xref: /linux/net/sched/sch_fq.c (revision 2214aab26811c77a15fc1d28bf3112a07b8c8d85)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
4  *
5  *  Copyright (C) 2013-2023 Eric Dumazet <edumazet@google.com>
6  *
7  *  Meant to be mostly used for locally generated traffic :
8  *  Fast classification depends on skb->sk being set before reaching us.
9  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
10  *  All packets belonging to a socket are considered as a 'flow'.
11  *
12  *  Flows are dynamically allocated and stored in a hash table of RB trees
13  *  They are also part of one Round Robin 'queues' (new or old flows)
14  *
15  *  Burst avoidance (aka pacing) capability :
16  *
17  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
18  *  bunch of packets, and this packet scheduler adds delay between
19  *  packets to respect rate limitation.
20  *
21  *  enqueue() :
22  *   - lookup one RB tree (out of 1024 or more) to find the flow.
23  *     If non existent flow, create it, add it to the tree.
24  *     Add skb to the per flow list of skb (fifo).
25  *   - Use a special fifo for high prio packets
26  *
27  *  dequeue() : serves flows in Round Robin
28  *  Note : When a flow becomes empty, we do not immediately remove it from
29  *  rb trees, for performance reasons (its expected to send additional packets,
30  *  or SLAB cache will reuse socket for another flow)
31  */
32 
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/jiffies.h>
37 #include <linux/string.h>
38 #include <linux/in.h>
39 #include <linux/errno.h>
40 #include <linux/init.h>
41 #include <linux/skbuff.h>
42 #include <linux/slab.h>
43 #include <linux/rbtree.h>
44 #include <linux/hash.h>
45 #include <linux/prefetch.h>
46 #include <linux/vmalloc.h>
47 #include <net/netlink.h>
48 #include <net/pkt_sched.h>
49 #include <net/sock.h>
50 #include <net/tcp_states.h>
51 #include <net/tcp.h>
52 
53 struct fq_skb_cb {
54 	u64	time_to_send;
55 	u8	band;
56 };
57 
58 static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
59 {
60 	qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
61 	return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
62 }
63 
64 /*
65  * Per flow structure, dynamically allocated.
66  * If packets have monotically increasing time_to_send, they are placed in O(1)
67  * in linear list (head,tail), otherwise are placed in a rbtree (t_root).
68  */
69 struct fq_flow {
70 /* First cache line : used in fq_gc(), fq_enqueue(), fq_dequeue() */
71 	struct rb_root	t_root;
72 	struct sk_buff	*head;		/* list of skbs for this flow : first skb */
73 	union {
74 		struct sk_buff *tail;	/* last skb in the list */
75 		unsigned long  age;	/* (jiffies | 1UL) when flow was emptied, for gc */
76 	};
77 	union {
78 		struct rb_node	fq_node;	/* anchor in fq_root[] trees */
79 		/* Following field is only used for q->internal,
80 		 * because q->internal is not hashed in fq_root[]
81 		 */
82 		u64		stat_fastpath_packets;
83 	};
84 	struct sock	*sk;
85 	u32		socket_hash;	/* sk_hash */
86 	int		qlen;		/* number of packets in flow queue */
87 
88 /* Second cache line */
89 	int		credit;
90 	int		band;
91 	struct fq_flow *next;		/* next pointer in RR lists */
92 
93 	struct rb_node  rate_node;	/* anchor in q->delayed tree */
94 	u64		time_next_packet;
95 };
96 
97 struct fq_flow_head {
98 	struct fq_flow *first;
99 	struct fq_flow *last;
100 };
101 
102 struct fq_perband_flows {
103 	struct fq_flow_head new_flows;
104 	struct fq_flow_head old_flows;
105 	int		    credit;
106 	int		    quantum; /* based on band nr : 576KB, 192KB, 64KB */
107 };
108 
109 #define FQ_PRIO2BAND_CRUMB_SIZE ((TC_PRIO_MAX + 1) >> 2)
110 
111 struct fq_sched_data {
112 /* Read mostly cache line */
113 
114 	u64		offload_horizon;
115 	u32		quantum;
116 	u32		initial_quantum;
117 	u32		flow_refill_delay;
118 	u32		flow_plimit;	/* max packets per flow */
119 	unsigned long	flow_max_rate;	/* optional max rate per flow */
120 	u64		ce_threshold;
121 	u64		horizon;	/* horizon in ns */
122 	u32		orphan_mask;	/* mask for orphaned skb */
123 	u32		low_rate_threshold;
124 	struct rb_root	*fq_root;
125 	u8		rate_enable;
126 	u8		fq_trees_log;
127 	u8		horizon_drop;
128 	u8		prio2band[FQ_PRIO2BAND_CRUMB_SIZE];
129 	u32		timer_slack; /* hrtimer slack in ns */
130 
131 /* Read/Write fields. */
132 
133 	unsigned int band_nr; /* band being serviced in fq_dequeue() */
134 
135 	struct fq_perband_flows band_flows[FQ_BANDS];
136 
137 	struct fq_flow	internal;	/* fastpath queue. */
138 	struct rb_root	delayed;	/* for rate limited flows */
139 	u64		time_next_delayed_flow;
140 	unsigned long	unthrottle_latency_ns;
141 
142 	u32		band_pkt_count[FQ_BANDS];
143 	u32		flows;
144 	u32		inactive_flows; /* Flows with no packet to send. */
145 	u32		throttled_flows;
146 
147 	u64		stat_throttled;
148 	struct qdisc_watchdog watchdog;
149 	u64		stat_gc_flows;
150 
151 /* Seldom used fields. */
152 
153 	u64		stat_band_drops[FQ_BANDS];
154 	u64		stat_ce_mark;
155 	u64		stat_horizon_drops;
156 	u64		stat_horizon_caps;
157 	u64		stat_flows_plimit;
158 	u64		stat_pkts_too_long;
159 	u64		stat_allocation_errors;
160 };
161 
162 /* return the i-th 2-bit value ("crumb") */
163 static u8 fq_prio2band(const u8 *prio2band, unsigned int prio)
164 {
165 	return (READ_ONCE(prio2band[prio / 4]) >> (2 * (prio & 0x3))) & 0x3;
166 }
167 
168 /*
169  * f->tail and f->age share the same location.
170  * We can use the low order bit to differentiate if this location points
171  * to a sk_buff or contains a jiffies value, if we force this value to be odd.
