1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 * Copyright (C) 2018-2025 Intel Corporation 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include <linux/wireless.h> 15 #include <linux/nl80211.h> 16 #include <linux/etherdevice.h> 17 #include <linux/crc32.h> 18 #include <linux/bitfield.h> 19 #include <net/arp.h> 20 #include <net/cfg80211.h> 21 #include <net/cfg80211-wext.h> 22 #include <net/iw_handler.h> 23 #include <kunit/visibility.h> 24 #include "core.h" 25 #include "nl80211.h" 26 #include "wext-compat.h" 27 #include "rdev-ops.h" 28 29 /** 30 * DOC: BSS tree/list structure 31 * 32 * At the top level, the BSS list is kept in both a list in each 33 * registered device (@bss_list) as well as an RB-tree for faster 34 * lookup. In the RB-tree, entries can be looked up using their 35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 36 * for other BSSes. 37 * 38 * Due to the possibility of hidden SSIDs, there's a second level 39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 40 * The hidden_list connects all BSSes belonging to a single AP 41 * that has a hidden SSID, and connects beacon and probe response 42 * entries. For a probe response entry for a hidden SSID, the 43 * hidden_beacon_bss pointer points to the BSS struct holding the 44 * beacon's information. 45 * 46 * Reference counting is done for all these references except for 47 * the hidden_list, so that a beacon BSS struct that is otherwise 48 * not referenced has one reference for being on the bss_list and 49 * one for each probe response entry that points to it using the 50 * hidden_beacon_bss pointer. When a BSS struct that has such a 51 * pointer is get/put, the refcount update is also propagated to 52 * the referenced struct, this ensure that it cannot get removed 53 * while somebody is using the probe response version. 54 * 55 * Note that the hidden_beacon_bss pointer never changes, due to 56 * the reference counting. Therefore, no locking is needed for 57 * it. 58 * 59 * Also note that the hidden_beacon_bss pointer is only relevant 60 * if the driver uses something other than the IEs, e.g. private 61 * data stored in the BSS struct, since the beacon IEs are 62 * also linked into the probe response struct. 63 */ 64 65 /* 66 * Limit the number of BSS entries stored in mac80211. Each one is 67 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 68 * If somebody wants to really attack this though, they'd likely 69 * use small beacons, and only one type of frame, limiting each of 70 * the entries to a much smaller size (in order to generate more 71 * entries in total, so overhead is bigger.) 72 */ 73 static int bss_entries_limit = 1000; 74 module_param(bss_entries_limit, int, 0644); 75 MODULE_PARM_DESC(bss_entries_limit, 76 "limit to number of scan BSS entries (per wiphy, default 1000)"); 77 78 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 79 80 static void bss_free(struct cfg80211_internal_bss *bss) 81 { 82 struct cfg80211_bss_ies *ies; 83 84 if (WARN_ON(atomic_read(&bss->hold))) 85 return; 86 87 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 88 if (ies && !bss->pub.hidden_beacon_bss) 89 kfree_rcu(ies, rcu_head); 90 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 91 if (ies) 92 kfree_rcu(ies, rcu_head); 93 94 /* 95 * This happens when the module is removed, it doesn't 96 * really matter any more save for completeness 97 */ 98 if (!list_empty(&bss->hidden_list)) 99 list_del(&bss->hidden_list); 100 101 kfree(bss); 102 } 103 104 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 105 struct cfg80211_internal_bss *bss) 106 { 107 lockdep_assert_held(&rdev->bss_lock); 108 109 bss->refcount++; 110 111 if (bss->pub.hidden_beacon_bss) 112 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++; 113 114 if (bss->pub.transmitted_bss) 115 bss_from_pub(bss->pub.transmitted_bss)->refcount++; 116 } 117 118 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 119 struct cfg80211_internal_bss *bss) 120 { 121 lockdep_assert_held(&rdev->bss_lock); 122 123 if (bss->pub.hidden_beacon_bss) { 124 struct cfg80211_internal_bss *hbss; 125 126 hbss = bss_from_pub(bss->pub.hidden_beacon_bss); 127 hbss->refcount--; 128 if (hbss->refcount == 0) 129 bss_free(hbss); 130 } 131 132 if (bss->pub.transmitted_bss) { 133 struct cfg80211_internal_bss *tbss; 134 135 tbss = bss_from_pub(bss->pub.transmitted_bss); 136 tbss->refcount--; 137 if (tbss->refcount == 0) 138 bss_free(tbss); 139 } 140 141 bss->refcount--; 142 if (bss->refcount == 0) 143 bss_free(bss); 144 } 145 146 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 147 struct cfg80211_internal_bss *bss) 148 { 149 lockdep_assert_held(&rdev->bss_lock); 150 151 if (!list_empty(&bss->hidden_list)) { 152 /* 153 * don't remove the beacon entry if it has 154 * probe responses associated with it 155 */ 156 if (!bss->pub.hidden_beacon_bss) 157 return false; 158 /* 159 * if it's a probe response entry break its 160 * link to the other entries in the group 161 */ 162 list_del_init(&bss->hidden_list); 163 } 164 165 list_del_init(&bss->list); 166 list_del_init(&bss->pub.nontrans_list); 167 rb_erase(&bss->rbn, &rdev->bss_tree); 168 rdev->bss_entries--; 169 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 170 "rdev bss entries[%d]/list[empty:%d] corruption\n", 171 rdev->bss_entries, list_empty(&rdev->bss_list)); 172 bss_ref_put(rdev, bss); 173 return true; 174 } 175 176 bool cfg80211_is_element_inherited(const struct element *elem, 177 const struct element *non_inherit_elem) 178 { 179 u8 id_len, ext_id_len, i, loop_len, id; 180 const u8 *list; 181 182 if (elem->id == WLAN_EID_MULTIPLE_BSSID) 183 return false; 184 185 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 && 186 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK) 187 return false; 188 189 if (!non_inherit_elem || non_inherit_elem->datalen < 2) 190 return true; 191 192 /* 193 * non inheritance element format is: 194 * ext ID (56) | IDs list len | list | extension IDs list len | list 195 * Both lists are optional. Both lengths are mandatory. 196 * This means valid length is: 197 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths 198 */ 199 id_len = non_inherit_elem->data[1]; 200 if (non_inherit_elem->datalen < 3 + id_len) 201 return true; 202 203 ext_id_len = non_inherit_elem->data[2 + id_len]; 204 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) 205 return true; 206 207 if (elem->id == WLAN_EID_EXTENSION) { 208 if (!ext_id_len) 209 return true; 210 loop_len = ext_id_len; 211 list = &non_inherit_elem->data[3 + id_len]; 212 id = elem->data[0]; 213 } else { 214 if (!id_len) 215 return true; 216 loop_len = id_len; 217 list = &non_inherit_elem->data[2]; 218 id = elem->id; 219 } 220 221 for (i = 0; i < loop_len; i++) { 222 if (list[i] == id) 223 return false; 224 } 225 226 return true; 227 } 228 EXPORT_SYMBOL(cfg80211_is_element_inherited); 229 230 static size_t cfg80211_copy_elem_with_frags(const struct element *elem, 231 const u8 *ie, size_t ie_len, 232 u8 **pos, u8 *buf, size_t buf_len) 233 { 234 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len || 235 elem->data + elem->datalen > ie + ie_len)) 236 return 0; 237 238 if (elem->datalen + 2 > buf + buf_len - *pos) 239 return 0; 240 241 memcpy(*pos, elem, elem->datalen + 2); 242 *pos += elem->datalen + 2; 243 244 /* Finish if it is not fragmented */ 245 if (elem->datalen != 255) 246 return *pos - buf; 247 248 ie_len = ie + ie_len - elem->data - elem->datalen; 249 ie = (const u8 *)elem->data + elem->datalen; 250 251 for_each_element(elem, ie, ie_len) { 252 if (elem->id != WLAN_EID_FRAGMENT) 253 break; 254 255 if (elem->datalen + 2 > buf + buf_len - *pos) 256 return 0; 257 258 memcpy(*pos, elem, elem->datalen + 2); 259 *pos += elem->datalen + 2; 260 261 if (elem->datalen != 255) 262 break; 263 } 264 265 return *pos - buf; 266 } 267 268 VISIBLE_IF_CFG80211_KUNIT size_t 269 cfg80211_gen_new_ie(const u8 *ie, size_t ielen, 270 const u8 *subie, size_t subie_len, 271 u8 *new_ie, size_t new_ie_len) 272 { 273 const struct element *non_inherit_elem, *parent, *sub; 274 u8 *pos = new_ie; 275 const u8 *mbssid_index_ie; 276 u8 id, ext_id, bssid_index = 255; 277 unsigned int match_len; 278 279 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 280 subie, subie_len); 281 282 mbssid_index_ie = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, subie, 283 subie_len); 284 if (mbssid_index_ie && mbssid_index_ie[1] > 0 && 285 mbssid_index_ie[2] > 0 && mbssid_index_ie[2] <= 46) 286 bssid_index = mbssid_index_ie[2]; 287 288 /* We copy the elements one by one from the parent to the generated 289 * elements. 290 * If they are not inherited (included in subie or in the non 291 * inheritance element), then we copy all occurrences the first time 292 * we see this element type. 293 */ 294 for_each_element(parent, ie, ielen) { 295 if (parent->id == WLAN_EID_FRAGMENT) 296 continue; 297 298 if (parent->id == WLAN_EID_EXTENSION) { 299 if (parent->datalen < 1) 300 continue; 301 302 id = WLAN_EID_EXTENSION; 303 ext_id = parent->data[0]; 304 match_len = 1; 305 } else { 306 id = parent->id; 307 match_len = 0; 308 } 309 310 /* Find first occurrence in subie */ 311 sub = cfg80211_find_elem_match(id, subie, subie_len, 312 &ext_id, match_len, 0); 313 314 /* Copy from parent if not in subie and inherited */ 315 if (!sub && 316 cfg80211_is_element_inherited(parent, non_inherit_elem)) { 317 if (!cfg80211_copy_elem_with_frags(parent, 318 ie, ielen, 319 &pos, new_ie, 320 new_ie_len)) 321 return 0; 322 323 continue; 324 } 325 326 /* For ML probe response, match the MLE in the frame body with 327 * MLD id being 'bssid_index' 328 */ 329 if (parent->id == WLAN_EID_EXTENSION && parent->datalen > 1 && 330 parent->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK && 331 bssid_index == ieee80211_mle_get_mld_id(parent->data + 1)) { 332 if (!cfg80211_copy_elem_with_frags(parent, 333 ie, ielen, 334 &pos, new_ie, 335 new_ie_len)) 336 return 0; 337 338 /* Continue here to prevent processing the MLE in 339 * sub-element, which AP MLD should not carry 340 */ 341 continue; 342 } 343 344 /* Already copied if an earlier element had the same type */ 345 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie, 346 &ext_id, match_len, 0)) 347 continue; 348 349 /* Not inheriting, copy all similar elements from subie */ 350 while (sub) { 351 if (!cfg80211_copy_elem_with_frags(sub, 352 subie, subie_len, 353 &pos, new_ie, 354 new_ie_len)) 355 return 0; 356 357 sub = cfg80211_find_elem_match(id, 358 sub->data + sub->datalen, 359 subie_len + subie - 360 (sub->data + 361 sub->datalen), 362 &ext_id, match_len, 0); 363 } 364 } 365 366 /* The above misses elements that are included in subie but not in the 367 * parent, so do a pass over subie and append those. 368 * Skip the non-tx BSSID caps and non-inheritance element. 369 */ 370 for_each_element(sub, subie, subie_len) { 371 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP) 372 continue; 373 374 if (sub->id == WLAN_EID_FRAGMENT) 375 continue; 376 377 if (sub->id == WLAN_EID_EXTENSION) { 378 if (sub->datalen < 1) 379 continue; 380 381 id = WLAN_EID_EXTENSION; 382 ext_id = sub->data[0]; 383 match_len = 1; 384 385 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE) 386 continue; 387 } else { 388 id = sub->id; 389 match_len = 0; 390 } 391 392 /* Processed if one was included in the parent */ 393 if (cfg80211_find_elem_match(id, ie, ielen, 394 &ext_id, match_len, 0)) 395 continue; 396 397 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len, 398 &pos, new_ie, new_ie_len)) 399 return 0; 400 } 401 402 return pos - new_ie; 403 } 404 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie); 405 406 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 407 const u8 *ssid, size_t ssid_len) 408 { 409 const struct cfg80211_bss_ies *ies; 410 const struct element *ssid_elem; 411 412 if (bssid && !ether_addr_equal(a->bssid, bssid)) 413 return false; 414 415 if (!ssid) 416 return true; 417 418 ies = rcu_access_pointer(a->ies); 419 if (!ies) 420 return false; 421 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 422 if (!ssid_elem) 423 return false; 424 if (ssid_elem->datalen != ssid_len) 425 return false; 426 return memcmp(ssid_elem->data, ssid, ssid_len) == 0; 427 } 428 429 static int 430 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, 431 struct cfg80211_bss *nontrans_bss) 432 { 433 const struct element *ssid_elem; 434 struct cfg80211_bss *bss = NULL; 435 436 rcu_read_lock(); 437 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 438 if (!ssid_elem) { 439 rcu_read_unlock(); 440 return -EINVAL; 441 } 442 443 /* check if nontrans_bss is in the list */ 444 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { 445 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data, 446 ssid_elem->datalen)) { 447 rcu_read_unlock(); 448 return 0; 449 } 450 } 451 452 rcu_read_unlock(); 453 454 /* 455 * This is a bit weird - it's not on the list, but already on another 456 * one! The only way that could happen is if there's some BSSID/SSID 457 * shared by multiple APs in their multi-BSSID profiles, potentially 458 * with hidden SSID mixed in ... ignore it. 459 */ 460 if (!list_empty(&nontrans_bss->nontrans_list)) 461 return -EINVAL; 462 463 /* add to the list */ 464 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); 465 return 0; 466 } 467 468 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 469 unsigned long expire_time) 470 { 471 struct cfg80211_internal_bss *bss, *tmp; 472 bool expired = false; 473 474 lockdep_assert_held(&rdev->bss_lock); 475 476 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 477 if (atomic_read(&bss->hold)) 478 continue; 479 if (!time_after(expire_time, bss->ts)) 480 continue; 481 482 if (__cfg80211_unlink_bss(rdev, bss)) 483 expired = true; 484 } 485 486 if (expired) 487 rdev->bss_generation++; 488 } 489 490 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 491 { 492 struct cfg80211_internal_bss *bss, *oldest = NULL; 493 bool ret; 494 495 lockdep_assert_held(&rdev->bss_lock); 496 497 list_for_each_entry(bss, &rdev->bss_list, list) { 498 if (atomic_read(&bss->hold)) 499 continue; 500 501 if (!list_empty(&bss->hidden_list) && 502 !bss->pub.hidden_beacon_bss) 503 continue; 504 505 if (oldest && time_before(oldest->ts, bss->ts)) 506 continue; 507 oldest = bss; 508 } 509 510 if (WARN_ON(!oldest)) 511 return false; 512 513 /* 514 * The callers make sure to increase rdev->bss_generation if anything 515 * gets removed (and a new entry added), so there's no need to also