1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Direct memory access (DMA). 4 //! 5 //! C header: [`include/linux/dma-mapping.h`](srctree/include/linux/dma-mapping.h) 6 7 use crate::{ 8 bindings, build_assert, device, 9 device::{Bound, Core}, 10 error::{to_result, Result}, 11 prelude::*, 12 sync::aref::ARef, 13 transmute::{AsBytes, FromBytes}, 14 }; 15 use core::ptr::NonNull; 16 17 /// DMA address type. 18 /// 19 /// Represents a bus address used for Direct Memory Access (DMA) operations. 20 /// 21 /// This is an alias of the kernel's `dma_addr_t`, which may be `u32` or `u64` depending on 22 /// `CONFIG_ARCH_DMA_ADDR_T_64BIT`. 23 /// 24 /// Note that this may be `u64` even on 32-bit architectures. 25 pub type DmaAddress = bindings::dma_addr_t; 26 27 /// Trait to be implemented by DMA capable bus devices. 28 /// 29 /// The [`dma::Device`](Device) trait should be implemented by bus specific device representations, 30 /// where the underlying bus is DMA capable, such as [`pci::Device`](::kernel::pci::Device) or 31 /// [`platform::Device`](::kernel::platform::Device). 32 pub trait Device: AsRef<device::Device<Core>> { 33 /// Set up the device's DMA streaming addressing capabilities. 34 /// 35 /// This method is usually called once from `probe()` as soon as the device capabilities are 36 /// known. 37 /// 38 /// # Safety 39 /// 40 /// This method must not be called concurrently with any DMA allocation or mapping primitives, 41 /// such as [`CoherentAllocation::alloc_attrs`]. dma_set_mask(&self, mask: DmaMask) -> Result42 unsafe fn dma_set_mask(&self, mask: DmaMask) -> Result { 43 // SAFETY: 44 // - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid. 45 // - The safety requirement of this function guarantees that there are no concurrent calls 46 // to DMA allocation and mapping primitives using this mask. 47 to_result(unsafe { bindings::dma_set_mask(self.as_ref().as_raw(), mask.value()) }) 48 } 49 50 /// Set up the device's DMA coherent addressing capabilities. 51 /// 52 /// This method is usually called once from `probe()` as soon as the device capabilities are 53 /// known. 54 /// 55 /// # Safety 56 /// 57 /// This method must not be called concurrently with any DMA allocation or mapping primitives, 58 /// such as [`CoherentAllocation::alloc_attrs`]. dma_set_coherent_mask(&self, mask: DmaMask) -> Result59 unsafe fn dma_set_coherent_mask(&self, mask: DmaMask) -> Result { 60 // SAFETY: 61 // - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid. 62 // - The safety requirement of this function guarantees that there are no concurrent calls 63 // to DMA allocation and mapping primitives using this mask. 64 to_result(unsafe { bindings::dma_set_coherent_mask(self.as_ref().as_raw(), mask.value()) }) 65 } 66 67 /// Set up the device's DMA addressing capabilities. 68 /// 69 /// This is a combination of [`Device::dma_set_mask`] and [`Device::dma_set_coherent_mask`]. 70 /// 71 /// This method is usually called once from `probe()` as soon as the device capabilities are 72 /// known. 73 /// 74 /// # Safety 75 /// 76 /// This method must not be called concurrently with any DMA allocation or mapping primitives, 77 /// such as [`CoherentAllocation::alloc_attrs`]. dma_set_mask_and_coherent(&self, mask: DmaMask) -> Result78 unsafe fn dma_set_mask_and_coherent(&self, mask: DmaMask) -> Result { 79 // SAFETY: 80 // - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid. 81 // - The safety requirement of this function guarantees that there are no concurrent calls 82 // to DMA allocation and mapping primitives using this mask. 83 to_result(unsafe { 84 bindings::dma_set_mask_and_coherent(self.as_ref().as_raw(), mask.value()) 85 }) 86 } 87 } 88 89 /// A DMA mask that holds a bitmask with the lowest `n` bits set. 90 /// 91 /// Use [`DmaMask::new`] or [`DmaMask::try_new`] to construct a value. Values 92 /// are guaranteed to never exceed the bit width of `u64`. 