1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file is the ADC part of the STM32 DFSDM driver
4 *
5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
7 */
8
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/export.h>
12 #include <linux/iio/adc/stm32-dfsdm-adc.h>
13 #include <linux/iio/backend.h>
14 #include <linux/iio/buffer.h>
15 #include <linux/iio/hw-consumer.h>
16 #include <linux/iio/sysfs.h>
17 #include <linux/iio/timer/stm32-lptim-trigger.h>
18 #include <linux/iio/timer/stm32-timer-trigger.h>
19 #include <linux/iio/trigger.h>
20 #include <linux/iio/trigger_consumer.h>
21 #include <linux/iio/triggered_buffer.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_platform.h>
26 #include <linux/platform_device.h>
27 #include <linux/regmap.h>
28 #include <linux/slab.h>
29
30 #include "stm32-dfsdm.h"
31
32 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
33
34 /* Conversion timeout */
35 #define DFSDM_TIMEOUT_US 100000
36 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
37
38 /* Oversampling attribute default */
39 #define DFSDM_DEFAULT_OVERSAMPLING 100
40
41 /* Oversampling max values */
42 #define DFSDM_MAX_INT_OVERSAMPLING 256
43 #define DFSDM_MAX_FL_OVERSAMPLING 1024
44
45 /* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
46 #define DFSDM_DATA_MAX BIT(30)
47 /*
48 * Data are output as two's complement data in a 24 bit field.
49 * Data from filters are in the range +/-2^(n-1)
50 * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
51 * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
52 * So, the resolution of samples from filter is actually limited to 23 bits
53 */
54 #define DFSDM_DATA_RES 24
55
56 /* Filter configuration */
57 #define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
58 DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
59 DFSDM_CR1_JSCAN_MASK)
60
61 enum sd_converter_type {
62 DFSDM_AUDIO,
63 DFSDM_IIO,
64 };
65
66 struct stm32_dfsdm_dev_data {
67 int type;
68 int (*init)(struct device *dev, struct iio_dev *indio_dev);
69 unsigned int num_channels;
70 const struct regmap_config *regmap_cfg;
71 };
72
73 struct stm32_dfsdm_adc {
74 struct stm32_dfsdm *dfsdm;
75 const struct stm32_dfsdm_dev_data *dev_data;
76 unsigned int fl_id;
77 unsigned int nconv;
78 unsigned long smask;
79
80 /* ADC specific */
81 unsigned int oversamp;
82 struct iio_hw_consumer *hwc;
83 struct iio_backend **backend;
84 struct completion completion;
85 u32 *buffer;
86
87 /* Audio specific */
88 unsigned int spi_freq; /* SPI bus clock frequency */
89 unsigned int sample_freq; /* Sample frequency after filter decimation */
90 int (*cb)(const void *data, size_t size, void *cb_priv);
91 void *cb_priv;
92
93 /* DMA */
94 u8 *rx_buf;
95 unsigned int bufi; /* Buffer current position */
96 unsigned int buf_sz; /* Buffer size */
97 struct dma_chan *dma_chan;
98 dma_addr_t dma_buf;
99 };
100
101 struct stm32_dfsdm_str2field {
102 const char *name;
103 unsigned int val;
104 };
105
106 /* DFSDM channel serial interface type */
107 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
108 { "SPI_R", 0 }, /* SPI with data on rising edge */
109 { "SPI_F", 1 }, /* SPI with data on falling edge */
110 { "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
111 { "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
112 { }
113 };
114
115 /* DFSDM channel clock source */
116 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
117 /* External SPI clock (CLKIN x) */
118 { "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
119 /* Internal SPI clock (CLKOUT) */
120 { "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
121 /* Internal SPI clock divided by 2 (falling edge) */
122 { "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
123 /* Internal SPI clock divided by 2 (falling edge) */
124 { "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
125 { }
126 };
127
stm32_dfsdm_str2val(const char * str,const struct stm32_dfsdm_str2field * list)128 static int stm32_dfsdm_str2val(const char *str,
129 const struct stm32_dfsdm_str2field *list)
130 {
131 const struct stm32_dfsdm_str2field *p = list;
132
133 for (p = list; p && p->name; p++)
134 if (!strcmp(p->name, str))
135 return p->val;
136
137 return -EINVAL;
138 }
139
140 /**
141 * struct stm32_dfsdm_trig_info - DFSDM trigger info
142 * @name: name of the trigger, corresponding to its source
143 * @jextsel: trigger signal selection
144 */
145 struct stm32_dfsdm_trig_info {
146 const char *name;
147 unsigned int jextsel;
148 };
149
150 /* hardware injected trigger enable, edge selection */
151 enum stm32_dfsdm_jexten {
152 STM32_DFSDM_JEXTEN_DISABLED,
153 STM32_DFSDM_JEXTEN_RISING_EDGE,
154 STM32_DFSDM_JEXTEN_FALLING_EDGE,
155 STM32_DFSDM_EXTEN_BOTH_EDGES,
156 };
157
158 static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
159 { TIM1_TRGO, 0 },
160 { TIM1_TRGO2, 1 },
161 { TIM8_TRGO, 2 },
162 { TIM8_TRGO2, 3 },
163 { TIM3_TRGO, 4 },
164 { TIM4_TRGO, 5 },
165 { TIM16_OC1, 6 },
166 { TIM6_TRGO, 7 },
167 { TIM7_TRGO, 8 },
168 { LPTIM1_OUT, 26 },
169 { LPTIM2_OUT, 27 },
170 { LPTIM3_OUT, 28 },
171 { }
172 };
173
stm32_dfsdm_get_jextsel(struct iio_dev * indio_dev,struct iio_trigger * trig)174 static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
175 struct iio_trigger *trig)
176 {
177 int i;
178
179 /* lookup triggers registered by stm32 timer trigger driver */
180 for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
181 /**
182 * Checking both stm32 timer trigger type and trig name
183 * should be safe against arbitrary trigger names.
184 */
185 if ((is_stm32_timer_trigger(trig) ||
186 is_stm32_lptim_trigger(trig)) &&
187 !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
188 return stm32_dfsdm_trigs[i].jextsel;
189 }
190 }
191
192 return -EINVAL;
193 }
194
stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter * fl,unsigned int fast,unsigned int oversamp)195 static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
196 unsigned int fast, unsigned int oversamp)
197 {
198 unsigned int i, d, fosr, iosr;
199 u64 res, max;
200 int bits, shift;
201 unsigned int m = 1; /* multiplication factor */
202 unsigned int p = fl->ford; /* filter order (ford) */
203 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
204
205 pr_debug("Requested oversampling: %d\n", oversamp);
206 /*
207 * This function tries to compute filter oversampling and integrator
208 * oversampling, base on oversampling ratio requested by user.
209 *
210 * Decimation d depends on the filter order and the oversampling ratios.
211 * ford: filter order
212 * fosr: filter over sampling ratio
213 * iosr: integrator over sampling ratio
214 */
215 if (fl->ford == DFSDM_FASTSINC_ORDER) {
216 m = 2;
217 p = 2;
218 }
219
220 /*
221 * Look for filter and integrator oversampling ratios which allows
222 * to maximize data output resolution.
