xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_svm.c (revision 2c1ed907520c50326b8f604907a8478b27881a2e)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2020-2021 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29 
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40 
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45 
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47 
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49  * page table is updated.
50  */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING	(2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 	_dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 	do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59 
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61  * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62  * power of 2MB.
63  */
64 static uint64_t max_svm_range_pages;
65 
66 struct criu_svm_metadata {
67 	struct list_head list;
68 	struct kfd_criu_svm_range_priv_data data;
69 };
70 
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 				    const struct mmu_notifier_range *range,
75 				    unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 		   uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 	.invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82 
83 /**
84  * svm_range_unlink - unlink svm_range from lists and interval tree
85  * @prange: svm range structure to be removed
86  *
87  * Remove the svm_range from the svms and svm_bo lists and the svms
88  * interval tree.
89  *
90  * Context: The caller must hold svms->lock
91  */
svm_range_unlink(struct svm_range * prange)92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 		 prange, prange->start, prange->last);
96 
97 	if (prange->svm_bo) {
98 		spin_lock(&prange->svm_bo->list_lock);
99 		list_del(&prange->svm_bo_list);
100 		spin_unlock(&prange->svm_bo->list_lock);
101 	}
102 
103 	list_del(&prange->list);
104 	if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107 
108 static void
svm_range_add_notifier_locked(struct mm_struct * mm,struct svm_range * prange)109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 		 prange, prange->start, prange->last);
113 
114 	mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 				     prange->start << PAGE_SHIFT,
116 				     prange->npages << PAGE_SHIFT,
117 				     &svm_range_mn_ops);
118 }
119 
120 /**
121  * svm_range_add_to_svms - add svm range to svms
122  * @prange: svm range structure to be added
123  *
124  * Add the svm range to svms interval tree and link list
125  *
126  * Context: The caller must hold svms->lock
127  */
svm_range_add_to_svms(struct svm_range * prange)128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 		 prange, prange->start, prange->last);
132 
133 	list_move_tail(&prange->list, &prange->svms->list);
134 	prange->it_node.start = prange->start;
135 	prange->it_node.last = prange->last;
136 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138 
svm_range_remove_notifier(struct svm_range * prange)139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 	pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 		 prange->svms, prange,
143 		 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 		 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145 
146 	if (prange->notifier.interval_tree.start != 0 &&
147 	    prange->notifier.interval_tree.last != 0)
148 		mmu_interval_notifier_remove(&prange->notifier);
149 }
150 
151 static bool
svm_is_valid_dma_mapping_addr(struct device * dev,dma_addr_t dma_addr)152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 	return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 	       !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157 
158 static int
svm_range_dma_map_dev(struct amdgpu_device * adev,struct svm_range * prange,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns,uint32_t gpuidx)159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 		      unsigned long offset, unsigned long npages,
161 		      unsigned long *hmm_pfns, uint32_t gpuidx)
162 {
163 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 	dma_addr_t *addr = prange->dma_addr[gpuidx];
165 	struct device *dev = adev->dev;
166 	struct page *page;
167 	int i, r;
168 
169 	if (!addr) {
170 		addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 		if (!addr)
172 			return -ENOMEM;
173 		prange->dma_addr[gpuidx] = addr;
174 	}
175 
176 	addr += offset;
177 	for (i = 0; i < npages; i++) {
178 		if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 			dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180 
181 		page = hmm_pfn_to_page(hmm_pfns[i]);
182 		if (is_zone_device_page(page)) {
183 			struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184 
185 			addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 				   bo_adev->vm_manager.vram_base_offset -
187 				   bo_adev->kfd.pgmap.range.start;
188 			addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 			pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 			continue;
191 		}
192 		addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 		r = dma_mapping_error(dev, addr[i]);
194 		if (r) {
195 			dev_err(dev, "failed %d dma_map_page\n", r);
196 			return r;
197 		}
198 		pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 				     addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 	}
201 
202 	return 0;
203 }
204 
205 static int
svm_range_dma_map(struct svm_range * prange,unsigned long * bitmap,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns)206 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
207 		  unsigned long offset, unsigned long npages,
208 		  unsigned long *hmm_pfns)
209 {
210 	struct kfd_process *p;
211 	uint32_t gpuidx;
212 	int r;
213 
214 	p = container_of(prange->svms, struct kfd_process, svms);
215 
216 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
217 		struct kfd_process_device *pdd;
218 
219 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
220 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
221 		if (!pdd) {
222 			pr_debug("failed to find device idx %d\n", gpuidx);
223 			return -EINVAL;
224 		}
225 
226 		r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
227 					  hmm_pfns, gpuidx);
228 		if (r)
229 			break;
230 	}
231 
232 	return r;
233 }
234 
svm_range_dma_unmap_dev(struct device * dev,dma_addr_t * dma_addr,unsigned long offset,unsigned long npages)235 void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
236 			 unsigned long offset, unsigned long npages)
237 {
238 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
239 	int i;
240 
241 	if (!dma_addr)
242 		return;
243 
244 	for (i = offset; i < offset + npages; i++) {
245 		if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
246 			continue;
247 		pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
248 		dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
249 		dma_addr[i] = 0;
250 	}
251 }
252 
svm_range_dma_unmap(struct svm_range * prange)253 void svm_range_dma_unmap(struct svm_range *prange)
254 {
255 	struct kfd_process_device *pdd;
256 	dma_addr_t *dma_addr;
257 	struct device *dev;
258 	struct kfd_process *p;
259 	uint32_t gpuidx;
260 
261 	p = container_of(prange->svms, struct kfd_process, svms);
262 
263 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
264 		dma_addr = prange->dma_addr[gpuidx];
265 		if (!dma_addr)
266 			continue;
267 
268 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
269 		if (!pdd) {
270 			pr_debug("failed to find device idx %d\n", gpuidx);
271 			continue;
272 		}
273 		dev = &pdd->dev->adev->pdev->dev;
274 
275 		svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages);
276 	}
277 }
278 
svm_range_free(struct svm_range * prange,bool do_unmap)279 static void svm_range_free(struct svm_range *prange, bool do_unmap)
280 {
281 	uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
282 	struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
283 	uint32_t gpuidx;
284 
285 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286 		 prange->start, prange->last);
287 
288 	svm_range_vram_node_free(prange);
289 	if (do_unmap)
290 		svm_range_dma_unmap(prange);
291 
292 	if (do_unmap && !p->xnack_enabled) {
293 		pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
294 		amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
295 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
296 	}
297 
298 	/* free dma_addr array for each gpu */
299 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
300 		if (prange->dma_addr[gpuidx]) {
301 			kvfree(prange->dma_addr[gpuidx]);
302 			prange->dma_addr[gpuidx] = NULL;
303 		}
304 	}
305 
306 	mutex_destroy(&prange->lock);
307 	mutex_destroy(&prange->migrate_mutex);
308 	kfree(prange);
309 }
310 
311 static void
svm_range_set_default_attributes(struct svm_range_list * svms,int32_t * location,int32_t * prefetch_loc,uint8_t * granularity,uint32_t * flags)312 svm_range_set_default_attributes(struct svm_range_list *svms, int32_t *location,
313 				 int32_t *prefetch_loc, uint8_t *granularity,
314 				 uint32_t *flags)
315 {
316 	*location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
317 	*prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
318 	*granularity = svms->default_granularity;
319 	*flags =
320 		KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
321 }
322 
323 static struct
svm_range_new(struct svm_range_list * svms,uint64_t start,uint64_t last,bool update_mem_usage)324 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
325 			 uint64_t last, bool update_mem_usage)
326 {
327 	uint64_t size = last - start + 1;
328 	struct svm_range *prange;
329 	struct kfd_process *p;
330 
331 	prange = kzalloc(sizeof(*prange), GFP_KERNEL);
332 	if (!prange)
333 		return NULL;
334 
335 	p = container_of(svms, struct kfd_process, svms);
336 	if (!p->xnack_enabled && update_mem_usage &&
337 	    amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
338 				    KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
339 		pr_info("SVM mapping failed, exceeds resident system memory limit\n");
340 		kfree(prange);
341 		return NULL;
342 	}
343 	prange->npages = size;
344 	prange->svms = svms;
345 	prange->start = start;
346 	prange->last = last;
347 	INIT_LIST_HEAD(&prange->list);
348 	INIT_LIST_HEAD(&prange->update_list);
349 	INIT_LIST_HEAD(&prange->svm_bo_list);
350 	INIT_LIST_HEAD(&prange->deferred_list);
351 	INIT_LIST_HEAD(&prange->child_list);
352 	atomic_set(&prange->invalid, 0);
353 	prange->validate_timestamp = 0;
354 	prange->vram_pages = 0;
355 	mutex_init(&prange->migrate_mutex);
356 	mutex_init(&prange->lock);
357 
358 	if (p->xnack_enabled)
359 		bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
360 			    MAX_GPU_INSTANCE);
361 
362 	svm_range_set_default_attributes(svms, &prange->preferred_loc,
363 					 &prange->prefetch_loc,
364 					 &prange->granularity, &prange->flags);
365 
366 	pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
367 
368 	return prange;
369 }
370 
svm_bo_ref_unless_zero(struct svm_range_bo * svm_bo)371 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
372 {
373 	if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
374 		return false;
375 
376 	return true;
377 }
378 
svm_range_bo_release(struct kref * kref)379 static void svm_range_bo_release(struct kref *kref)
380 {
381 	struct svm_range_bo *svm_bo;
382 
383 	svm_bo = container_of(kref, struct svm_range_bo, kref);
384 	pr_debug("svm_bo 0x%p\n", svm_bo);
385 
386 	spin_lock(&svm_bo->list_lock);
387 	while (!list_empty(&svm_bo->range_list)) {
388 		struct svm_range *prange =
389 				list_first_entry(&svm_bo->range_list,
390 						struct svm_range, svm_bo_list);
391 		/* list_del_init tells a concurrent svm_range_vram_node_new when
392 		 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
393 		 */
394 		list_del_init(&prange->svm_bo_list);
395 		spin_unlock(&svm_bo->list_lock);
396 
397 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
398 			 prange->start, prange->last);
399 		mutex_lock(&prange->lock);
400 		prange->svm_bo = NULL;
401 		/* prange should not hold vram page now */
402 		WARN_ONCE(prange->actual_loc, "prange should not hold vram page");
403 		mutex_unlock(&prange->lock);
404 
405 		spin_lock(&svm_bo->list_lock);
406 	}
407 	spin_unlock(&svm_bo->list_lock);
408 
409 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
410 		struct kfd_process_device *pdd;
411 		struct kfd_process *p;
412 		struct mm_struct *mm;
413 
414 		mm = svm_bo->eviction_fence->mm;
415 		/*
416 		 * The forked child process takes svm_bo device pages ref, svm_bo could be
417 		 * released after parent process is gone.
418 		 */
419 		p = kfd_lookup_process_by_mm(mm);
420 		if (p) {
421 			pdd = kfd_get_process_device_data(svm_bo->node, p);
422 			if (pdd)
423 				atomic64_sub(amdgpu_bo_size(svm_bo->bo), &pdd->vram_usage);
424 			kfd_unref_process(p);
425 		}
426 		mmput(mm);
427 	}
428 
429 	if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
430 		/* We're not in the eviction worker. Signal the fence. */
431 		dma_fence_signal(&svm_bo->eviction_fence->base);
432 	dma_fence_put(&svm_bo->eviction_fence->base);
433 	amdgpu_bo_unref(&svm_bo->bo);
434 	kfree(svm_bo);
435 }
436 
svm_range_bo_wq_release(struct work_struct * work)437 static void svm_range_bo_wq_release(struct work_struct *work)
438 {
439 	struct svm_range_bo *svm_bo;
440 
441 	svm_bo = container_of(work, struct svm_range_bo, release_work);
442 	svm_range_bo_release(&svm_bo->kref);
443 }
444 
svm_range_bo_release_async(struct kref * kref)445 static void svm_range_bo_release_async(struct kref *kref)
446 {
447 	struct svm_range_bo *svm_bo;
448 
449 	svm_bo = container_of(kref, struct svm_range_bo, kref);
450 	pr_debug("svm_bo 0x%p\n", svm_bo);
451 	INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
452 	schedule_work(&svm_bo->release_work);
453 }
454 
svm_range_bo_unref_async(struct svm_range_bo * svm_bo)455 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
456 {
457 	kref_put(&svm_bo->kref, svm_range_bo_release_async);
458 }
459 
svm_range_bo_unref(struct svm_range_bo * svm_bo)460 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
461 {
462 	if (svm_bo)
463 		kref_put(&svm_bo->kref, svm_range_bo_release);
464 }
465 
466 static bool
svm_range_validate_svm_bo(struct kfd_node * node,struct svm_range * prange)467 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
468 {
469 	mutex_lock(&prange->lock);
470 	if (!prange->svm_bo) {
471 		mutex_unlock(&prange->lock);
472 		return false;
473 	}
474 	if (prange->ttm_res) {
475 		/* We still have a reference, all is well */
476 		mutex_unlock(&prange->lock);
477 		return true;
478 	}
479 	if (svm_bo_ref_unless_zero(prange->svm_bo)) {
480 		/*
481 		 * Migrate from GPU to GPU, remove range from source svm_bo->node
482 		 * range list, and return false to allocate svm_bo from destination
483 		 * node.