93 /// 94 /// This is the Rust equivalent of the C macro `DMA_BIT_MASK()`. 95 #[derive(Debug, Clone, Copy, PartialEq, Eq)] 96 pub struct DmaMask(u64); 97 98 impl DmaMask { 99 /// Constructs a `DmaMask` with the lowest `n` bits set to `1`. 100 /// 101 /// For `n <= 64`, sets exactly the lowest `n` bits. 102 /// For `n > 64`, results in a build error. 103 /// 104 /// # Examples 105 /// 106 /// ``` 107 /// use kernel::dma::DmaMask; 108 /// 109 /// let mask0 = DmaMask::new::<0>(); 110 /// assert_eq!(mask0.value(), 0); 111 /// 112 /// let mask1 = DmaMask::new::<1>(); 113 /// assert_eq!(mask1.value(), 0b1); 114 /// 115 /// let mask64 = DmaMask::new::<64>(); 116 /// assert_eq!(mask64.value(), u64::MAX); 117 /// 118 /// // Build failure. 119 /// // let mask_overflow = DmaMask::new::<100>(); 120 /// ``` 121 #[inline] new<const N: u32>() -> Self122 pub const fn new<const N: u32>() -> Self { 123 let Ok(mask) = Self::try_new(N) else { 124 build_error!("Invalid DMA Mask."); 125 }; 126 127 mask 128 } 129 130 /// Constructs a `DmaMask` with the lowest `n` bits set to `1`. 131 /// 132 /// For `n <= 64`, sets exactly the lowest `n` bits. 133 /// For `n > 64`, returns [`EINVAL`]. 134 /// 135 /// # Examples 136 /// 137 /// ``` 138 /// use kernel::dma::DmaMask; 139 /// 140 /// let mask0 = DmaMask::try_new(0)?; 141 /// assert_eq!(mask0.value(), 0); 142 /// 143 /// let mask1 = DmaMask::try_new(1)?; 144 /// assert_eq!(mask1.value(), 0b1); 145 /// 146 /// let mask64 = DmaMask::try_new(64)?; 147 /// assert_eq!(mask64.value(), u64::MAX); 148 /// 149 /// let mask_overflow = DmaMask::try_new(100); 150 /// assert!(mask_overflow.is_err()); 151 /// # Ok::<(), Error>(()) 152 /// ``` 153 #[inline] try_new(n: u32) -> Result<Self>154 pub const fn try_new(n: u32) -> Result<Self> { 155 Ok(Self(match n { 156 0 => 0, 157 1..=64 => u64::MAX >> (64 - n), 158 _ => return Err(EINVAL), 159 })) 160 } 161 162 /// Returns the underlying `u64` bitmask value. 163 #[inline] value(&self) -> u64164 pub const fn value(&self) -> u64 { 165 self.0 166 } 167 } 168 169 /// Possible attributes associated with a DMA mapping. 170 /// 171 /// They can be combined with the operators `|`, `&`, and `!`. 172 /// 173 /// Values can be used from the [`attrs`] module. 174 /// 175 /// # Examples 176 /// 177 /// ``` 178 /// # use kernel::device::{Bound, Device}; 179 /// use kernel::dma::{attrs::*, CoherentAllocation}; 180 /// 181 /// # fn test(dev: &Device<Bound>) -> Result { 182 /// let attribs = DMA_ATTR_FORCE_CONTIGUOUS | DMA_ATTR_NO_WARN; 183 /// let c: CoherentAllocation<u64> = 184 /// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, attribs)?; 185 /// # Ok::<(), Error>(()) } 186 /// ``` 187 #[derive(Clone, Copy, PartialEq)] 188 #[repr(transparent)] 189 pub struct Attrs(u32); 190 191 impl Attrs { 192 /// Get the raw representation of this attribute. as_raw(self) -> crate::ffi::c_ulong193 pub(crate) fn as_raw(self) -> crate::ffi::c_ulong { 194 self.0 as crate::ffi::c_ulong 195 } 196 197 /// Check whether `flags` is contained in `self`. contains(self, flags: Attrs) -> bool198 pub fn contains(self, flags: Attrs) -> bool { 199 (self & flags) == flags 200 } 201 } 202 203 impl core::ops::BitOr for Attrs { 204 type Output = Self; bitor(self, rhs: Self) -> Self::Output205 fn bitor(self, rhs: Self) -> Self::Output { 206 Self(self.0 | rhs.0) 207 } 208 } 209 210 impl core::ops::BitAnd for Attrs { 211 type Output = Self; bitand(self, rhs: Self) -> Self::Output212 fn bitand(self, rhs: Self) -> Self::Output { 213 Self(self.0 & rhs.0) 214 } 215 } 216 217 impl core::ops::Not for Attrs { 218 type Output = Self; not(self) -> Self::Output219 fn not(self) -> Self::Output { 220 Self(!self.0) 221 } 222 } 223 224 /// DMA mapping attributes. 