1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * STM32 Timer Encoder and Counter driver
4 *
5 * Copyright (C) STMicroelectronics 2018
6 *
7 * Author: Benjamin Gaignard <benjamin.gaignard@st.com>
8 *
9 */
10 #include <linux/counter.h>
11 #include <linux/interrupt.h>
12 #include <linux/mfd/stm32-timers.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/platform_device.h>
18 #include <linux/types.h>
19
20 #define TIM_CCMR_CCXS (BIT(8) | BIT(0))
21 #define TIM_CCMR_MASK (TIM_CCMR_CC1S | TIM_CCMR_CC2S | \
22 TIM_CCMR_IC1F | TIM_CCMR_IC2F)
23 #define TIM_CCER_MASK (TIM_CCER_CC1P | TIM_CCER_CC1NP | \
24 TIM_CCER_CC2P | TIM_CCER_CC2NP)
25
26 #define STM32_CH1_SIG 0
27 #define STM32_CH2_SIG 1
28 #define STM32_CLOCK_SIG 2
29 #define STM32_CH3_SIG 3
30 #define STM32_CH4_SIG 4
31
32 struct stm32_timer_regs {
33 u32 cr1;
34 u32 cnt;
35 u32 smcr;
36 u32 arr;
37 };
38
39 struct stm32_timer_cnt {
40 struct regmap *regmap;
41 struct clk *clk;
42 u32 max_arr;
43 bool enabled;
44 struct stm32_timer_regs bak;
45 bool has_encoder;
46 unsigned int nchannels;
47 unsigned int nr_irqs;
48 spinlock_t lock; /* protects nb_ovf */
49 u64 nb_ovf;
50 };
51
52 static const enum counter_function stm32_count_functions[] = {
53 COUNTER_FUNCTION_INCREASE,
54 COUNTER_FUNCTION_QUADRATURE_X2_A,
55 COUNTER_FUNCTION_QUADRATURE_X2_B,
56 COUNTER_FUNCTION_QUADRATURE_X4,
57 };
58
stm32_count_read(struct counter_device * counter,struct counter_count * count,u64 * val)59 static int stm32_count_read(struct counter_device *counter,
60 struct counter_count *count, u64 *val)
61 {
62 struct stm32_timer_cnt *const priv = counter_priv(counter);
63 u32 cnt;
64
65 regmap_read(priv->regmap, TIM_CNT, &cnt);
66 *val = cnt;
67
68 return 0;
69 }
70
stm32_count_write(struct counter_device * counter,struct counter_count * count,const u64 val)71 static int stm32_count_write(struct counter_device *counter,
72 struct counter_count *count, const u64 val)
73 {
74 struct stm32_timer_cnt *const priv = counter_priv(counter);
75 u32 ceiling;
76
77 regmap_read(priv->regmap, TIM_ARR, &ceiling);
78 if (val > ceiling)
79 return -EINVAL;
80
81 return regmap_write(priv->regmap, TIM_CNT, val);
82 }
83
stm32_count_function_read(struct counter_device * counter,struct counter_count * count,enum counter_function * function)84 static int stm32_count_function_read(struct counter_device *counter,
85 struct counter_count *count,
86 enum counter_function *function)
87 {
88 struct stm32_timer_cnt *const priv = counter_priv(counter);
89 u32 smcr;
90
91 regmap_read(priv->regmap, TIM_SMCR, &smcr);
92
93 switch (smcr & TIM_SMCR_SMS) {
94 case TIM_SMCR_SMS_SLAVE_MODE_DISABLED:
95 *function = COUNTER_FUNCTION_INCREASE;
96 return 0;
97 case TIM_SMCR_SMS_ENCODER_MODE_1:
98 *function = COUNTER_FUNCTION_QUADRATURE_X2_A;
99 return 0;
100 case TIM_SMCR_SMS_ENCODER_MODE_2:
101 *function = COUNTER_FUNCTION_QUADRATURE_X2_B;
102 return 0;
103 case TIM_SMCR_SMS_ENCODER_MODE_3:
104 *function = COUNTER_FUNCTION_QUADRATURE_X4;
105 return 0;
106 default:
107 return -EINVAL;
108 }
109 }
110
stm32_count_function_write(struct counter_device * counter,struct counter_count * count,enum counter_function function)111 static int stm32_count_function_write(struct counter_device *counter,
112 struct counter_count *count,
113 enum counter_function function)
114 {
115 struct stm32_timer_cnt *const priv = counter_priv(counter);
116 u32 cr1, sms;
117
