xref: /linux/fs/xfs/scrub/scrub.c (revision c148bc7535650fbfa95a1f571b9ffa2ab478ea33)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2017-2023 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <djwong@kernel.org>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans.h"
14 #include "xfs_inode.h"
15 #include "xfs_quota.h"
16 #include "xfs_qm.h"
17 #include "xfs_scrub.h"
18 #include "xfs_buf_mem.h"
19 #include "xfs_rmap.h"
20 #include "xfs_exchrange.h"
21 #include "xfs_exchmaps.h"
22 #include "xfs_dir2.h"
23 #include "xfs_parent.h"
24 #include "xfs_icache.h"
25 #include "scrub/scrub.h"
26 #include "scrub/common.h"
27 #include "scrub/trace.h"
28 #include "scrub/repair.h"
29 #include "scrub/health.h"
30 #include "scrub/stats.h"
31 #include "scrub/xfile.h"
32 #include "scrub/tempfile.h"
33 #include "scrub/orphanage.h"
34 
35 /*
36  * Online Scrub and Repair
37  *
38  * Traditionally, XFS (the kernel driver) did not know how to check or
39  * repair on-disk data structures.  That task was left to the xfs_check
40  * and xfs_repair tools, both of which require taking the filesystem
41  * offline for a thorough but time consuming examination.  Online
42  * scrub & repair, on the other hand, enables us to check the metadata
43  * for obvious errors while carefully stepping around the filesystem's
44  * ongoing operations, locking rules, etc.
45  *
46  * Given that most XFS metadata consist of records stored in a btree,
47  * most of the checking functions iterate the btree blocks themselves
48  * looking for irregularities.  When a record block is encountered, each
49  * record can be checked for obviously bad values.  Record values can
50  * also be cross-referenced against other btrees to look for potential
51  * misunderstandings between pieces of metadata.
52  *
53  * It is expected that the checkers responsible for per-AG metadata
54  * structures will lock the AG headers (AGI, AGF, AGFL), iterate the
55  * metadata structure, and perform any relevant cross-referencing before
56  * unlocking the AG and returning the results to userspace.  These
57  * scrubbers must not keep an AG locked for too long to avoid tying up
58  * the block and inode allocators.
59  *
60  * Block maps and b-trees rooted in an inode present a special challenge
61  * because they can involve extents from any AG.  The general scrubber
62  * structure of lock -> check -> xref -> unlock still holds, but AG
63  * locking order rules /must/ be obeyed to avoid deadlocks.  The
64  * ordering rule, of course, is that we must lock in increasing AG
65  * order.  Helper functions are provided to track which AG headers we've
66  * already locked.  If we detect an imminent locking order violation, we
67  * can signal a potential deadlock, in which case the scrubber can jump
68  * out to the top level, lock all the AGs in order, and retry the scrub.
69  *
70  * For file data (directories, extended attributes, symlinks) scrub, we
71  * can simply lock the inode and walk the data.  For btree data
72  * (directories and attributes) we follow the same btree-scrubbing
73  * strategy outlined previously to check the records.
74  *
75  * We use a bit of trickery with transactions to avoid buffer deadlocks
76  * if there is a cycle in the metadata.  The basic problem is that
77  * travelling down a btree involves locking the current buffer at each
78  * tree level.  If a pointer should somehow point back to a buffer that
79  * we've already examined, we will deadlock due to the second buffer
80  * locking attempt.  Note however that grabbing a buffer in transaction
81  * context links the locked buffer to the transaction.  If we try to
82  * re-grab the buffer in the context of the same transaction, we avoid
83  * the second lock attempt and continue.  Between the verifier and the
84  * scrubber, something will notice that something is amiss and report
85  * the corruption.  Therefore, each scrubber will allocate an empty
86  * transaction, attach buffers to it, and cancel the transaction at the
87  * end of the scrub run.  Cancelling a non-dirty transaction simply
88  * unlocks the buffers.
89  *
90  * There are four pieces of data that scrub can communicate to
91  * userspace.  The first is the error code (errno), which can be used to
92  * communicate operational errors in performing the scrub.  There are
93  * also three flags that can be set in the scrub context.  If the data
94  * structure itself is corrupt, the CORRUPT flag will be set.  If
95  * the metadata is correct but otherwise suboptimal, the PREEN flag
96  * will be set.
97  *
98  * We perform secondary validation of filesystem metadata by
99  * cross-referencing every record with all other available metadata.
100  * For example, for block mapping extents, we verify that there are no
101  * records in the free space and inode btrees corresponding to that
102  * space extent and that there is a corresponding entry in the reverse
103  * mapping btree.  Inconsistent metadata is noted by setting the
104  * XCORRUPT flag; btree query function errors are noted by setting the
105  * XFAIL flag and deleting the cursor to prevent further attempts to
106  * cross-reference with a defective btree.
107  *
108  * If a piece of metadata proves corrupt or suboptimal, the userspace
109  * program can ask the kernel to apply some tender loving care (TLC) to
110  * the metadata object by setting the REPAIR flag and re-calling the
111  * scrub ioctl.  "Corruption" is defined by metadata violating the
112  * on-disk specification; operations cannot continue if the violation is
113  * left untreated.  It is possible for XFS to continue if an object is
114  * "suboptimal", however performance may be degraded.  Repairs are
115  * usually performed by rebuilding the metadata entirely out of
116  * redundant metadata.  Optimizing, on the other hand, can sometimes be
117  * done without rebuilding entire structures.
