if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2970 	    !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2971 	    !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2972 		return;
2973 
2974 	reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1);
2975 	bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1);
2976 
2977 	/*
2978 	 * The MLD ID of the reporting AP is always zero. It is set if the AP
2979 	 * is part of an MBSSID set and will be non-zero for ML Elements
2980 	 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2981 	 * Draft P802.11be_D3.2, 35.3.4.2)
2982 	 */
2983 	mld_id = ieee80211_mle_get_mld_id(elem->data + 1);
2984 
2985 	/* Fully defrag the ML element for sta information/profile iteration */
2986 	mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2987 	if (!mle)
2988 		return;
2989 
2990 	/* No point in doing anything if there is no per-STA profile */
2991 	if (!mle->sta_prof[0])
2992 		goto out;
2993 
2994 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2995 	if (!new_ie)
2996 		goto out;
2997 
2998 	reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
2999 						 u16_get_bits(control,
3000 							      IEEE80211_MLC_BASIC_PRES_MLD_ID),
3001 						 mld_id == 0, reporter_link_id,
3002 						 bss_change_count,
3003 						 gfp);
3004 
3005 	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, tx_data->ie,
3006 				       tx_data->ielen);
3007 	if (ssid_elem) {
3008 		ssid = ssid_elem->data;
3009 		ssid_len = ssid_elem->datalen;
3010 	}
3011 
3012 	for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
3013 		const struct ieee80211_neighbor_ap_info *ap_info;
3014 		enum nl80211_band band;
3015 		u32 freq;
3016 		const u8 *profile;
3017 		ssize_t profile_len;
3018 		u8 param_ch_count;
3019 		u8 link_id, use_for;
3020 		bool non_tx;
3021 
3022 		if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
3023 							  mle->sta_prof_len[i]))
3024 			continue;
3025 
3026 		control = le16_to_cpu(mle->sta_prof[i]->control);
3027 
3028 		if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
3029 			continue;
3030 
3031 		link_id = u16_get_bits(control,
3032 				       IEEE80211_MLE_STA_CONTROL_LINK_ID);
3033 		if (seen_links & BIT(link_id))
3034 			break;
3035 		seen_links |= BIT(link_id);
3036 
3037 		if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
3038 		    !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
3039 		    !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
3040 			continue;
3041 
3042 		memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
3043 		data.beacon_interval =
3044 			get_unaligned_le16(mle->sta_prof[i]->variable + 6);
3045 		data.tsf = tx_data->tsf +
3046 			   get_unaligned_le64(mle->sta_prof[i]->variable + 8);
3047 
3048 		/* sta_info_len counts itself */
3049 		profile = mle->sta_prof[i]->variable +
3050 			  mle->sta_prof[i]->sta_info_len - 1;
3051 		profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
3052 			      profile;
3053 
3054 		if (profile_len < 2)
3055 			continue;
3056 
3057 		data.capability = get_unaligned_le16(profile);
3058 		profile += 2;
3059 		profile_len -= 2;
3060 
3061 		/* Find in RNR to look up channel information */
3062 		use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
3063 						       tx_data->ielen,
3064 						       mld_id, link_id,
3065 						       &ap_info,
3066 						       &param_ch_count,
3067 						       &non_tx);
3068 		if (!use_for)
3069 			continue;
3070 
3071 		/*
3072 		 * As of 802.11be_D5.0, the specification does not give us any
3073 		 * way of discovering both the MaxBSSID and the Multiple-BSSID
3074 		 * Index. It does seem like the Multiple-BSSID Index element
3075 		 * may be provided, but section 9.4.2.45 explicitly forbids
3076 		 * including a Multiple-BSSID Element (in this case without any
3077 		 * subelements).
3078 		 * Without both pieces of information we cannot calculate the
3079 		 * reference BSSID, so simply ignore the BSS.
3080 		 */
3081 		if (non_tx)
3082 			continue;
3083 
3084 		/* We could sanity check the BSSID is included */
3085 
3086 		if (!ieee80211_operating_class_to_band(ap_info->op_class,
3087 						       &band))
3088 			continue;
3089 
3090 		freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
3091 		data.channel = ieee80211_get_channel_khz(wiphy, freq);
3092 
3093 		/* Skip if RNR element specifies an unsupported channel */
3094 		if (!data.channel)
3095 			continue;
3096 
3097 		/* Skip if BSS entry generated from MBSSID or DIRECT source
3098 		 * frame data available already.