223 */
224 for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
225 for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
226 if (fast)
227 d = fosr * iosr;
228 else if (fl->ford == DFSDM_FASTSINC_ORDER)
229 d = fosr * (iosr + 3) + 2;
230 else
231 d = fosr * (iosr - 1 + p) + p;
232
233 if (d > oversamp)
234 break;
235 else if (d != oversamp)
236 continue;
237 /*
238 * Check resolution (limited to signed 32 bits)
239 * res <= 2^31
240 * Sincx filters:
241 * res = m * fosr^p x iosr (with m=1, p=ford)
242 * FastSinc filter
243 * res = m * fosr^p x iosr (with m=2, p=2)
244 */
245 res = fosr;
246 for (i = p - 1; i > 0; i--) {
247 res = res * (u64)fosr;
248 if (res > DFSDM_DATA_MAX)
249 break;
250 }
251 if (res > DFSDM_DATA_MAX)
252 continue;
253
254 res = res * (u64)m * (u64)iosr;
255 if (res > DFSDM_DATA_MAX)
256 continue;
257
258 if (res >= flo->res) {
259 flo->res = res;
260 flo->fosr = fosr;
261 flo->iosr = iosr;
262
263 bits = fls(flo->res);
264 /* 8 LBSs in data register contain chan info */
265 max = flo->res << 8;
266
267 /* if resolution is not a power of two */
268 if (flo->res > BIT(bits - 1))
269 bits++;
270 else
271 max--;
272
273 shift = DFSDM_DATA_RES - bits;
274 /*
275 * Compute right/left shift
276 * Right shift is performed by hardware
277 * when transferring samples to data register.
278 * Left shift is done by software on buffer
279 */
280 if (shift > 0) {
281 /* Resolution is lower than 24 bits */
282 flo->rshift = 0;
283 flo->lshift = shift;
284 } else {
285 /*
286 * If resolution is 24 bits or more,
287 * max positive value may be ambiguous
288 * (equal to max negative value as sign
289 * bit is dropped).
290 * Reduce resolution to 23 bits (rshift)
291 * to keep the sign on bit 23 and treat
292 * saturation before rescaling on 24
293 * bits (lshift).
294 */
295 flo->rshift = 1 - shift;
296 flo->lshift = 1;
297 max >>= flo->rshift;
298 }
299 flo->max = (s32)max;
300 flo->bits = bits;
301
302 pr_debug("fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
303 fast, flo->fosr, flo->iosr,
304 flo->res, bits, flo->rshift,
305 flo->lshift);
306 }
307 }
308 }
309
310 if (!flo->res)
311 return -EINVAL;
312
313 return 0;
314 }
315
stm32_dfsdm_compute_all_osrs(struct iio_dev * indio_dev,unsigned int oversamp)316 static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
317 unsigned int oversamp)
318 {
319 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
320 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
321 int ret0, ret1;
322
323 memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
324 memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
325
326 ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
327 ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
328 if (ret0 < 0 && ret1 < 0) {
329 dev_err(&indio_dev->dev,
330 "Filter parameters not found: errors %d/%d\n",
331 ret0, ret1);
332 return -EINVAL;
333 }
334
335 return 0;
336 }
337
stm32_dfsdm_start_channel(struct iio_dev * indio_dev)338 static int stm32_dfsdm_start_channel(struct iio_dev *indio_dev)
339 {
340 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
341 struct regmap *regmap = adc->dfsdm->regmap;
342 const struct iio_chan_spec *chan;
343 unsigned int bit;
344 int ret;
345
346 for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
347 chan = indio_dev->channels + bit;
348 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
349 DFSDM_CHCFGR1_CHEN_MASK,
350 DFSDM_CHCFGR1_CHEN(1));
351 if (ret < 0)
352 return ret;
353 }
354
355 return 0;
356 }
357
stm32_dfsdm_stop_channel(struct iio_dev * indio_dev)358 static void stm32_dfsdm_stop_channel(struct iio_dev *indio_dev)
359 {
360 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
361 struct regmap *regmap = adc->dfsdm->regmap;
362 const struct iio_chan_spec *chan;
363 unsigned int bit;
364
365 for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
366 chan = indio_dev->channels + bit;
367 regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
368 DFSDM_CHCFGR1_CHEN_MASK,
369 DFSDM_CHCFGR1_CHEN(0));
370 }
371 }
372
stm32_dfsdm_chan_configure(struct stm32_dfsdm * dfsdm,struct stm32_dfsdm_channel * ch)373 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
374 struct stm32_dfsdm_channel *ch)
375 {
376 unsigned int id = ch->id;
377 struct regmap *regmap = dfsdm->regmap;
378 int ret;
379
380 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
381 DFSDM_CHCFGR1_SITP_MASK,
382 DFSDM_CHCFGR1_SITP(ch->type));
383 if (ret < 0)
384 return ret;
385 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
386 DFSDM_CHCFGR1_SPICKSEL_MASK,
387 DFSDM_CHCFGR1_SPICKSEL(ch->src));
388 if (ret < 0)
389 return ret;
390 return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
391 DFSDM_CHCFGR1_CHINSEL_MASK,
392 DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
393 }
394
stm32_dfsdm_start_filter(struct stm32_dfsdm_adc * adc,unsigned int fl_id,struct iio_trigger * trig)395 static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
396 unsigned int fl_id,
397 struct iio_trigger *trig)
398 {
399 struct stm32_dfsdm *dfsdm = adc->dfsdm;
400 int ret;
401
402 /* Enable filter */
403 ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
404 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
405 if (ret < 0)
406 return ret;
407
408 /* Nothing more to do for injected (scan mode/triggered) conversions */
409 if (adc->nconv > 1 || trig)
410 return 0;
411
412 /* Software start (single or continuous) regular conversion */
413 return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
414 DFSDM_CR1_RSWSTART_MASK,
415 DFSDM_CR1_RSWSTART(1));
416 }
417
stm32_dfsdm_stop_filter(struct stm32_dfsdm * dfsdm,unsigned int fl_id)418 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
419 unsigned int fl_id)
420 {
421 /* Disable conversion */
422 regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
423 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
424 }
425
stm32_dfsdm_filter_set_trig(struct iio_dev * indio_dev,unsigned int fl_id,struct iio_trigger * trig)426 static int stm32_dfsdm_filter_set_trig(struct iio_dev *indio_dev,
427 unsigned int fl_id,
428 struct iio_trigger *trig)
429 {
430 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
431 struct regmap *regmap = adc->dfsdm->regmap;
432 u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
433 int ret;
434
435 if (trig) {
436 ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
437 if (ret < 0)
438 return ret;
439
440 /* set trigger source and polarity (default to rising edge) */
441 jextsel = ret;
442 jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
443 }
444
445 ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
446 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
447 DFSDM_CR1_JEXTSEL(jextsel) |
448 DFSDM_CR1_JEXTEN(jexten));
449 if (ret < 0)
450 return ret;
451
452 return 0;
453 }
454
stm32_dfsdm_channels_configure(struct iio_dev * indio_dev,unsigned int fl_id,struct iio_trigger * trig)455 static int stm32_dfsdm_channels_configure(struct iio_dev *indio_dev,
456 unsigned int fl_id,
457 struct iio_trigger *trig)
458 {
459 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
460 struct regmap *regmap = adc->dfsdm->regmap;
461 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
462 struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
463 const struct iio_chan_spec *chan;
464 unsigned int bit;
465 int ret;
466
467 fl->fast = 0;
468
469 /*
470 * In continuous mode, use fast mode configuration,
471 * if it provides a better resolution.