484 		 */
485 		if (prange->svm_bo->node != node) {
486 			mutex_unlock(&prange->lock);
487 
488 			spin_lock(&prange->svm_bo->list_lock);
489 			list_del_init(&prange->svm_bo_list);
490 			spin_unlock(&prange->svm_bo->list_lock);
491 
492 			svm_range_bo_unref(prange->svm_bo);
493 			return false;
494 		}
495 		if (READ_ONCE(prange->svm_bo->evicting)) {
496 			struct dma_fence *f;
497 			struct svm_range_bo *svm_bo;
498 			/* The BO is getting evicted,
499 			 * we need to get a new one
500 			 */
501 			mutex_unlock(&prange->lock);
502 			svm_bo = prange->svm_bo;
503 			f = dma_fence_get(&svm_bo->eviction_fence->base);
504 			svm_range_bo_unref(prange->svm_bo);
505 			/* wait for the fence to avoid long spin-loop
506 			 * at list_empty_careful
507 			 */
508 			dma_fence_wait(f, false);
509 			dma_fence_put(f);
510 		} else {
511 			/* The BO was still around and we got
512 			 * a new reference to it
513 			 */
514 			mutex_unlock(&prange->lock);
515 			pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
516 				 prange->svms, prange->start, prange->last);
517 
518 			prange->ttm_res = prange->svm_bo->bo->tbo.resource;
519 			return true;
520 		}
521 
522 	} else {
523 		mutex_unlock(&prange->lock);
524 	}
525 
526 	/* We need a new svm_bo. Spin-loop to wait for concurrent
527 	 * svm_range_bo_release to finish removing this range from
528 	 * its range list and set prange->svm_bo to null. After this,
529 	 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
530 	 */
531 	while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
532 		cond_resched();
533 
534 	return false;
535 }
536 
svm_range_bo_new(void)537 static struct svm_range_bo *svm_range_bo_new(void)
538 {
539 	struct svm_range_bo *svm_bo;
540 
541 	svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
542 	if (!svm_bo)
543 		return NULL;
544 
545 	kref_init(&svm_bo->kref);
546 	INIT_LIST_HEAD(&svm_bo->range_list);
547 	spin_lock_init(&svm_bo->list_lock);
548 
549 	return svm_bo;
550 }
551 
552 int
svm_range_vram_node_new(struct kfd_node * node,struct svm_range * prange,bool clear)553 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
554 			bool clear)
555 {
556 	struct kfd_process_device *pdd;
557 	struct amdgpu_bo_param bp;
558 	struct svm_range_bo *svm_bo;
559 	struct amdgpu_bo_user *ubo;
560 	struct amdgpu_bo *bo;
561 	struct kfd_process *p;
562 	struct mm_struct *mm;
563 	int r;
564 
565 	p = container_of(prange->svms, struct kfd_process, svms);
566 	pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
567 		 prange->start, prange->last);
568 
569 	if (svm_range_validate_svm_bo(node, prange))
570 		return 0;
571 
572 	svm_bo = svm_range_bo_new();
573 	if (!svm_bo) {
574 		pr_debug("failed to alloc svm bo\n");
575 		return -ENOMEM;
576 	}
577 	mm = get_task_mm(p->lead_thread);
578 	if (!mm) {
579 		pr_debug("failed to get mm\n");
580 		kfree(svm_bo);
581 		return -ESRCH;
582 	}
583 	svm_bo->node = node;
584 	svm_bo->eviction_fence =
585 		amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
586 					   mm,
587 					   svm_bo);
588 	mmput(mm);
589 	INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
590 	svm_bo->evicting = 0;
591 	memset(&bp, 0, sizeof(bp));
592 	bp.size = prange->npages * PAGE_SIZE;
593 	bp.byte_align = PAGE_SIZE;
594 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
595 	bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
596 	bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
597 	bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
598 	bp.type = ttm_bo_type_device;
599 	bp.resv = NULL;
600 	if (node->xcp)
601 		bp.xcp_id_plus1 = node->xcp->id + 1;
602 
603 	r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
604 	if (r) {
605 		pr_debug("failed %d to create bo\n", r);
606 		goto create_bo_failed;
607 	}
608 	bo = &ubo->bo;
609 
610 	pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
611 		 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
612 		 bp.xcp_id_plus1 - 1);
613 
614 	r = amdgpu_bo_reserve(bo, true);
615 	if (r) {
616 		pr_debug("failed %d to reserve bo\n", r);
617 		goto reserve_bo_failed;
618 	}
619 
620 	if (clear) {
621 		r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
622 		if (r) {
623 			pr_debug("failed %d to sync bo\n", r);
624 			amdgpu_bo_unreserve(bo);
625 			goto reserve_bo_failed;
626 		}
627 	}
628 
629 	r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
630 	if (r) {
631 		pr_debug("failed %d to reserve bo\n", r);
632 		amdgpu_bo_unreserve(bo);
633 		goto reserve_bo_failed;
634 	}
635 	amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
636 
637 	amdgpu_bo_unreserve(bo);
638 
639 	svm_bo->bo = bo;
640 	prange->svm_bo = svm_bo;
641 	prange->ttm_res = bo->tbo.resource;
642 	prange->offset = 0;
643 
644 	spin_lock(&svm_bo->list_lock);
645 	list_add(&prange->svm_bo_list, &svm_bo->range_list);
646 	spin_unlock(&svm_bo->list_lock);
647 
648 	pdd = svm_range_get_pdd_by_node(prange, node);
649 	if (pdd)
650 		atomic64_add(amdgpu_bo_size(bo), &pdd->vram_usage);
651 
652 	return 0;
653 
654 reserve_bo_failed:
655 	amdgpu_bo_unref(&bo);
656 create_bo_failed:
657 	dma_fence_put(&svm_bo->eviction_fence->base);
658 	kfree(svm_bo);
659 	prange->ttm_res = NULL;
660 
661 	return r;
662 }
663 
svm_range_vram_node_free(struct svm_range * prange)664 void svm_range_vram_node_free(struct svm_range *prange)
665 {
666 	/* serialize prange->svm_bo unref */
667 	mutex_lock(&prange->lock);
668 	/* prange->svm_bo has not been unref */
669 	if (prange->ttm_res) {
670 		prange->ttm_res = NULL;
671 		mutex_unlock(&prange->lock);
672 		svm_range_bo_unref(prange->svm_bo);
673 	} else
674 		mutex_unlock(&prange->lock);
675 }
676 
677 struct kfd_node *
svm_range_get_node_by_id(struct svm_range * prange,uint32_t gpu_id)678 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
679 {
680 	struct kfd_process *p;
681 	struct kfd_process_device *pdd;
682 
683 	p = container_of(prange->svms, struct kfd_process, svms);
684 	pdd = kfd_process_device_data_by_id(p, gpu_id);
685 	if (!pdd) {
686 		pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
687 		return NULL;
688 	}
689 
690 	return pdd->dev;
691 }
692 
693 struct kfd_process_device *
svm_range_get_pdd_by_node(struct svm_range * prange,struct kfd_node * node)694 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
695 {
696 	struct kfd_process *p;
697 
698 	p = container_of(prange->svms, struct kfd_process, svms);
699 
700 	return kfd_get_process_device_data(node, p);
701 }
702 
svm_range_bo_validate(void * param,struct amdgpu_bo * bo)703 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
704 {
705 	struct ttm_operation_ctx ctx = { false, false };
706 
707 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
708 
709 	return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
710 }
711 
712 static int
svm_range_check_attr(struct kfd_process * p,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)713 svm_range_check_attr(struct kfd_process *p,
714 		     uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
715 {
716 	uint32_t i;
717 
718 	for (i = 0; i < nattr; i++) {
719 		uint32_t val = attrs[i].value;
720 		int gpuidx = MAX_GPU_INSTANCE;
721 
722 		switch (attrs[i].type) {
723 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
724 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
725 			    val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
726 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
727 			break;
728 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
729 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
730 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
731 			break;
732 		case KFD_IOCTL_SVM_ATTR_ACCESS:
733 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
734 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
735 			gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
736 			break;
737 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
738 			break;
739 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
740 			break;
741 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
742 			break;
743 		default:
744 			pr_debug("unknown attr type 0x%x\n", attrs[i].type);
745 			return -EINVAL;
746 		}
747 
748 		if (gpuidx < 0) {
749 			pr_debug("no GPU 0x%x found\n", val);
750 			return -EINVAL;
751 		} else if (gpuidx < MAX_GPU_INSTANCE &&
752 			   !test_bit(gpuidx, p->svms.bitmap_supported)) {
753 			pr_debug("GPU 0x%x not supported\n", val);
754 			return -EINVAL;
755 		}
756 	}
757 
758 	return 0;
759 }
760 
761 static void
svm_range_apply_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,bool * update_mapping)762 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
763 		      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
764 		      bool *update_mapping)
765 {
766 	uint32_t i;
767 	int gpuidx;
768 
769 	for (i = 0; i < nattr; i++) {
770 		switch (attrs[i].type) {
771 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
772 			prange->preferred_loc = attrs[i].value;
773 			break;
774 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
775 			prange->prefetch_loc = attrs[i].value;
776 			break;
777 		case KFD_IOCTL_SVM_ATTR_ACCESS:
778 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
779 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
780 			if (!p->xnack_enabled)
781 				*update_mapping = true;
782 
783 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
784 							       attrs[i].value);
785 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
786 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
787 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
788 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
789 				bitmap_set(prange->bitmap_access, gpuidx, 1);
790 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
791 			} else {
792 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
793 				bitmap_set(prange->bitmap_aip, gpuidx, 1);
794 			}
795 			break;
796 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
797 			*update_mapping = true;
798 			prange->flags |= attrs[i].value;
799 			break;
800 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
801 			*update_mapping = true;
802 			prange->flags &= ~attrs[i].value;
803 			break;
804 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
805 			prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
806 			break;
807 		default:
808 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
809 		}
810 	}
811 }
812 
813 static bool
svm_range_is_same_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)814 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
815 			uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
816 {
817 	uint32_t i;
818 	int gpuidx;
819 
820 	for (i = 0; i < nattr; i++) {
821 		switch (attrs[i].type) {
822 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
823 			if (prange->preferred_loc != attrs[i].value)
824 				return false;
825 			break;
826 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
827 			/* Prefetch should always trigger a migration even
828 			 * if the value of the attribute didn't change.
829 			 */
830 			return false;
831 		case KFD_IOCTL_SVM_ATTR_ACCESS:
832 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
833 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
834 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
835 							       attrs[i].value);
836 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
837 				if (test_bit(gpuidx, prange->bitmap_access) ||
838 				    test_bit(gpuidx, prange->bitmap_aip))
839 					return false;
840 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
841 				if (!test_bit(gpuidx, prange->bitmap_access))
842 					return false;
843 			} else {
844 				if (!test_bit(gpuidx, prange->bitmap_aip))
845 					return false;
846 			}
847 			break;
848 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
849 			if ((prange->flags & attrs[i].value) != attrs[i].value)
850 				return false;
851 			break;
852 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
853 			if ((prange->flags & attrs[i].value) != 0)
854 				return false;
855 			break;
856 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
857 			if (prange->granularity != attrs[i].value)
858 				return false;
859 			break;
860 		default:
861 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
862 		}
863 	}
864 
865 	return true;
866 }
867 
868 /**
869  * svm_range_debug_dump - print all range information from svms
870  * @svms: svm range list header
871  *
872  * debug output svm range start, end, prefetch location from svms
873  * interval tree and link list
874  *
875  * Context: The caller must hold svms->lock
876  */
svm_range_debug_dump(struct svm_range_list * svms)877 static void svm_range_debug_dump(struct svm_range_list *svms)
878 {
879 	struct interval_tree_node *node;
880 	struct svm_range *prange;
881 
882 	pr_debug("dump svms 0x%p list\n", svms);
883 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
884 
885 	list_for_each_entry(prange, &svms->list, list) {
886 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
887 			 prange, prange->start, prange->npages,
888 			 prange->start + prange->npages - 1,
889 			 prange->actual_loc);
890 	}
891 
892 	pr_debug("dump svms 0x%p interval tree\n", svms);
893 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
894 	node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
895 	while (node) {
896 		prange = container_of(node, struct svm_range, it_node);
897 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
898 			 prange, prange->start, prange->npages,
899 			 prange->start + prange->npages - 1,
900 			 prange->actual_loc);
901 		node = interval_tree_iter_next(node, 0, ~0ULL);
902 	}
903 }
904 
905 static void *
svm_range_copy_array(void * psrc,size_t size,uint64_t num_elements,uint64_t offset,uint64_t * vram_pages)906 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
907 		     uint64_t offset, uint64_t *vram_pages)
908 {
909 	unsigned char *src = (unsigned char *)psrc + offset;
910 	unsigned char *dst;
911 	uint64_t i;
912 
913 	dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
914 	if (!dst)
915 		return NULL;
916 
917 	if (!vram_pages) {
918 		memcpy(dst, src, num_elements * size);
919 		return (void *)dst;
920 	}
921 
922 	*vram_pages = 0;
923 	for (i = 0; i < num_elements; i++) {
924 		dma_addr_t *temp;
925 		temp = (dma_addr_t *)dst + i;
926 		*temp = *((dma_addr_t *)src + i);
927 		if (*temp&SVM_RANGE_VRAM_DOMAIN)
928 			(*vram_pages)++;
929 	}
930 
931 	return (void *)dst;
932 }
933 
934 static int
svm_range_copy_dma_addrs(struct svm_range * dst,struct svm_range * src)935 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
936 {
937 	int i;
938 
939 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
940 		if (!src->dma_addr[i])
941 			continue;
942 		dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
943 					sizeof(*src->dma_addr[i]), src->npages, 0, NULL);
944 		if (!dst->dma_addr[i])
945 			return -ENOMEM;
946 	}
947 
948 	return 0;
949 }
950 
951 static int
svm_range_split_array(void * ppnew,void * ppold,size_t size,uint64_t old_start,uint64_t old_n,uint64_t new_start,uint64_t new_n,uint64_t * new_vram_pages)952 svm_range_split_array(void *ppnew, void *ppold, size_t size,
953 		      uint64_t old_start, uint64_t old_n,
954 		      uint64_t new_start, uint64_t new_n, uint64_t *new_vram_pages)
955 {
956 	unsigned char *new, *old, *pold;
957 	uint64_t d;
958 
959 	if (!ppold)
960 		return 0;
961 	pold = *(unsigned char **)ppold;
962 	if (!pold)
963 		return 0;
964 
965 	d = (new_start - old_start) * size;
966 	/* get dma addr array for new range and calculte its vram page number */
967 	new = svm_range_copy_array(pold, size, new_n, d, new_vram_pages);
968 	if (!new)
969 		return -ENOMEM;
970 	d = (new_start == old_start) ? new_n * size : 0;
971 	old = svm_range_copy_array(pold, size, old_n, d, NULL);
972 	if (!old) {
973 		kvfree(new);
974 		return -ENOMEM;
975 	}
976 	kvfree(pold);
977 	*(void **)ppold = old;
978 	*(void **)ppnew = new;
979 
980 	return 0;
981 }
982 
983 static int
svm_range_split_pages(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)984 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
985 		      uint64_t start, uint64_t last)
986 {
987 	uint64_t npages = last - start + 1;
988 	int i, r;
989 
990 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
991 		r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
992 					  sizeof(*old->dma_addr[i]), old->start,
993 					  npages, new->start, new->npages,
994 					  old->actual_loc ? &new->vram_pages : NULL);
995 		if (r)
996 			return r;
997 	}
998 	if (old->actual_loc)
999 		old->vram_pages -= new->vram_pages;
1000 
1001 	return 0;
1002 }
1003 
1004 static int
svm_range_split_nodes(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1005 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
1006 		      uint64_t start, uint64_t last)
1007 {
1008 	uint64_t npages = last - start + 1;
1009 
1010 	pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
1011 		 new->svms, new, new->start, start, last);
1012 
1013 	if (new->start == old->start) {
1014 		new->offset = old->offset;
1015 		old->offset += new->npages;
1016 	} else {
1017 		new->offset = old->offset + npages;
1018 	}
1019 
1020 	new->svm_bo = svm_range_bo_ref(old->svm_bo);
1021 	new->ttm_res = old->ttm_res;
1022 
1023 	spin_lock(&new->svm_bo->list_lock);
1024 	list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1025 	spin_unlock(&new->svm_bo->list_lock);
1026 
1027 	return 0;
1028 }
1029 
1030 /**
1031  * svm_range_split_adjust - split range and adjust
1032  *
1033  * @new: new range
1034  * @old: the old range
1035  * @start: the old range adjust to start address in pages
1036  * @last: the old range adjust to last address in pages
1037  *
1038  * Copy system memory dma_addr or vram ttm_res in old range to new
1039  * range from new_start up to size new->npages, the remaining old range is from
1040  * start to last
1041  *
1042  * Return:
1043  * 0 - OK, -ENOMEM - out of memory
1044  */
1045 static int
svm_range_split_adjust(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1046 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1047 		      uint64_t start, uint64_t last)
1048 {
1049 	int r;
1050 
1051 	pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1052 		 new->svms, new->start, old->start, old->last, start, last);
1053 
1054 	if (new->start < old->start ||
1055 	    new->last > old->last) {
1056 		WARN_ONCE(1, "invalid new range start or last\n");
1057 		return -EINVAL;
1058 	}
1059 
1060 	r = svm_range_split_pages(new, old, start, last);
1061 	if (r)
1062 		return r;
1063 
1064 	if (old->actual_loc && old->ttm_res) {
1065 		r = svm_range_split_nodes(new, old, start, last);
1066 		if (r)
1067 			return r;
1068 	}
1069 
1070 	old->npages = last - start + 1;
1071 	old->start = start;
1072 	old->last = last;
1073 	new->flags = old->flags;
1074 	new->preferred_loc = old->preferred_loc;
1075 	new->prefetch_loc = old->prefetch_loc;
1076 	new->actual_loc = old->actual_loc;
1077 	new->granularity = old->granularity;
1078 	new->mapped_to_gpu = old->mapped_to_gpu;
1079 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1080 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1081 	atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
1082 
1083 	return 0;
1084 }
1085 
1086 /**
1087  * svm_range_split - split a range in 2 ranges
1088  *
1089  * @prange: the svm range to split
1090  * @start: the remaining range start address in pages
1091  * @last: the remaining range last address in pages
1092  * @new: the result new range generated
1093  *
1094  * Two cases only:
1095  * case 1: if start == prange->start
1096  *         prange ==> prange[start, last]
1097  *         new range [last + 1, prange->last]
1098  *
1099  * case 2: if last == prange->last
1100  *         prange ==> prange[start, last]
1101  *         new range [prange->start, start - 1]
1102  *
1103  * Return:
1104  * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1105  */
1106 static int
svm_range_split(struct svm_range * prange,uint64_t start,uint64_t last,struct svm_range ** new)1107 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1108 		struct svm_range **new)
1109 {
1110 	uint64_t old_start = prange->start;
1111 	uint64_t old_last = prange->last;
1112 	struct svm_range_list *svms;
1113 	int r = 0;
1114 
1115 	pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1116 		 old_start, old_last, start, last);
1117 
1118 	if (old_start != start && old_last != last)
1119 		return -EINVAL;
1120 	if (start < old_start || last > old_last)
1121 		return -EINVAL;
1122 
1123 	svms = prange->svms;
1124 	if (old_start == start)
1125 		*new = svm_range_new(svms, last + 1, old_last, false);
1126 	else
1127 		*new = svm_range_new(svms, old_start, start - 1, false);
1128 	if (!*new)
1129 		return -ENOMEM;
1130 
1131 	r = svm_range_split_adjust(*new, prange, start, last);
1132 	if (r) {
1133 		pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1134 			 r, old_start, old_last, start, last);
1135 		svm_range_free(*new, false);
1136 		*new = NULL;
1137 	}
1138 
1139 	return r;
1140 }
1141 
1142 static int
svm_range_split_tail(struct svm_range * prange,uint64_t new_last,struct list_head * insert_list,struct list_head * remap_list)1143 svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
1144 		     struct list_head *insert_list, struct list_head *remap_list)
1145 {
1146 	struct svm_range *tail = NULL;
1147 	int r = svm_range_split(prange, prange->start, new_last, &tail);
1148 
1149 	if (!r) {
1150 		list_add(&tail->list, insert_list);
1151 		if (!IS_ALIGNED(new_last + 1, 1UL << prange->granularity))
1152 			list_add(&tail->update_list, remap_list);
1153 	}
1154 	return r;
1155 }
1156 
1157 static int
svm_range_split_head(struct svm_range * prange,uint64_t new_start,struct list_head * insert_list,struct list_head * remap_list)1158 svm_range_split_head(struct svm_range *prange, uint64_t new_start,
1159 		     struct list_head *insert_list, struct list_head *remap_list)
1160 {
1161 	struct svm_range *head = NULL;
1162 	int r = svm_range_split(prange, new_start, prange->last, &head);
1163 
1164 	if (!r) {
1165 		list_add(&head->list, insert_list);
1166 		if (!IS_ALIGNED(new_start, 1UL << prange->granularity))
1167 			list_add(&head->update_list, remap_list);
1168 	}
1169 	return r;
1170 }
1171 
1172 static void
svm_range_add_child(struct svm_range * prange,struct mm_struct * mm,struct svm_range * pchild,enum svm_work_list_ops op)1173 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
1174 		    struct svm_range *pchild, enum svm_work_list_ops op)
1175 {
1176 	pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1177 		 pchild, pchild->start, pchild->last, prange, op);
1178 
1179 	pchild->work_item.mm = mm;
1180 	pchild->work_item.op = op;
1181 	list_add_tail(&pchild->child_list, &prange->child_list);
1182 }
1183 
1184 static bool
svm_nodes_in_same_hive(struct kfd_node * node_a,struct kfd_node * node_b)1185 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1186 {
1187 	return (node_a->adev == node_b->adev ||
1188 		amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1189 }
1190 
1191 static uint64_t
svm_range_get_pte_flags(struct kfd_node * node,struct svm_range * prange,int domain)1192 svm_range_get_pte_flags(struct kfd_node *node,
1193 			struct svm_range *prange, int domain)
1194 {
1195 	struct kfd_node *bo_node;
1196 	uint32_t flags = prange->flags;
1197 	uint32_t mapping_flags = 0;
1198 	uint32_t gc_ip_version = KFD_GC_VERSION(node);
1199 	uint64_t pte_flags;
1200 	bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1201 	bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1202 	bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1203 	unsigned int mtype_local;
1204 
1205 	if (domain == SVM_RANGE_VRAM_DOMAIN)
1206 		bo_node = prange->svm_bo->node;
1207 
1208 	switch (gc_ip_version) {
1209 	case IP_VERSION(9, 4, 1):
1210 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1211 			if (bo_node == node) {
1212 				mapping_flags |= coherent ?