172  * This assumes f->tail low order bit must be 0 since alignof(struct sk_buff) >= 2
173  */
174 static void fq_flow_set_detached(struct fq_flow *f)
175 {
176 	f->age = jiffies | 1UL;
177 }
178 
179 static bool fq_flow_is_detached(const struct fq_flow *f)
180 {
181 	return !!(f->age & 1UL);
182 }
183 
184 /* special value to mark a throttled flow (not on old/new list) */
185 static struct fq_flow throttled;
186 
187 static bool fq_flow_is_throttled(const struct fq_flow *f)
188 {
189 	return f->next == &throttled;
190 }
191 
192 enum new_flow {
193 	NEW_FLOW,
194 	OLD_FLOW
195 };
196 
197 static void fq_flow_add_tail(struct fq_sched_data *q, struct fq_flow *flow,
198 			     enum new_flow list_sel)
199 {
200 	struct fq_perband_flows *pband = &q->band_flows[flow->band];
201 	struct fq_flow_head *head = (list_sel == NEW_FLOW) ?
202 					&pband->new_flows :
203 					&pband->old_flows;
204 
205 	if (head->first)
206 		head->last->next = flow;
207 	else
208 		head->first = flow;
209 	head->last = flow;
210 	flow->next = NULL;
211 }
212 
213 static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
214 {
215 	rb_erase(&f->rate_node, &q->delayed);
216 	q->throttled_flows--;
217 	fq_flow_add_tail(q, f, OLD_FLOW);
218 }
219 
220 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
221 {
222 	struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
223 
224 	while (*p) {
225 		struct fq_flow *aux;
226 
227 		parent = *p;
228 		aux = rb_entry(parent, struct fq_flow, rate_node);
229 		if (f->time_next_packet >= aux->time_next_packet)
230 			p = &parent->rb_right;
231 		else
232 			p = &parent->rb_left;
233 	}
234 	rb_link_node(&f->rate_node, parent, p);
235 	rb_insert_color(&f->rate_node, &q->delayed);
236 	q->throttled_flows++;
237 	q->stat_throttled++;
238 
239 	f->next = &throttled;
240 	if (q->time_next_delayed_flow > f->time_next_packet)
241 		q->time_next_delayed_flow = f->time_next_packet;
242 }
243 
244 
245 static struct kmem_cache *fq_flow_cachep __read_mostly;
246 
247 
248 #define FQ_GC_AGE (3*HZ)
249 
250 static bool fq_gc_candidate(const struct fq_flow *f)
251 {
252 	return fq_flow_is_detached(f) &&
253 	       time_after(jiffies, f->age + FQ_GC_AGE);
254 }
255 
256 static void fq_gc(struct fq_sched_data *q,
257 		  struct rb_root *root,
258 		  struct sock *sk)
259 {
260 	struct fq_flow *f, *tofree = NULL;
261 	struct rb_node **p, *parent;
262 	int fcnt;
263 
264 	p = &root->rb_node;
265 	parent = NULL;
266 	while (*p) {
267 		parent = *p;
268 
269 		f = rb_entry(parent, struct fq_flow, fq_node);
270 		if (f->sk == sk)
271 			break;
272 
273 		if (fq_gc_candidate(f)) {
274 			f->next = tofree;
275 			tofree = f;
276 		}
277 
278 		if (f->sk > sk)
279 			p = &parent->rb_right;
280 		else
281 			p = &parent->rb_left;
282 	}
283 
284 	if (!tofree)
285 		return;
286 
287 	fcnt = 0;
288 	while (tofree) {
289 		f = tofree;
290 		tofree = f->next;
291 		rb_erase(&f->fq_node, root);
292 		kmem_cache_free(fq_flow_cachep, f);
293 		fcnt++;
294 	}
295 	q->flows -= fcnt;
296 	q->inactive_flows -= fcnt;
297 	q->stat_gc_flows += fcnt;
298 }
299 
300 /* Fast path can be used if :
301  * 1) Packet tstamp is in the past, or within the pacing offload horizon.
302  * 2) FQ qlen == 0   OR
303  *   (no flow is currently eligible for transmit,
304  *    AND fast path queue has less than 8 packets)
305  * 3) No SO_MAX_PACING_RATE on the socket (if any).
306  * 4) No @maxrate attribute on this qdisc,
307  *
308  * FQ can not use generic TCQ_F_CAN_BYPASS infrastructure.
309  */
310 static bool fq_fastpath_check(const struct Qdisc *sch, struct sk_buff *skb,
311 			      u64 now)
312 {
313 	const struct fq_sched_data *q = qdisc_priv(sch);
314 	const struct sock *sk;
315 
316 	if (fq_skb_cb(skb)->time_to_send > now + q->offload_horizon)
317 		return false;
318 
319 	if (sch->q.qlen != 0) {
320 		/* Even if some packets are stored in this qdisc,
321 		 * we can still enable fast path if all of them are
322 		 * scheduled in the future (ie no flows are eligible)
323 		 * or in the fast path queue.
324 		 */
325 		if (q->flows != q->inactive_flows + q->throttled_flows)
326 			return false;
327 
328 		/* Do not allow fast path queue to explode, we want Fair Queue mode
329 		 * under pressure.
330 		 */
331 		if (q->internal.qlen >= 8)
332 			return false;
333 
334 		/* Ordering invariants fall apart if some delayed flows
335 		 * are ready but we haven't serviced them, yet.
336 		 */
337 		if (q->time_next_delayed_flow <= now + q->offload_horizon)
338 			return false;
339 	}
340 
341 	sk = skb->sk;
342 	if (sk && sk_fullsock(sk) && !sk_is_tcp(sk) &&
343 	    sk->sk_max_pacing_rate != ~0UL)
344 		return false;
345 
346 	if (q->flow_max_rate != ~0UL)
347 		return false;
348 
349 	return true;
350 }
351 
352 static struct fq_flow *fq_classify(struct Qdisc *sch, struct sk_buff *skb,
353 				   u64 now)
354 {
355 	struct fq_sched_data *q = qdisc_priv(sch);
356 	struct rb_node **p, *parent;
357 	struct sock *sk = skb->sk;
358 	struct rb_root *root;
359 	struct fq_flow *f;
360 
361 	/* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
362 	 * or a listener (SYNCOOKIE mode)
363 	 * 1) request sockets are not full blown,
364 	 *    they do not contain sk_pacing_rate
365 	 * 2) They are not part of a 'flow' yet
366 	 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
367 	 *    especially if the listener set SO_MAX_PACING_RATE
368 	 * 4) We pretend they are orphaned
369 	 * TCP can also associate TIME_WAIT sockets with RST or ACK packets.
