1 // SPDX-License-Identifier: GPL-2.0-only
2 #define _GNU_SOURCE
3
4 #include <errno.h>
5 #include <stdbool.h>
6 #include <stdio.h>
7 #include <string.h>
8 #include <unistd.h>
9 #include <sched.h>
10
11 #include <arpa/inet.h>
12 #include <sys/mount.h>
13 #include <sys/stat.h>
14 #include <sys/types.h>
15 #include <sys/un.h>
16 #include <sys/eventfd.h>
17
18 #include <linux/err.h>
19 #include <linux/in.h>
20 #include <linux/in6.h>
21 #include <linux/limits.h>
22
23 #include <linux/ip.h>
24 #include <linux/udp.h>
25 #include <netinet/tcp.h>
26 #include <net/if.h>
27
28 #include "bpf_util.h"
29 #include "network_helpers.h"
30 #include "test_progs.h"
31
32 #ifdef TRAFFIC_MONITOR
33 /* Prevent pcap.h from including pcap/bpf.h and causing conflicts */
34 #define PCAP_DONT_INCLUDE_PCAP_BPF_H 1
35 #include <pcap/pcap.h>
36 #include <pcap/dlt.h>
37 #endif
38
39 #ifndef IPPROTO_MPTCP
40 #define IPPROTO_MPTCP 262
41 #endif
42
43 #define clean_errno() (errno == 0 ? "None" : strerror(errno))
44 #define log_err(MSG, ...) ({ \
45 int __save = errno; \
46 fprintf(stderr, "(%s:%d: errno: %s) " MSG "\n", \
47 __FILE__, __LINE__, clean_errno(), \
48 ##__VA_ARGS__); \
49 errno = __save; \
50 })
51
52 struct ipv4_packet pkt_v4 = {
53 .eth.h_proto = __bpf_constant_htons(ETH_P_IP),
54 .iph.ihl = 5,
55 .iph.protocol = IPPROTO_TCP,
56 .iph.tot_len = __bpf_constant_htons(MAGIC_BYTES),
57 .tcp.urg_ptr = 123,
58 .tcp.doff = 5,
59 };
60
61 struct ipv6_packet pkt_v6 = {
62 .eth.h_proto = __bpf_constant_htons(ETH_P_IPV6),
63 .iph.nexthdr = IPPROTO_TCP,
64 .iph.payload_len = __bpf_constant_htons(MAGIC_BYTES),
65 .tcp.urg_ptr = 123,
66 .tcp.doff = 5,
67 };
68
69 static const struct network_helper_opts default_opts;
70
settimeo(int fd,int timeout_ms)71 int settimeo(int fd, int timeout_ms)
72 {
73 struct timeval timeout = { .tv_sec = 3 };
74
75 if (timeout_ms > 0) {
76 timeout.tv_sec = timeout_ms / 1000;
77 timeout.tv_usec = (timeout_ms % 1000) * 1000;
78 }
79
80 if (setsockopt(fd, SOL_SOCKET, SO_RCVTIMEO, &timeout,
81 sizeof(timeout))) {
82 log_err("Failed to set SO_RCVTIMEO");
83 return -1;
84 }
85
86 if (setsockopt(fd, SOL_SOCKET, SO_SNDTIMEO, &timeout,
87 sizeof(timeout))) {
88 log_err("Failed to set SO_SNDTIMEO");
89 return -1;
90 }
91
92 return 0;
93 }
94
95 #define save_errno_close(fd) ({ int __save = errno; close(fd); errno = __save; })
96
start_server_addr(int type,const struct sockaddr_storage * addr,socklen_t addrlen,const struct network_helper_opts * opts)97 int start_server_addr(int type, const struct sockaddr_storage *addr, socklen_t addrlen,
98 const struct network_helper_opts *opts)
99 {
100 int fd;
101
102 if (!opts)
103 opts = &default_opts;
104
105 fd = socket(addr->ss_family, type, opts->proto);
106 if (fd < 0) {
107 log_err("Failed to create server socket");
108 return -1;
109 }
110
111 if (settimeo(fd, opts->timeout_ms))
112 goto error_close;
113
114 if (opts->post_socket_cb &&
115 opts->post_socket_cb(fd, opts->cb_opts)) {
116 log_err("Failed to call post_socket_cb");
117 goto error_close;
118 }
119
120 if (bind(fd, (struct sockaddr *)addr, addrlen) < 0) {
121 log_err("Failed to bind socket");
122 goto error_close;
123 }
124
125 if (type == SOCK_STREAM) {
126 if (listen(fd, opts->backlog ? MAX(opts->backlog, 0) : 1) < 0) {
127 log_err("Failed to listed on socket");
128 goto error_close;
129 }
130 }
131
132 return fd;
133
134 error_close:
135 save_errno_close(fd);
136 return -1;
137 }
138
start_server_str(int family,int type,const char * addr_str,__u16 port,const struct network_helper_opts * opts)139 int start_server_str(int family, int type, const char *addr_str, __u16 port,
140 const struct network_helper_opts *opts)
141 {
142 struct sockaddr_storage addr;
143 socklen_t addrlen;
144
145 if (!opts)
146 opts = &default_opts;
147
148 if (make_sockaddr(family, addr_str, port, &addr, &addrlen))
