xref: /linux/sound/soc/codecs/sta32x.c (revision 2aa680df68062e4e0c356ec2aa7100c13654907b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Codec driver for ST STA32x 2.1-channel high-efficiency digital audio system
4  *
5  * Copyright: 2011 Raumfeld GmbH
6  * Author: Johannes Stezenbach <js@sig21.net>
7  *
8  * based on code from:
9  *	Wolfson Microelectronics PLC.
10  *	  Mark Brown <broonie@opensource.wolfsonmicro.com>
11  *	Freescale Semiconductor, Inc.
12  *	  Timur Tabi <timur@freescale.com>
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
16 
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/pm.h>
23 #include <linux/i2c.h>
24 #include <linux/of.h>
25 #include <linux/regmap.h>
26 #include <linux/regulator/consumer.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/slab.h>
29 #include <linux/workqueue.h>
30 #include <sound/core.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/soc.h>
34 #include <sound/soc-dapm.h>
35 #include <sound/initval.h>
36 #include <sound/tlv.h>
37 
38 #include <sound/sta32x.h>
39 #include "sta32x.h"
40 
41 #define STA32X_RATES (SNDRV_PCM_RATE_32000 | \
42 		      SNDRV_PCM_RATE_44100 | \
43 		      SNDRV_PCM_RATE_48000 | \
44 		      SNDRV_PCM_RATE_88200 | \
45 		      SNDRV_PCM_RATE_96000 | \
46 		      SNDRV_PCM_RATE_176400 | \
47 		      SNDRV_PCM_RATE_192000)
48 
49 #define STA32X_FORMATS \
50 	(SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_S18_3LE | \
51 	 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S24_3LE | \
52 	 SNDRV_PCM_FMTBIT_S24_LE  | SNDRV_PCM_FMTBIT_S32_LE)
53 
54 /* Power-up register defaults */
55 static const struct reg_default sta32x_regs[] = {
56 	{  0x0, 0x63 },
57 	{  0x1, 0x80 },
58 	{  0x2, 0xc2 },
59 	{  0x3, 0x40 },
60 	{  0x4, 0xc2 },
61 	{  0x5, 0x5c },
62 	{  0x6, 0x10 },
63 	{  0x7, 0xff },
64 	{  0x8, 0x60 },
65 	{  0x9, 0x60 },
66 	{  0xa, 0x60 },
67 	{  0xb, 0x80 },
68 	{  0xc, 0x00 },
69 	{  0xd, 0x00 },
70 	{  0xe, 0x00 },
71 	{  0xf, 0x40 },
72 	{ 0x10, 0x80 },
73 	{ 0x11, 0x77 },
74 	{ 0x12, 0x6a },
75 	{ 0x13, 0x69 },
76 	{ 0x14, 0x6a },
77 	{ 0x15, 0x69 },
78 	{ 0x16, 0x00 },
79 	{ 0x17, 0x00 },
80 	{ 0x18, 0x00 },
81 	{ 0x19, 0x00 },
82 	{ 0x1a, 0x00 },
83 	{ 0x1b, 0x00 },
84 	{ 0x1c, 0x00 },
85 	{ 0x1d, 0x00 },
86 	{ 0x1e, 0x00 },
87 	{ 0x1f, 0x00 },
88 	{ 0x20, 0x00 },
89 	{ 0x21, 0x00 },
90 	{ 0x22, 0x00 },
91 	{ 0x23, 0x00 },
92 	{ 0x24, 0x00 },
93 	{ 0x25, 0x00 },
94 	{ 0x26, 0x00 },
95 	{ 0x27, 0x2d },
96 	{ 0x28, 0xc0 },
97 	{ 0x2b, 0x00 },
98 	{ 0x2c, 0x0c },
99 };
100 
101 static const struct regmap_range sta32x_write_regs_range[] = {
102 	regmap_reg_range(STA32X_CONFA,  STA32X_FDRC2),
103 };
104 
105 static const struct regmap_range sta32x_read_regs_range[] = {
106 	regmap_reg_range(STA32X_CONFA,  STA32X_FDRC2),
107 };
108 
109 static const struct regmap_range sta32x_volatile_regs_range[] = {
110 	regmap_reg_range(STA32X_CFADDR2, STA32X_CFUD),
111 };
112 
113 static const struct regmap_access_table sta32x_write_regs = {
114 	.yes_ranges =	sta32x_write_regs_range,
115 	.n_yes_ranges =	ARRAY_SIZE(sta32x_write_regs_range),
116 };
117 
118 static const struct regmap_access_table sta32x_read_regs = {
119 	.yes_ranges =	sta32x_read_regs_range,
120 	.n_yes_ranges =	ARRAY_SIZE(sta32x_read_regs_range),
121 };
122 
123 static const struct regmap_access_table sta32x_volatile_regs = {
124 	.yes_ranges =	sta32x_volatile_regs_range,
125 	.n_yes_ranges =	ARRAY_SIZE(sta32x_volatile_regs_range),
126 };
127 
128 /* regulator power supply names */
129 static const char *sta32x_supply_names[] = {
130 	"Vdda",	/* analog supply, 3.3VV */
131 	"Vdd3",	/* digital supply, 3.3V */
132 	"Vcc"	/* power amp spply, 10V - 36V */
133 };
134 
135 /* codec private data */
136 struct sta32x_priv {
137 	struct regmap *regmap;
138 	struct clk *xti_clk;
139 	struct regulator_bulk_data supplies[ARRAY_SIZE(sta32x_supply_names)];
140 	struct snd_soc_component *component;
141 	struct sta32x_platform_data *pdata;
142 
143 	unsigned int mclk;
144 	unsigned int format;
145 
146 	u32 coef_shadow[STA32X_COEF_COUNT];
147 	struct delayed_work watchdog_work;
148 	int shutdown;
149 	struct gpio_desc *gpiod_nreset;
150 	struct mutex coeff_lock;
151 };
152 
153 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12700, 50, 1);
154 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
155 static const DECLARE_TLV_DB_SCALE(tone_tlv, -120, 200, 0);
156 
157 static const char *sta32x_drc_ac[] = {
158 	"Anti-Clipping", "Dynamic Range Compression" };
159 static const char *sta32x_auto_eq_mode[] = {
160 	"User", "Preset", "Loudness" };
161 static const char *sta32x_auto_gc_mode[] = {
162 	"User", "AC no clipping", "AC limited clipping (10%)",
163 	"DRC nighttime listening mode" };
164 static const char *sta32x_auto_xo_mode[] = {
165 	"User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", "200Hz",
166 	"220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", "340Hz", "360Hz" };
167 static const char *sta32x_preset_eq_mode[] = {
168 	"Flat", "Rock", "Soft Rock", "Jazz", "Classical", "Dance", "Pop", "Soft",
169 	"Hard", "Party", "Vocal", "Hip-Hop", "Dialog", "Bass-boost #1",
170 	"Bass-boost #2", "Bass-boost #3", "Loudness 1", "Loudness 2",
171 	"Loudness 3", "Loudness 4", "Loudness 5", "Loudness 6", "Loudness 7",
172 	"Loudness 8", "Loudness 9", "Loudness 10", "Loudness 11", "Loudness 12",