do 516 * it here. 517 */ 518 519 ret = __cfg80211_unlink_bss(rdev, oldest); 520 WARN_ON(!ret); 521 return ret; 522 } 523 524 static u8 cfg80211_parse_bss_param(u8 data, 525 struct cfg80211_colocated_ap *coloc_ap) 526 { 527 coloc_ap->oct_recommended = 528 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); 529 coloc_ap->same_ssid = 530 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); 531 coloc_ap->multi_bss = 532 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); 533 coloc_ap->transmitted_bssid = 534 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); 535 coloc_ap->unsolicited_probe = 536 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); 537 coloc_ap->colocated_ess = 538 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); 539 540 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); 541 } 542 543 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, 544 const struct element **elem, u32 *s_ssid) 545 { 546 547 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 548 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) 549 return -EINVAL; 550 551 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); 552 return 0; 553 } 554 555 VISIBLE_IF_CFG80211_KUNIT void 556 cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) 557 { 558 struct cfg80211_colocated_ap *ap, *tmp_ap; 559 560 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { 561 list_del(&ap->list); 562 kfree(ap); 563 } 564 } 565 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list); 566 567 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, 568 const u8 *pos, u8 length, 569 const struct element *ssid_elem, 570 u32 s_ssid_tmp) 571 { 572 u8 bss_params; 573 574 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED; 575 576 /* The length is already verified by the caller to contain bss_params */ 577 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) { 578 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos; 579 580 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 581 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid); 582 entry->short_ssid_valid = true; 583 584 bss_params = tbtt_info->bss_params; 585 586 /* Ignore disabled links */ 587 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) { 588 if (le16_get_bits(tbtt_info->mld_params.params, 589 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK)) 590 return -EINVAL; 591 } 592 593 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11, 594 psd_20)) 595 entry->psd_20 = tbtt_info->psd_20; 596 } else { 597 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos; 598 599 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 600 601 bss_params = tbtt_info->bss_params; 602 603 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9, 604 psd_20)) 605 entry->psd_20 = tbtt_info->psd_20; 606 } 607 608 /* ignore entries with invalid BSSID */ 609 if (!is_valid_ether_addr(entry->bssid)) 610 return -EINVAL; 611 612 /* skip non colocated APs */ 613 if (!cfg80211_parse_bss_param(bss_params, entry)) 614 return -EINVAL; 615 616 /* no information about the short ssid. Consider the entry valid 617 * for now. It would later be dropped in case there are explicit 618 * SSIDs that need to be matched 619 */ 620 if (!entry->same_ssid && !entry->short_ssid_valid) 621 return 0; 622 623 if (entry->same_ssid) { 624 entry->short_ssid = s_ssid_tmp; 625 entry->short_ssid_valid = true; 626 627 /* 628 * This is safe because we validate datalen in 629 * cfg80211_parse_colocated_ap(), before calling this 630 * function. 631 */ 632 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen); 633 entry->ssid_len = ssid_elem->datalen; 634 } 635 636 return 0; 637 } 638 639 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len, 640 enum cfg80211_rnr_iter_ret 641 (*iter)(void *data, u8 type, 642 const struct ieee80211_neighbor_ap_info *info, 643 const u8 *tbtt_info, u8 tbtt_info_len), 644 void *iter_data) 645 { 646 const struct element *rnr; 647 const u8 *pos, *end; 648 649 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, 650 elems, elems_len) { 651 const struct ieee80211_neighbor_ap_info *info; 652 653 pos = rnr->data; 654 end = rnr->data + rnr->datalen; 655 656 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 657 while (sizeof(*info) <= end - pos) { 658 u8 length, i, count; 659 u8 type; 660 661 info = (void *)pos; 662 count = u8_get_bits(info->tbtt_info_hdr, 663 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 664 1; 665 length = info->tbtt_info_len; 666 667 pos += sizeof(*info); 668 669 if (count * length > end - pos) 670 return false; 671 672 type = u8_get_bits(info->tbtt_info_hdr, 673 IEEE80211_AP_INFO_TBTT_HDR_TYPE); 674 675 for (i = 0; i < count; i++) { 676 switch (iter(iter_data, type, info, 677 pos, length)) { 678 case RNR_ITER_CONTINUE: 679 break; 680 case RNR_ITER_BREAK: 681 return true; 682 case RNR_ITER_ERROR: 683 return false; 684 } 685 686 pos += length; 687 } 688 } 689 690 if (pos != end) 691 return false; 692 } 693 694 return true; 695 } 696 EXPORT_SYMBOL_GPL(cfg80211_iter_rnr); 697 698 struct colocated_ap_data { 699 const struct element *ssid_elem; 700 struct list_head ap_list; 701 u32 s_ssid_tmp; 702 int n_coloc; 703 }; 704 705 static enum cfg80211_rnr_iter_ret 706 cfg80211_parse_colocated_ap_iter(void *_data, u8 type, 707 const struct ieee80211_neighbor_ap_info *info, 708 const u8 *tbtt_info, u8 tbtt_info_len) 709 { 710 struct colocated_ap_data *data = _data; 711 struct cfg80211_colocated_ap *entry; 712 enum nl80211_band band; 713 714 if (type != IEEE80211_TBTT_INFO_TYPE_TBTT) 715 return RNR_ITER_CONTINUE; 716 717 if (!ieee80211_operating_class_to_band(info->op_class, &band)) 718 return RNR_ITER_CONTINUE; 719 720 /* TBTT info must include bss param + BSSID + (short SSID or 721 * same_ssid bit to be set). Ignore other options, and move to 722 * the next AP info 723 */ 724 if (band != NL80211_BAND_6GHZ || 725 !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9, 726 bss_params) || 727 tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) || 728 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11, 729 bss_params))) 730 return RNR_ITER_CONTINUE; 731 732 entry = kzalloc(sizeof(*entry), GFP_ATOMIC); 733 if (!entry) 734 return RNR_ITER_ERROR; 735 736 entry->center_freq = 737 ieee80211_channel_to_frequency(info->channel, band); 738 739 if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len, 740 data->ssid_elem, data->s_ssid_tmp)) { 741 struct cfg80211_colocated_ap *tmp; 742 743 /* Don't add duplicate BSSIDs on the same channel. */ 744 list_for_each_entry(tmp, &data->ap_list, list) { 745 if (ether_addr_equal(tmp->bssid, entry->bssid) && 746 tmp->center_freq == entry->center_freq) { 747 kfree(entry); 748 return RNR_ITER_CONTINUE; 749 } 750 } 751 752 data->n_coloc++; 753 list_add_tail(&entry->list, &data->ap_list); 754 } else { 755 kfree(entry); 756 } 757 758 return RNR_ITER_CONTINUE; 759 } 760 761 VISIBLE_IF_CFG80211_KUNIT int 762 cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, 763 struct list_head *list) 764 { 765 struct colocated_ap_data data = {}; 766 int ret; 767 768 INIT_LIST_HEAD(&data.ap_list); 769 770 ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp); 771 if (ret) 772 return 0; 773 774 if (!cfg80211_iter_rnr(ies->data, ies->len, 775 cfg80211_parse_colocated_ap_iter, &data)) { 776 cfg80211_free_coloc_ap_list(&data.ap_list); 777 return 0; 778 } 779 780 list_splice_tail(&data.ap_list, list); 781 return data.n_coloc; 782 } 783 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap); 784 785 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, 786 struct ieee80211_channel *chan, 787 bool add_to_6ghz) 788 { 789 int i; 790 u32 n_channels = request->n_channels; 791 struct cfg80211_scan_6ghz_params *params = 792 &request->scan_6ghz_params[request->n_6ghz_params]; 793 794 for (i = 0; i < n_channels; i++) { 795 if (request->channels[i] == chan) { 796 if (add_to_6ghz) 797 params->channel_idx = i; 798 return; 799 } 800 } 801 802 request->n_channels++; 803 request->channels[n_channels] = chan; 804 if (add_to_6ghz) 805 request->scan_6ghz_params[request->n_6ghz_params].channel_idx = 806 n_channels; 807 } 808 809 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, 810 struct cfg80211_scan_request *request) 811 { 812 int i; 813 u32 s_ssid; 814 815 for (i = 0; i < request->n_ssids; i++) { 816 /* wildcard ssid in the scan request */ 817 if (!request->ssids[i].ssid_len) { 818 if (ap->multi_bss && !ap->transmitted_bssid) 819 continue; 820 821 return true; 822 } 823 824 if (ap->ssid_len && 825 ap->ssid_len == request->ssids[i].ssid_len) { 826 if (!memcmp(request->ssids[i].ssid, ap->ssid, 827 ap->ssid_len)) 828 return true; 829 } else if (ap->short_ssid_valid) { 830 s_ssid = ~crc32_le(~0, request->ssids[i].ssid, 831 request->ssids[i].ssid_len); 832 833 if (ap->short_ssid == s_ssid) 834 return true; 835 } 836 } 837 838 return false; 839 } 840 841 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev, 842 bool first_part) 843 { 844 u8 i; 845 struct cfg80211_colocated_ap *ap; 846 int n_channels, count = 0, err; 847 struct cfg80211_scan_request_int *request, *rdev_req = rdev->scan_req; 848 LIST_HEAD(coloc_ap_list); 849 bool need_scan_psc = true; 850 const struct ieee80211_sband_iftype_data *iftd; 851 size_t size, offs_ssids, offs_6ghz_params, offs_ies; 852 853 rdev_req->req.scan_6ghz = true; 854 rdev_req->req.first_part = first_part; 855 856 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) 857 return -EOPNOTSUPP; 858 859 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], 860 rdev_req->req.wdev->iftype); 861 if (!iftd || !iftd->he_cap.has_he) 862 return -EOPNOTSUPP; 863 864 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; 865 866 if (rdev_req->req.flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { 867 struct cfg80211_internal_bss *intbss; 868 869 spin_lock_bh(&rdev->bss_lock); 870 list_for_each_entry(intbss, &rdev->bss_list, list) { 871 struct cfg80211_bss *res = &intbss->pub; 872 const struct cfg80211_bss_ies *ies; 873 const struct element *ssid_elem; 874 struct cfg80211_colocated_ap *entry; 875 u32 s_ssid_tmp; 876 int ret; 877 878 ies = rcu_access_pointer(res->ies); 879 count += cfg80211_parse_colocated_ap(ies, 880 &coloc_ap_list); 881 882 /* In case the scan request specified a specific BSSID 883 * and the BSS is found and operating on 6GHz band then 884 * add this AP to the collocated APs list. 885 * This is relevant for ML probe requests when the lower 886 * band APs have not been discovered. 887 */ 888 if (is_broadcast_ether_addr(rdev_req->req.bssid) || 889 !ether_addr_equal(rdev_req->req.bssid, res->bssid) || 890 res->channel->band != NL80211_BAND_6GHZ) 891 continue; 892 893 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, 894 &s_ssid_tmp); 895 if (ret) 896 continue; 897 898 entry = kzalloc(sizeof(*entry), GFP_ATOMIC); 899 if (!entry) 900 continue; 901 902 memcpy(entry->bssid, res->bssid, ETH_ALEN); 903 entry->short_ssid = s_ssid_tmp; 904 memcpy(entry->ssid, ssid_elem->data, 905 ssid_elem->datalen); 906 entry->ssid_len = ssid_elem->datalen; 907 entry->short_ssid_valid = true; 908 entry->center_freq = res->channel->center_freq; 909 910 list_add_tail(&entry->list, &coloc_ap_list); 911 count++; 912 } 913 spin_unlock_bh(&rdev->bss_lock); 914 } 915 916 size = struct_size(request, req.channels, n_channels); 917 offs_ssids = size; 918 size += sizeof(*request->req.ssids) * rdev_req->req.n_ssids; 919 offs_6ghz_params = size; 920 size += sizeof(*request->req.scan_6ghz_params) * count; 921 offs_ies = size; 922 size += rdev_req->req.ie_len; 923 924 request = kzalloc(size, GFP_KERNEL); 925 if (!request) { 926 cfg80211_free_coloc_ap_list(&coloc_ap_list); 927 return -ENOMEM; 928 } 929 930 *request = *rdev_req; 931 request->req.n_channels = 0; 932 request->req.n_6ghz_params = 0; 933 if (rdev_req->req.n_ssids) { 934 /* 935 * Add the ssids from the parent scan request to the new 936 * scan request, so the driver would be able to use them 937 * in its probe requests to discover hidden APs on PSC 938 * channels. 939 */ 940 request->req.ssids = (void *)request + offs_ssids; 941 memcpy(request->req.ssids, rdev_req->req.ssids, 942 sizeof(*request->req.ssids) * request->req.n_ssids); 943 } 944 request->req.scan_6ghz_params = (void *)request + offs_6ghz_params; 945 946 if (rdev_req->req.ie_len) { 947 void *ie = (void *)request + offs_ies; 948 949 memcpy(ie, rdev_req->req.ie, rdev_req->req.ie_len); 950 request->req.ie = ie; 951 } 952 953 /* 954 * PSC channels should not be scanned in case of direct scan with 1 SSID 955 * and at least one of the reported co-located APs with same SSID 956 * indicating that all APs in the same ESS are co-located 957 */ 958 if (count && 959 request->req.n_ssids == 1 && 960 request->req.ssids[0].ssid_len) { 961 list_for_each_entry(ap, &coloc_ap_list, list) { 962 if (ap->colocated_ess && 963 cfg80211_find_ssid_match(ap, &request->req)) { 964 need_scan_psc = false; 965 break; 966 } 967 } 968 } 969 970 /* 971 * add to the scan request the channels that need to be scanned 972 * regardless of the collocated APs (PSC channels or all channels 973 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) 974 */ 975 for (i = 0; i < rdev_req->req.n_channels; i++) { 976 if (rdev_req->req.channels[i]->band == NL80211_BAND_6GHZ && 977 ((need_scan_psc && 978 cfg80211_channel_is_psc(rdev_req->req.channels[i])) || 979 !(rdev_req->req.flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { 980 cfg80211_scan_req_add_chan(&request->req, 981 rdev_req->req.channels[i], 982 false); 983 } 984 } 985 986 if (!(rdev_req->req.flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) 987 goto skip; 988 989 list_for_each_entry(ap, &coloc_ap_list, list) { 990 bool found = false; 991 struct cfg80211_scan_6ghz_params *scan_6ghz_params = 992 &request->req.scan_6ghz_params[request->req.n_6ghz_params]; 993 struct ieee80211_channel *chan = 994 ieee80211_get_channel(&rdev->wiphy, ap->center_freq); 995 996 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED || 997 !cfg80211_wdev_channel_allowed(rdev_req->req.wdev, chan)) 998 continue; 999 1000 for (i = 0; i < rdev_req->req.n_channels; i++) { 1001 if (rdev_req->req.channels[i] == chan) 1002 found = true; 1003 } 1004 1005 if (!found) 1006 continue; 1007 1008 if (request->req.n_ssids > 0 && 1009 !cfg80211_find_ssid_match(ap, &request->req)) 1010 continue; 1011 1012 if (!is_broadcast_ether_addr(request->req.bssid) && 1013 !ether_addr_equal(request->req.bssid, ap->bssid)) 1014 continue; 1015 1016 if (!request->req.n_ssids && ap->multi_bss && 1017 !ap->transmitted_bssid) 1018 continue; 1019 1020 cfg80211_scan_req_add_chan(&request->req, chan, true); 1021 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); 1022 scan_6ghz_params->short_ssid = ap->short_ssid; 1023 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; 1024 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; 1025 scan_6ghz_params->psd_20 = ap->psd_20; 1026 1027 /* 1028 * If a PSC channel is added to the scan and 'need_scan_psc' is 1029 * set to false, then all the APs that the scan logic is 1030 * interested with on the channel are collocated and thus there 1031 * is no need to perform the initial PSC channel listen. 