225 pub mod attrs { 226 use super::Attrs; 227 228 /// Specifies that reads and writes to the mapping may be weakly ordered, that is that reads 229 /// and writes may pass each other. 230 pub const DMA_ATTR_WEAK_ORDERING: Attrs = Attrs(bindings::DMA_ATTR_WEAK_ORDERING); 231 232 /// Specifies that writes to the mapping may be buffered to improve performance. 233 pub const DMA_ATTR_WRITE_COMBINE: Attrs = Attrs(bindings::DMA_ATTR_WRITE_COMBINE); 234 235 /// Lets the platform to avoid creating a kernel virtual mapping for the allocated buffer. 236 pub const DMA_ATTR_NO_KERNEL_MAPPING: Attrs = Attrs(bindings::DMA_ATTR_NO_KERNEL_MAPPING); 237 238 /// Allows platform code to skip synchronization of the CPU cache for the given buffer assuming 239 /// that it has been already transferred to 'device' domain. 240 pub const DMA_ATTR_SKIP_CPU_SYNC: Attrs = Attrs(bindings::DMA_ATTR_SKIP_CPU_SYNC); 241 242 /// Forces contiguous allocation of the buffer in physical memory. 243 pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS); 244 245 /// Hints DMA-mapping subsystem that it's probably not worth the time to try 246 /// to allocate memory to in a way that gives better TLB efficiency. 247 pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES); 248 249 /// This tells the DMA-mapping subsystem to suppress allocation failure reports (similarly to 250 /// `__GFP_NOWARN`). 251 pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN); 252 253 /// Indicates that the buffer is fully accessible at an elevated privilege level (and 254 /// ideally inaccessible or at least read-only at lesser-privileged levels). 255 pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED); 256 257 /// Indicates that the buffer is MMIO memory. 258 pub const DMA_ATTR_MMIO: Attrs = Attrs(bindings::DMA_ATTR_MMIO); 259 } 260 261 /// DMA data direction. 262 /// 263 /// Corresponds to the C [`enum dma_data_direction`]. 264 /// 265 /// [`enum dma_data_direction`]: srctree/include/linux/dma-direction.h 266 #[derive(Copy, Clone, PartialEq, Eq, Debug)] 267 #[repr(u32)] 268 pub enum DataDirection { 269 /// The DMA mapping is for bidirectional data transfer. 270 /// 271 /// This is used when the buffer can be both read from and written to by the device. 272 /// The cache for the corresponding memory region is both flushed and invalidated. 273 Bidirectional = Self::const_cast(bindings::dma_data_direction_DMA_BIDIRECTIONAL), 274 275 /// The DMA mapping is for data transfer from memory to the device (write). 276 /// 277 /// The CPU has prepared data in the buffer, and the device will read it. 278 /// The cache for the corresponding memory region is flushed before device access. 279 ToDevice = Self::const_cast(bindings::dma_data_direction_DMA_TO_DEVICE), 280 281 /// The DMA mapping is for data transfer from the device to memory (read). 282 /// 283 /// The device will write data into the buffer for the CPU to read. 284 /// The cache for the corresponding memory region is invalidated before CPU access. 285 FromDevice = Self::const_cast(bindings::dma_data_direction_DMA_FROM_DEVICE), 286 287 /// The DMA mapping is not for data transfer. 288 /// 289 /// This is primarily for debugging purposes. With this direction, the DMA mapping API 290 /// will not perform any cache coherency operations. 291 None = Self::const_cast(bindings::dma_data_direction_DMA_NONE), 292 } 293 294 impl DataDirection { 295 /// Casts the bindgen-generated enum type to a `u32` at compile time. 296 /// 297 /// This function will cause a compile-time error if the underlying value of the 298 /// C enum is out of bounds for `u32`. const_cast(val: bindings::dma_data_direction) -> u32299 const fn const_cast(val: bindings::dma_data_direction) -> u32 { 300 // CAST: The C standard allows compilers to choose different integer types for enums. 301 // To safely check the value, we cast it to a wide signed integer type (`i128`) 302 // which can hold any standard C integer enum type without truncation. 