173 	"Loudness 13", "Loudness 14", "Loudness 15", "Loudness 16" };
174 static const char *sta32x_limiter_select[] = {
175 	"Limiter Disabled", "Limiter #1", "Limiter #2" };
176 static const char *sta32x_limiter_attack_rate[] = {
177 	"3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
178 	"0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
179 	"0.0645", "0.0564", "0.0501", "0.0451" };
180 static const char *sta32x_limiter_release_rate[] = {
181 	"0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
182 	"0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
183 	"0.0134", "0.0117", "0.0110", "0.0104" };
184 static DECLARE_TLV_DB_RANGE(sta32x_limiter_ac_attack_tlv,
185 	0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
186 	8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
187 );
188 
189 static DECLARE_TLV_DB_RANGE(sta32x_limiter_ac_release_tlv,
190 	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
191 	1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
192 	2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
193 	3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
194 	8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
195 );
196 
197 static DECLARE_TLV_DB_RANGE(sta32x_limiter_drc_attack_tlv,
198 	0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
199 	8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
200 	14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
201 );
202 
203 static DECLARE_TLV_DB_RANGE(sta32x_limiter_drc_release_tlv,
204 	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
205 	1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
206 	3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
207 	5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
208 	13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
209 );
210 
211 static SOC_ENUM_SINGLE_DECL(sta32x_drc_ac_enum,
212 			    STA32X_CONFD, STA32X_CONFD_DRC_SHIFT,
213 			    sta32x_drc_ac);
214 static SOC_ENUM_SINGLE_DECL(sta32x_auto_eq_enum,
215 			    STA32X_AUTO1, STA32X_AUTO1_AMEQ_SHIFT,
216 			    sta32x_auto_eq_mode);
217 static SOC_ENUM_SINGLE_DECL(sta32x_auto_gc_enum,
218 			    STA32X_AUTO1, STA32X_AUTO1_AMGC_SHIFT,
219 			    sta32x_auto_gc_mode);
220 static SOC_ENUM_SINGLE_DECL(sta32x_auto_xo_enum,
221 			    STA32X_AUTO2, STA32X_AUTO2_XO_SHIFT,
222 			    sta32x_auto_xo_mode);
223 static SOC_ENUM_SINGLE_DECL(sta32x_preset_eq_enum,
224 			    STA32X_AUTO3, STA32X_AUTO3_PEQ_SHIFT,
225 			    sta32x_preset_eq_mode);
226 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch1_enum,
227 			    STA32X_C1CFG, STA32X_CxCFG_LS_SHIFT,
228 			    sta32x_limiter_select);
229 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch2_enum,
230 			    STA32X_C2CFG, STA32X_CxCFG_LS_SHIFT,
231 			    sta32x_limiter_select);
232 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch3_enum,
233 			    STA32X_C3CFG, STA32X_CxCFG_LS_SHIFT,
234 			    sta32x_limiter_select);
235 static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_attack_rate_enum,
236 			    STA32X_L1AR, STA32X_LxA_SHIFT,
237 			    sta32x_limiter_attack_rate);
238 static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_attack_rate_enum,
239 			    STA32X_L2AR, STA32X_LxA_SHIFT,
240 			    sta32x_limiter_attack_rate);
241 static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_release_rate_enum,
242 			    STA32X_L1AR, STA32X_LxR_SHIFT,
243 			    sta32x_limiter_release_rate);
244 static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_release_rate_enum,
245 			    STA32X_L2AR, STA32X_LxR_SHIFT,
246 			    sta32x_limiter_release_rate);
247 
248 /* byte array controls for setting biquad, mixer, scaling coefficients;
249  * for biquads all five coefficients need to be set in one go,
250  * mixer and pre/postscale coefs can be set individually;
251  * each coef is 24bit, the bytes are ordered in the same way
252  * as given in the STA32x data sheet (big endian; b1, b2, a1, a2, b0)
253  */
254 
255 static int sta32x_coefficient_info(struct snd_kcontrol *kcontrol,
256 				   struct snd_ctl_elem_info *uinfo)
257 {
258 	int numcoef = kcontrol->private_value >> 16;
259 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
260 	uinfo->count = 3 * numcoef;
261 	return 0;
262 }
263 
264 static int sta32x_coefficient_get(struct snd_kcontrol *kcontrol,
265 				  struct snd_ctl_elem_value *ucontrol)
266 {
267 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
268 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
269 	int numcoef = kcontrol->private_value >> 16;
270 	int index = kcontrol->private_value & 0xffff;
271 	unsigned int cfud, val;
272 	int i, ret = 0;
273 
274 	mutex_lock(&sta32x->coeff_lock);
275 
276 	/* preserve reserved bits in STA32X_CFUD */
277 	regmap_read(sta32x->regmap, STA32X_CFUD, &cfud);
278 	cfud &= 0xf0;
279 	/*
280 	 * chip documentation does not say if the bits are self clearing,
281 	 * so do it explicitly
282 	 */
283 	regmap_write(sta32x->regmap, STA32X_CFUD, cfud);
284 
285 	regmap_write(sta32x->regmap, STA32X_CFADDR2, index);
286 	if (numcoef == 1) {
287 		regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x04);
288 	} else if (numcoef == 5) {
289 		regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x08);
290 	} else {
291 		ret = -EINVAL;
292 		goto exit_unlock;
293 	}
294 
295 	for (i = 0; i < 3 * numcoef; i++) {
296 		regmap_read(sta32x->regmap, STA32X_B1CF1 + i, &val);