1213 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1214 			} else {
1215 				mapping_flags |= coherent ?
1216 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1217 				if (svm_nodes_in_same_hive(node, bo_node))
1218 					snoop = true;
1219 			}
1220 		} else {
1221 			mapping_flags |= coherent ?
1222 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1223 		}
1224 		break;
1225 	case IP_VERSION(9, 4, 2):
1226 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1227 			if (bo_node == node) {
1228 				mapping_flags |= coherent ?
1229 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1230 				if (node->adev->gmc.xgmi.connected_to_cpu)
1231 					snoop = true;
1232 			} else {
1233 				mapping_flags |= coherent ?
1234 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1235 				if (svm_nodes_in_same_hive(node, bo_node))
1236 					snoop = true;
1237 			}
1238 		} else {
1239 			mapping_flags |= coherent ?
1240 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1241 		}
1242 		break;
1243 	case IP_VERSION(9, 4, 3):
1244 	case IP_VERSION(9, 4, 4):
1245 	case IP_VERSION(9, 5, 0):
1246 		if (ext_coherent)
1247 			mtype_local = (gc_ip_version < IP_VERSION(9, 5, 0) && !node->adev->rev_id) ?
1248 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_CC;
1249 		else
1250 			mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1251 				amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1252 		snoop = true;
1253 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1254 			/* local HBM region close to partition */
1255 			if (bo_node->adev == node->adev &&
1256 			    (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1257 				mapping_flags |= mtype_local;
1258 			/* local HBM region far from partition or remote XGMI GPU
1259 			 * with regular system scope coherence
1260 			 */
1261 			else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent)
1262 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1263 			/* PCIe P2P on GPUs pre-9.5.0 */
1264 			else if (gc_ip_version < IP_VERSION(9, 5, 0) &&
1265 				 !svm_nodes_in_same_hive(bo_node, node))
1266 				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1267 			/* Other remote memory */
1268 			else
1269 				mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1270 		/* system memory accessed by the APU */
1271 		} else if (node->adev->flags & AMD_IS_APU) {
1272 			/* On NUMA systems, locality is determined per-page
1273 			 * in amdgpu_gmc_override_vm_pte_flags
1274 			 */
1275 			if (num_possible_nodes() <= 1)
1276 				mapping_flags |= mtype_local;
1277 			else
1278 				mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1279 		/* system memory accessed by the dGPU */
1280 		} else {
1281 			if (gc_ip_version < IP_VERSION(9, 5, 0))
1282 				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1283 			else
1284 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1285 		}
1286 		break;
1287 	case IP_VERSION(12, 0, 0):
1288 	case IP_VERSION(12, 0, 1):
1289 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1290 			if (bo_node != node)
1291 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1292 		} else {
1293 			mapping_flags |= coherent ?
1294 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1295 		}
1296 		break;
1297 	default:
1298 		mapping_flags |= coherent ?
1299 			AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1300 	}
1301 
1302 	mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1303 
1304 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1305 		mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1306 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1307 		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1308 
1309 	pte_flags = AMDGPU_PTE_VALID;
1310 	pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1311 	pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1312 	if (gc_ip_version >= IP_VERSION(12, 0, 0))
1313 		pte_flags |= AMDGPU_PTE_IS_PTE;
1314 
1315 	pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1316 	return pte_flags;
1317 }
1318 
1319 static int
svm_range_unmap_from_gpu(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t start,uint64_t last,struct dma_fence ** fence)1320 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1321 			 uint64_t start, uint64_t last,
1322 			 struct dma_fence **fence)
1323 {
1324 	uint64_t init_pte_value = 0;
1325 
1326 	pr_debug("[0x%llx 0x%llx]\n", start, last);
1327 
1328 	return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start,
1329 				      last, init_pte_value, 0, 0, NULL, NULL,
1330 				      fence);
1331 }
1332 
1333 static int
svm_range_unmap_from_gpus(struct svm_range * prange,unsigned long start,unsigned long last,uint32_t trigger)1334 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1335 			  unsigned long last, uint32_t trigger)
1336 {
1337 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1338 	struct kfd_process_device *pdd;
1339 	struct dma_fence *fence = NULL;
1340 	struct kfd_process *p;
1341 	uint32_t gpuidx;
1342 	int r = 0;
1343 
1344 	if (!prange->mapped_to_gpu) {
1345 		pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1346 			 prange, prange->start, prange->last);
1347 		return 0;
1348 	}
1349 
1350 	if (prange->start == start && prange->last == last) {
1351 		pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1352 		prange->mapped_to_gpu = false;
1353 	}
1354 
1355 	bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1356 		  MAX_GPU_INSTANCE);
1357 	p = container_of(prange->svms, struct kfd_process, svms);
1358 
1359 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1360 		pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1361 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1362 		if (!pdd) {
1363 			pr_debug("failed to find device idx %d\n", gpuidx);
1364 			return -EINVAL;
1365 		}
1366 
1367 		kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1368 					     start, last, trigger);
1369 
1370 		r = svm_range_unmap_from_gpu(pdd->dev->adev,
1371 					     drm_priv_to_vm(pdd->drm_priv),
1372 					     start, last, &fence);
1373 		if (r)
1374 			break;
1375 
1376 		if (fence) {
1377 			r = dma_fence_wait(fence, false);
1378 			dma_fence_put(fence);
1379 			fence = NULL;
1380 			if (r)
1381 				break;
1382 		}
1383 		kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1384 	}
1385 
1386 	return r;
1387 }
1388 
1389 static int
svm_range_map_to_gpu(struct kfd_process_device * pdd,struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,dma_addr_t * dma_addr,struct amdgpu_device * bo_adev,struct dma_fence ** fence,bool flush_tlb)1390 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1391 		     unsigned long offset, unsigned long npages, bool readonly,
1392 		     dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1393 		     struct dma_fence **fence, bool flush_tlb)
1394 {
1395 	struct amdgpu_device *adev = pdd->dev->adev;
1396 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1397 	uint64_t pte_flags;
1398 	unsigned long last_start;
1399 	int last_domain;
1400 	int r = 0;
1401 	int64_t i, j;
1402 
1403 	last_start = prange->start + offset;
1404 
1405 	pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1406 		 last_start, last_start + npages - 1, readonly);
1407 
1408 	for (i = offset; i < offset + npages; i++) {
1409 		last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1410 		dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1411 
1412 		/* Collect all pages in the same address range and memory domain
1413 		 * that can be mapped with a single call to update mapping.
1414 		 */
1415 		if (i < offset + npages - 1 &&
1416 		    last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1417 			continue;
1418 
1419 		pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1420 			 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1421 
1422 		pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1423 		if (readonly)
1424 			pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1425 
1426 		pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1427 			 prange->svms, last_start, prange->start + i,
1428 			 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1429 			 pte_flags);
1430 
1431 		/* For dGPU mode, we use same vm_manager to allocate VRAM for
1432 		 * different memory partition based on fpfn/lpfn, we should use
1433 		 * same vm_manager.vram_base_offset regardless memory partition.
1434 		 */
1435 		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true,
1436 					   NULL, last_start, prange->start + i,
1437 					   pte_flags,
1438 					   (last_start - prange->start) << PAGE_SHIFT,
1439 					   bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1440 					   NULL, dma_addr, &vm->last_update);
1441 
1442 		for (j = last_start - prange->start; j <= i; j++)
1443 			dma_addr[j] |= last_domain;
1444 
1445 		if (r) {
1446 			pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1447 			goto out;
1448 		}
1449 		last_start = prange->start + i + 1;
1450 	}
1451 
1452 	r = amdgpu_vm_update_pdes(adev, vm, false);
1453 	if (r) {
1454 		pr_debug("failed %d to update directories 0x%lx\n", r,
1455 			 prange->start);
1456 		goto out;
1457 	}
1458 
1459 	if (fence)
1460 		*fence = dma_fence_get(vm->last_update);
1461 
1462 out:
1463 	return r;
1464 }
1465 
1466 static int
svm_range_map_to_gpus(struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,unsigned long * bitmap,bool wait,bool flush_tlb)1467 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1468 		      unsigned long npages, bool readonly,
1469 		      unsigned long *bitmap, bool wait, bool flush_tlb)
1470 {
1471 	struct kfd_process_device *pdd;
1472 	struct amdgpu_device *bo_adev = NULL;
1473 	struct kfd_process *p;
1474 	struct dma_fence *fence = NULL;
1475 	uint32_t gpuidx;
1476 	int r = 0;
1477 
1478 	if (prange->svm_bo && prange->ttm_res)
1479 		bo_adev = prange->svm_bo->node->adev;
1480 
1481 	p = container_of(prange->svms, struct kfd_process, svms);
1482 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1483 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1484 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1485 		if (!pdd) {
1486 			pr_debug("failed to find device idx %d\n", gpuidx);
1487 			return -EINVAL;
1488 		}
1489 
1490 		pdd = kfd_bind_process_to_device(pdd->dev, p);
1491 		if (IS_ERR(pdd))
1492 			return -EINVAL;
1493 
1494 		if (bo_adev && pdd->dev->adev != bo_adev &&
1495 		    !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1496 			pr_debug("cannot map to device idx %d\n", gpuidx);
1497 			continue;
1498 		}
1499 
1500 		r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1501 					 prange->dma_addr[gpuidx],
1502 					 bo_adev, wait ? &fence : NULL,
1503 					 flush_tlb);
1504 		if (r)
1505 			break;
1506 
1507 		if (fence) {
1508 			r = dma_fence_wait(fence, false);
1509 			dma_fence_put(fence);
1510 			fence = NULL;
1511 			if (r) {
1512 				pr_debug("failed %d to dma fence wait\n", r);
1513 				break;
1514 			}
1515 		}
1516 
1517 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1518 	}
1519 
1520 	return r;
1521 }
1522 
1523 struct svm_validate_context {
1524 	struct kfd_process *process;
1525 	struct svm_range *prange;
1526 	bool intr;
1527 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1528 	struct drm_exec exec;
1529 };
1530 
svm_range_reserve_bos(struct svm_validate_context * ctx,bool intr)1531 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1532 {
1533 	struct kfd_process_device *pdd;
1534 	struct amdgpu_vm *vm;
1535 	uint32_t gpuidx;
1536 	int r;
1537 
1538 	drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0, 0);
1539 	drm_exec_until_all_locked(&ctx->exec) {
1540 		for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1541 			pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1542 			if (!pdd) {
1543 				pr_debug("failed to find device idx %d\n", gpuidx);
1544 				r = -EINVAL;
1545 				goto unreserve_out;
1546 			}
1547 			vm = drm_priv_to_vm(pdd->drm_priv);
1548 
1549 			r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1550 			drm_exec_retry_on_contention(&ctx->exec);
1551 			if (unlikely(r)) {
1552 				pr_debug("failed %d to reserve bo\n", r);
1553 				goto unreserve_out;
1554 			}
1555 		}
1556 	}
1557 
1558 	for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1559 		pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1560 		if (!pdd) {
1561 			pr_debug("failed to find device idx %d\n", gpuidx);
1562 			r = -EINVAL;
1563 			goto unreserve_out;
1564 		}
1565 
1566 		r = amdgpu_vm_validate(pdd->dev->adev,
1567 				       drm_priv_to_vm(pdd->drm_priv), NULL,
1568 				       svm_range_bo_validate, NULL);
1569 		if (r) {
1570 			pr_debug("failed %d validate pt bos\n", r);
1571 			goto unreserve_out;
1572 		}
1573 	}
1574 
1575 	return 0;
1576 
1577 unreserve_out:
1578 	drm_exec_fini(&ctx->exec);
1579 	return r;
1580 }
1581 
svm_range_unreserve_bos(struct svm_validate_context * ctx)1582 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1583 {
1584 	drm_exec_fini(&ctx->exec);
1585 }
1586 
kfd_svm_page_owner(struct kfd_process * p,int32_t gpuidx)1587 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1588 {
1589 	struct kfd_process_device *pdd;
1590 
1591 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1592 	if (!pdd)
1593 		return NULL;
1594 
1595 	return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1596 }
1597 
1598 /*
1599  * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1600  *
1601  * To prevent concurrent destruction or change of range attributes, the
1602  * svm_read_lock must be held. The caller must not hold the svm_write_lock
1603  * because that would block concurrent evictions and lead to deadlocks. To
1604  * serialize concurrent migrations or validations of the same range, the
1605  * prange->migrate_mutex must be held.
1606  *
1607  * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1608  * eviction fence.
1609  *
1610  * The following sequence ensures race-free validation and GPU mapping:
1611  *
1612  * 1. Reserve page table (and SVM BO if range is in VRAM)
1613  * 2. hmm_range_fault to get page addresses (if system memory)
1614  * 3. DMA-map pages (if system memory)
1615  * 4-a. Take notifier lock
1616  * 4-b. Check that pages still valid (mmu_interval_read_retry)
1617  * 4-c. Check that the range was not split or otherwise invalidated
1618  * 4-d. Update GPU page table
1619  * 4.e. Release notifier lock
1620  * 5. Release page table (and SVM BO) reservation
1621  */
svm_range_validate_and_map(struct mm_struct * mm,unsigned long map_start,unsigned long map_last,struct svm_range * prange,int32_t gpuidx,bool intr,bool wait,bool flush_tlb)1622 static int svm_range_validate_and_map(struct mm_struct *mm,
1623 				      unsigned long map_start, unsigned long map_last,
1624 				      struct svm_range *prange, int32_t gpuidx,
1625 				      bool intr, bool wait, bool flush_tlb)
1626 {
1627 	struct svm_validate_context *ctx;
1628 	unsigned long start, end, addr;
1629 	struct kfd_process *p;
1630 	void *owner;
1631 	int32_t idx;
1632 	int r = 0;
1633 
1634 	ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1635 	if (!ctx)
1636 		return -ENOMEM;
1637 	ctx->process = container_of(prange->svms, struct kfd_process, svms);
1638 	ctx->prange = prange;
1639 	ctx->intr = intr;
1640 
1641 	if (gpuidx < MAX_GPU_INSTANCE) {
1642 		bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1643 		bitmap_set(ctx->bitmap, gpuidx, 1);
1644 	} else if (ctx->process->xnack_enabled) {
1645 		bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1646 
1647 		/* If prefetch range to GPU, or GPU retry fault migrate range to
1648 		 * GPU, which has ACCESS attribute to the range, create mapping
1649 		 * on that GPU.
1650 		 */
1651 		if (prange->actual_loc) {
1652 			gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1653 							prange->actual_loc);
1654 			if (gpuidx < 0) {
1655 				WARN_ONCE(1, "failed get device by id 0x%x\n",
1656 					 prange->actual_loc);
1657 				r = -EINVAL;
1658 				goto free_ctx;
1659 			}
1660 			if (test_bit(gpuidx, prange->bitmap_access))
1661 				bitmap_set(ctx->bitmap, gpuidx, 1);
1662 		}
1663 
1664 		/*
1665 		 * If prange is already mapped or with always mapped flag,
1666 		 * update mapping on GPUs with ACCESS attribute
1667 		 */
1668 		if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1669 			if (prange->mapped_to_gpu ||
1670 			    prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1671 				bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1672 		}
1673 	} else {
1674 		bitmap_or(ctx->bitmap, prange->bitmap_access,
1675 			  prange->bitmap_aip, MAX_GPU_INSTANCE);
1676 	}
1677 
1678 	if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1679 		r = 0;
1680 		goto free_ctx;
1681 	}
1682 
1683 	if (prange->actual_loc && !prange->ttm_res) {
1684 		/* This should never happen. actual_loc gets set by
1685 		 * svm_migrate_ram_to_vram after allocating a BO.