118  *
119  * Generally speaking, the repair code has the following code structure:
120  * Lock -> scrub -> repair -> commit -> re-lock -> re-scrub -> unlock.
121  * The first check helps us figure out if we need to rebuild or simply
122  * optimize the structure so that the rebuild knows what to do.  The
123  * second check evaluates the completeness of the repair; that is what
124  * is reported to userspace.
125  *
126  * A quick note on symbol prefixes:
127  * - "xfs_" are general XFS symbols.
128  * - "xchk_" are symbols related to metadata checking.
129  * - "xrep_" are symbols related to metadata repair.
130  * - "xfs_scrub_" are symbols that tie online fsck to the rest of XFS.
131  */
132 
133 /*
134  * Scrub probe -- userspace uses this to probe if we're willing to scrub
135  * or repair a given mountpoint.  This will be used by xfs_scrub to
136  * probe the kernel's abilities to scrub (and repair) the metadata.  We
137  * do this by validating the ioctl inputs from userspace, preparing the
138  * filesystem for a scrub (or a repair) operation, and immediately
139  * returning to userspace.  Userspace can use the returned errno and
140  * structure state to decide (in broad terms) if scrub/repair are
141  * supported by the running kernel.
142  */
143 static int
xchk_probe(struct xfs_scrub * sc)144 xchk_probe(
145 	struct xfs_scrub	*sc)
146 {
147 	int			error = 0;
148 
149 	if (xchk_should_terminate(sc, &error))
150 		return error;
151 
152 	/*
153 	 * If the caller is probing to see if repair works but repair isn't
154 	 * built into the kernel, return EOPNOTSUPP because that's the signal
155 	 * that userspace expects.  If online repair is built in, set the
156 	 * CORRUPT flag (without any of the usual tracing/logging) to force us
157 	 * into xrep_probe.
158 	 */
159 	if (xchk_could_repair(sc)) {
160 		if (!IS_ENABLED(CONFIG_XFS_ONLINE_REPAIR))
161 			return -EOPNOTSUPP;
162 		sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
163 	}
164 	return 0;
165 }
166 
167 /* Scrub setup and teardown */
168 
169 static inline void
xchk_fsgates_disable(struct xfs_scrub * sc)170 xchk_fsgates_disable(
171 	struct xfs_scrub	*sc)
172 {
173 	if (!(sc->flags & XCHK_FSGATES_ALL))
174 		return;
175 
176 	trace_xchk_fsgates_disable(sc, sc->flags & XCHK_FSGATES_ALL);
177 
178 	if (sc->flags & XCHK_FSGATES_DRAIN)
179 		xfs_defer_drain_wait_disable();
180 
181 	if (sc->flags & XCHK_FSGATES_QUOTA)
182 		xfs_dqtrx_hook_disable();
183 
184 	if (sc->flags & XCHK_FSGATES_DIRENTS)
185 		xfs_dir_hook_disable();
186 
187 	if (sc->flags & XCHK_FSGATES_RMAP)
188 		xfs_rmap_hook_disable();
189 
190 	sc->flags &= ~XCHK_FSGATES_ALL;
191 }
192 
193 /* Free the resources associated with a scrub subtype. */
194 void
xchk_scrub_free_subord(struct xfs_scrub_subord * sub)195 xchk_scrub_free_subord(
196 	struct xfs_scrub_subord	*sub)
197 {
198 	struct xfs_scrub	*sc = sub->parent_sc;
199 
200 	ASSERT(sc->ip == sub->sc.ip);
201 	ASSERT(sc->orphanage == sub->sc.orphanage);
202 	ASSERT(sc->tempip == sub->sc.tempip);
203 
204 	sc->sm->sm_type = sub->old_smtype;
205 	sc->sm->sm_flags = sub->old_smflags |
206 				(sc->sm->sm_flags & XFS_SCRUB_FLAGS_OUT);
207 	sc->tp = sub->sc.tp;
208 
209 	if (sub->sc.buf) {
210 		if (sub->sc.buf_cleanup)
211 			sub->sc.buf_cleanup(sub->sc.buf);
212 		kvfree(sub->sc.buf);
213 	}
214 	if (sub->sc.xmbtp)
215 		xmbuf_free(sub->sc.xmbtp);
216 	if (sub->sc.xfile)
217 		xfile_destroy(sub->sc.xfile);
218 
219 	sc->ilock_flags = sub->sc.ilock_flags;
220 	sc->orphanage_ilock_flags = sub->sc.orphanage_ilock_flags;
221 	sc->temp_ilock_flags = sub->sc.temp_ilock_flags;
222 
223 	kfree(sub);
224 }
225 
226 /* Free all the resources and finish the transactions. */