149 return -1;
150
151 return start_server_addr(type, &addr, addrlen, opts);
152 }
153
start_server(int family,int type,const char * addr_str,__u16 port,int timeout_ms)154 int start_server(int family, int type, const char *addr_str, __u16 port,
155 int timeout_ms)
156 {
157 struct network_helper_opts opts = {
158 .timeout_ms = timeout_ms,
159 };
160
161 return start_server_str(family, type, addr_str, port, &opts);
162 }
163
reuseport_cb(int fd,void * opts)164 static int reuseport_cb(int fd, void *opts)
165 {
166 int on = 1;
167
168 return setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, &on, sizeof(on));
169 }
170
start_reuseport_server(int family,int type,const char * addr_str,__u16 port,int timeout_ms,unsigned int nr_listens)171 int *start_reuseport_server(int family, int type, const char *addr_str,
172 __u16 port, int timeout_ms, unsigned int nr_listens)
173 {
174 struct network_helper_opts opts = {
175 .timeout_ms = timeout_ms,
176 .post_socket_cb = reuseport_cb,
177 };
178 struct sockaddr_storage addr;
179 unsigned int nr_fds = 0;
180 socklen_t addrlen;
181 int *fds;
182
183 if (!nr_listens)
184 return NULL;
185
186 if (make_sockaddr(family, addr_str, port, &addr, &addrlen))
187 return NULL;
188
189 fds = malloc(sizeof(*fds) * nr_listens);
190 if (!fds)
191 return NULL;
192
193 fds[0] = start_server_addr(type, &addr, addrlen, &opts);
194 if (fds[0] == -1)
195 goto close_fds;
196 nr_fds = 1;
197
198 if (getsockname(fds[0], (struct sockaddr *)&addr, &addrlen))
199 goto close_fds;
200
201 for (; nr_fds < nr_listens; nr_fds++) {
202 fds[nr_fds] = start_server_addr(type, &addr, addrlen, &opts);
203 if (fds[nr_fds] == -1)
204 goto close_fds;
205 }
206
207 return fds;
208
209 close_fds:
210 free_fds(fds, nr_fds);
211 return NULL;
212 }
213
free_fds(int * fds,unsigned int nr_close_fds)214 void free_fds(int *fds, unsigned int nr_close_fds)
215 {
216 if (fds) {
217 while (nr_close_fds)
218 close(fds[--nr_close_fds]);
219 free(fds);
220 }
221 }
222
fastopen_connect(int server_fd,const char * data,unsigned int data_len,int timeout_ms)223 int fastopen_connect(int server_fd, const char *data, unsigned int data_len,
224 int timeout_ms)
225 {
226 struct sockaddr_storage addr;
227 socklen_t addrlen = sizeof(addr);
228 struct sockaddr_in *addr_in;
229 int fd, ret;
230
231 if (getsockname(server_fd, (struct sockaddr *)&addr, &addrlen)) {
232 log_err("Failed to get server addr");
233 return -1;
234 }
235
236 addr_in = (struct sockaddr_in *)&addr;
237 fd = socket(addr_in->sin_family, SOCK_STREAM, 0);
238 if (fd < 0) {
239 log_err("Failed to create client socket");
240 return -1;
241 }
242
243 if (settimeo(fd, timeout_ms))
244 goto error_close;
245
246 ret = sendto(fd, data, data_len, MSG_FASTOPEN, (struct sockaddr *)&addr,
247 addrlen);
248 if (ret != data_len) {
249 log_err("sendto(data, %u) != %d\n", data_len, ret);
250 goto error_close;
251 }
252
253 return fd;
254
255 error_close:
256 save_errno_close(fd);
257 return -1;
258 }
259
client_socket(int family,int type,const struct network_helper_opts * opts)260 int client_socket(int family, int type,
261 const struct network_helper_opts *opts)
262 {
263 int fd;
264
265 if (!opts)
266 opts = &default_opts;
267
268 fd = socket(family, type, opts->proto);
269 if (fd < 0) {
270 log_err("Failed to create client socket");
271 return -1;
272 }
273
274 if (settimeo(fd, opts->timeout_ms))
275 goto error_close;
276
277 if (opts->post_socket_cb &&
278 opts->post_socket_cb(fd, opts->cb_opts))
279 goto error_close;
280
281 return fd;
282
283 error_close:
284 save_errno_close(fd);
285 return -1;
286 }
287
connect_to_addr(int type,const struct sockaddr_storage * addr,socklen_t addrlen,const struct network_helper_opts * opts)288 int connect_to_addr(int type, const struct sockaddr_storage *addr, socklen_t addrlen,