472 */
473 if (adc->nconv == 1 && !trig && iio_buffer_enabled(indio_dev)) {
474 if (fl->flo[1].res >= fl->flo[0].res) {
475 fl->fast = 1;
476 flo = &fl->flo[1];
477 }
478 }
479
480 if (!flo->res)
481 return -EINVAL;
482
483 dev_dbg(&indio_dev->dev, "Samples actual resolution: %d bits",
484 min(flo->bits, (u32)DFSDM_DATA_RES - 1));
485
486 for_each_set_bit(bit, &adc->smask,
487 sizeof(adc->smask) * BITS_PER_BYTE) {
488 chan = indio_dev->channels + bit;
489
490 ret = regmap_update_bits(regmap,
491 DFSDM_CHCFGR2(chan->channel),
492 DFSDM_CHCFGR2_DTRBS_MASK,
493 DFSDM_CHCFGR2_DTRBS(flo->rshift));
494 if (ret)
495 return ret;
496 }
497
498 return 0;
499 }
500
stm32_dfsdm_filter_configure(struct iio_dev * indio_dev,unsigned int fl_id,struct iio_trigger * trig)501 static int stm32_dfsdm_filter_configure(struct iio_dev *indio_dev,
502 unsigned int fl_id,
503 struct iio_trigger *trig)
504 {
505 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
506 struct regmap *regmap = adc->dfsdm->regmap;
507 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
508 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
509 u32 cr1;
510 const struct iio_chan_spec *chan;
511 unsigned int bit, jchg = 0;
512 int ret;
513
514 /* Average integrator oversampling */
515 ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
516 DFSDM_FCR_IOSR(flo->iosr - 1));
517 if (ret)
518 return ret;
519
520 /* Filter order and Oversampling */
521 ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
522 DFSDM_FCR_FOSR(flo->fosr - 1));
523 if (ret)
524 return ret;
525
526 ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
527 DFSDM_FCR_FORD(fl->ford));
528 if (ret)
529 return ret;
530
531 ret = stm32_dfsdm_filter_set_trig(indio_dev, fl_id, trig);
532 if (ret)
533 return ret;
534
535 ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
536 DFSDM_CR1_FAST_MASK,
537 DFSDM_CR1_FAST(fl->fast));
538 if (ret)
539 return ret;
540
541 /*
542 * DFSDM modes configuration W.R.T audio/iio type modes
543 * ----------------------------------------------------------------
544 * Modes | regular | regular | injected | injected |
545 * | | continuous | | + scan |
546 * --------------|---------|--------------|----------|------------|
547 * single conv | x | | | |
548 * (1 chan) | | | | |
549 * --------------|---------|--------------|----------|------------|
550 * 1 Audio chan | | sample freq | | |
551 * | | or sync_mode | | |
552 * --------------|---------|--------------|----------|------------|
553 * 1 IIO chan | | sample freq | trigger | |
554 * | | or sync_mode | | |
555 * --------------|---------|--------------|----------|------------|
556 * 2+ IIO chans | | | | trigger or |
557 * | | | | sync_mode |
558 * ----------------------------------------------------------------
559 */
560 if (adc->nconv == 1 && !trig) {
561 bit = __ffs(adc->smask);
562 chan = indio_dev->channels + bit;
563
564 /* Use regular conversion for single channel without trigger */
565 cr1 = DFSDM_CR1_RCH(chan->channel);
566
567 /* Continuous conversions triggered by SPI clk in buffer mode */
568 if (iio_buffer_enabled(indio_dev))
569 cr1 |= DFSDM_CR1_RCONT(1);
570
571 cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
572 } else {
573 /* Use injected conversion for multiple channels */
574 for_each_set_bit(bit, &adc->smask,
575 sizeof(adc->smask) * BITS_PER_BYTE) {
576 chan = indio_dev->channels + bit;
577 jchg |= BIT(chan->channel);
578 }
579 ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
580 if (ret < 0)
581 return ret;
582
583 /* Use scan mode for multiple channels */
584 cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
585
586 /*
587 * Continuous conversions not supported in injected mode,
588 * either use:
589 * - conversions in sync with filter 0
590 * - triggered conversions
591 */
592 if (!fl->sync_mode && !trig)
593 return -EINVAL;
594 cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
595 }
596
597 return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
598 cr1);
599 }
600
stm32_dfsdm_channel_parse_of(struct stm32_dfsdm * dfsdm,struct iio_dev * indio_dev,struct iio_chan_spec * ch)601 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
602 struct iio_dev *indio_dev,
603 struct iio_chan_spec *ch)
604 {
605 struct stm32_dfsdm_channel *df_ch;
606 const char *of_str;
607 int chan_idx = ch->scan_index;
608 int ret, val;
609
610 ret = of_property_read_u32_index(indio_dev->dev.of_node,
611 "st,adc-channels", chan_idx,
612 &ch->channel);
613 if (ret < 0) {
614 dev_err(&indio_dev->dev,
615 " Error parsing 'st,adc-channels' for idx %d\n",
616 chan_idx);
617 return ret;
618 }
619 if (ch->channel >= dfsdm->num_chs) {
620 dev_err(&indio_dev->dev,
621 " Error bad channel number %d (max = %d)\n",
622 ch->channel, dfsdm->num_chs);
623 return -EINVAL;
624 }
625
626 ret = of_property_read_string_index(indio_dev->dev.of_node,
627 "st,adc-channel-names", chan_idx,
628 &ch->datasheet_name);
629 if (ret < 0) {
630 dev_err(&indio_dev->dev,
631 " Error parsing 'st,adc-channel-names' for idx %d\n",
632 chan_idx);
633 return ret;
634 }
635
636 df_ch = &dfsdm->ch_list[ch->channel];
637 df_ch->id = ch->channel;
638
639 ret = of_property_read_string_index(indio_dev->dev.of_node,
640 "st,adc-channel-types", chan_idx,
641 &of_str);
642 if (!ret) {
643 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
644 if (val < 0)
645 return val;
646 } else {
647 val = 0;
648 }
649 df_ch->type = val;
650
651 ret = of_property_read_string_index(indio_dev->dev.of_node,
652 "st,adc-channel-clk-src", chan_idx,
653 &of_str);
654 if (!ret) {
655 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
656 if (val < 0)
657 return val;
658 } else {
659 val = 0;
660 }
661 df_ch->src = val;
662
663 ret = of_property_read_u32_index(indio_dev->dev.of_node,
664 "st,adc-alt-channel", chan_idx,
665 &df_ch->alt_si);
666 if (ret < 0)
667 df_ch->alt_si = 0;
668
669 return 0;
670 }
671
stm32_dfsdm_generic_channel_parse_of(struct stm32_dfsdm * dfsdm,struct iio_dev * indio_dev,struct iio_chan_spec * ch,struct fwnode_handle * node)672 static int stm32_dfsdm_generic_channel_parse_of(struct stm32_dfsdm *dfsdm,
673 struct iio_dev *indio_dev,
674 struct iio_chan_spec *ch,
675 struct fwnode_handle *node)
676 {
677 struct stm32_dfsdm_channel *df_ch;
678 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
679 struct iio_backend *backend;
680 const char *of_str;
681 int ret, val;
682
683 ret = fwnode_property_read_u32(node, "reg", &ch->channel);
684 if (ret < 0) {
685 dev_err(&indio_dev->dev, "Missing channel index %d\n", ret);
686 return ret;
687 }
688
689 if (ch->channel >= dfsdm->num_chs) {
690 dev_err(&indio_dev->dev, " Error bad channel number %d (max = %d)\n",
691 ch->channel, dfsdm->num_chs);
692 return -EINVAL;
693 }
694
695 if (fwnode_property_present(node, "label")) {
696 /* label is optional */
697 ret = fwnode_property_read_string(node, "label", &ch->datasheet_name);
698 if (ret < 0) {
699 dev_err(&indio_dev->dev,
700 " Error parsing 'label' for idx %d\n", ch->channel);
701 return ret;
702 }
703 }
704
705 df_ch = &dfsdm->ch_list[ch->channel];
706 df_ch->id = ch->channel;
707
708 ret = fwnode_property_read_string(node, "st,adc-channel-type", &of_str);
709 if (!ret) {
710 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
711 if (val < 0)
712 return val;
713 } else {
714 val = 0;
715 }
716 df_ch->type = val;
717
718 ret = fwnode_property_read_string(node, "st,adc-channel-clk-src", &of_str);
719 if (!ret) {
720 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
721 if (val < 0)
722 return val;
723 } else {
724 val = 0;
725 }
726 df_ch->src = val;
727
728 if (fwnode_property_present(node, "st,adc-alt-channel"))
729 df_ch->alt_si = 1;
730
731 if (adc->dev_data->type == DFSDM_IIO) {
732 backend = devm_iio_backend_fwnode_get(&indio_dev->dev, NULL, node);