227 STATIC int
xchk_teardown(struct xfs_scrub * sc,int error)228 xchk_teardown(
229 	struct xfs_scrub	*sc,
230 	int			error)
231 {
232 	xchk_ag_free(sc, &sc->sa);
233 	xchk_rtgroup_btcur_free(&sc->sr);
234 
235 	if (sc->tp) {
236 		if (error == 0 && (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
237 			error = xfs_trans_commit(sc->tp);
238 		else
239 			xfs_trans_cancel(sc->tp);
240 		sc->tp = NULL;
241 	}
242 	if (sc->sr.rtg)
243 		xchk_rtgroup_free(sc, &sc->sr);
244 	if (sc->ip) {
245 		if (sc->ilock_flags)
246 			xchk_iunlock(sc, sc->ilock_flags);
247 		xchk_irele(sc, sc->ip);
248 		sc->ip = NULL;
249 	}
250 	if (sc->flags & XCHK_HAVE_FREEZE_PROT) {
251 		sc->flags &= ~XCHK_HAVE_FREEZE_PROT;
252 		mnt_drop_write_file(sc->file);
253 	}
254 	if (sc->xmbtp) {
255 		xmbuf_free(sc->xmbtp);
256 		sc->xmbtp = NULL;
257 	}
258 	if (sc->xfile) {
259 		xfile_destroy(sc->xfile);
260 		sc->xfile = NULL;
261 	}
262 	if (sc->buf) {
263 		if (sc->buf_cleanup)
264 			sc->buf_cleanup(sc->buf);
265 		kvfree(sc->buf);
266 		sc->buf_cleanup = NULL;
267 		sc->buf = NULL;
268 	}
269 
270 	xrep_tempfile_rele(sc);
271 	xrep_orphanage_rele(sc);
272 	xchk_fsgates_disable(sc);
273 	return error;
274 }
275 
276 /* Scrubbing dispatch. */
277 
278 static const struct xchk_meta_ops meta_scrub_ops[] = {
279 	[XFS_SCRUB_TYPE_PROBE] = {	/* ioctl presence test */
280 		.type	= ST_NONE,
281 		.setup	= xchk_setup_fs,
282 		.scrub	= xchk_probe,
283 		.repair = xrep_probe,
284 	},
285 	[XFS_SCRUB_TYPE_SB] = {		/* superblock */
286 		.type	= ST_PERAG,
287 		.setup	= xchk_setup_agheader,
288 		.scrub	= xchk_superblock,
289 		.repair	= xrep_superblock,
290 	},
291 	[XFS_SCRUB_TYPE_AGF] = {	/* agf */
292 		.type	= ST_PERAG,
293 		.setup	= xchk_setup_agheader,
294 		.scrub	= xchk_agf,
295 		.repair	= xrep_agf,
296 	},
297 	[XFS_SCRUB_TYPE_AGFL]= {	/* agfl */
298 		.type	= ST_PERAG,
299 		.setup	= xchk_setup_agheader,
300 		.scrub	= xchk_agfl,
301 		.repair	= xrep_agfl,
302 	},
303 	[XFS_SCRUB_TYPE_AGI] = {	/* agi */
304 		.type	= ST_PERAG,
305 		.setup	= xchk_setup_agheader,
306 		.scrub	= xchk_agi,
307 		.repair	= xrep_agi,
308 	},
309 	[XFS_SCRUB_TYPE_BNOBT] = {	/* bnobt */
310 		.type	= ST_PERAG,
311 		.setup	= xchk_setup_ag_allocbt,
312 		.scrub	= xchk_allocbt,
313 		.repair	= xrep_allocbt,
314 		.repair_eval = xrep_revalidate_allocbt,
315 	},
316 	[XFS_SCRUB_TYPE_CNTBT] = {	/* cntbt */
317 		.type	= ST_PERAG,
318 		.setup	= xchk_setup_ag_allocbt,
319 		.scrub	= xchk_allocbt,
320 		.repair	= xrep_allocbt,
321 		.repair_eval = xrep_revalidate_allocbt,
322 	},
323 	[XFS_SCRUB_TYPE_INOBT] = {	/* inobt */
324 		.type	= ST_PERAG,
325 		.setup	= xchk_setup_ag_iallocbt,
326 		.scrub	= xchk_iallocbt,
327 		.repair	= xrep_iallocbt,
328 		.repair_eval = xrep_revalidate_iallocbt,
329 	},
330 	[XFS_SCRUB_TYPE_FINOBT] = {	/* finobt */
331 		.type	= ST_PERAG,
332 		.setup	= xchk_setup_ag_iallocbt,
333 		.scrub	= xchk_iallocbt,
334 		.has	= xfs_has_finobt,
335 		.repair	= xrep_iallocbt,
336 		.repair_eval = xrep_revalidate_iallocbt,
337 	},
338 	[XFS_SCRUB_TYPE_RMAPBT] = {	/* rmapbt */
339 		.type	= ST_PERAG,
340 		.setup	= xchk_setup_ag_rmapbt,
341 		.scrub	= xchk_rmapbt,
342 		.has	= xfs_has_rmapbt,
343 		.repair	= xrep_rmapbt,
344 	},
345 	[XFS_SCRUB_TYPE_REFCNTBT] = {	/* refcountbt */
346 		.type	= ST_PERAG,
347 		.setup	= xchk_setup_ag_refcountbt,
348 		.scrub	= xchk_refcountbt,
349 		.has	= xfs_has_reflink,
350 		.repair	= xrep_refcountbt,
351 	},
352 	[XFS_SCRUB_TYPE_INODE] = {	/* inode record */
353 		.type	= ST_INODE,
354 		.setup	= xchk_setup_inode,
355 		.scrub	= xchk_inode,
356 		.repair	= xrep_inode,
357 	},
358 	[XFS_SCRUB_TYPE_BMBTD] = {	/* inode data fork */
359 		.type	= ST_INODE,