1686 		 */
1687 		WARN_ONCE(1, "VRAM BO missing during validation\n");
1688 		r = -EINVAL;
1689 		goto free_ctx;
1690 	}
1691 
1692 	r = svm_range_reserve_bos(ctx, intr);
1693 	if (r)
1694 		goto free_ctx;
1695 
1696 	p = container_of(prange->svms, struct kfd_process, svms);
1697 	owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1698 						MAX_GPU_INSTANCE));
1699 	for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1700 		if (kfd_svm_page_owner(p, idx) != owner) {
1701 			owner = NULL;
1702 			break;
1703 		}
1704 	}
1705 
1706 	start = map_start << PAGE_SHIFT;
1707 	end = (map_last + 1) << PAGE_SHIFT;
1708 	for (addr = start; !r && addr < end; ) {
1709 		struct hmm_range *hmm_range = NULL;
1710 		unsigned long map_start_vma;
1711 		unsigned long map_last_vma;
1712 		struct vm_area_struct *vma;
1713 		unsigned long next = 0;
1714 		unsigned long offset;
1715 		unsigned long npages;
1716 		bool readonly;
1717 
1718 		vma = vma_lookup(mm, addr);
1719 		if (vma) {
1720 			readonly = !(vma->vm_flags & VM_WRITE);
1721 
1722 			next = min(vma->vm_end, end);
1723 			npages = (next - addr) >> PAGE_SHIFT;
1724 			WRITE_ONCE(p->svms.faulting_task, current);
1725 			r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1726 						       readonly, owner, NULL,
1727 						       &hmm_range);
1728 			WRITE_ONCE(p->svms.faulting_task, NULL);
1729 			if (r)
1730 				pr_debug("failed %d to get svm range pages\n", r);
1731 		} else {
1732 			r = -EFAULT;
1733 		}
1734 
1735 		if (!r) {
1736 			offset = (addr >> PAGE_SHIFT) - prange->start;
1737 			r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1738 					      hmm_range->hmm_pfns);
1739 			if (r)
1740 				pr_debug("failed %d to dma map range\n", r);
1741 		}
1742 
1743 		svm_range_lock(prange);
1744 
1745 		/* Free backing memory of hmm_range if it was initialized
1746 		 * Overrride return value to TRY AGAIN only if prior returns
1747 		 * were successful
1748 		 */
1749 		if (hmm_range && amdgpu_hmm_range_get_pages_done(hmm_range) && !r) {
1750 			pr_debug("hmm update the range, need validate again\n");
1751 			r = -EAGAIN;
1752 		}
1753 
1754 		if (!r && !list_empty(&prange->child_list)) {
1755 			pr_debug("range split by unmap in parallel, validate again\n");
1756 			r = -EAGAIN;
1757 		}
1758 
1759 		if (!r) {
1760 			map_start_vma = max(map_start, prange->start + offset);
1761 			map_last_vma = min(map_last, prange->start + offset + npages - 1);
1762 			if (map_start_vma <= map_last_vma) {
1763 				offset = map_start_vma - prange->start;
1764 				npages = map_last_vma - map_start_vma + 1;
1765 				r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1766 							  ctx->bitmap, wait, flush_tlb);
1767 			}
1768 		}
1769 
1770 		if (!r && next == end)
1771 			prange->mapped_to_gpu = true;
1772 
1773 		svm_range_unlock(prange);
1774 
1775 		addr = next;
1776 	}
1777 
1778 	svm_range_unreserve_bos(ctx);
1779 	if (!r)
1780 		prange->validate_timestamp = ktime_get_boottime();
1781 
1782 free_ctx:
1783 	kfree(ctx);
1784 
1785 	return r;
1786 }
1787 
1788 /**
1789  * svm_range_list_lock_and_flush_work - flush pending deferred work
1790  *
1791  * @svms: the svm range list
1792  * @mm: the mm structure
1793  *
1794  * Context: Returns with mmap write lock held, pending deferred work flushed
1795  *
1796  */
1797 void
svm_range_list_lock_and_flush_work(struct svm_range_list * svms,struct mm_struct * mm)1798 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1799 				   struct mm_struct *mm)
1800 {
1801 retry_flush_work:
1802 	flush_work(&svms->deferred_list_work);
1803 	mmap_write_lock(mm);
1804 
1805 	if (list_empty(&svms->deferred_range_list))
1806 		return;
1807 	mmap_write_unlock(mm);
1808 	pr_debug("retry flush\n");
1809 	goto retry_flush_work;
1810 }
1811 
svm_range_restore_work(struct work_struct * work)1812 static void svm_range_restore_work(struct work_struct *work)
1813 {
1814 	struct delayed_work *dwork = to_delayed_work(work);
1815 	struct amdkfd_process_info *process_info;
1816 	struct svm_range_list *svms;
1817 	struct svm_range *prange;
1818 	struct kfd_process *p;
1819 	struct mm_struct *mm;
1820 	int evicted_ranges;
1821 	int invalid;
1822 	int r;
1823 
1824 	svms = container_of(dwork, struct svm_range_list, restore_work);
1825 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1826 	if (!evicted_ranges)
1827 		return;
1828 
1829 	pr_debug("restore svm ranges\n");
1830 
1831 	p = container_of(svms, struct kfd_process, svms);
1832 	process_info = p->kgd_process_info;
1833 
1834 	/* Keep mm reference when svm_range_validate_and_map ranges */
1835 	mm = get_task_mm(p->lead_thread);
1836 	if (!mm) {
1837 		pr_debug("svms 0x%p process mm gone\n", svms);
1838 		return;
1839 	}
1840 
1841 	mutex_lock(&process_info->lock);
1842 	svm_range_list_lock_and_flush_work(svms, mm);
1843 	mutex_lock(&svms->lock);
1844 
1845 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1846 
1847 	list_for_each_entry(prange, &svms->list, list) {
1848 		invalid = atomic_read(&prange->invalid);
1849 		if (!invalid)
1850 			continue;
1851 
1852 		pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1853 			 prange->svms, prange, prange->start, prange->last,
1854 			 invalid);
1855 
1856 		/*
1857 		 * If range is migrating, wait for migration is done.
1858 		 */
1859 		mutex_lock(&prange->migrate_mutex);
1860 
1861 		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
1862 					       MAX_GPU_INSTANCE, false, true, false);
1863 		if (r)
1864 			pr_debug("failed %d to map 0x%lx to gpus\n", r,
1865 				 prange->start);
1866 
1867 		mutex_unlock(&prange->migrate_mutex);
1868 		if (r)
1869 			goto out_reschedule;
1870 
1871 		if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1872 			goto out_reschedule;
1873 	}
1874 
1875 	if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1876 	    evicted_ranges)
1877 		goto out_reschedule;
1878 
1879 	evicted_ranges = 0;
1880 
1881 	r = kgd2kfd_resume_mm(mm);
1882 	if (r) {
1883 		/* No recovery from this failure. Probably the CP is
1884 		 * hanging. No point trying again.
1885 		 */
1886 		pr_debug("failed %d to resume KFD\n", r);
1887 	}
1888 
1889 	pr_debug("restore svm ranges successfully\n");
1890 
1891 out_reschedule:
1892 	mutex_unlock(&svms->lock);
1893 	mmap_write_unlock(mm);
1894 	mutex_unlock(&process_info->lock);
1895 
1896 	/* If validation failed, reschedule another attempt */
1897 	if (evicted_ranges) {
1898 		pr_debug("reschedule to restore svm range\n");
1899 		queue_delayed_work(system_freezable_wq, &svms->restore_work,
1900 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1901 
1902 		kfd_smi_event_queue_restore_rescheduled(mm);
1903 	}
1904 	mmput(mm);
1905 }
1906 
1907 /**
1908  * svm_range_evict - evict svm range
1909  * @prange: svm range structure
1910  * @mm: current process mm_struct
1911  * @start: starting process queue number
1912  * @last: last process queue number
1913  * @event: mmu notifier event when range is evicted or migrated
1914  *
1915  * Stop all queues of the process to ensure GPU doesn't access the memory, then
1916  * return to let CPU evict the buffer and proceed CPU pagetable update.
1917  *
1918  * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1919  * If invalidation happens while restore work is running, restore work will
1920  * restart to ensure to get the latest CPU pages mapping to GPU, then start
1921  * the queues.
1922  */
1923 static int
svm_range_evict(struct svm_range * prange,struct mm_struct * mm,unsigned long start,unsigned long last,enum mmu_notifier_event event)1924 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1925 		unsigned long start, unsigned long last,
1926 		enum mmu_notifier_event event)
1927 {
1928 	struct svm_range_list *svms = prange->svms;
1929 	struct svm_range *pchild;
1930 	struct kfd_process *p;
1931 	int r = 0;
1932 
1933 	p = container_of(svms, struct kfd_process, svms);
1934 
1935 	pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1936 		 svms, prange->start, prange->last, start, last);
1937 
1938 	if (!p->xnack_enabled ||
1939 	    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1940 		int evicted_ranges;
1941 		bool mapped = prange->mapped_to_gpu;
1942 
1943 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1944 			if (!pchild->mapped_to_gpu)
1945 				continue;
1946 			mapped = true;
1947 			mutex_lock_nested(&pchild->lock, 1);
1948 			if (pchild->start <= last && pchild->last >= start) {
1949 				pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1950 					 pchild->start, pchild->last);
1951 				atomic_inc(&pchild->invalid);
1952 			}
1953 			mutex_unlock(&pchild->lock);
1954 		}
1955 
1956 		if (!mapped)
1957 			return r;
1958 
1959 		if (prange->start <= last && prange->last >= start)
1960 			atomic_inc(&prange->invalid);
1961 
1962 		evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1963 		if (evicted_ranges != 1)
1964 			return r;
1965 
1966 		pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1967 			 prange->svms, prange->start, prange->last);
1968 
1969 		/* First eviction, stop the queues */
1970 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1971 		if (r)
1972 			pr_debug("failed to quiesce KFD\n");
1973 
1974 		pr_debug("schedule to restore svm %p ranges\n", svms);
1975 		queue_delayed_work(system_freezable_wq, &svms->restore_work,
1976 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1977 	} else {
1978 		unsigned long s, l;
1979 		uint32_t trigger;
1980 
1981 		if (event == MMU_NOTIFY_MIGRATE)
1982 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1983 		else
1984 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1985 
1986 		pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1987 			 prange->svms, start, last);
1988 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1989 			mutex_lock_nested(&pchild->lock, 1);
1990 			s = max(start, pchild->start);
1991 			l = min(last, pchild->last);
1992 			if (l >= s)
1993 				svm_range_unmap_from_gpus(pchild, s, l, trigger);
1994 			mutex_unlock(&pchild->lock);
1995 		}
1996 		s = max(start, prange->start);
1997 		l = min(last, prange->last);
1998 		if (l >= s)
1999 			svm_range_unmap_from_gpus(prange, s, l, trigger);
2000 	}
2001 
2002 	return r;
2003 }
2004 
svm_range_clone(struct svm_range * old)2005 static struct svm_range *svm_range_clone(struct svm_range *old)
2006 {
2007 	struct svm_range *new;
2008 
2009 	new = svm_range_new(old->svms, old->start, old->last, false);
2010 	if (!new)
2011 		return NULL;
2012 	if (svm_range_copy_dma_addrs(new, old)) {
2013 		svm_range_free(new, false);
2014 		return NULL;
2015 	}
2016 	if (old->svm_bo) {
2017 		new->ttm_res = old->ttm_res;
2018 		new->offset = old->offset;
2019 		new->svm_bo = svm_range_bo_ref(old->svm_bo);
2020 		spin_lock(&new->svm_bo->list_lock);
2021 		list_add(&new->svm_bo_list, &new->svm_bo->range_list);
2022 		spin_unlock(&new->svm_bo->list_lock);
2023 	}
2024 	new->flags = old->flags;
2025 	new->preferred_loc = old->preferred_loc;
2026 	new->prefetch_loc = old->prefetch_loc;
2027 	new->actual_loc = old->actual_loc;
2028 	new->granularity = old->granularity;
2029 	new->mapped_to_gpu = old->mapped_to_gpu;
2030 	new->vram_pages = old->vram_pages;
2031 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
2032 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
2033 	atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
2034 
2035 	return new;
2036 }
2037 
svm_range_set_max_pages(struct amdgpu_device * adev)2038 void svm_range_set_max_pages(struct amdgpu_device *adev)
2039 {
2040 	uint64_t max_pages;
2041 	uint64_t pages, _pages;
2042 	uint64_t min_pages = 0;
2043 	int i, id;
2044 
2045 	for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
2046 		if (adev->kfd.dev->nodes[i]->xcp)
2047 			id = adev->kfd.dev->nodes[i]->xcp->id;
2048 		else
2049 			id = -1;
2050 		pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2051 		pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2052 		pages = rounddown_pow_of_two(pages);
2053 		min_pages = min_not_zero(min_pages, pages);
2054 	}
2055 
2056 	do {
2057 		max_pages = READ_ONCE(max_svm_range_pages);
2058 		_pages = min_not_zero(max_pages, min_pages);
2059 	} while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2060 }
2061 
2062 static int
svm_range_split_new(struct svm_range_list * svms,uint64_t start,uint64_t last,uint64_t max_pages,struct list_head * insert_list,struct list_head * update_list)2063 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2064 		    uint64_t max_pages, struct list_head *insert_list,
2065 		    struct list_head *update_list)
2066 {
2067 	struct svm_range *prange;
2068 	uint64_t l;
2069 
2070 	pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2071 		 max_pages, start, last);
2072 
2073 	while (last >= start) {
2074 		l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2075 
2076 		prange = svm_range_new(svms, start, l, true);
2077 		if (!prange)
2078 			return -ENOMEM;
2079 		list_add(&prange->list, insert_list);
2080 		list_add(&prange->update_list, update_list);
2081 
2082 		start = l + 1;
2083 	}
2084 	return 0;
2085 }
2086 
2087 /**
2088  * svm_range_add - add svm range and handle overlap
2089  * @p: the range add to this process svms
2090  * @start: page size aligned
2091  * @size: page size aligned
2092  * @nattr: number of attributes
2093  * @attrs: array of attributes
2094  * @update_list: output, the ranges need validate and update GPU mapping
2095  * @insert_list: output, the ranges need insert to svms
2096  * @remove_list: output, the ranges are replaced and need remove from svms
2097  * @remap_list: output, remap unaligned svm ranges
2098  *
2099  * Check if the virtual address range has overlap with any existing ranges,
2100  * split partly overlapping ranges and add new ranges in the gaps. All changes
2101  * should be applied to the range_list and interval tree transactionally. If
2102  * any range split or allocation fails, the entire update fails. Therefore any
2103  * existing overlapping svm_ranges are cloned and the original svm_ranges left
2104  * unchanged.
2105  *
2106  * If the transaction succeeds, the caller can update and insert clones and
2107  * new ranges, then free the originals.
2108  *
2109  * Otherwise the caller can free the clones and new ranges, while the old
2110  * svm_ranges remain unchanged.