370 	 */
371 	if (!sk || sk_listener_or_tw(sk)) {
372 		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
373 
374 		/* By forcing low order bit to 1, we make sure to not
375 		 * collide with a local flow (socket pointers are word aligned)
376 		 */
377 		sk = (struct sock *)((hash << 1) | 1UL);
378 		skb_orphan(skb);
379 	} else if (sk->sk_state == TCP_CLOSE) {
380 		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
381 		/*
382 		 * Sockets in TCP_CLOSE are non connected.
383 		 * Typical use case is UDP sockets, they can send packets
384 		 * with sendto() to many different destinations.
385 		 * We probably could use a generic bit advertising
386 		 * non connected sockets, instead of sk_state == TCP_CLOSE,
387 		 * if we care enough.
388 		 */
389 		sk = (struct sock *)((hash << 1) | 1UL);
390 	}
391 
392 	if (fq_fastpath_check(sch, skb, now)) {
393 		q->internal.stat_fastpath_packets++;
394 		if (skb->sk == sk && q->rate_enable &&
395 		    READ_ONCE(sk->sk_pacing_status) != SK_PACING_FQ)
396 			smp_store_release(&sk->sk_pacing_status,
397 					  SK_PACING_FQ);
398 		return &q->internal;
399 	}
400 
401 	root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
402 
403 	fq_gc(q, root, sk);
404 
405 	p = &root->rb_node;
406 	parent = NULL;
407 	while (*p) {
408 		parent = *p;
409 
410 		f = rb_entry(parent, struct fq_flow, fq_node);
411 		if (f->sk == sk) {
412 			/* socket might have been reallocated, so check
413 			 * if its sk_hash is the same.
414 			 * It not, we need to refill credit with
415 			 * initial quantum
416 			 */
417 			if (unlikely(skb->sk == sk &&
418 				     f->socket_hash != sk->sk_hash)) {
419 				f->credit = q->initial_quantum;
420 				f->socket_hash = sk->sk_hash;
421 				if (q->rate_enable)
422 					smp_store_release(&sk->sk_pacing_status,
423 							  SK_PACING_FQ);
424 				if (fq_flow_is_throttled(f))
425 					fq_flow_unset_throttled(q, f);
426 				f->time_next_packet = 0ULL;
427 			}
428 			return f;
429 		}
430 		if (f->sk > sk)
431 			p = &parent->rb_right;
432 		else
433 			p = &parent->rb_left;
434 	}
435 
436 	f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
437 	if (unlikely(!f)) {
438 		q->stat_allocation_errors++;
439 		return &q->internal;
440 	}
441 	/* f->t_root is already zeroed after kmem_cache_zalloc() */
442 
443 	fq_flow_set_detached(f);
444 	f->sk = sk;
445 	if (skb->sk == sk) {
446 		f->socket_hash = sk->sk_hash;
447 		if (q->rate_enable)
448 			smp_store_release(&sk->sk_pacing_status,
449 					  SK_PACING_FQ);
450 	}
451 	f->credit = q->initial_quantum;
452 
453 	rb_link_node(&f->fq_node, parent, p);
454 	rb_insert_color(&f->fq_node, root);
455 
456 	q->flows++;
457 	q->inactive_flows++;
458 	return f;
459 }
460 
461 static struct sk_buff *fq_peek(struct fq_flow *flow)
462 {
463 	struct sk_buff *skb = skb_rb_first(&flow->t_root);
464 	struct sk_buff *head = flow->head;
465 
466 	if (!skb)
467 		return head;
468 
469 	if (!head)
470 		return skb;
471 
472 	if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
473 		return skb;
474 	return head;
475 }
476 
477 static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
478 			  struct sk_buff *skb)
479 {
480 	if (skb == flow->head) {
481 		struct sk_buff *next = skb->next;
482 
483 		prefetch(next);
484 		flow->head = next;
485 	} else {
486 		rb_erase(&skb->rbnode, &flow->t_root);
487 		skb->dev = qdisc_dev(sch);
488 	}
489 }
490 
491 /* Remove one skb from flow queue.
492  * This skb must be the return value of prior fq_peek().
493  */
494 static void fq_dequeue_skb(struct Qdisc *sch, struct fq_flow *flow,
495 			   struct sk_buff *skb)
496 {
497 	fq_erase_head(sch, flow, skb);
498 	skb_mark_not_on_list(skb);
499 	qdisc_qstats_backlog_dec(sch, skb);
500 	sch->q.qlen--;
501 	qdisc_bstats_update(sch, skb);
502 }
503 
504 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
505 {
506 	struct rb_node **p, *parent;
507 	struct sk_buff *head, *aux;
508 
509 	head = flow->head;
510 	if (!head ||
511 	    fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
512 		if (!head)
513 			flow->head = skb;
514 		else
515 			flow->tail->next = skb;
516 		flow->tail = skb;
517 		skb->next = NULL;
518 		return;
519 	}
520 
521 	p = &flow->t_root.rb_node;
522 	parent = NULL;
523 
524 	while (*p) {
525 		parent = *p;
526 		aux = rb_to_skb(parent);
527 		if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
528 			p = &parent->rb_right;
529 		else
530 			p = &parent->rb_left;
531 	}
532 	rb_link_node(&skb->rbnode, parent, p);
533 	rb_insert_color(&skb->rbnode, &flow->t_root);
534 }
535 
536 static bool fq_packet_beyond_horizon(const struct sk_buff *skb,
537 				     const struct fq_sched_data *q, u64 now)
538 {
539 	return unlikely((s64)skb->tstamp > (s64)(now + q->horizon));
540 }
541 
542 #define FQDR(reason) SKB_DROP_REASON_FQ_##reason
543 
544 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
545 		      struct sk_buff **to_free)
546 {
547 	struct fq_sched_data *q = qdisc_priv(sch);
548 	struct fq_flow *f;
549 	u64 now;
550 	u8 band;
551 
552 	band = fq_prio2band(q->prio2band, skb->priority & TC_PRIO_MAX);
553 	if (unlikely(q->band_pkt_count[band] >= sch->limit)) {
554 		q->stat_band_drops[band]++;