289 const struct network_helper_opts *opts)
290 {
291 int fd;
292
293 if (!opts)
294 opts = &default_opts;
295
296 fd = client_socket(addr->ss_family, type, opts);
297 if (fd < 0) {
298 log_err("Failed to create client socket");
299 return -1;
300 }
301
302 if (connect(fd, (const struct sockaddr *)addr, addrlen)) {
303 log_err("Failed to connect to server");
304 save_errno_close(fd);
305 return -1;
306 }
307
308 return fd;
309 }
310
connect_to_addr_str(int family,int type,const char * addr_str,__u16 port,const struct network_helper_opts * opts)311 int connect_to_addr_str(int family, int type, const char *addr_str, __u16 port,
312 const struct network_helper_opts *opts)
313 {
314 struct sockaddr_storage addr;
315 socklen_t addrlen;
316
317 if (!opts)
318 opts = &default_opts;
319
320 if (make_sockaddr(family, addr_str, port, &addr, &addrlen))
321 return -1;
322
323 return connect_to_addr(type, &addr, addrlen, opts);
324 }
325
connect_to_fd_opts(int server_fd,const struct network_helper_opts * opts)326 int connect_to_fd_opts(int server_fd, const struct network_helper_opts *opts)
327 {
328 struct sockaddr_storage addr;
329 socklen_t addrlen, optlen;
330 int type;
331
332 if (!opts)
333 opts = &default_opts;
334
335 optlen = sizeof(type);
336 if (getsockopt(server_fd, SOL_SOCKET, SO_TYPE, &type, &optlen)) {
337 log_err("getsockopt(SOL_TYPE)");
338 return -1;
339 }
340
341 addrlen = sizeof(addr);
342 if (getsockname(server_fd, (struct sockaddr *)&addr, &addrlen)) {
343 log_err("Failed to get server addr");
344 return -1;
345 }
346
347 return connect_to_addr(type, &addr, addrlen, opts);
348 }
349
connect_to_fd(int server_fd,int timeout_ms)350 int connect_to_fd(int server_fd, int timeout_ms)
351 {
352 struct network_helper_opts opts = {
353 .timeout_ms = timeout_ms,
354 };
355 socklen_t optlen;
356 int protocol;
357
358 optlen = sizeof(protocol);
359 if (getsockopt(server_fd, SOL_SOCKET, SO_PROTOCOL, &protocol, &optlen)) {
360 log_err("getsockopt(SOL_PROTOCOL)");
361 return -1;
362 }
363 opts.proto = protocol;
364
365 return connect_to_fd_opts(server_fd, &opts);
366 }
367
connect_fd_to_fd(int client_fd,int server_fd,int timeout_ms)368 int connect_fd_to_fd(int client_fd, int server_fd, int timeout_ms)
369 {
370 struct sockaddr_storage addr;
371 socklen_t len = sizeof(addr);
372
373 if (settimeo(client_fd, timeout_ms))
374 return -1;
375
376 if (getsockname(server_fd, (struct sockaddr *)&addr, &len)) {
377 log_err("Failed to get server addr");
378 return -1;
379 }
380
381 if (connect(client_fd, (const struct sockaddr *)&addr, len)) {
382 log_err("Failed to connect to server");
383 return -1;
384 }
385
386 return 0;
387 }
388
make_sockaddr(int family,const char * addr_str,__u16 port,struct sockaddr_storage * addr,socklen_t * len)389 int make_sockaddr(int family, const char *addr_str, __u16 port,
390 struct sockaddr_storage *addr, socklen_t *len)
391 {
392 if (family == AF_INET) {
393 struct sockaddr_in *sin = (void *)addr;
394
395 memset(addr, 0, sizeof(*sin));
396 sin->sin_family = AF_INET;
397 sin->sin_port = htons(port);
398 if (addr_str &&
399 inet_pton(AF_INET, addr_str, &sin->sin_addr) != 1) {
400 log_err("inet_pton(AF_INET, %s)", addr_str);
401 return -1;
402 }
403 if (len)
404 *len = sizeof(*sin);
405 return 0;
406 } else if (family == AF_INET6) {
407 struct sockaddr_in6 *sin6 = (void *)addr;
408
409 memset(addr, 0, sizeof(*sin6));
410 sin6->sin6_family = AF_INET6;
411 sin6->sin6_port = htons(port);
412 if (addr_str &&
413 inet_pton(AF_INET6, addr_str, &sin6->sin6_addr) != 1) {
414 log_err("inet_pton(AF_INET6, %s)", addr_str);
415 return -1;
416 }
417 if (len)
418 *len = sizeof(*sin6);
419 return 0;
420 } else if (family == AF_UNIX) {
421 /* Note that we always use abstract unix sockets to avoid having
422 * to clean up leftover files.