1032 */ 1033 if (cfg80211_channel_is_psc(chan) && !need_scan_psc) 1034 scan_6ghz_params->psc_no_listen = true; 1035 1036 request->req.n_6ghz_params++; 1037 } 1038 1039 skip: 1040 cfg80211_free_coloc_ap_list(&coloc_ap_list); 1041 1042 if (request->req.n_channels) { 1043 struct cfg80211_scan_request_int *old = rdev->int_scan_req; 1044 1045 rdev->int_scan_req = request; 1046 1047 /* 1048 * If this scan follows a previous scan, save the scan start 1049 * info from the first part of the scan 1050 */ 1051 if (!first_part && !WARN_ON(!old)) 1052 rdev->int_scan_req->info = old->info; 1053 1054 err = rdev_scan(rdev, request); 1055 if (err) { 1056 rdev->int_scan_req = old; 1057 kfree(request); 1058 } else { 1059 kfree(old); 1060 } 1061 1062 return err; 1063 } 1064 1065 kfree(request); 1066 return -EINVAL; 1067 } 1068 1069 int cfg80211_scan(struct cfg80211_registered_device *rdev) 1070 { 1071 struct cfg80211_scan_request_int *request; 1072 struct cfg80211_scan_request_int *rdev_req = rdev->scan_req; 1073 u32 n_channels = 0, idx, i; 1074 1075 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) { 1076 rdev_req->req.first_part = true; 1077 return rdev_scan(rdev, rdev_req); 1078 } 1079 1080 for (i = 0; i < rdev_req->req.n_channels; i++) { 1081 if (rdev_req->req.channels[i]->band != NL80211_BAND_6GHZ) 1082 n_channels++; 1083 } 1084 1085 if (!n_channels) 1086 return cfg80211_scan_6ghz(rdev, true); 1087 1088 request = kzalloc(struct_size(request, req.channels, n_channels), 1089 GFP_KERNEL); 1090 if (!request) 1091 return -ENOMEM; 1092 1093 *request = *rdev_req; 1094 request->req.n_channels = n_channels; 1095 1096 for (i = idx = 0; i < rdev_req->req.n_channels; i++) { 1097 if (rdev_req->req.channels[i]->band != NL80211_BAND_6GHZ) 1098 request->req.channels[idx++] = 1099 rdev_req->req.channels[i]; 1100 } 1101 1102 rdev_req->req.scan_6ghz = false; 1103 rdev_req->req.first_part = true; 1104 rdev->int_scan_req = request; 1105 return rdev_scan(rdev, request); 1106 } 1107 1108 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 1109 bool send_message) 1110 { 1111 struct cfg80211_scan_request_int *request, *rdev_req; 1112 struct wireless_dev *wdev; 1113 struct sk_buff *msg; 1114 #ifdef CONFIG_CFG80211_WEXT 1115 union iwreq_data wrqu; 1116 #endif 1117 1118 lockdep_assert_held(&rdev->wiphy.mtx); 1119 1120 if (rdev->scan_msg) { 1121 nl80211_send_scan_msg(rdev, rdev->scan_msg); 1122 rdev->scan_msg = NULL; 1123 return; 1124 } 1125 1126 rdev_req = rdev->scan_req; 1127 if (!rdev_req) 1128 return; 1129 1130 wdev = rdev_req->req.wdev; 1131 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; 1132 1133 if (wdev_running(wdev) && 1134 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && 1135 !rdev_req->req.scan_6ghz && !request->info.aborted && 1136 !cfg80211_scan_6ghz(rdev, false)) 1137 return; 1138 1139 /* 1140 * This must be before sending the other events! 1141 * Otherwise, wpa_supplicant gets completely confused with 1142 * wext events. 1143 */ 1144 if (wdev->netdev) 1145 cfg80211_sme_scan_done(wdev->netdev); 1146 1147 if (!request->info.aborted && 1148 request->req.flags & NL80211_SCAN_FLAG_FLUSH) { 1149 /* flush entries from previous scans */ 1150 spin_lock_bh(&rdev->bss_lock); 1151 __cfg80211_bss_expire(rdev, request->req.scan_start); 1152 spin_unlock_bh(&rdev->bss_lock); 1153 } 1154 1155 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 1156 1157 #ifdef CONFIG_CFG80211_WEXT 1158 if (wdev->netdev && !request->info.aborted) { 1159 memset(&wrqu, 0, sizeof(wrqu)); 1160 1161 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 1162 } 1163 #endif 1164 1165 dev_put(wdev->netdev); 1166 1167 kfree(rdev->int_scan_req); 1168 rdev->int_scan_req = NULL; 1169 1170 kfree(rdev->scan_req); 1171 rdev->scan_req = NULL; 1172 1173 if (!send_message) 1174 rdev->scan_msg = msg; 1175 else 1176 nl80211_send_scan_msg(rdev, msg); 1177 } 1178 1179 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk) 1180 { 1181 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true); 1182 } 1183 1184 void cfg80211_scan_done(struct cfg80211_scan_request *request, 1185 struct cfg80211_scan_info *info) 1186 { 1187 struct cfg80211_scan_request_int *intreq = 1188 container_of(request, struct cfg80211_scan_request_int, req); 1189 struct cfg80211_registered_device *rdev = wiphy_to_rdev(request->wiphy); 1190 struct cfg80211_scan_info old_info = intreq->info; 1191 1192 trace_cfg80211_scan_done(intreq, info); 1193 WARN_ON(intreq != rdev->scan_req && 1194 intreq != rdev->int_scan_req); 1195 1196 intreq->info = *info; 1197 1198 /* 1199 * In case the scan is split, the scan_start_tsf and tsf_bssid should 1200 * be of the first part. In such a case old_info.scan_start_tsf should 1201 * be non zero. 1202 */ 1203 if (request->scan_6ghz && old_info.scan_start_tsf) { 1204 intreq->info.scan_start_tsf = old_info.scan_start_tsf; 1205 memcpy(intreq->info.tsf_bssid, old_info.tsf_bssid, 1206 sizeof(intreq->info.tsf_bssid)); 1207 } 1208 1209 intreq->notified = true; 1210 wiphy_work_queue(request->wiphy, &rdev->scan_done_wk); 1211 } 1212 EXPORT_SYMBOL(cfg80211_scan_done); 1213 1214 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 1215 struct cfg80211_sched_scan_request *req) 1216 { 1217 lockdep_assert_held(&rdev->wiphy.mtx); 1218 1219 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 1220 } 1221 1222 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 1223 struct cfg80211_sched_scan_request *req) 1224 { 1225 lockdep_assert_held(&rdev->wiphy.mtx); 1226 1227 list_del_rcu(&req->list); 1228 kfree_rcu(req, rcu_head); 1229 } 1230 1231 static struct cfg80211_sched_scan_request * 1232 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 1233 { 1234 struct cfg80211_sched_scan_request *pos; 1235 1236 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, 1237 lockdep_is_held(&rdev->wiphy.mtx)) { 1238 if (pos->reqid == reqid) 1239 return pos; 1240 } 1241 return NULL; 1242 } 1243 1244 /* 1245 * Determines if a scheduled scan request can be handled. When a legacy 1246 * scheduled scan is running no other scheduled scan is allowed regardless 1247 * whether the request is for legacy or multi-support scan. When a multi-support 1248 * scheduled scan is running a request for legacy scan is not allowed. In this 1249 * case a request for multi-support scan can be handled if resources are 1250 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 1251 */ 1252 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 1253 bool want_multi) 1254 { 1255 struct cfg80211_sched_scan_request *pos; 1256 int i = 0; 1257 1258 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 1259 /* request id zero means legacy in progress */ 1260 if (!i && !pos->reqid) 1261 return -EINPROGRESS; 1262 i++; 1263 } 1264 1265 if (i) { 1266 /* no legacy allowed when multi request(s) are active */ 1267 if (!want_multi) 1268 return -EINPROGRESS; 1269 1270 /* resource limit reached */ 1271 if (i == rdev->wiphy.max_sched_scan_reqs) 1272 return -ENOSPC; 1273 } 1274 return 0; 1275 } 1276 1277 void cfg80211_sched_scan_results_wk(struct work_struct *work) 1278 { 1279 struct cfg80211_registered_device *rdev; 1280 struct cfg80211_sched_scan_request *req, *tmp; 1281 1282 rdev = container_of(work, struct cfg80211_registered_device, 1283 sched_scan_res_wk); 1284 1285 guard(wiphy)(&rdev->wiphy); 1286 1287 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 1288 if (req->report_results) { 1289 req->report_results = false; 1290 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 1291 /* flush entries from previous scans */ 1292 spin_lock_bh(&rdev->bss_lock); 1293 __cfg80211_bss_expire(rdev, req->scan_start); 1294 spin_unlock_bh(&rdev->bss_lock); 1295 req->scan_start = jiffies; 1296 } 1297 nl80211_send_sched_scan(req, 1298 NL80211_CMD_SCHED_SCAN_RESULTS); 1299 } 1300 } 1301 } 1302 1303 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 1304 { 1305 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1306 struct cfg80211_sched_scan_request *request; 1307 1308 trace_cfg80211_sched_scan_results(wiphy, reqid); 1309 /* ignore if we're not scanning */ 1310 1311 rcu_read_lock(); 1312 request = cfg80211_find_sched_scan_req(rdev, reqid); 1313 if (request) { 1314 request->report_results = true; 1315 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 1316 } 1317 rcu_read_unlock(); 1318 } 1319 EXPORT_SYMBOL(cfg80211_sched_scan_results); 1320 1321 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) 1322 { 1323 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1324 1325 lockdep_assert_held(&wiphy->mtx); 1326 1327 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 1328 1329 __cfg80211_stop_sched_scan(rdev, reqid, true); 1330 } 1331 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); 1332 1333 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 1334 { 1335 guard(wiphy)(wiphy); 1336 1337 cfg80211_sched_scan_stopped_locked(wiphy, reqid); 1338 } 1339 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 1340 1341 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 1342 struct cfg80211_sched_scan_request *req, 1343 bool driver_initiated) 1344 { 1345 lockdep_assert_held(&rdev->wiphy.mtx); 1346 1347 if (!driver_initiated) { 1348 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 1349 if (err) 1350 return err; 1351 } 1352 1353 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 1354 1355 cfg80211_del_sched_scan_req(rdev, req); 1356 1357 return 0; 1358 } 1359 1360 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 1361 u64 reqid, bool driver_initiated) 1362 { 1363 struct cfg80211_sched_scan_request *sched_scan_req; 1364 1365 lockdep_assert_held(&rdev->wiphy.mtx); 1366 1367 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 1368 if (!sched_scan_req) 1369 return -ENOENT; 1370 1371 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 1372 driver_initiated); 1373 } 1374 1375 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 1376 unsigned long age_secs) 1377 { 1378 struct cfg80211_internal_bss *bss; 1379 unsigned long age_jiffies = secs_to_jiffies(age_secs); 1380 1381 spin_lock_bh(&rdev->bss_lock); 1382 list_for_each_entry(bss, &rdev->bss_list, list) 1383 bss->ts -= age_jiffies; 1384 spin_unlock_bh(&rdev->bss_lock); 1385 } 1386 1387 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 1388 { 1389 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 1390 } 1391 1392 void cfg80211_bss_flush(struct wiphy *wiphy) 1393 { 1394 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1395 1396 spin_lock_bh(&rdev->bss_lock); 1397 __cfg80211_bss_expire(rdev, jiffies); 1398 spin_unlock_bh(&rdev->bss_lock); 1399 } 1400 EXPORT_SYMBOL(cfg80211_bss_flush); 1401 1402 const struct element * 1403 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 1404 const u8 *match, unsigned int match_len, 1405 unsigned int match_offset) 1406 { 1407 const struct element *elem; 1408 1409 for_each_element_id(elem, eid, ies, len) { 1410 if (elem->datalen >= match_offset + match_len && 1411 !memcmp(elem->data + match_offset, match, match_len)) 1412 return elem; 1413 } 1414 1415 return NULL; 1416 } 1417 EXPORT_SYMBOL(cfg80211_find_elem_match); 1418 1419 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 1420 const u8 *ies, 1421 unsigned int len) 1422 { 1423 const struct element *elem; 1424 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 1425 int match_len = (oui_type < 0) ? 3 : sizeof(match); 1426 1427 if (WARN_ON(oui_type > 0xff)) 1428 return NULL; 1429 1430 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 1431 match, match_len, 0); 1432 1433 if (!elem || elem->datalen < 4) 1434 return NULL; 1435 1436 return elem; 1437 } 1438 EXPORT_SYMBOL(cfg80211_find_vendor_elem); 1439 1440 /** 1441 * enum bss_compare_mode - BSS compare mode 1442 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 1443 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 1444 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 1445 */ 1446 enum bss_compare_mode { 1447 BSS_CMP_REGULAR, 1448 BSS_CMP_HIDE_ZLEN, 1449 BSS_CMP_HIDE_NUL, 1450 }; 1451 1452 static int cmp_bss(struct cfg80211_bss *a, 1453 struct cfg80211_bss *b, 1454 enum bss_compare_mode mode) 1455 { 1456 const struct cfg80211_bss_ies *a_ies, *b_ies; 1457 const u8 *ie1 = NULL; 1458 const u8 *ie2 = NULL; 1459 int i, r; 1460 1461 if (a->channel != b->channel) 1462 return (b->channel->center_freq * 1000 + b->channel->freq_offset) - 1463 (a->channel->center_freq * 1000 + a->channel->freq_offset); 1464 1465 a_ies = rcu_access_pointer(a->ies); 1466 if (!a_ies) 1467 return -1; 1468 b_ies = rcu_access_pointer(b->ies); 1469 if (!b_ies) 1470 return 1; 1471 1472 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 1473 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1474 a_ies->data, a_ies->len); 1475 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 1476 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1477 b_ies->data, b_ies->len); 1478 if (ie1 && ie2) { 1479 int mesh_id_cmp; 1480 1481 if (ie1[1] == ie2[1]) 1482 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1483 else 1484 mesh_id_cmp = ie2[1] - ie1[1]; 1485 1486 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1487 a_ies->data, a_ies->len); 1488 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1489 b_ies->data, b_ies->len); 1490 if (ie1 && ie2) { 1491 if (mesh_id_cmp) 1492 return mesh_id_cmp; 1493 if (ie1[1] != ie2[1]) 1494 return ie2[1] - ie1[1]; 1495 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1496 } 1497 } 1498 1499 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 1500 if (r) 1501 return r; 1502 1503 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 1504 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 1505 1506 if (!ie1 && !ie2) 1507 return 0; 1508 1509 /* 1510 * Note that with "hide_ssid", the function returns a match if 1511 * the already-present BSS ("b") is a hidden SSID beacon for 1512 * the new BSS ("a"). 