3099 		 */
3100 		bss = cfg80211_get_bss(wiphy, data.channel, data.bssid, ssid,
3101 				       ssid_len, IEEE80211_BSS_TYPE_ANY,
3102 				       IEEE80211_PRIVACY_ANY);
3103 		if (bss) {
3104 			struct cfg80211_internal_bss *ibss = bss_from_pub(bss);
3105 
3106 			if (data.capability == bss->capability &&
3107 			    ibss->bss_source != BSS_SOURCE_STA_PROFILE) {
3108 				cfg80211_put_bss(wiphy, bss);
3109 				continue;
3110 			}
3111 			cfg80211_put_bss(wiphy, bss);
3112 		}
3113 
3114 		if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
3115 		    !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
3116 			use_for = 0;
3117 			data.cannot_use_reasons =
3118 				NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
3119 		}
3120 		data.use_for = use_for;
3121 
3122 		/* Generate new elements */
3123 		memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
3124 		data.ie = new_ie;
3125 		data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
3126 						 profile, profile_len,
3127 						 new_ie,
3128 						 IEEE80211_MAX_DATA_LEN);
3129 		if (!data.ielen)
3130 			continue;
3131 
3132 		/* The generated elements do not contain:
3133 		 *  - Basic ML element
3134 		 *  - A TBTT entry in the RNR for the transmitting AP
3135 		 *
3136 		 * This information is needed both internally and in userspace
3137 		 * as such, we should append it here.
3138 		 */
3139 		if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
3140 		    IEEE80211_MAX_DATA_LEN)
3141 			continue;
3142 
3143 		/* Copy the Basic Multi-Link element including the common
3144 		 * information, and then fix up the link ID and BSS param
3145 		 * change count.
3146 		 * Note that the ML element length has been verified and we
3147 		 * also checked that it contains the link ID.
3148 		 */
3149 		new_ie[data.ielen++] = WLAN_EID_EXTENSION;
3150 		new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
3151 		new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
3152 		memcpy(new_ie + data.ielen, ml_elem,
3153 		       sizeof(*ml_elem) + ml_common_len);
3154 
3155 		new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
3156 		new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
3157 			param_ch_count;
3158 
3159 		data.ielen += sizeof(*ml_elem) + ml_common_len;
3160 
3161 		if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
3162 			if (data.ielen + sizeof(struct element) +
3163 			    reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
3164 				continue;
3165 
3166 			memcpy(new_ie + data.ielen, reporter_rnr,
3167 			       sizeof(struct element) + reporter_rnr->datalen);
3168 			data.ielen += sizeof(struct element) +
3169 				      reporter_rnr->datalen;
3170 		}
3171 
3172 		bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
3173 		if (!bss)
3174 			break;
3175 		cfg80211_put_bss(wiphy, bss);
3176 	}
3177 
3178 out:
3179 	kfree(reporter_rnr);
3180 	kfree(new_ie);
3181 	kfree(mle);
3182 }
3183 
3184 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
3185 				       struct cfg80211_inform_single_bss_data *tx_data,
3186 				       struct cfg80211_bss *source_bss,
3187 				       gfp_t gfp)
3188 {
3189 	const struct element *elem;
3190 
3191 	if (!source_bss)
3192 		return;
3193 
3194 	if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
3195 		return;
3196 
3197 	for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
3198 			       tx_data->ie, tx_data->ielen)
3199 		cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
3200 						elem, gfp);
3201 }
3202 
3203 struct cfg80211_bss *
3204 cfg80211_inform_bss_data(struct wiphy *wiphy,
3205 			 struct cfg80211_inform_bss *data,
3206 			 enum cfg80211_bss_frame_type ftype,
3207 			 const u8 *bssid, u64 tsf, u16 capability,
3208 			 u16 beacon_interval, const u8 *ie, size_t ielen,
3209 			 gfp_t gfp)
3210 {
3211 	struct cfg80211_inform_single_bss_data inform_data = {
3212 		.drv_data = data,
3213 		.ftype = ftype,
3214 		.tsf = tsf,
3215 		.capability = capability,
3216 		.beacon_interval = beacon_interval,
3217 		.ie = ie,
3218 		.ielen = ielen,
3219 		.use_for = data->restrict_use ?