118 switch (function) {
119 case COUNTER_FUNCTION_INCREASE:
120 sms = TIM_SMCR_SMS_SLAVE_MODE_DISABLED;
121 break;
122 case COUNTER_FUNCTION_QUADRATURE_X2_A:
123 if (!priv->has_encoder)
124 return -EOPNOTSUPP;
125 sms = TIM_SMCR_SMS_ENCODER_MODE_1;
126 break;
127 case COUNTER_FUNCTION_QUADRATURE_X2_B:
128 if (!priv->has_encoder)
129 return -EOPNOTSUPP;
130 sms = TIM_SMCR_SMS_ENCODER_MODE_2;
131 break;
132 case COUNTER_FUNCTION_QUADRATURE_X4:
133 if (!priv->has_encoder)
134 return -EOPNOTSUPP;
135 sms = TIM_SMCR_SMS_ENCODER_MODE_3;
136 break;
137 default:
138 return -EINVAL;
139 }
140
141 /* Store enable status */
142 regmap_read(priv->regmap, TIM_CR1, &cr1);
143
144 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
145
146 regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
147
148 /* Make sure that registers are updated */
149 regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
150
151 /* Restore the enable status */
152 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1);
153
154 return 0;
155 }
156
stm32_count_direction_read(struct counter_device * counter,struct counter_count * count,enum counter_count_direction * direction)157 static int stm32_count_direction_read(struct counter_device *counter,
158 struct counter_count *count,
159 enum counter_count_direction *direction)
160 {
161 struct stm32_timer_cnt *const priv = counter_priv(counter);
162 u32 cr1;
163
164 regmap_read(priv->regmap, TIM_CR1, &cr1);
165 *direction = (cr1 & TIM_CR1_DIR) ? COUNTER_COUNT_DIRECTION_BACKWARD :
166 COUNTER_COUNT_DIRECTION_FORWARD;
167
168 return 0;
169 }
170
stm32_count_ceiling_read(struct counter_device * counter,struct counter_count * count,u64 * ceiling)171 static int stm32_count_ceiling_read(struct counter_device *counter,
172 struct counter_count *count, u64 *ceiling)
173 {
174 struct stm32_timer_cnt *const priv = counter_priv(counter);
175 u32 arr;
176
177 regmap_read(priv->regmap, TIM_ARR, &arr);
178
179 *ceiling = arr;
180
181 return 0;
182 }
183
stm32_count_ceiling_write(struct counter_device * counter,struct counter_count * count,u64 ceiling)184 static int stm32_count_ceiling_write(struct counter_device *counter,
185 struct counter_count *count, u64 ceiling)
186 {
187 struct stm32_timer_cnt *const priv = counter_priv(counter);
188
189 if (ceiling > priv->max_arr)
190 return -ERANGE;
191
192 /* TIMx_ARR register shouldn't be buffered (ARPE=0) */
193 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
194 regmap_write(priv->regmap, TIM_ARR, ceiling);
195
196 return 0;
197 }
198
stm32_count_enable_read(struct counter_device * counter,struct counter_count * count,u8 * enable)199 static int stm32_count_enable_read(struct counter_device *counter,
200 struct counter_count *count, u8 *enable)
201 {
202 struct stm32_timer_cnt *const priv = counter_priv(counter);
203 u32 cr1;
204
205 regmap_read(priv->regmap, TIM_CR1, &cr1);
206
207 *enable = cr1 & TIM_CR1_CEN;
208
209 return 0;
210 }
211
stm32_count_enable_write(struct counter_device * counter,struct counter_count * count,u8 enable)212 static int stm32_count_enable_write(struct counter_device *counter,
213 struct counter_count *count, u8 enable)
214 {
215 struct stm32_timer_cnt *const priv = counter_priv(counter);
216 u32 cr1;
217
218 if (enable) {
219 regmap_read(priv->regmap, TIM_CR1, &cr1);
220 if (!(cr1 & TIM_CR1_CEN))
221 clk_enable(priv->clk);
222
223 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