555 		return qdisc_drop_reason(skb, sch, to_free,
556 					 FQDR(BAND_LIMIT));
557 	}
558 
559 	now = ktime_get_ns();
560 	if (!skb->tstamp) {
561 		fq_skb_cb(skb)->time_to_send = now;
562 	} else {
563 		/* Check if packet timestamp is too far in the future. */
564 		if (fq_packet_beyond_horizon(skb, q, now)) {
565 			if (q->horizon_drop) {
566 				q->stat_horizon_drops++;
567 				return qdisc_drop_reason(skb, sch, to_free,
568 							 FQDR(HORIZON_LIMIT));
569 			}
570 			q->stat_horizon_caps++;
571 			skb->tstamp = now + q->horizon;
572 		}
573 		fq_skb_cb(skb)->time_to_send = skb->tstamp;
574 	}
575 
576 	f = fq_classify(sch, skb, now);
577 
578 	if (f != &q->internal) {
579 		if (unlikely(f->qlen >= q->flow_plimit)) {
580 			q->stat_flows_plimit++;
581 			return qdisc_drop_reason(skb, sch, to_free,
582 						 FQDR(FLOW_LIMIT));
583 		}
584 
585 		if (fq_flow_is_detached(f)) {
586 			fq_flow_add_tail(q, f, NEW_FLOW);
587 			if (time_after(jiffies, f->age + q->flow_refill_delay))
588 				f->credit = max_t(u32, f->credit, q->quantum);
589 		}
590 
591 		f->band = band;
592 		q->band_pkt_count[band]++;
593 		fq_skb_cb(skb)->band = band;
594 		if (f->qlen == 0)
595 			q->inactive_flows--;
596 	}
597 
598 	f->qlen++;
599 	/* Note: this overwrites f->age */
600 	flow_queue_add(f, skb);
601 
602 	qdisc_qstats_backlog_inc(sch, skb);
603 	sch->q.qlen++;
604 
605 	return NET_XMIT_SUCCESS;
606 }
607 #undef FQDR
608 
609 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
610 {
611 	unsigned long sample;
612 	struct rb_node *p;
613 
614 	if (q->time_next_delayed_flow > now + q->offload_horizon)
615 		return;
616 
617 	/* Update unthrottle latency EWMA.
618 	 * This is cheap and can help diagnosing timer/latency problems.
619 	 */
620 	sample = (unsigned long)(now - q->time_next_delayed_flow);
621 	if ((long)sample > 0) {
622 		q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
623 		q->unthrottle_latency_ns += sample >> 3;
624 	}
625 	now += q->offload_horizon;
626 
627 	q->time_next_delayed_flow = ~0ULL;
628 	while ((p = rb_first(&q->delayed)) != NULL) {
629 		struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
630 
631 		if (f->time_next_packet > now) {
632 			q->time_next_delayed_flow = f->time_next_packet;
633 			break;
634 		}
635 		fq_flow_unset_throttled(q, f);
636 	}
637 }
638 
639 static struct fq_flow_head *fq_pband_head_select(struct fq_perband_flows *pband)
640 {
641 	if (pband->credit <= 0)
642 		return NULL;
643 
644 	if (pband->new_flows.first)
645 		return &pband->new_flows;
646 
647 	return pband->old_flows.first ? &pband->old_flows : NULL;
648 }
649 
650 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
651 {
652 	struct fq_sched_data *q = qdisc_priv(sch);
653 	struct fq_perband_flows *pband;
654 	struct fq_flow_head *head;
655 	struct sk_buff *skb;
656 	struct fq_flow *f;
657 	unsigned long rate;
658 	int retry;
659 	u32 plen;
660 	u64 now;
661 
662 	if (!sch->q.qlen)
663 		return NULL;
664 
665 	skb = fq_peek(&q->internal);
666 	if (skb) {
667 		q->internal.qlen--;
668 		fq_dequeue_skb(sch, &q->internal, skb);
669 		goto out;
670 	}
671 
672 	now = ktime_get_ns();
673 	fq_check_throttled(q, now);
674 	retry = 0;
675 	pband = &q->band_flows[q->band_nr];
676 begin:
677 	head = fq_pband_head_select(pband);
678 	if (!head) {
679 		while (++retry <= FQ_BANDS) {
680 			if (++q->band_nr == FQ_BANDS)
681 				q->band_nr = 0;
682 			pband = &q->band_flows[q->band_nr];
683 			pband->credit = min(pband->credit + pband->quantum,
684 					    pband->quantum);
685 			if (pband->credit > 0)
686 				goto begin;
687 			retry = 0;
688 		}
689 		if (q->time_next_delayed_flow != ~0ULL)
690 			qdisc_watchdog_schedule_range_ns(&q->watchdog,
691 							q->time_next_delayed_flow,
692 							q->timer_slack);
693 		return NULL;
694 	}
695 	f = head->first;
696 	retry = 0;
697 	if (f->credit <= 0) {
698 		f->credit += q->quantum;
699 		head->first = f->next;
700 		fq_flow_add_tail(q, f, OLD_FLOW);
701 		goto begin;
702 	}
703 
704 	skb = fq_peek(f);
705 	if (skb) {
706 		u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
707 					     f->time_next_packet);
708 
709 		if (now + q->offload_horizon < time_next_packet) {
710 			head->first = f->next;
711 			f->time_next_packet = time_next_packet;
712 			fq_flow_set_throttled(q, f);
713 			goto begin;
714 		}
715 		prefetch(&skb->end);
716 		fq_dequeue_skb(sch, f, skb);
717 		if (unlikely((s64)(now - time_next_packet - q->ce_threshold) > 0)) {
718 			INET_ECN_set_ce(skb);
719 			q->stat_ce_mark++;
720 		}
721 		if (--f->qlen == 0)
722 			q->inactive_flows++;
723 		q->band_pkt_count[fq_skb_cb(skb)->band]--;
724 	} else {
725 		head->first = f->next;
726 		/* force a pass through old_flows to prevent starvation */
727 		if (head == &pband->new_flows) {
728 			fq_flow_add_tail(q, f, OLD_FLOW);
729 		} else {
730 			fq_flow_set_detached(f);
731 		}
732 		goto begin;
733 	}
734 	plen = qdisc_pkt_len(skb);
735 	f->credit -= plen;
736 	pband->credit -= plen;
737 
738 	if (!q->rate_enable)
739 		goto out;
740 
741 	rate = q->flow_max_rate;
742 
743 	/* If EDT time was provided for this skb, we need to
744 	 * update f->time_next_packet only if this qdisc enforces
745 	 * a flow max rate.