303 let wide_val = val as i128; 304 305 // Check if the value is outside the valid range for the target type `u32`. 306 // CAST: `u32::MAX` is cast to `i128` to match the type of `wide_val` for the comparison. 307 if wide_val < 0 || wide_val > u32::MAX as i128 { 308 // Trigger a compile-time error in a const context. 309 build_error!("C enum value is out of bounds for the target type `u32`."); 310 } 311 312 // CAST: This cast is valid because the check above guarantees that `wide_val` 313 // is within the representable range of `u32`. 314 wide_val as u32 315 } 316 } 317 318 impl From<DataDirection> for bindings::dma_data_direction { 319 /// Returns the raw representation of [`enum dma_data_direction`]. from(direction: DataDirection) -> Self320 fn from(direction: DataDirection) -> Self { 321 // CAST: `direction as u32` gets the underlying representation of our `#[repr(u32)]` enum. 322 // The subsequent cast to `Self` (the bindgen type) assumes the C enum is compatible 323 // with the enum variants of `DataDirection`, which is a valid assumption given our 324 // compile-time checks. 325 direction as u32 as Self 326 } 327 } 328 329 /// An abstraction of the `dma_alloc_coherent` API. 330 /// 331 /// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map 332 /// large coherent DMA regions. 333 /// 334 /// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the 335 /// processor's virtual address space) and the device address which can be given to the device 336 /// as the DMA address base of the region. The region is released once [`CoherentAllocation`] 337 /// is dropped. 338 /// 339 /// # Invariants 340 /// 341 /// - For the lifetime of an instance of [`CoherentAllocation`], the `cpu_addr` is a valid pointer 342 /// to an allocated region of coherent memory and `dma_handle` is the DMA address base of the 343 /// region. 344 /// - The size in bytes of the allocation is equal to `size_of::<T> * count`. 345 /// - `size_of::<T> * count` fits into a `usize`. 346 // TODO 347 // 348 // DMA allocations potentially carry device resources (e.g.IOMMU mappings), hence for soundness 349 // reasons DMA allocation would need to be embedded in a `Devres` container, in order to ensure 350 // that device resources can never survive device unbind. 351 // 352 // However, it is neither desirable nor necessary to protect the allocated memory of the DMA 353 // allocation from surviving device unbind; it would require RCU read side critical sections to 354 // access the memory, which may require subsequent unnecessary copies. 355 // 356 // Hence, find a way to revoke the device resources of a `CoherentAllocation`, but not the 357 // entire `CoherentAllocation` including the allocated memory itself. 358 pub struct CoherentAllocation<T: AsBytes + FromBytes> { 359 dev: ARef<device::Device>, 360 dma_handle: DmaAddress, 361 count: usize, 362 cpu_addr: NonNull<T>, 363 dma_attrs: Attrs, 364 } 365 366 impl<T: AsBytes + FromBytes> CoherentAllocation<T> { 367 /// Allocates a region of `size_of::<T> * count` of coherent memory. 368 /// 369 /// # Examples 370 /// 371 /// ``` 372 /// # use kernel::device::{Bound, Device}; 373 /// use kernel::dma::{attrs::*, CoherentAllocation}; 374 /// 375 /// # fn test(dev: &Device<Bound>) -> Result { 376 /// let c: CoherentAllocation<u64> = 377 /// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, DMA_ATTR_NO_WARN)?; 378 /// # Ok::<(), Error>(()) } 379 /// ``` alloc_attrs( dev: &device::Device<Bound>, count: usize, gfp_flags: kernel::alloc::Flags, dma_attrs: Attrs, ) -> Result<CoherentAllocation<T>>380 pub fn alloc_attrs( 381 dev: &device::Device<Bound>, 382 count: usize, 383 gfp_flags: kernel::alloc::Flags, 384 dma_attrs: Attrs, 385 ) -> Result<CoherentAllocation<T>> { 386 build_assert!