1513 */ 1514 1515 /* sort missing IE before (left of) present IE */ 1516 if (!ie1) 1517 return -1; 1518 if (!ie2) 1519 return 1; 1520 1521 switch (mode) { 1522 case BSS_CMP_HIDE_ZLEN: 1523 /* 1524 * In ZLEN mode we assume the BSS entry we're 1525 * looking for has a zero-length SSID. So if 1526 * the one we're looking at right now has that, 1527 * return 0. Otherwise, return the difference 1528 * in length, but since we're looking for the 1529 * 0-length it's really equivalent to returning 1530 * the length of the one we're looking at. 1531 * 1532 * No content comparison is needed as we assume 1533 * the content length is zero. 1534 */ 1535 return ie2[1]; 1536 case BSS_CMP_REGULAR: 1537 default: 1538 /* sort by length first, then by contents */ 1539 if (ie1[1] != ie2[1]) 1540 return ie2[1] - ie1[1]; 1541 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1542 case BSS_CMP_HIDE_NUL: 1543 if (ie1[1] != ie2[1]) 1544 return ie2[1] - ie1[1]; 1545 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 1546 for (i = 0; i < ie2[1]; i++) 1547 if (ie2[i + 2]) 1548 return -1; 1549 return 0; 1550 } 1551 } 1552 1553 static bool cfg80211_bss_type_match(u16 capability, 1554 enum nl80211_band band, 1555 enum ieee80211_bss_type bss_type) 1556 { 1557 bool ret = true; 1558 u16 mask, val; 1559 1560 if (bss_type == IEEE80211_BSS_TYPE_ANY) 1561 return ret; 1562 1563 if (band == NL80211_BAND_60GHZ) { 1564 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 1565 switch (bss_type) { 1566 case IEEE80211_BSS_TYPE_ESS: 1567 val = WLAN_CAPABILITY_DMG_TYPE_AP; 1568 break; 1569 case IEEE80211_BSS_TYPE_PBSS: 1570 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 1571 break; 1572 case IEEE80211_BSS_TYPE_IBSS: 1573 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 1574 break; 1575 default: 1576 return false; 1577 } 1578 } else { 1579 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 1580 switch (bss_type) { 1581 case IEEE80211_BSS_TYPE_ESS: 1582 val = WLAN_CAPABILITY_ESS; 1583 break; 1584 case IEEE80211_BSS_TYPE_IBSS: 1585 val = WLAN_CAPABILITY_IBSS; 1586 break; 1587 case IEEE80211_BSS_TYPE_MBSS: 1588 val = 0; 1589 break; 1590 default: 1591 return false; 1592 } 1593 } 1594 1595 ret = ((capability & mask) == val); 1596 return ret; 1597 } 1598 1599 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1600 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy, 1601 struct ieee80211_channel *channel, 1602 const u8 *bssid, 1603 const u8 *ssid, size_t ssid_len, 1604 enum ieee80211_bss_type bss_type, 1605 enum ieee80211_privacy privacy, 1606 u32 use_for) 1607 { 1608 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1609 struct cfg80211_internal_bss *bss, *res = NULL; 1610 unsigned long now = jiffies; 1611 int bss_privacy; 1612 1613 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 1614 privacy); 1615 1616 spin_lock_bh(&rdev->bss_lock); 1617 1618 list_for_each_entry(bss, &rdev->bss_list, list) { 1619 if (!cfg80211_bss_type_match(bss->pub.capability, 1620 bss->pub.channel->band, bss_type)) 1621 continue; 1622 1623 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 1624 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 1625 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 1626 continue; 1627 if (channel && bss->pub.channel != channel) 1628 continue; 1629 if (!is_valid_ether_addr(bss->pub.bssid)) 1630 continue; 1631 if ((bss->pub.use_for & use_for) != use_for) 1632 continue; 1633 /* Don't get expired BSS structs */ 1634 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 1635 !atomic_read(&bss->hold)) 1636 continue; 1637 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 1638 res = bss; 1639 bss_ref_get(rdev, res); 1640 break; 1641 } 1642 } 1643 1644 spin_unlock_bh(&rdev->bss_lock); 1645 if (!res) 1646 return NULL; 1647 trace_cfg80211_return_bss(&res->pub); 1648 return &res->pub; 1649 } 1650 EXPORT_SYMBOL(__cfg80211_get_bss); 1651 1652 static bool rb_insert_bss(struct cfg80211_registered_device *rdev, 1653 struct cfg80211_internal_bss *bss) 1654 { 1655 struct rb_node **p = &rdev->bss_tree.rb_node; 1656 struct rb_node *parent = NULL; 1657 struct cfg80211_internal_bss *tbss; 1658 int cmp; 1659 1660 while (*p) { 1661 parent = *p; 1662 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 1663 1664 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 1665 1666 if (WARN_ON(!cmp)) { 1667 /* will sort of leak this BSS */ 1668 return false; 1669 } 1670 1671 if (cmp < 0) 1672 p = &(*p)->rb_left; 1673 else 1674 p = &(*p)->rb_right; 1675 } 1676 1677 rb_link_node(&bss->rbn, parent, p); 1678 rb_insert_color(&bss->rbn, &rdev->bss_tree); 1679 return true; 1680 } 1681 1682 static struct cfg80211_internal_bss * 1683 rb_find_bss(struct cfg80211_registered_device *rdev, 1684 struct cfg80211_internal_bss *res, 1685 enum bss_compare_mode mode) 1686 { 1687 struct rb_node *n = rdev->bss_tree.rb_node; 1688 struct cfg80211_internal_bss *bss; 1689 int r; 1690 1691 while (n) { 1692 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 1693 r = cmp_bss(&res->pub, &bss->pub, mode); 1694 1695 if (r == 0) 1696 return bss; 1697 else if (r < 0) 1698 n = n->rb_left; 1699 else 1700 n = n->rb_right; 1701 } 1702 1703 return NULL; 1704 } 1705 1706 static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev, 1707 struct cfg80211_internal_bss *bss) 1708 { 1709 lockdep_assert_held(&rdev->bss_lock); 1710 1711 if (!rb_insert_bss(rdev, bss)) 1712 return; 1713 list_add_tail(&bss->list, &rdev->bss_list); 1714 rdev->bss_entries++; 1715 } 1716 1717 static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev, 1718 struct cfg80211_internal_bss *bss) 1719 { 1720 lockdep_assert_held(&rdev->bss_lock); 1721 1722 rb_erase(&bss->rbn, &rdev->bss_tree); 1723 if (!rb_insert_bss(rdev, bss)) { 1724 list_del(&bss->list); 1725 if (!list_empty(&bss->hidden_list)) 1726 list_del_init(&bss->hidden_list); 1727 if (!list_empty(&bss->pub.nontrans_list)) 1728 list_del_init(&bss->pub.nontrans_list); 1729 rdev->bss_entries--; 1730 } 1731 rdev->bss_generation++; 1732 } 1733 1734 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 1735 struct cfg80211_internal_bss *new) 1736 { 1737 const struct cfg80211_bss_ies *ies; 1738 struct cfg80211_internal_bss *bss; 1739 const u8 *ie; 1740 int i, ssidlen; 1741 u8 fold = 0; 1742 u32 n_entries = 0; 1743 1744 ies = rcu_access_pointer(new->pub.beacon_ies); 1745 if (WARN_ON(!ies)) 1746 return false; 1747 1748 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1749 if (!ie) { 1750 /* nothing to do */ 1751 return true; 1752 } 1753 1754 ssidlen = ie[1]; 1755 for (i = 0; i < ssidlen; i++) 1756 fold |= ie[2 + i]; 1757 1758 if (fold) { 1759 /* not a hidden SSID */ 1760 return true; 1761 } 1762 1763 /* This is the bad part ... */ 1764 1765 list_for_each_entry(bss, &rdev->bss_list, list) { 1766 /* 1767 * we're iterating all the entries anyway, so take the 1768 * opportunity to validate the list length accounting 1769 */ 1770 n_entries++; 1771 1772 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 1773 continue; 1774 if (bss->pub.channel != new->pub.channel) 1775 continue; 1776 if (rcu_access_pointer(bss->pub.beacon_ies)) 1777 continue; 1778 ies = rcu_access_pointer(bss->pub.ies); 1779 if (!ies) 1780 continue; 1781 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1782 if (!ie) 1783 continue; 1784 if (ssidlen && ie[1] != ssidlen) 1785 continue; 1786 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 1787 continue; 1788 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 1789 list_del(&bss->hidden_list); 1790 /* combine them */ 1791 list_add(&bss->hidden_list, &new->hidden_list); 1792 bss->pub.hidden_beacon_bss = &new->pub; 1793 new->refcount += bss->refcount; 1794 rcu_assign_pointer(bss->pub.beacon_ies, 1795 new->pub.beacon_ies); 1796 } 1797 1798 WARN_ONCE(n_entries != rdev->bss_entries, 1799 "rdev bss entries[%d]/list[len:%d] corruption\n", 1800 rdev->bss_entries, n_entries); 1801 1802 return true; 1803 } 1804 1805 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known, 1806 const struct cfg80211_bss_ies *new_ies, 1807 const struct cfg80211_bss_ies *old_ies) 1808 { 1809 struct cfg80211_internal_bss *bss; 1810 1811 /* Assign beacon IEs to all sub entries */ 1812 list_for_each_entry(bss, &known->hidden_list, hidden_list) { 1813 const struct cfg80211_bss_ies *ies; 1814 1815 ies = rcu_access_pointer(bss->pub.beacon_ies); 1816 WARN_ON(ies != old_ies); 1817 1818 rcu_assign_pointer(bss->pub.beacon_ies, new_ies); 1819 1820 bss->ts = known->ts; 1821 bss->pub.ts_boottime = known->pub.ts_boottime; 1822 } 1823 } 1824 1825 static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev, 1826 struct cfg80211_internal_bss *known, 1827 const struct cfg80211_bss_ies *old) 1828 { 1829 const struct ieee80211_ext_chansw_ie *ecsa; 1830 const struct element *elem_new, *elem_old; 1831 const struct cfg80211_bss_ies *new, *bcn; 1832 1833 if (known->pub.proberesp_ecsa_stuck) 1834 return; 1835 1836 new = rcu_dereference_protected(known->pub.proberesp_ies, 1837 lockdep_is_held(&rdev->bss_lock)); 1838 if (WARN_ON(!new)) 1839 return; 1840 1841 if (new->tsf - old->tsf < USEC_PER_SEC) 1842 return; 1843 1844 elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, 1845 old->data, old->len); 1846 if (!elem_old) 1847 return; 1848 1849 elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, 1850 new->data, new->len); 1851 if (!elem_new) 1852 return; 1853 1854 bcn = rcu_dereference_protected(known->pub.beacon_ies, 1855 lockdep_is_held(&rdev->bss_lock)); 1856 if (bcn && 1857 cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, 1858 bcn->data, bcn->len)) 1859 return; 1860 1861 if (elem_new->datalen != elem_old->datalen) 1862 return; 1863 if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie)) 1864 return; 1865 if (memcmp(elem_new->data, elem_old->data, elem_new->datalen)) 1866 return; 1867 1868 ecsa = (void *)elem_new->data; 1869 1870 if (!ecsa->mode) 1871 return; 1872 1873 if (ecsa->new_ch_num != 1874 ieee80211_frequency_to_channel(known->pub.channel->center_freq)) 1875 return; 1876 1877 known->pub.proberesp_ecsa_stuck = 1; 1878 } 1879 1880 static bool 1881 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, 1882 struct cfg80211_internal_bss *known, 1883 struct cfg80211_internal_bss *new, 1884 bool signal_valid) 1885 { 1886 lockdep_assert_held(&rdev->bss_lock); 1887 1888 /* Update time stamps */ 1889 known->ts = new->ts; 1890 known->pub.ts_boottime = new->pub.ts_boottime; 1891 1892 /* Update IEs */ 1893 if (rcu_access_pointer(new->pub.proberesp_ies)) { 1894 const struct cfg80211_bss_ies *old; 1895 1896 old = rcu_access_pointer(known->pub.proberesp_ies); 1897 1898 rcu_assign_pointer(known->pub.proberesp_ies, 1899 new->pub.proberesp_ies); 1900 /* Override possible earlier Beacon frame IEs */ 1901 rcu_assign_pointer(known->pub.ies, 1902 new->pub.proberesp_ies); 1903 if (old) { 1904 cfg80211_check_stuck_ecsa(rdev, known, old); 1905 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1906 } 1907 } 1908 1909 if (rcu_access_pointer(new->pub.beacon_ies)) { 1910 const struct cfg80211_bss_ies *old; 1911 1912 if (known->pub.hidden_beacon_bss && 1913 !list_empty(&known->hidden_list)) { 1914 const struct cfg80211_bss_ies *f; 1915 1916 /* The known BSS struct is one of the probe 1917 * response members of a group, but we're 1918 * receiving a beacon (beacon_ies in the new 1919 * bss is used). This can only mean that the 1920 * AP changed its beacon from not having an 1921 * SSID to showing it, which is confusing so 1922 * drop this information. 1923 */ 1924 1925 f = rcu_access_pointer(new->pub.beacon_ies); 1926 if (!new->pub.hidden_beacon_bss) 1927 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); 1928 return false; 1929 } 1930 1931 old = rcu_access_pointer(known->pub.beacon_ies); 1932 1933 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); 1934 1935 /* Override IEs if they were from a beacon before */ 1936 if (old == rcu_access_pointer(known->pub.ies)) 1937 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); 1938 1939 cfg80211_update_hidden_bsses(known, 1940 rcu_access_pointer(new->pub.beacon_ies), 1941 old); 1942 1943 if (old) 1944 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1945 } 1946 1947 known->pub.beacon_interval = new->pub.beacon_interval; 1948 1949 /* don't update the signal if beacon was heard on 1950 * adjacent channel. 1951 */ 1952 if (signal_valid) 1953 known->pub.signal = new->pub.signal; 1954 known->pub.capability = new->pub.capability; 1955 known->parent_tsf = new->parent_tsf; 1956 known->pub.chains = new->pub.chains; 1957 memcpy(known->pub.chain_signal, new->pub.chain_signal, 1958 IEEE80211_MAX_CHAINS); 1959 ether_addr_copy(known->parent_bssid, new->parent_bssid); 1960 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; 1961 known->pub.bssid_index = new->pub.bssid_index; 1962 known->pub.use_for &= new->pub.use_for; 1963 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons; 1964 known->bss_source = new->bss_source; 1965 1966 return true; 1967 } 1968 1969 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1970 static struct cfg80211_internal_bss * 1971 __cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1972 struct cfg80211_internal_bss *tmp, 1973 bool signal_valid, unsigned long ts) 1974 { 1975 struct cfg80211_internal_bss *found = NULL; 1976 struct cfg80211_bss_ies *ies; 1977 1978 if (WARN_ON(!tmp->pub.channel)) 1979 goto free_ies; 1980 1981 tmp->ts = ts; 1982 1983 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) 1984 goto free_ies; 1985 1986 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 1987 1988 if (found) { 1989 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) 1990 return NULL; 1991 } else { 1992 struct cfg80211_internal_bss *new; 1993 struct cfg80211_internal_bss *hidden; 1994 1995 /* 1996 * create a copy -- the "res" variable that is passed in 1997 * is allocated on the stack since it's not needed in the 1998 * more common case of an update 1999 */ 2000 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 2001 GFP_ATOMIC); 2002 if (!new) 2003 goto free_ies; 2004 memcpy(new, tmp, sizeof(*new)); 2005 new->refcount = 1; 2006 INIT_LIST_HEAD(&new->hidden_list); 2007 INIT_LIST_HEAD(&new->pub.nontrans_list); 2008 /* we'll set this later if it was non-NULL */ 2009 new->pub.transmitted_bss = NULL; 2010 2011 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 2012 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 2013 if (!hidden) 2014 hidden = rb_find_bss(rdev, tmp, 2015 BSS_CMP_HIDE_NUL); 2016 if (hidden) { 2017 new->pub.hidden_beacon_bss = &hidden->pub; 2018 list_add(&new->hidden_list, 2019 &hidden->hidden_list); 2020 hidden->refcount++; 2021 2022 ies = (void *)rcu_access_pointer(new->pub.beacon_ies); 2023 rcu_assign_pointer(new->pub.beacon_ies, 2024 hidden->pub.beacon_ies); 2025 if (ies) 2026 kfree_rcu(ies, rcu_head); 2027 } 2028 } else { 2029 /* 2030 * Ok so we found a beacon, and don't have an entry. If 2031 * it's a beacon with hidden SSID, we might be in for an 2032 * expensive search for any probe responses that should 2033 * be grouped with this beacon for updates ... 