2111  *
2112  * Context: Process context, caller must hold svms->lock
2113  *
2114  * Return:
2115  * 0 - OK, otherwise error code
2116  */
2117 static int
svm_range_add(struct kfd_process * p,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,struct list_head * update_list,struct list_head * insert_list,struct list_head * remove_list,struct list_head * remap_list)2118 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2119 	      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2120 	      struct list_head *update_list, struct list_head *insert_list,
2121 	      struct list_head *remove_list, struct list_head *remap_list)
2122 {
2123 	unsigned long last = start + size - 1UL;
2124 	struct svm_range_list *svms = &p->svms;
2125 	struct interval_tree_node *node;
2126 	struct svm_range *prange;
2127 	struct svm_range *tmp;
2128 	struct list_head new_list;
2129 	int r = 0;
2130 
2131 	pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2132 
2133 	INIT_LIST_HEAD(update_list);
2134 	INIT_LIST_HEAD(insert_list);
2135 	INIT_LIST_HEAD(remove_list);
2136 	INIT_LIST_HEAD(&new_list);
2137 	INIT_LIST_HEAD(remap_list);
2138 
2139 	node = interval_tree_iter_first(&svms->objects, start, last);
2140 	while (node) {
2141 		struct interval_tree_node *next;
2142 		unsigned long next_start;
2143 
2144 		pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2145 			 node->last);
2146 
2147 		prange = container_of(node, struct svm_range, it_node);
2148 		next = interval_tree_iter_next(node, start, last);
2149 		next_start = min(node->last, last) + 1;
2150 
2151 		if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2152 		    prange->mapped_to_gpu) {
2153 			/* nothing to do */
2154 		} else if (node->start < start || node->last > last) {
2155 			/* node intersects the update range and its attributes
2156 			 * will change. Clone and split it, apply updates only
2157 			 * to the overlapping part
2158 			 */
2159 			struct svm_range *old = prange;
2160 
2161 			prange = svm_range_clone(old);
2162 			if (!prange) {
2163 				r = -ENOMEM;
2164 				goto out;
2165 			}
2166 
2167 			list_add(&old->update_list, remove_list);
2168 			list_add(&prange->list, insert_list);
2169 			list_add(&prange->update_list, update_list);
2170 
2171 			if (node->start < start) {
2172 				pr_debug("change old range start\n");
2173 				r = svm_range_split_head(prange, start,
2174 							 insert_list, remap_list);
2175 				if (r)
2176 					goto out;
2177 			}
2178 			if (node->last > last) {
2179 				pr_debug("change old range last\n");
2180 				r = svm_range_split_tail(prange, last,
2181 							 insert_list, remap_list);
2182 				if (r)
2183 					goto out;
2184 			}
2185 		} else {
2186 			/* The node is contained within start..last,
2187 			 * just update it
2188 			 */
2189 			list_add(&prange->update_list, update_list);
2190 		}
2191 
2192 		/* insert a new node if needed */
2193 		if (node->start > start) {
2194 			r = svm_range_split_new(svms, start, node->start - 1,
2195 						READ_ONCE(max_svm_range_pages),
2196 						&new_list, update_list);
2197 			if (r)
2198 				goto out;
2199 		}
2200 
2201 		node = next;
2202 		start = next_start;
2203 	}
2204 
2205 	/* add a final range at the end if needed */
2206 	if (start <= last)
2207 		r = svm_range_split_new(svms, start, last,
2208 					READ_ONCE(max_svm_range_pages),
2209 					&new_list, update_list);
2210 
2211 out:
2212 	if (r) {
2213 		list_for_each_entry_safe(prange, tmp, insert_list, list)
2214 			svm_range_free(prange, false);
2215 		list_for_each_entry_safe(prange, tmp, &new_list, list)
2216 			svm_range_free(prange, true);
2217 	} else {
2218 		list_splice(&new_list, insert_list);
2219 	}
2220 
2221 	return r;
2222 }
2223 
2224 static void
svm_range_update_notifier_and_interval_tree(struct mm_struct * mm,struct svm_range * prange)2225 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2226 					    struct svm_range *prange)
2227 {
2228 	unsigned long start;
2229 	unsigned long last;
2230 
2231 	start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2232 	last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2233 
2234 	if (prange->start == start && prange->last == last)
2235 		return;
2236 
2237 	pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2238 		  prange->svms, prange, start, last, prange->start,
2239 		  prange->last);
2240 
2241 	if (start != 0 && last != 0) {
2242 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
2243 		svm_range_remove_notifier(prange);
2244 	}
2245 	prange->it_node.start = prange->start;
2246 	prange->it_node.last = prange->last;
2247 
2248 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
2249 	svm_range_add_notifier_locked(mm, prange);
2250 }
2251 
2252 static void
svm_range_handle_list_op(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm)2253 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2254 			 struct mm_struct *mm)
2255 {
2256 	switch (prange->work_item.op) {
2257 	case SVM_OP_NULL:
2258 		pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2259 			 svms, prange, prange->start, prange->last);
2260 		break;
2261 	case SVM_OP_UNMAP_RANGE:
2262 		pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2263 			 svms, prange, prange->start, prange->last);
2264 		svm_range_unlink(prange);
2265 		svm_range_remove_notifier(prange);
2266 		svm_range_free(prange, true);
2267 		break;
2268 	case SVM_OP_UPDATE_RANGE_NOTIFIER:
2269 		pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2270 			 svms, prange, prange->start, prange->last);
2271 		svm_range_update_notifier_and_interval_tree(mm, prange);
2272 		break;
2273 	case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2274 		pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2275 			 svms, prange, prange->start, prange->last);
2276 		svm_range_update_notifier_and_interval_tree(mm, prange);
2277 		/* TODO: implement deferred validation and mapping */
2278 		break;
2279 	case SVM_OP_ADD_RANGE:
2280 		pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2281 			 prange->start, prange->last);
2282 		svm_range_add_to_svms(prange);
2283 		svm_range_add_notifier_locked(mm, prange);
2284 		break;
2285 	case SVM_OP_ADD_RANGE_AND_MAP:
2286 		pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2287 			 prange, prange->start, prange->last);
2288 		svm_range_add_to_svms(prange);
2289 		svm_range_add_notifier_locked(mm, prange);
2290 		/* TODO: implement deferred validation and mapping */
2291 		break;
2292 	default:
2293 		WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2294 			 prange->work_item.op);
2295 	}
2296 }
2297 
svm_range_drain_retry_fault(struct svm_range_list * svms)2298 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2299 {
2300 	struct kfd_process_device *pdd;
2301 	struct kfd_process *p;
2302 	uint32_t i;
2303 
2304 	p = container_of(svms, struct kfd_process, svms);
2305 
2306 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2307 		pdd = p->pdds[i];
2308 		if (!pdd)
2309 			continue;
2310 
2311 		pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2312 
2313 		amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2314 				pdd->dev->adev->irq.retry_cam_enabled ?
2315 				&pdd->dev->adev->irq.ih :
2316 				&pdd->dev->adev->irq.ih1);
2317 
2318 		if (pdd->dev->adev->irq.retry_cam_enabled)
2319 			amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2320 				&pdd->dev->adev->irq.ih_soft);
2321 
2322 
2323 		pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2324 	}
2325 }
2326 
svm_range_deferred_list_work(struct work_struct * work)2327 static void svm_range_deferred_list_work(struct work_struct *work)
2328 {
2329 	struct svm_range_list *svms;
2330 	struct svm_range *prange;
2331 	struct mm_struct *mm;
2332 
2333 	svms = container_of(work, struct svm_range_list, deferred_list_work);
2334 	pr_debug("enter svms 0x%p\n", svms);
2335 
2336 	spin_lock(&svms->deferred_list_lock);
2337 	while (!list_empty(&svms->deferred_range_list)) {
2338 		prange = list_first_entry(&svms->deferred_range_list,
2339 					  struct svm_range, deferred_list);
2340 		spin_unlock(&svms->deferred_list_lock);
2341 
2342 		pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2343 			 prange->start, prange->last, prange->work_item.op);
2344 
2345 		mm = prange->work_item.mm;
2346 
2347 		mmap_write_lock(mm);
2348 
2349 		/* Remove from deferred_list must be inside mmap write lock, for
2350 		 * two race cases:
2351 		 * 1. unmap_from_cpu may change work_item.op and add the range
2352 		 *    to deferred_list again, cause use after free bug.
2353 		 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2354 		 *    lock and continue because deferred_list is empty, but
2355 		 *    deferred_list work is actually waiting for mmap lock.
2356 		 */
2357 		spin_lock(&svms->deferred_list_lock);
2358 		list_del_init(&prange->deferred_list);
2359 		spin_unlock(&svms->deferred_list_lock);
2360 
2361 		mutex_lock(&svms->lock);
2362 		mutex_lock(&prange->migrate_mutex);
2363 		while (!list_empty(&prange->child_list)) {
2364 			struct svm_range *pchild;
2365 
2366 			pchild = list_first_entry(&prange->child_list,
2367 						struct svm_range, child_list);
2368 			pr_debug("child prange 0x%p op %d\n", pchild,
2369 				 pchild->work_item.op);
2370 			list_del_init(&pchild->child_list);
2371 			svm_range_handle_list_op(svms, pchild, mm);
2372 		}
2373 		mutex_unlock(&prange->migrate_mutex);
2374 
2375 		svm_range_handle_list_op(svms, prange, mm);
2376 		mutex_unlock(&svms->lock);
2377 		mmap_write_unlock(mm);
2378 
2379 		/* Pairs with mmget in svm_range_add_list_work. If dropping the
2380 		 * last mm refcount, schedule release work to avoid circular locking
2381 		 */
2382 		mmput_async(mm);
2383 
2384 		spin_lock(&svms->deferred_list_lock);
2385 	}
2386 	spin_unlock(&svms->deferred_list_lock);
2387 	pr_debug("exit svms 0x%p\n", svms);
2388 }
2389 
2390 void
svm_range_add_list_work(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm,enum svm_work_list_ops op)2391 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2392 			struct mm_struct *mm, enum svm_work_list_ops op)
2393 {
2394 	spin_lock(&svms->deferred_list_lock);
2395 	/* if prange is on the deferred list */
2396 	if (!list_empty(&prange->deferred_list)) {
2397 		pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2398 		WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2399 		if (op != SVM_OP_NULL &&
2400 		    prange->work_item.op != SVM_OP_UNMAP_RANGE)
2401 			prange->work_item.op = op;
2402 	} else {
2403 		prange->work_item.op = op;
2404 
2405 		/* Pairs with mmput in deferred_list_work */
2406 		mmget(mm);
2407 		prange->work_item.mm = mm;
2408 		list_add_tail(&prange->deferred_list,
2409 			      &prange->svms->deferred_range_list);
2410 		pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2411 			 prange, prange->start, prange->last, op);
2412 	}
2413 	spin_unlock(&svms->deferred_list_lock);
2414 }
2415 
schedule_deferred_list_work(struct svm_range_list * svms)2416 void schedule_deferred_list_work(struct svm_range_list *svms)
2417 {
2418 	spin_lock(&svms->deferred_list_lock);
2419 	if (!list_empty(&svms->deferred_range_list))
2420 		schedule_work(&svms->deferred_list_work);
2421 	spin_unlock(&svms->deferred_list_lock);
2422 }
2423 
2424 static void
svm_range_unmap_split(struct mm_struct * mm,struct svm_range * parent,struct svm_range * prange,unsigned long start,unsigned long last)2425 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
2426 		      struct svm_range *prange, unsigned long start,
2427 		      unsigned long last)
2428 {
2429 	struct svm_range *head;
2430 	struct svm_range *tail;
2431 
2432 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2433 		pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2434 			 prange->start, prange->last);
2435 		return;
2436 	}
2437 	if (start > prange->last || last < prange->start)
2438 		return;
2439 
2440 	head = tail = prange;
2441 	if (start > prange->start)
2442 		svm_range_split(prange, prange->start, start - 1, &tail);
2443 	if (last < tail->last)
2444 		svm_range_split(tail, last + 1, tail->last, &head);
2445 
2446 	if (head != prange && tail != prange) {
2447 		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2448 		svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
2449 	} else if (tail != prange) {
2450 		svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
2451 	} else if (head != prange) {
2452 		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2453 	} else if (parent != prange) {
2454 		prange->work_item.op = SVM_OP_UNMAP_RANGE;
2455 	}
2456 }
2457 
2458 static void
svm_range_unmap_from_cpu(struct mm_struct * mm,struct svm_range * prange,unsigned long start,unsigned long last)2459 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2460 			 unsigned long start, unsigned long last)
2461 {
2462 	uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2463 	struct svm_range_list *svms;
2464 	struct svm_range *pchild;
2465 	struct kfd_process *p;
2466 	unsigned long s, l;
2467 	bool unmap_parent;
2468 	uint32_t i;
2469 
2470 	if (atomic_read(&prange->queue_refcount)) {
2471 		int r;
2472 
2473 		pr_warn("Freeing queue vital buffer 0x%lx, queue evicted\n",
2474 			prange->start << PAGE_SHIFT);
2475 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
2476 		if (r)
2477 			pr_debug("failed %d to quiesce KFD queues\n", r);
2478 	}
2479 
2480 	p = kfd_lookup_process_by_mm(mm);
2481 	if (!p)
2482 		return;
2483 	svms = &p->svms;
2484 
2485 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2486 		 prange, prange->start, prange->last, start, last);
2487 
2488 	/* calculate time stamps that are used to decide which page faults need be
2489 	 * dropped or handled before unmap pages from gpu vm
2490 	 */
2491 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2492 		struct kfd_process_device *pdd;
2493 		struct amdgpu_device *adev;
2494 		struct amdgpu_ih_ring *ih;
2495 		uint32_t checkpoint_wptr;
2496 
2497 		pdd = p->pdds[i];
2498 		if (!pdd)
2499 			continue;
2500 
2501 		adev = pdd->dev->adev;
2502 
2503 		/* Check and drain ih1 ring if cam not available */
2504 		if (adev->irq.ih1.ring_size) {
2505 			ih = &adev->irq.ih1;
2506 			checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2507 			if (ih->rptr != checkpoint_wptr) {
2508 				svms->checkpoint_ts[i] =
2509 					amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2510 				continue;
2511 			}
2512 		}
2513 
2514 		/* check if dev->irq.ih_soft is not empty */
2515 		ih = &adev->irq.ih_soft;
2516 		checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2517 		if (ih->rptr != checkpoint_wptr)
2518 			svms->checkpoint_ts[i] = amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2519 	}
2520 
2521 	unmap_parent = start <= prange->start && last >= prange->last;
2522 
2523 	list_for_each_entry(pchild, &prange->child_list, child_list) {
2524 		mutex_lock_nested(&pchild->lock, 1);
2525 		s = max(start, pchild->start);
2526 		l = min(last, pchild->last);
2527 		if (l >= s)
2528 			svm_range_unmap_from_gpus(pchild, s, l, trigger);
2529 		svm_range_unmap_split(mm, prange, pchild, start, last);
2530 		mutex_unlock(&pchild->lock);
2531 	}
2532 	s = max(start, prange->start);
2533 	l = min(last, prange->last);
2534 	if (l >= s)
2535 		svm_range_unmap_from_gpus(prange, s, l, trigger);
2536 	svm_range_unmap_split(mm, prange, prange, start, last);
2537 
2538 	if (unmap_parent)
2539 		svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2540 	else
2541 		svm_range_add_list_work(svms, prange, mm,
2542 					SVM_OP_UPDATE_RANGE_NOTIFIER);
2543 	schedule_deferred_list_work(svms);
2544 
2545 	kfd_unref_process(p);
2546 }
2547 
2548 /**
2549  * svm_range_cpu_invalidate_pagetables - interval notifier callback
2550  * @mni: mmu_interval_notifier struct
2551  * @range: mmu_notifier_range struct
2552  * @cur_seq: value to pass to mmu_interval_set_seq()
2553  *
2554  * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2555  * is from migration, or CPU page invalidation callback.
2556  *
2557  * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2558  * work thread, and split prange if only part of prange is unmapped.
2559  *
2560  * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2561  * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2562  * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2563  * update GPU mapping to recover.
2564  *
2565  * Context: mmap lock, notifier_invalidate_start lock are held
2566  *          for invalidate event, prange lock is held if this is from migration
2567  */
2568 static bool
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)2569 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2570 				    const struct mmu_notifier_range *range,
2571 				    unsigned long cur_seq)
2572 {
2573 	struct svm_range *prange;
2574 	unsigned long start;
2575 	unsigned long last;
2576 
2577 	if (range->event == MMU_NOTIFY_RELEASE)
2578 		return true;
2579 	if (!mmget_not_zero(mni->mm))
2580 		return true;
2581 
2582 	start = mni->interval_tree.start;
2583 	last = mni->interval_tree.last;
2584 	start = max(start, range->start) >> PAGE_SHIFT;
2585 	last = min(last, range->end - 1) >> PAGE_SHIFT;
2586 	pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2587 		 start, last, range->start >> PAGE_SHIFT,
2588 		 (range->end - 1) >> PAGE_SHIFT,
2589 		 mni->interval_tree.start >> PAGE_SHIFT,
2590 		 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2591 
2592 	prange = container_of(mni, struct svm_range, notifier);
2593 
2594 	svm_range_lock(prange);
2595 	mmu_interval_set_seq(mni, cur_seq);
2596 
2597 	switch (range->event) {
2598 	case MMU_NOTIFY_UNMAP:
2599 		svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2600 		break;
2601 	default:
2602 		svm_range_evict(prange, mni->mm, start, last, range->event);
2603 		break;
2604 	}
2605 
2606 	svm_range_unlock(prange);
2607 	mmput(mni->mm);
2608 
2609 	return true;
2610 }
2611 
2612 /**
2613  * svm_range_from_addr - find svm range from fault address
2614  * @svms: svm range list header
2615  * @addr: address to search range interval tree, in pages
2616  * @parent: parent range if range is on child list
2617  *
2618  * Context: The caller must hold svms->lock
2619  *
2620  * Return: the svm_range found or NULL
2621  */
2622 struct svm_range *
svm_range_from_addr(struct svm_range_list * svms,unsigned long addr,struct svm_range ** parent)2623 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2624 		    struct svm_range **parent)
2625 {
2626 	struct interval_tree_node *node;
2627 	struct svm_range *prange;
2628 	struct svm_range *pchild;
2629 
2630 	node = interval_tree_iter_first(&svms->objects, addr, addr);
2631 	if (!node)
2632 		return NULL;
2633 
2634 	prange = container_of(node, struct svm_range, it_node);
2635 	pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2636 		 addr, prange->start, prange->last, node->start, node->last);
2637 
2638 	if (addr >= prange->start && addr <= prange->last) {
2639 		if (parent)
2640 			*parent = prange;
2641 		return prange;
2642 	}
2643 	list_for_each_entry(pchild, &prange->child_list, child_list)
2644 		if (addr >= pchild->start && addr <= pchild->last) {
2645 			pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2646 				 addr, pchild->start, pchild->last);
2647 			if (parent)
2648 				*parent = prange;
2649 			return pchild;
2650 		}
2651 
2652 	return NULL;
2653 }
2654 
2655 /* svm_range_best_restore_location - decide the best fault restore location
2656  * @prange: svm range structure
2657  * @adev: the GPU on which vm fault happened
2658  *
2659  * This is only called when xnack is on, to decide the best location to restore
2660  * the range mapping after GPU vm fault. Caller uses the best location to do
2661  * migration if actual loc is not best location, then update GPU page table
2662  * mapping to the best location.
2663  *
2664  * If the preferred loc is accessible by faulting GPU, use preferred loc.