3220 				data->use_for :
3221 				NL80211_BSS_USE_FOR_ALL,
3222 		.cannot_use_reasons = data->cannot_use_reasons,
3223 	};
3224 	struct cfg80211_bss *res;
3225 
3226 	memcpy(inform_data.bssid, bssid, ETH_ALEN);
3227 
3228 	res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
3229 	if (!res)
3230 		return NULL;
3231 
3232 	/* don't do any further MBSSID/ML handling for S1G */
3233 	if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
3234 		return res;
3235 
3236 	cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3237 
3238 	cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3239 
3240 	return res;
3241 }
3242 EXPORT_SYMBOL(cfg80211_inform_bss_data);
3243 
3244 struct cfg80211_bss *
3245 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3246 			       struct cfg80211_inform_bss *data,
3247 			       struct ieee80211_mgmt *mgmt, size_t len,
3248 			       gfp_t gfp)
3249 {
3250 	size_t min_hdr_len;
3251 	struct ieee80211_ext *ext = NULL;
3252 	enum cfg80211_bss_frame_type ftype;
3253 	u16 beacon_interval;
3254 	const u8 *bssid;
3255 	u16 capability;
3256 	const u8 *ie;
3257 	size_t ielen;
3258 	u64 tsf;
3259 	size_t s1g_optional_len;
3260 
3261 	if (WARN_ON(!mgmt))
3262 		return NULL;
3263 
3264 	if (WARN_ON(!wiphy))
3265 		return NULL;
3266 
3267 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3268 		     offsetof(struct ieee80211_mgmt, u.beacon.variable));
3269 
3270 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3271 
3272 	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
3273 		ext = (void *) mgmt;
3274 		s1g_optional_len =
3275 			ieee80211_s1g_optional_len(ext->frame_control);
3276 		min_hdr_len =
3277 			offsetof(struct ieee80211_ext, u.s1g_beacon.variable) +
3278 			s1g_optional_len;
3279 	} else {
3280 		/* same for beacons */
3281 		min_hdr_len = offsetof(struct ieee80211_mgmt,
3282 				       u.probe_resp.variable);
3283 	}
3284 
3285 	if (WARN_ON(len < min_hdr_len))
3286 		return NULL;
3287 
3288 	ielen = len - min_hdr_len;
3289 	ie = mgmt->u.probe_resp.variable;
3290 	if (ext) {
3291 		const struct ieee80211_s1g_bcn_compat_ie *compat;
3292 		const struct element *elem;
3293 
3294 		ie = ext->u.s1g_beacon.variable + s1g_optional_len;
3295 		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen);
3296 		if (!elem)
3297 			return NULL;
3298 		if (elem->datalen < sizeof(*compat))
3299 			return NULL;
3300 		compat = (void *)elem->data;
3301 		bssid = ext->u.s1g_beacon.sa;
3302 		capability = le16_to_cpu(compat->compat_info);
3303 		beacon_interval = le16_to_cpu(compat->beacon_int);
3304 	} else {
3305 		bssid = mgmt->bssid;
3306 		beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3307 		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3308 	}
3309 
3310 	tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3311 
3312 	if (ieee80211_is_probe_resp(mgmt->frame_control))
3313 		ftype = CFG80211_BSS_FTYPE_PRESP;
3314 	else if (ext)
3315 		ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
3316 	else
3317 		ftype = CFG80211_BSS_FTYPE_BEACON;
3318 
3319 	return cfg80211_inform_bss_data(wiphy, data, ftype,
3320 					bssid, tsf, capability,
3321 					beacon_interval, ie, ielen,
3322 					gfp);
3323 }
3324 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3325 
3326 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3327 {
3328 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3329 
3330 	if (!pub)
3331 		return;
3332 
3333 	spin_lock_bh(&rdev->bss_lock);
3334 	bss_ref_get(rdev, bss_from_pub(pub));
3335 	spin_unlock_bh(&rdev->bss_lock);
3336 }
3337 EXPORT_SYMBOL(cfg80211_ref_bss);
3338 
3339 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3340 {
3341 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3342 
3343 	if (!pub)
3344 		return;
3345 
3346 	spin_lock_bh(&rdev->bss_lock);
3347 	bss_ref_put(rdev, bss_from_pub(pub));
3348 	spin_unlock_bh(&rdev->bss_lock);
3349 }
3350 EXPORT_SYMBOL(cfg80211_put_bss);