( 387 core::mem::size_of::<T>() > 0, 388 "It doesn't make sense for the allocated type to be a ZST" 389 ); 390 391 let size = count 392 .checked_mul(core::mem::size_of::<T>()) 393 .ok_or(EOVERFLOW)?; 394 let mut dma_handle = 0; 395 // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`. 396 let addr = unsafe { 397 bindings::dma_alloc_attrs( 398 dev.as_raw(), 399 size, 400 &mut dma_handle, 401 gfp_flags.as_raw(), 402 dma_attrs.as_raw(), 403 ) 404 }; 405 let addr = NonNull::new(addr).ok_or(ENOMEM)?; 406 // INVARIANT: 407 // - We just successfully allocated a coherent region which is accessible for 408 // `count` elements, hence the cpu address is valid. We also hold a refcounted reference 409 // to the device. 410 // - The allocated `size` is equal to `size_of::<T> * count`. 411 // - The allocated `size` fits into a `usize`. 412 Ok(Self { 413 dev: dev.into(), 414 dma_handle, 415 count, 416 cpu_addr: addr.cast(), 417 dma_attrs, 418 }) 419 } 420 421 /// Performs the same functionality as [`CoherentAllocation::alloc_attrs`], except the 422 /// `dma_attrs` is 0 by default. alloc_coherent( dev: &device::Device<Bound>, count: usize, gfp_flags: kernel::alloc::Flags, ) -> Result<CoherentAllocation<T>>423 pub fn alloc_coherent( 424 dev: &device::Device<Bound>, 425 count: usize, 426 gfp_flags: kernel::alloc::Flags, 427 ) -> Result<CoherentAllocation<T>> { 428 CoherentAllocation::alloc_attrs(dev, count, gfp_flags, Attrs(0)) 429 } 430 431 /// Returns the number of elements `T` in this allocation. 432 /// 433 /// Note that this is not the size of the allocation in bytes, which is provided by 434 /// [`Self::size`]. count(&self) -> usize435 pub fn count(&self) -> usize { 436 self.count 437 } 438 439 /// Returns the size in bytes of this allocation. size(&self) -> usize440 pub fn size(&self) -> usize { 441 // INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits into 442 // a `usize`. 443 self.count * core::mem::size_of::<T>() 444 } 445 446 /// Returns the base address to the allocated region in the CPU's virtual address space. start_ptr(&self) -> *const T447 pub fn start_ptr(&self) -> *const T { 448 self.cpu_addr.as_ptr() 449 } 450 451 /// Returns the base address to the allocated region in the CPU's virtual address space as 452 /// a mutable pointer. start_ptr_mut(&mut self) -> *mut T453 pub fn start_ptr_mut(&mut self) -> *mut T { 454 self.cpu_addr.as_ptr() 455 } 456 457 /// Returns a DMA handle which may be given to the device as the DMA address base of 458 /// the region. dma_handle(&self) -> DmaAddress459 pub fn dma_handle(&self) -> DmaAddress { 460 self.dma_handle 461 } 462 463 /// Returns a DMA handle starting at `offset` (in units of `T`) which may be given to the 464 /// device as the DMA address base of the region. 465 /// 466 /// Returns `EINVAL` if `offset` is not within the bounds of the allocation. dma_handle_with_offset(&self, offset: usize) -> Result<DmaAddress>467 pub fn dma_handle_with_offset(&self, offset: usize) -> Result<DmaAddress> { 468 if offset >= self.count { 469 Err(EINVAL) 470 } else { 471 // INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits 472 // into a `usize`, and `offset` is inferior to `count`. 473 Ok(self.dma_handle + (offset * core::mem::size_of::<T>()) as DmaAddress) 474 } 475 } 476 477 /// Common helper to validate a range applied from the allocated region in the CPU's virtual 478 /// address space. validate_range(&self, offset: usize, count: usize) -> Result479 fn validate_range(&self, offset: usize, count: usize) -> Result { 480 if offset.checked_add(count).ok_or(EOVERFLOW)? > self.count { 481 return Err(EINVAL); 482 } 483 Ok(()) 484 } 485 486 /// Returns the data from the region starting from `offset` as a slice. 487 /// `offset` and `count` are in units of `T`, not the number of bytes. 488 /// 489 /// For ringbuffer type of r/w access or use-cases where the pointer to the live data is needed, 490 /// [`CoherentAllocation::start_ptr`] or [`CoherentAllocation::start_ptr_mut`] could be used 491 /// instead. 