297 		ucontrol->value.bytes.data[i] = val;
298 	}
299 
300 exit_unlock:
301 	mutex_unlock(&sta32x->coeff_lock);
302 
303 	return ret;
304 }
305 
306 static int sta32x_coefficient_put(struct snd_kcontrol *kcontrol,
307 				  struct snd_ctl_elem_value *ucontrol)
308 {
309 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
310 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
311 	int numcoef = kcontrol->private_value >> 16;
312 	int index = kcontrol->private_value & 0xffff;
313 	unsigned int cfud;
314 	int i;
315 
316 	/* preserve reserved bits in STA32X_CFUD */
317 	regmap_read(sta32x->regmap, STA32X_CFUD, &cfud);
318 	cfud &= 0xf0;
319 	/*
320 	 * chip documentation does not say if the bits are self clearing,
321 	 * so do it explicitly
322 	 */
323 	regmap_write(sta32x->regmap, STA32X_CFUD, cfud);
324 
325 	regmap_write(sta32x->regmap, STA32X_CFADDR2, index);
326 	for (i = 0; i < numcoef && (index + i < STA32X_COEF_COUNT); i++)
327 		sta32x->coef_shadow[index + i] =
328 			  (ucontrol->value.bytes.data[3 * i] << 16)
329 			| (ucontrol->value.bytes.data[3 * i + 1] << 8)
330 			| (ucontrol->value.bytes.data[3 * i + 2]);
331 	for (i = 0; i < 3 * numcoef; i++)
332 		regmap_write(sta32x->regmap, STA32X_B1CF1 + i,
333 			     ucontrol->value.bytes.data[i]);
334 	if (numcoef == 1)
335 		regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x01);
336 	else if (numcoef == 5)
337 		regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x02);
338 	else
339 		return -EINVAL;
340 
341 	return 0;
342 }
343 
344 static int sta32x_sync_coef_shadow(struct snd_soc_component *component)
345 {
346 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
347 	unsigned int cfud;
348 	int i;
349 
350 	/* preserve reserved bits in STA32X_CFUD */
351 	regmap_read(sta32x->regmap, STA32X_CFUD, &cfud);
352 	cfud &= 0xf0;
353 
354 	for (i = 0; i < STA32X_COEF_COUNT; i++) {
355 		regmap_write(sta32x->regmap, STA32X_CFADDR2, i);
356 		regmap_write(sta32x->regmap, STA32X_B1CF1,
357 			     (sta32x->coef_shadow[i] >> 16) & 0xff);
358 		regmap_write(sta32x->regmap, STA32X_B1CF2,
359 			     (sta32x->coef_shadow[i] >> 8) & 0xff);
360 		regmap_write(sta32x->regmap, STA32X_B1CF3,
361 			     (sta32x->coef_shadow[i]) & 0xff);
362 		/*
363 		 * chip documentation does not say if the bits are
364 		 * self-clearing, so do it explicitly
365 		 */
366 		regmap_write(sta32x->regmap, STA32X_CFUD, cfud);
367 		regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x01);
368 	}
369 	return 0;
370 }
371 
372 static int sta32x_cache_sync(struct snd_soc_component *component)
373 {
374 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
375 	unsigned int mute;
376 	int rc;
377 
378 	/* mute during register sync */
379 	regmap_read(sta32x->regmap, STA32X_MMUTE, &mute);
380 	regmap_write(sta32x->regmap, STA32X_MMUTE, mute | STA32X_MMUTE_MMUTE);
381 	sta32x_sync_coef_shadow(component);
382 	rc = regcache_sync(sta32x->regmap);
383 	regmap_write(sta32x->regmap, STA32X_MMUTE, mute);
384 	return rc;
385 }
386 
387 /* work around ESD issue where sta32x resets and loses all configuration */
388 static void sta32x_watchdog(struct work_struct *work)
389 {
390 	struct sta32x_priv *sta32x = container_of(work, struct sta32x_priv,
391 						  watchdog_work.work);
392 	struct snd_soc_component *component = sta32x->component;
393 	unsigned int confa, confa_cached;
394 
395 	/* check if sta32x has reset itself */
396 	confa_cached = snd_soc_component_read(component, STA32X_CONFA);
397 	regcache_cache_bypass(sta32x->regmap, true);
398 	confa = snd_soc_component_read(component, STA32X_CONFA);
399 	regcache_cache_bypass(sta32x->regmap, false);
400 	if (confa != confa_cached) {
401 		regcache_mark_dirty(sta32x->regmap);
402 		sta32x_cache_sync(component);
403 	}
404 
405 	if (!sta32x->shutdown)
406 		queue_delayed_work(system_power_efficient_wq,
407 				   &sta32x->watchdog_work,
408 				   round_jiffies_relative(HZ));
409 }
410 
411 static void sta32x_watchdog_start(struct sta32x_priv *sta32x)
412 {
413 	if (sta32x->pdata->needs_esd_watchdog) {
414 		sta32x->shutdown = 0;
415 		queue_delayed_work(system_power_efficient_wq,
416 				   &sta32x->watchdog_work,
417 				   round_jiffies_relative(HZ));
418 	}
419 }
420 
421 static void sta32x_watchdog_stop(struct sta32x_priv *sta32x)
422 {
423 	if (sta32x->pdata->needs_esd_watchdog) {
424 		sta32x->shutdown = 1;
425 		cancel_delayed_work_sync(&sta32x->watchdog_work);
426 	}
427 }
428 
429 #define SINGLE_COEF(xname, index) \
430 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
431 	.info = sta32x_coefficient_info, \
432 	.get = sta32x_coefficient_get,\
433 	.put = sta32x_coefficient_put, \
434 	.private_value = index | (1 << 16) }
435 
436 #define BIQUAD_COEFS(xname, index) \
437 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
438 	.info = sta32x_coefficient_info, \
439 	.get = sta32x_coefficient_get,\
440 	.put = sta32x_coefficient_put, \
441 	.private_value = index | (5 << 16) }
442 
443 static const struct snd_kcontrol_new sta32x_snd_controls[] = {
444 SOC_SINGLE_TLV("Master Volume", STA32X_MVOL, 0, 0xff, 1, mvol_tlv),
445 SOC_SINGLE("Master Switch", STA32X_MMUTE, 0, 1, 1),
446 SOC_SINGLE("Ch1 Switch", STA32X_MMUTE, 1, 1, 1),
447 SOC_SINGLE("Ch2 Switch", STA32X_MMUTE, 2, 1, 1),
448 SOC_SINGLE("Ch3 Switch", STA32X_MMUTE, 3, 1, 1),