2665  * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2666  * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2667  *    if range actual loc is cpu, best_loc is cpu
2668  *    if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2669  *    range actual loc.
2670  * Otherwise, GPU no access, best_loc is -1.
2671  *
2672  * Return:
2673  * -1 means vm fault GPU no access
2674  * 0 for CPU or GPU id
2675  */
2676 static int32_t
svm_range_best_restore_location(struct svm_range * prange,struct kfd_node * node,int32_t * gpuidx)2677 svm_range_best_restore_location(struct svm_range *prange,
2678 				struct kfd_node *node,
2679 				int32_t *gpuidx)
2680 {
2681 	struct kfd_node *bo_node, *preferred_node;
2682 	struct kfd_process *p;
2683 	uint32_t gpuid;
2684 	int r;
2685 
2686 	p = container_of(prange->svms, struct kfd_process, svms);
2687 
2688 	r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2689 	if (r < 0) {
2690 		pr_debug("failed to get gpuid from kgd\n");
2691 		return -1;
2692 	}
2693 
2694 	if (node->adev->flags & AMD_IS_APU)
2695 		return 0;
2696 
2697 	if (prange->preferred_loc == gpuid ||
2698 	    prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2699 		return prange->preferred_loc;
2700 	} else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2701 		preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2702 		if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2703 			return prange->preferred_loc;
2704 		/* fall through */
2705 	}
2706 
2707 	if (test_bit(*gpuidx, prange->bitmap_access))
2708 		return gpuid;
2709 
2710 	if (test_bit(*gpuidx, prange->bitmap_aip)) {
2711 		if (!prange->actual_loc)
2712 			return 0;
2713 
2714 		bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2715 		if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2716 			return prange->actual_loc;
2717 		else
2718 			return 0;
2719 	}
2720 
2721 	return -1;
2722 }
2723 
2724 static int
svm_range_get_range_boundaries(struct kfd_process * p,int64_t addr,unsigned long * start,unsigned long * last,bool * is_heap_stack)2725 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2726 			       unsigned long *start, unsigned long *last,
2727 			       bool *is_heap_stack)
2728 {
2729 	struct vm_area_struct *vma;
2730 	struct interval_tree_node *node;
2731 	struct rb_node *rb_node;
2732 	unsigned long start_limit, end_limit;
2733 
2734 	vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2735 	if (!vma) {
2736 		pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2737 		return -EFAULT;
2738 	}
2739 
2740 	*is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2741 
2742 	start_limit = max(vma->vm_start >> PAGE_SHIFT,
2743 		      (unsigned long)ALIGN_DOWN(addr, 1UL << p->svms.default_granularity));
2744 	end_limit = min(vma->vm_end >> PAGE_SHIFT,
2745 		    (unsigned long)ALIGN(addr + 1, 1UL << p->svms.default_granularity));
2746 
2747 	/* First range that starts after the fault address */
2748 	node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2749 	if (node) {
2750 		end_limit = min(end_limit, node->start);
2751 		/* Last range that ends before the fault address */
2752 		rb_node = rb_prev(&node->rb);
2753 	} else {
2754 		/* Last range must end before addr because
2755 		 * there was no range after addr
2756 		 */
2757 		rb_node = rb_last(&p->svms.objects.rb_root);
2758 	}
2759 	if (rb_node) {
2760 		node = container_of(rb_node, struct interval_tree_node, rb);
2761 		if (node->last >= addr) {
2762 			WARN(1, "Overlap with prev node and page fault addr\n");
2763 			return -EFAULT;
2764 		}
2765 		start_limit = max(start_limit, node->last + 1);
2766 	}
2767 
2768 	*start = start_limit;
2769 	*last = end_limit - 1;
2770 
2771 	pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2772 		 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2773 		 *start, *last, *is_heap_stack);
2774 
2775 	return 0;
2776 }
2777 
2778 static int
svm_range_check_vm_userptr(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)2779 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2780 			   uint64_t *bo_s, uint64_t *bo_l)
2781 {
2782 	struct amdgpu_bo_va_mapping *mapping;
2783 	struct interval_tree_node *node;
2784 	struct amdgpu_bo *bo = NULL;
2785 	unsigned long userptr;
2786 	uint32_t i;
2787 	int r;
2788 
2789 	for (i = 0; i < p->n_pdds; i++) {
2790 		struct amdgpu_vm *vm;
2791 
2792 		if (!p->pdds[i]->drm_priv)
2793 			continue;
2794 
2795 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2796 		r = amdgpu_bo_reserve(vm->root.bo, false);
2797 		if (r)
2798 			return r;
2799 
2800 		/* Check userptr by searching entire vm->va interval tree */
2801 		node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2802 		while (node) {
2803 			mapping = container_of((struct rb_node *)node,
2804 					       struct amdgpu_bo_va_mapping, rb);
2805 			bo = mapping->bo_va->base.bo;
2806 
2807 			if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2808 							 start << PAGE_SHIFT,
2809 							 last << PAGE_SHIFT,
2810 							 &userptr)) {
2811 				node = interval_tree_iter_next(node, 0, ~0ULL);
2812 				continue;
2813 			}
2814 
2815 			pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2816 				 start, last);
2817 			if (bo_s && bo_l) {
2818 				*bo_s = userptr >> PAGE_SHIFT;
2819 				*bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2820 			}
2821 			amdgpu_bo_unreserve(vm->root.bo);
2822 			return -EADDRINUSE;
2823 		}
2824 		amdgpu_bo_unreserve(vm->root.bo);
2825 	}
2826 	return 0;
2827 }
2828 
2829 static struct
svm_range_create_unregistered_range(struct kfd_node * node,struct kfd_process * p,struct mm_struct * mm,int64_t addr)2830 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2831 						struct kfd_process *p,
2832 						struct mm_struct *mm,
2833 						int64_t addr)
2834 {
2835 	struct svm_range *prange = NULL;
2836 	unsigned long start, last;
2837 	uint32_t gpuid, gpuidx;
2838 	bool is_heap_stack;
2839 	uint64_t bo_s = 0;
2840 	uint64_t bo_l = 0;
2841 	int r;
2842 
2843 	if (svm_range_get_range_boundaries(p, addr, &start, &last,
2844 					   &is_heap_stack))
2845 		return NULL;
2846 
2847 	r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2848 	if (r != -EADDRINUSE)
2849 		r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2850 
2851 	if (r == -EADDRINUSE) {
2852 		if (addr >= bo_s && addr <= bo_l)
2853 			return NULL;
2854 
2855 		/* Create one page svm range if 2MB range overlapping */
2856 		start = addr;
2857 		last = addr;
2858 	}
2859 
2860 	prange = svm_range_new(&p->svms, start, last, true);
2861 	if (!prange) {
2862 		pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2863 		return NULL;
2864 	}
2865 	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2866 		pr_debug("failed to get gpuid from kgd\n");
2867 		svm_range_free(prange, true);
2868 		return NULL;
2869 	}
2870 
2871 	if (is_heap_stack)
2872 		prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2873 
2874 	svm_range_add_to_svms(prange);
2875 	svm_range_add_notifier_locked(mm, prange);
2876 
2877 	return prange;
2878 }
2879 
2880 /* svm_range_skip_recover - decide if prange can be recovered
2881  * @prange: svm range structure
2882  *
2883  * GPU vm retry fault handle skip recover the range for cases:
2884  * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2885  *    deferred list work will drain the stale fault before free the prange.
2886  * 2. prange is on deferred list to add interval notifier after split, or
2887  * 3. prange is child range, it is split from parent prange, recover later
2888  *    after interval notifier is added.
2889  *
2890  * Return: true to skip recover, false to recover
2891  */
svm_range_skip_recover(struct svm_range * prange)2892 static bool svm_range_skip_recover(struct svm_range *prange)
2893 {
2894 	struct svm_range_list *svms = prange->svms;
2895 
2896 	spin_lock(&svms->deferred_list_lock);
2897 	if (list_empty(&prange->deferred_list) &&
2898 	    list_empty(&prange->child_list)) {
2899 		spin_unlock(&svms->deferred_list_lock);
2900 		return false;
2901 	}
2902 	spin_unlock(&svms->deferred_list_lock);
2903 
2904 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2905 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2906 			 svms, prange, prange->start, prange->last);
2907 		return true;
2908 	}
2909 	if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2910 	    prange->work_item.op == SVM_OP_ADD_RANGE) {
2911 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2912 			 svms, prange, prange->start, prange->last);
2913 		return true;
2914 	}
2915 	return false;
2916 }
2917 
2918 static void
svm_range_count_fault(struct kfd_node * node,struct kfd_process * p,int32_t gpuidx)2919 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2920 		      int32_t gpuidx)
2921 {
2922 	struct kfd_process_device *pdd;
2923 
2924 	/* fault is on different page of same range
2925 	 * or fault is skipped to recover later
2926 	 * or fault is on invalid virtual address
2927 	 */
2928 	if (gpuidx == MAX_GPU_INSTANCE) {
2929 		uint32_t gpuid;
2930 		int r;
2931 
2932 		r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2933 		if (r < 0)
2934 			return;
2935 	}
2936 
2937 	/* fault is recovered
2938 	 * or fault cannot recover because GPU no access on the range
2939 	 */
2940 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2941 	if (pdd)
2942 		WRITE_ONCE(pdd->faults, pdd->faults + 1);
2943 }
2944 
2945 static bool
svm_fault_allowed(struct vm_area_struct * vma,bool write_fault)2946 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2947 {
2948 	unsigned long requested = VM_READ;
2949 
2950 	if (write_fault)
2951 		requested |= VM_WRITE;
2952 
2953 	pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2954 		vma->vm_flags);
2955 	return (vma->vm_flags & requested) == requested;
2956 }
2957 
2958 int
svm_range_restore_pages(struct amdgpu_device * adev,unsigned int pasid,uint32_t vmid,uint32_t node_id,uint64_t addr,uint64_t ts,bool write_fault)2959 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2960 			uint32_t vmid, uint32_t node_id,
2961 			uint64_t addr, uint64_t ts, bool write_fault)
2962 {
2963 	unsigned long start, last, size;
2964 	struct mm_struct *mm = NULL;
2965 	struct svm_range_list *svms;
2966 	struct svm_range *prange;
2967 	struct kfd_process *p;
2968 	ktime_t timestamp = ktime_get_boottime();
2969 	struct kfd_node *node;
2970 	int32_t best_loc;
2971 	int32_t gpuid, gpuidx = MAX_GPU_INSTANCE;
2972 	bool write_locked = false;
2973 	struct vm_area_struct *vma;
2974 	bool migration = false;
2975 	int r = 0;
2976 
2977 	if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2978 		pr_debug("device does not support SVM\n");
2979 		return -EFAULT;
2980 	}
2981 
2982 	p = kfd_lookup_process_by_pasid(pasid);
2983 	if (!p) {
2984 		pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2985 		return 0;
2986 	}
2987 	svms = &p->svms;
2988 
2989 	pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2990 
2991 	if (atomic_read(&svms->drain_pagefaults)) {
2992 		pr_debug("page fault handling disabled, drop fault 0x%llx\n", addr);
2993 		r = 0;
2994 		goto out;
2995 	}
2996 
2997 	node = kfd_node_by_irq_ids(adev, node_id, vmid);
2998 	if (!node) {
2999 		pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
3000 			 vmid);
3001 		r = -EFAULT;
3002 		goto out;
3003 	}
3004 
3005 	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
3006 		pr_debug("failed to get gpuid/gpuidex for node_id: %d\n", node_id);
3007 		r = -EFAULT;
3008 		goto out;
3009 	}
3010 
3011 	/* check if this page fault time stamp is before svms->checkpoint_ts */
3012 	if (svms->checkpoint_ts[gpuidx] != 0) {
3013 		if (amdgpu_ih_ts_after(ts,  svms->checkpoint_ts[gpuidx])) {
3014 			pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
3015 			r = 0;
3016 			goto out;
3017 		} else
3018 			/* ts is after svms->checkpoint_ts now, reset svms->checkpoint_ts
3019 			 * to zero to avoid following ts wrap around give wrong comparing
3020 			 */
3021 			svms->checkpoint_ts[gpuidx] = 0;
3022 	}
3023 
3024 	if (!p->xnack_enabled) {
3025 		pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
3026 		r = -EFAULT;
3027 		goto out;
3028 	}
3029 
3030 	/* p->lead_thread is available as kfd_process_wq_release flush the work
3031 	 * before releasing task ref.
3032 	 */
3033 	mm = get_task_mm(p->lead_thread);
3034 	if (!mm) {
3035 		pr_debug("svms 0x%p failed to get mm\n", svms);
3036 		r = 0;
3037 		goto out;
3038 	}
3039 
3040 	mmap_read_lock(mm);
3041 retry_write_locked:
3042 	mutex_lock(&svms->lock);
3043 	prange = svm_range_from_addr(svms, addr, NULL);
3044 	if (!prange) {
3045 		pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
3046 			 svms, addr);
3047 		if (!write_locked) {
3048 			/* Need the write lock to create new range with MMU notifier.
3049 			 * Also flush pending deferred work to make sure the interval
3050 			 * tree is up to date before we add a new range
3051 			 */
3052 			mutex_unlock(&svms->lock);
3053 			mmap_read_unlock(mm);
3054 			mmap_write_lock(mm);
3055 			write_locked = true;
3056 			goto retry_write_locked;
3057 		}
3058 		prange = svm_range_create_unregistered_range(node, p, mm, addr);
3059 		if (!prange) {
3060 			pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
3061 				 svms, addr);
3062 			mmap_write_downgrade(mm);
3063 			r = -EFAULT;
3064 			goto out_unlock_svms;
3065 		}
3066 	}
3067 	if (write_locked)
3068 		mmap_write_downgrade(mm);
3069 
3070 	mutex_lock(&prange->migrate_mutex);
3071 
3072 	if (svm_range_skip_recover(prange)) {
3073 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3074 		r = 0;
3075 		goto out_unlock_range;
3076 	}
3077 
3078 	/* skip duplicate vm fault on different pages of same range */
3079 	if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
3080 				AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
3081 		pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
3082 			 svms, prange->start, prange->last);
3083 		r = 0;
3084 		goto out_unlock_range;
3085 	}
3086 
3087 	/* __do_munmap removed VMA, return success as we are handling stale
3088 	 * retry fault.
3089 	 */
3090 	vma = vma_lookup(mm, addr << PAGE_SHIFT);
3091 	if (!vma) {
3092 		pr_debug("address 0x%llx VMA is removed\n", addr);
3093 		r = 0;
3094 		goto out_unlock_range;
3095 	}
3096 
3097 	if (!svm_fault_allowed(vma, write_fault)) {
3098 		pr_debug("fault addr 0x%llx no %s permission\n", addr,
3099 			write_fault ? "write" : "read");
3100 		r = -EPERM;
3101 		goto out_unlock_range;
3102 	}
3103 
3104 	best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3105 	if (best_loc == -1) {
3106 		pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3107 			 svms, prange->start, prange->last);
3108 		r = -EACCES;
3109 		goto out_unlock_range;
3110 	}
3111 
3112 	pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3113 		 svms, prange->start, prange->last, best_loc,
3114 		 prange->actual_loc);
3115 
3116 	kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3117 				       write_fault, timestamp);
3118 
3119 	/* Align migration range start and size to granularity size */
3120 	size = 1UL << prange->granularity;
3121 	start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start);
3122 	last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last);
3123 	if (prange->actual_loc != 0 || best_loc != 0) {
3124 		if (best_loc) {
3125 			r = svm_migrate_to_vram(prange, best_loc, start, last,
3126 					mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3127 			if (r) {
3128 				pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3129 					 r, addr);
3130 				/* Fallback to system memory if migration to
3131 				 * VRAM failed
3132 				 */
3133 				if (prange->actual_loc && prange->actual_loc != best_loc)
3134 					r = svm_migrate_vram_to_ram(prange, mm, start, last,
3135 						KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3136 				else
3137 					r = 0;
3138 			}
3139 		} else {
3140 			r = svm_migrate_vram_to_ram(prange, mm, start, last,
3141 					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3142 		}
3143 		if (r) {
3144 			pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3145 				 r, svms, start, last);
3146 			goto out_migrate_fail;
3147 		} else {
3148 			migration = true;
3149 		}
3150 	}
3151 
3152 	r = svm_range_validate_and_map(mm, start, last, prange, gpuidx, false,
3153 				       false, false);
3154 	if (r)
3155 		pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3156 			 r, svms, start, last);
3157 
3158 out_migrate_fail:
3159 	kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3160 				     migration);
3161 
3162 out_unlock_range:
3163 	mutex_unlock(&prange->migrate_mutex);
3164 out_unlock_svms:
3165 	mutex_unlock(&svms->lock);
3166 	mmap_read_unlock(mm);
3167 
3168 	svm_range_count_fault(node, p, gpuidx);
3169 
3170 	mmput(mm);
3171 out:
3172 	kfd_unref_process(p);
3173 
3174 	if (r == -EAGAIN) {
3175 		pr_debug("recover vm fault later\n");
3176 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3177 		r = 0;
3178 	}
3179 	return r;
3180 }
3181 
3182 int
svm_range_switch_xnack_reserve_mem(struct kfd_process * p,bool xnack_enabled)3183 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3184 {
3185 	struct svm_range *prange, *pchild;
3186 	uint64_t reserved_size = 0;
3187 	uint64_t size;
3188 	int r = 0;
3189 
3190 	pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3191 
3192 	mutex_lock(&p->svms.lock);
3193 
3194 	list_for_each_entry(prange, &p->svms.list, list) {
3195 		svm_range_lock(prange);
3196 		list_for_each_entry(pchild, &prange->child_list, child_list) {
3197 			size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3198 			if (xnack_enabled) {
3199 				amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3200 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3201 			} else {
3202 				r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3203 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3204 				if (r)
3205 					goto out_unlock;
3206 				reserved_size += size;
3207 			}
3208 		}
3209 
3210 		size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3211 		if (xnack_enabled) {
3212 			amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3213 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3214 		} else {
3215 			r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3216 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3217 			if (r)
3218 				goto out_unlock;
3219 			reserved_size += size;
3220 		}
3221 out_unlock:
3222 		svm_range_unlock(prange);
3223 		if (r)
3224 			break;
3225 	}
3226 
3227 	if (r)
3228 		amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3229 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3230 	else
3231 		/* Change xnack mode must be inside svms lock, to avoid race with
3232 		 * svm_range_deferred_list_work unreserve memory in parallel.