224 TIM_CR1_CEN);
225 } else {
226 regmap_read(priv->regmap, TIM_CR1, &cr1);
227 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
228 if (cr1 & TIM_CR1_CEN)
229 clk_disable(priv->clk);
230 }
231
232 /* Keep enabled state to properly handle low power states */
233 priv->enabled = enable;
234
235 return 0;
236 }
237
stm32_count_prescaler_read(struct counter_device * counter,struct counter_count * count,u64 * prescaler)238 static int stm32_count_prescaler_read(struct counter_device *counter,
239 struct counter_count *count, u64 *prescaler)
240 {
241 struct stm32_timer_cnt *const priv = counter_priv(counter);
242 u32 psc;
243
244 regmap_read(priv->regmap, TIM_PSC, &psc);
245
246 *prescaler = psc + 1;
247
248 return 0;
249 }
250
stm32_count_prescaler_write(struct counter_device * counter,struct counter_count * count,u64 prescaler)251 static int stm32_count_prescaler_write(struct counter_device *counter,
252 struct counter_count *count, u64 prescaler)
253 {
254 struct stm32_timer_cnt *const priv = counter_priv(counter);
255 u32 psc;
256
257 if (!prescaler || prescaler > MAX_TIM_PSC + 1)
258 return -ERANGE;
259
260 psc = prescaler - 1;
261
262 return regmap_write(priv->regmap, TIM_PSC, psc);
263 }
264
stm32_count_cap_read(struct counter_device * counter,struct counter_count * count,size_t ch,u64 * cap)265 static int stm32_count_cap_read(struct counter_device *counter,
266 struct counter_count *count,
267 size_t ch, u64 *cap)
268 {
269 struct stm32_timer_cnt *const priv = counter_priv(counter);
270 u32 ccrx;
271
272 if (ch >= priv->nchannels)
273 return -EOPNOTSUPP;
274
275 switch (ch) {
276 case 0:
277 regmap_read(priv->regmap, TIM_CCR1, &ccrx);
278 break;
279 case 1:
280 regmap_read(priv->regmap, TIM_CCR2, &ccrx);
281 break;
282 case 2:
283 regmap_read(priv->regmap, TIM_CCR3, &ccrx);
284 break;
285 case 3:
286 regmap_read(priv->regmap, TIM_CCR4, &ccrx);
287 break;
288 default:
289 return -EINVAL;
290 }
291
292 dev_dbg(counter->parent, "CCR%zu: 0x%08x\n", ch + 1, ccrx);
293
294 *cap = ccrx;
295
296 return 0;
297 }
298
stm32_count_nb_ovf_read(struct counter_device * counter,struct counter_count * count,u64 * val)299 static int stm32_count_nb_ovf_read(struct counter_device *counter,
300 struct counter_count *count, u64 *val)
301 {
302 struct stm32_timer_cnt *const priv = counter_priv(counter);
303 unsigned long irqflags;
304
305 spin_lock_irqsave(&priv->lock, irqflags);
306 *val = priv->nb_ovf;
307 spin_unlock_irqrestore(&priv->lock, irqflags);
308
309 return 0;
310 }
311
stm32_count_nb_ovf_write(struct counter_device * counter,struct counter_count * count,u64 val)312 static int stm32_count_nb_ovf_write(struct counter_device *counter,
313 struct counter_count *count, u64 val)
314 {
315 struct stm32_timer_cnt *const priv = counter_priv(counter);
316 unsigned long irqflags;
317
318 spin_lock_irqsave(&priv->lock, irqflags);
319 priv->nb_ovf = val;
320 spin_unlock_irqrestore(&priv->lock, irqflags);
321
322 return 0;
323 }
324
325 static DEFINE_COUNTER_ARRAY_CAPTURE(stm32_count_cap_array, 4);
326
327 static struct counter_comp stm32_count_ext[] = {
328 COUNTER_COMP_DIRECTION(stm32_count_direction_read),
329 COUNTER_COMP_ENABLE(stm32_count_enable_read, stm32_count_enable_write),
330 COUNTER_COMP_CEILING(stm32_count_ceiling_read,
331 stm32_count_ceiling_write),
332 COUNTER_COMP_COUNT_U64("prescaler", stm32_count_prescaler_read,