449 SOC_SINGLE_TLV("Ch1 Volume", STA32X_C1VOL, 0, 0xff, 1, chvol_tlv),
450 SOC_SINGLE_TLV("Ch2 Volume", STA32X_C2VOL, 0, 0xff, 1, chvol_tlv),
451 SOC_SINGLE_TLV("Ch3 Volume", STA32X_C3VOL, 0, 0xff, 1, chvol_tlv),
452 SOC_SINGLE("De-emphasis Filter Switch", STA32X_CONFD, STA32X_CONFD_DEMP_SHIFT, 1, 0),
453 SOC_ENUM("Compressor/Limiter Switch", sta32x_drc_ac_enum),
454 SOC_SINGLE("Miami Mode Switch", STA32X_CONFD, STA32X_CONFD_MME_SHIFT, 1, 0),
455 SOC_SINGLE("Zero Cross Switch", STA32X_CONFE, STA32X_CONFE_ZCE_SHIFT, 1, 0),
456 SOC_SINGLE("Soft Ramp Switch", STA32X_CONFE, STA32X_CONFE_SVE_SHIFT, 1, 0),
457 SOC_SINGLE("Auto-Mute Switch", STA32X_CONFF, STA32X_CONFF_IDE_SHIFT, 1, 0),
458 SOC_ENUM("Automode EQ", sta32x_auto_eq_enum),
459 SOC_ENUM("Automode GC", sta32x_auto_gc_enum),
460 SOC_ENUM("Automode XO", sta32x_auto_xo_enum),
461 SOC_ENUM("Preset EQ", sta32x_preset_eq_enum),
462 SOC_SINGLE("Ch1 Tone Control Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
463 SOC_SINGLE("Ch2 Tone Control Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
464 SOC_SINGLE("Ch1 EQ Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
465 SOC_SINGLE("Ch2 EQ Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
466 SOC_SINGLE("Ch1 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
467 SOC_SINGLE("Ch2 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
468 SOC_SINGLE("Ch3 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
469 SOC_ENUM("Ch1 Limiter Select", sta32x_limiter_ch1_enum),
470 SOC_ENUM("Ch2 Limiter Select", sta32x_limiter_ch2_enum),
471 SOC_ENUM("Ch3 Limiter Select", sta32x_limiter_ch3_enum),
472 SOC_SINGLE_TLV("Bass Tone Control", STA32X_TONE, STA32X_TONE_BTC_SHIFT, 15, 0, tone_tlv),
473 SOC_SINGLE_TLV("Treble Tone Control", STA32X_TONE, STA32X_TONE_TTC_SHIFT, 15, 0, tone_tlv),
474 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta32x_limiter1_attack_rate_enum),
475 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta32x_limiter2_attack_rate_enum),
476 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum),
477 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta32x_limiter2_release_rate_enum),
478 
479 /* depending on mode, the attack/release thresholds have
480  * two different enum definitions; provide both
481  */
482 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
483 	       16, 0, sta32x_limiter_ac_attack_tlv),
484 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
485 	       16, 0, sta32x_limiter_ac_attack_tlv),
486 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
487 	       16, 0, sta32x_limiter_ac_release_tlv),
488 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
489 	       16, 0, sta32x_limiter_ac_release_tlv),
490 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
491 	       16, 0, sta32x_limiter_drc_attack_tlv),
492 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
493 	       16, 0, sta32x_limiter_drc_attack_tlv),
494 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
495 	       16, 0, sta32x_limiter_drc_release_tlv),
496 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
497 	       16, 0, sta32x_limiter_drc_release_tlv),
498 
499 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
500 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
501 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
502 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
503 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
504 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
505 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
506 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
507 BIQUAD_COEFS("High-pass", 40),
508 BIQUAD_COEFS("Low-pass", 45),
509 SINGLE_COEF("Ch1 - Prescale", 50),
510 SINGLE_COEF("Ch2 - Prescale", 51),
511 SINGLE_COEF("Ch1 - Postscale", 52),
512 SINGLE_COEF("Ch2 - Postscale", 53),
513 SINGLE_COEF("Ch3 - Postscale", 54),
514 SINGLE_COEF("Thermal warning - Postscale", 55),
515 SINGLE_COEF("Ch1 - Mix 1", 56),
516 SINGLE_COEF("Ch1 - Mix 2", 57),
517 SINGLE_COEF("Ch2 - Mix 1", 58),
518 SINGLE_COEF("Ch2 - Mix 2", 59),
519 SINGLE_COEF("Ch3 - Mix 1", 60),
520 SINGLE_COEF("Ch3 - Mix 2", 61),
521 };
522 
523 static const struct snd_soc_dapm_widget sta32x_dapm_widgets[] = {
524 SND_SOC_DAPM_DAC("DAC", "Playback", SND_SOC_NOPM, 0, 0),
525 SND_SOC_DAPM_OUTPUT("LEFT"),
526 SND_SOC_DAPM_OUTPUT("RIGHT"),
527 SND_SOC_DAPM_OUTPUT("SUB"),
528 };
529 
530 static const struct snd_soc_dapm_route sta32x_dapm_routes[] = {
531 	{ "LEFT", NULL, "DAC" },
532 	{ "RIGHT", NULL, "DAC" },
533 	{ "SUB", NULL, "DAC" },
534 };
535 
536 /* MCLK interpolation ratio per fs */
537 static struct {
538 	int fs;
539 	int ir;
540 } interpolation_ratios[] = {
541 	{ 32000, 0 },
542 	{ 44100, 0 },
543 	{ 48000, 0 },
544 	{ 88200, 1 },
545 	{ 96000, 1 },
546 	{ 176400, 2 },
547 	{ 192000, 2 },
548 };
549 
550 /* MCLK to fs clock ratios */
551 static int mcs_ratio_table[3][7] = {
552 	{ 768, 512, 384, 256, 128, 576, 0 },
553 	{ 384, 256, 192, 128,  64,   0 },
554 	{ 384, 256, 192, 128,  64,   0 },
555 };
556 
557 /**
558  * sta32x_set_dai_sysclk - configure MCLK
559  * @codec_dai: the codec DAI
560  * @clk_id: the clock ID (ignored)
561  * @freq: the MCLK input frequency
562  * @dir: the clock direction (ignored)
563  *
564  * The value of MCLK is used to determine which sample rates are supported
565  * by the STA32X, based on the mclk_ratios table.