3233 		 */
3234 		p->xnack_enabled = xnack_enabled;
3235 
3236 	mutex_unlock(&p->svms.lock);
3237 	return r;
3238 }
3239 
svm_range_list_fini(struct kfd_process * p)3240 void svm_range_list_fini(struct kfd_process *p)
3241 {
3242 	struct svm_range *prange;
3243 	struct svm_range *next;
3244 
3245 	pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3246 
3247 	cancel_delayed_work_sync(&p->svms.restore_work);
3248 
3249 	/* Ensure list work is finished before process is destroyed */
3250 	flush_work(&p->svms.deferred_list_work);
3251 
3252 	/*
3253 	 * Ensure no retry fault comes in afterwards, as page fault handler will
3254 	 * not find kfd process and take mm lock to recover fault.
3255 	 * stop kfd page fault handing, then wait pending page faults got drained
3256 	 */
3257 	atomic_set(&p->svms.drain_pagefaults, 1);
3258 	svm_range_drain_retry_fault(&p->svms);
3259 
3260 	list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3261 		svm_range_unlink(prange);
3262 		svm_range_remove_notifier(prange);
3263 		svm_range_free(prange, true);
3264 	}
3265 
3266 	mutex_destroy(&p->svms.lock);
3267 
3268 	pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3269 }
3270 
svm_range_list_init(struct kfd_process * p)3271 int svm_range_list_init(struct kfd_process *p)
3272 {
3273 	struct svm_range_list *svms = &p->svms;
3274 	int i;
3275 
3276 	svms->objects = RB_ROOT_CACHED;
3277 	mutex_init(&svms->lock);
3278 	INIT_LIST_HEAD(&svms->list);
3279 	atomic_set(&svms->evicted_ranges, 0);
3280 	atomic_set(&svms->drain_pagefaults, 0);
3281 	INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3282 	INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3283 	INIT_LIST_HEAD(&svms->deferred_range_list);
3284 	INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3285 	spin_lock_init(&svms->deferred_list_lock);
3286 
3287 	for (i = 0; i < p->n_pdds; i++)
3288 		if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3289 			bitmap_set(svms->bitmap_supported, i, 1);
3290 
3291 	 /* Value of default granularity cannot exceed 0x1B, the
3292 	  * number of pages supported by a 4-level paging table
3293 	  */
3294 	svms->default_granularity = min_t(u8, amdgpu_svm_default_granularity, 0x1B);
3295 	pr_debug("Default SVM Granularity to use: %d\n", svms->default_granularity);
3296 
3297 	return 0;
3298 }
3299 
3300 /**
3301  * svm_range_check_vm - check if virtual address range mapped already
3302  * @p: current kfd_process
3303  * @start: range start address, in pages
3304  * @last: range last address, in pages
3305  * @bo_s: mapping start address in pages if address range already mapped
3306  * @bo_l: mapping last address in pages if address range already mapped
3307  *
3308  * The purpose is to avoid virtual address ranges already allocated by
3309  * kfd_ioctl_alloc_memory_of_gpu ioctl.
3310  * It looks for each pdd in the kfd_process.
3311  *
3312  * Context: Process context
3313  *
3314  * Return 0 - OK, if the range is not mapped.
3315  * Otherwise error code:
3316  * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3317  * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3318  * a signal. Release all buffer reservations and return to user-space.
3319  */
3320 static int
svm_range_check_vm(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)3321 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3322 		   uint64_t *bo_s, uint64_t *bo_l)
3323 {
3324 	struct amdgpu_bo_va_mapping *mapping;
3325 	struct interval_tree_node *node;
3326 	uint32_t i;
3327 	int r;
3328 
3329 	for (i = 0; i < p->n_pdds; i++) {
3330 		struct amdgpu_vm *vm;
3331 
3332 		if (!p->pdds[i]->drm_priv)
3333 			continue;
3334 
3335 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3336 		r = amdgpu_bo_reserve(vm->root.bo, false);
3337 		if (r)
3338 			return r;
3339 
3340 		node = interval_tree_iter_first(&vm->va, start, last);
3341 		if (node) {
3342 			pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3343 				 start, last);
3344 			mapping = container_of((struct rb_node *)node,
3345 					       struct amdgpu_bo_va_mapping, rb);
3346 			if (bo_s && bo_l) {
3347 				*bo_s = mapping->start;
3348 				*bo_l = mapping->last;
3349 			}
3350 			amdgpu_bo_unreserve(vm->root.bo);
3351 			return -EADDRINUSE;
3352 		}
3353 		amdgpu_bo_unreserve(vm->root.bo);
3354 	}
3355 
3356 	return 0;
3357 }
3358 
3359 /**
3360  * svm_range_is_valid - check if virtual address range is valid
3361  * @p: current kfd_process
3362  * @start: range start address, in pages
3363  * @size: range size, in pages
3364  *
3365  * Valid virtual address range means it belongs to one or more VMAs
3366  *
3367  * Context: Process context
3368  *
3369  * Return:
3370  *  0 - OK, otherwise error code
3371  */
3372 static int
svm_range_is_valid(struct kfd_process * p,uint64_t start,uint64_t size)3373 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3374 {
3375 	const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3376 	struct vm_area_struct *vma;
3377 	unsigned long end;
3378 	unsigned long start_unchg = start;
3379 
3380 	start <<= PAGE_SHIFT;
3381 	end = start + (size << PAGE_SHIFT);
3382 	do {
3383 		vma = vma_lookup(p->mm, start);
3384 		if (!vma || (vma->vm_flags & device_vma))
3385 			return -EFAULT;
3386 		start = min(end, vma->vm_end);
3387 	} while (start < end);
3388 
3389 	return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3390 				  NULL);
3391 }
3392 
3393 /**
3394  * svm_range_best_prefetch_location - decide the best prefetch location
3395  * @prange: svm range structure
3396  *
3397  * For xnack off:
3398  * If range map to single GPU, the best prefetch location is prefetch_loc, which
3399  * can be CPU or GPU.
3400  *
3401  * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3402  * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3403  * the best prefetch location is always CPU, because GPU can not have coherent
3404  * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3405  *
3406  * For xnack on:
3407  * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3408  * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3409  *
3410  * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3411  * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3412  * prefetch location is always CPU.
3413  *
3414  * Context: Process context
3415  *
3416  * Return:
3417  * 0 for CPU or GPU id
3418  */
3419 static uint32_t
svm_range_best_prefetch_location(struct svm_range * prange)3420 svm_range_best_prefetch_location(struct svm_range *prange)
3421 {
3422 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3423 	uint32_t best_loc = prange->prefetch_loc;
3424 	struct kfd_process_device *pdd;
3425 	struct kfd_node *bo_node;
3426 	struct kfd_process *p;
3427 	uint32_t gpuidx;
3428 
3429 	p = container_of(prange->svms, struct kfd_process, svms);
3430 
3431 	if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3432 		goto out;
3433 
3434 	bo_node = svm_range_get_node_by_id(prange, best_loc);
3435 	if (!bo_node) {
3436 		WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3437 		best_loc = 0;
3438 		goto out;
3439 	}
3440 
3441 	if (bo_node->adev->flags & AMD_IS_APU) {
3442 		best_loc = 0;
3443 		goto out;
3444 	}
3445 
3446 	if (p->xnack_enabled)
3447 		bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3448 	else
3449 		bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3450 			  MAX_GPU_INSTANCE);
3451 
3452 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3453 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3454 		if (!pdd) {
3455 			pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3456 			continue;
3457 		}
3458 
3459 		if (pdd->dev->adev == bo_node->adev)
3460 			continue;
3461 
3462 		if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3463 			best_loc = 0;
3464 			break;
3465 		}
3466 	}
3467 
3468 out:
3469 	pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3470 		 p->xnack_enabled, &p->svms, prange->start, prange->last,
3471 		 best_loc);
3472 
3473 	return best_loc;
3474 }
3475 
3476 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3477  * @mm: current process mm_struct
3478  * @prange: svm range structure
3479  * @migrated: output, true if migration is triggered
3480  *
3481  * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3482  * from ram to vram.
3483  * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3484  * from vram to ram.
3485  *
3486  * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3487  * and restore work:
3488  * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3489  *    stops all queues, schedule restore work
3490  * 2. svm_range_restore_work wait for migration is done by
3491  *    a. svm_range_validate_vram takes prange->migrate_mutex
3492  *    b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3493  * 3. restore work update mappings of GPU, resume all queues.
3494  *
3495  * Context: Process context
3496  *
3497  * Return:
3498  * 0 - OK, otherwise - error code of migration
3499  */
3500 static int
svm_range_trigger_migration(struct mm_struct * mm,struct svm_range * prange,bool * migrated)3501 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3502 			    bool *migrated)
3503 {
3504 	uint32_t best_loc;
3505 	int r = 0;
3506 
3507 	*migrated = false;
3508 	best_loc = svm_range_best_prefetch_location(prange);
3509 
3510 	/* when best_loc is a gpu node and same as prange->actual_loc
3511 	 * we still need do migration as prange->actual_loc !=0 does
3512 	 * not mean all pages in prange are vram. hmm migrate will pick
3513 	 * up right pages during migration.
3514 	 */
3515 	if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) ||
3516 	    (best_loc == 0 && prange->actual_loc == 0))
3517 		return 0;
3518 
3519 	if (!best_loc) {
3520 		r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
3521 					KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3522 		*migrated = !r;
3523 		return r;
3524 	}
3525 
3526 	r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last,
3527 				mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3528 	*migrated = !r;
3529 
3530 	return 0;
3531 }
3532 
svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence * fence)3533 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3534 {
3535 	/* Dereferencing fence->svm_bo is safe here because the fence hasn't
3536 	 * signaled yet and we're under the protection of the fence->lock.
3537 	 * After the fence is signaled in svm_range_bo_release, we cannot get
3538 	 * here any more.
3539 	 *
3540 	 * Reference is dropped in svm_range_evict_svm_bo_worker.
3541 	 */
3542 	if (svm_bo_ref_unless_zero(fence->svm_bo)) {
3543 		WRITE_ONCE(fence->svm_bo->evicting, 1);
3544 		schedule_work(&fence->svm_bo->eviction_work);
3545 	}
3546 
3547 	return 0;
3548 }
3549 
svm_range_evict_svm_bo_worker(struct work_struct * work)3550 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3551 {
3552 	struct svm_range_bo *svm_bo;
3553 	struct mm_struct *mm;
3554 	int r = 0;
3555 
3556 	svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3557 
3558 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3559 		mm = svm_bo->eviction_fence->mm;
3560 	} else {
3561 		svm_range_bo_unref(svm_bo);
3562 		return;
3563 	}
3564 
3565 	mmap_read_lock(mm);
3566 	spin_lock(&svm_bo->list_lock);
3567 	while (!list_empty(&svm_bo->range_list) && !r) {
3568 		struct svm_range *prange =
3569 				list_first_entry(&svm_bo->range_list,
3570 						struct svm_range, svm_bo_list);
3571 		int retries = 3;
3572 
3573 		list_del_init(&prange->svm_bo_list);
3574 		spin_unlock(&svm_bo->list_lock);
3575 
3576 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3577 			 prange->start, prange->last);
3578 
3579 		mutex_lock(&prange->migrate_mutex);
3580 		do {
3581 			/* migrate all vram pages in this prange to sys ram
3582 			 * after that prange->actual_loc should be zero
3583 			 */
3584 			r = svm_migrate_vram_to_ram(prange, mm,
3585 					prange->start, prange->last,
3586 					KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3587 		} while (!r && prange->actual_loc && --retries);
3588 
3589 		if (!r && prange->actual_loc)
3590 			pr_info_once("Migration failed during eviction");
3591 
3592 		if (!prange->actual_loc) {
3593 			mutex_lock(&prange->lock);
3594 			prange->svm_bo = NULL;
3595 			mutex_unlock(&prange->lock);
3596 		}
3597 		mutex_unlock(&prange->migrate_mutex);
3598 
3599 		spin_lock(&svm_bo->list_lock);
3600 	}
3601 	spin_unlock(&svm_bo->list_lock);
3602 	mmap_read_unlock(mm);
3603 	mmput(mm);
3604 
3605 	dma_fence_signal(&svm_bo->eviction_fence->base);
3606 
3607 	/* This is the last reference to svm_bo, after svm_range_vram_node_free
3608 	 * has been called in svm_migrate_vram_to_ram
3609 	 */
3610 	WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3611 	svm_range_bo_unref(svm_bo);
3612 }
3613 
3614 static int
svm_range_set_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3615 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3616 		   uint64_t start, uint64_t size, uint32_t nattr,
3617 		   struct kfd_ioctl_svm_attribute *attrs)
3618 {
3619 	struct amdkfd_process_info *process_info = p->kgd_process_info;
3620 	struct list_head update_list;
3621 	struct list_head insert_list;
3622 	struct list_head remove_list;
3623 	struct list_head remap_list;
3624 	struct svm_range_list *svms;
3625 	struct svm_range *prange;
3626 	struct svm_range *next;
3627 	bool update_mapping = false;
3628 	bool flush_tlb;
3629 	int r, ret = 0;
3630 
3631 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3632 		 p->pasid, &p->svms, start, start + size - 1, size);
3633 
3634 	r = svm_range_check_attr(p, nattr, attrs);
3635 	if (r)
3636 		return r;
3637 
3638 	svms = &p->svms;
3639 
3640 	mutex_lock(&process_info->lock);
3641 
3642 	svm_range_list_lock_and_flush_work(svms, mm);
3643 
3644 	r = svm_range_is_valid(p, start, size);
3645 	if (r) {
3646 		pr_debug("invalid range r=%d\n", r);
3647 		mmap_write_unlock(mm);
3648 		goto out;
3649 	}
3650 
3651 	mutex_lock(&svms->lock);
3652 
3653 	/* Add new range and split existing ranges as needed */
3654 	r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3655 			  &insert_list, &remove_list, &remap_list);
3656 	if (r) {
3657 		mutex_unlock(&svms->lock);
3658 		mmap_write_unlock(mm);
3659 		goto out;
3660 	}
3661 	/* Apply changes as a transaction */
3662 	list_for_each_entry_safe(prange, next, &insert_list, list) {
3663 		svm_range_add_to_svms(prange);
3664 		svm_range_add_notifier_locked(mm, prange);
3665 	}
3666 	list_for_each_entry(prange, &update_list, update_list) {
3667 		svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3668 		/* TODO: unmap ranges from GPU that lost access */
3669 	}
3670 	list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3671 		pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3672 			 prange->svms, prange, prange->start,
3673 			 prange->last);
3674 		svm_range_unlink(prange);
3675 		svm_range_remove_notifier(prange);
3676 		svm_range_free(prange, false);
3677 	}
3678 
3679 	mmap_write_downgrade(mm);
3680 	/* Trigger migrations and revalidate and map to GPUs as needed. If
3681 	 * this fails we may be left with partially completed actions. There
3682 	 * is no clean way of rolling back to the previous state in such a
3683 	 * case because the rollback wouldn't be guaranteed to work either.