360 		.setup	= xchk_setup_inode_bmap,
361 		.scrub	= xchk_bmap_data,
362 		.repair	= xrep_bmap_data,
363 	},
364 	[XFS_SCRUB_TYPE_BMBTA] = {	/* inode attr fork */
365 		.type	= ST_INODE,
366 		.setup	= xchk_setup_inode_bmap,
367 		.scrub	= xchk_bmap_attr,
368 		.repair	= xrep_bmap_attr,
369 	},
370 	[XFS_SCRUB_TYPE_BMBTC] = {	/* inode CoW fork */
371 		.type	= ST_INODE,
372 		.setup	= xchk_setup_inode_bmap,
373 		.scrub	= xchk_bmap_cow,
374 		.repair	= xrep_bmap_cow,
375 	},
376 	[XFS_SCRUB_TYPE_DIR] = {	/* directory */
377 		.type	= ST_INODE,
378 		.setup	= xchk_setup_directory,
379 		.scrub	= xchk_directory,
380 		.repair	= xrep_directory,
381 	},
382 	[XFS_SCRUB_TYPE_XATTR] = {	/* extended attributes */
383 		.type	= ST_INODE,
384 		.setup	= xchk_setup_xattr,
385 		.scrub	= xchk_xattr,
386 		.repair	= xrep_xattr,
387 	},
388 	[XFS_SCRUB_TYPE_SYMLINK] = {	/* symbolic link */
389 		.type	= ST_INODE,
390 		.setup	= xchk_setup_symlink,
391 		.scrub	= xchk_symlink,
392 		.repair	= xrep_symlink,
393 	},
394 	[XFS_SCRUB_TYPE_PARENT] = {	/* parent pointers */
395 		.type	= ST_INODE,
396 		.setup	= xchk_setup_parent,
397 		.scrub	= xchk_parent,
398 		.repair	= xrep_parent,
399 	},
400 	[XFS_SCRUB_TYPE_RTBITMAP] = {	/* realtime bitmap */
401 		.type	= ST_RTGROUP,
402 		.has	= xfs_has_nonzoned,
403 		.setup	= xchk_setup_rtbitmap,
404 		.scrub	= xchk_rtbitmap,
405 		.repair	= xrep_rtbitmap,
406 	},
407 	[XFS_SCRUB_TYPE_RTSUM] = {	/* realtime summary */
408 		.type	= ST_RTGROUP,
409 		.has	= xfs_has_nonzoned,
410 		.setup	= xchk_setup_rtsummary,
411 		.scrub	= xchk_rtsummary,
412 		.repair	= xrep_rtsummary,
413 	},
414 	[XFS_SCRUB_TYPE_UQUOTA] = {	/* user quota */
415 		.type	= ST_FS,
416 		.setup	= xchk_setup_quota,
417 		.scrub	= xchk_quota,
418 		.repair	= xrep_quota,
419 	},
420 	[XFS_SCRUB_TYPE_GQUOTA] = {	/* group quota */
421 		.type	= ST_FS,
422 		.setup	= xchk_setup_quota,
423 		.scrub	= xchk_quota,
424 		.repair	= xrep_quota,
425 	},
426 	[XFS_SCRUB_TYPE_PQUOTA] = {	/* project quota */
427 		.type	= ST_FS,
428 		.setup	= xchk_setup_quota,
429 		.scrub	= xchk_quota,
430 		.repair	= xrep_quota,
431 	},
432 	[XFS_SCRUB_TYPE_FSCOUNTERS] = {	/* fs summary counters */
433 		.type	= ST_FS,
434 		.setup	= xchk_setup_fscounters,
435 		.scrub	= xchk_fscounters,
436 		.repair	= xrep_fscounters,
437 	},
438 	[XFS_SCRUB_TYPE_QUOTACHECK] = {	/* quota counters */
439 		.type	= ST_FS,
440 		.setup	= xchk_setup_quotacheck,
441 		.scrub	= xchk_quotacheck,
442 		.repair	= xrep_quotacheck,
443 	},
444 	[XFS_SCRUB_TYPE_NLINKS] = {	/* inode link counts */
445 		.type	= ST_FS,
446 		.setup	= xchk_setup_nlinks,
447 		.scrub	= xchk_nlinks,
448 		.repair	= xrep_nlinks,
449 	},
450 	[XFS_SCRUB_TYPE_HEALTHY] = {	/* fs healthy; clean all reminders */
451 		.type	= ST_FS,
452 		.setup	= xchk_setup_fs,
453 		.scrub	= xchk_health_record,
454 		.repair = xrep_notsupported,
455 	},
456 	[XFS_SCRUB_TYPE_DIRTREE] = {	/* directory tree structure */
457 		.type	= ST_INODE,
458 		.setup	= xchk_setup_dirtree,
459 		.scrub	= xchk_dirtree,
460 		.has	= xfs_has_parent,
461 		.repair	= xrep_dirtree,
462 	},
463 	[XFS_SCRUB_TYPE_METAPATH] = {	/* metadata directory tree path */
464 		.type	= ST_GENERIC,
465 		.setup	= xchk_setup_metapath,
466 		.scrub	= xchk_metapath,
467 		.has	= xfs_has_metadir,
468 		.repair	= xrep_metapath,
469 	},
470 	[XFS_SCRUB_TYPE_RGSUPER] = {	/* realtime group superblock */
471 		.type	= ST_RTGROUP,
472 		.setup	= xchk_setup_rgsuperblock,
473 		.scrub	= xchk_rgsuperblock,
474 		.has	= xfs_has_rtsb,
475 		.repair = xrep_rgsuperblock,
476 	},
477 	[XFS_SCRUB_TYPE_RTRMAPBT] = {	/* realtime group rmapbt */
478 		.type	= ST_RTGROUP,
479 		.setup	= xchk_setup_rtrmapbt,