566  *
567  * This function must be called by the machine driver's 'startup' function,
568  * otherwise the list of supported sample rates will not be available in
569  * time for ALSA.
570  *
571  * For setups with variable MCLKs, pass 0 as 'freq' argument. This will cause
572  * theoretically possible sample rates to be enabled. Call it again with a
573  * proper value set one the external clock is set (most probably you would do
574  * that from a machine's driver 'hw_param' hook.
575  */
576 static int sta32x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
577 		int clk_id, unsigned int freq, int dir)
578 {
579 	struct snd_soc_component *component = codec_dai->component;
580 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
581 
582 	dev_dbg(component->dev, "mclk=%u\n", freq);
583 	sta32x->mclk = freq;
584 
585 	return 0;
586 }
587 
588 /**
589  * sta32x_set_dai_fmt - configure the codec for the selected audio format
590  * @codec_dai: the codec DAI
591  * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
592  *
593  * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
594  * codec accordingly.
595  */
596 static int sta32x_set_dai_fmt(struct snd_soc_dai *codec_dai,
597 			      unsigned int fmt)
598 {
599 	struct snd_soc_component *component = codec_dai->component;
600 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
601 	u8 confb = 0;
602 
603 	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
604 	case SND_SOC_DAIFMT_CBC_CFC:
605 		break;
606 	default:
607 		return -EINVAL;
608 	}
609 
610 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
611 	case SND_SOC_DAIFMT_I2S:
612 	case SND_SOC_DAIFMT_RIGHT_J:
613 	case SND_SOC_DAIFMT_LEFT_J:
614 		sta32x->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
615 		break;
616 	default:
617 		return -EINVAL;
618 	}
619 
620 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
621 	case SND_SOC_DAIFMT_NB_NF:
622 		confb |= STA32X_CONFB_C2IM;
623 		break;
624 	case SND_SOC_DAIFMT_NB_IF:
625 		confb |= STA32X_CONFB_C1IM;
626 		break;
627 	default:
628 		return -EINVAL;
629 	}
630 
631 	return regmap_update_bits(sta32x->regmap, STA32X_CONFB,
632 				  STA32X_CONFB_C1IM | STA32X_CONFB_C2IM, confb);
633 }
634 
635 /**
636  * sta32x_hw_params - program the STA32X with the given hardware parameters.
637  * @substream: the audio stream
638  * @params: the hardware parameters to set
639  * @dai: the SOC DAI (ignored)
640  *
641  * This function programs the hardware with the values provided.
642  * Specifically, the sample rate and the data format.
643  */
644 static int sta32x_hw_params(struct snd_pcm_substream *substream,
645 			    struct snd_pcm_hw_params *params,
646 			    struct snd_soc_dai *dai)
647 {
648 	struct snd_soc_component *component = dai->component;
649 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
650 	int i, mcs = -EINVAL, ir = -EINVAL;
651 	unsigned int confa, confb;
652 	unsigned int rate, ratio;
653 	int ret;
654 
655 	if (!sta32x->mclk) {
656 		dev_err(component->dev,
657 			"sta32x->mclk is unset. Unable to determine ratio\n");
658 		return -EIO;
659 	}
660 
661 	rate = params_rate(params);
662 	ratio = sta32x->mclk / rate;
663 	dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio);
664 
665 	for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
666 		if (interpolation_ratios[i].fs == rate) {
667 			ir = interpolation_ratios[i].ir;
668 			break;
669 		}
670 	}
671 
672 	if (ir < 0) {
673 		dev_err(component->dev, "Unsupported samplerate: %u\n", rate);
674 		return -EINVAL;
675 	}
676 
677 	for (i = 0; i < 6; i++) {
678 		if (mcs_ratio_table[ir][i] == ratio) {
679 			mcs = i;
680 			break;
681 		}
682 	}
683 
684 	if (mcs < 0) {
685 		dev_err(component->dev, "Unresolvable ratio: %u\n", ratio);
686 		return -EINVAL;
687 	}
688 
689 	confa = (ir << STA32X_CONFA_IR_SHIFT) |
690 		(mcs << STA32X_CONFA_MCS_SHIFT);
691 	confb = 0;
692 
693 	switch (params_width(params)) {
694 	case 24:
695 		dev_dbg(component->dev, "24bit\n");
696 		fallthrough;
697 	case 32:
698 		dev_dbg(component->dev, "24bit or 32bit\n");
699 		switch (sta32x->format) {
700 		case SND_SOC_DAIFMT_I2S:
701 			confb |= 0x0;
702 			break;
703 		case SND_SOC_DAIFMT_LEFT_J:
704 			confb |= 0x1;
705 			break;
706 		case SND_SOC_DAIFMT_RIGHT_J:
707 			confb |= 0x2;
708 			break;
709 		}
710 
711 		break;
712 	case 20:
713 		dev_dbg(component->dev, "20bit\n");
714 		switch (sta32x->format) {
715 		case SND_SOC_DAIFMT_I2S:
716 			confb |= 0x4;
717 			break;
718 		case SND_SOC_DAIFMT_LEFT_J:
719 			confb |= 0x5;
720 			break;
721 		case SND_SOC_DAIFMT_RIGHT_J:
722 			confb |= 0x6;
723 			break;
724 		}
725 
726 		break;
727 	case 18:
728 		dev_dbg(component->dev, "18bit\n");
729 		switch (sta32x->format) {
730 		case SND_SOC_DAIFMT_I2S:
731 			confb |= 0x8;
732 			break;
733 		case SND_SOC_DAIFMT_LEFT_J:
734 			confb |= 0x9;
735 			break;
736 		case SND_SOC_DAIFMT_RIGHT_J:
737 			confb |= 0xa;
738 			break;
739 		}
740 
741 		break;
742 	case 16:
743 		dev_dbg(component->dev, "16bit\n");
744 		switch (sta32x->format) {
745 		case SND_SOC_DAIFMT_I2S:
746 			confb |= 0x0;
747 			break;