2034 */ 2035 if (!cfg80211_combine_bsses(rdev, new)) { 2036 bss_ref_put(rdev, new); 2037 return NULL; 2038 } 2039 } 2040 2041 if (rdev->bss_entries >= bss_entries_limit && 2042 !cfg80211_bss_expire_oldest(rdev)) { 2043 bss_ref_put(rdev, new); 2044 return NULL; 2045 } 2046 2047 /* This must be before the call to bss_ref_get */ 2048 if (tmp->pub.transmitted_bss) { 2049 new->pub.transmitted_bss = tmp->pub.transmitted_bss; 2050 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss)); 2051 } 2052 2053 cfg80211_insert_bss(rdev, new); 2054 found = new; 2055 } 2056 2057 rdev->bss_generation++; 2058 bss_ref_get(rdev, found); 2059 2060 return found; 2061 2062 free_ies: 2063 ies = (void *)rcu_access_pointer(tmp->pub.beacon_ies); 2064 if (ies) 2065 kfree_rcu(ies, rcu_head); 2066 ies = (void *)rcu_access_pointer(tmp->pub.proberesp_ies); 2067 if (ies) 2068 kfree_rcu(ies, rcu_head); 2069 2070 return NULL; 2071 } 2072 2073 struct cfg80211_internal_bss * 2074 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 2075 struct cfg80211_internal_bss *tmp, 2076 bool signal_valid, unsigned long ts) 2077 { 2078 struct cfg80211_internal_bss *res; 2079 2080 spin_lock_bh(&rdev->bss_lock); 2081 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts); 2082 spin_unlock_bh(&rdev->bss_lock); 2083 2084 return res; 2085 } 2086 2087 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, 2088 enum nl80211_band band) 2089 { 2090 const struct element *tmp; 2091 2092 if (band == NL80211_BAND_6GHZ) { 2093 struct ieee80211_he_operation *he_oper; 2094 2095 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, 2096 ielen); 2097 if (tmp && tmp->datalen >= sizeof(*he_oper) && 2098 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) { 2099 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 2100 2101 he_oper = (void *)&tmp->data[1]; 2102 2103 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 2104 if (!he_6ghz_oper) 2105 return -1; 2106 2107 return he_6ghz_oper->primary; 2108 } 2109 } else if (band == NL80211_BAND_S1GHZ) { 2110 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen); 2111 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) { 2112 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data; 2113 2114 return s1gop->oper_ch; 2115 } 2116 } else { 2117 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen); 2118 if (tmp && tmp->datalen == 1) 2119 return tmp->data[0]; 2120 2121 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen); 2122 if (tmp && 2123 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) { 2124 struct ieee80211_ht_operation *htop = (void *)tmp->data; 2125 2126 return htop->primary_chan; 2127 } 2128 } 2129 2130 return -1; 2131 } 2132 EXPORT_SYMBOL(cfg80211_get_ies_channel_number); 2133 2134 /* 2135 * Update RX channel information based on the available frame payload 2136 * information. This is mainly for the 2.4 GHz band where frames can be received 2137 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 2138 * element to indicate the current (transmitting) channel, but this might also 2139 * be needed on other bands if RX frequency does not match with the actual 2140 * operating channel of a BSS, or if the AP reports a different primary channel. 2141 */ 2142 static struct ieee80211_channel * 2143 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 2144 struct ieee80211_channel *channel) 2145 { 2146 u32 freq; 2147 int channel_number; 2148 struct ieee80211_channel *alt_channel; 2149 2150 channel_number = cfg80211_get_ies_channel_number(ie, ielen, 2151 channel->band); 2152 2153 if (channel_number < 0) { 2154 /* No channel information in frame payload */ 2155 return channel; 2156 } 2157 2158 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); 2159 2160 /* 2161 * Frame info (beacon/prob res) is the same as received channel, 2162 * no need for further processing. 2163 */ 2164 if (freq == ieee80211_channel_to_khz(channel)) 2165 return channel; 2166 2167 alt_channel = ieee80211_get_channel_khz(wiphy, freq); 2168 if (!alt_channel) { 2169 if (channel->band == NL80211_BAND_2GHZ || 2170 channel->band == NL80211_BAND_6GHZ) { 2171 /* 2172 * Better not allow unexpected channels when that could 2173 * be going beyond the 1-11 range (e.g., discovering 2174 * BSS on channel 12 when radio is configured for 2175 * channel 11) or beyond the 6 GHz channel range. 2176 */ 2177 return NULL; 2178 } 2179 2180 /* No match for the payload channel number - ignore it */ 2181 return channel; 2182 } 2183 2184 /* 2185 * Use the channel determined through the payload channel number 2186 * instead of the RX channel reported by the driver. 2187 */ 2188 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 2189 return NULL; 2190 return alt_channel; 2191 } 2192 2193 struct cfg80211_inform_single_bss_data { 2194 struct cfg80211_inform_bss *drv_data; 2195 enum cfg80211_bss_frame_type ftype; 2196 struct ieee80211_channel *channel; 2197 u8 bssid[ETH_ALEN]; 2198 u64 tsf; 2199 u16 capability; 2200 u16 beacon_interval; 2201 const u8 *ie; 2202 size_t ielen; 2203 2204 enum bss_source_type bss_source; 2205 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */ 2206 struct cfg80211_bss *source_bss; 2207 u8 max_bssid_indicator; 2208 u8 bssid_index; 2209 2210 u8 use_for; 2211 u64 cannot_use_reasons; 2212 }; 2213 2214 enum ieee80211_ap_reg_power 2215 cfg80211_get_6ghz_power_type(const u8 *elems, size_t elems_len, 2216 u32 client_flags) 2217 { 2218 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 2219 struct ieee80211_he_operation *he_oper; 2220 const struct element *tmp; 2221 2222 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, 2223 elems, elems_len); 2224 if (!tmp || tmp->datalen < sizeof(*he_oper) + 1 || 2225 tmp->datalen < ieee80211_he_oper_size(tmp->data + 1)) 2226 return IEEE80211_REG_UNSET_AP; 2227 2228 he_oper = (void *)&tmp->data[1]; 2229 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 2230 2231 if (!he_6ghz_oper) 2232 return IEEE80211_REG_UNSET_AP; 2233 2234 return cfg80211_6ghz_power_type(he_6ghz_oper->control, client_flags); 2235 } 2236 2237 static bool cfg80211_6ghz_power_type_valid(const u8 *elems, size_t elems_len, 2238 const u32 flags) 2239 { 2240 switch (cfg80211_get_6ghz_power_type(elems, elems_len, flags)) { 2241 case IEEE80211_REG_LPI_AP: 2242 return true; 2243 case IEEE80211_REG_SP_AP: 2244 return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT); 2245 case IEEE80211_REG_VLP_AP: 2246 return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT); 2247 default: 2248 return false; 2249 } 2250 } 2251 2252 /* Returned bss is reference counted and must be cleaned up appropriately. */ 2253 static struct cfg80211_bss * 2254 cfg80211_inform_single_bss_data(struct wiphy *wiphy, 2255 struct cfg80211_inform_single_bss_data *data, 2256 gfp_t gfp) 2257 { 2258 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2259 struct cfg80211_inform_bss *drv_data = data->drv_data; 2260 struct cfg80211_bss_ies *ies; 2261 struct ieee80211_channel *channel; 2262 struct cfg80211_internal_bss tmp = {}, *res; 2263 int bss_type; 2264 bool signal_valid; 2265 unsigned long ts; 2266 2267 if (WARN_ON(!wiphy)) 2268 return NULL; 2269 2270 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2271 (drv_data->signal < 0 || drv_data->signal > 100))) 2272 return NULL; 2273 2274 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss)) 2275 return NULL; 2276 2277 channel = data->channel; 2278 if (!channel) 2279 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen, 2280 drv_data->chan); 2281 if (!channel) 2282 return NULL; 2283 2284 if (channel->band == NL80211_BAND_6GHZ && 2285 !cfg80211_6ghz_power_type_valid(data->ie, data->ielen, 2286 channel->flags)) { 2287 data->use_for = 0; 2288 data->cannot_use_reasons = 2289 NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH; 2290 } 2291 2292 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN); 2293 tmp.pub.channel = channel; 2294 if (data->bss_source != BSS_SOURCE_STA_PROFILE) 2295 tmp.pub.signal = drv_data->signal; 2296 else 2297 tmp.pub.signal = 0; 2298 tmp.pub.beacon_interval = data->beacon_interval; 2299 tmp.pub.capability = data->capability; 2300 tmp.pub.ts_boottime = drv_data->boottime_ns; 2301 tmp.parent_tsf = drv_data->parent_tsf; 2302 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid); 2303 tmp.pub.chains = drv_data->chains; 2304 memcpy(tmp.pub.chain_signal, drv_data->chain_signal, 2305 IEEE80211_MAX_CHAINS); 2306 tmp.pub.use_for = data->use_for; 2307 tmp.pub.cannot_use_reasons = data->cannot_use_reasons; 2308 tmp.bss_source = data->bss_source; 2309 2310 switch (data->bss_source) { 2311 case BSS_SOURCE_MBSSID: 2312 tmp.pub.transmitted_bss = data->source_bss; 2313 fallthrough; 2314 case BSS_SOURCE_STA_PROFILE: 2315 ts = bss_from_pub(data->source_bss)->ts; 2316 tmp.pub.bssid_index = data->bssid_index; 2317 tmp.pub.max_bssid_indicator = data->max_bssid_indicator; 2318 break; 2319 case BSS_SOURCE_DIRECT: 2320 ts = jiffies; 2321 2322 if (channel->band == NL80211_BAND_60GHZ) { 2323 bss_type = data->capability & 2324 WLAN_CAPABILITY_DMG_TYPE_MASK; 2325 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2326 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2327 regulatory_hint_found_beacon(wiphy, channel, 2328 gfp); 2329 } else { 2330 if (data->capability & WLAN_CAPABILITY_ESS) 2331 regulatory_hint_found_beacon(wiphy, channel, 2332 gfp); 2333 } 2334 break; 2335 } 2336 2337 /* 2338 * If we do not know here whether the IEs are from a Beacon or Probe 2339 * Response frame, we need to pick one of the options and only use it 2340 * with the driver that does not provide the full Beacon/Probe Response 2341 * frame. Use Beacon frame pointer to avoid indicating that this should 2342 * override the IEs pointer should we have received an earlier 2343 * indication of Probe Response data. 2344 */ 2345 ies = kzalloc(sizeof(*ies) + data->ielen, gfp); 2346 if (!ies) 2347 return NULL; 2348 ies->len = data->ielen; 2349 ies->tsf = data->tsf; 2350 ies->from_beacon = false; 2351 memcpy(ies->data, data->ie, data->ielen); 2352 2353 switch (data->ftype) { 2354 case CFG80211_BSS_FTYPE_BEACON: 2355 case CFG80211_BSS_FTYPE_S1G_BEACON: 2356 ies->from_beacon = true; 2357 fallthrough; 2358 case CFG80211_BSS_FTYPE_UNKNOWN: 2359 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2360 break; 2361 case CFG80211_BSS_FTYPE_PRESP: 2362 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2363 break; 2364 } 2365 rcu_assign_pointer(tmp.pub.ies, ies); 2366 2367 signal_valid = drv_data->chan == channel; 2368 spin_lock_bh(&rdev->bss_lock); 2369 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts); 2370 if (!res) 2371 goto drop; 2372 2373 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data); 2374 2375 if (data->bss_source == BSS_SOURCE_MBSSID) { 2376 /* this is a nontransmitting bss, we need to add it to 2377 * transmitting bss' list if it is not there 2378 */ 2379 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) { 2380 if (__cfg80211_unlink_bss(rdev, res)) { 2381 rdev->bss_generation++; 2382 res = NULL; 2383 } 2384 } 2385 2386 if (!res) 2387 goto drop; 2388 } 2389 spin_unlock_bh(&rdev->bss_lock); 2390 2391 trace_cfg80211_return_bss(&res->pub); 2392 /* __cfg80211_bss_update gives us a referenced result */ 2393 return &res->pub; 2394 2395 drop: 2396 spin_unlock_bh(&rdev->bss_lock); 2397 return NULL; 2398 } 2399 2400 static const struct element 2401 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, 2402 const struct element *mbssid_elem, 2403 const struct element *sub_elem) 2404 { 2405 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; 2406 const struct element *next_mbssid; 2407 const struct element *next_sub; 2408 2409 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2410 mbssid_end, 2411 ielen - (mbssid_end - ie)); 2412 2413 /* 2414 * If it is not the last subelement in current MBSSID IE or there isn't 2415 * a next MBSSID IE - profile is complete. 2416 */ 2417 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || 2418 !next_mbssid) 2419 return NULL; 2420 2421 /* For any length error, just return NULL */ 2422 2423 if (next_mbssid->datalen < 4) 2424 return NULL; 2425 2426 next_sub = (void *)&next_mbssid->data[1]; 2427 2428 if (next_mbssid->data + next_mbssid->datalen < 2429 next_sub->data + next_sub->datalen) 2430 return NULL; 2431 2432 if (next_sub->id != 0 || next_sub->datalen < 2) 2433 return NULL; 2434 2435 /* 2436 * Check if the first element in the next sub element is a start 2437 * of a new profile 2438 */ 2439 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? 2440 NULL : next_mbssid; 2441 } 2442 2443 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 2444 const struct element *mbssid_elem, 2445 const struct element *sub_elem, 2446 u8 *merged_ie, size_t max_copy_len) 2447 { 2448 size_t copied_len = sub_elem->datalen; 2449 const struct element *next_mbssid; 2450 2451 if (sub_elem->datalen > max_copy_len) 2452 return 0; 2453 2454 memcpy(merged_ie, sub_elem->data, sub_elem->datalen); 2455 2456 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, 2457 mbssid_elem, 2458 sub_elem))) { 2459 const struct element *next_sub = (void *)&next_mbssid->data[1]; 2460 2461 if (copied_len + next_sub->datalen > max_copy_len) 2462 break; 2463 memcpy(merged_ie + copied_len, next_sub->data, 2464 next_sub->datalen); 2465 copied_len += next_sub->datalen; 2466 } 2467 2468 return copied_len; 2469 } 2470 EXPORT_SYMBOL(cfg80211_merge_profile); 2471 2472 static void 2473 cfg80211_parse_mbssid_data(struct wiphy *wiphy, 2474 struct cfg80211_inform_single_bss_data *tx_data, 2475 struct cfg80211_bss *source_bss, 2476 gfp_t gfp) 2477 { 2478 struct cfg80211_inform_single_bss_data data = { 2479 .drv_data = tx_data->drv_data, 2480 .ftype = tx_data->ftype, 2481 .tsf = tx_data->tsf, 2482 .beacon_interval = tx_data->beacon_interval, 2483 .source_bss = source_bss, 2484 .bss_source = BSS_SOURCE_MBSSID, 2485 .use_for = tx_data->use_for, 2486 .cannot_use_reasons = tx_data->cannot_use_reasons, 2487 }; 2488 const u8 *mbssid_index_ie; 2489 const struct element *elem, *sub; 2490 u8 *new_ie, *profile; 2491 u64 seen_indices = 0; 2492 struct cfg80211_bss *bss; 2493 2494 if (!source_bss) 2495 return; 2496 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2497 tx_data->ie, tx_data->ielen)) 2498 return; 2499 if (!wiphy->support_mbssid) 2500 return; 2501 if (wiphy->support_only_he_mbssid && 2502 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, 2503 tx_data->ie, tx_data->ielen)) 2504 return; 2505 2506 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2507 if (!new_ie) 2508 return; 2509 2510 profile = kmalloc(tx_data->ielen, gfp); 2511 if (!profile) 2512 goto out; 2513 2514 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, 2515 tx_data->ie, tx_data->ielen) { 2516 if (elem->datalen < 4) 2517 continue; 2518 if (elem->data[0] < 1 || (int)elem->data[0] > 8) 2519 continue; 2520 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 2521 u8 profile_len; 2522 2523 if (sub->id != 0 || sub->datalen < 4) { 2524 /* not a valid BSS profile */ 2525 continue; 2526 } 2527 2528 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 2529 sub->data[1] != 2) { 2530 /* The first element within the Nontransmitted 2531 * BSSID Profile is not the Nontransmitted 2532 * BSSID Capability element. 