480 		.scrub	= xchk_rtrmapbt,
481 		.has	= xfs_has_rtrmapbt,
482 		.repair	= xrep_rtrmapbt,
483 	},
484 	[XFS_SCRUB_TYPE_RTREFCBT] = {	/* realtime refcountbt */
485 		.type	= ST_RTGROUP,
486 		.setup	= xchk_setup_rtrefcountbt,
487 		.scrub	= xchk_rtrefcountbt,
488 		.has	= xfs_has_rtreflink,
489 		.repair	= xrep_rtrefcountbt,
490 	},
491 };
492 
493 static int
xchk_validate_inputs(struct xfs_mount * mp,struct xfs_scrub_metadata * sm)494 xchk_validate_inputs(
495 	struct xfs_mount		*mp,
496 	struct xfs_scrub_metadata	*sm)
497 {
498 	int				error;
499 	const struct xchk_meta_ops	*ops;
500 
501 	error = -EINVAL;
502 	/* Check our inputs. */
503 	sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
504 	if (sm->sm_flags & ~XFS_SCRUB_FLAGS_IN)
505 		goto out;
506 	/* sm_reserved[] must be zero */
507 	if (memchr_inv(sm->sm_reserved, 0, sizeof(sm->sm_reserved)))
508 		goto out;
509 
510 	error = -ENOENT;
511 	/* Do we know about this type of metadata? */
512 	if (sm->sm_type >= XFS_SCRUB_TYPE_NR)
513 		goto out;
514 	ops = &meta_scrub_ops[sm->sm_type];
515 	if (ops->setup == NULL || ops->scrub == NULL)
516 		goto out;
517 	/* Does this fs even support this type of metadata? */
518 	if (ops->has && !ops->has(mp))
519 		goto out;
520 
521 	error = -EINVAL;
522 	/* restricting fields must be appropriate for type */
523 	switch (ops->type) {
524 	case ST_NONE:
525 	case ST_FS:
526 		if (sm->sm_ino || sm->sm_gen || sm->sm_agno)
527 			goto out;
528 		break;
529 	case ST_PERAG:
530 		if (sm->sm_ino || sm->sm_gen ||
531 		    sm->sm_agno >= mp->m_sb.sb_agcount)
532 			goto out;
533 		break;
534 	case ST_INODE:
535 		if (sm->sm_agno || (sm->sm_gen && !sm->sm_ino))
536 			goto out;
537 		break;
538 	case ST_GENERIC:
539 		break;
540 	case ST_RTGROUP:
541 		if (sm->sm_ino || sm->sm_gen)
542 			goto out;
543 		if (xfs_has_rtgroups(mp)) {
544 			/*
545 			 * On a rtgroups filesystem, there won't be an rtbitmap
546 			 * or rtsummary file for group 0 unless there's
547 			 * actually a realtime volume attached.  However, older
548 			 * xfs_scrub always calls the rtbitmap/rtsummary
549 			 * scrubbers with sm_agno==0 so transform the error
550 			 * code to ENOENT.
551 			 */
552 			if (sm->sm_agno >= mp->m_sb.sb_rgcount) {
553 				if (sm->sm_agno == 0)
554 					error = -ENOENT;
555 				goto out;
556 			}
557 		} else {
558 			/*
559 			 * Prior to rtgroups, the rtbitmap/rtsummary scrubbers
560 			 * accepted sm_agno==0, so we still accept that for
561 			 * scrubbing pre-rtgroups filesystems.
562 			 */
563 			if (sm->sm_agno != 0)
564 				goto out;
565 		}
566 		break;
567 	default:
568 		goto out;
569 	}
570 
571 	/* No rebuild without repair. */
572 	if ((sm->sm_flags & XFS_SCRUB_IFLAG_FORCE_REBUILD) &&
573 	    !(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
574 		return -EINVAL;
575 
576 	/*
577 	 * We only want to repair read-write v5+ filesystems.  Defer the check
578 	 * for ops->repair until after our scrub confirms that we need to
579 	 * perform repairs so that we avoid failing due to not supporting
580 	 * repairing an object that doesn't need repairs.
581 	 */
582 	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
583 		error = -EOPNOTSUPP;
584 		if (!xfs_has_crc(mp))
585 			goto out;
586 
587 		error = -EROFS;
588 		if (xfs_is_readonly(mp))
589 			goto out;
590 	}
591 
592 	error = 0;
593 out:
594 	return error;
595 }
596 
597 #ifdef CONFIG_XFS_ONLINE_REPAIR
xchk_postmortem(struct xfs_scrub * sc)598 static inline void xchk_postmortem(struct xfs_scrub *sc)
599 {
600 	/*
601 	 * Userspace asked us to repair something, we repaired it, rescanned
602 	 * it, and the rescan says it's still broken.  Scream about this in
603 	 * the system logs.