746 	 */
747 	if (!skb->tstamp) {
748 		if (skb->sk)
749 			rate = min(READ_ONCE(skb->sk->sk_pacing_rate), rate);
750 
751 		if (rate <= q->low_rate_threshold) {
752 			f->credit = 0;
753 		} else {
754 			plen = max(plen, q->quantum);
755 			if (f->credit > 0)
756 				goto out;
757 		}
758 	}
759 	if (rate != ~0UL) {
760 		u64 len = (u64)plen * NSEC_PER_SEC;
761 
762 		if (likely(rate))
763 			len = div64_ul(len, rate);
764 		/* Since socket rate can change later,
765 		 * clamp the delay to 1 second.
766 		 * Really, providers of too big packets should be fixed !
767 		 */
768 		if (unlikely(len > NSEC_PER_SEC)) {
769 			len = NSEC_PER_SEC;
770 			q->stat_pkts_too_long++;
771 		}
772 		/* Account for schedule/timers drifts.
773 		 * f->time_next_packet was set when prior packet was sent,
774 		 * and current time (@now) can be too late by tens of us.
775 		 */
776 		if (f->time_next_packet)
777 			len -= min(len/2, now - f->time_next_packet);
778 		f->time_next_packet = now + len;
779 	}
780 out:
781 	return skb;
782 }
783 
784 static void fq_flow_purge(struct fq_flow *flow)
785 {
786 	struct rb_node *p = rb_first(&flow->t_root);
787 
788 	while (p) {
789 		struct sk_buff *skb = rb_to_skb(p);
790 
791 		p = rb_next(p);
792 		rb_erase(&skb->rbnode, &flow->t_root);
793 		rtnl_kfree_skbs(skb, skb);
794 	}
795 	rtnl_kfree_skbs(flow->head, flow->tail);
796 	flow->head = NULL;
797 	flow->qlen = 0;
798 }
799 
800 static void fq_reset(struct Qdisc *sch)
801 {
802 	struct fq_sched_data *q = qdisc_priv(sch);
803 	struct rb_root *root;
804 	struct rb_node *p;
805 	struct fq_flow *f;
806 	unsigned int idx;
807 
808 	sch->q.qlen = 0;
809 	sch->qstats.backlog = 0;
810 
811 	fq_flow_purge(&q->internal);
812 
813 	if (!q->fq_root)
814 		return;
815 
816 	for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
817 		root = &q->fq_root[idx];
818 		while ((p = rb_first(root)) != NULL) {
819 			f = rb_entry(p, struct fq_flow, fq_node);
820 			rb_erase(p, root);
821 
822 			fq_flow_purge(f);
823 
824 			kmem_cache_free(fq_flow_cachep, f);
825 		}
826 	}
827 	for (idx = 0; idx < FQ_BANDS; idx++) {
828 		q->band_flows[idx].new_flows.first = NULL;
829 		q->band_flows[idx].old_flows.first = NULL;
830 	}
831 	q->delayed		= RB_ROOT;
832 	q->flows		= 0;
833 	q->inactive_flows	= 0;
834 	q->throttled_flows	= 0;
835 }
836 
837 static void fq_rehash(struct fq_sched_data *q,
838 		      struct rb_root *old_array, u32 old_log,
839 		      struct rb_root *new_array, u32 new_log)
840 {
841 	struct rb_node *op, **np, *parent;
842 	struct rb_root *oroot, *nroot;
843 	struct fq_flow *of, *nf;
844 	int fcnt = 0;
845 	u32 idx;
846 
847 	for (idx = 0; idx < (1U << old_log); idx++) {
848 		oroot = &old_array[idx];
849 		while ((op = rb_first(oroot)) != NULL) {
850 			rb_erase(op, oroot);
851 			of = rb_entry(op, struct fq_flow, fq_node);
852 			if (fq_gc_candidate(of)) {
853 				fcnt++;
854 				kmem_cache_free(fq_flow_cachep, of);
855 				continue;
856 			}
857 			nroot = &new_array[hash_ptr(of->sk, new_log)];
858 
859 			np = &nroot->rb_node;
860 			parent = NULL;
861 			while (*np) {
862 				parent = *np;
863 
864 				nf = rb_entry(parent, struct fq_flow, fq_node);
865 				BUG_ON(nf->sk == of->sk);
866 
867 				if (nf->sk > of->sk)
868 					np = &parent->rb_right;
869 				else
870 					np = &parent->rb_left;
871 			}
872 
873 			rb_link_node(&of->fq_node, parent, np);
874 			rb_insert_color(&of->fq_node, nroot);
875 		}
876 	}
877 	q->flows -= fcnt;
878 	q->inactive_flows -= fcnt;
879 	q->stat_gc_flows += fcnt;
880 }
881 
882 static void fq_free(void *addr)
883 {
884 	kvfree(addr);
885 }
886 
887 static int fq_resize(struct Qdisc *sch, u32 log)
888 {
889 	struct fq_sched_data *q = qdisc_priv(sch);
890 	struct rb_root *array;
891 	void *old_fq_root;
892 	u32 idx;
893 
894 	if (q->fq_root && log == q->fq_trees_log)
895 		return 0;
896 
897 	/* If XPS was setup, we can allocate memory on right NUMA node */
898 	array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
899 			      netdev_queue_numa_node_read(sch->dev_queue));
900 	if (!array)
901 		return -ENOMEM;
902 
903 	for (idx = 0; idx < (1U << log); idx++)
904 		array[idx] = RB_ROOT;
905 
906 	sch_tree_lock(sch);
907 
908 	old_fq_root = q->fq_root;
909 	if (old_fq_root)
910 		fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
911 
912 	q->fq_root = array;
913 	WRITE_ONCE(q->fq_trees_log, log);
914 
915 	sch_tree_unlock(sch);
916 
917 	fq_free(old_fq_root);
918 
919 	return 0;
920 }
921 
922 static const struct netlink_range_validation iq_range = {
923 	.max = INT_MAX,
924 };
925 
926 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
927 	[TCA_FQ_UNSPEC]			= { .strict_start_type = TCA_FQ_TIMER_SLACK },
928 