3684 	 */
3685 	list_for_each_entry(prange, &update_list, update_list) {
3686 		bool migrated;
3687 
3688 		mutex_lock(&prange->migrate_mutex);
3689 
3690 		r = svm_range_trigger_migration(mm, prange, &migrated);
3691 		if (r)
3692 			goto out_unlock_range;
3693 
3694 		if (migrated && (!p->xnack_enabled ||
3695 		    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3696 		    prange->mapped_to_gpu) {
3697 			pr_debug("restore_work will update mappings of GPUs\n");
3698 			mutex_unlock(&prange->migrate_mutex);
3699 			continue;
3700 		}
3701 
3702 		if (!migrated && !update_mapping) {
3703 			mutex_unlock(&prange->migrate_mutex);
3704 			continue;
3705 		}
3706 
3707 		flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3708 
3709 		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3710 					       MAX_GPU_INSTANCE, true, true, flush_tlb);
3711 		if (r)
3712 			pr_debug("failed %d to map svm range\n", r);
3713 
3714 out_unlock_range:
3715 		mutex_unlock(&prange->migrate_mutex);
3716 		if (r)
3717 			ret = r;
3718 	}
3719 
3720 	list_for_each_entry(prange, &remap_list, update_list) {
3721 		pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
3722 			 prange, prange->start, prange->last);
3723 		mutex_lock(&prange->migrate_mutex);
3724 		r = svm_range_validate_and_map(mm,  prange->start, prange->last, prange,
3725 					       MAX_GPU_INSTANCE, true, true, prange->mapped_to_gpu);
3726 		if (r)
3727 			pr_debug("failed %d on remap svm range\n", r);
3728 		mutex_unlock(&prange->migrate_mutex);
3729 		if (r)
3730 			ret = r;
3731 	}
3732 
3733 	dynamic_svm_range_dump(svms);
3734 
3735 	mutex_unlock(&svms->lock);
3736 	mmap_read_unlock(mm);
3737 out:
3738 	mutex_unlock(&process_info->lock);
3739 
3740 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3741 		 &p->svms, start, start + size - 1, r);
3742 
3743 	return ret ? ret : r;
3744 }
3745 
3746 static int
svm_range_get_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3747 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3748 		   uint64_t start, uint64_t size, uint32_t nattr,
3749 		   struct kfd_ioctl_svm_attribute *attrs)
3750 {
3751 	DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3752 	DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3753 	bool get_preferred_loc = false;
3754 	bool get_prefetch_loc = false;
3755 	bool get_granularity = false;
3756 	bool get_accessible = false;
3757 	bool get_flags = false;
3758 	uint64_t last = start + size - 1UL;
3759 	uint8_t granularity = 0xff;
3760 	struct interval_tree_node *node;
3761 	struct svm_range_list *svms;
3762 	struct svm_range *prange;
3763 	uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3764 	uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3765 	uint32_t flags_and = 0xffffffff;
3766 	uint32_t flags_or = 0;
3767 	int gpuidx;
3768 	uint32_t i;
3769 	int r = 0;
3770 
3771 	pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3772 		 start + size - 1, nattr);
3773 
3774 	/* Flush pending deferred work to avoid racing with deferred actions from
3775 	 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3776 	 * can still race with get_attr because we don't hold the mmap lock. But that
3777 	 * would be a race condition in the application anyway, and undefined
3778 	 * behaviour is acceptable in that case.
3779 	 */
3780 	flush_work(&p->svms.deferred_list_work);
3781 
3782 	mmap_read_lock(mm);
3783 	r = svm_range_is_valid(p, start, size);
3784 	mmap_read_unlock(mm);
3785 	if (r) {
3786 		pr_debug("invalid range r=%d\n", r);
3787 		return r;
3788 	}
3789 
3790 	for (i = 0; i < nattr; i++) {
3791 		switch (attrs[i].type) {
3792 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3793 			get_preferred_loc = true;
3794 			break;
3795 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3796 			get_prefetch_loc = true;
3797 			break;
3798 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3799 			get_accessible = true;
3800 			break;
3801 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3802 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3803 			get_flags = true;
3804 			break;
3805 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3806 			get_granularity = true;
3807 			break;
3808 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3809 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3810 			fallthrough;
3811 		default:
3812 			pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3813 			return -EINVAL;
3814 		}
3815 	}
3816 
3817 	svms = &p->svms;
3818 
3819 	mutex_lock(&svms->lock);
3820 
3821 	node = interval_tree_iter_first(&svms->objects, start, last);
3822 	if (!node) {
3823 		pr_debug("range attrs not found return default values\n");
3824 		svm_range_set_default_attributes(svms, &location, &prefetch_loc,
3825 						 &granularity, &flags_and);
3826 		flags_or = flags_and;
3827 		if (p->xnack_enabled)
3828 			bitmap_copy(bitmap_access, svms->bitmap_supported,
3829 				    MAX_GPU_INSTANCE);
3830 		else
3831 			bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3832 		bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3833 		goto fill_values;
3834 	}
3835 	bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3836 	bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3837 
3838 	while (node) {
3839 		struct interval_tree_node *next;
3840 
3841 		prange = container_of(node, struct svm_range, it_node);
3842 		next = interval_tree_iter_next(node, start, last);
3843 
3844 		if (get_preferred_loc) {
3845 			if (prange->preferred_loc ==
3846 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3847 			    (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3848 			     location != prange->preferred_loc)) {
3849 				location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3850 				get_preferred_loc = false;
3851 			} else {
3852 				location = prange->preferred_loc;
3853 			}
3854 		}
3855 		if (get_prefetch_loc) {
3856 			if (prange->prefetch_loc ==
3857 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3858 			    (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3859 			     prefetch_loc != prange->prefetch_loc)) {
3860 				prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3861 				get_prefetch_loc = false;
3862 			} else {
3863 				prefetch_loc = prange->prefetch_loc;
3864 			}
3865 		}
3866 		if (get_accessible) {
3867 			bitmap_and(bitmap_access, bitmap_access,
3868 				   prange->bitmap_access, MAX_GPU_INSTANCE);
3869 			bitmap_and(bitmap_aip, bitmap_aip,
3870 				   prange->bitmap_aip, MAX_GPU_INSTANCE);
3871 		}
3872 		if (get_flags) {
3873 			flags_and &= prange->flags;
3874 			flags_or |= prange->flags;
3875 		}
3876 
3877 		if (get_granularity && prange->granularity < granularity)
3878 			granularity = prange->granularity;
3879 
3880 		node = next;
3881 	}
3882 fill_values:
3883 	mutex_unlock(&svms->lock);
3884 
3885 	for (i = 0; i < nattr; i++) {
3886 		switch (attrs[i].type) {
3887 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3888 			attrs[i].value = location;
3889 			break;
3890 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3891 			attrs[i].value = prefetch_loc;
3892 			break;
3893 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3894 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
3895 							       attrs[i].value);
3896 			if (gpuidx < 0) {
3897 				pr_debug("invalid gpuid %x\n", attrs[i].value);
3898 				return -EINVAL;
3899 			}
3900 			if (test_bit(gpuidx, bitmap_access))
3901 				attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3902 			else if (test_bit(gpuidx, bitmap_aip))
3903 				attrs[i].type =
3904 					KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3905 			else
3906 				attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3907 			break;
3908 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3909 			attrs[i].value = flags_and;
3910 			break;
3911 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3912 			attrs[i].value = ~flags_or;
3913 			break;
3914 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3915 			attrs[i].value = (uint32_t)granularity;
3916 			break;
3917 		}
3918 	}
3919 
3920 	return 0;
3921 }
3922 
kfd_criu_resume_svm(struct kfd_process * p)3923 int kfd_criu_resume_svm(struct kfd_process *p)
3924 {
3925 	struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3926 	int nattr_common = 4, nattr_accessibility = 1;
3927 	struct criu_svm_metadata *criu_svm_md = NULL;
3928 	struct svm_range_list *svms = &p->svms;
3929 	struct criu_svm_metadata *next = NULL;
3930 	uint32_t set_flags = 0xffffffff;
3931 	int i, j, num_attrs, ret = 0;
3932 	uint64_t set_attr_size;
3933 	struct mm_struct *mm;
3934 
3935 	if (list_empty(&svms->criu_svm_metadata_list)) {
3936 		pr_debug("No SVM data from CRIU restore stage 2\n");
3937 		return ret;
3938 	}
3939 
3940 	mm = get_task_mm(p->lead_thread);
3941 	if (!mm) {
3942 		pr_err("failed to get mm for the target process\n");
3943 		return -ESRCH;
3944 	}
3945 
3946 	num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3947 
3948 	i = j = 0;
3949 	list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3950 		pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3951 			 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3952 
3953 		for (j = 0; j < num_attrs; j++) {
3954 			pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3955 				 i, j, criu_svm_md->data.attrs[j].type,
3956 				 i, j, criu_svm_md->data.attrs[j].value);
3957 			switch (criu_svm_md->data.attrs[j].type) {
3958 			/* During Checkpoint operation, the query for
3959 			 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3960 			 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3961 			 * not used by the range which was checkpointed. Care
3962 			 * must be taken to not restore with an invalid value
3963 			 * otherwise the gpuidx value will be invalid and
3964 			 * set_attr would eventually fail so just replace those
3965 			 * with another dummy attribute such as
3966 			 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3967 			 */
3968 			case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3969 				if (criu_svm_md->data.attrs[j].value ==
3970 				    KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3971 					criu_svm_md->data.attrs[j].type =
3972 						KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3973 					criu_svm_md->data.attrs[j].value = 0;
3974 				}
3975 				break;
3976 			case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3977 				set_flags = criu_svm_md->data.attrs[j].value;
3978 				break;
3979 			default:
3980 				break;
3981 			}
3982 		}
3983 
3984 		/* CLR_FLAGS is not available via get_attr during checkpoint but
3985 		 * it needs to be inserted before restoring the ranges so
3986 		 * allocate extra space for it before calling set_attr
3987 		 */
3988 		set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3989 						(num_attrs + 1);
3990 		set_attr_new = krealloc(set_attr, set_attr_size,
3991 					    GFP_KERNEL);
3992 		if (!set_attr_new) {
3993 			ret = -ENOMEM;
3994 			goto exit;
3995 		}
3996 		set_attr = set_attr_new;
3997 
3998 		memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3999 					sizeof(struct kfd_ioctl_svm_attribute));
4000 		set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
4001 		set_attr[num_attrs].value = ~set_flags;
4002 
4003 		ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
4004 					 criu_svm_md->data.size, num_attrs + 1,
4005 					 set_attr);
4006 		if (ret) {
4007 			pr_err("CRIU: failed to set range attributes\n");
4008 			goto exit;
4009 		}
4010 
4011 		i++;
4012 	}
4013 exit:
4014 	kfree(set_attr);
4015 	list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
4016 		pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
4017 						criu_svm_md->data.start_addr);
4018 		kfree(criu_svm_md);
4019 	}
4020 
4021 	mmput(mm);
4022 	return ret;
4023 
4024 }
4025 
kfd_criu_restore_svm(struct kfd_process * p,uint8_t __user * user_priv_ptr,uint64_t * priv_data_offset,uint64_t max_priv_data_size)4026 int kfd_criu_restore_svm(struct kfd_process *p,
4027 			 uint8_t __user *user_priv_ptr,
4028 			 uint64_t *priv_data_offset,
4029 			 uint64_t max_priv_data_size)
4030 {
4031 	uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
4032 	int nattr_common = 4, nattr_accessibility = 1;
4033 	struct criu_svm_metadata *criu_svm_md = NULL;
4034 	struct svm_range_list *svms = &p->svms;
4035 	uint32_t num_devices;
4036 	int ret = 0;
4037 
4038 	num_devices = p->n_pdds;
4039 	/* Handle one SVM range object at a time, also the number of gpus are
4040 	 * assumed to be same on the restore node, checking must be done while
4041 	 * evaluating the topology earlier
4042 	 */
4043 
4044 	svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
4045 		(nattr_common + nattr_accessibility * num_devices);
4046 	svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
4047 
4048 	svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4049 								svm_attrs_size;
4050 
4051 	criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
4052 	if (!criu_svm_md) {
4053 		pr_err("failed to allocate memory to store svm metadata\n");
4054 		return -ENOMEM;
4055 	}
4056 	if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
4057 		ret = -EINVAL;
4058 		goto exit;
4059 	}
4060 
4061 	ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
4062 			     svm_priv_data_size);
4063 	if (ret) {
4064 		ret = -EFAULT;
4065 		goto exit;
4066 	}
4067 	*priv_data_offset += svm_priv_data_size;
4068 
4069 	list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
4070 
4071 	return 0;
4072 
4073 
4074 exit:
4075 	kfree(criu_svm_md);
4076 	return ret;
4077 }
4078 
svm_range_get_info(struct kfd_process * p,uint32_t * num_svm_ranges,uint64_t * svm_priv_data_size)4079 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
4080 		       uint64_t *svm_priv_data_size)
4081 {
4082 	uint64_t total_size, accessibility_size, common_attr_size;
4083 	int nattr_common = 4, nattr_accessibility = 1;
4084 	int num_devices = p->n_pdds;
4085 	struct svm_range_list *svms;
4086 	struct svm_range *prange;
4087 	uint32_t count = 0;
4088 
4089 	*svm_priv_data_size = 0;
4090 
4091 	svms = &p->svms;
4092 	if (!svms)
4093 		return -EINVAL;
4094 
4095 	mutex_lock(&svms->lock);
4096 	list_for_each_entry(prange, &svms->list, list) {
4097 		pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
4098 			 prange, prange->start, prange->npages,
4099 			 prange->start + prange->npages - 1);
4100 		count++;
4101 	}
4102 	mutex_unlock(&svms->lock);
4103 
4104 	*num_svm_ranges = count;
4105 	/* Only the accessbility attributes need to be queried for all the gpus
4106 	 * individually, remaining ones are spanned across the entire process
4107 	 * regardless of the various gpu nodes. Of the remaining attributes,
4108 	 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4109 	 *
4110 	 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4111 	 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4112 	 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4113 	 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4114 	 *
4115 	 * ** ACCESSBILITY ATTRIBUTES **
4116 	 * (Considered as one, type is altered during query, value is gpuid)
4117 	 * KFD_IOCTL_SVM_ATTR_ACCESS
4118 	 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4119 	 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4120 	 */
4121 	if (*num_svm_ranges > 0) {
4122 		common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4123 			nattr_common;
4124 		accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4125 			nattr_accessibility * num_devices;
4126 
4127 		total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4128 			common_attr_size + accessibility_size;
4129 
4130 		*svm_priv_data_size = *num_svm_ranges * total_size;
4131 	}
4132 
4133 	pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4134 		 *svm_priv_data_size);
4135 	return 0;
4136 }
4137 
kfd_criu_checkpoint_svm(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_data_offset)4138 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4139 			    uint8_t __user *user_priv_data,
4140 			    uint64_t *priv_data_offset)
4141 {
4142 	struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4143 	struct kfd_ioctl_svm_attribute *query_attr = NULL;
4144 	uint64_t svm_priv_data_size, query_attr_size = 0;
4145 	int index, nattr_common = 4, ret = 0;
4146 	struct svm_range_list *svms;
4147 	int num_devices = p->n_pdds;
4148 	struct svm_range *prange;
4149 	struct mm_struct *mm;
4150 
4151 	svms = &p->svms;
4152 	if (!svms)
4153 		return -EINVAL;
4154 
4155 	mm = get_task_mm(p->lead_thread);
4156 	if (!mm) {
4157 		pr_err("failed to get mm for the target process\n");
4158 		return -ESRCH;
4159 	}
4160 
4161 	query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4162 				(nattr_common + num_devices);
4163 
4164 	query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4165 	if (!query_attr) {
4166 		ret = -ENOMEM;
4167 		goto exit;
4168 	}
4169 
4170 	query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4171 	query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4172 	query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4173 	query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4174 
4175 	for (index = 0; index < num_devices; index++) {
4176 		struct kfd_process_device *pdd = p->pdds[index];
4177 
4178 		query_attr[index + nattr_common].type =
4179 			KFD_IOCTL_SVM_ATTR_ACCESS;
4180 		query_attr[index + nattr_common].value = pdd->user_gpu_id;
4181 	}
4182 
4183 	svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4184 
4185 	svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4186 	if (!svm_priv) {
4187 		ret = -ENOMEM;
4188 		goto exit_query;
4189 	}
4190 
4191 	index = 0;
4192 	list_for_each_entry(prange, &svms->list, list) {
4193 
4194 		svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4195 		svm_priv->start_addr = prange->start;
4196 		svm_priv->size = prange->npages;
4197 		memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4198 		pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4199 			 prange, prange->start, prange->npages,
4200 			 prange->start + prange->npages - 1,
4201 			 prange->npages * PAGE_SIZE);
4202 
4203 		ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4204 					 svm_priv->size,
4205 					 (nattr_common + num_devices),
4206 					 svm_priv->attrs);
4207 		if (ret) {
4208 			pr_err("CRIU: failed to obtain range attributes\n");
4209 			goto exit_priv;
4210 		}
4211 
4212 		if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4213 				 svm_priv_data_size)) {
4214 			pr_err("Failed to copy svm priv to user\n");
4215 			ret = -EFAULT;
4216 			goto exit_priv;
4217 		}
4218 
4219 		*priv_data_offset += svm_priv_data_size;
4220 
4221 	}
4222 
4223 
4224 exit_priv:
4225 	kfree(svm_priv);
4226 exit_query:
4227 	kfree(query_attr);
4228 exit:
4229 	mmput(mm);
4230 	return ret;
4231 }
4232 
4233 int
svm_ioctl(struct kfd_process * p,enum kfd_ioctl_svm_op op,uint64_t start,uint64_t size,uint32_t nattrs,struct kfd_ioctl_svm_attribute * attrs)4234 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4235 	  uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4236 {
4237 	struct mm_struct *mm = current->mm;
4238 	int r;
4239 
4240 	start >>= PAGE_SHIFT;
4241 	size >>= PAGE_SHIFT;
4242 
4243 	switch (op) {
4244 	case KFD_IOCTL_SVM_OP_SET_ATTR:
4245 		r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4246 		break;
4247 	case KFD_IOCTL_SVM_OP_GET_ATTR:
4248 		r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4249 		break;
4250 	default:
4251 		r = EINVAL;
4252 		break;
4253 	}
4254 
4255 	return r;
4256 }
4257