733 if (IS_ERR(backend))
734 return dev_err_probe(&indio_dev->dev, PTR_ERR(backend),
735 "Failed to get backend\n");
736 adc->backend[ch->scan_index] = backend;
737 }
738
739 return 0;
740 }
741
dfsdm_adc_audio_get_spiclk(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)742 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
743 uintptr_t priv,
744 const struct iio_chan_spec *chan,
745 char *buf)
746 {
747 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
748
749 return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
750 }
751
dfsdm_adc_set_samp_freq(struct iio_dev * indio_dev,unsigned int sample_freq,unsigned int spi_freq)752 static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
753 unsigned int sample_freq,
754 unsigned int spi_freq)
755 {
756 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
757 unsigned int oversamp;
758 int ret;
759
760 oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
761 if (spi_freq % sample_freq)
762 dev_dbg(&indio_dev->dev,
763 "Rate not accurate. requested (%u), actual (%u)\n",
764 sample_freq, spi_freq / oversamp);
765
766 ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
767 if (ret < 0)
768 return ret;
769
770 adc->sample_freq = spi_freq / oversamp;
771 adc->oversamp = oversamp;
772
773 return 0;
774 }
775
dfsdm_adc_audio_set_spiclk(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,const char * buf,size_t len)776 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
777 uintptr_t priv,
778 const struct iio_chan_spec *chan,
779 const char *buf, size_t len)
780 {
781 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
782 struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
783 unsigned int sample_freq = adc->sample_freq;
784 unsigned int spi_freq;
785 int ret;
786
787 dev_err(&indio_dev->dev, "enter %s\n", __func__);
788 /* If DFSDM is master on SPI, SPI freq can not be updated */
789 if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
790 return -EPERM;
791
792 ret = kstrtoint(buf, 0, &spi_freq);
793 if (ret)
794 return ret;
795
796 if (!spi_freq)
797 return -EINVAL;
798
799 if (sample_freq) {
800 ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
801 if (ret < 0)
802 return ret;
803 }
804 adc->spi_freq = spi_freq;
805
806 return len;
807 }
808
stm32_dfsdm_start_conv(struct iio_dev * indio_dev,struct iio_trigger * trig)809 static int stm32_dfsdm_start_conv(struct iio_dev *indio_dev,
810 struct iio_trigger *trig)
811 {
812 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
813 struct regmap *regmap = adc->dfsdm->regmap;
814 int ret;
815
816 ret = stm32_dfsdm_channels_configure(indio_dev, adc->fl_id, trig);
817 if (ret < 0)
818 return ret;
819
820 ret = stm32_dfsdm_start_channel(indio_dev);
821 if (ret < 0)
822 return ret;
823
824 ret = stm32_dfsdm_filter_configure(indio_dev, adc->fl_id, trig);
825 if (ret < 0)
826 goto stop_channels;
827
828 ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
829 if (ret < 0)
830 goto filter_unconfigure;
831
832 return 0;
833
834 filter_unconfigure:
835 regmap_clear_bits(regmap, DFSDM_CR1(adc->fl_id), DFSDM_CR1_CFG_MASK);
836 stop_channels:
837 stm32_dfsdm_stop_channel(indio_dev);
838
839 return ret;
840 }
841
stm32_dfsdm_stop_conv(struct iio_dev * indio_dev)842 static void stm32_dfsdm_stop_conv(struct iio_dev *indio_dev)
843 {
844 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
845 struct regmap *regmap = adc->dfsdm->regmap;
846
847 stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
848
849 regmap_clear_bits(regmap, DFSDM_CR1(adc->fl_id), DFSDM_CR1_CFG_MASK);
850
851 stm32_dfsdm_stop_channel(indio_dev);
852 }
853
stm32_dfsdm_set_watermark(struct iio_dev * indio_dev,unsigned int val)854 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
855 unsigned int val)
856 {
857 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
858 unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
859 unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
860
861 /*
862 * DMA cyclic transfers are used, buffer is split into two periods.
863 * There should be :
864 * - always one buffer (period) DMA is working on
865 * - one buffer (period) driver pushed to ASoC side.
866 */
867 watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
868 adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
869
870 return 0;
871 }
872
stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc * adc)873 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
874 {
875 struct dma_tx_state state;
876 enum dma_status status;
877
878 status = dmaengine_tx_status(adc->dma_chan,
879 adc->dma_chan->cookie,
880 &state);
881 if (status == DMA_IN_PROGRESS) {
882 /* Residue is size in bytes from end of buffer */
883 unsigned int i = adc->buf_sz - state.residue;
884 unsigned int size;
885
886 /* Return available bytes */
887 if (i >= adc->bufi)
888 size = i - adc->bufi;
889 else
890 size = adc->buf_sz + i - adc->bufi;
891
892 return size;
893 }
894
895 return 0;
896 }
897
stm32_dfsdm_process_data(struct stm32_dfsdm_adc * adc,s32 * buffer)898 static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
899 s32 *buffer)
900 {
901 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
902 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
903 unsigned int i = adc->nconv;
904 s32 *ptr = buffer;
905
906 while (i--) {
907 /* Mask 8 LSB that contains the channel ID */
908 *ptr &= 0xFFFFFF00;
909 /* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
910 if (*ptr > flo->max)
911 *ptr -= 1;
912 /*
913 * Samples from filter are retrieved with 23 bits resolution
914 * or less. Shift left to align MSB on 24 bits.
915 */
916 *ptr <<= flo->lshift;
917
918 ptr++;
919 }
920 }
921
stm32_dfsdm_dma_buffer_done(void * data)922 static void stm32_dfsdm_dma_buffer_done(void *data)
923 {
924 struct iio_dev *indio_dev = data;
925 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
926 int available = stm32_dfsdm_adc_dma_residue(adc);
927 size_t old_pos;
928
929 /*
930 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
931 * offers only an interface to push data samples per samples.
932 * For this reason IIO buffer interface is not used and interface is
933 * bypassed using a private callback registered by ASoC.
934 * This should be a temporary solution waiting a cyclic DMA engine
935 * support in IIO.
936 */
937
938 dev_dbg(&indio_dev->dev, "pos = %d, available = %d\n",
939 adc->bufi, available);
940 old_pos = adc->bufi;
941
942 while (available >= indio_dev->scan_bytes) {
943 s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
944
945 stm32_dfsdm_process_data(adc, buffer);
946
947 available -= indio_dev->scan_bytes;
948 adc->bufi += indio_dev->scan_bytes;
949 if (adc->bufi >= adc->buf_sz) {
950 if (adc->cb)
951 adc->cb(&adc->rx_buf[old_pos],
952 adc->buf_sz - old_pos, adc->cb_priv);
953 adc->bufi = 0;
954 old_pos = 0;
955 }
956 /*
957 * In DMA mode the trigger services of IIO are not used
958 * (e.g. no call to iio_trigger_poll).
959 * Calling irq handler associated to the hardware trigger is not
960 * relevant as the conversions have already been done. Data
961 * transfers are performed directly in DMA callback instead.
962 * This implementation avoids to call trigger irq handler that
963 * may sleep, in an atomic context (DMA irq handler context).
964 */
965 if (adc->dev_data->type == DFSDM_IIO)
966 iio_push_to_buffers(indio_dev, buffer);
967 }
968 if (adc->cb)
969 adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
970 adc->cb_priv);
971 }
972
stm32_dfsdm_adc_dma_start(struct iio_dev * indio_dev)973 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
974 {
975 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
976 /*
977 * The DFSDM supports half-word transfers. However, for 16 bits record,
978 * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
979 * shift is required.