492 /// 493 /// # Safety 494 /// 495 /// * Callers must ensure that the device does not read/write to/from memory while the returned 496 /// slice is live. 497 /// * Callers must ensure that this call does not race with a write to the same region while 498 /// the returned slice is live. as_slice(&self, offset: usize, count: usize) -> Result<&[T]>499 pub unsafe fn as_slice(&self, offset: usize, count: usize) -> Result<&[T]> { 500 self.validate_range(offset, count)?; 501 // SAFETY: 502 // - The pointer is valid due to type invariant on `CoherentAllocation`, 503 // we've just checked that the range and index is within bounds. The immutability of the 504 // data is also guaranteed by the safety requirements of the function. 505 // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked 506 // that `self.count` won't overflow early in the constructor. 507 Ok(unsafe { core::slice::from_raw_parts(self.start_ptr().add(offset), count) }) 508 } 509 510 /// Performs the same functionality as [`CoherentAllocation::as_slice`], except that a mutable 511 /// slice is returned. 512 /// 513 /// # Safety 514 /// 515 /// * Callers must ensure that the device does not read/write to/from memory while the returned 516 /// slice is live. 517 /// * Callers must ensure that this call does not race with a read or write to the same region 518 /// while the returned slice is live. as_slice_mut(&mut self, offset: usize, count: usize) -> Result<&mut [T]>519 pub unsafe fn as_slice_mut(&mut self, offset: usize, count: usize) -> Result<&mut [T]> { 520 self.validate_range(offset, count)?; 521 // SAFETY: 522 // - The pointer is valid due to type invariant on `CoherentAllocation`, 523 // we've just checked that the range and index is within bounds. The immutability of the 524 // data is also guaranteed by the safety requirements of the function. 525 // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked 526 // that `self.count` won't overflow early in the constructor. 527 Ok(unsafe { core::slice::from_raw_parts_mut(self.start_ptr_mut().add(offset), count) }) 528 } 529 530 /// Writes data to the region starting from `offset`. `offset` is in units of `T`, not the 531 /// number of bytes. 532 /// 533 /// # Safety 534 /// 535 /// * Callers must ensure that the device does not read/write to/from memory while the returned 536 /// slice is live. 537 /// * Callers must ensure that this call does not race with a read or write to the same region 538 /// that overlaps with this write. 539 /// 540 /// # Examples 541 /// 542 /// ``` 543 /// # fn test(alloc: &mut kernel::dma::CoherentAllocation<u8>) -> Result { 544 /// let somedata: [u8; 4] = [0xf; 4]; 545 /// let buf: &[u8] = &somedata; 546 /// // SAFETY: There is no concurrent HW operation on the device and no other R/W access to the 547 /// // region. 548 /// unsafe { alloc.write(buf, 0)?; } 549 /// # Ok::<(), Error>(()) } 550 /// ``` write(&mut self, src: &[T], offset: usize) -> Result551 pub unsafe fn write(&mut self, src: &[T], offset: usize) -> Result { 552 self.validate_range(offset, src.len())?; 553 // SAFETY: 554 // - The pointer is valid due to type invariant on `CoherentAllocation` 555 // and we've just checked that the range and index is within bounds. 556 // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked 557 // that `self.count` won't overflow early in the constructor. 558 unsafe { 559 core::ptr::copy_nonoverlapping( 560 src.as_ptr(), 561 self.start_ptr_mut().add(offset), 562 src.len(), 563 ) 564 }; 565 Ok(()) 566 } 567 568 /// Returns a pointer to an element from the region with bounds checking. `offset` is in 569 /// units of `T`, not the number of bytes. 570 /// 571 /// Public but hidden since it should only be used from [`dma_read`] and [`dma_write`] macros. 