929 	[TCA_FQ_PLIMIT]			= { .type = NLA_U32 },
930 	[TCA_FQ_FLOW_PLIMIT]		= { .type = NLA_U32 },
931 	[TCA_FQ_QUANTUM]		= { .type = NLA_U32 },
932 	[TCA_FQ_INITIAL_QUANTUM]	= NLA_POLICY_FULL_RANGE(NLA_U32, &iq_range),
933 	[TCA_FQ_RATE_ENABLE]		= { .type = NLA_U32 },
934 	[TCA_FQ_FLOW_DEFAULT_RATE]	= { .type = NLA_U32 },
935 	[TCA_FQ_FLOW_MAX_RATE]		= { .type = NLA_U32 },
936 	[TCA_FQ_BUCKETS_LOG]		= { .type = NLA_U32 },
937 	[TCA_FQ_FLOW_REFILL_DELAY]	= { .type = NLA_U32 },
938 	[TCA_FQ_ORPHAN_MASK]		= { .type = NLA_U32 },
939 	[TCA_FQ_LOW_RATE_THRESHOLD]	= { .type = NLA_U32 },
940 	[TCA_FQ_CE_THRESHOLD]		= { .type = NLA_U32 },
941 	[TCA_FQ_TIMER_SLACK]		= { .type = NLA_U32 },
942 	[TCA_FQ_HORIZON]		= { .type = NLA_U32 },
943 	[TCA_FQ_HORIZON_DROP]		= { .type = NLA_U8 },
944 	[TCA_FQ_PRIOMAP]		= NLA_POLICY_EXACT_LEN(sizeof(struct tc_prio_qopt)),
945 	[TCA_FQ_WEIGHTS]		= NLA_POLICY_EXACT_LEN(FQ_BANDS * sizeof(s32)),
946 	[TCA_FQ_OFFLOAD_HORIZON]	= { .type = NLA_U32 },
947 };
948 
949 /* compress a u8 array with all elems <= 3 to an array of 2-bit fields */
950 static void fq_prio2band_compress_crumb(const u8 *in, u8 *out)
951 {
952 	const int num_elems = TC_PRIO_MAX + 1;
953 	u8 tmp[FQ_PRIO2BAND_CRUMB_SIZE];
954 	int i;
955 
956 	memset(tmp, 0, sizeof(tmp));
957 	for (i = 0; i < num_elems; i++)
958 		tmp[i / 4] |= in[i] << (2 * (i & 0x3));
959 
960 	for (i = 0; i < FQ_PRIO2BAND_CRUMB_SIZE; i++)
961 		WRITE_ONCE(out[i], tmp[i]);
962 }
963 
964 static void fq_prio2band_decompress_crumb(const u8 *in, u8 *out)
965 {
966 	const int num_elems = TC_PRIO_MAX + 1;
967 	int i;
968 
969 	for (i = 0; i < num_elems; i++)
970 		out[i] = fq_prio2band(in, i);
971 }
972 
973 static int fq_load_weights(struct fq_sched_data *q,
974 			   const struct nlattr *attr,
975 			   struct netlink_ext_ack *extack)
976 {
977 	s32 *weights = nla_data(attr);
978 	int i;
979 
980 	for (i = 0; i < FQ_BANDS; i++) {
981 		if (weights[i] < FQ_MIN_WEIGHT) {
982 			NL_SET_ERR_MSG_FMT_MOD(extack, "Weight %d less that minimum allowed %d",
983 					       weights[i], FQ_MIN_WEIGHT);
984 			return -EINVAL;
985 		}
986 	}
987 	for (i = 0; i < FQ_BANDS; i++)
988 		WRITE_ONCE(q->band_flows[i].quantum, weights[i]);
989 	return 0;
990 }
991 
992 static int fq_load_priomap(struct fq_sched_data *q,
993 			   const struct nlattr *attr,
994 			   struct netlink_ext_ack *extack)
995 {
996 	const struct tc_prio_qopt *map = nla_data(attr);
997 	int i;
998 
999 	if (map->bands != FQ_BANDS) {
1000 		NL_SET_ERR_MSG_MOD(extack, "FQ only supports 3 bands");
1001 		return -EINVAL;
1002 	}
1003 	for (i = 0; i < TC_PRIO_MAX + 1; i++) {
1004 		if (map->priomap[i] >= FQ_BANDS) {
1005 			NL_SET_ERR_MSG_FMT_MOD(extack, "FQ priomap field %d maps to a too high band %d",
1006 					       i, map->priomap[i]);
1007 			return -EINVAL;
1008 		}
1009 	}
1010 	fq_prio2band_compress_crumb(map->priomap, q->prio2band);
1011 	return 0;
1012 }
1013 
1014 static int fq_change(struct Qdisc *sch, struct nlattr *opt,
1015 		     struct netlink_ext_ack *extack)
1016 {
1017 	unsigned int dropped_pkts = 0, dropped_bytes = 0;
1018 	struct fq_sched_data *q = qdisc_priv(sch);
1019 	struct nlattr *tb[TCA_FQ_MAX + 1];
1020 	u32 fq_log;
1021 	int err;
1022 
1023 	err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
1024 					  NULL);
1025 	if (err < 0)
1026 		return err;
1027 
1028 	sch_tree_lock(sch);
1029 
1030 	fq_log = q->fq_trees_log;
1031 
1032 	if (tb[TCA_FQ_BUCKETS_LOG]) {
1033 		u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
1034 
1035 		if (nval >= 1 && nval <= ilog2(256*1024))
1036 			fq_log = nval;
1037 		else
1038 			err = -EINVAL;
1039 	}
1040 	if (tb[TCA_FQ_PLIMIT])
1041 		WRITE_ONCE(sch->limit,
1042 			   nla_get_u32(tb[TCA_FQ_PLIMIT]));
1043 
1044 	if (tb[TCA_FQ_FLOW_PLIMIT])
1045 		WRITE_ONCE(q->flow_plimit,
1046 			   nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]));
1047 
1048 	if (tb[TCA_FQ_QUANTUM]) {
1049 		u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
1050 
1051 		if (quantum > 0 && quantum <= (1 << 20)) {
1052 			WRITE_ONCE(q->quantum, quantum);
1053 		} else {
1054 			NL_SET_ERR_MSG_MOD(extack, "invalid quantum");
1055 			err = -EINVAL;
1056 		}
1057 	}
1058 
1059 	if (tb[TCA_FQ_INITIAL_QUANTUM])
1060 		WRITE_ONCE(q->initial_quantum,
1061 			   nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]));
1062 
1063 	if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
1064 		pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
1065 				    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
1066 
1067 	if (tb[TCA_FQ_FLOW_MAX_RATE]) {
1068 		u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
1069 
1070 		WRITE_ONCE(q->flow_max_rate,
1071 			   (rate == ~0U) ? ~0UL : rate);
1072 	}