2533 */ 2534 continue; 2535 } 2536 2537 memset(profile, 0, tx_data->ielen); 2538 profile_len = cfg80211_merge_profile(tx_data->ie, 2539 tx_data->ielen, 2540 elem, 2541 sub, 2542 profile, 2543 tx_data->ielen); 2544 2545 /* found a Nontransmitted BSSID Profile */ 2546 mbssid_index_ie = cfg80211_find_ie 2547 (WLAN_EID_MULTI_BSSID_IDX, 2548 profile, profile_len); 2549 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || 2550 mbssid_index_ie[2] == 0 || 2551 mbssid_index_ie[2] > 46 || 2552 mbssid_index_ie[2] >= (1 << elem->data[0])) { 2553 /* No valid Multiple BSSID-Index element */ 2554 continue; 2555 } 2556 2557 if (seen_indices & BIT_ULL(mbssid_index_ie[2])) 2558 /* We don't support legacy split of a profile */ 2559 net_dbg_ratelimited("Partial info for BSSID index %d\n", 2560 mbssid_index_ie[2]); 2561 2562 seen_indices |= BIT_ULL(mbssid_index_ie[2]); 2563 2564 data.bssid_index = mbssid_index_ie[2]; 2565 data.max_bssid_indicator = elem->data[0]; 2566 2567 cfg80211_gen_new_bssid(tx_data->bssid, 2568 data.max_bssid_indicator, 2569 data.bssid_index, 2570 data.bssid); 2571 2572 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2573 data.ie = new_ie; 2574 data.ielen = cfg80211_gen_new_ie(tx_data->ie, 2575 tx_data->ielen, 2576 profile, 2577 profile_len, 2578 new_ie, 2579 IEEE80211_MAX_DATA_LEN); 2580 if (!data.ielen) 2581 continue; 2582 2583 data.capability = get_unaligned_le16(profile + 2); 2584 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 2585 if (!bss) 2586 break; 2587 cfg80211_put_bss(wiphy, bss); 2588 } 2589 } 2590 2591 out: 2592 kfree(new_ie); 2593 kfree(profile); 2594 } 2595 2596 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies, 2597 size_t ieslen, u8 *data, size_t data_len, 2598 u8 frag_id) 2599 { 2600 const struct element *next; 2601 ssize_t copied; 2602 u8 elem_datalen; 2603 2604 if (!elem) 2605 return -EINVAL; 2606 2607 /* elem might be invalid after the memmove */ 2608 next = (void *)(elem->data + elem->datalen); 2609 elem_datalen = elem->datalen; 2610 2611 if (elem->id == WLAN_EID_EXTENSION) { 2612 copied = elem->datalen - 1; 2613 2614 if (data) { 2615 if (copied > data_len) 2616 return -ENOSPC; 2617 2618 memmove(data, elem->data + 1, copied); 2619 } 2620 } else { 2621 copied = elem->datalen; 2622 2623 if (data) { 2624 if (copied > data_len) 2625 return -ENOSPC; 2626 2627 memmove(data, elem->data, copied); 2628 } 2629 } 2630 2631 /* Fragmented elements must have 255 bytes */ 2632 if (elem_datalen < 255) 2633 return copied; 2634 2635 for (elem = next; 2636 elem->data < ies + ieslen && 2637 elem->data + elem->datalen <= ies + ieslen; 2638 elem = next) { 2639 /* elem might be invalid after the memmove */ 2640 next = (void *)(elem->data + elem->datalen); 2641 2642 if (elem->id != frag_id) 2643 break; 2644 2645 elem_datalen = elem->datalen; 2646 2647 if (data) { 2648 if (copied + elem_datalen > data_len) 2649 return -ENOSPC; 2650 2651 memmove(data + copied, elem->data, elem_datalen); 2652 } 2653 2654 copied += elem_datalen; 2655 2656 /* Only the last fragment may be short */ 2657 if (elem_datalen != 255) 2658 break; 2659 } 2660 2661 return copied; 2662 } 2663 EXPORT_SYMBOL(cfg80211_defragment_element); 2664 2665 struct cfg80211_mle { 2666 struct ieee80211_multi_link_elem *mle; 2667 struct ieee80211_mle_per_sta_profile 2668 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS]; 2669 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS]; 2670 2671 u8 data[]; 2672 }; 2673 2674 static struct cfg80211_mle * 2675 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen, 2676 gfp_t gfp) 2677 { 2678 const struct element *elem; 2679 struct cfg80211_mle *res; 2680 size_t buf_len; 2681 ssize_t mle_len; 2682 u8 common_size, idx; 2683 2684 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1)) 2685 return NULL; 2686 2687 /* Required length for first defragmentation */ 2688 buf_len = mle->datalen - 1; 2689 for_each_element(elem, mle->data + mle->datalen, 2690 ie + ielen - mle->data - mle->datalen) { 2691 if (elem->id != WLAN_EID_FRAGMENT) 2692 break; 2693 2694 buf_len += elem->datalen; 2695 } 2696 2697 res = kzalloc(struct_size(res, data, buf_len), gfp); 2698 if (!res) 2699 return NULL; 2700 2701 mle_len = cfg80211_defragment_element(mle, ie, ielen, 2702 res->data, buf_len, 2703 WLAN_EID_FRAGMENT); 2704 if (mle_len < 0) 2705 goto error; 2706 2707 res->mle = (void *)res->data; 2708 2709 /* Find the sub-element area in the buffer */ 2710 common_size = ieee80211_mle_common_size((u8 *)res->mle); 2711 ie = res->data + common_size; 2712 ielen = mle_len - common_size; 2713 2714 idx = 0; 2715 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE, 2716 ie, ielen) { 2717 res->sta_prof[idx] = (void *)elem->data; 2718 res->sta_prof_len[idx] = elem->datalen; 2719 2720 idx++; 2721 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS) 2722 break; 2723 } 2724 if (!for_each_element_completed(elem, ie, ielen)) 2725 goto error; 2726 2727 /* Defragment sta_info in-place */ 2728 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx]; 2729 idx++) { 2730 if (res->sta_prof_len[idx] < 255) 2731 continue; 2732 2733 elem = (void *)res->sta_prof[idx] - 2; 2734 2735 if (idx + 1 < ARRAY_SIZE(res->sta_prof) && 2736 res->sta_prof[idx + 1]) 2737 buf_len = (u8 *)res->sta_prof[idx + 1] - 2738 (u8 *)res->sta_prof[idx]; 2739 else 2740 buf_len = ielen + ie - (u8 *)elem; 2741 2742 res->sta_prof_len[idx] = 2743 cfg80211_defragment_element(elem, 2744 (u8 *)elem, buf_len, 2745 (u8 *)res->sta_prof[idx], 2746 buf_len, 2747 IEEE80211_MLE_SUBELEM_FRAGMENT); 2748 if (res->sta_prof_len[idx] < 0) 2749 goto error; 2750 } 2751 2752 return res; 2753 2754 error: 2755 kfree(res); 2756 return NULL; 2757 } 2758 2759 struct tbtt_info_iter_data { 2760 const struct ieee80211_neighbor_ap_info *ap_info; 2761 u8 param_ch_count; 2762 u32 use_for; 2763 u8 mld_id, link_id; 2764 bool non_tx; 2765 }; 2766 2767 static enum cfg80211_rnr_iter_ret 2768 cfg802121_mld_ap_rnr_iter(void *_data, u8 type, 2769 const struct ieee80211_neighbor_ap_info *info, 2770 const u8 *tbtt_info, u8 tbtt_info_len) 2771 { 2772 const struct ieee80211_rnr_mld_params *mld_params; 2773 struct tbtt_info_iter_data *data = _data; 2774 u8 link_id; 2775 bool non_tx = false; 2776 2777 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT && 2778 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11, 2779 mld_params)) { 2780 const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 = 2781 (void *)tbtt_info; 2782 2783 non_tx = (tbtt_info_ge_11->bss_params & 2784 (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID | 2785 IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) == 2786 IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID; 2787 mld_params = &tbtt_info_ge_11->mld_params; 2788 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD && 2789 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params)) 2790 mld_params = (void *)tbtt_info; 2791 else 2792 return RNR_ITER_CONTINUE; 2793 2794 link_id = le16_get_bits(mld_params->params, 2795 IEEE80211_RNR_MLD_PARAMS_LINK_ID); 2796 2797 if (data->mld_id != mld_params->mld_id) 2798 return RNR_ITER_CONTINUE; 2799 2800 if (data->link_id != link_id) 2801 return RNR_ITER_CONTINUE; 2802 2803 data->ap_info = info; 2804 data->param_ch_count = 2805 le16_get_bits(mld_params->params, 2806 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT); 2807 data->non_tx = non_tx; 2808 2809 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT) 2810 data->use_for = NL80211_BSS_USE_FOR_ALL; 2811 else 2812 data->use_for = NL80211_BSS_USE_FOR_MLD_LINK; 2813 return RNR_ITER_BREAK; 2814 } 2815 2816 static u8 2817 cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id, 2818 const struct ieee80211_neighbor_ap_info **ap_info, 2819 u8 *param_ch_count, bool *non_tx) 2820 { 2821 struct tbtt_info_iter_data data = { 2822 .mld_id = mld_id, 2823 .link_id = link_id, 2824 }; 2825 2826 cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data); 2827 2828 *ap_info = data.ap_info; 2829 *param_ch_count = data.param_ch_count; 2830 *non_tx = data.non_tx; 2831 2832 return data.use_for; 2833 } 2834 2835 static struct element * 2836 cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid, 2837 bool same_mld, u8 link_id, u8 bss_change_count, 2838 gfp_t gfp) 2839 { 2840 const struct cfg80211_bss_ies *ies; 2841 struct ieee80211_neighbor_ap_info ap_info; 2842 struct ieee80211_tbtt_info_ge_11 tbtt_info; 2843 u32 short_ssid; 2844 const struct element *elem; 2845 struct element *res; 2846 2847 /* 2848 * We only generate the RNR to permit ML lookups. For that we do not 2849 * need an entry for the corresponding transmitting BSS, lets just skip 2850 * it even though it would be easy to add. 2851 */ 2852 if (!same_mld) 2853 return NULL; 2854 2855 /* We could use tx_data->ies if we change cfg80211_calc_short_ssid */ 2856 rcu_read_lock(); 2857 ies = rcu_dereference(source_bss->ies); 2858 2859 ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params); 2860 ap_info.tbtt_info_hdr = 2861 u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT, 2862 IEEE80211_AP_INFO_TBTT_HDR_TYPE) | 2863 u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT); 2864 2865 ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq); 2866 2867 /* operating class */ 2868 elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 2869 ies->data, ies->len); 2870 if (elem && elem->datalen >= 1) { 2871 ap_info.op_class = elem->data[0]; 2872 } else { 2873 struct cfg80211_chan_def chandef; 2874 2875 /* The AP is not providing us with anything to work with. So 2876 * make up a somewhat reasonable operating class, but don't 2877 * bother with it too much as no one will ever use the 2878 * information. 2879 */ 2880 cfg80211_chandef_create(&chandef, source_bss->channel, 2881 NL80211_CHAN_NO_HT); 2882 2883 if (!ieee80211_chandef_to_operating_class(&chandef, 2884 &ap_info.op_class)) 2885 goto out_unlock; 2886 } 2887 2888 /* Just set TBTT offset and PSD 20 to invalid/unknown */ 2889 tbtt_info.tbtt_offset = 255; 2890 tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED; 2891 2892 memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN); 2893 if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid)) 2894 goto out_unlock; 2895 2896 rcu_read_unlock(); 2897 2898 tbtt_info.short_ssid = cpu_to_le32(short_ssid); 2899 2900 tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID; 2901 2902 if (is_mbssid) { 2903 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID; 2904 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID; 2905 } 2906 2907 tbtt_info.mld_params.mld_id = 0; 2908 tbtt_info.mld_params.params = 2909 le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) | 2910 le16_encode_bits(bss_change_count, 2911 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT); 2912 2913 res = kzalloc(struct_size(res, data, 2914 sizeof(ap_info) + ap_info.tbtt_info_len), 2915 gfp); 2916 if (!res) 2917 return NULL; 2918 2919 /* Copy the data */ 2920 res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT; 2921 res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len; 2922 memcpy(res->data, &ap_info, sizeof(ap_info)); 2923 memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len); 2924 2925 return res; 2926 2927 out_unlock: 2928 rcu_read_unlock(); 2929 return NULL; 2930 } 2931 2932 static void 2933 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy, 2934 struct cfg80211_inform_single_bss_data *tx_data, 2935 struct cfg80211_bss *source_bss, 2936 const struct element *elem, 2937 gfp_t gfp) 2938 { 2939 struct cfg80211_inform_single_bss_data data = { 2940 .drv_data = tx_data->drv_data, 2941 .ftype = tx_data->ftype, 2942 .source_bss = source_bss, 2943 .bss_source = BSS_SOURCE_STA_PROFILE, 2944 }; 2945 struct element *reporter_rnr = NULL; 2946 struct ieee80211_multi_link_elem *ml_elem; 2947 struct cfg80211_mle *mle; 2948 const struct element *ssid_elem; 2949 const u8 *ssid = NULL; 2950 size_t ssid_len = 0; 2951 u16 control; 2952 u8 ml_common_len; 2953 u8 *new_ie = NULL; 2954 struct cfg80211_bss *bss; 2955 u8 mld_id, reporter_link_id, bss_change_count; 2956 u16 seen_links = 0; 2957 u8 i; 2958 2959 if (!ieee80211_mle_type_ok(elem->data + 1, 2960 IEEE80211_ML_CONTROL_TYPE_BASIC, 2961 elem->datalen - 1)) 2962 return; 2963 2964 ml_elem = (void *)(elem->data + 1); 2965 control = le16_to_cpu(ml_elem->control); 2966 ml_common_len = ml_elem->variable[0]; 2967 2968 /* Must be present when transmitted by an AP (in a probe response) */ 2969 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) || 2970 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) || 2971 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)) 2972 return; 2973 2974 reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1); 2975 bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1); 2976 2977 /* 2978 * The MLD ID of the reporting AP is always zero. It is set if the AP 2979 * is part of an MBSSID set and will be non-zero for ML Elements 2980 * relating to a nontransmitted BSS (matching the Multi-BSSID Index, 2981 * Draft P802.11be_D3.2, 35.3.4.2) 2982 */ 2983 mld_id = ieee80211_mle_get_mld_id(elem->data + 1); 2984 2985 /* Fully defrag the ML element for sta information/profile