980 */
981 struct dma_slave_config config = {
982 .src_addr = (dma_addr_t)adc->dfsdm->phys_base,
983 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
984 };
985 struct dma_async_tx_descriptor *desc;
986 dma_cookie_t cookie;
987 int ret;
988
989 if (!adc->dma_chan)
990 return -EINVAL;
991
992 dev_dbg(&indio_dev->dev, "size=%d watermark=%d\n",
993 adc->buf_sz, adc->buf_sz / 2);
994
995 if (adc->nconv == 1 && !indio_dev->trig)
996 config.src_addr += DFSDM_RDATAR(adc->fl_id);
997 else
998 config.src_addr += DFSDM_JDATAR(adc->fl_id);
999 ret = dmaengine_slave_config(adc->dma_chan, &config);
1000 if (ret)
1001 return ret;
1002
1003 /* Prepare a DMA cyclic transaction */
1004 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1005 adc->dma_buf,
1006 adc->buf_sz, adc->buf_sz / 2,
1007 DMA_DEV_TO_MEM,
1008 DMA_PREP_INTERRUPT);
1009 if (!desc)
1010 return -EBUSY;
1011
1012 desc->callback = stm32_dfsdm_dma_buffer_done;
1013 desc->callback_param = indio_dev;
1014
1015 cookie = dmaengine_submit(desc);
1016 ret = dma_submit_error(cookie);
1017 if (ret)
1018 goto err_stop_dma;
1019
1020 /* Issue pending DMA requests */
1021 dma_async_issue_pending(adc->dma_chan);
1022
1023 if (adc->nconv == 1 && !indio_dev->trig) {
1024 /* Enable regular DMA transfer*/
1025 ret = regmap_set_bits(adc->dfsdm->regmap,
1026 DFSDM_CR1(adc->fl_id),
1027 DFSDM_CR1_RDMAEN_MASK);
1028 } else {
1029 /* Enable injected DMA transfer*/
1030 ret = regmap_set_bits(adc->dfsdm->regmap,
1031 DFSDM_CR1(adc->fl_id),
1032 DFSDM_CR1_JDMAEN_MASK);
1033 }
1034
1035 if (ret < 0)
1036 goto err_stop_dma;
1037
1038 return 0;
1039
1040 err_stop_dma:
1041 dmaengine_terminate_all(adc->dma_chan);
1042
1043 return ret;
1044 }
1045
stm32_dfsdm_adc_dma_stop(struct iio_dev * indio_dev)1046 static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
1047 {
1048 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1049
1050 if (!adc->dma_chan)
1051 return;
1052
1053 regmap_clear_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
1054 DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK);
1055 dmaengine_terminate_all(adc->dma_chan);
1056 }
1057
stm32_dfsdm_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * scan_mask)1058 static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
1059 const unsigned long *scan_mask)
1060 {
1061 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1062
1063 adc->nconv = bitmap_weight(scan_mask, iio_get_masklength(indio_dev));
1064 adc->smask = *scan_mask;
1065
1066 dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
1067
1068 return 0;
1069 }
1070
stm32_dfsdm_postenable(struct iio_dev * indio_dev)1071 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
1072 {
1073 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1074 int i = 0;
1075 int ret;
1076
1077 /* Reset adc buffer index */
1078 adc->bufi = 0;
1079
1080 if (adc->hwc) {
1081 ret = iio_hw_consumer_enable(adc->hwc);
1082 if (ret < 0)
1083 return ret;
1084 }
1085
1086 if (adc->backend) {
1087 while (adc->backend[i]) {
1088 ret = iio_backend_enable(adc->backend[i]);
1089 if (ret < 0)
1090 return ret;
1091 i++;
1092 }
1093 }
1094
1095 ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1096 if (ret < 0)
1097 goto err_stop_hwc;
1098
1099 ret = stm32_dfsdm_adc_dma_start(indio_dev);
1100 if (ret) {
1101 dev_err(&indio_dev->dev, "Can't start DMA\n");
1102 goto stop_dfsdm;
1103 }
1104
1105 ret = stm32_dfsdm_start_conv(indio_dev, indio_dev->trig);
1106 if (ret) {
1107 dev_err(&indio_dev->dev, "Can't start conversion\n");
1108 goto err_stop_dma;
1109 }
1110
1111 return 0;
1112
1113 err_stop_dma:
1114 stm32_dfsdm_adc_dma_stop(indio_dev);
1115 stop_dfsdm:
1116 stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1117 err_stop_hwc:
1118 if (adc->hwc)
1119 iio_hw_consumer_disable(adc->hwc);
1120
1121 return ret;
1122 }
1123
stm32_dfsdm_predisable(struct iio_dev * indio_dev)1124 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1125 {
1126 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1127 int i = 0;
1128
1129 stm32_dfsdm_stop_conv(indio_dev);
1130
1131 stm32_dfsdm_adc_dma_stop(indio_dev);
1132
1133 stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1134
1135 if (adc->backend) {
1136 while (adc->backend[i]) {
1137 iio_backend_disable(adc->backend[i]);
1138 i++;
1139 }
1140 }
1141
1142 if (adc->hwc)
1143 iio_hw_consumer_disable(adc->hwc);
1144
1145 return 0;
1146 }
1147
1148 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
1149 .postenable = &stm32_dfsdm_postenable,
1150 .predisable = &stm32_dfsdm_predisable,
1151 };
1152
1153 /**
1154 * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
1155 * DMA transfer period is achieved.
1156 *
1157 * @iio_dev: Handle to IIO device.
1158 * @cb: Pointer to callback function:
1159 * - data: pointer to data buffer
1160 * - size: size in byte of the data buffer
1161 * - private: pointer to consumer private structure.
1162 * @private: Pointer to consumer private structure.
1163 */
stm32_dfsdm_get_buff_cb(struct iio_dev * iio_dev,int (* cb)(const void * data,size_t size,void * private),void * private)1164 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
1165 int (*cb)(const void *data, size_t size,
1166 void *private),
1167 void *private)
1168 {
1169 struct stm32_dfsdm_adc *adc;
1170
1171 if (!iio_dev)
1172 return -EINVAL;
1173 adc = iio_priv(iio_dev);
1174
1175 adc->cb = cb;
1176 adc->cb_priv = private;
1177
1178 return 0;
1179 }
1180 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
1181
1182 /**
1183 * stm32_dfsdm_release_buff_cb - unregister buffer callback
1184 *
1185 * @iio_dev: Handle to IIO device.