572 #[doc(hidden)] item_from_index(&self, offset: usize) -> Result<*mut T>573 pub fn item_from_index(&self, offset: usize) -> Result<*mut T> { 574 if offset >= self.count { 575 return Err(EINVAL); 576 } 577 // SAFETY: 578 // - The pointer is valid due to type invariant on `CoherentAllocation` 579 // and we've just checked that the range and index is within bounds. 580 // - `offset` can't overflow since it is smaller than `self.count` and we've checked 581 // that `self.count` won't overflow early in the constructor. 582 Ok(unsafe { self.cpu_addr.as_ptr().add(offset) }) 583 } 584 585 /// Reads the value of `field` and ensures that its type is [`FromBytes`]. 586 /// 587 /// # Safety 588 /// 589 /// This must be called from the [`dma_read`] macro which ensures that the `field` pointer is 590 /// validated beforehand. 591 /// 592 /// Public but hidden since it should only be used from [`dma_read`] macro. 593 #[doc(hidden)] field_read<F: FromBytes>(&self, field: *const F) -> F594 pub unsafe fn field_read<F: FromBytes>(&self, field: *const F) -> F { 595 // SAFETY: 596 // - By the safety requirements field is valid. 597 // - Using read_volatile() here is not sound as per the usual rules, the usage here is 598 // a special exception with the following notes in place. When dealing with a potential 599 // race from a hardware or code outside kernel (e.g. user-space program), we need that 600 // read on a valid memory is not UB. Currently read_volatile() is used for this, and the 601 // rationale behind is that it should generate the same code as READ_ONCE() which the 602 // kernel already relies on to avoid UB on data races. Note that the usage of 603 // read_volatile() is limited to this particular case, it cannot be used to prevent 604 // the UB caused by racing between two kernel functions nor do they provide atomicity. 605 unsafe { field.read_volatile() } 606 } 607 608 /// Writes a value to `field` and ensures that its type is [`AsBytes`]. 609 /// 610 /// # Safety 611 /// 612 /// This must be called from the [`dma_write`] macro which ensures that the `field` pointer is 613 /// validated beforehand. 614 /// 615 /// Public but hidden since it should only be used from [`dma_write`] macro. 616 #[doc(hidden)] field_write<F: AsBytes>(&self, field: *mut F, val: F)617 pub unsafe fn field_write<F: AsBytes>(&self, field: *mut F, val: F) { 618 // SAFETY: 619 // - By the safety requirements field is valid. 620 // - Using write_volatile() here is not sound as per the usual rules, the usage here is 621 // a special exception with the following notes in place. When dealing with a potential 622 // race from a hardware or code outside kernel (e.g. user-space program), we need that 623 // write on a valid memory is not UB. Currently write_volatile() is used for this, and the 624 // rationale behind is that it should generate the same code as WRITE_ONCE() which the 625 // kernel already relies on to avoid UB on data races. Note that the usage of 626 // write_volatile() is limited to this particular case, it cannot be used to prevent 627 // the UB caused by racing between two kernel functions nor do they provide atomicity. 628 unsafe { field.write_volatile(val) } 629 } 630 } 631 632 /// Note that the device configured to do DMA must be halted before this object is dropped. 633 impl<T: AsBytes + FromBytes> Drop for CoherentAllocation<T> { drop(&mut self)634 fn drop(&mut self) { 635 let size = self.count * core::mem::size_of::<T>(); 636 // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`. 637 // The cpu address, and the dma handle are valid due to the type invariants on 638 // `CoherentAllocation`. 639 unsafe { 640 bindings::dma_free_attrs( 641 self.dev.as_raw(), 642 size, 643 self.start_ptr_mut().cast(), 644 self.dma_handle, 645 self.dma_attrs.as_raw(), 646 ) 647 } 648 } 649 } 650 651 // SAFETY: It is safe to send a `CoherentAllocation` to another thread if `T` 652 // can be sent to another thread. 