1073 	if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
1074 		WRITE_ONCE(q->low_rate_threshold,
1075 			   nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]));
1076 
1077 	if (tb[TCA_FQ_RATE_ENABLE]) {
1078 		u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
1079 
1080 		if (enable <= 1)
1081 			WRITE_ONCE(q->rate_enable,
1082 				   enable);
1083 		else
1084 			err = -EINVAL;
1085 	}
1086 
1087 	if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
1088 		u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
1089 
1090 		WRITE_ONCE(q->flow_refill_delay,
1091 			   usecs_to_jiffies(usecs_delay));
1092 	}
1093 
1094 	if (!err && tb[TCA_FQ_PRIOMAP])
1095 		err = fq_load_priomap(q, tb[TCA_FQ_PRIOMAP], extack);
1096 
1097 	if (!err && tb[TCA_FQ_WEIGHTS])
1098 		err = fq_load_weights(q, tb[TCA_FQ_WEIGHTS], extack);
1099 
1100 	if (tb[TCA_FQ_ORPHAN_MASK])
1101 		WRITE_ONCE(q->orphan_mask,
1102 			   nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]));
1103 
1104 	if (tb[TCA_FQ_CE_THRESHOLD])
1105 		WRITE_ONCE(q->ce_threshold,
1106 			   (u64)NSEC_PER_USEC *
1107 			   nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]));
1108 
1109 	if (tb[TCA_FQ_TIMER_SLACK])
1110 		WRITE_ONCE(q->timer_slack,
1111 			   nla_get_u32(tb[TCA_FQ_TIMER_SLACK]));
1112 
1113 	if (tb[TCA_FQ_HORIZON])
1114 		WRITE_ONCE(q->horizon,
1115 			   (u64)NSEC_PER_USEC *
1116 			   nla_get_u32(tb[TCA_FQ_HORIZON]));
1117 
1118 	if (tb[TCA_FQ_HORIZON_DROP])
1119 		WRITE_ONCE(q->horizon_drop,
1120 			   nla_get_u8(tb[TCA_FQ_HORIZON_DROP]));
1121 
1122 	if (tb[TCA_FQ_OFFLOAD_HORIZON]) {
1123 		u64 offload_horizon = (u64)NSEC_PER_USEC *
1124 				      nla_get_u32(tb[TCA_FQ_OFFLOAD_HORIZON]);
1125 
1126 		if (offload_horizon <= qdisc_dev(sch)->max_pacing_offload_horizon) {
1127 			WRITE_ONCE(q->offload_horizon, offload_horizon);
1128 		} else {
1129 			NL_SET_ERR_MSG_MOD(extack, "invalid offload_horizon");
1130 			err = -EINVAL;
1131 		}
1132 	}
1133 	if (!err) {
1134 
1135 		sch_tree_unlock(sch);
1136 		err = fq_resize(sch, fq_log);
1137 		sch_tree_lock(sch);
1138 	}
1139 
1140 	while (sch->q.qlen > sch->limit) {
1141 		struct sk_buff *skb = qdisc_dequeue_internal(sch, false);
1142 
1143 		if (!skb)
1144 			break;
1145 
1146 		dropped_pkts++;
1147 		dropped_bytes += qdisc_pkt_len(skb);
1148 		rtnl_kfree_skbs(skb, skb);
1149 	}
1150 	qdisc_tree_reduce_backlog(sch, dropped_pkts, dropped_bytes);
1151 
1152 	sch_tree_unlock(sch);
1153 	return err;
1154 }
1155 
1156 static void fq_destroy(struct Qdisc *sch)
1157 {
1158 	struct fq_sched_data *q = qdisc_priv(sch);
1159 
1160 	fq_reset(sch);
1161 	fq_free(q->fq_root);
1162 	qdisc_watchdog_cancel(&q->watchdog);
1163 }
1164 
1165 static int fq_init(struct Qdisc *sch, struct nlattr *opt,
1166 		   struct netlink_ext_ack *extack)
1167 {
1168 	struct fq_sched_data *q = qdisc_priv(sch);
1169 	int i, err;
1170 
1171 	sch->limit		= 10000;
1172 	q->flow_plimit		= 100;
1173 	q->quantum		= 2 * psched_mtu(qdisc_dev(sch));
1174 	q->initial_quantum	= 10 * psched_mtu(qdisc_dev(sch));
1175 	q->flow_refill_delay	= msecs_to_jiffies(40);
1176 	q->flow_max_rate	= ~0UL;
1177 	q->time_next_delayed_flow = ~0ULL;
1178 	q->rate_enable		= 1;
1179 	for (i = 0; i < FQ_BANDS; i++) {
1180 		q->band_flows[i].new_flows.first = NULL;
1181 		q->band_flows[i].old_flows.first = NULL;
1182 	}
1183 	q->band_flows[0].quantum = 9 << 16;
1184 	q->band_flows[1].quantum = 3 << 16;
1185 	q->band_flows[2].quantum = 1 << 16;
1186 	q->delayed		= RB_ROOT;
1187 	q->fq_root		= NULL;
1188 	q->fq_trees_log		= ilog2(1024);
1189 	q->orphan_mask		= 1024 - 1;
1190 	q->low_rate_threshold	= 550000 / 8;
1191 
1192 	q->timer_slack = 10 * NSEC_PER_USEC; /* 10 usec of hrtimer slack */
1193 
1194 	q->horizon = 10ULL * NSEC_PER_SEC; /* 10 seconds */
1195 	q->horizon_drop = 1; /* by default, drop packets beyond horizon */
1196 
1197 	/* Default ce_threshold of 4294 seconds */
1198 	q->ce_threshold		= (u64)NSEC_PER_USEC * ~0U;
1199 
1200 	fq_prio2band_compress_crumb(sch_default_prio2band, q->prio2band);
1201 	qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
1202 
1203 	if (opt)
1204 		err = fq_change(sch, opt, extack);
1205 	else
1206 		err = fq_resize(sch, q->fq_trees_log);
1207 
1208 	return err;
1209 }
1210 
1211 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
1212 {
1213 	struct fq_sched_data *q = qdisc_priv(sch);
1214 	struct tc_prio_qopt prio = {
1215 		.bands = FQ_BANDS,
1216 	};
1217 	struct nlattr *opts;
1218 	u64 offload_horizon;
1219 	u64 ce_threshold;
1220 	s32 weights[3];
1221 	u64 horizon;
1222 
1223 	opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
1224 	if (opts == NULL)
1225 		goto nla_put_failure;
1226 
1227 	/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
1228 