1186 */
stm32_dfsdm_release_buff_cb(struct iio_dev * iio_dev)1187 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1188 {
1189 struct stm32_dfsdm_adc *adc;
1190
1191 if (!iio_dev)
1192 return -EINVAL;
1193 adc = iio_priv(iio_dev);
1194
1195 adc->cb = NULL;
1196 adc->cb_priv = NULL;
1197
1198 return 0;
1199 }
1200 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1201
stm32_dfsdm_single_conv(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int * res)1202 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1203 const struct iio_chan_spec *chan, int *res)
1204 {
1205 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1206 long time_left;
1207 int ret;
1208
1209 reinit_completion(&adc->completion);
1210
1211 adc->buffer = res;
1212
1213 ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1214 if (ret < 0)
1215 return ret;
1216
1217 ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1218 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1219 if (ret < 0)
1220 goto stop_dfsdm;
1221
1222 adc->nconv = 1;
1223 adc->smask = BIT(chan->scan_index);
1224 ret = stm32_dfsdm_start_conv(indio_dev, NULL);
1225 if (ret < 0) {
1226 regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1227 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1228 goto stop_dfsdm;
1229 }
1230
1231 time_left = wait_for_completion_interruptible_timeout(&adc->completion,
1232 DFSDM_TIMEOUT);
1233
1234 /* Mask IRQ for regular conversion achievement*/
1235 regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1236 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1237
1238 if (time_left == 0)
1239 ret = -ETIMEDOUT;
1240 else if (time_left < 0)
1241 ret = time_left;
1242 else
1243 ret = IIO_VAL_INT;
1244
1245 stm32_dfsdm_stop_conv(indio_dev);
1246
1247 stm32_dfsdm_process_data(adc, res);
1248
1249 stop_dfsdm:
1250 stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1251
1252 return ret;
1253 }
1254
stm32_dfsdm_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)1255 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1256 struct iio_chan_spec const *chan,
1257 int val, int val2, long mask)
1258 {
1259 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1260 struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1261 unsigned int spi_freq;
1262 int ret = -EINVAL;
1263
1264 switch (ch->src) {
1265 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1266 spi_freq = adc->dfsdm->spi_master_freq;
1267 break;
1268 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1269 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1270 spi_freq = adc->dfsdm->spi_master_freq / 2;
1271 break;
1272 default:
1273 spi_freq = adc->spi_freq;
1274 }
1275
1276 switch (mask) {
1277 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1278 if (!iio_device_claim_direct(indio_dev))
1279 return -EBUSY;
1280
1281 ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
1282 if (!ret) {
1283 dev_dbg(&indio_dev->dev,
1284 "Sampling rate changed from (%u) to (%u)\n",
1285 adc->sample_freq, spi_freq / val);
1286 adc->oversamp = val;
1287 adc->sample_freq = spi_freq / val;
1288 }
1289 iio_device_release_direct(indio_dev);
1290 return ret;
1291
1292 case IIO_CHAN_INFO_SAMP_FREQ:
1293 if (!val)
1294 return -EINVAL;
1295
1296 if (!iio_device_claim_direct(indio_dev))
1297 return -EBUSY;
1298
1299 ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
1300 iio_device_release_direct(indio_dev);
1301 return ret;
1302 }
1303
1304 return -EINVAL;
1305 }
1306
__stm32_dfsdm_read_info_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val)1307 static int __stm32_dfsdm_read_info_raw(struct iio_dev *indio_dev,
1308 struct iio_chan_spec const *chan,
1309 int *val)
1310 {
1311 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1312 int ret = 0;
1313
1314 if (adc->hwc)
1315 ret = iio_hw_consumer_enable(adc->hwc);
1316 if (adc->backend)
1317 ret = iio_backend_enable(adc->backend[chan->scan_index]);
1318 if (ret < 0) {
1319 dev_err(&indio_dev->dev,
1320 "%s: IIO enable failed (channel %d)\n",
1321 __func__, chan->channel);
1322 return ret;
1323 }
1324 ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1325 if (adc->hwc)
1326 iio_hw_consumer_disable(adc->hwc);
1327 if (adc->backend)
1328 iio_backend_disable(adc->backend[chan->scan_index]);
1329 if (ret < 0) {
1330 dev_err(&indio_dev->dev,
1331 "%s: Conversion failed (channel %d)\n",
1332 __func__, chan->channel);
1333 return ret;
1334 }
1335
1336 return 0;
1337 }
1338
stm32_dfsdm_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)1339 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1340 struct iio_chan_spec const *chan, int *val,
1341 int *val2, long mask)
1342 {
1343 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1344
1345 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
1346 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
1347 u32 max = flo->max << (flo->lshift - chan->scan_type.shift);
1348 int idx = chan->scan_index;
1349 int ret;
1350
1351 if (flo->lshift < chan->scan_type.shift)
1352 max = flo->max >> (chan->scan_type.shift - flo->lshift);
1353
1354 switch (mask) {
1355 case IIO_CHAN_INFO_RAW:
1356 if (!iio_device_claim_direct(indio_dev))
1357 return -EBUSY;
1358
1359 ret = __stm32_dfsdm_read_info_raw(indio_dev, chan, val);
1360 iio_device_release_direct(indio_dev);
1361 if (ret)
1362 return ret;
1363 return IIO_VAL_INT;
1364
1365 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1366 *val = adc->oversamp;
1367
1368 return IIO_VAL_INT;
1369
1370 case IIO_CHAN_INFO_SAMP_FREQ:
1371 *val = adc->sample_freq;
1372
1373 return IIO_VAL_INT;
1374
1375 case IIO_CHAN_INFO_SCALE:
1376 /*
1377 * Scale is expressed in mV.
1378 * When fast mode is disabled, actual resolution may be lower
1379 * than 2^n, where n = realbits - 1.
1380 * This leads to underestimating the input voltage.
1381 * To compensate this deviation, the voltage reference can be
1382 * corrected with a factor = realbits resolution / actual max
1383 */
1384 if (adc->backend) {
1385 ret = iio_backend_read_scale(adc->backend[idx], chan, val, NULL);
1386 if (ret < 0)
1387 return ret;
1388
1389 *val = div_u64((u64)*val * (u64)BIT(DFSDM_DATA_RES - 1), max);
1390 *val2 = chan->scan_type.realbits;
1391 if (chan->differential)
1392 *val *= 2;
1393 }
1394 return IIO_VAL_FRACTIONAL_LOG2;
1395
1396 case IIO_CHAN_INFO_OFFSET:
1397 /*
1398 * DFSDM output data are in the range [-2^n, 2^n],
1399 * with n = realbits - 1.
1400 * - Differential modulator:
1401 * Offset correspond to SD modulator offset.
1402 * - Single ended modulator:
1403 * Input is in [0V, Vref] range,
1404 * where 0V corresponds to -2^n, and Vref to 2^n.
1405 * Add 2^n to offset. (i.e. middle of input range)
1406 * offset = offset(sd) * vref / res(sd) * max / vref.