333 stm32_count_prescaler_write),
334 COUNTER_COMP_ARRAY_CAPTURE(stm32_count_cap_read, NULL, stm32_count_cap_array),
335 COUNTER_COMP_COUNT_U64("num_overflows", stm32_count_nb_ovf_read, stm32_count_nb_ovf_write),
336 };
337
338 static const enum counter_synapse_action stm32_clock_synapse_actions[] = {
339 COUNTER_SYNAPSE_ACTION_RISING_EDGE,
340 };
341
342 static const enum counter_synapse_action stm32_synapse_actions[] = {
343 COUNTER_SYNAPSE_ACTION_NONE,
344 COUNTER_SYNAPSE_ACTION_BOTH_EDGES
345 };
346
stm32_action_read(struct counter_device * counter,struct counter_count * count,struct counter_synapse * synapse,enum counter_synapse_action * action)347 static int stm32_action_read(struct counter_device *counter,
348 struct counter_count *count,
349 struct counter_synapse *synapse,
350 enum counter_synapse_action *action)
351 {
352 enum counter_function function;
353 int err;
354
355 err = stm32_count_function_read(counter, count, &function);
356 if (err)
357 return err;
358
359 switch (function) {
360 case COUNTER_FUNCTION_INCREASE:
361 /* counts on internal clock when CEN=1 */
362 if (synapse->signal->id == STM32_CLOCK_SIG)
363 *action = COUNTER_SYNAPSE_ACTION_RISING_EDGE;
364 else
365 *action = COUNTER_SYNAPSE_ACTION_NONE;
366 return 0;
367 case COUNTER_FUNCTION_QUADRATURE_X2_A:
368 /* counts up/down on TI1FP1 edge depending on TI2FP2 level */
369 if (synapse->signal->id == STM32_CH1_SIG)
370 *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
371 else
372 *action = COUNTER_SYNAPSE_ACTION_NONE;
373 return 0;
374 case COUNTER_FUNCTION_QUADRATURE_X2_B:
375 /* counts up/down on TI2FP2 edge depending on TI1FP1 level */
376 if (synapse->signal->id == STM32_CH2_SIG)
377 *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
378 else
379 *action = COUNTER_SYNAPSE_ACTION_NONE;
380 return 0;
381 case COUNTER_FUNCTION_QUADRATURE_X4:
382 /* counts up/down on both TI1FP1 and TI2FP2 edges */
383 if (synapse->signal->id == STM32_CH1_SIG || synapse->signal->id == STM32_CH2_SIG)
384 *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
385 else
386 *action = COUNTER_SYNAPSE_ACTION_NONE;
387 return 0;
388 default:
389 return -EINVAL;
390 }
391 }
392
393 struct stm32_count_cc_regs {
394 u32 ccmr_reg;
395 u32 ccmr_mask;
396 u32 ccmr_bits;
397 u32 ccer_bits;
398 };
399
400 static const struct stm32_count_cc_regs stm32_cc[] = {
401 { TIM_CCMR1, TIM_CCMR_CC1S, TIM_CCMR_CC1S_TI1,
402 TIM_CCER_CC1E | TIM_CCER_CC1P | TIM_CCER_CC1NP },
403 { TIM_CCMR1, TIM_CCMR_CC2S, TIM_CCMR_CC2S_TI2,
404 TIM_CCER_CC2E | TIM_CCER_CC2P | TIM_CCER_CC2NP },
405 { TIM_CCMR2, TIM_CCMR_CC3S, TIM_CCMR_CC3S_TI3,
406 TIM_CCER_CC3E | TIM_CCER_CC3P | TIM_CCER_CC3NP },
407 { TIM_CCMR2, TIM_CCMR_CC4S, TIM_CCMR_CC4S_TI4,
408 TIM_CCER_CC4E | TIM_CCER_CC4P | TIM_CCER_CC4NP },
409 };
410
stm32_count_capture_configure(struct counter_device * counter,unsigned int ch,bool enable)411 static int stm32_count_capture_configure(struct counter_device *counter, unsigned int ch,
412 bool enable)
413 {
414 struct stm32_timer_cnt *const priv = counter_priv(counter);
415 const struct stm32_count_cc_regs *cc;
416 u32 ccmr, ccer;
417
418 if (ch >= ARRAY_SIZE(stm32_cc) || ch >= priv->nchannels) {
419 dev_err(counter->parent, "invalid ch: %d\n", ch);
420 return -EINVAL;
421 }
422
423 cc = &stm32_cc[ch];
424
425 /*
426 * configure channel in input capture mode, map channel 1 on TI1, channel2 on TI2...