423 */
424 struct sockaddr_un *sun = (void *)addr;
425
426 memset(addr, 0, sizeof(*sun));
427 sun->sun_family = family;
428 sun->sun_path[0] = 0;
429 strcpy(sun->sun_path + 1, addr_str);
430 if (len)
431 *len = offsetof(struct sockaddr_un, sun_path) + 1 + strlen(addr_str);
432 return 0;
433 }
434 return -1;
435 }
436
ping_command(int family)437 char *ping_command(int family)
438 {
439 if (family == AF_INET6) {
440 /* On some systems 'ping' doesn't support IPv6, so use ping6 if it is present. */
441 if (!system("which ping6 >/dev/null 2>&1"))
442 return "ping6";
443 else
444 return "ping -6";
445 }
446 return "ping";
447 }
448
remove_netns(const char * name)449 int remove_netns(const char *name)
450 {
451 char *cmd;
452 int r;
453
454 r = asprintf(&cmd, "ip netns del %s >/dev/null 2>&1", name);
455 if (r < 0) {
456 log_err("Failed to malloc cmd");
457 return -1;
458 }
459
460 r = system(cmd);
461 free(cmd);
462 return r;
463 }
464
make_netns(const char * name)465 int make_netns(const char *name)
466 {
467 char *cmd;
468 int r;
469
470 r = asprintf(&cmd, "ip netns add %s", name);
471 if (r < 0) {
472 log_err("Failed to malloc cmd");
473 return -1;
474 }
475
476 r = system(cmd);
477 free(cmd);
478
479 if (r)
480 return r;
481
482 r = asprintf(&cmd, "ip -n %s link set lo up", name);
483 if (r < 0) {
484 log_err("Failed to malloc cmd for setting up lo");
485 remove_netns(name);
486 return -1;
487 }
488
489 r = system(cmd);
490 free(cmd);
491
492 return r;
493 }
494
495 struct nstoken {
496 int orig_netns_fd;
497 };
498
open_netns(const char * name)499 struct nstoken *open_netns(const char *name)
500 {
501 int nsfd;
502 char nspath[PATH_MAX];
503 int err;
504 struct nstoken *token;
505
506 token = calloc(1, sizeof(struct nstoken));
507 if (!token) {
508 log_err("Failed to malloc token");
509 return NULL;
510 }
511
512 token->orig_netns_fd = open("/proc/self/ns/net", O_RDONLY);
513 if (token->orig_netns_fd == -1) {
514 log_err("Failed to open(/proc/self/ns/net)");
515 goto fail;
516 }
517
518 snprintf(nspath, sizeof(nspath), "%s/%s", "/var/run/netns", name);
519 nsfd = open(nspath, O_RDONLY | O_CLOEXEC);
520 if (nsfd == -1) {
521 log_err("Failed to open(%s)", nspath);
522 goto fail;
523 }
524
525 err = setns(nsfd, CLONE_NEWNET);
526 close(nsfd);
527 if (err) {
528 log_err("Failed to setns(nsfd)");
529 goto fail;
530 }
531
532 return token;
533 fail:
534 if (token->orig_netns_fd != -1)
535 close(token->orig_netns_fd);
536 free(token);
537 return NULL;
538 }
539
close_netns(struct nstoken * token)540 void close_netns(struct nstoken *token)
541 {
542 if (!token)
543 return;
544
545 if (setns(token->orig_netns_fd, CLONE_NEWNET))
546 log_err("Failed to setns(orig_netns_fd)");
547 close(token->orig_netns_fd);
548 free(token);
549 }
550
get_socket_local_port(int sock_fd)551 int get_socket_local_port(int sock_fd)
552 {
553 struct sockaddr_storage addr;
554 socklen_t addrlen = sizeof(addr);
555 int err;
556
557 err = getsockname(sock_fd, (struct sockaddr *)&addr, &addrlen);
558 if (err < 0)
559 return err;
560
561 if (addr.ss_family == AF_INET) {
562 struct sockaddr_in *sin = (struct sockaddr_in *)&addr;
563
564 return sin->sin_port;
565 } else if (addr.ss_family == AF_INET6) {
566 struct sockaddr_in6 *sin = (struct sockaddr_in6 *)&addr;
567
568 return sin->sin6_port;
569 }
570
571 return -1;
572 }
573
get_hw_ring_size(char * ifname,struct ethtool_ringparam * ring_param)574 int get_hw_ring_size(char *ifname, struct ethtool_ringparam *ring_param)
575 {
576 struct ifreq ifr = {0};
577 int sockfd, err;
578
579 sockfd = socket(AF_INET, SOCK_DGRAM, 0);
580 if (sockfd < 0)
581 return -errno;
582
583 memcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name));
584