748 		case SND_SOC_DAIFMT_LEFT_J:
749 			confb |= 0xd;
750 			break;
751 		case SND_SOC_DAIFMT_RIGHT_J:
752 			confb |= 0xe;
753 			break;
754 		}
755 
756 		break;
757 	default:
758 		return -EINVAL;
759 	}
760 
761 	ret = regmap_update_bits(sta32x->regmap, STA32X_CONFA,
762 				 STA32X_CONFA_MCS_MASK | STA32X_CONFA_IR_MASK,
763 				 confa);
764 	if (ret < 0)
765 		return ret;
766 
767 	ret = regmap_update_bits(sta32x->regmap, STA32X_CONFB,
768 				 STA32X_CONFB_SAI_MASK | STA32X_CONFB_SAIFB,
769 				 confb);
770 	if (ret < 0)
771 		return ret;
772 
773 	return 0;
774 }
775 
776 static int sta32x_startup_sequence(struct sta32x_priv *sta32x)
777 {
778 	if (sta32x->gpiod_nreset) {
779 		gpiod_set_value(sta32x->gpiod_nreset, 0);
780 		mdelay(1);
781 		gpiod_set_value(sta32x->gpiod_nreset, 1);
782 		mdelay(1);
783 	}
784 
785 	return 0;
786 }
787 
788 /**
789  * sta32x_set_bias_level - DAPM callback
790  * @component: the component device
791  * @level: DAPM power level
792  *
793  * This is called by ALSA to put the component into low power mode
794  * or to wake it up.  If the component is powered off completely
795  * all registers must be restored after power on.
796  */
797 static int sta32x_set_bias_level(struct snd_soc_component *component,
798 				 enum snd_soc_bias_level level)
799 {
800 	int ret;
801 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
802 	struct snd_soc_dapm_context *dapm = snd_soc_component_to_dapm(component);
803 
804 	dev_dbg(component->dev, "level = %d\n", level);
805 	switch (level) {
806 	case SND_SOC_BIAS_ON:
807 		break;
808 
809 	case SND_SOC_BIAS_PREPARE:
810 		/* Full power on */
811 		regmap_update_bits(sta32x->regmap, STA32X_CONFF,
812 				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
813 				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
814 		break;
815 
816 	case SND_SOC_BIAS_STANDBY:
817 		if (snd_soc_dapm_get_bias_level(dapm) == SND_SOC_BIAS_OFF) {
818 			ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
819 						    sta32x->supplies);
820 			if (ret != 0) {
821 				dev_err(component->dev,
822 					"Failed to enable supplies: %d\n", ret);
823 				return ret;
824 			}
825 
826 			sta32x_startup_sequence(sta32x);
827 			sta32x_cache_sync(component);
828 			sta32x_watchdog_start(sta32x);
829 		}
830 
831 		/* Power down */
832 		regmap_update_bits(sta32x->regmap, STA32X_CONFF,
833 				   STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
834 				   0);
835 
836 		break;
837 
838 	case SND_SOC_BIAS_OFF:
839 		/* The chip runs through the power down sequence for us. */
840 		regmap_update_bits(sta32x->regmap, STA32X_CONFF,
841 				   STA32X_CONFF_PWDN | STA32X_CONFF_EAPD, 0);
842 		msleep(300);
843 		sta32x_watchdog_stop(sta32x);
844 
845 		gpiod_set_value(sta32x->gpiod_nreset, 0);
846 
847 		regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies),
848 				       sta32x->supplies);
849 		break;
850 	}
851 	return 0;
852 }
853 
854 static const struct snd_soc_dai_ops sta32x_dai_ops = {
855 	.hw_params	= sta32x_hw_params,
856 	.set_sysclk	= sta32x_set_dai_sysclk,
857 	.set_fmt	= sta32x_set_dai_fmt,
858 };
859 
860 static struct snd_soc_dai_driver sta32x_dai = {
861 	.name = "sta32x-hifi",
862 	.playback = {
863 		.stream_name = "Playback",
864 		.channels_min = 2,
865 		.channels_max = 2,
866 		.rates = STA32X_RATES,
867 		.formats = STA32X_FORMATS,
868 	},
869 	.ops = &sta32x_dai_ops,
870 };
871 
872 static int sta32x_probe(struct snd_soc_component *component)
873 {
874 	struct snd_soc_dapm_context *dapm = snd_soc_component_to_dapm(component);
875 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
876 	struct sta32x_platform_data *pdata = sta32x->pdata;
877 	int i, ret = 0, thermal = 0;
878 
879 	sta32x->component = component;
880 
881 	if (sta32x->xti_clk) {
882 		ret = clk_prepare_enable(sta32x->xti_clk);
883 		if (ret != 0) {
884 			dev_err(component->dev,
885 				"Failed to enable clock: %d\n", ret);
886 			return ret;
887 		}
888 	}
889 
890 	ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
891 				    sta32x->supplies);
892 	if (ret != 0) {
893 		dev_err(component->dev, "Failed to enable supplies: %d\n", ret);
894 		goto err_clk_disable_unprepare;
895 	}
896 
897 	ret = sta32x_startup_sequence(sta32x);
898 	if (ret < 0) {
899 		dev_err(component->dev, "Failed to startup device\n");
900 		goto err_regulator_bulk_disable;
901 	}
902 
903 	/* CONFA */
904 	if (!pdata->thermal_warning_recovery)
905 		thermal |= STA32X_CONFA_TWAB;
906 	if (!pdata->thermal_warning_adjustment)
907 		thermal |= STA32X_CONFA_TWRB;
908 	if (!pdata->fault_detect_recovery)
909 		thermal |= STA32X_CONFA_FDRB;
910 	regmap_update_bits(sta32x->regmap, STA32X_CONFA,
911 			   STA32X_CONFA_TWAB | STA32X_CONFA_TWRB |
912 			   STA32X_CONFA_FDRB,
913 			   thermal);
914 
915 	/* CONFC */
916 	regmap_update_bits(sta32x->regmap, STA32X_CONFC,
917 			   STA32X_CONFC_CSZ_MASK,
918 			   pdata->drop_compensation_ns
919 				<< STA32X_CONFC_CSZ_SHIFT);
920 
921 	/* CONFE */
922 	regmap_update_bits(sta32x->regmap, STA32X_CONFE,
923 			   STA32X_CONFE_MPCV,
924 			   pdata->max_power_use_mpcc ?