1407 */
1408 if (adc->backend) {
1409 ret = iio_backend_read_offset(adc->backend[idx], chan, val, NULL);
1410 if (ret < 0)
1411 return ret;
1412
1413 *val = div_u64((u64)max * *val, BIT(*val2 - 1));
1414 if (!chan->differential)
1415 *val += max;
1416 }
1417 return IIO_VAL_INT;
1418 }
1419
1420 return -EINVAL;
1421 }
1422
stm32_dfsdm_validate_trigger(struct iio_dev * indio_dev,struct iio_trigger * trig)1423 static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1424 struct iio_trigger *trig)
1425 {
1426 return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1427 }
1428
1429 static const struct iio_info stm32_dfsdm_info_audio = {
1430 .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1431 .read_raw = stm32_dfsdm_read_raw,
1432 .write_raw = stm32_dfsdm_write_raw,
1433 .update_scan_mode = stm32_dfsdm_update_scan_mode,
1434 };
1435
1436 static const struct iio_info stm32_dfsdm_info_adc = {
1437 .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1438 .read_raw = stm32_dfsdm_read_raw,
1439 .write_raw = stm32_dfsdm_write_raw,
1440 .update_scan_mode = stm32_dfsdm_update_scan_mode,
1441 .validate_trigger = stm32_dfsdm_validate_trigger,
1442 };
1443
stm32_dfsdm_irq(int irq,void * arg)1444 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1445 {
1446 struct iio_dev *indio_dev = arg;
1447 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1448 struct regmap *regmap = adc->dfsdm->regmap;
1449 unsigned int status, int_en;
1450
1451 regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1452 regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1453
1454 if (status & DFSDM_ISR_REOCF_MASK) {
1455 /* Read the data register clean the IRQ status */
1456 regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1457 complete(&adc->completion);
1458 }
1459
1460 if (status & DFSDM_ISR_ROVRF_MASK) {
1461 if (int_en & DFSDM_CR2_ROVRIE_MASK)
1462 dev_warn(&indio_dev->dev, "Overrun detected\n");
1463 regmap_set_bits(regmap, DFSDM_ICR(adc->fl_id),
1464 DFSDM_ICR_CLRROVRF_MASK);
1465 }
1466
1467 return IRQ_HANDLED;
1468 }
1469
1470 /*
1471 * Define external info for SPI Frequency and audio sampling rate that can be
1472 * configured by ASoC driver through consumer.h API
1473 */
1474 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1475 /* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1476 {
1477 .name = "spi_clk_freq",
1478 .shared = IIO_SHARED_BY_TYPE,
1479 .read = dfsdm_adc_audio_get_spiclk,
1480 .write = dfsdm_adc_audio_set_spiclk,
1481 },
1482 { }
1483 };
1484
stm32_dfsdm_dma_release(struct iio_dev * indio_dev)1485 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1486 {
1487 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1488
1489 if (adc->dma_chan) {
1490 dma_free_coherent(adc->dma_chan->device->dev,
1491 DFSDM_DMA_BUFFER_SIZE,
1492 adc->rx_buf, adc->dma_buf);
1493 dma_release_channel(adc->dma_chan);
1494 }
1495 }
1496
stm32_dfsdm_dma_request(struct device * dev,struct iio_dev * indio_dev)1497 static int stm32_dfsdm_dma_request(struct device *dev,
1498 struct iio_dev *indio_dev)
1499 {
1500 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1501
1502 adc->dma_chan = dma_request_chan(dev, "rx");
1503 if (IS_ERR(adc->dma_chan)) {
1504 int ret = PTR_ERR(adc->dma_chan);
1505
1506 adc->dma_chan = NULL;
1507 return ret;
1508 }
1509
1510 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1511 DFSDM_DMA_BUFFER_SIZE,
1512 &adc->dma_buf, GFP_KERNEL);
1513 if (!adc->rx_buf) {
1514 dma_release_channel(adc->dma_chan);
1515 return -ENOMEM;
1516 }
1517
1518 indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1519 indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1520
1521 return 0;
1522 }
1523
stm32_dfsdm_adc_chan_init_one(struct iio_dev * indio_dev,struct iio_chan_spec * ch,struct fwnode_handle * child)1524 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev, struct iio_chan_spec *ch,
1525 struct fwnode_handle *child)
1526 {
1527 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1528 int ret;
1529
1530 if (child)
1531 ret = stm32_dfsdm_generic_channel_parse_of(adc->dfsdm, indio_dev, ch, child);
1532 else /* Legacy binding */
1533 ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
1534 if (ret < 0)
1535 return dev_err_probe(&indio_dev->dev, ret, "Failed to parse channel\n");
1536
1537 ch->type = IIO_VOLTAGE;
1538 ch->indexed = 1;
1539
1540 /*
1541 * IIO_CHAN_INFO_RAW: used to compute regular conversion
1542 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1543 */
1544 if (child) {
1545 ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
1546 BIT(IIO_CHAN_INFO_SCALE) |
1547 BIT(IIO_CHAN_INFO_OFFSET);
1548 } else {
1549 /* Legacy. Scaling not supported */
1550 ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1551 }
1552
1553 ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1554 BIT(IIO_CHAN_INFO_SAMP_FREQ);
1555
1556 if (adc->dev_data->type == DFSDM_AUDIO) {
1557 ch->ext_info = dfsdm_adc_audio_ext_info;
1558 ch->scan_index = 0;
1559 } else {
1560 ch->scan_type.shift = 8;
1561 }
1562 ch->scan_type.sign = 's';
1563 ch->scan_type.realbits = 24;
1564 ch->scan_type.storagebits = 32;
1565
1566 return stm32_dfsdm_chan_configure(adc->dfsdm,
1567 &adc->dfsdm->ch_list[ch->channel]);
1568 }
1569
stm32_dfsdm_chan_init(struct iio_dev * indio_dev,struct iio_chan_spec * channels)1570 static int stm32_dfsdm_chan_init(struct iio_dev *indio_dev, struct iio_chan_spec *channels)
1571 {
1572 int num_ch = indio_dev->num_channels;
1573 int chan_idx = 0;
1574 int ret;
1575
1576 for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1577 channels[chan_idx].scan_index = chan_idx;
1578 ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &channels[chan_idx], NULL);
1579 if (ret < 0)
1580 return dev_err_probe(&indio_dev->dev, ret, "Channels init failed\n");
1581 }
1582
1583 return 0;
1584 }
1585
stm32_dfsdm_generic_chan_init(struct iio_dev * indio_dev,struct iio_chan_spec * channels)1586 static int stm32_dfsdm_generic_chan_init(struct iio_dev *indio_dev, struct iio_chan_spec *channels)
1587 {
1588 int chan_idx = 0, ret;
1589
1590 device_for_each_child_node_scoped(&indio_dev->dev, child) {
1591 /* Skip DAI node in DFSDM audio nodes */
1592 if (fwnode_property_present(child, "compatible"))
1593 continue;
1594
1595 channels[chan_idx].scan_index = chan_idx;
1596 ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &channels[chan_idx], child);
1597 if (ret < 0)
1598 return dev_err_probe(&indio_dev->dev, ret, "Channels init failed\n");
1599
1600 chan_idx++;
1601 }
1602
1603 return chan_idx;
1604 }
1605
stm32_dfsdm_audio_init(struct device * dev,struct iio_dev * indio_dev)1606 static int stm32_dfsdm_audio_init(struct device *dev, struct iio_dev *indio_dev)
1607 {
1608 struct iio_chan_spec *ch;
1609 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1610 struct stm32_dfsdm_channel *d_ch;
1611 bool legacy = false;
1612 int num_ch, ret;
1613
1614 /* If st,adc-channels is defined legacy binding is used. Else assume generic binding. */
1615 num_ch = of_property_count_u32_elems(indio_dev->dev.of_node, "st,adc-channels");
1616 if (num_ch == 1)
1617 legacy = true;
1618
1619 ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1620 if (!ch)
1621 return -ENOMEM;
1622
1623 indio_dev->num_channels = 1;
1624 indio_dev->channels = ch;
1625
1626 if (legacy)
1627 ret = stm32_dfsdm_chan_init(indio_dev, ch);
1628 else
1629 ret = stm32_dfsdm_generic_chan_init(indio_dev, ch);
1630
1631 if (ret < 0) {
1632 dev_err(&indio_dev->dev, "Channels init failed\n");
1633 return ret;
1634 }
1635 ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1636
1637 d_ch = &adc->dfsdm->ch_list[ch->channel];
1638 if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1639 adc->spi_freq = adc->dfsdm->spi_master_freq;
1640
1641 return stm32_dfsdm_dma_request(dev, indio_dev);
1642 }
1643