585 ring_param->cmd = ETHTOOL_GRINGPARAM;
586 ifr.ifr_data = (char *)ring_param;
587
588 if (ioctl(sockfd, SIOCETHTOOL, &ifr) < 0) {
589 err = errno;
590 close(sockfd);
591 return -err;
592 }
593
594 close(sockfd);
595 return 0;
596 }
597
set_hw_ring_size(char * ifname,struct ethtool_ringparam * ring_param)598 int set_hw_ring_size(char *ifname, struct ethtool_ringparam *ring_param)
599 {
600 struct ifreq ifr = {0};
601 int sockfd, err;
602
603 sockfd = socket(AF_INET, SOCK_DGRAM, 0);
604 if (sockfd < 0)
605 return -errno;
606
607 memcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name));
608
609 ring_param->cmd = ETHTOOL_SRINGPARAM;
610 ifr.ifr_data = (char *)ring_param;
611
612 if (ioctl(sockfd, SIOCETHTOOL, &ifr) < 0) {
613 err = errno;
614 close(sockfd);
615 return -err;
616 }
617
618 close(sockfd);
619 return 0;
620 }
621
622 struct send_recv_arg {
623 int fd;
624 uint32_t bytes;
625 int stop;
626 };
627
send_recv_server(void * arg)628 static void *send_recv_server(void *arg)
629 {
630 struct send_recv_arg *a = (struct send_recv_arg *)arg;
631 ssize_t nr_sent = 0, bytes = 0;
632 char batch[1500];
633 int err = 0, fd;
634
635 fd = accept(a->fd, NULL, NULL);
636 while (fd == -1) {
637 if (errno == EINTR)
638 continue;
639 err = -errno;
640 goto done;
641 }
642
643 if (settimeo(fd, 0)) {
644 err = -errno;
645 goto done;
646 }
647
648 while (bytes < a->bytes && !READ_ONCE(a->stop)) {
649 nr_sent = send(fd, &batch,
650 MIN(a->bytes - bytes, sizeof(batch)), 0);
651 if (nr_sent == -1 && errno == EINTR)
652 continue;
653 if (nr_sent == -1) {
654 err = -errno;
655 break;
656 }
657 bytes += nr_sent;
658 }
659
660 if (bytes != a->bytes) {
661 log_err("send %zd expected %u", bytes, a->bytes);
662 if (!err)
663 err = bytes > a->bytes ? -E2BIG : -EINTR;
664 }
665
666 done:
667 if (fd >= 0)
668 close(fd);
669 if (err) {
670 WRITE_ONCE(a->stop, 1);
671 return ERR_PTR(err);
672 }
673 return NULL;
674 }
675
send_recv_data(int lfd,int fd,uint32_t total_bytes)676 int send_recv_data(int lfd, int fd, uint32_t total_bytes)
677 {
678 ssize_t nr_recv = 0, bytes = 0;
679 struct send_recv_arg arg = {
680 .fd = lfd,
681 .bytes = total_bytes,
682 .stop = 0,
683 };
684 pthread_t srv_thread;
685 void *thread_ret;
686 char batch[1500];
687 int err = 0;
688
689 err = pthread_create(&srv_thread, NULL, send_recv_server, (void *)&arg);
690 if (err) {
691 log_err("Failed to pthread_create");
692 return err;
693 }
694
695 /* recv total_bytes */
696 while (bytes < total_bytes && !READ_ONCE(arg.stop)) {
697 nr_recv = recv(fd, &batch,
698 MIN(total_bytes - bytes, sizeof(batch)), 0);
699 if (nr_recv == -1 && errno == EINTR)
700 continue;
701 if (nr_recv == -1) {
702 err = -errno;
703 break;
704 }
705 bytes += nr_recv;
706 }
707
708 if (bytes != total_bytes) {
709 log_err("recv %zd expected %u", bytes, total_bytes);
710 if (!err)
711 err = bytes > total_bytes ? -E2BIG : -EINTR;
712 }
713
714 WRITE_ONCE(arg.stop, 1);
715 pthread_join(srv_thread, &thread_ret);
716 if (IS_ERR(thread_ret)) {
717 log_err("Failed in thread_ret %ld", PTR_ERR(thread_ret));
718 err = err ? : PTR_ERR(thread_ret);
719 }
720
721 return err;
722 }
723
724 #ifdef TRAFFIC_MONITOR
725 struct tmonitor_ctx {
726 pcap_t *pcap;
727 pcap_dumper_t *dumper;
728 pthread_t thread;
729 int wake_fd;
730
731 volatile bool done;
732 char pkt_fname[PATH_MAX];
733 int pcap_fd;
734 };
735
736 /* Is this packet captured with a Ethernet protocol type? */
is_ethernet(const u_char * packet)737 static bool is_ethernet(const u_char *packet)
738 {
739 u16 arphdr_type;
740
741 memcpy(&arphdr_type, packet + 8, 2);
742 arphdr_type = ntohs(arphdr_type);
743
744 /* Except the following cases, the protocol type contains the
745 * Ethernet protocol type for the packet.