3351 
3352 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3353 {
3354 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3355 	struct cfg80211_internal_bss *bss, *tmp1;
3356 	struct cfg80211_bss *nontrans_bss, *tmp;
3357 
3358 	if (WARN_ON(!pub))
3359 		return;
3360 
3361 	bss = bss_from_pub(pub);
3362 
3363 	spin_lock_bh(&rdev->bss_lock);
3364 	if (list_empty(&bss->list))
3365 		goto out;
3366 
3367 	list_for_each_entry_safe(nontrans_bss, tmp,
3368 				 &pub->nontrans_list,
3369 				 nontrans_list) {
3370 		tmp1 = bss_from_pub(nontrans_bss);
3371 		if (__cfg80211_unlink_bss(rdev, tmp1))
3372 			rdev->bss_generation++;
3373 	}
3374 
3375 	if (__cfg80211_unlink_bss(rdev, bss))
3376 		rdev->bss_generation++;
3377 out:
3378 	spin_unlock_bh(&rdev->bss_lock);
3379 }
3380 EXPORT_SYMBOL(cfg80211_unlink_bss);
3381 
3382 void cfg80211_bss_iter(struct wiphy *wiphy,
3383 		       struct cfg80211_chan_def *chandef,
3384 		       void (*iter)(struct wiphy *wiphy,
3385 				    struct cfg80211_bss *bss,
3386 				    void *data),
3387 		       void *iter_data)
3388 {
3389 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3390 	struct cfg80211_internal_bss *bss;
3391 
3392 	spin_lock_bh(&rdev->bss_lock);
3393 
3394 	list_for_each_entry(bss, &rdev->bss_list, list) {
3395 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3396 						     false))
3397 			iter(wiphy, &bss->pub, iter_data);
3398 	}
3399 
3400 	spin_unlock_bh(&rdev->bss_lock);
3401 }
3402 EXPORT_SYMBOL(cfg80211_bss_iter);
3403 
3404 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3405 				     unsigned int link_id,
3406 				     struct ieee80211_channel *chan)
3407 {
3408 	struct wiphy *wiphy = wdev->wiphy;
3409 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3410 	struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3411 	struct cfg80211_internal_bss *new = NULL;
3412 	struct cfg80211_internal_bss *bss;
3413 	struct cfg80211_bss *nontrans_bss;
3414 	struct cfg80211_bss *tmp;
3415 
3416 	spin_lock_bh(&rdev->bss_lock);
3417 
3418 	/*
3419 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
3420 	 * changing the control channel, so no need to update in such a case.
3421 	 */
3422 	if (cbss->pub.channel == chan)
3423 		goto done;
3424 
3425 	/* use transmitting bss */
3426 	if (cbss->pub.transmitted_bss)
3427 		cbss = bss_from_pub(cbss->pub.transmitted_bss);
3428 
3429 	cbss->pub.channel = chan;
3430 
3431 	list_for_each_entry(bss, &rdev->bss_list, list) {
3432 		if (!cfg80211_bss_type_match(bss->pub.capability,
3433 					     bss->pub.channel->band,
3434 					     wdev->conn_bss_type))
3435 			continue;
3436 
3437 		if (bss == cbss)
3438 			continue;
3439 
3440 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3441 			new = bss;
3442 			break;
3443 		}
3444 	}
3445 
3446 	if (new) {
3447 		/* to save time, update IEs for transmitting bss only */
3448 		cfg80211_update_known_bss(rdev, cbss, new, false);
3449 		new->pub.proberesp_ies = NULL;
3450 		new->pub.beacon_ies = NULL;
3451 
3452 		list_for_each_entry_safe(nontrans_bss, tmp,
3453 					 &new->pub.nontrans_list,
3454 					 nontrans_list) {
3455 			bss = bss_from_pub(nontrans_bss);
3456 			if (__cfg80211_unlink_bss(rdev, bss))
3457 				rdev->bss_generation++;
3458 		}
3459 
3460 		WARN_ON(atomic_read(&new->hold));
3461 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3462 			rdev->bss_generation++;
3463 	}
3464 	cfg80211_rehash_bss(rdev, cbss);
3465 
3466 	list_for_each_entry_safe(nontrans_bss, tmp,
3467 				 &cbss->pub.nontrans_list,
3468 				 nontrans_list) {
3469 		bss = bss_from_pub(nontrans_bss);
3470 		bss->pub.channel = chan;
3471 		cfg80211_rehash_bss(rdev, bss);
3472 	}
3473 
3474 done:
3475 	spin_unlock_bh(&rdev->bss_lock);
3476 }
3477 
3478 #ifdef CONFIG_CFG80211_WEXT
3479 static struct cfg80211_registered_device *
3480 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3481 {
3482 	struct cfg80211_registered_device *rdev;