925 				STA32X_CONFE_MPCV : 0);
926 	regmap_update_bits(sta32x->regmap, STA32X_CONFE,
927 			   STA32X_CONFE_MPC,
928 			   pdata->max_power_correction ?
929 				STA32X_CONFE_MPC : 0);
930 	regmap_update_bits(sta32x->regmap, STA32X_CONFE,
931 			   STA32X_CONFE_AME,
932 			   pdata->am_reduction_mode ?
933 				STA32X_CONFE_AME : 0);
934 	regmap_update_bits(sta32x->regmap, STA32X_CONFE,
935 			   STA32X_CONFE_PWMS,
936 			   pdata->odd_pwm_speed_mode ?
937 				STA32X_CONFE_PWMS : 0);
938 
939 	/*  CONFF */
940 	regmap_update_bits(sta32x->regmap, STA32X_CONFF,
941 			   STA32X_CONFF_IDE,
942 			   pdata->invalid_input_detect_mute ?
943 				STA32X_CONFF_IDE : 0);
944 
945 	/* select output configuration  */
946 	regmap_update_bits(sta32x->regmap, STA32X_CONFF,
947 			   STA32X_CONFF_OCFG_MASK,
948 			   pdata->output_conf
949 				<< STA32X_CONFF_OCFG_SHIFT);
950 
951 	/* channel to output mapping */
952 	regmap_update_bits(sta32x->regmap, STA32X_C1CFG,
953 			   STA32X_CxCFG_OM_MASK,
954 			   pdata->ch1_output_mapping
955 				<< STA32X_CxCFG_OM_SHIFT);
956 	regmap_update_bits(sta32x->regmap, STA32X_C2CFG,
957 			   STA32X_CxCFG_OM_MASK,
958 			   pdata->ch2_output_mapping
959 				<< STA32X_CxCFG_OM_SHIFT);
960 	regmap_update_bits(sta32x->regmap, STA32X_C3CFG,
961 			   STA32X_CxCFG_OM_MASK,
962 			   pdata->ch3_output_mapping
963 				<< STA32X_CxCFG_OM_SHIFT);
964 
965 	/* initialize coefficient shadow RAM with reset values */
966 	for (i = 4; i <= 49; i += 5)
967 		sta32x->coef_shadow[i] = 0x400000;
968 	for (i = 50; i <= 54; i++)
969 		sta32x->coef_shadow[i] = 0x7fffff;
970 	sta32x->coef_shadow[55] = 0x5a9df7;
971 	sta32x->coef_shadow[56] = 0x7fffff;
972 	sta32x->coef_shadow[59] = 0x7fffff;
973 	sta32x->coef_shadow[60] = 0x400000;
974 	sta32x->coef_shadow[61] = 0x400000;
975 
976 	if (sta32x->pdata->needs_esd_watchdog)
977 		INIT_DELAYED_WORK(&sta32x->watchdog_work, sta32x_watchdog);
978 
979 	snd_soc_dapm_force_bias_level(dapm, SND_SOC_BIAS_STANDBY);
980 	/* Bias level configuration will have done an extra enable */
981 	regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
982 
983 	return 0;
984 
985 err_regulator_bulk_disable:
986 	regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
987 err_clk_disable_unprepare:
988 	clk_disable_unprepare(sta32x->xti_clk);
989 	return ret;
990 }
991 
992 static void sta32x_remove(struct snd_soc_component *component)
993 {
994 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
995 
996 	sta32x_watchdog_stop(sta32x);
997 	regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
998 
999 	clk_disable_unprepare(sta32x->xti_clk);
1000 }
1001 
1002 static const struct snd_soc_component_driver sta32x_component = {
1003 	.probe			= sta32x_probe,
1004 	.remove			= sta32x_remove,
1005 	.set_bias_level		= sta32x_set_bias_level,
1006 	.controls		= sta32x_snd_controls,
1007 	.num_controls		= ARRAY_SIZE(sta32x_snd_controls),
1008 	.dapm_widgets		= sta32x_dapm_widgets,
1009 	.num_dapm_widgets	= ARRAY_SIZE(sta32x_dapm_widgets),
1010 	.dapm_routes		= sta32x_dapm_routes,
1011 	.num_dapm_routes	= ARRAY_SIZE(sta32x_dapm_routes),
1012 	.suspend_bias_off	= 1,
1013 	.idle_bias_on		= 1,
1014 	.use_pmdown_time	= 1,
1015 	.endianness		= 1,
1016 };
1017 
1018 static const struct regmap_config sta32x_regmap = {
1019 	.reg_bits =		8,
1020 	.val_bits =		8,
1021 	.max_register =		STA32X_FDRC2,
1022 	.reg_defaults =		sta32x_regs,
1023 	.num_reg_defaults =	ARRAY_SIZE(sta32x_regs),
1024 	.cache_type =		REGCACHE_MAPLE,
1025 	.wr_table =		&sta32x_write_regs,
1026 	.rd_table =		&sta32x_read_regs,
1027 	.volatile_table =	&sta32x_volatile_regs,
1028 };
1029 
1030 #ifdef CONFIG_OF
1031 static const struct of_device_id st32x_dt_ids[] = {
1032 	{ .compatible = "st,sta32x", },
1033 	{ }
1034 };
1035 MODULE_DEVICE_TABLE(of, st32x_dt_ids);
1036 
1037 static int sta32x_probe_dt(struct device *dev, struct sta32x_priv *sta32x)
1038 {
1039 	struct device_node *np = dev->of_node;
1040 	struct sta32x_platform_data *pdata;
1041 	u16 tmp;
1042 
1043 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1044 	if (!pdata)