1229 	ce_threshold = READ_ONCE(q->ce_threshold);
1230 	do_div(ce_threshold, NSEC_PER_USEC);
1231 
1232 	horizon = READ_ONCE(q->horizon);
1233 	do_div(horizon, NSEC_PER_USEC);
1234 
1235 	offload_horizon = READ_ONCE(q->offload_horizon);
1236 	do_div(offload_horizon, NSEC_PER_USEC);
1237 
1238 	if (nla_put_u32(skb, TCA_FQ_PLIMIT,
1239 			READ_ONCE(sch->limit)) ||
1240 	    nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT,
1241 			READ_ONCE(q->flow_plimit)) ||
1242 	    nla_put_u32(skb, TCA_FQ_QUANTUM,
1243 			READ_ONCE(q->quantum)) ||
1244 	    nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM,
1245 			READ_ONCE(q->initial_quantum)) ||
1246 	    nla_put_u32(skb, TCA_FQ_RATE_ENABLE,
1247 			READ_ONCE(q->rate_enable)) ||
1248 	    nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
1249 			min_t(unsigned long,
1250 			      READ_ONCE(q->flow_max_rate), ~0U)) ||
1251 	    nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
1252 			jiffies_to_usecs(READ_ONCE(q->flow_refill_delay))) ||
1253 	    nla_put_u32(skb, TCA_FQ_ORPHAN_MASK,
1254 			READ_ONCE(q->orphan_mask)) ||
1255 	    nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
1256 			READ_ONCE(q->low_rate_threshold)) ||
1257 	    nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
1258 	    nla_put_u32(skb, TCA_FQ_BUCKETS_LOG,
1259 			READ_ONCE(q->fq_trees_log)) ||
1260 	    nla_put_u32(skb, TCA_FQ_TIMER_SLACK,
1261 			READ_ONCE(q->timer_slack)) ||
1262 	    nla_put_u32(skb, TCA_FQ_HORIZON, (u32)horizon) ||
1263 	    nla_put_u32(skb, TCA_FQ_OFFLOAD_HORIZON, (u32)offload_horizon) ||
1264 	    nla_put_u8(skb, TCA_FQ_HORIZON_DROP,
1265 		       READ_ONCE(q->horizon_drop)))
1266 		goto nla_put_failure;
1267 
1268 	fq_prio2band_decompress_crumb(q->prio2band, prio.priomap);
1269 	if (nla_put(skb, TCA_FQ_PRIOMAP, sizeof(prio), &prio))
1270 		goto nla_put_failure;
1271 
1272 	weights[0] = READ_ONCE(q->band_flows[0].quantum);
1273 	weights[1] = READ_ONCE(q->band_flows[1].quantum);
1274 	weights[2] = READ_ONCE(q->band_flows[2].quantum);
1275 	if (nla_put(skb, TCA_FQ_WEIGHTS, sizeof(weights), &weights))
1276 		goto nla_put_failure;
1277 
1278 	return nla_nest_end(skb, opts);
1279 
1280 nla_put_failure:
1281 	return -1;
1282 }
1283 
1284 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
1285 {
1286 	struct fq_sched_data *q = qdisc_priv(sch);
1287 	struct tc_fq_qd_stats st;
1288 	int i;
1289 
1290 	st.pad = 0;
1291 
1292 	sch_tree_lock(sch);
1293 
1294 	st.gc_flows		  = q->stat_gc_flows;
1295 	st.highprio_packets	  = 0;
1296 	st.fastpath_packets	  = q->internal.stat_fastpath_packets;
1297 	st.tcp_retrans		  = 0;
1298 	st.throttled		  = q->stat_throttled;
1299 	st.flows_plimit		  = q->stat_flows_plimit;
1300 	st.pkts_too_long	  = q->stat_pkts_too_long;
1301 	st.allocation_errors	  = q->stat_allocation_errors;
1302 	st.time_next_delayed_flow = q->time_next_delayed_flow + q->timer_slack -
1303 				    ktime_get_ns();
1304 	st.flows		  = q->flows;
1305 	st.inactive_flows	  = q->inactive_flows;
1306 	st.throttled_flows	  = q->throttled_flows;
1307 	st.unthrottle_latency_ns  = min_t(unsigned long,
1308 					  q->unthrottle_latency_ns, ~0U);
1309 	st.ce_mark		  = q->stat_ce_mark;
1310 	st.horizon_drops	  = q->stat_horizon_drops;
1311 	st.horizon_caps		  = q->stat_horizon_caps;
1312 	for (i = 0; i < FQ_BANDS; i++) {
1313 		st.band_drops[i]  = q->stat_band_drops[i];
1314 		st.band_pkt_count[i] = q->band_pkt_count[i];
1315 	}
1316 	sch_tree_unlock(sch);
1317 
1318 	return gnet_stats_copy_app(d, &st, sizeof(st));
1319 }
1320 
1321 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
1322 	.id		=	"fq",
1323 	.priv_size	=	sizeof(struct fq_sched_data),
1324 
1325 	.enqueue	=	fq_enqueue,
1326 	.dequeue	=	fq_dequeue,
1327 	.peek		=	qdisc_peek_dequeued,
1328 	.init		=	fq_init,
1329 	.reset		=	fq_reset,
1330 	.destroy	=	fq_destroy,
1331 	.change		=	fq_change,
1332 	.dump		=	fq_dump,
1333 	.dump_stats	=	fq_dump_stats,
1334 	.owner		=	THIS_MODULE,
1335 };
1336 MODULE_ALIAS_NET_SCH("fq");
1337 
1338 static int __init fq_module_init(void)
1339 {
1340 	int ret;
1341 
1342 	fq_flow_cachep = kmem_cache_create("fq_flow_cache",
1343 					   sizeof(struct fq_flow),
1344 					   0, SLAB_HWCACHE_ALIGN, NULL);
1345 	if (!fq_flow_cachep)
1346 		return -ENOMEM;
1347 
1348 	ret = register_qdisc(&fq_qdisc_ops);
1349 	if (ret)
1350 		kmem_cache_destroy(fq_flow_cachep);
1351 	return ret;
1352 }
1353 
1354 static void __exit fq_module_exit(void)
1355 {
1356 	unregister_qdisc(&fq_qdisc_ops);
1357 	kmem_cache_destroy(fq_flow_cachep);
1358 }
1359 
1360 module_init(fq_module_init)
1361 module_exit(fq_module_exit)
1362 MODULE_AUTHOR("Eric Dumazet");
1363 MODULE_LICENSE("GPL");
1364 MODULE_DESCRIPTION("Fair Queue Packet Scheduler");
1365