3483 	struct net_device *dev;
3484 
3485 	ASSERT_RTNL();
3486 
3487 	dev = dev_get_by_index(net, ifindex);
3488 	if (!dev)
3489 		return ERR_PTR(-ENODEV);
3490 	if (dev->ieee80211_ptr)
3491 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3492 	else
3493 		rdev = ERR_PTR(-ENODEV);
3494 	dev_put(dev);
3495 	return rdev;
3496 }
3497 
3498 int cfg80211_wext_siwscan(struct net_device *dev,
3499 			  struct iw_request_info *info,
3500 			  union iwreq_data *wrqu, char *extra)
3501 {
3502 	struct cfg80211_registered_device *rdev;
3503 	struct wiphy *wiphy;
3504 	struct iw_scan_req *wreq = NULL;
3505 	struct cfg80211_scan_request_int *creq;
3506 	int i, err, n_channels = 0;
3507 	enum nl80211_band band;
3508 
3509 	if (!netif_running(dev))
3510 		return -ENETDOWN;
3511 
3512 	if (wrqu->data.length == sizeof(struct iw_scan_req))
3513 		wreq = (struct iw_scan_req *)extra;
3514 
3515 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3516 
3517 	if (IS_ERR(rdev))
3518 		return PTR_ERR(rdev);
3519 
3520 	if (rdev->scan_req || rdev->scan_msg)
3521 		return -EBUSY;
3522 
3523 	wiphy = &rdev->wiphy;
3524 
3525 	/* Determine number of channels, needed to allocate creq */
3526 	if (wreq && wreq->num_channels) {
3527 		/* Passed from userspace so should be checked */
3528 		if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES))
3529 			return -EINVAL;
3530 		n_channels = wreq->num_channels;
3531 	} else {
3532 		n_channels = ieee80211_get_num_supported_channels(wiphy);
3533 	}
3534 
3535 	creq = kzalloc(struct_size(creq, req.channels, n_channels) +
3536 		       sizeof(struct cfg80211_ssid),
3537 		       GFP_ATOMIC);
3538 	if (!creq)
3539 		return -ENOMEM;
3540 
3541 	creq->req.wiphy = wiphy;
3542 	creq->req.wdev = dev->ieee80211_ptr;
3543 	/* SSIDs come after channels */
3544 	creq->req.ssids = (void *)creq +
3545 			  struct_size(creq, req.channels, n_channels);
3546 	creq->req.n_channels = n_channels;
3547 	creq->req.n_ssids = 1;
3548 	creq->req.scan_start = jiffies;
3549 
3550 	/* translate "Scan on frequencies" request */
3551 	i = 0;
3552 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3553 		int j;
3554 
3555 		if (!wiphy->bands[band])
3556 			continue;
3557 
3558 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3559 			struct ieee80211_channel *chan;
3560 
3561 			/* ignore disabled channels */
3562 			chan = &wiphy->bands[band]->channels[j];
3563 			if (chan->flags & IEEE80211_CHAN_DISABLED ||
3564 			    !cfg80211_wdev_channel_allowed(creq->req.wdev, chan))
3565 				continue;
3566 
3567 			/* If we have a wireless request structure and the
3568 			 * wireless request specifies frequencies, then search
3569 			 * for the matching hardware channel.
3570 			 */
3571 			if (wreq && wreq->num_channels) {
3572 				int k;
3573 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3574 				for (k = 0; k < wreq->num_channels; k++) {
3575 					struct iw_freq *freq =
3576 						&wreq->channel_list[k];
3577 					int wext_freq =
3578 						cfg80211_wext_freq(freq);
3579 
3580 					if (wext_freq == wiphy_freq)
3581 						goto wext_freq_found;
3582 				}
3583 				goto wext_freq_not_found;
3584 			}
3585 
3586 		wext_freq_found:
3587 			creq->req.channels[i] =
3588 				&wiphy->bands[band]->channels[j];
3589 			i++;
3590 		wext_freq_not_found: ;
3591 		}
3592 	}
3593 	/* No channels found? */
3594 	if (!i) {
3595 		err = -EINVAL;
3596 		goto out;
3597 	}
3598 
3599 	/* Set real number of channels specified in creq->req.channels[] */
3600 	creq->req.n_channels = i;
3601 
3602 	/* translate "Scan for SSID" request */
3603 	if (wreq) {
3604 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3605 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN)
3606 				return -EINVAL;
3607 			memcpy(creq->req.ssids[0].ssid, wreq->essid,
3608 			       wreq->essid_len);
3609 			creq->req.ssids[0].ssid_len = wreq->essid_len;
3610 		}
3611 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) {