427 * Select both edges / non-inverted to trigger a capture.
428 */
429 if (enable) {
430 /* first clear possibly latched capture flag upon enabling */
431 if (!regmap_test_bits(priv->regmap, TIM_CCER, cc->ccer_bits))
432 regmap_write(priv->regmap, TIM_SR, ~TIM_SR_CC_IF(ch));
433 regmap_update_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask,
434 cc->ccmr_bits);
435 regmap_set_bits(priv->regmap, TIM_CCER, cc->ccer_bits);
436 } else {
437 regmap_clear_bits(priv->regmap, TIM_CCER, cc->ccer_bits);
438 regmap_clear_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask);
439 }
440
441 regmap_read(priv->regmap, cc->ccmr_reg, &ccmr);
442 regmap_read(priv->regmap, TIM_CCER, &ccer);
443 dev_dbg(counter->parent, "%s(%s) ch%d 0x%08x 0x%08x\n", __func__, enable ? "ena" : "dis",
444 ch, ccmr, ccer);
445
446 return 0;
447 }
448
stm32_count_events_configure(struct counter_device * counter)449 static int stm32_count_events_configure(struct counter_device *counter)
450 {
451 struct stm32_timer_cnt *const priv = counter_priv(counter);
452 struct counter_event_node *event_node;
453 u32 dier = 0;
454 int i, ret;
455
456 list_for_each_entry(event_node, &counter->events_list, l) {
457 switch (event_node->event) {
458 case COUNTER_EVENT_OVERFLOW_UNDERFLOW:
459 /* first clear possibly latched UIF before enabling */
460 if (!regmap_test_bits(priv->regmap, TIM_DIER, TIM_DIER_UIE))
461 regmap_write(priv->regmap, TIM_SR, (u32)~TIM_SR_UIF);
462 dier |= TIM_DIER_UIE;
463 break;
464 case COUNTER_EVENT_CAPTURE:
465 ret = stm32_count_capture_configure(counter, event_node->channel, true);
466 if (ret)
467 return ret;
468 dier |= TIM_DIER_CCxIE(event_node->channel + 1);
469 break;
470 default:
471 /* should never reach this path */
472 return -EINVAL;
473 }
474 }
475
476 /* Enable / disable all events at once, from events_list, so write all DIER bits */
477 regmap_write(priv->regmap, TIM_DIER, dier);
478
479 /* check for disabled capture events */
480 for (i = 0 ; i < priv->nchannels; i++) {
481 if (!(dier & TIM_DIER_CCxIE(i + 1))) {
482 ret = stm32_count_capture_configure(counter, i, false);
483 if (ret)
484 return ret;
485 }
486 }
487
488 return 0;
489 }
490
stm32_count_watch_validate(struct counter_device * counter,const struct counter_watch * watch)491 static int stm32_count_watch_validate(struct counter_device *counter,
492 const struct counter_watch *watch)
493 {
494 struct stm32_timer_cnt *const priv = counter_priv(counter);
495
496 /* Interrupts are optional */
497 if (!priv->nr_irqs)
498 return -EOPNOTSUPP;
499
500 switch (watch->event) {
501 case COUNTER_EVENT_CAPTURE:
502 if (watch->channel >= priv->nchannels) {
503 dev_err(counter->parent, "Invalid channel %d\n", watch->channel);
504 return -EINVAL;
505 }
506 return 0;
507 case COUNTER_EVENT_OVERFLOW_UNDERFLOW:
508 return 0;
509 default:
510 return -EINVAL;
511 }
512 }
513
514 static const struct counter_ops stm32_timer_cnt_ops = {
515 .count_read = stm32_count_read,
516 .count_write = stm32_count_write,
517 .function_read = stm32_count_function_read,
518 .function_write = stm32_count_function_write,
519 .action_read = stm32_action_read,
520 .events_configure = stm32_count_events_configure,
521 .watch_validate = stm32_count_watch_validate,
522 };
523
stm32_count_clk_get_freq(struct counter_device * counter,struct counter_signal * signal,u64 * freq)524 static int stm32_count_clk_get_freq(struct counter_device *counter,
525 struct counter_signal *signal, u64 *freq)
526 {
527 struct stm32_timer_cnt *const priv = counter_priv(counter);
528
529 *freq = clk_get_rate(priv->clk);
530
531 return 0;
532 }
533
534 static struct counter_comp stm32_count_clock_ext[] = {
535 COUNTER_COMP_FREQUENCY(stm32_count_clk_get_freq),
536 };
537
538 static struct counter_signal stm32_signals[] = {
539 /*
540 * Need to declare all the signals as a static array, and keep the signals order here,
541 * even if they're unused or unexisting on some timer instances. It's an abstraction,
542 * e.g. high level view of the counter features.