604 	 */
605 	if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
606 	    (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
607 				 XFS_SCRUB_OFLAG_XCORRUPT)))
608 		xrep_failure(sc->mp);
609 }
610 #else
xchk_postmortem(struct xfs_scrub * sc)611 static inline void xchk_postmortem(struct xfs_scrub *sc)
612 {
613 	/*
614 	 * Userspace asked us to scrub something, it's broken, and we have no
615 	 * way of fixing it.  Scream in the logs.
616 	 */
617 	if (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
618 				XFS_SCRUB_OFLAG_XCORRUPT))
619 		xfs_alert_ratelimited(sc->mp,
620 				"Corruption detected during scrub.");
621 }
622 #endif /* CONFIG_XFS_ONLINE_REPAIR */
623 
624 /*
625  * Create a new scrub context from an existing one, but with a different scrub
626  * type.
627  */
628 struct xfs_scrub_subord *
xchk_scrub_create_subord(struct xfs_scrub * sc,unsigned int subtype)629 xchk_scrub_create_subord(
630 	struct xfs_scrub	*sc,
631 	unsigned int		subtype)
632 {
633 	struct xfs_scrub_subord	*sub;
634 
635 	sub = kzalloc(sizeof(*sub), XCHK_GFP_FLAGS);
636 	if (!sub)
637 		return ERR_PTR(-ENOMEM);
638 
639 	sub->old_smtype = sc->sm->sm_type;
640 	sub->old_smflags = sc->sm->sm_flags;
641 	sub->parent_sc = sc;
642 	memcpy(&sub->sc, sc, sizeof(struct xfs_scrub));
643 	sub->sc.ops = &meta_scrub_ops[subtype];
644 	sub->sc.sm->sm_type = subtype;
645 	sub->sc.sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
646 	sub->sc.buf = NULL;
647 	sub->sc.buf_cleanup = NULL;
648 	sub->sc.xfile = NULL;
649 	sub->sc.xmbtp = NULL;
650 
651 	return sub;
652 }
653 
654 /* Dispatch metadata scrubbing. */
655 STATIC int
xfs_scrub_metadata(struct file * file,struct xfs_scrub_metadata * sm)656 xfs_scrub_metadata(
657 	struct file			*file,
658 	struct xfs_scrub_metadata	*sm)
659 {
660 	struct xchk_stats_run		run = { };
661 	struct xfs_scrub		*sc;
662 	struct xfs_mount		*mp = XFS_I(file_inode(file))->i_mount;
663 	u64				check_start;
664 	int				error = 0;
665 
666 	BUILD_BUG_ON(sizeof(meta_scrub_ops) !=
667 		(sizeof(struct xchk_meta_ops) * XFS_SCRUB_TYPE_NR));
668 
669 	trace_xchk_start(XFS_I(file_inode(file)), sm, error);
670 
671 	/* Forbidden if we are shut down or mounted norecovery. */
672 	error = -ESHUTDOWN;
673 	if (xfs_is_shutdown(mp))
674 		goto out;
675 	error = -ENOTRECOVERABLE;
676 	if (xfs_has_norecovery(mp))
677 		goto out;
678 
679 	error = xchk_validate_inputs(mp, sm);
680 	if (error)
681 		goto out;
682 
683 	xfs_warn_experimental(mp, XFS_EXPERIMENTAL_SCRUB);
684 
685 	sc = kzalloc(sizeof(struct xfs_scrub), XCHK_GFP_FLAGS);
686 	if (!sc) {
687 		error = -ENOMEM;
688 		goto out;
689 	}
690 
691 	sc->mp = mp;
692 	sc->file = file;
693 	sc->sm = sm;
694 	sc->ops = &meta_scrub_ops[sm->sm_type];
695 	sc->sick_mask = xchk_health_mask_for_scrub_type(sm->sm_type);
696 	sc->relax = INIT_XCHK_RELAX;
697 retry_op:
698 	/*
699 	 * When repairs are allowed, prevent freezing or readonly remount while
700 	 * scrub is running with a real transaction.
701 	 */
702 	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
703 		error = mnt_want_write_file(sc->file);
704 		if (error)
705 			goto out_sc;
706 
707 		sc->flags |= XCHK_HAVE_FREEZE_PROT;
708 	}
709 
710 	/* Set up for the operation. */
711 	error = sc->ops->setup(sc);
712 	if (error == -EDEADLOCK && !(sc->flags & XCHK_TRY_HARDER))
713 		goto try_harder;
714 	if (error == -ECHRNG && !(sc->flags & XCHK_NEED_DRAIN))
715 		goto need_drain;
716 	if (error)
717 		goto out_teardown;
718 
719 	/* Scrub for errors. */
720 	check_start = xchk_stats_now();
721 	if ((sc->flags & XREP_ALREADY_FIXED) && sc->ops->repair_eval != NULL)
722 		error = sc->ops->repair_eval(sc);
723 	else
724 		error = sc->ops->scrub(sc);
725 	run.scrub_ns += xchk_stats_elapsed_ns(check_start);
726 	if (error == -EDEADLOCK && !(sc->flags & XCHK_TRY_HARDER))
727 		goto try_harder;
728 	if (error == -ECHRNG && !(sc->flags & XCHK_NEED_DRAIN))
729 		goto need_drain;
730 	if (error || (sm->sm_flags & XFS_SCRUB_OFLAG_INCOMPLETE))
731 		goto out_teardown;
732 
733 	xchk_update_health(sc);
734 
735 	if (xchk_could_repair(sc)) {
736 		/*
737 		 * If userspace asked for a repair but it wasn't necessary,
738 		 * report that back to userspace.