746 *
747 * https://www.tcpdump.org/linktypes/LINKTYPE_LINUX_SLL2.html
748 */
749 switch (arphdr_type) {
750 case 770: /* ARPHRD_FRAD */
751 case 778: /* ARPHDR_IPGRE */
752 case 803: /* ARPHRD_IEEE80211_RADIOTAP */
753 printf("Packet captured: arphdr_type=%d\n", arphdr_type);
754 return false;
755 }
756 return true;
757 }
758
759 static const char * const pkt_types[] = {
760 "In",
761 "B", /* Broadcast */
762 "M", /* Multicast */
763 "C", /* Captured with the promiscuous mode */
764 "Out",
765 };
766
pkt_type_str(u16 pkt_type)767 static const char *pkt_type_str(u16 pkt_type)
768 {
769 if (pkt_type < ARRAY_SIZE(pkt_types))
770 return pkt_types[pkt_type];
771 return "Unknown";
772 }
773
774 /* Show the information of the transport layer in the packet */
show_transport(const u_char * packet,u16 len,u32 ifindex,const char * src_addr,const char * dst_addr,u16 proto,bool ipv6,u8 pkt_type)775 static void show_transport(const u_char *packet, u16 len, u32 ifindex,
776 const char *src_addr, const char *dst_addr,
777 u16 proto, bool ipv6, u8 pkt_type)
778 {
779 char *ifname, _ifname[IF_NAMESIZE];
780 const char *transport_str;
781 u16 src_port, dst_port;
782 struct udphdr *udp;
783 struct tcphdr *tcp;
784
785 ifname = if_indextoname(ifindex, _ifname);
786 if (!ifname) {
787 snprintf(_ifname, sizeof(_ifname), "unknown(%d)", ifindex);
788 ifname = _ifname;
789 }
790
791 if (proto == IPPROTO_UDP) {
792 udp = (struct udphdr *)packet;
793 src_port = ntohs(udp->source);
794 dst_port = ntohs(udp->dest);
795 transport_str = "UDP";
796 } else if (proto == IPPROTO_TCP) {
797 tcp = (struct tcphdr *)packet;
798 src_port = ntohs(tcp->source);
799 dst_port = ntohs(tcp->dest);
800 transport_str = "TCP";
801 } else if (proto == IPPROTO_ICMP) {
802 printf("%-7s %-3s IPv4 %s > %s: ICMP, length %d, type %d, code %d\n",
803 ifname, pkt_type_str(pkt_type), src_addr, dst_addr, len,
804 packet[0], packet[1]);
805 return;
806 } else if (proto == IPPROTO_ICMPV6) {
807 printf("%-7s %-3s IPv6 %s > %s: ICMPv6, length %d, type %d, code %d\n",
808 ifname, pkt_type_str(pkt_type), src_addr, dst_addr, len,
809 packet[0], packet[1]);
810 return;
811 } else {
812 printf("%-7s %-3s %s %s > %s: protocol %d\n",
813 ifname, pkt_type_str(pkt_type), ipv6 ? "IPv6" : "IPv4",
814 src_addr, dst_addr, proto);
815 return;
816 }
817
818 /* TCP or UDP*/
819
820 flockfile(stdout);
821 if (ipv6)
822 printf("%-7s %-3s IPv6 %s.%d > %s.%d: %s, length %d",
823 ifname, pkt_type_str(pkt_type), src_addr, src_port,
824 dst_addr, dst_port, transport_str, len);
825 else
826 printf("%-7s %-3s IPv4 %s:%d > %s:%d: %s, length %d",
827 ifname, pkt_type_str(pkt_type), src_addr, src_port,
828 dst_addr, dst_port, transport_str, len);
829
830 if (proto == IPPROTO_TCP) {
831 if (tcp->fin)
832 printf(", FIN");
833 if (tcp->syn)
834 printf(", SYN");
835 if (tcp->rst)
836 printf(", RST");
837 if (tcp->ack)
838 printf(", ACK");
839 }
840
841 printf("\n");
842 funlockfile(stdout);
843 }
844
show_ipv6_packet(const u_char * packet,u32 ifindex,u8 pkt_type)845 static void show_ipv6_packet(const u_char *packet, u32 ifindex, u8 pkt_type)
846 {
847 char src_buf[INET6_ADDRSTRLEN], dst_buf[INET6_ADDRSTRLEN];
848 struct ipv6hdr *pkt = (struct ipv6hdr *)packet;
849 const char *src, *dst;
850 u_char proto;
851
852 src = inet_ntop(AF_INET6, &pkt->saddr, src_buf, sizeof(src_buf));
853 if (!src)
854 src = "<invalid>";
855 dst = inet_ntop(AF_INET6, &pkt->daddr, dst_buf, sizeof(dst_buf));
856 if (!dst)
857 dst = "<invalid>";
858 proto = pkt->nexthdr;
859 show_transport(packet + sizeof(struct ipv6hdr),
860 ntohs(pkt->payload_len),
861 ifindex, src, dst, proto, true, pkt_type);
862 }
863
show_ipv4_packet(const u_char * packet,u32 ifindex,u8 pkt_type)864 static void show_ipv4_packet(const u_char *packet, u32 ifindex, u8 pkt_type)
865 {
866 char src_buf[INET_ADDRSTRLEN], dst_buf[INET_ADDRSTRLEN];
867 struct iphdr *pkt = (struct iphdr *)packet;
868 const char *src, *dst;
869 u_char proto;
870
871 src = inet_ntop(AF_INET, &pkt->saddr, src_buf, sizeof(src_buf));
872 if (!src)
873 src = "<invalid>";
874 dst = inet_ntop(AF_INET, &pkt->daddr, dst_buf, sizeof(dst_buf));
875 if (!dst)
876 dst = "<invalid>";
877 proto = pkt->protocol;
878 show_transport(packet + sizeof(struct iphdr),
879 ntohs(pkt->tot_len),
880 ifindex, src, dst, proto, false, pkt_type);
881 }
882
traffic_monitor_thread(void * arg)883 static void *traffic_monitor_thread(void *arg)
884 {
885 char *ifname, _ifname[IF_NAMESIZE];
886 const u_char *packet, *payload;
887 struct tmonitor_ctx *ctx = arg;
888 pcap_dumper_t *dumper = ctx->dumper;
889 int fd = ctx->pcap_fd, nfds, r;
890 int wake_fd = ctx->wake_fd;
891 struct pcap_pkthdr header;
892 pcap_t *pcap = ctx->pcap;
893 u32 ifindex;
894 fd_set fds;
895 u16 proto;
896 u8 ptype;
897
898 nfds = (fd > wake_fd ? fd : wake_fd) + 1;
899 FD_ZERO(&fds);
900
901 while (!ctx->done) {
902 FD_SET(fd, &fds);
903 FD_SET(wake_fd, &fds);
904 r = select(nfds, &fds, NULL, NULL, NULL);
905 if (!r)
906 continue;
907 if (r < 0) {
908 if (errno == EINTR)
909 continue;
910 log_err("Fail to select on pcap fd and wake fd");
911 break;
912 }
913
914 /* This instance of pcap is non-blocking */
915 packet = pcap_next(pcap, &header);
916 if (!packet)
917 continue;
918
919 /* According to the man page of pcap_dump(), first argument
920 * is the pcap_dumper_t pointer even it's argument type is
921 * u_char *.