3612 			creq->req.ssids = NULL;
3613 			creq->req.n_ssids = 0;
3614 		}
3615 	}
3616 
3617 	for (i = 0; i < NUM_NL80211_BANDS; i++)
3618 		if (wiphy->bands[i])
3619 			creq->req.rates[i] =
3620 				(1 << wiphy->bands[i]->n_bitrates) - 1;
3621 
3622 	eth_broadcast_addr(creq->req.bssid);
3623 
3624 	scoped_guard(wiphy, &rdev->wiphy) {
3625 		rdev->scan_req = creq;
3626 		err = rdev_scan(rdev, creq);
3627 		if (err) {
3628 			rdev->scan_req = NULL;
3629 			/* creq will be freed below */
3630 		} else {
3631 			nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3632 			/* creq now owned by driver */
3633 			creq = NULL;
3634 			dev_hold(dev);
3635 		}
3636 	}
3637 
3638  out:
3639 	kfree(creq);
3640 	return err;
3641 }
3642 
3643 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3644 				    const struct cfg80211_bss_ies *ies,
3645 				    char *current_ev, char *end_buf)
3646 {
3647 	const u8 *pos, *end, *next;
3648 	struct iw_event iwe;
3649 
3650 	if (!ies)
3651 		return current_ev;
3652 
3653 	/*
3654 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
3655 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3656 	 */
3657 	pos = ies->data;
3658 	end = pos + ies->len;
3659 
3660 	while (end - pos > IW_GENERIC_IE_MAX) {
3661 		next = pos + 2 + pos[1];
3662 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3663 			next = next + 2 + next[1];
3664 
3665 		memset(&iwe, 0, sizeof(iwe));
3666 		iwe.cmd = IWEVGENIE;
3667 		iwe.u.data.length = next - pos;
3668 		current_ev = iwe_stream_add_point_check(info, current_ev,
3669 							end_buf, &iwe,
3670 							(void *)pos);
3671 		if (IS_ERR(current_ev))
3672 			return current_ev;
3673 		pos = next;
3674 	}
3675 
3676 	if (end > pos) {
3677 		memset(&iwe, 0, sizeof(iwe));
3678 		iwe.cmd = IWEVGENIE;
3679 		iwe.u.data.length = end - pos;
3680 		current_ev = iwe_stream_add_point_check(info, current_ev,
3681 							end_buf, &iwe,
3682 							(void *)pos);
3683 		if (IS_ERR(current_ev))
3684 			return current_ev;
3685 	}
3686 
3687 	return current_ev;
3688 }
3689 
3690 static char *
3691 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3692 	      struct cfg80211_internal_bss *bss, char *current_ev,
3693 	      char *end_buf)
3694 {
3695 	const struct cfg80211_bss_ies *ies;
3696 	struct iw_event iwe;
3697 	const u8 *ie;
3698 	u8 buf[50];
3699 	u8 *cfg, *p, *tmp;
3700 	int rem, i, sig;
3701 	bool ismesh = false;
3702 
3703 	memset(&iwe, 0, sizeof(iwe));
3704 	iwe.cmd = SIOCGIWAP;
3705 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3706 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3707 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3708 						IW_EV_ADDR_LEN);
3709 	if (IS_ERR(current_ev))
3710 		return current_ev;
3711 
3712 	memset(&iwe, 0, sizeof(iwe));
3713 	iwe.cmd = SIOCGIWFREQ;
3714 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3715 	iwe.u.freq.e = 0;
3716 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3717 						IW_EV_FREQ_LEN);
3718 	if (IS_ERR(current_ev))
3719 		return current_ev;
3720 
3721 	memset(&iwe, 0, sizeof(iwe));
3722 	iwe.cmd = SIOCGIWFREQ;
3723 	iwe.u.freq.m = bss->pub.channel->center_freq;
3724 	iwe.u.freq.e = 6;
3725 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3726 						IW_EV_FREQ_LEN);
3727 	if (IS_ERR(current_ev))
3728 		return current_ev;
3729 
3730 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3731 		memset(&iwe, 0, sizeof(iwe));
3732 		iwe.cmd = IWEVQUAL;
3733 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3734 				     IW_QUAL_NOISE_INVALID |
3735 				     IW_QUAL_QUAL_UPDATED;
3736 		switch (wiphy->signal_type) {
3737 		case CFG80211_SIGNAL_TYPE_MBM:
3738 			sig = bss->pub.signal / 100;
3739 			iwe.u.qual.level = sig;
3740 			iwe.u.qual.updated |= IW_QUAL_DBM;
3741 			if (sig < -110)		/* rather bad */
3742 				sig = -110;
3743 			else if (sig > -40)	/* perfect */
3744 				sig = -40;
3745 			/* will give a range of 0 .. 70 */