543 *
544 * Userspace programs may rely on signal0 to be "Channel 1", signal1 to be "Channel 2",
545 * and so on. When a signal is unexisting, the COUNTER_SYNAPSE_ACTION_NONE can be used,
546 * to indicate that a signal doesn't affect the counter.
547 */
548 {
549 .id = STM32_CH1_SIG,
550 .name = "Channel 1"
551 },
552 {
553 .id = STM32_CH2_SIG,
554 .name = "Channel 2"
555 },
556 {
557 .id = STM32_CLOCK_SIG,
558 .name = "Clock",
559 .ext = stm32_count_clock_ext,
560 .num_ext = ARRAY_SIZE(stm32_count_clock_ext),
561 },
562 {
563 .id = STM32_CH3_SIG,
564 .name = "Channel 3"
565 },
566 {
567 .id = STM32_CH4_SIG,
568 .name = "Channel 4"
569 },
570 };
571
572 static struct counter_synapse stm32_count_synapses[] = {
573 {
574 .actions_list = stm32_synapse_actions,
575 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
576 .signal = &stm32_signals[STM32_CH1_SIG]
577 },
578 {
579 .actions_list = stm32_synapse_actions,
580 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
581 .signal = &stm32_signals[STM32_CH2_SIG]
582 },
583 {
584 .actions_list = stm32_clock_synapse_actions,
585 .num_actions = ARRAY_SIZE(stm32_clock_synapse_actions),
586 .signal = &stm32_signals[STM32_CLOCK_SIG]
587 },
588 {
589 .actions_list = stm32_synapse_actions,
590 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
591 .signal = &stm32_signals[STM32_CH3_SIG]
592 },
593 {
594 .actions_list = stm32_synapse_actions,
595 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
596 .signal = &stm32_signals[STM32_CH4_SIG]
597 },
598 };
599
600 static struct counter_count stm32_counts = {
601 .id = 0,
602 .name = "STM32 Timer Counter",
603 .functions_list = stm32_count_functions,
604 .num_functions = ARRAY_SIZE(stm32_count_functions),
605 .synapses = stm32_count_synapses,
606 .num_synapses = ARRAY_SIZE(stm32_count_synapses),
607 .ext = stm32_count_ext,
608 .num_ext = ARRAY_SIZE(stm32_count_ext)
609 };
610
stm32_timer_cnt_isr(int irq,void * ptr)611 static irqreturn_t stm32_timer_cnt_isr(int irq, void *ptr)
612 {
613 struct counter_device *counter = ptr;
614 struct stm32_timer_cnt *const priv = counter_priv(counter);
615 u32 clr = GENMASK(31, 0); /* SR flags can be cleared by writing 0 (wr 1 has no effect) */
616 u32 sr, dier;
617 int i;
618
619 regmap_read(priv->regmap, TIM_SR, &sr);
620 regmap_read(priv->regmap, TIM_DIER, &dier);
621 /*
622 * Some status bits in SR don't match with the enable bits in DIER. Only take care of
623 * the possibly enabled bits in DIER (that matches in between SR and DIER).