739 		 */
740 		if (!xrep_will_attempt(sc)) {
741 			sc->sm->sm_flags |= XFS_SCRUB_OFLAG_NO_REPAIR_NEEDED;
742 			goto out_nofix;
743 		}
744 
745 		/*
746 		 * If it's broken, userspace wants us to fix it, and we haven't
747 		 * already tried to fix it, then attempt a repair.
748 		 */
749 		error = xrep_attempt(sc, &run);
750 		if (error == -EAGAIN) {
751 			/*
752 			 * Either the repair function succeeded or it couldn't
753 			 * get all the resources it needs; either way, we go
754 			 * back to the beginning and call the scrub function.
755 			 */
756 			error = xchk_teardown(sc, 0);
757 			if (error) {
758 				xrep_failure(mp);
759 				goto out_sc;
760 			}
761 			goto retry_op;
762 		}
763 	}
764 
765 out_nofix:
766 	xchk_postmortem(sc);
767 out_teardown:
768 	error = xchk_teardown(sc, error);
769 out_sc:
770 	if (error != -ENOENT)
771 		xchk_stats_merge(mp, sm, &run);
772 	kfree(sc);
773 out:
774 	trace_xchk_done(XFS_I(file_inode(file)), sm, error);
775 	if (error == -EFSCORRUPTED || error == -EFSBADCRC) {
776 		sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
777 		error = 0;
778 	}
779 	return error;
780 need_drain:
781 	error = xchk_teardown(sc, 0);
782 	if (error)
783 		goto out_sc;
784 	sc->flags |= XCHK_NEED_DRAIN;
785 	run.retries++;
786 	goto retry_op;
787 try_harder:
788 	/*
789 	 * Scrubbers return -EDEADLOCK to mean 'try harder'.  Tear down
790 	 * everything we hold, then set up again with preparation for
791 	 * worst-case scenarios.
792 	 */
793 	error = xchk_teardown(sc, 0);
794 	if (error)
795 		goto out_sc;
796 	sc->flags |= XCHK_TRY_HARDER;
797 	run.retries++;
798 	goto retry_op;
799 }
800 
801 /* Scrub one aspect of one piece of metadata. */
802 int
xfs_ioc_scrub_metadata(struct file * file,void __user * arg)803 xfs_ioc_scrub_metadata(
804 	struct file			*file,
805 	void				__user *arg)
806 {
807 	struct xfs_scrub_metadata	scrub;
808 	int				error;
809 
810 	if (!capable(CAP_SYS_ADMIN))
811 		return -EPERM;
812 
813 	if (copy_from_user(&scrub, arg, sizeof(scrub)))
814 		return -EFAULT;
815 
816 	error = xfs_scrub_metadata(file, &scrub);
817 	if (error)
818 		return error;
819 
820 	if (copy_to_user(arg, &scrub, sizeof(scrub)))
821 		return -EFAULT;
822 
823 	return 0;
824 }
825 
826 /* Decide if there have been any scrub failures up to this point. */
827 static inline int
xfs_scrubv_check_barrier(struct xfs_mount * mp,const struct xfs_scrub_vec * vectors,const struct xfs_scrub_vec * stop_vec)828 xfs_scrubv_check_barrier(
829 	struct xfs_mount		*mp,
830 	const struct xfs_scrub_vec	*vectors,
831 	const struct xfs_scrub_vec	*stop_vec)
832 {
833 	const struct xfs_scrub_vec	*v;
834 	__u32				failmask;
835 
836 	failmask = stop_vec->sv_flags & XFS_SCRUB_FLAGS_OUT;
837 
838 	for (v = vectors; v < stop_vec; v++) {
839 		if (v->sv_type == XFS_SCRUB_TYPE_BARRIER)
840 			continue;
841 
842 		/*
843 		 * Runtime errors count as a previous failure, except the ones
844 		 * used to ask userspace to retry.
845 		 */
846 		switch (v->sv_ret) {
847 		case -EBUSY:
848 		case -ENOENT:
849 		case -EUSERS:
850 		case 0:
851 			break;
852 		default:
853 			return -ECANCELED;
854 		}
855 
856 		/*
857 		 * If any of the out-flags on the scrub vector match the mask
858 		 * that was set on the barrier vector, that's a previous fail.
859 		 */
860 		if (v->sv_flags & failmask)
861 			return -ECANCELED;
862 	}
863 
864 	return 0;
865 }
866 
867 /*
868  * If the caller provided us with a nonzero inode number that isn't the ioctl
869  * file, try to grab a reference to it to eliminate all further untrusted inode
870  * lookups.  If we can't get the inode, let each scrub function try again.