922 */
923 pcap_dump((u_char *)dumper, &header, packet);
924
925 /* Not sure what other types of packets look like. Here, we
926 * parse only Ethernet and compatible packets.
927 */
928 if (!is_ethernet(packet))
929 continue;
930
931 /* Skip SLL2 header
932 * https://www.tcpdump.org/linktypes/LINKTYPE_LINUX_SLL2.html
933 *
934 * Although the document doesn't mention that, the payload
935 * doesn't include the Ethernet header. The payload starts
936 * from the first byte of the network layer header.
937 */
938 payload = packet + 20;
939
940 memcpy(&proto, packet, 2);
941 proto = ntohs(proto);
942 memcpy(&ifindex, packet + 4, 4);
943 ifindex = ntohl(ifindex);
944 ptype = packet[10];
945
946 if (proto == ETH_P_IPV6) {
947 show_ipv6_packet(payload, ifindex, ptype);
948 } else if (proto == ETH_P_IP) {
949 show_ipv4_packet(payload, ifindex, ptype);
950 } else {
951 ifname = if_indextoname(ifindex, _ifname);
952 if (!ifname) {
953 snprintf(_ifname, sizeof(_ifname), "unknown(%d)", ifindex);
954 ifname = _ifname;
955 }
956
957 printf("%-7s %-3s Unknown network protocol type 0x%x\n",
958 ifname, pkt_type_str(ptype), proto);
959 }
960 }
961
962 return NULL;
963 }
964
965 /* Prepare the pcap handle to capture packets.
966 *
967 * This pcap is non-blocking and immediate mode is enabled to receive
968 * captured packets as soon as possible. The snaplen is set to 1024 bytes
969 * to limit the size of captured content. The format of the link-layer
970 * header is set to DLT_LINUX_SLL2 to enable handling various link-layer
971 * technologies.
972 */
traffic_monitor_prepare_pcap(void)973 static pcap_t *traffic_monitor_prepare_pcap(void)
974 {
975 char errbuf[PCAP_ERRBUF_SIZE];
976 pcap_t *pcap;
977 int r;
978
979 /* Listen on all NICs in the namespace */
980 pcap = pcap_create("any", errbuf);
981 if (!pcap) {
982 log_err("Failed to open pcap: %s", errbuf);
983 return NULL;
984 }
985 /* Limit the size of the packet (first N bytes) */
986 r = pcap_set_snaplen(pcap, 1024);
987 if (r) {
988 log_err("Failed to set snaplen: %s", pcap_geterr(pcap));
989 goto error;
990 }
991 /* To receive packets as fast as possible */
992 r = pcap_set_immediate_mode(pcap, 1);
993 if (r) {
994 log_err("Failed to set immediate mode: %s", pcap_geterr(pcap));
995 goto error;
996 }
997 r = pcap_setnonblock(pcap, 1, errbuf);
998 if (r) {
999 log_err("Failed to set nonblock: %s", errbuf);
1000 goto error;
1001 }
1002 r = pcap_activate(pcap);
1003 if (r) {
1004 log_err("Failed to activate pcap: %s", pcap_geterr(pcap));
1005 goto error;
1006 }
1007 /* Determine the format of the link-layer header */
1008 r = pcap_set_datalink(pcap, DLT_LINUX_SLL2);
1009 if (r) {
1010 log_err("Failed to set datalink: %s", pcap_geterr(pcap));
1011 goto error;
1012 }
1013
1014 return pcap;
1015 error:
1016 pcap_close(pcap);
1017 return NULL;
1018 }
1019
encode_test_name(char * buf,size_t len,const char * test_name,const char * subtest_name)1020 static void encode_test_name(char *buf, size_t len, const char *test_name, const char *subtest_name)
1021 {
1022 char *p;
1023
1024 if (subtest_name)
1025 snprintf(buf, len, "%s__%s", test_name, subtest_name);
1026 else
1027 snprintf(buf, len, "%s", test_name);
1028 while ((p = strchr(buf, '/')))
1029 *p = '_';
1030 while ((p = strchr(buf, ' ')))
1031 *p = '_';
1032 }
1033
1034 #define PCAP_DIR "/tmp/tmon_pcap"
1035
1036 /* Start to monitor the network traffic in the given network namespace.