stm32_dfsdm_adc_init(struct device * dev,struct iio_dev * indio_dev)1644 static int stm32_dfsdm_adc_init(struct device *dev, struct iio_dev *indio_dev)
1645 {
1646 struct iio_chan_spec *ch;
1647 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1648 int num_ch, ret;
1649 bool legacy = false;
1650
1651 adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1652 ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
1653 if (ret < 0)
1654 return ret;
1655
1656 num_ch = device_get_child_node_count(&indio_dev->dev);
1657 if (!num_ch) {
1658 /* No channels nodes found. Assume legacy binding */
1659 num_ch = of_property_count_u32_elems(indio_dev->dev.of_node, "st,adc-channels");
1660 if (num_ch < 0) {
1661 dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1662 return num_ch;
1663 }
1664
1665 legacy = true;
1666 }
1667
1668 if (num_ch > adc->dfsdm->num_chs) {
1669 dev_err(&indio_dev->dev, "Number of channel [%d] exceeds [%d]\n",
1670 num_ch, adc->dfsdm->num_chs);
1671 return -EINVAL;
1672 }
1673 indio_dev->num_channels = num_ch;
1674
1675 if (legacy) {
1676 /* Bind to SD modulator IIO device. */
1677 adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1678 if (IS_ERR(adc->hwc))
1679 return dev_err_probe(&indio_dev->dev, -EPROBE_DEFER,
1680 "waiting for SD modulator\n");
1681 } else {
1682 /* Generic binding. SD modulator IIO device not used. Use SD modulator backend. */
1683 adc->hwc = NULL;
1684
1685 adc->backend = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*adc->backend),
1686 GFP_KERNEL);
1687 if (!adc->backend)
1688 return -ENOMEM;
1689 }
1690
1691 ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch), GFP_KERNEL);
1692 if (!ch)
1693 return -ENOMEM;
1694 indio_dev->channels = ch;
1695
1696 if (legacy)
1697 ret = stm32_dfsdm_chan_init(indio_dev, ch);
1698 else
1699 ret = stm32_dfsdm_generic_chan_init(indio_dev, ch);
1700 if (ret < 0)
1701 return ret;
1702
1703 init_completion(&adc->completion);
1704
1705 /* Optionally request DMA */
1706 ret = stm32_dfsdm_dma_request(dev, indio_dev);
1707 if (ret) {
1708 if (ret != -ENODEV)
1709 return dev_err_probe(dev, ret,
1710 "DMA channel request failed with\n");
1711
1712 dev_dbg(dev, "No DMA support\n");
1713 return 0;
1714 }
1715
1716 ret = iio_triggered_buffer_setup(indio_dev,
1717 &iio_pollfunc_store_time, NULL,
1718 &stm32_dfsdm_buffer_setup_ops);
1719 if (ret) {
1720 stm32_dfsdm_dma_release(indio_dev);
1721 dev_err(&indio_dev->dev, "buffer setup failed\n");
1722 return ret;
1723 }
1724
1725 /* lptimer/timer hardware triggers */
1726 indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1727
1728 return 0;
1729 }
1730
1731 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1732 .type = DFSDM_IIO,
1733 .init = stm32_dfsdm_adc_init,
1734 };
1735
1736 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1737 .type = DFSDM_AUDIO,
1738 .init = stm32_dfsdm_audio_init,
1739 };
1740
1741 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1742 {
1743 .compatible = "st,stm32-dfsdm-adc",
1744 .data = &stm32h7_dfsdm_adc_data,
1745 },
1746 {
1747 .compatible = "st,stm32-dfsdm-dmic",
1748 .data = &stm32h7_dfsdm_audio_data,
1749 },
1750 { }
1751 };
1752 MODULE_DEVICE_TABLE(of, stm32_dfsdm_adc_match);
1753
stm32_dfsdm_adc_probe(struct platform_device * pdev)1754 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1755 {
1756 struct device *dev = &pdev->dev;
1757 struct stm32_dfsdm_adc *adc;
1758 struct device_node *np = dev->of_node;
1759 const struct stm32_dfsdm_dev_data *dev_data;
1760 struct iio_dev *iio;
1761 char *name;
1762 int ret, irq, val;
1763
1764 dev_data = of_device_get_match_data(dev);
1765 iio = devm_iio_device_alloc(dev, sizeof(*adc));
1766 if (!iio)
1767 return -ENOMEM;
1768
1769 adc = iio_priv(iio);
1770 adc->dfsdm = dev_get_drvdata(dev->parent);
1771
1772 iio->dev.of_node = np;
1773 iio->modes = INDIO_DIRECT_MODE;
1774
1775 platform_set_drvdata(pdev, iio);
1776
1777 ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1778 if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1779 dev_err(dev, "Missing or bad reg property\n");
1780 return -EINVAL;
1781 }
1782
1783 name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1784 if (!name)
1785 return -ENOMEM;
1786 if (dev_data->type == DFSDM_AUDIO) {
1787 iio->info = &stm32_dfsdm_info_audio;
1788 snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1789 } else {
1790 iio->info = &stm32_dfsdm_info_adc;
1791 snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1792 }
1793 iio->name = name;
1794
1795 /*
1796 * In a first step IRQs generated for channels are not treated.
1797 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1798 */
1799 irq = platform_get_irq(pdev, 0);
1800 if (irq < 0)
1801 return irq;
1802
1803 ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1804 0, pdev->name, iio);
1805 if (ret < 0) {
1806 dev_err(dev, "Failed to request IRQ\n");
1807 return ret;
1808 }
1809
1810 ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1811 if (ret < 0) {
1812 dev_err(dev, "Failed to set filter order\n");
1813 return ret;
1814 }
1815
1816 adc->dfsdm->fl_list[adc->fl_id].ford = val;
1817
1818 ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1819 if (!ret)
1820 adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1821
1822 adc->dev_data = dev_data;
1823 ret = dev_data->init(dev, iio);
1824 if (ret < 0)
1825 return ret;
1826
1827 ret = iio_device_register(iio);
1828 if (ret < 0)
1829 goto err_cleanup;
1830
1831 if (dev_data->type == DFSDM_AUDIO) {
1832 ret = of_platform_populate(np, NULL, NULL, dev);
1833 if (ret < 0) {
1834 dev_err(dev, "Failed to find an audio DAI\n");
1835 goto err_unregister;
1836 }
1837 }
1838
1839 return 0;
1840
1841 err_unregister:
1842 iio_device_unregister(iio);
1843 err_cleanup:
1844 stm32_dfsdm_dma_release(iio);
1845
1846 return ret;
1847 }
1848
stm32_dfsdm_adc_remove(struct platform_device * pdev)1849 static void stm32_dfsdm_adc_remove(struct platform_device *pdev)
1850 {
1851 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1852 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1853
1854 if (adc->dev_data->type == DFSDM_AUDIO)
1855 of_platform_depopulate(&pdev->dev);
1856 iio_device_unregister(indio_dev);
1857 stm32_dfsdm_dma_release(indio_dev);
1858 }
1859
stm32_dfsdm_adc_suspend(struct device * dev)1860 static int stm32_dfsdm_adc_suspend(struct device *dev)
1861 {
1862 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1863
1864 if (iio_buffer_enabled(indio_dev))
1865 stm32_dfsdm_predisable(indio_dev);
1866
1867 return 0;
1868 }
1869
stm32_dfsdm_adc_resume(struct device * dev)1870 static int stm32_dfsdm_adc_resume(struct device *dev)
1871 {
1872 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1873 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1874 const struct iio_chan_spec *chan;
1875 struct stm32_dfsdm_channel *ch;
1876 int i, ret;
1877
1878 /* restore channels configuration */
1879 for (i = 0; i < indio_dev->num_channels; i++) {
1880 chan = indio_dev->channels + i;
1881 ch = &adc->dfsdm->ch_list[chan->channel];
1882 ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
1883 if (ret)
1884 return ret;
1885 }
1886
1887 if (iio_buffer_enabled(indio_dev))
1888 stm32_dfsdm_postenable(indio_dev);
1889
1890 return 0;
1891 }
1892
1893 static DEFINE_SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1894 stm32_dfsdm_adc_suspend,
1895 stm32_dfsdm_adc_resume);
1896
1897 static struct platform_driver stm32_dfsdm_adc_driver = {
1898 .driver = {
1899 .name = "stm32-dfsdm-adc",
1900 .of_match_table = stm32_dfsdm_adc_match,
1901 .pm = pm_sleep_ptr(&stm32_dfsdm_adc_pm_ops),
1902 },
1903 .probe = stm32_dfsdm_adc_probe,
1904 .remove = stm32_dfsdm_adc_remove,
1905 };
1906 module_platform_driver(stm32_dfsdm_adc_driver);
1907
1908 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1909 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1910 MODULE_LICENSE("GPL v2");
1911 MODULE_IMPORT_NS("IIO_BACKEND");
1912