624 */
625 dier &= (TIM_DIER_UIE | TIM_DIER_CC1IE | TIM_DIER_CC2IE | TIM_DIER_CC3IE | TIM_DIER_CC4IE);
626 sr &= dier;
627
628 if (sr & TIM_SR_UIF) {
629 spin_lock(&priv->lock);
630 priv->nb_ovf++;
631 spin_unlock(&priv->lock);
632 counter_push_event(counter, COUNTER_EVENT_OVERFLOW_UNDERFLOW, 0);
633 dev_dbg(counter->parent, "COUNTER_EVENT_OVERFLOW_UNDERFLOW\n");
634 /* SR flags can be cleared by writing 0, only clear relevant flag */
635 clr &= ~TIM_SR_UIF;
636 }
637
638 /* Check capture events */
639 for (i = 0 ; i < priv->nchannels; i++) {
640 if (sr & TIM_SR_CC_IF(i)) {
641 counter_push_event(counter, COUNTER_EVENT_CAPTURE, i);
642 clr &= ~TIM_SR_CC_IF(i);
643 dev_dbg(counter->parent, "COUNTER_EVENT_CAPTURE, %d\n", i);
644 }
645 }
646
647 regmap_write(priv->regmap, TIM_SR, clr);
648
649 return IRQ_HANDLED;
650 };
651
stm32_timer_cnt_detect_channels(struct device * dev,struct stm32_timer_cnt * priv)652 static void stm32_timer_cnt_detect_channels(struct device *dev,
653 struct stm32_timer_cnt *priv)
654 {
655 u32 ccer, ccer_backup;
656
657 regmap_read(priv->regmap, TIM_CCER, &ccer_backup);
658 regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE);
659 regmap_read(priv->regmap, TIM_CCER, &ccer);
660 regmap_write(priv->regmap, TIM_CCER, ccer_backup);
661 priv->nchannels = hweight32(ccer & TIM_CCER_CCXE);
662
663 dev_dbg(dev, "has %d cc channels\n", priv->nchannels);
664 }
665
666 /* encoder supported on TIM1 TIM2 TIM3 TIM4 TIM5 TIM8 */
667 #define STM32_TIM_ENCODER_SUPPORTED (BIT(0) | BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(7))
668
669 static const char * const stm32_timer_trigger_compat[] = {
670 "st,stm32-timer-trigger",
671 "st,stm32h7-timer-trigger",
672 };
673
stm32_timer_cnt_probe_encoder(struct device * dev,struct stm32_timer_cnt * priv)674 static int stm32_timer_cnt_probe_encoder(struct device *dev,
675 struct stm32_timer_cnt *priv)
676 {
677 struct device *parent = dev->parent;
678 struct device_node *tnode = NULL, *pnode = parent->of_node;
679 int i, ret;
680 u32 idx;
681
682 /*
683 * Need to retrieve the trigger node index from DT, to be able
684 * to determine if the counter supports encoder mode. It also
685 * enforce backward compatibility, and allow to support other
686 * counter modes in this driver (when the timer doesn't support
687 * encoder).
688 */
689 for (i = 0; i < ARRAY_SIZE(stm32_timer_trigger_compat) && !tnode; i++)
690 tnode = of_get_compatible_child(pnode, stm32_timer_trigger_compat[i]);
691 if (!tnode) {
692 dev_err(dev, "Can't find trigger node\n");
693 return -ENODATA;
694 }
695
696 ret = of_property_read_u32(tnode, "reg", &idx);
697 if (ret) {
698 dev_err(dev, "Can't get index (%d)\n", ret);
699 return ret;
700 }
701
702 priv->has_encoder = !!(STM32_TIM_ENCODER_SUPPORTED & BIT(idx));
703
704 dev_dbg(dev, "encoder support: %s\n", priv->has_encoder ? "yes" : "no");
705
706 return 0;
707 }
708
stm32_timer_cnt_probe(struct platform_device * pdev)709 static int stm32_timer_cnt_probe(struct platform_device *pdev)
710 {
711 struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
712 struct device *dev = &pdev->dev;
713 struct stm32_timer_cnt *priv;
714 struct counter_device *counter;
715 int i, ret;
716
717 if (IS_ERR_OR_NULL(ddata))
718 return -EINVAL;
719
720 counter = devm_counter_alloc(dev, sizeof(*priv));
721 if (!counter)
722 return -ENOMEM;
723
724 priv = counter_priv(counter);
725
726 priv->regmap = ddata->regmap;
727 priv->clk = ddata->clk;
728 priv->max_arr = ddata->max_arr;
729 priv->nr_irqs = ddata->nr_irqs;
730
731 ret = stm32_timer_cnt_probe_encoder(dev, priv);
732 if (ret)
733 return ret;
734
735 stm32_timer_cnt_detect_channels(dev, priv);
736
737 counter->name = dev_name(dev);
738 counter->parent = dev;
739 counter->ops = &stm32_timer_cnt_ops;
740 counter->counts = &stm32_counts;
741 counter->num_counts = 1;
742 counter->signals = stm32_signals;
743 counter->num_signals = ARRAY_SIZE(stm32_signals);
744
745 spin_lock_init(&priv->lock);
746
747 platform_set_drvdata(pdev, priv);
748
749 /* STM32 Timers can have either 1 global, or 4 dedicated interrupts (optional) */
750 if (priv->nr_irqs == 1) {
751 /* All events reported through the global interrupt */
752 ret = devm_request_irq(&pdev->dev, ddata->irq[0], stm32_timer_cnt_isr,
753 0, dev_name(dev), counter);
754 if (ret) {
755 dev_err(dev, "Failed to request irq %d (err %d)\n",
756 ddata->irq[0], ret);
757 return ret;
758 }
759 } else {
760 for (i = 0; i < priv->nr_irqs; i++) {
761 /*
762 * Only take care of update IRQ for overflow events, and cc for
763 * capture events.