iteration */ 2986 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp); 2987 if (!mle) 2988 return; 2989 2990 /* No point in doing anything if there is no per-STA profile */ 2991 if (!mle->sta_prof[0]) 2992 goto out; 2993 2994 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2995 if (!new_ie) 2996 goto out; 2997 2998 reporter_rnr = cfg80211_gen_reporter_rnr(source_bss, 2999 u16_get_bits(control, 3000 IEEE80211_MLC_BASIC_PRES_MLD_ID), 3001 mld_id == 0, reporter_link_id, 3002 bss_change_count, 3003 gfp); 3004 3005 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, tx_data->ie, 3006 tx_data->ielen); 3007 if (ssid_elem) { 3008 ssid = ssid_elem->data; 3009 ssid_len = ssid_elem->datalen; 3010 } 3011 3012 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) { 3013 const struct ieee80211_neighbor_ap_info *ap_info; 3014 enum nl80211_band band; 3015 u32 freq; 3016 const u8 *profile; 3017 ssize_t profile_len; 3018 u8 param_ch_count; 3019 u8 link_id, use_for; 3020 bool non_tx; 3021 3022 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i], 3023 mle->sta_prof_len[i])) 3024 continue; 3025 3026 control = le16_to_cpu(mle->sta_prof[i]->control); 3027 3028 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) 3029 continue; 3030 3031 link_id = u16_get_bits(control, 3032 IEEE80211_MLE_STA_CONTROL_LINK_ID); 3033 if (seen_links & BIT(link_id)) 3034 break; 3035 seen_links |= BIT(link_id); 3036 3037 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) || 3038 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) || 3039 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)) 3040 continue; 3041 3042 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN); 3043 data.beacon_interval = 3044 get_unaligned_le16(mle->sta_prof[i]->variable + 6); 3045 data.tsf = tx_data->tsf + 3046 get_unaligned_le64(mle->sta_prof[i]->variable + 8); 3047 3048 /* sta_info_len counts itself */ 3049 profile = mle->sta_prof[i]->variable + 3050 mle->sta_prof[i]->sta_info_len - 1; 3051 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] - 3052 profile; 3053 3054 if (profile_len < 2) 3055 continue; 3056 3057 data.capability = get_unaligned_le16(profile); 3058 profile += 2; 3059 profile_len -= 2; 3060 3061 /* Find in RNR to look up channel information */ 3062 use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie, 3063 tx_data->ielen, 3064 mld_id, link_id, 3065 &ap_info, 3066 ¶m_ch_count, 3067 &non_tx); 3068 if (!use_for) 3069 continue; 3070 3071 /* 3072 * As of 802.11be_D5.0, the specification does not give us any 3073 * way of discovering both the MaxBSSID and the Multiple-BSSID 3074 * Index. It does seem like the Multiple-BSSID Index element 3075 * may be provided, but section 9.4.2.45 explicitly forbids 3076 * including a Multiple-BSSID Element (in this case without any 3077 * subelements). 3078 * Without both pieces of information we cannot calculate the 3079 * reference BSSID, so simply ignore the BSS. 3080 */ 3081 if (non_tx) 3082 continue; 3083 3084 /* We could sanity check the BSSID is included */ 3085 3086 if (!ieee80211_operating_class_to_band(ap_info->op_class, 3087 &band)) 3088 continue; 3089 3090 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band); 3091 data.channel = ieee80211_get_channel_khz(wiphy, freq); 3092 3093 /* Skip if RNR element specifies an unsupported channel */ 3094 if (!data.channel) 3095 continue; 3096 3097 /* Skip if BSS entry generated from MBSSID or DIRECT source 3098 * frame data available already. 3099 */ 3100 bss = cfg80211_get_bss(wiphy, data.channel, data.bssid, ssid, 3101 ssid_len, IEEE80211_BSS_TYPE_ANY, 3102 IEEE80211_PRIVACY_ANY); 3103 if (bss) { 3104 struct cfg80211_internal_bss *ibss = bss_from_pub(bss); 3105 3106 if (data.capability == bss->capability && 3107 ibss->bss_source != BSS_SOURCE_STA_PROFILE) { 3108 cfg80211_put_bss(wiphy, bss); 3109 continue; 3110 } 3111 cfg80211_put_bss(wiphy, bss); 3112 } 3113 3114 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK && 3115 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) { 3116 use_for = 0; 3117 data.cannot_use_reasons = 3118 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY; 3119 } 3120 data.use_for = use_for; 3121 3122 /* Generate new elements */ 3123 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 3124 data.ie = new_ie; 3125 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen, 3126 profile, profile_len, 3127 new_ie, 3128 IEEE80211_MAX_DATA_LEN); 3129 if (!data.ielen) 3130 continue; 3131 3132 /* The generated elements do not contain: 3133 * - Basic ML element 3134 * - A TBTT entry in the RNR for the transmitting AP 3135 * 3136 * This information is needed both internally and in userspace 3137 * as such, we should append it here. 3138 */ 3139 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len > 3140 IEEE80211_MAX_DATA_LEN) 3141 continue; 3142 3143 /* Copy the Basic Multi-Link element including the common 3144 * information, and then fix up the link ID and BSS param 3145 * change count. 3146 * Note that the ML element length has been verified and we 3147 * also checked that it contains the link ID. 3148 */ 3149 new_ie[data.ielen++] = WLAN_EID_EXTENSION; 3150 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len; 3151 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK; 3152 memcpy(new_ie + data.ielen, ml_elem, 3153 sizeof(*ml_elem) + ml_common_len); 3154 3155 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id; 3156 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] = 3157 param_ch_count; 3158 3159 data.ielen += sizeof(*ml_elem) + ml_common_len; 3160 3161 if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) { 3162 if (data.ielen + sizeof(struct element) + 3163 reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN) 3164 continue; 3165 3166 memcpy(new_ie + data.ielen, reporter_rnr, 3167 sizeof(struct element) + reporter_rnr->datalen); 3168 data.ielen += sizeof(struct element) + 3169 reporter_rnr->datalen; 3170 } 3171 3172 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 3173 if (!bss) 3174 break; 3175 cfg80211_put_bss(wiphy, bss); 3176 } 3177 3178 out: 3179 kfree(reporter_rnr); 3180 kfree(new_ie); 3181 kfree(mle); 3182 } 3183 3184 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy, 3185 struct cfg80211_inform_single_bss_data *tx_data, 3186 struct cfg80211_bss *source_bss, 3187 gfp_t gfp) 3188 { 3189 const struct element *elem; 3190 3191 if (!source_bss) 3192 return; 3193 3194 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP) 3195 return; 3196 3197 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK, 3198 tx_data->ie, tx_data->ielen) 3199 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss, 3200 elem, gfp); 3201 } 3202 3203 struct cfg80211_bss * 3204 cfg80211_inform_bss_data(struct wiphy *wiphy, 3205 struct cfg80211_inform_bss *data, 3206 enum cfg80211_bss_frame_type ftype, 3207 const u8 *bssid, u64 tsf, u16 capability, 3208 u16 beacon_interval, const u8 *ie, size_t ielen, 3209 gfp_t gfp) 3210 { 3211 struct cfg80211_inform_single_bss_data inform_data = { 3212 .drv_data = data, 3213 .ftype = ftype, 3214 .tsf = tsf, 3215 .capability = capability, 3216 .beacon_interval = beacon_interval, 3217 .ie = ie, 3218 .ielen = ielen, 3219 .use_for = data->restrict_use ? 3220 data->use_for : 3221 NL80211_BSS_USE_FOR_ALL, 3222 .cannot_use_reasons = data->cannot_use_reasons, 3223 }; 3224 struct cfg80211_bss *res; 3225 3226 memcpy(inform_data.bssid, bssid, ETH_ALEN); 3227 3228 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp); 3229 if (!res) 3230 return NULL; 3231 3232 /* don't do any further MBSSID/ML handling for S1G */ 3233 if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON) 3234 return res; 3235 3236 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); 3237 3238 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); 3239 3240 return res; 3241 } 3242 EXPORT_SYMBOL(cfg80211_inform_bss_data); 3243 3244 struct cfg80211_bss * 3245 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 3246 struct cfg80211_inform_bss *data, 3247 struct ieee80211_mgmt *mgmt, size_t len, 3248 gfp_t gfp) 3249 { 3250 size_t min_hdr_len; 3251 struct ieee80211_ext *ext = NULL; 3252 enum cfg80211_bss_frame_type ftype; 3253 u16 beacon_interval; 3254 const u8 *bssid; 3255 u16 capability; 3256 const u8 *ie; 3257 size_t ielen; 3258 u64 tsf; 3259 size_t s1g_optional_len; 3260 3261 if (WARN_ON(!mgmt)) 3262 return NULL; 3263 3264 if (WARN_ON(!wiphy)) 3265 return NULL; 3266 3267 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 3268 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 3269 3270 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 3271 3272 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { 3273 ext = (void *) mgmt; 3274 s1g_optional_len = 3275 ieee80211_s1g_optional_len(ext->frame_control); 3276 min_hdr_len = 3277 offsetof(struct ieee80211_ext, u.s1g_beacon.variable) + 3278 s1g_optional_len; 3279 } else { 3280 /* same for beacons */ 3281 min_hdr_len = offsetof(struct ieee80211_mgmt, 3282 u.probe_resp.variable); 3283 } 3284 3285 if (WARN_ON(len < min_hdr_len)) 3286 return NULL; 3287 3288 ielen = len - min_hdr_len; 3289 ie = mgmt->u.probe_resp.variable; 3290 if (ext) { 3291 const struct ieee80211_s1g_bcn_compat_ie *compat; 3292 const struct element *elem; 3293 3294 ie = ext->u.s1g_beacon.variable + s1g_optional_len; 3295 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen); 3296 if (!elem) 3297 return NULL; 3298 if (elem->datalen < sizeof(*compat)) 3299 return NULL; 3300 compat = (void *)elem->data; 3301 bssid = ext->u.s1g_beacon.sa; 3302 capability = le16_to_cpu(compat->compat_info); 3303 beacon_interval = le16_to_cpu(compat->beacon_int); 3304 } else { 3305 bssid = mgmt->bssid; 3306 beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 3307 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 3308 } 3309 3310 tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 3311 3312 if (ieee80211_is_probe_resp(mgmt->frame_control)) 3313 ftype = CFG80211_BSS_FTYPE_PRESP; 3314 else if (ext) 3315 ftype = CFG80211_BSS_FTYPE_S1G_BEACON; 3316 else 3317 ftype = CFG80211_BSS_FTYPE_BEACON; 3318 3319 return cfg80211_inform_bss_data(wiphy, data, ftype, 3320 bssid, tsf, capability, 3321 beacon_interval, ie, ielen, 3322 gfp); 3323 } 3324 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 3325 3326 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3327 { 3328 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3329 3330 if (!pub) 3331 return; 3332 3333 spin_lock_bh(&rdev->bss_lock); 3334 bss_ref_get(rdev, bss_from_pub(pub)); 3335 spin_unlock_bh(&rdev->bss_lock); 3336 } 3337 EXPORT_SYMBOL(cfg80211_ref_bss); 3338 3339 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3340 { 3341 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3342 3343 if (!pub) 3344 return; 3345 3346 spin_lock_bh(&rdev->bss_lock); 3347 bss_ref_put(rdev, bss_from_pub(pub)); 3348 spin_unlock_bh(&rdev->bss_lock); 3349 } 3350 EXPORT_SYMBOL(cfg80211_put_bss); 3351 3352 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3353 { 3354 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3355 struct cfg80211_internal_bss *bss, *tmp1; 3356 struct cfg80211_bss *nontrans_bss, *tmp; 3357 3358 if (WARN_ON(!pub)) 3359 return; 3360 3361 bss = bss_from_pub(pub); 3362 3363 spin_lock_bh(&rdev->bss_lock); 3364 if (list_empty(&bss->list)) 3365 goto out; 3366 3367 list_for_each_entry_safe(nontrans_bss, tmp, 3368 &pub->nontrans_list, 3369 nontrans_list) { 3370 tmp1 = bss_from_pub(nontrans_bss); 3371 if (__cfg80211_unlink_bss(rdev, tmp1)) 3372 rdev->bss_generation++; 3373 } 3374 3375 if (__cfg80211_unlink_bss(rdev, bss)) 3376 rdev->bss_generation++; 3377 out: 3378 spin_unlock_bh(&rdev->bss_lock); 3379 } 3380 EXPORT_SYMBOL(cfg80211_unlink_bss); 3381 3382 void cfg80211_bss_iter(struct wiphy *wiphy, 3383 struct cfg80211_chan_def *chandef, 3384 void (*iter)(struct wiphy *wiphy, 3385 struct cfg80211_bss *bss, 3386 void *data), 3387 void *iter_data) 3388 { 3389 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3390 struct cfg80211_internal_bss *bss; 3391 3392 spin_lock_bh(&rdev->bss_lock); 3393 3394 list_for_each_entry(bss, &rdev->bss_list, list) { 3395 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel, 3396 false)) 3397 iter(wiphy, &bss->pub, iter_data); 3398 } 3399 3400 spin_unlock_bh(&rdev->bss_lock); 3401 } 3402 EXPORT_SYMBOL(cfg80211_bss_iter); 3403 3404 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, 3405 unsigned int link_id, 3406 struct ieee80211_channel *chan) 3407 { 3408 struct wiphy *wiphy = wdev->wiphy; 3409 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3410 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss; 3411 struct cfg80211_internal_bss *new = NULL; 3412 struct cfg80211_internal_bss *bss; 3413 struct cfg80211_bss *nontrans_bss; 3414 struct cfg80211_bss *tmp; 3415 3416 spin_lock_bh(&rdev->bss_lock); 3417 3418 /* 3419 * Some APs use CSA also for bandwidth changes, i.e., without actually 3420 * changing the control channel, so no need to update in such a case. 3421 */ 3422 if (cbss->pub.channel == chan) 3423 goto done; 3424 3425 /* use transmitting bss */ 3426 if (cbss->pub.transmitted_bss) 3427 cbss = bss_from_pub(cbss->pub.transmitted_bss); 3428 3429 cbss->pub.channel = chan; 3430 3431 list_for_each_entry(bss, &rdev->bss_list, list) { 3432 if (!cfg80211_bss_type_match(bss->pub.capability, 3433 bss->pub.channel->band, 3434 wdev->conn_bss_type)) 3435 continue; 3436 3437 if (bss == cbss) 3438 continue; 3439 3440 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { 3441 new = bss; 3442 break; 3443 } 3444 } 3445 3446 if (new) { 3447 /* to save time, update IEs for transmitting bss only */ 3448 cfg80211_update_known_bss(rdev, cbss, new, false); 3449 new->pub.proberesp_ies = NULL; 3450 new->pub.beacon_ies = NULL; 3451 3452 list_for_each_entry_safe(nontrans_bss, tmp, 3453 &new->pub.nontrans_list, 3454 nontrans_list) { 3455 bss = bss_from_pub(nontrans_bss); 3456 if (__cfg80211_unlink_bss(rdev, bss)) 3457 rdev->bss_generation++; 3458 } 3459 3460 WARN_ON(atomic_read(&new->hold)); 3461 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) 3462 rdev->bss_generation++; 3463 } 3464 cfg80211_rehash_bss(rdev, cbss); 3465 3466 list_for_each_entry_safe(nontrans_bss, tmp, 3467 &cbss->pub.nontrans_list, 3468 nontrans_list) { 3469 bss = bss_from_pub(nontrans_bss); 3470 bss->pub.channel = chan; 3471 cfg80211_rehash_bss(rdev, bss); 3472 } 3473 3474 done: 3475 spin_unlock_bh(&rdev->bss_lock); 3476 } 3477 3478 #ifdef CONFIG_CFG80211_WEXT 3479 