1045 		return -ENOMEM;
1046 
1047 	of_property_read_u8(np, "st,output-conf",
1048 			    &pdata->output_conf);
1049 	of_property_read_u8(np, "st,ch1-output-mapping",
1050 			    &pdata->ch1_output_mapping);
1051 	of_property_read_u8(np, "st,ch2-output-mapping",
1052 			    &pdata->ch2_output_mapping);
1053 	of_property_read_u8(np, "st,ch3-output-mapping",
1054 			    &pdata->ch3_output_mapping);
1055 
1056 	pdata->fault_detect_recovery =
1057 		of_property_read_bool(np, "st,fault-detect-recovery");
1058 	pdata->thermal_warning_recovery =
1059 		of_property_read_bool(np, "st,thermal-warning-recovery");
1060 	pdata->thermal_warning_adjustment =
1061 		of_property_read_bool(np, "st,thermal-warning-adjustment");
1062 	pdata->needs_esd_watchdog =
1063 		of_property_read_bool(np, "st,needs_esd_watchdog");
1064 
1065 	tmp = 140;
1066 	of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
1067 	pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
1068 
1069 	/* CONFE */
1070 	pdata->max_power_use_mpcc =
1071 		of_property_read_bool(np, "st,max-power-use-mpcc");
1072 	pdata->max_power_correction =
1073 		of_property_read_bool(np, "st,max-power-correction");
1074 	pdata->am_reduction_mode =
1075 		of_property_read_bool(np, "st,am-reduction-mode");
1076 	pdata->odd_pwm_speed_mode =
1077 		of_property_read_bool(np, "st,odd-pwm-speed-mode");
1078 
1079 	/* CONFF */
1080 	pdata->invalid_input_detect_mute =
1081 		of_property_read_bool(np, "st,invalid-input-detect-mute");
1082 
1083 	sta32x->pdata = pdata;
1084 
1085 	return 0;
1086 }
1087 #endif
1088 
1089 static int sta32x_i2c_probe(struct i2c_client *i2c)
1090 {
1091 	struct device *dev = &i2c->dev;
1092 	struct sta32x_priv *sta32x;
1093 	int ret, i;
1094 
1095 	sta32x = devm_kzalloc(&i2c->dev, sizeof(struct sta32x_priv),
1096 			      GFP_KERNEL);
1097 	if (!sta32x)
1098 		return -ENOMEM;
1099 
1100 	mutex_init(&sta32x->coeff_lock);
1101 	sta32x->pdata = dev_get_platdata(dev);
1102 
1103 #ifdef CONFIG_OF
1104 	if (dev->of_node) {
1105 		ret = sta32x_probe_dt(dev, sta32x);
1106 		if (ret < 0)
1107 			return ret;
1108 	}
1109 #endif
1110 
1111 	/* Clock */
1112 	sta32x->xti_clk = devm_clk_get(dev, "xti");
1113 	if (IS_ERR(sta32x->xti_clk)) {
1114 		ret = PTR_ERR(sta32x->xti_clk);
1115 
1116 		if (ret == -EPROBE_DEFER)
1117 			return ret;
1118 
1119 		sta32x->xti_clk = NULL;
1120 	}
1121 
1122 	/* GPIOs */
1123 	sta32x->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
1124 						       GPIOD_OUT_LOW);
1125 	if (IS_ERR(sta32x->gpiod_nreset))
1126 		return PTR_ERR(sta32x->gpiod_nreset);
1127 
1128 	/* regulators */
1129 	for (i = 0; i < ARRAY_SIZE(sta32x->supplies); i++)
1130 		sta32x->supplies[i].supply = sta32x_supply_names[i];
1131 
1132 	ret = devm_regulator_bulk_get(&i2c->dev, ARRAY_SIZE(sta32x->supplies),
1133 				      sta32x->supplies);
1134 	if (ret != 0) {
1135 		dev_err(&i2c->dev, "Failed to request supplies: %d\n", ret);
1136 		return ret;
1137 	}
1138 
1139 	sta32x->regmap = devm_regmap_init_i2c(i2c, &sta32x_regmap);
1140 	if (IS_ERR(sta32x->regmap)) {
1141 		ret = PTR_ERR(sta32x->regmap);
1142 		dev_err(dev, "Failed to init regmap: %d\n", ret);
1143 		return ret;
1144 	}
1145 
1146 	i2c_set_clientdata(i2c, sta32x);
1147 
1148 	ret = devm_snd_soc_register_component(dev, &sta32x_component,
1149 					      &sta32x_dai, 1);
1150 	if (ret < 0)
1151 		dev_err(dev, "Failed to register component (%d)\n", ret);
1152 
1153 	return ret;
1154 }
1155 
1156 static const struct i2c_device_id sta32x_i2c_id[] = {
1157 	{ "sta326" },
1158 	{ "sta328" },
1159 	{ "sta329" },
1160 	{ }
1161 };
1162 MODULE_DEVICE_TABLE(i2c, sta32x_i2c_id);
1163 
1164 static struct i2c_driver sta32x_i2c_driver = {
1165 	.driver = {
1166 		.name = "sta32x",
1167 		.of_match_table = of_match_ptr(st32x_dt_ids),
1168 	},
1169 	.probe = sta32x_i2c_probe,
1170 	.id_table = sta32x_i2c_id,
1171 };
1172 
1173 module_i2c_driver(sta32x_i2c_driver);
1174 
1175 MODULE_DESCRIPTION("ASoC STA32X driver");
1176 MODULE_AUTHOR("Johannes Stezenbach <js@sig21.net>");
1177 MODULE_LICENSE("GPL");
1178