871  */
872 STATIC struct xfs_inode *
xchk_scrubv_open_by_handle(struct xfs_mount * mp,const struct xfs_scrub_vec_head * head)873 xchk_scrubv_open_by_handle(
874 	struct xfs_mount		*mp,
875 	const struct xfs_scrub_vec_head	*head)
876 {
877 	struct xfs_trans		*tp;
878 	struct xfs_inode		*ip;
879 	int				error;
880 
881 	error = xfs_trans_alloc_empty(mp, &tp);
882 	if (error)
883 		return NULL;
884 
885 	error = xfs_iget(mp, tp, head->svh_ino, XCHK_IGET_FLAGS, 0, &ip);
886 	xfs_trans_cancel(tp);
887 	if (error)
888 		return NULL;
889 
890 	if (VFS_I(ip)->i_generation != head->svh_gen) {
891 		xfs_irele(ip);
892 		return NULL;
893 	}
894 
895 	return ip;
896 }
897 
898 /* Vectored scrub implementation to reduce ioctl calls. */
899 int
xfs_ioc_scrubv_metadata(struct file * file,void __user * arg)900 xfs_ioc_scrubv_metadata(
901 	struct file			*file,
902 	void				__user *arg)
903 {
904 	struct xfs_scrub_vec_head	head;
905 	struct xfs_scrub_vec_head	__user *uhead = arg;
906 	struct xfs_scrub_vec		*vectors;
907 	struct xfs_scrub_vec		__user *uvectors;
908 	struct xfs_inode		*ip_in = XFS_I(file_inode(file));
909 	struct xfs_mount		*mp = ip_in->i_mount;
910 	struct xfs_inode		*handle_ip = NULL;
911 	struct xfs_scrub_vec		*v;
912 	size_t				vec_bytes;
913 	unsigned int			i;
914 	int				error = 0;
915 
916 	if (!capable(CAP_SYS_ADMIN))
917 		return -EPERM;
918 
919 	if (copy_from_user(&head, uhead, sizeof(head)))
920 		return -EFAULT;
921 
922 	if (head.svh_reserved)
923 		return -EINVAL;
924 	if (head.svh_flags & ~XFS_SCRUB_VEC_FLAGS_ALL)
925 		return -EINVAL;
926 	if (head.svh_nr == 0)
927 		return 0;
928 
929 	vec_bytes = array_size(head.svh_nr, sizeof(struct xfs_scrub_vec));
930 	if (vec_bytes > PAGE_SIZE)
931 		return -ENOMEM;
932 
933 	uvectors = u64_to_user_ptr(head.svh_vectors);
934 	vectors = memdup_user(uvectors, vec_bytes);
935 	if (IS_ERR(vectors))
936 		return PTR_ERR(vectors);
937 
938 	trace_xchk_scrubv_start(ip_in, &head);
939 
940 	for (i = 0, v = vectors; i < head.svh_nr; i++, v++) {
941 		if (v->sv_reserved) {
942 			error = -EINVAL;
943 			goto out_free;
944 		}
945 
946 		if (v->sv_type == XFS_SCRUB_TYPE_BARRIER &&
947 		    (v->sv_flags & ~XFS_SCRUB_FLAGS_OUT)) {
948 			error = -EINVAL;
949 			goto out_free;
950 		}
951 
952 		trace_xchk_scrubv_item(mp, &head, i, v);
953 	}
954 
955 	/*
956 	 * If the caller wants us to do a scrub-by-handle and the file used to
957 	 * call the ioctl is not the same file, load the incore inode and pin
958 	 * it across all the scrubv actions to avoid repeated UNTRUSTED
959 	 * lookups.  The reference is not passed to deeper layers of scrub
960 	 * because each scrubber gets to decide its own strategy and return
961 	 * values for getting an inode.
962 	 */
963 	if (head.svh_ino && head.svh_ino != ip_in->i_ino)
964 		handle_ip = xchk_scrubv_open_by_handle(mp, &head);
965 
966 	/* Run all the scrubbers. */
967 	for (i = 0, v = vectors; i < head.svh_nr; i++, v++) {
968 		struct xfs_scrub_metadata	sm = {
969 			.sm_type		= v->sv_type,
970 			.sm_flags		= v->sv_flags,
971 			.sm_ino			= head.svh_ino,
972 			.sm_gen			= head.svh_gen,
973 			.sm_agno		= head.svh_agno,
974 		};
975 
976 		if (v->sv_type == XFS_SCRUB_TYPE_BARRIER) {
977 			v->sv_ret = xfs_scrubv_check_barrier(mp, vectors, v);
978 			if (v->sv_ret) {
979 				trace_xchk_scrubv_barrier_fail(mp, &head, i, v);
980 				break;
981 			}
982 
983 			continue;
984 		}
985 
986 		v->sv_ret = xfs_scrub_metadata(file, &sm);
987 		v->sv_flags = sm.sm_flags;
988 
989 		trace_xchk_scrubv_outcome(mp, &head, i, v);
990 
991 		if (head.svh_rest_us) {
992 			ktime_t		expires;
993 
994 			expires = ktime_add_ns(ktime_get(),
995 					head.svh_rest_us * 1000);
996 			set_current_state(TASK_KILLABLE);
997 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
998 		}
999 
1000 		if (fatal_signal_pending(current)) {
1001 			error = -EINTR;
1002 			goto out_free;
1003 		}
1004 	}
1005 
1006 	if (copy_to_user(uvectors, vectors, vec_bytes) ||
1007 	    copy_to_user(uhead, &head, sizeof(head))) {
1008 		error = -EFAULT;
1009 		goto out_free;
1010 	}
1011 
1012 out_free:
1013 	if (handle_ip)
1014 		xfs_irele(handle_ip);
1015 	kfree(vectors);
1016 	return error;
1017 }
1018