static struct cfg80211_registered_device * 3480 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 3481 { 3482 struct cfg80211_registered_device *rdev; 3483 struct net_device *dev; 3484 3485 ASSERT_RTNL(); 3486 3487 dev = dev_get_by_index(net, ifindex); 3488 if (!dev) 3489 return ERR_PTR(-ENODEV); 3490 if (dev->ieee80211_ptr) 3491 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 3492 else 3493 rdev = ERR_PTR(-ENODEV); 3494 dev_put(dev); 3495 return rdev; 3496 } 3497 3498 int cfg80211_wext_siwscan(struct net_device *dev, 3499 struct iw_request_info *info, 3500 union iwreq_data *wrqu, char *extra) 3501 { 3502 struct cfg80211_registered_device *rdev; 3503 struct wiphy *wiphy; 3504 struct iw_scan_req *wreq = NULL; 3505 struct cfg80211_scan_request_int *creq; 3506 int i, err, n_channels = 0; 3507 enum nl80211_band band; 3508 3509 if (!netif_running(dev)) 3510 return -ENETDOWN; 3511 3512 if (wrqu->data.length == sizeof(struct iw_scan_req)) 3513 wreq = (struct iw_scan_req *)extra; 3514 3515 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3516 3517 if (IS_ERR(rdev)) 3518 return PTR_ERR(rdev); 3519 3520 if (rdev->scan_req || rdev->scan_msg) 3521 return -EBUSY; 3522 3523 wiphy = &rdev->wiphy; 3524 3525 /* Determine number of channels, needed to allocate creq */ 3526 if (wreq && wreq->num_channels) { 3527 /* Passed from userspace so should be checked */ 3528 if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES)) 3529 return -EINVAL; 3530 n_channels = wreq->num_channels; 3531 } else { 3532 n_channels = ieee80211_get_num_supported_channels(wiphy); 3533 } 3534 3535 creq = kzalloc(struct_size(creq, req.channels, n_channels) + 3536 sizeof(struct cfg80211_ssid), 3537 GFP_ATOMIC); 3538 if (!creq) 3539 return -ENOMEM; 3540 3541 creq->req.wiphy = wiphy; 3542 creq->req.wdev = dev->ieee80211_ptr; 3543 /* SSIDs come after channels */ 3544 creq->req.ssids = (void *)creq + 3545 struct_size(creq, req.channels, n_channels); 3546 creq->req.n_channels = n_channels; 3547 creq->req.n_ssids = 1; 3548 creq->req.scan_start = jiffies; 3549 3550 /* translate "Scan on frequencies" request */ 3551 i = 0; 3552 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3553 int j; 3554 3555 if (!wiphy->bands[band]) 3556 continue; 3557 3558 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 3559 struct ieee80211_channel *chan; 3560 3561 /* ignore disabled channels */ 3562 chan = &wiphy->bands[band]->channels[j]; 3563 if (chan->flags & IEEE80211_CHAN_DISABLED || 3564 !cfg80211_wdev_channel_allowed(creq->req.wdev, chan)) 3565 continue; 3566 3567 /* If we have a wireless request structure and the 3568 * wireless request specifies frequencies, then search 3569 * for the matching hardware channel. 3570 */ 3571 if (wreq && wreq->num_channels) { 3572 int k; 3573 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 3574 for (k = 0; k < wreq->num_channels; k++) { 3575 struct iw_freq *freq = 3576 &wreq->channel_list[k]; 3577 int wext_freq = 3578 cfg80211_wext_freq(freq); 3579 3580 if (wext_freq == wiphy_freq) 3581 goto wext_freq_found; 3582 } 3583 goto wext_freq_not_found; 3584 } 3585 3586 wext_freq_found: 3587 creq->req.channels[i] = 3588 &wiphy->bands[band]->channels[j]; 3589 i++; 3590 wext_freq_not_found: ; 3591 } 3592 } 3593 /* No channels found? */ 3594 if (!i) { 3595 err = -EINVAL; 3596 goto out; 3597 } 3598 3599 /* Set real number of channels specified in creq->req.channels[] */ 3600 creq->req.n_channels = i; 3601 3602 /* translate "Scan for SSID" request */ 3603 if (wreq) { 3604 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 3605 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) 3606 return -EINVAL; 3607 memcpy(creq->req.ssids[0].ssid, wreq->essid, 3608 wreq->essid_len); 3609 creq->req.ssids[0].ssid_len = wreq->essid_len; 3610 } 3611 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) { 3612 creq->req.ssids = NULL; 3613 creq->req.n_ssids = 0; 3614 } 3615 } 3616 3617 for (i = 0; i < NUM_NL80211_BANDS; i++) 3618 if (wiphy->bands[i]) 3619 creq->req.rates[i] = 3620 (1 << wiphy->bands[i]->n_bitrates) - 1; 3621 3622 eth_broadcast_addr(creq->req.bssid); 3623 3624 scoped_guard(wiphy, &rdev->wiphy) { 3625 rdev->scan_req = creq; 3626 err = rdev_scan(rdev, creq); 3627 if (err) { 3628 rdev->scan_req = NULL; 3629 /* creq will be freed below */ 3630 } else { 3631 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 3632 /* creq now owned by driver */ 3633 creq = NULL; 3634 dev_hold(dev); 3635 } 3636 } 3637 3638 out: 3639 kfree(creq); 3640 return err; 3641 } 3642 3643 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 3644 const struct cfg80211_bss_ies *ies, 3645 char *current_ev, char *end_buf) 3646 { 3647 const u8 *pos, *end, *next; 3648 struct iw_event iwe; 3649 3650 if (!ies) 3651 return current_ev; 3652 3653 /* 3654 * If needed, fragment the IEs buffer (at IE boundaries) into short 3655 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 3656 */ 3657 pos = ies->data; 3658 end = pos + ies->len; 3659 3660 while (end - pos > IW_GENERIC_IE_MAX) { 3661 next = pos + 2 + pos[1]; 3662 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 3663 next = next + 2 + next[1]; 3664 3665 memset(&iwe, 0, sizeof(iwe)); 3666 iwe.cmd = IWEVGENIE; 3667 iwe.u.data.length = next - pos; 3668 current_ev = iwe_stream_add_point_check(info, current_ev, 3669 end_buf, &iwe, 3670 (void *)pos); 3671 if (IS_ERR(current_ev)) 3672 return current_ev; 3673 pos = next; 3674 } 3675 3676 if (end > pos) { 3677 memset(&iwe, 0, sizeof(iwe)); 3678 iwe.cmd = IWEVGENIE; 3679 iwe.u.data.length = end - pos; 3680 current_ev = iwe_stream_add_point_check(info, current_ev, 3681 end_buf, &iwe, 3682 (void *)pos); 3683 if (IS_ERR(current_ev)) 3684 return current_ev; 3685 } 3686 3687 return current_ev; 3688 } 3689 3690 static char * 3691 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 3692 struct cfg80211_internal_bss *bss, char *current_ev, 3693 char *end_buf) 3694 { 3695 const struct cfg80211_bss_ies *ies; 3696 struct iw_event iwe; 3697 const u8 *ie; 3698 u8 buf[50]; 3699 u8 *cfg, *p, *tmp; 3700 int rem, i, sig; 3701 bool ismesh = false; 3702 3703 memset(&iwe, 0, sizeof(iwe)); 3704 iwe.cmd = SIOCGIWAP; 3705 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 3706 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 3707 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3708 IW_EV_ADDR_LEN); 3709 if (IS_ERR(current_ev)) 3710 return current_ev; 3711 3712 memset(&iwe, 0, sizeof(iwe)); 3713 iwe.cmd = SIOCGIWFREQ; 3714 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 3715 iwe.u.freq.e = 0; 3716 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3717 IW_EV_FREQ_LEN); 3718 if (IS_ERR(current_ev)) 3719 return current_ev; 3720 3721 memset(&iwe, 0, sizeof(iwe)); 3722 iwe.cmd = SIOCGIWFREQ; 3723 iwe.u.freq.m = bss->pub.channel->center_freq; 3724 iwe.u.freq.e = 6; 3725 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3726 IW_EV_FREQ_LEN); 3727 if (IS_ERR(current_ev)) 3728 return current_ev; 3729 3730 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 3731 memset(&iwe, 0, sizeof(iwe)); 3732 iwe.cmd = IWEVQUAL; 3733 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 3734 IW_QUAL_NOISE_INVALID | 3735 IW_QUAL_QUAL_UPDATED; 3736 switch (wiphy->signal_type) { 3737 case CFG80211_SIGNAL_TYPE_MBM: 3738 sig = bss->pub.signal / 100; 3739 iwe.u.qual.level = sig; 3740 iwe.u.qual.updated |= IW_QUAL_DBM; 3741 if (sig < -110) /* rather bad */ 3742 sig = -110; 3743 else if (sig > -40) /* perfect */ 3744 sig = -40; 3745 /* will give a range of 0 .. 70 */ 3746 iwe.u.qual.qual = sig + 110; 3747 break; 3748 case CFG80211_SIGNAL_TYPE_UNSPEC: 3749 iwe.u.qual.level = bss->pub.signal; 3750 /* will give range 0 .. 100 */ 3751 iwe.u.qual.qual = bss->pub.signal; 3752 break; 3753 default: 3754 /* not reached */ 3755 break; 3756 } 3757 current_ev = iwe_stream_add_event_check(info, current_ev, 3758 end_buf, &iwe, 3759 IW_EV_QUAL_LEN); 3760 if (IS_ERR(current_ev)) 3761 return current_ev; 3762 } 3763 3764 memset(&iwe, 0, sizeof(iwe)); 3765 iwe.cmd = SIOCGIWENCODE; 3766 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 3767 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 3768 else 3769 iwe.u.data.flags = IW_ENCODE_DISABLED; 3770 iwe.u.data.length = 0; 3771 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3772 &iwe, ""); 3773 if (IS_ERR(current_ev)) 3774 return current_ev; 3775 3776 rcu_read_lock(); 3777 ies = rcu_dereference(bss->pub.ies); 3778 rem = ies->len; 3779 ie = ies->data; 3780 3781 while (rem >= 2) { 3782 /* invalid data */ 3783 if (ie[1] > rem - 2) 3784 break; 3785 3786 switch (ie[0]) { 3787 case WLAN_EID_SSID: 3788 memset(&iwe, 0, sizeof(iwe)); 3789 iwe.cmd = SIOCGIWESSID; 3790 iwe.u.data.length = ie[1]; 3791 iwe.u.data.flags = 1; 3792 current_ev = iwe_stream_add_point_check(info, 3793 current_ev, 3794 end_buf, &iwe, 3795 (u8 *)ie + 2); 3796 if (IS_ERR(current_ev)) 3797 goto unlock; 3798 break; 3799 case WLAN_EID_MESH_ID: 3800 memset(&iwe, 0, sizeof(iwe)); 3801 iwe.cmd = SIOCGIWESSID; 3802 iwe.u.data.length = ie[1]; 3803 iwe.u.data.flags = 1; 3804 current_ev = iwe_stream_add_point_check(info, 3805 current_ev, 3806 end_buf, &iwe, 3807 (u8 *)ie + 2); 3808 if (IS_ERR(current_ev)) 3809 goto unlock; 3810 break; 3811 case WLAN_EID_MESH_CONFIG: 3812 ismesh = true; 3813 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 3814 break; 3815 cfg = (u8 *)ie + 2; 3816 memset(&iwe, 0, sizeof(iwe)); 3817 iwe.cmd = IWEVCUSTOM; 3818 iwe.u.data.length = sprintf(buf, 3819 "Mesh Network Path Selection Protocol ID: 0x%02X", 3820 cfg[0]); 3821 current_ev = iwe_stream_add_point_check(info, 3822 current_ev, 3823 end_buf, 3824 &iwe, buf); 3825 if (IS_ERR(current_ev)) 3826 goto unlock; 3827 iwe.u.data.length = sprintf(buf, 3828 "Path Selection Metric ID: 0x%02X", 3829 cfg[1]); 3830 current_ev = iwe_stream_add_point_check(info, 3831 current_ev, 3832 end_buf, 3833 &iwe, buf); 3834 if (IS_ERR(current_ev)) 3835 goto unlock; 3836 iwe.u.data.length = sprintf(buf, 3837 "Congestion Control Mode ID: 0x%02X", 3838 cfg[2]); 3839 current_ev = iwe_stream_add_point_check(info, 3840 current_ev, 3841 end_buf, 3842 &iwe, buf); 3843 if (IS_ERR(current_ev)) 3844 goto unlock; 3845 iwe.u.data.length = sprintf(buf, 3846 "Synchronization ID: 0x%02X", 3847 cfg[3]); 3848 current_ev = iwe_stream_add_point_check(info, 3849 current_ev, 3850 end_buf, 3851 &iwe, buf); 3852 if (IS_ERR(current_ev)) 3853 goto unlock; 3854 iwe.u.data.length = sprintf(buf, 3855 "Authentication ID: 0x%02X", 3856 cfg[4]); 3857 current_ev = iwe_stream_add_point_check(info, 3858 current_ev, 3859 end_buf, 3860 &iwe, buf); 3861 if (IS_ERR(current_ev)) 3862 goto unlock; 3863 iwe.u.data.length = sprintf(buf, 3864 "Formation Info: 0x%02X", 3865 cfg[5]); 3866 current_ev = iwe_stream_add_point_check(info, 3867 current_ev, 3868 end_buf, 3869 &iwe, buf); 3870 if (IS_ERR(current_ev)) 3871 goto unlock; 3872 iwe.u.data.length = sprintf(buf, 3873 "Capabilities: 0x%02X", 3874 cfg[6]); 3875 current_ev = iwe_stream_add_point_check(info, 3876 current_ev, 3877 end_buf, 3878 &iwe, buf); 3879 if (IS_ERR(current_ev)) 3880 goto unlock; 3881 break; 3882 case WLAN_EID_SUPP_RATES: 3883 case WLAN_EID_EXT_SUPP_RATES: 3884 /* display all supported rates in readable format */ 3885 p = current_ev + iwe_stream_lcp_len(info); 3886 3887 memset(&iwe, 0, sizeof(iwe)); 3888 iwe.cmd = SIOCGIWRATE; 3889 /* Those two flags are ignored... */ 3890 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 3891 3892 for (i = 0; i < ie[1]; i++) { 3893 iwe.u.bitrate.value = 3894 ((ie[i + 2] & 0x7f) * 500000); 3895 tmp = p; 3896 p = iwe_stream_add_value(info, current_ev, p, 3897 end_buf, &iwe, 3898 IW_EV_PARAM_LEN); 3899 if (p == tmp) { 3900 current_ev = ERR_PTR(-E2BIG); 3901 goto unlock; 3902 } 3903 } 3904 current_ev = p; 3905 break; 3906 } 3907 rem -= ie[1] + 2; 3908 ie += ie[1] + 2; 3909 } 3910 3911 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 3912 ismesh) { 3913 memset(&iwe, 0, sizeof(iwe)); 3914 iwe.cmd = SIOCGIWMODE; 3915 if (ismesh) 3916 iwe.u.mode = IW_MODE_MESH; 3917 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 3918 iwe.u.mode = IW_MODE_MASTER; 3919 else 3920 iwe.u.mode = IW_MODE_ADHOC; 3921 current_ev = iwe_stream_add_event_check(info, current_ev, 3922 end_buf, &iwe, 3923 IW_EV_UINT_LEN); 3924 if (IS_ERR(current_ev)) 3925 goto unlock; 3926 } 3927 3928 memset(&iwe, 0, sizeof(iwe)); 3929 iwe.cmd = IWEVCUSTOM; 3930 iwe.u.data.length = sprintf(buf, "tsf=%016llx", 3931 (unsigned long long)(ies->tsf)); 3932 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3933 &iwe, buf); 3934 if (IS_ERR(current_ev)) 3935 goto unlock; 3936 memset(&iwe, 0, sizeof(iwe)); 3937 iwe.cmd = IWEVCUSTOM; 3938 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago", 3939 elapsed_jiffies_msecs(bss->ts)); 3940 current_ev = iwe_stream_add_point_check(info, current_ev, 3941 end_buf, &iwe, buf); 3942 if (IS_ERR(current_ev)) 3943 goto unlock; 3944 3945 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 3946 3947 unlock: 3948 rcu_read_unlock(); 3949 return current_ev; 3950 } 3951 3952 3953 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 3954 struct iw_request_info *info, 3955 char *buf, size_t len) 3956 { 3957 char *current_ev = buf; 3958 char *end_buf = buf + len; 3959 struct cfg80211_internal_bss *bss; 3960 int err = 0; 3961 3962 spin_lock_bh(&rdev->bss_lock); 3963 cfg80211_bss_expire(rdev); 3964 3965 list_for_each_entry(bss, &rdev->bss_list, list) { 3966 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 3967 err = -E2BIG; 3968 break; 3969 } 3970 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 3971 current_ev, end_buf); 3972 if (IS_ERR(current_ev)) { 3973 err = PTR_ERR(current_ev); 3974 break; 3975 } 3976 } 3977 spin_unlock_bh(&rdev->bss_lock); 3978 3979 if (err) 3980 return err; 3981 return current_ev - buf; 3982 } 3983 3984 3985 int cfg80211_wext_giwscan(struct net_device *dev, 3986 struct iw_request_info *info, 3987 union iwreq_data *wrqu, char *extra) 3988 { 3989 struct iw_point *data = &wrqu->data; 3990 struct cfg80211_registered_device *rdev; 3991 int res; 3992 3993 if (!netif_running(dev)) 3994 return -ENETDOWN; 3995 3996 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3997 3998 if (IS_ERR(rdev)) 3999 return PTR_ERR(rdev); 4000 4001 if (rdev->scan_req || rdev->scan_msg) 4002 return -EAGAIN; 4003 4004 res = ieee80211_scan_results(rdev, info, extra, data->length); 4005 data->length = 0; 4006 if (res >= 0) { 4007 data->length = res; 4008 res = 0; 4009 } 4010 4011 return res; 4012 } 4013 #endif 4014