1037 *
1038 * netns: the name of the network namespace to monitor. If NULL, the
1039 * current network namespace is monitored.
1040 * test_name: the name of the running test.
1041 * subtest_name: the name of the running subtest if there is. It should be
1042 * NULL if it is not a subtest.
1043 *
1044 * This function will start a thread to capture packets going through NICs
1045 * in the give network namespace.
1046 */
traffic_monitor_start(const char * netns,const char * test_name,const char * subtest_name)1047 struct tmonitor_ctx *traffic_monitor_start(const char *netns, const char *test_name,
1048 const char *subtest_name)
1049 {
1050 struct nstoken *nstoken = NULL;
1051 struct tmonitor_ctx *ctx;
1052 char test_name_buf[64];
1053 static int tmon_seq;
1054 int r;
1055
1056 if (netns) {
1057 nstoken = open_netns(netns);
1058 if (!nstoken)
1059 return NULL;
1060 }
1061 ctx = malloc(sizeof(*ctx));
1062 if (!ctx) {
1063 log_err("Failed to malloc ctx");
1064 goto fail_ctx;
1065 }
1066 memset(ctx, 0, sizeof(*ctx));
1067
1068 encode_test_name(test_name_buf, sizeof(test_name_buf), test_name, subtest_name);
1069 snprintf(ctx->pkt_fname, sizeof(ctx->pkt_fname),
1070 PCAP_DIR "/packets-%d-%d-%s-%s.log", getpid(), tmon_seq++,
1071 test_name_buf, netns ? netns : "unknown");
1072
1073 r = mkdir(PCAP_DIR, 0755);
1074 if (r && errno != EEXIST) {
1075 log_err("Failed to create " PCAP_DIR);
1076 goto fail_pcap;
1077 }
1078
1079 ctx->pcap = traffic_monitor_prepare_pcap();
1080 if (!ctx->pcap)
1081 goto fail_pcap;
1082 ctx->pcap_fd = pcap_get_selectable_fd(ctx->pcap);
1083 if (ctx->pcap_fd < 0) {
1084 log_err("Failed to get pcap fd");
1085 goto fail_dumper;
1086 }
1087
1088 /* Create a packet file */
1089 ctx->dumper = pcap_dump_open(ctx->pcap, ctx->pkt_fname);
1090 if (!ctx->dumper) {
1091 log_err("Failed to open pcap dump: %s", ctx->pkt_fname);
1092 goto fail_dumper;
1093 }
1094
1095 /* Create an eventfd to wake up the monitor thread */
1096 ctx->wake_fd = eventfd(0, 0);
1097 if (ctx->wake_fd < 0) {
1098 log_err("Failed to create eventfd");
1099 goto fail_eventfd;
1100 }
1101
1102 r = pthread_create(&ctx->thread, NULL, traffic_monitor_thread, ctx);
1103 if (r) {
1104 log_err("Failed to create thread");
1105 goto fail;
1106 }
1107
1108 close_netns(nstoken);
1109
1110 return ctx;
1111
1112 fail:
1113 close(ctx->wake_fd);
1114
1115 fail_eventfd:
1116 pcap_dump_close(ctx->dumper);
1117 unlink(ctx->pkt_fname);
1118
1119 fail_dumper:
1120 pcap_close(ctx->pcap);
1121
1122 fail_pcap:
1123 free(ctx);
1124
1125 fail_ctx:
1126 close_netns(nstoken);
1127
1128 return NULL;
1129 }
1130
traffic_monitor_release(struct tmonitor_ctx * ctx)1131 static void traffic_monitor_release(struct tmonitor_ctx *ctx)
1132 {
1133 pcap_close(ctx->pcap);
1134 pcap_dump_close(ctx->dumper);
1135
1136 close(ctx->wake_fd);
1137
1138 free(ctx);
1139 }
1140
1141 /* Stop the network traffic monitor.
1142 *
1143 * ctx: the context returned by traffic_monitor_start()
1144 */
traffic_monitor_stop(struct tmonitor_ctx * ctx)1145 void traffic_monitor_stop(struct tmonitor_ctx *ctx)
1146 {
1147 __u64 w = 1;
1148
1149 if (!ctx)
1150 return;
1151
1152 /* Stop the monitor thread */
1153 ctx->done = true;
1154 /* Wake up the background thread. */
1155 write(ctx->wake_fd, &w, sizeof(w));
1156 pthread_join(ctx->thread, NULL);
1157
1158 printf("Packet file: %s\n", strrchr(ctx->pkt_fname, '/') + 1);
1159
1160 traffic_monitor_release(ctx);
1161 }
1162 #endif /* TRAFFIC_MONITOR */
1163