764 */
765 if (i != STM32_TIMERS_IRQ_UP && i != STM32_TIMERS_IRQ_CC)
766 continue;
767
768 ret = devm_request_irq(&pdev->dev, ddata->irq[i], stm32_timer_cnt_isr,
769 0, dev_name(dev), counter);
770 if (ret) {
771 dev_err(dev, "Failed to request irq %d (err %d)\n",
772 ddata->irq[i], ret);
773 return ret;
774 }
775 }
776 }
777
778 /* Reset input selector to its default input */
779 regmap_write(priv->regmap, TIM_TISEL, 0x0);
780
781 /* Register Counter device */
782 ret = devm_counter_add(dev, counter);
783 if (ret < 0)
784 dev_err_probe(dev, ret, "Failed to add counter\n");
785
786 return ret;
787 }
788
stm32_timer_cnt_suspend(struct device * dev)789 static int __maybe_unused stm32_timer_cnt_suspend(struct device *dev)
790 {
791 struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
792
793 /* Only take care of enabled counter: don't disturb other MFD child */
794 if (priv->enabled) {
795 /* Backup registers that may get lost in low power mode */
796 regmap_read(priv->regmap, TIM_SMCR, &priv->bak.smcr);
797 regmap_read(priv->regmap, TIM_ARR, &priv->bak.arr);
798 regmap_read(priv->regmap, TIM_CNT, &priv->bak.cnt);
799 regmap_read(priv->regmap, TIM_CR1, &priv->bak.cr1);
800
801 /* Disable the counter */
802 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
803 clk_disable(priv->clk);
804 }
805
806 return pinctrl_pm_select_sleep_state(dev);
807 }
808
stm32_timer_cnt_resume(struct device * dev)809 static int __maybe_unused stm32_timer_cnt_resume(struct device *dev)
810 {
811 struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
812 int ret;
813
814 ret = pinctrl_pm_select_default_state(dev);
815 if (ret)
816 return ret;
817
818 if (priv->enabled) {
819 clk_enable(priv->clk);
820
821 /* Restore registers that may have been lost */
822 regmap_write(priv->regmap, TIM_SMCR, priv->bak.smcr);
823 regmap_write(priv->regmap, TIM_ARR, priv->bak.arr);
824 regmap_write(priv->regmap, TIM_CNT, priv->bak.cnt);
825
826 /* Also re-enables the counter */
827 regmap_write(priv->regmap, TIM_CR1, priv->bak.cr1);
828 }
829
830 return 0;
831 }
832
833 static SIMPLE_DEV_PM_OPS(stm32_timer_cnt_pm_ops, stm32_timer_cnt_suspend,
834 stm32_timer_cnt_resume);
835
836 static const struct of_device_id stm32_timer_cnt_of_match[] = {
837 { .compatible = "st,stm32-timer-counter", },
838 {},
839 };
840 MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match);
841
842 static struct platform_driver stm32_timer_cnt_driver = {
843 .probe = stm32_timer_cnt_probe,
844 .driver = {
845 .name = "stm32-timer-counter",
846 .of_match_table = stm32_timer_cnt_of_match,
847 .pm = &stm32_timer_cnt_pm_ops,
848 },
849 };
850 module_platform_driver(stm32_timer_cnt_driver);
851
852 MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>");
853 MODULE_ALIAS("platform:stm32-timer-counter");
854 MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver");
855 MODULE_LICENSE("GPL v2");
856 MODULE_IMPORT_NS(COUNTER);
857