3746 			iwe.u.qual.qual = sig + 110;
3747 			break;
3748 		case CFG80211_SIGNAL_TYPE_UNSPEC:
3749 			iwe.u.qual.level = bss->pub.signal;
3750 			/* will give range 0 .. 100 */
3751 			iwe.u.qual.qual = bss->pub.signal;
3752 			break;
3753 		default:
3754 			/* not reached */
3755 			break;
3756 		}
3757 		current_ev = iwe_stream_add_event_check(info, current_ev,
3758 							end_buf, &iwe,
3759 							IW_EV_QUAL_LEN);
3760 		if (IS_ERR(current_ev))
3761 			return current_ev;
3762 	}
3763 
3764 	memset(&iwe, 0, sizeof(iwe));
3765 	iwe.cmd = SIOCGIWENCODE;
3766 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3767 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3768 	else
3769 		iwe.u.data.flags = IW_ENCODE_DISABLED;
3770 	iwe.u.data.length = 0;
3771 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3772 						&iwe, "");
3773 	if (IS_ERR(current_ev))
3774 		return current_ev;
3775 
3776 	rcu_read_lock();
3777 	ies = rcu_dereference(bss->pub.ies);
3778 	rem = ies->len;
3779 	ie = ies->data;
3780 
3781 	while (rem >= 2) {
3782 		/* invalid data */
3783 		if (ie[1] > rem - 2)
3784 			break;
3785 
3786 		switch (ie[0]) {
3787 		case WLAN_EID_SSID:
3788 			memset(&iwe, 0, sizeof(iwe));
3789 			iwe.cmd = SIOCGIWESSID;
3790 			iwe.u.data.length = ie[1];
3791 			iwe.u.data.flags = 1;
3792 			current_ev = iwe_stream_add_point_check(info,
3793 								current_ev,
3794 								end_buf, &iwe,
3795 								(u8 *)ie + 2);
3796 			if (IS_ERR(current_ev))
3797 				goto unlock;
3798 			break;
3799 		case WLAN_EID_MESH_ID:
3800 			memset(&iwe, 0, sizeof(iwe));
3801 			iwe.cmd = SIOCGIWESSID;
3802 			iwe.u.data.length = ie[1];
3803 			iwe.u.data.flags = 1;
3804 			current_ev = iwe_stream_add_point_check(info,
3805 								current_ev,
3806 								end_buf, &iwe,
3807 								(u8 *)ie + 2);
3808 			if (IS_ERR(current_ev))
3809 				goto unlock;
3810 			break;
3811 		case WLAN_EID_MESH_CONFIG:
3812 			ismesh = true;
3813 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3814 				break;
3815 			cfg = (u8 *)ie + 2;
3816 			memset(&iwe, 0, sizeof(iwe));
3817 			iwe.cmd = IWEVCUSTOM;
3818 			iwe.u.data.length = sprintf(buf,
3819 						    "Mesh Network Path Selection Protocol ID: 0x%02X",
3820 						    cfg[0]);
3821 			current_ev = iwe_stream_add_point_check(info,
3822 								current_ev,
3823 								end_buf,
3824 								&iwe, buf);
3825 			if (IS_ERR(current_ev))
3826 				goto unlock;
3827 			iwe.u.data.length = sprintf(buf,
3828 						    "Path Selection Metric ID: 0x%02X",
3829 						    cfg[1]);
3830 			current_ev = iwe_stream_add_point_check(info,
3831 								current_ev,
3832 								end_buf,
3833 								&iwe, buf);
3834 			if (IS_ERR(current_ev))
3835 				goto unlock;
3836 			iwe.u.data.length = sprintf(buf,
3837 						    "Congestion Control Mode ID: 0x%02X",
3838 						    cfg[2]);
3839 			current_ev = iwe_stream_add_point_check(info,
3840 								current_ev,
3841 								end_buf,
3842 								&iwe, buf);
3843 			if (IS_ERR(current_ev))
3844 				goto unlock;
3845 			iwe.u.data.length = sprintf(buf,
3846 						    "Synchronization ID: 0x%02X",
3847 						    cfg[3]);
3848 			current_ev = iwe_stream_add_point_check(info,
3849 								current_ev,
3850 								end_buf,
3851 								&iwe, buf);
3852 			if (IS_ERR(current_ev))
3853 				goto unlock;
3854 			iwe.u.data.length = sprintf(buf,
3855 						    "Authentication ID: 0x%02X",
3856 						    cfg[4]);
3857 			current_ev = iwe_stream_add_point_check(info,
3858 								current_ev,
3859 								end_buf,
3860 								&iwe, buf);
3861 			if (IS_ERR(current_ev))
3862 				goto unlock;
3863 			iwe.u.data.length = sprintf(buf,
3864 						    "Formation Info: 0x%02X",
3865 						    cfg[5]);
3866 			current_ev = iwe_stream_add_point_check(info,
3867 								current_ev,
3868 								end_buf,
3869 								&iwe, buf);
3870 			if (IS_ERR(current_ev))
3871 				goto unlock;
3872 			iwe.u.data.length = sprintf(buf,