653 unsafe impl<T: AsBytes + FromBytes + Send> Send for CoherentAllocation<T> {} 654 655 /// Reads a field of an item from an allocated region of structs. 656 /// 657 /// # Examples 658 /// 659 /// ``` 660 /// use kernel::device::Device; 661 /// use kernel::dma::{attrs::*, CoherentAllocation}; 662 /// 663 /// struct MyStruct { field: u32, } 664 /// 665 /// // SAFETY: All bit patterns are acceptable values for `MyStruct`. 666 /// unsafe impl kernel::transmute::FromBytes for MyStruct{}; 667 /// // SAFETY: Instances of `MyStruct` have no uninitialized portions. 668 /// unsafe impl kernel::transmute::AsBytes for MyStruct{}; 669 /// 670 /// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result { 671 /// let whole = kernel::dma_read!(alloc[2]); 672 /// let field = kernel::dma_read!(alloc[1].field); 673 /// # Ok::<(), Error>(()) } 674 /// ``` 675 #[macro_export] 676 macro_rules! dma_read { 677 ($dma:expr, $idx: expr, $($field:tt)*) => {{ 678 (|| -> ::core::result::Result<_, $crate::error::Error> { 679 let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?; 680 // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be 681 // dereferenced. The compiler also further validates the expression on whether `field` 682 // is a member of `item` when expanded by the macro. 683 unsafe { 684 let ptr_field = ::core::ptr::addr_of!((*item) $($field)*); 685 ::core::result::Result::Ok( 686 $crate::dma::CoherentAllocation::field_read(&$dma, ptr_field) 687 ) 688 } 689 })() 690 }}; 691 ($dma:ident [ $idx:expr ] $($field:tt)* ) => { 692 $crate::dma_read!($dma, $idx, $($field)*) 693 }; 694 ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => { 695 $crate::dma_read!($($dma).*, $idx, $($field)*) 696 }; 697 } 698 699 /// Writes to a field of an item from an allocated region of structs. 700 /// 701 /// # Examples 702 /// 703 /// ``` 704 /// use kernel::device::Device; 705 /// use kernel::dma::{attrs::*, CoherentAllocation}; 706 /// 707 /// struct MyStruct { member: u32, } 708 /// 709 /// // SAFETY: All bit patterns are acceptable values for `MyStruct`. 710 /// unsafe impl kernel::transmute::FromBytes for MyStruct{}; 711 /// // SAFETY: Instances of `MyStruct` have no uninitialized portions. 712 /// unsafe impl kernel::transmute::AsBytes for MyStruct{}; 713 /// 714 /// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result { 715 /// kernel::dma_write!(alloc[2].member = 0xf); 716 /// kernel::dma_write!(alloc[1] = MyStruct { member: 0xf }); 717 /// # Ok::<(), Error>(()) } 718 /// ``` 719 #[macro_export] 720 macro_rules! dma_write { 721 ($dma:ident [ $idx:expr ] $($field:tt)*) => {{ 722 $crate::dma_write!($dma, $idx, $($field)*) 723 }}; 724 ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {{ 725 $crate::dma_write!($($dma).*, $idx, $($field)*) 726 }}; 727 ($dma:expr, $idx: expr, = $val:expr) => { 728 (|| -> ::core::result::Result<_, $crate::error::Error> { 729 let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?; 730 // SAFETY: `item_from_index` ensures that `item` is always a valid item. 731 unsafe { $crate::dma::CoherentAllocation::field_write(&$dma, item, $val) } 732 ::core::result::Result::Ok(()) 733 })() 734 }; 735 ($dma:expr, $idx: expr, $(.$field:ident)* = $val:expr) => { 736 (|| -> ::core::result::Result<_, $crate::error::Error> { 737 let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?; 738 // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be 739 // dereferenced. The compiler also further validates the expression on whether `field` 740 // is a member of `item` when expanded by the macro. 741 unsafe { 742 let ptr_field = ::core::ptr::addr_of_mut!((*item) $(.$field)*); 743 $crate::dma::CoherentAllocation::field_write(&$dma, ptr_field, $val) 744 } 745 ::core::result::Result::Ok(()) 746 })() 747 }; 748 } 749