3873 						    "Capabilities: 0x%02X",
3874 						    cfg[6]);
3875 			current_ev = iwe_stream_add_point_check(info,
3876 								current_ev,
3877 								end_buf,
3878 								&iwe, buf);
3879 			if (IS_ERR(current_ev))
3880 				goto unlock;
3881 			break;
3882 		case WLAN_EID_SUPP_RATES:
3883 		case WLAN_EID_EXT_SUPP_RATES:
3884 			/* display all supported rates in readable format */
3885 			p = current_ev + iwe_stream_lcp_len(info);
3886 
3887 			memset(&iwe, 0, sizeof(iwe));
3888 			iwe.cmd = SIOCGIWRATE;
3889 			/* Those two flags are ignored... */
3890 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3891 
3892 			for (i = 0; i < ie[1]; i++) {
3893 				iwe.u.bitrate.value =
3894 					((ie[i + 2] & 0x7f) * 500000);
3895 				tmp = p;
3896 				p = iwe_stream_add_value(info, current_ev, p,
3897 							 end_buf, &iwe,
3898 							 IW_EV_PARAM_LEN);
3899 				if (p == tmp) {
3900 					current_ev = ERR_PTR(-E2BIG);
3901 					goto unlock;
3902 				}
3903 			}
3904 			current_ev = p;
3905 			break;
3906 		}
3907 		rem -= ie[1] + 2;
3908 		ie += ie[1] + 2;
3909 	}
3910 
3911 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3912 	    ismesh) {
3913 		memset(&iwe, 0, sizeof(iwe));
3914 		iwe.cmd = SIOCGIWMODE;
3915 		if (ismesh)
3916 			iwe.u.mode = IW_MODE_MESH;
3917 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3918 			iwe.u.mode = IW_MODE_MASTER;
3919 		else
3920 			iwe.u.mode = IW_MODE_ADHOC;
3921 		current_ev = iwe_stream_add_event_check(info, current_ev,
3922 							end_buf, &iwe,
3923 							IW_EV_UINT_LEN);
3924 		if (IS_ERR(current_ev))
3925 			goto unlock;
3926 	}
3927 
3928 	memset(&iwe, 0, sizeof(iwe));
3929 	iwe.cmd = IWEVCUSTOM;
3930 	iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3931 				    (unsigned long long)(ies->tsf));
3932 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3933 						&iwe, buf);
3934 	if (IS_ERR(current_ev))
3935 		goto unlock;
3936 	memset(&iwe, 0, sizeof(iwe));
3937 	iwe.cmd = IWEVCUSTOM;
3938 	iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3939 				    elapsed_jiffies_msecs(bss->ts));
3940 	current_ev = iwe_stream_add_point_check(info, current_ev,
3941 						end_buf, &iwe, buf);
3942 	if (IS_ERR(current_ev))
3943 		goto unlock;
3944 
3945 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3946 
3947  unlock:
3948 	rcu_read_unlock();
3949 	return current_ev;
3950 }
3951 
3952 
3953 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3954 				  struct iw_request_info *info,
3955 				  char *buf, size_t len)
3956 {
3957 	char *current_ev = buf;
3958 	char *end_buf = buf + len;
3959 	struct cfg80211_internal_bss *bss;
3960 	int err = 0;
3961 
3962 	spin_lock_bh(&rdev->bss_lock);
3963 	cfg80211_bss_expire(rdev);
3964 
3965 	list_for_each_entry(bss, &rdev->bss_list, list) {
3966 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3967 			err = -E2BIG;
3968 			break;
3969 		}
3970 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3971 					   current_ev, end_buf);
3972 		if (IS_ERR(current_ev)) {
3973 			err = PTR_ERR(current_ev);
3974 			break;
3975 		}
3976 	}
3977 	spin_unlock_bh(&rdev->bss_lock);
3978 
3979 	if (err)
3980 		return err;
3981 	return current_ev - buf;
3982 }
3983 
3984 
3985 int cfg80211_wext_giwscan(struct net_device *dev,
3986 			  struct iw_request_info *info,
3987 			  union iwreq_data *wrqu, char *extra)
3988 {
3989 	struct iw_point *data = &wrqu->data;
3990 	struct cfg80211_registered_device *rdev;
3991 	int res;
3992 
3993 	if (!netif_running(dev))
3994 		return -ENETDOWN;
3995 
3996 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3997 
3998 	if (IS_ERR(rdev))
3999 		return PTR_ERR(rdev);
4000 
4001 	if (rdev->scan_req || rdev->scan_msg)
4002 		return -EAGAIN;
4003 
4004 	res = ieee80211_scan_results(rdev, info, extra, data->length);
4005 	data->length = 0;
4006 	if (res >= 0) {
4007 		data->length = res;
4008 		res = 0;
4009 	}
4010 
4011 	return res;
4012 }
4013 #endif
4014